WO2020186753A1 - 一种电调波束扫描微带贴片天线 - Google Patents

一种电调波束扫描微带贴片天线 Download PDF

Info

Publication number
WO2020186753A1
WO2020186753A1 PCT/CN2019/112880 CN2019112880W WO2020186753A1 WO 2020186753 A1 WO2020186753 A1 WO 2020186753A1 CN 2019112880 W CN2019112880 W CN 2019112880W WO 2020186753 A1 WO2020186753 A1 WO 2020186753A1
Authority
WO
WIPO (PCT)
Prior art keywords
patch
parasitic
voltage control
varactor diode
dielectric
Prior art date
Application number
PCT/CN2019/112880
Other languages
English (en)
French (fr)
Inventor
向凯燃
陈付昌
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2020186753A1 publication Critical patent/WO2020186753A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching

Definitions

  • the invention relates to the technical field of antennas, in particular to an electrically modulated beam scanning microstrip patch antenna.
  • Multi-beam antenna technology is an effective solution to this demand and is increasingly used Used in personal communication systems (PCS), satellite communication systems, wireless local loops, wireless local area networks (LAN) and wireless ATM systems.
  • PCS personal communication systems
  • LAN wireless local area networks
  • wireless ATM systems wireless ATM systems.
  • the purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and proposes an electrically modulated beam scanning microstrip patch antenna with a working frequency of 3.5 GHz.
  • a ⁇ 42° beam can be achieved.
  • the scanning direction range, and the reflection coefficient S 11 basically remains unchanged during the entire adjustment process, and the gains in different directions remain basically unchanged, the entire antenna structure is simple, easy to process, and low in cost.
  • an electrically modulated beam scanning microstrip patch antenna the antenna includes two layers of dielectric plates, a first dielectric plate and a second dielectric plate, respectively.
  • the second dielectric plate is located above the first dielectric plate; it also includes a first voltage control module and a second voltage control module; an air layer is formed between the first dielectric plate and the second dielectric plate; the first medium
  • the upper surface of the board is provided with a ground plate, the lower surface is provided with a first copper-clad layer, the ground plate is provided with a coupling aperture, and the first copper-clad layer is respectively provided with a feeder and a tuning stub.
  • the tuning stub is added through the feeder
  • the first dielectric board is made with input ports; the upper surface of the second dielectric board is provided with a second copper clad layer, and the second copper clad layer is respectively provided with a rectangular patch and a first parasitic Patch, second parasitic patch, third parasitic patch, fourth parasitic patch, first varactor diode, second varactor diode, first patch inductor, second patch inductor, third patch inductor ,
  • the fourth patch inductor, the first voltage control interface, the second voltage control interface, the third voltage control interface and the fourth voltage control interface, the first parasitic patch and the second parasitic patch pass the first varactor diode
  • the connection forms a parasitic unit and is symmetrical about the first varactor diode.
  • the third parasitic patch and the fourth parasitic patch are connected by the second varactor diode to form a parasitic unit and are symmetrical about the second varactor diode.
  • the capacitance values of the first varactor diode and the second varactor diode make the current distributions generated by the two parasitic units different, thereby realizing the control of the beam direction.
  • the first parasitic patch passes through the first patch inductor and the first The voltage control interface is connected to the first voltage control module
  • the second parasitic patch is connected to the first voltage control module through the second patch inductance and the second voltage control interface in turn
  • the third parasitic patch passes through the third
  • the patch inductor and the third voltage control interface are connected to the second voltage control module
  • the fourth parasitic patch is sequentially connected to the second voltage control module through the fourth patch inductor and the fourth voltage control interface
  • the rectangular patch It is the main radiation source of the entire antenna and is located between the two parasitic elements.
  • the feeder feeds the rectangular patch through the coupling aperture.
  • the working frequency of the antenna is 3.5 GHz
  • the beam scanning in the direction of ⁇ 42° is realized by adjusting the capacitance values of the first varactor diode and the second varactor diode.
  • the present invention has the following advantages and beneficial effects:
  • the working frequency of the electrically adjustable beam scanning microstrip patch antenna of the present invention is 3.5 GHz, and the beam scanning in the direction of ⁇ 42° can be realized by adjusting the two ends of the varactor diode.
  • the electrically modulated beam scanning microstrip patch antenna of the present invention keeps the reflection coefficient S 11 basically unchanged while changing the beam direction.
  • the electronically modulated beam scanning microstrip patch antenna of the present invention keeps the gain basically unchanged while changing the beam direction.
  • the electronically modulated beam scanning microstrip patch antenna of the present invention has simple processing, light weight, low processing cost, wide working bandwidth, and has good application prospects.
  • Fig. 1 is a perspective view of the electronically modulated beam scanning microstrip patch antenna of the present invention.
  • Fig. 2 is a side view of the electronically modulated beam scanning microstrip patch antenna of the present invention.
  • Fig. 3 is a top view of the electronically modulated beam scanning microstrip patch antenna of the present invention.
  • Fig. 4 is a bottom view of the electronically modulated beam scanning microstrip patch antenna of the present invention.
  • Fig. 5 is a S 11 simulation result diagram of the electronically modulated beam scanning microstrip patch antenna of the present invention.
  • the C2 value of (a) is fixed at 0.5 pf
  • the C2 value of (b) is fixed at 4 pf.
  • FIG. 6 is a diagram showing the simulation result of the beam direction of the electronically modulated beam scanning microstrip patch antenna of the present invention.
  • FIG. 7 is a simulation diagram of the gain of the electronically modulated beam scanning microstrip patch antenna of the present invention in various directions.
  • the electronically modulated beam scanning microstrip patch antenna has a working frequency of 3.5 GHz and includes a first dielectric plate 1, a second dielectric plate 2, and a first voltage control module 20 and the second voltage control module 21; the second dielectric plate 2 is located above the first dielectric plate 1, an air layer 6 is formed between the first dielectric plate 1 and the second dielectric plate 2, and the air layer 6
  • the main function is to improve the gain of the patch antenna; the upper surface of the first dielectric plate is provided with a ground plate 4, the lower surface is provided with a first copper clad layer 3, and the ground plate 4 is provided with a coupling aperture 22, so
  • the first copper-clad layer 3 is provided with a feeder 23 and a tuning stub 24 respectively.
  • the tuning stub 24 is added through the feeder 23 to adjust impedance matching.
  • the first dielectric plate 1 is made with an input port 25, and the entire antenna is processed through the input port 25. Feeding; the upper surface of the second dielectric board 2 is provided with a second copper clad layer 5, and the second copper clad layer 5 is respectively provided with a rectangular patch 7, a first parasitic patch 8, and a second parasitic patch Piece 9, third parasitic patch 10, fourth parasitic patch 11, first varactor diode C1, second varactor diode C2, first patch inductor 12, second patch inductor 13, third patch inductor 14.
  • the sheet 9 is connected by the first varactor diode C1 to form a parasitic unit and is symmetrical with respect to the first varactor diode C1.
  • the third parasitic patch 10 and the fourth parasitic patch 11 are connected by the second varactor diode C2 to form a parasitic unit.
  • the unit is symmetrical with respect to the second varactor diode C2.
  • the first parasitic patch 8 is sequentially connected to the first voltage control module 20 through the first patch inductor 12 and the first voltage control interface 16, and the second parasitic patch 9 sequentially passes through
  • the second patch inductor 13 and the second voltage control interface 17 are connected to the first voltage control module 20, and the third parasitic patch 10 is in turn connected to the second voltage control via the third patch inductor 14 and the third voltage control interface 18
  • the module 21 is connected.
  • the fourth parasitic patch 11 is connected to the second voltage control module 21 through the fourth patch inductor 15 and the fourth voltage control interface 19 in turn.
  • the rectangular patch 7 is the main radiation source of the entire antenna, Located between the two parasitic units, the feeder 23 feeds the rectangular patch 7 through the coupling aperture 22.
  • the dielectric constant of the first dielectric plate 1 and the second dielectric plate 2 are both 2.55, and the loss tangent is 0.0029.
  • the thickness of the first dielectric plate 1 and the second dielectric plate 2 are both 1.5 mm; the thickness of the air layer 6 is 2 mm.
  • the first parasitic patch 8, the second parasitic patch 9, the third parasitic patch 10, and the fourth parasitic patch 11 have the same size, which is slightly larger than a quarter of the wavelength of the designed frequency.
  • the values of the first chip inductor 12, the second chip inductor 13, the third chip inductor 14, and the fourth chip inductor 15 are all 25 nH.
  • the adjustment method is realized by the first voltage control module 20 and the second voltage control module 21,
  • the function of the first patch inductor 12 is to block the current of the first parasitic patch 8 from entering the first voltage control module 20 through the first voltage control interface 16
  • the function of the second patch inductor 13 is to block the second parasitic patch.
  • the current of 9 enters the first voltage control module 20 through the second voltage control interface 17.
  • the function of the third patch inductor 14 is to block the current of the third parasitic patch 10 from entering the second voltage control module through the third voltage control interface 18.
  • the function of the fourth patch inductor 15 is to block the current of the fourth parasitic patch 11 from entering the second voltage control module 21 through the fourth voltage control interface 19.
  • FIG. 5 shows the S 11 simulation result of the above-mentioned electronically modulated beam scanning microstrip patch antenna of this embodiment. From the simulation result, it can be seen that the characteristics of the reflection coefficient S 11 are basically unchanged when different capacitance values are changed.
  • FIG. 6 shows the beam direction simulation results of the above-mentioned electronically modulated beam scanning microstrip patch antenna in this embodiment. From the simulation results, it can be seen that the beam direction can be from -42° to +42 by setting different capacitance values. °Change.
  • FIG. 7 shows the simulation of the gain in each direction of the above-mentioned electronically modulated beam scanning microstrip patch antenna in this embodiment. From the simulation results, it can be seen that when the beam direction changes, the gain is basically maintained at 9dBi.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种电调波束扫描微带贴片天线,包括第一、二介质板和第一、二电压控制模块;第一、二介质板之间形成有空气层;第一介质板上表面设有接地板,下表面设有第一覆铜层,接地板上设有耦合孔径,第一覆铜层上设有馈线和调谐枝节,第一介质板制作有输入端口;第二介质板上表面设有第二覆铜层;第二覆铜层上设有矩形贴片,第一、二、三、四寄生贴片,第一、二变容二极管,第一、二、三、四贴片电感,第一、二、三、四电压控制接口;第一、二寄生贴片通过第一变容二极管连接形成一个寄生单元,第三、四寄生贴片通过第二变容二极管连接形成一个寄生单元,矩形贴片位于两个寄生单元之间。本发明整个天线结构简单而且加工方便,成本低。

Description

一种电调波束扫描微带贴片天线 技术领域
本发明涉及天线的技术领域,尤其是指一种电调波束扫描微带贴片天线。
背景技术
近年来无线通信的高速发展,随着第五代通信系统的到来,对于系统的通信容量和传输速率有了更高的要求。贴片天线由于其重量轻、体积小、易共形、易加工 、成本低等优点被广泛应用到无线通讯系统中。随着5G技术的快速发展以及无线通信用户的高速增长,都迫切需要在非常有限的频谱资源内充分提高频谱利用率,多波束天线技术是应对这一需求的有效方案,越来越多地应用于个人通信系统(PCS)、卫星通信系统、无线本地回路、无线局域网(LAN)和无线ATM系统。利用微带天线设计多波束天线具有很大研究意义。
对现有技术进行调查了解,具体如下:
吴宗霖教授等人在2013年中发表了一篇论文提到,利用前向波定向耦合器和相位差异补偿技术设计了4×4Butler矩阵,由于选取了宽带的耦合器和移相器,实现了具有宽带特性的Butler矩阵,因此可以实现宽带的多波束天线。
马自庄教授利用人工传输线结构实现了结构紧凑的4×4 Butler矩阵,并以此实现了四波束天线。
总的来说,现有的工作中,有不少关于多波束微带天线的研究,但是很多设计方法利用的是相位馈电网络等方法实现的,容易造成能量的损失,且设计比较复杂。因此,设计一款简单的多波束微带贴片天线具有重要意义。
技术问题
现有的工作中,有不少关于多波束微带天线的研究,但是很多设计方法利用的是相位馈电网络等方法实现的,容易造成能量的损失,且设计比较复杂,因此,设计一款简单可靠的多波束微带贴片天线具有重要意义。
技术解决方案
本发明的目的在于克服现有技术的缺点与不足,提出了一种电调波束扫描微带贴片天线,工作频率为3.5GHz,通过调节变容二极管的电容值,可以实现±42°的波束扫描方向范围,且在整个调节过程中,反射系数S 11基本保持不变,而且不同方向的增益基本保持不变,整个天线结构简单而且加工方便,成本低。
为实现上述目的,本发明所提供的技术方案为:一种电调波束扫描微带贴片天线,所述天线包括有两层介质板,分别为第一介质板和第二介质板,所述第二介质板位于第一介质板上方;还包括有第一电压控制模块和第二电压控制模块;所述第一介质板和第二介质板之间形成有一层空气层;所述第一介质板的上表面设置有接地板,下表面设置有第一覆铜层,所述接地板上设置有耦合孔径,所述第一覆铜层上分别设置有馈线和调谐枝节,通过馈线添加调谐枝节调节阻抗匹配,所述第一介质板制作有输入端口;所述第二介质板的上表面设置有第二覆铜层,所述第二覆铜层上分别设置有矩形贴片、第一寄生贴片、第二寄生贴片、第三寄生贴片、第四寄生贴片、第一变容二极管、第二变容二极管、第一贴片电感、第二贴片电感、第三贴片电感、第四贴片电感、第一电压控制接口、第二电压控制接口、第三电压控制接口和第四电压控制接口,所述第一寄生贴片和第二寄生贴片通过第一变容二极管连接形成一个寄生单元且关于第一变容二极管对称,所述第三寄生贴片和第四寄生贴片通过第二变容二极管连接形成一个寄生单元且关于第二变容二极管对称,通过调节第一变容二极管和第二变容二极管的电容值,使得两个寄生单元产生的电流分布不一样,从而实现波束方向的控制,所述第一寄生贴片依次通过第一贴片电感和第一电压控制接口与第一电压控制模块连接,所述第二寄生贴片依次通过第二贴片电感和第二电压控制接口与第一电压控制模块连接,所述第三寄生贴片依次通过第三贴片电感和第三电压控制接口与第二电压控制模块连接,所述第四寄生贴片依次通过第四贴片电感和第四电压控制接口与第二电压控制模块连接,所述矩形贴片为整个天线的主要辐射源,位于两个寄生单元之间,所述馈线通过耦合孔径对矩形贴片进行馈电。
进一步,所述天线的工作频率为3.5GHz,通过调节第一变容二极管和第二变容二极管的电容值实现±42°方向的波束扫描。
有益效果
本发明与现有技术相比,具有如下优点与有益效果:
1、本发明的电调波束扫描微带贴片天线工作频率为3.5GHz,可以通过调节变容二极管的两端实现±42°方向的波束扫描。
2、本发明的电调波束扫描微带贴片天线在改变波束方向的同时保持反射系数S 11基本不变。
3、本发明的电调波束扫描微带贴片天线在改变波束方向的同时保持增益基本不变。
4、本发明的电调波束扫描微带贴片天线加工简单,重量轻,加工成本低,工作带宽宽,具有很好的应用前景。
附图说明
图1为本发明的电调波束扫描微带贴片天线的立体图。
图2为本发明的电调波束扫描微带贴片天线的侧视图。
图3为本发明的电调波束扫描微带贴片天线的俯视图。
图4为本发明的电调波束扫描微带贴片天线的仰视图。
图5为本发明的电调波束扫描微带贴片天线的S 11仿真结果图,图中(a)的C2值固定为0.5pf,(b)的C2固定值为4pf。
图6为本发明的电调波束扫描微带贴片天线的波束方向仿真结果图。
图7为本发明的电调波束扫描微带贴片天线各个方向的增益仿真图。
本发明的实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参见图1至图4所示,本实施例所提供的电调波束扫描微带贴片天线,工作频率为3.5GHz,包括有第一介质板1、第二介质板2、第一电压控制模块20和第二电压控制模块21;所述第二介质板2位于第一介质板1上方,所述第一介质板1和第二介质板2之间形成有一层空气层6,空气层6的主要作用是为了提高贴片天线的增益;所述第一介质板的上表面设置有接地板4,下表面设置有第一覆铜层3,所述接地板4上设置有耦合孔径22,所述第一覆铜层3上分别设置有馈线23和调谐枝节24,通过馈线23添加调谐枝节24调节阻抗匹配,所述第一介质板1制作有输入端口25,通过输入端口25对整个天线进行馈电;所述第二介质板2的上表面设置有第二覆铜层5,所述第二覆铜层5上分别设置有矩形贴片7、第一寄生贴片8、第二寄生贴片9、第三寄生贴片10、第四寄生贴片11、第一变容二极管C1、第二变容二极管C2、第一贴片电感12、第二贴片电感13、第三贴片电感14、第四贴片电感15、第一电压控制接口16、第二电压控制接口17、第三电压控制接口18和第四电压控制接口19,所述第一寄生贴片8和第二寄生贴片9通过第一变容二极管C1连接形成一个寄生单元且关于第一变容二极管C1对称,所述第三寄生贴片10和第四寄生贴片11通过第二变容二极管C2连接形成一个寄生单元且关于第二变容二极管C2对称,通过调节第一变容二极管C1和第二变容二极管C2的电容值,使得两个寄生单元产生的电流分布不一样,从而实现波束方向的控制,实现±42°方向的波束扫描,所述第一寄生贴片8依次通过第一贴片电感12和第一电压控制接口16与第一电压控制模块20连接,所述第二寄生贴片9依次通过第二贴片电感13和第二电压控制接口17与第一电压控制模块20连接,所述第三寄生贴片10依次通过第三贴片电感14和第三电压控制接口18与第二电压控制模块21连接,所述第四寄生贴片11依次通过第四贴片电感15和第四电压控制接口19与第二电压控制模块21连接,所述矩形贴片7为整个天线的主要辐射源,位于两个寄生单元之间,所述馈线23通过耦合孔径22对矩形贴片7进行馈电。
第一介质板1和第二介质板2的介电常数均为2.55,损耗角正切为0.0029。第一介质板1和第二介质板2的厚度均为1.5毫米;空气层6的厚度为2mm。第一寄生贴片8、第二寄生贴片9、第三寄生贴片10和第四寄生贴片11大小一样,略大于所设计频率的四分之一的波长。第一贴片电感12、第二贴片电感13、第三贴片电感14和第四贴片电感15的数值均为25nH。
通过调节两个变容二极管的电容值,使得两个寄生单元产生的电流分布不一样,从而实现波束方向的控制,调节的方法是通过第一电压控制模块20和第二电压控制模块21实现,第一贴片电感12的作用就是为了阻隔第一寄生贴片8的电流通过第一电压控制接口16进入第一电压控制模块20,第二贴片电感13的作用就是为了阻隔第二寄生贴片9的电流通过第二电压控制接口17进入第一电压控制模块20,第三贴片电感14的作用就是为了阻隔第三寄生贴片10的电流通过第三电压控制接口18进入第二电压控制模块21,第四贴片电感15的作用就是为了阻隔第四寄生贴片11的电流通过第四电压控制接口19进入第二电压控制模块21。
参见图5所示,显示了本实施例上述电调波束扫描微带贴片天线的S 11仿真结果,由仿真结果可以看到,当改变不同的电容值基本不改变反射系数S 11的特性。
参见图6所示,显示了本实施例上述电调波束扫描微带贴片天线的波束方向仿真结果,由仿真结果可以看到,设置不同的电容值,波束方向可以从-42°到+42°改变。
参见图7所示,显示了本实施例上述电调波束扫描微带贴片天线各个方向的增益仿真,由仿真结果可以看到,当波束方向发生变化时,增益基本保持在9dBi。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (2)

  1. 一种电调波束扫描微带贴片天线,所述天线包括有两层介质板,分别为第一介质板和第二介质板,所述第二介质板位于第一介质板上方;其特征在于:还包括有第一电压控制模块和第二电压控制模块;所述第一介质板和第二介质板之间形成有一层空气层;所述第一介质板的上表面设置有接地板,下表面设置有第一覆铜层,所述接地板上设置有耦合孔径,所述第一覆铜层上分别设置有馈线和调谐枝节,通过馈线添加调谐枝节调节阻抗匹配,所述第一介质板制作有输入端口;所述第二介质板的上表面设置有第二覆铜层,所述第二覆铜层上分别设置有矩形贴片、第一寄生贴片、第二寄生贴片、第三寄生贴片、第四寄生贴片、第一变容二极管、第二变容二极管、第一贴片电感、第二贴片电感、第三贴片电感、第四贴片电感、第一电压控制接口、第二电压控制接口、第三电压控制接口和第四电压控制接口,所述第一寄生贴片和第二寄生贴片通过第一变容二极管连接形成一个寄生单元且关于第一变容二极管对称,所述第三寄生贴片和第四寄生贴片通过第二变容二极管连接形成一个寄生单元且关于第二变容二极管对称,通过调节第一变容二极管和第二变容二极管的电容值,使得两个寄生单元产生的电流分布不一样,从而实现波束方向的控制,所述第一寄生贴片依次通过第一贴片电感和第一电压控制接口与第一电压控制模块连接,所述第二寄生贴片依次通过第二贴片电感和第二电压控制接口与第一电压控制模块连接,所述第三寄生贴片依次通过第三贴片电感和第三电压控制接口与第二电压控制模块连接,所述第四寄生贴片依次通过第四贴片电感和第四电压控制接口与第二电压控制模块连接,所述矩形贴片为整个天线的主要辐射源,位于两个寄生单元之间,所述馈线通过耦合孔径对矩形贴片进行馈电。
  2. 根据权利要求1所述的一种电调波束扫描微带贴片天线,其特征在于:所述天线的工作频率为3.5GHz,通过调节第一变容二极管和第二变容二极管的电容值实现±42°方向的波束扫描。
     
PCT/CN2019/112880 2019-03-20 2019-10-23 一种电调波束扫描微带贴片天线 WO2020186753A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910210987.2 2019-03-20
CN201910210987.2A CN109980344B (zh) 2019-03-20 2019-03-20 一种电调波束扫描微带贴片天线

Publications (1)

Publication Number Publication Date
WO2020186753A1 true WO2020186753A1 (zh) 2020-09-24

Family

ID=67079590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112880 WO2020186753A1 (zh) 2019-03-20 2019-10-23 一种电调波束扫描微带贴片天线

Country Status (2)

Country Link
CN (1) CN109980344B (zh)
WO (1) WO2020186753A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980344B (zh) * 2019-03-20 2023-12-01 华南理工大学 一种电调波束扫描微带贴片天线
CN110808468A (zh) * 2019-11-08 2020-02-18 华南理工大学 一种波束可重构的宽阻带抑制滤波天线
CN113224521A (zh) * 2021-04-29 2021-08-06 华南理工大学 基于电可控寄生辐射器的多波束天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040189528A1 (en) * 2003-03-31 2004-09-30 Killen William D. Arangements of microstrip antennas having dielectric substrates including meta-materials
CN104300210A (zh) * 2014-09-25 2015-01-21 东南大学 宽波束微带贴片天线
CN104681971A (zh) * 2015-02-16 2015-06-03 零八一电子集团有限公司 宽带微带天线阵列耦合结构
CN109390699A (zh) * 2018-11-19 2019-02-26 华南理工大学 一种基于可重构寄生单元的小型波束可控贴片天线
CN109980344A (zh) * 2019-03-20 2019-07-05 华南理工大学 一种电调波束扫描微带贴片天线

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7330152B2 (en) * 2005-06-20 2008-02-12 The Board Of Trustees Of The University Of Illinois Reconfigurable, microstrip antenna apparatus, devices, systems, and methods
CN203056052U (zh) * 2012-12-05 2013-07-10 哈尔滨飞羽科技有限公司 新型的多功能天线滤波器
CN108511897A (zh) * 2018-03-15 2018-09-07 西北大学 一种低剖面宽带电磁超表面方向图可调天线
CN209516014U (zh) * 2019-03-20 2019-10-18 华南理工大学 一种电调波束扫描微带贴片天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040189528A1 (en) * 2003-03-31 2004-09-30 Killen William D. Arangements of microstrip antennas having dielectric substrates including meta-materials
CN104300210A (zh) * 2014-09-25 2015-01-21 东南大学 宽波束微带贴片天线
CN104681971A (zh) * 2015-02-16 2015-06-03 零八一电子集团有限公司 宽带微带天线阵列耦合结构
CN109390699A (zh) * 2018-11-19 2019-02-26 华南理工大学 一种基于可重构寄生单元的小型波束可控贴片天线
CN109980344A (zh) * 2019-03-20 2019-07-05 华南理工大学 一种电调波束扫描微带贴片天线

Also Published As

Publication number Publication date
CN109980344A (zh) 2019-07-05
CN109980344B (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2020186753A1 (zh) 一种电调波束扫描微带贴片天线
KR100322119B1 (ko) 선형편파를위한광대역평면다이폴안테나
WO2021088630A1 (zh) 一种双圆极化波束可重构微带天线
CN108987911A (zh) 一种基于siw的毫米波波束赋形微带阵列天线及设计方法
CN110808458A (zh) 一种双极化多层贴片滤波天线及通信设备
CN111883910B (zh) 一种双极化低剖面磁电偶极子天线及无线通信设备
CN210806003U (zh) 一种双圆极化波束可重构微带天线
KR101792422B1 (ko) 원형편파 특성을 유지함과 동시에 이중 주파수대역비를 조정할 수 있는 마이크로스트립 안테나 구조
CN109742520A (zh) 一种基于加载变容二极管的复合左右手微带漏波天线
CN105048077A (zh) 双三角形槽内嵌共面波导单极子多进多出天线
CN211126042U (zh) 一种双极化多层贴片滤波天线及通信设备
CN109687122A (zh) 一种宽带低副瓣阵列天线
CN110444884A (zh) 基于集总元件直流馈电网络的圆极化定频电扫漏波天线
CN209516014U (zh) 一种电调波束扫描微带贴片天线
CN110808468A (zh) 一种波束可重构的宽阻带抑制滤波天线
CN113659349B (zh) 一种可调相位的宽带透射超表面及超表面单元
CN114512804B (zh) 基于复合左右手传输线的定频波束扫描天线及其实现方法
CN108232416A (zh) 一种双极化cts波束扫描天线阵
Alibakhshikenari et al. An innovative and simple impedance matching network using stacks of metasurface sheets to suppress the mismatch between antennas and RF front-end transceivers circuits
CN210806013U (zh) 一种波束可重构的宽阻带抑制滤波天线
CN114883773A (zh) 一种天线结构、电子设备及无线网络系统
CN116783779A (zh) 反射波束导向超表面
CN115377665A (zh) 一种低剖面串行馈电波束可重构天线
KR102683981B1 (ko) 5g 및 6g 밀리미터파 대역의 액정기반 위상배열 안테나
CN110783701A (zh) 一种集成可调移相功分器的圆极化可重构天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24.01.2022.)

122 Ep: pct application non-entry in european phase

Ref document number: 19920258

Country of ref document: EP

Kind code of ref document: A1