WO2020186397A1 - Coating material system based on a bismuth-containing catalyst with sterically bulky substituents - Google Patents

Coating material system based on a bismuth-containing catalyst with sterically bulky substituents Download PDF

Info

Publication number
WO2020186397A1
WO2020186397A1 PCT/CN2019/078333 CN2019078333W WO2020186397A1 WO 2020186397 A1 WO2020186397 A1 WO 2020186397A1 CN 2019078333 W CN2019078333 W CN 2019078333W WO 2020186397 A1 WO2020186397 A1 WO 2020186397A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
coating material
monosubstituted
material system
hydroxy
Prior art date
Application number
PCT/CN2019/078333
Other languages
French (fr)
Inventor
Werner-Alfons Jung
Weiqiu Hu
Peter Hoffman
Cathrin CORTEN
Huajun Xu
Benedikt Schnier
Zheng Huang
Yanlu ZHANG
Original Assignee
Basf Coatings Gmbh
Basf Advanced Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Coatings Gmbh, Basf Advanced Chemicals Co., Ltd. filed Critical Basf Coatings Gmbh
Priority to PCT/CN2019/078333 priority Critical patent/WO2020186397A1/en
Priority to CN201980094076.6A priority patent/CN113614136B/en
Publication of WO2020186397A1 publication Critical patent/WO2020186397A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/227Catalysts containing metal compounds of antimony, bismuth or arsenic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/161Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/225Catalysts containing metal compounds of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • C08G18/6229Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7831Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing biuret groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes

Definitions

  • the invention relates to a coating material system which comprises components (A) to (C) and also, optionally, further components, with, in a first option, all components (A) to (C) and also, where present, the further optional components being present separately from one another, in other words, the individual components are not mixed with each other as such but only combined prior to use.
  • the aforementioned components may also be mixed wholly or at least partly with one another. Where the components are at least partly mixed with one another, this means that, for example, component (C) is mixed with component (A) , while component (B) is present separately from this mixture of (A) and (C) .
  • component (B) may also be mixed with a portion of component (C) .
  • the mixtures of (A) and (C) and of (B) and (C) may additionally comprise at least one optional component such as a solvent, for example.
  • Component (A) comprises at least one polyhydroxy group-containing compound and component (B) comprises at least one polyisocyanate-containing compound.
  • Component (C) is at least one bismuth-containing catalyst according to general formula (Ia) and/or according to general formula (Ib) as defined below.
  • Further components which may be present in the coating material system of the invention include, for example, hydroxyl-containing compounds (B) , coating additives (F) , pigments (H) and/or solvents (J) .
  • a further subject of the present invention is a method for producing polyurethanes which are obtained by curing of the coating material system described above.
  • “Curing” (cure) in the sense of the present invention means that the components (A) and (B) present in the coating material system of the invention react with one another in the presence of the catalyst of component (C) to form a polyurethane.
  • the reaction i.e., the curing, may proceed at least partially, but preferably there is complete curing, meaning that the components (A) and (B) present in the coating material system of the invention undergo complete or near-complete reaction with one another.
  • a further subject of the present invention is a method for producing a coating using the coating material system of the invention.
  • a further subject of the present invention is the use of a bismuth-containing catalyst according to general formula (Ia) and/or according to general formula (Ib) of component (C) of the coating material system according to the invention, for the production, for example, of polyurethanes or for the production of a paint.
  • the catalyst as such according to general formula (Ia) that is used in the coating material system of the invention is a further subject of the present invention.
  • An alternative possibility is the provision of one-component systems (mixtures/1K system) in which, for example, the two reactive components and also the catalyst can be provided as a storable mixture by means of blocking of the reactive groups of the individual reactants, as for example by blocking of the free isocyanate groups with suitable blocking agents.
  • the 1K system in the individual starting components or optionally in the starting mixture, there are, in practice, frequently other components present as well, such as solvents or coatings additives.
  • polyurethanes as coating materials or as a constituent of coating materials, in automotive refinish, for example, have a broad field of application.
  • the polyurethane thus acts as a coating material.
  • the corresponding formulations which comprise at least the polyurethane reactants and also a suitable catalyst, and optionally further components such as coatings additives or solvents, are also referred to as a coating material system or coating material composition.
  • Polyurethane coating materials typically comprise a catalyst, for which not only acidic compounds but also, in particular, tertiary amines and/or metal compounds are applied, such as various tin compounds, more particularly dibutyltin dilaurate and dibutyltin oxide, for example.
  • a catalyst for which not only acidic compounds but also, in particular, tertiary amines and/or metal compounds are applied, such as various tin compounds, more particularly dibutyltin dilaurate and dibutyltin oxide, for example.
  • DBTO dibutyltin oxide
  • DBTL dibutyltin dilaurate
  • WO 2018/169018 relates to coating material systems based on catalysts containing both lithium and bismuth as metal components.
  • Those catalysts are based on two salts of an aliphatic monocarboxylic acid containing at least four carbon atoms, wherein the first salt contains bismuth as metal component and the second salt contains magnesium, sodium, potassium or calcium as metal component.
  • the respective aliphatic monocarboxylic acid may be branched and/or substituted, but it is preferably linear and unsubstituted.
  • monocarboxylic acids examples include 2-ethylhexanoic acid, n-octanoic acid and neodecanoic acid, which are applied as the corresponding salts within the coating material system according to WO 2018/069018.
  • Further mandatory components of said coating material system are at least one polyhydroxy group-containing compound and at least one polyisocyanate-containing compound.
  • a comparable coating material system is disclosed in WO 2016/120160, which differs from the one disclosed in WO 2018/069018 in respect of the catalyst applied.
  • the catalyst according to WO 2016/120160 is a catalyst comprising both lithium and bismuth as metal components in a ratio of at least 7: 1 (mol/mol) .
  • the catalyst can be obtained by mixing the respective metal components with organic acids having (long chain) carboxylic acids with 2 to 30 carbon atoms.
  • neither WO 2016/120160 nor WO 2018/069018 discloses any bismuth-containing catalysts according to the present invention with sterically bulky substituents such as those according to the ligands of formula (Ia) and/or formula (Ib) of the present invention.
  • US-A 4,584,362 discloses a bismuth catalyst system for preparing polyurethane elastomers.
  • the polyurethane elastomers are obtained by reacting a polyether or polyester polyol with a polyisocyanate in the presence of a catalytic amount of a bismuth salt of a carboxylic acid having from 2 to 20 carbon atoms.
  • a similar disclosure can be found in US-A 4,742,090 in respect of the production of polyurethane-urea elastomers.
  • the bismuth carboxylate applied therein as catalyst comprises, among others, a bismuth salt of neodecanoic acid.
  • WO 00/47642 also discloses bismuth carboxylates as catalysts, wherein the respective carboxylic acid is based on a hydrocarbon chain of 11 to 36 carbon atoms and having a molecular weight in the range of from 165 to 465.
  • the catalysts are applied for producing cross-linked block isocyanate waterborne coatings.
  • the object is achieved by means of a coating material system comprising components (A) to (C) :
  • R 1 , R 2 and R 3 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1 -C 30 -alkyl, C 6 -C 14 -aryl or C 7 -C 30 -aralkyl,
  • substituents are selected from hydroxy, halogen, carboxyl, -CF 3 , -NH 2 , C 1 -C 6 -alkoxy, C 1 -C 30 -alkyl or C 6 -C 14 -aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3 , -NH 2 or C 1 -C 6 -alkoxy,
  • R 4 and R 5 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1 -C 30 -alkyl or C 7 -C 30 -aralkyl,
  • substituents are selected from hydroxy, halogen, carboxyl, -CF 3 , -NH 2 , C 1 -C 6 -alkoxy, C 1 -C 30 -alkyl or C 6 -C 14 -aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3 , -NH 2 or C 1 -C 6 -alkoxy,
  • R 6 is unsubstituted or at least monosubstituted adamantyl, wherein the substituents are selected from C 1 -C 10 -alkyl, hydroxy, halogen or -CF 3 ,
  • components (A) , (B) , and (C) are present separately from one another or
  • ii) are mixed wholly or at least partly with one another.
  • the coating material system of the invention Among the features of the coating material system of the invention are that the use of toxic, tin-containing catalysts can be avoided and/or that rapid curing is ensured.
  • An advantage of the present invention can also be seen in the fact that the catalysts applied within the coating material systems according to the present invention have a catalytic activity, which is comparable to the known tin-containing catalysts.
  • the catalytic activity of the catalysts applied within the present invention is better than the respective activity of bismuth-containing catalysts according to the prior art, such as catalysts based on bismuth neodecanoate.
  • the catalysts applied within the present invention show an improved potlife compared to bismuth-containing catalysts according to the prior art as well as an improved hydrolysis stability.
  • catalysts with a quaternary ⁇ -carbon atom i.e., the ⁇ -carbon atom does not contain any hydrogen as substituent
  • catalysts with a tertiary ⁇ -carbon atom one of the residues R 4 or R 5 equals hydrogen
  • the coating material systems when using polyhydroxy group-containing compounds having acid numbers of not more than 9 mg KOH/g, cure more rapidly than comparable coating material systems which comprise polyhydroxy group-containing compounds having higher acid numbers.
  • a further advantage of the coating material systems of the invention is to be seen in their use for automotive refinishing and for the coating of commercial vehicles.
  • the coating material systems of the invention ensure good assembly strength after just a very short time. As a result, rapid curing is ensured even under the conditions of refinishing and of the finishing of commercial vehicles –that is, after curing at 60°C for just 30 minutes, curing is already at such an advanced stage that initial assembly work or demasking operations can be carried out without damage to the coating.
  • binding content or “binder fraction” and “binder content determination” refer (unless stated otherwise) to the following:
  • the “binder content” is in each case the fraction of the coating material system that is soluble in tetrahydrofuran (THF) , said system comprising components (A) to (C) and also, optionally, (D) to (J) .
  • the binder content is determined before the components of the coating material system begin to cure, in other words before curing to give the polyurethane.
  • the individual components of the coating material system in question are mixed completely with one another and then a small sample (P) of 1 g of the coating material system is weighed out and dissolved in 100 times the amount of THF, insoluble constituents are removed by filtration, the THF is evaporated off, and then the resulting solids content of the constituents previously dissolved in THF is ascertained by drying at 130°C for 60 minutes, cooling in a desiccator, and then reweighing. The residue corresponds to the binder content of the sample (P) .
  • definitions such as C 1 -C 30 -alkyl, as defined above for, for example, the radical R 4 in formula (Ia) mean that this substituent (radical) is an alkyl radical having from 1 to 30 carbon atoms, whereby optionally present substituents are not considered in the number of carbon atoms.
  • the alkyl radical can be either linear or branched or optionally cyclic. Alkyl radicals which have both a cyclic component and a linear component likewise come within this definition. The same applies to other alkyl radicals such as a C 1 -C 6 -alkyl radical or a C 3 -C 10 -alkyl radical.
  • alkyl radicals are methyl, ethyl, n- propyl, sec-propyl, n-butyl, sec-butyl, isobutyl, 2-ethylhexyl, tert-butyl (tert-Bu/t-Bu) , pentyl, hexyl, heptyl, cyclohexyl, octyl, nonyl or decyl.
  • aryl or the term “C 6 -C 14 -aryl” , as defined above for, for example, the radical R 1 in formula (Ia) , means that the substituent (radical) is an aromatic.
  • the respective aromatic has from 6 to 14 carbon atoms, whereby optionally present substituents are not considered in the number of carbon atoms.
  • the aromatic can be a monocyclic, bicyclic or optionally polycyclic aromatic. In the case of bicyclic or polycyclic aromatics, individual rings can optionally be fully or partially saturated. Preferably, all rings of the respective aromatic are completely unsaturated.
  • Preferred examples of aryl are phenyl, naphthyl or anthracyl, in particular phenyl.
  • C 7 -C 30 -aralkyl as defined above for, for example, the radical R 4 in formula (Ia) , means that the substituent (radical) contains an alkyl radical (such as C 1 -C 6 -alkyl according to the above-mentioned definitions) , whereby this alkyl radical in turn is substituted with an aryl radical (according to the above-mentioned definitions) .
  • the respective aralkyl substituent has from 7 to 30 carbon atoms, whereby optionally present substituents are not considered in the number of carbon atoms.
  • the alkyl radical itself, which is contained therein, can be either linear or branched or optionally cyclic.
  • C 7 -C 30 -aralkyl which is the same as ,, -CH 2 -phenyl” .
  • R 4 the respective substituent (radical/residue) such as R 4 is bond via its alkyl fragment (-CH 2 -fragment) to the ⁇ -carbon atom (neighboring carbon atom) according to general formula (Ia) and not bond via its aryl (phenyl) -fragment.
  • C 1 -C 6 -alkoxy as defined above, for example, as (additional) substituent of the radical R 4 in formula (Ia) , means that it is a substituent (radical) which is derived from an alcohol. Therefore, the respective substituent contains an oxygen fragment (-O-) , which in turn is connected with an alkyl rest, such as C 1 -C 6 -alkyl (according to the above-mentioned definitions) .
  • the alkyl rest itself can be either linear or branched or optionally cyclic.
  • halogen as defined above for, for example, the radical R 1 in formula (Ia) , means that the substituent (radical) is fluorine, chlorine, bromine or iodine, preferably halogen is fluorine or chlorine, particularly preferably halogen is chlorine.
  • the term “unsubstituted or at least monosubstituted C 1 -C 30 -alkyl, C 6 -C 14 -aryl or C 7 -C 30 -aralkyl “, as defined above for, for example, the radical R 1 in formula (Ia) means that each of the overall three specified substituents (radicals) can either be present in unsubstituted form or disposes of at least one further substituent (monosubstituted) , according to their definitions already mentioned above. If one or more substituents (for example bi-substituted, tri-substituted or even higher substituted) are present, the respective substituents are selected independently of one another from the groups of substituents indicated in each case.
  • the respective aryl component such as phenyl
  • the respective aryl component can be substituted, for example, with a hydroxy and a C 1 -C 30 -alkyl substituent, such as methyl or ethyl.
  • Alkyl fragments or aryl fragments themselves can in turn contain at least one additional substituent according to the indicated definitions. The substitution can take place at every random position of the respective fragment.
  • both the bismuth-containing catalyst according to general formula (Ia) and the bismuth-containing catalyst according to general formula (Ib) contain the respective substituents (radicals/residues) such as R 1 three times each since each bismuth-containing catalyst contains one bismuth atom (metal or central atom) , which is surrounded by three individual carboxy-containing ligands.
  • each of those three carboxy group-containing ligands may have the same definition or a different definition falling under the general formula (Ia) or (Ib) , respectively.
  • each bismuth-containing catalyst contains three identical ligands.
  • each ligand contains three times the same residues R 1 to R 5 in case of a compound falling under the general formula (Ia) and three times the same residue R 6 in case of a compound falling under the general formula (Ib) .
  • the bismuth-containing catalysts according to general formula (Ia) or according to general formula (Ib) are depicted in their salt forms.
  • Salt form means that the bismuth central atom is shown as a (three times positively charged) cation of the respective salt, whereas the three carboxy group ligands are depicted as one-time negatively charged anions each.
  • the negative charge of the ligand is localized within said carboxy group and/or the carboxy group is in close local neighborhood to the (three times positively charged) bismuth central atom.
  • the first subject of the present invention is the coating material system already set out above, comprising components (A) to (C) and, optionally, a further component (D) to (J) .
  • the coating material system of the invention comprises as its component (A) at least one polyhydroxy group-containing (polyhydroxyl group-containing) compound.
  • polyhydroxy group-containing compound of component (A) it is possible to use all compounds known to the skilled person that have at least two hydroxyl groups per molecule.
  • the number of hydroxyl groups (hydroxy groups) per molecule may be arbitrarily high; it is specified by way of the hydroxy number (OH number) , as described hereinafter.
  • the compounds of component (A) are also referred to as “polyols” ; they may be oligomeric and/or polymeric.
  • component (A) it is therefore also possible to use mixtures of two or more oligomeric and/or polymeric polyols (polyhydroxy group-containing compounds) .
  • the polyhydroxy group-containing compounds of component (A) preferably have mass-average molecular weights M w ⁇ 500 daltons, more particularly M w ⁇ 1000 daltons.
  • the M w can be determined by means of gel permeation chromatography (GPC) against a polystyrene standard (see also below in the experimental section) . Further preferred are mass-average molecular weights M w of between 1000 and 20 000 daltons, more particularly between 1500 and 10 000 daltons.
  • the polyols preferably have an OH number of 30 to 400 mg KOH/g (polyol) , more particularly between 100 and 300 KOH/g.
  • the hydroxyl number (OH number) indicates how many mg of potassium hydroxide are equivalent to the amount of acetic acid bound by 1 g of substance (polyol) in the acetylation (of the corresponding polyol with acetic acid) .
  • the sample is boiled with acetic anhydride-pyridine and the acid formed is titrated with potassium hydroxide solution (DIN 53240-2 (2007-11) ) .
  • the OH number may also be determined with sufficient precision by calculation on the basis of the OH-functional monomers applied.
  • the polyols prefferably have an acid number of between 0 and 30 mg KOH/g.
  • the acid number of the polyhydroxy group-containing compound of component (A) is not more than 9 mg KOH/g of the corresponding polyhydroxy group-containing compound, preferably not more than 7 mg KOH/g of the corresponding polyhydroxy group-containing compound, more particularly 0.5 to 5 mg KOH/g of the corresponding polyhydroxy group-containing compound.
  • the acid number here indicates the number of mg of potassium hydroxide consumed in the neutralization of 1 g of the respective compound (polyol/polyhydroxy group-containing compound) (DIN EN ISO 2114: 2006-11) .
  • the polyols have a low acid number, preferably of not more than 9 mg KOH/g of the corresponding polyhydroxy group-containing compound, it is preferable for the polyol in question i) to be based on monomers which have completely esterified acid functions, these monomers preferably being purified prior to their use; ii) to be based on monomers which have only a small amount of free acid functions, or none, the monomers preferably comprising no acid group-containing monomers, more particularly no acrylic acid or no methacrylic acid; and/or iii) to be based on monomers which comprise no phosphate group-containing monomers (PO 4 -containing monomers) . With preference all three of the aforesaid options are realized.
  • the glass transition temperatures (T G values) of the polyols may take on any desired values, and are preferably between -150 and 150°C, more preferably between 40 and 120°C.
  • Preferred polyhydroxy group-containing compounds are polyester polyols, polyurethane polyols, polysiloxane polyols, polyacrylate polyols and/or polymethacrylate polyols. Examples of such compounds are listed in Poth, Schwalm, Schwarz: Acrylatharze. Vincentz Verlag Hannover, ISBN: 9783866308718.
  • the aforesaid classes of polymer such as polyacrylate polyols or polymethacrylate polyols may all be used in each case as a homopolymer or as a copolymer (chain-growth copolymer) of at least two different monomers.
  • copolymers are used with preference as polyhydroxy group-containing compounds, particularly in the aforesaid classes of polymer.
  • the classes of polymer are based on at least one hydroxy group-containing monomer building block.
  • Monomers (monomer building blocks) suitable for the particular class of polymer are known to the skilled person.
  • the skilled person also knows the specific (polymerization) processes that can be used for producing the respective polymers from the corresponding monomers.
  • Suitable polyester polyols are described in EP-A-0 994 117 and EP-A 1 273 640, for example.
  • Polyurethane polyols are prepared preferably by reaction of polyester polyol prepolymers with suitable di-or polyisocyanates and are described in EP-A 1 273 640, for example.
  • Suitable polysiloxane polyols are described in WO-A-01/09260, for example, where the polysiloxane polyols recited therein may be applied preferably in combination with further polyols, more particularly those having higher glass transition temperatures.
  • Component (A) more preferably comprises one or more polyacrylate polyols and/or polymethacrylate polyols.
  • the two aforesaid polymers or classes of polymer are also referred to as poly (meth) acrylate polyols.
  • poly (meth) acrylate polyols are also referred to as poly (meth) acrylate polyols.
  • the poly (meth) acrylate polyols used with more preference as component (A) in accordance with the invention are based preferably on at least one of the monomers (monomer building blocks) listed below. More preferably for this purpose is the use of at least one of the following hydroxyl-containing monomer building blocks and optionally at least one of the following monomer building blocks which are not hydroxyl-containing monomer building blocks. Applied with particular preference are copolymers based on at least one hydroxyl-containing monomer building block and at least one monomer building block which contains no hydroxyl groups. Examples of the corresponding monomer building blocks are listed below.
  • Hydroxyl-containing monomer building blocks used for the poly (meth) acrylate polyols are preferably hydroxyalkyl acrylates and/or hydroxyalkyl methacrylates. They are preferably selected from 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, 3-hydroxypropyl methacrylate, 3-hydroxybutyl acrylate, 3-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate and/or 4-hydroxybutyl methacrylate. Particularly preferred are the hydroxyl-containing monomer building blocks 4-hydroxybutyl acrylate and/or 4-hydroxybutyl methacrylate.
  • the hydroxyl-containing monomer building blocks are used preferably at 20 to 60 wt%, based on the total monomer amount for the respective polymer.
  • Further monomer building blocks used for the poly (meth) acrylate polyols are preferably alkyl acrylates and/or alkyl methacrylates. They are preferably selected from methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, butyl acrylate, butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, amyl acrylate, amyl methacrylate, hexyl acrylate, hexyl methacrylate, ethylhexyl acrylate, ethylhexyl methacrylate, 3, 3, 5-trimethylhexyl acrylate, 3, 3, 5-trimethylhexyl meth
  • Preferred cycloalkyl (meth) acrylates are cyclopentyl acrylate, cyclopentyl methacrylate, isobornyl acrylate, isobornyl methacrylate, or, in particular, cyclohexyl acrylate and/or cyclohexyl methacrylate.
  • the above monomers are used, they are applied preferably in amounts of 35 to 80 wt%, based on the total monomer amount.
  • Further monomer building blocks used for the poly (meth) acrylate polyols may be vinylaromatic hydrocarbons, such as vinyltoluene, alpha-methylstyrene, or in particular, styrene, amides or nitriles of acrylic or methacrylic acid, vinyl esters or vinyl ethers, and also acrylic and/or methacrylic acid.
  • vinylaromatic hydrocarbons are used as monomers, they are applied preferably in amounts of 0.1 to 40 wt%, based on the total monomer amount. If acrylic and/or methacrylic acid is used, this is done preferably in amounts of 0.1 to 5 wt%, based on the total amount of the monomers used.
  • monomer building block compounds which possess a phosphate group. They are prepared by reaction of suitable hydroxyl-containing (meth) acrylic compounds by transesterification.
  • Such monomers are represented preferably by the general formula (1) :
  • R alkyl or alkyl-O-alkyl
  • R”’ H or alkyl.
  • alkyl may be branched or unbranched and may optionally be cyclic.
  • alkyl refers to saturated hydrocarbon radicals having at least one carbon atom, such as methyl (C 1 alkyl) , ethyl (C 2 alkyl) , or hexyl (C 6 alkyl) .
  • the poly (meth) acrylate polyols particularly preferred as component (A) in accordance with the invention are preferably copolymers and preferably have mass-average molecular weights Mw of between 1000 and 20 000 daltons, more particularly between 1500 and 10 000 daltons, measured in each case by means of gel permeation chromatography (GPC) against a polystyrene standard.
  • Mw mass-average molecular weights
  • the glass transition temperature of the poly (meth) acrylate polyols is generally between -150 and 150°C, more particularly between -40 and 120°C (measured by means of DSC measurements according to DIN-EN-ISO 11357-2: 2011-04-28) .
  • the poly (meth) acrylate polyols preferably have an OH number of 60 to 250 mg KOH/g (polyol) , more particularly between 70 and 200 mg KOH/g.
  • the poly (meth) acrylate polyols prefferably have an acid number of between 0 and 30 mg KOH/g.
  • the acid number of the poly (meth) acrylate polyols of component (A) is not more than 9 mg KOH/g of the corresponding poly (meth) acrylate polyols, preferably not more than 7 mg KOH/g of the corresponding poly (meth) acrylate polyols, more particularly 0.5 to 5 mg KOH/g of the corresponding poly (meth) acrylate polyols.
  • the acid number here indicates the number of mg of potassium hydroxide consumed in the neutralization of 1 g of the respective compound (poly (meth) acrylate polyols) (DIN EN ISO 2114: 2006-11) .
  • the poly (meth) acrylate polyols which are used as component (A) have a low acid number, preferably an acid number of not more than 9 mg of KOH per gram of the corresponding poly (meth) acrylate polyols, it is preferred for the corresponding poly (meth) acrylate polyol to be based on the following monomeric building blocks (the weight percentage figures are based in each case on the total monomer amount in the polymer in question) :
  • poly (meth) acrylate polyols having a low acid number it is further preferred that they are prepared using only a very small amount (not more than 0.5 wt%) , or none, of monomers which possess a free acid function and/or which comprise a phosphate group.
  • monomers selected from acrylic acid, methacrylic acid, or phosphate group-containing monomers of the above-described general formula (1) are used.
  • component (A) may be present in principle in any desired proportions known to the skilled person.
  • the proportion of component (A) is preferably from 30 to 80 wt%, more preferably from 50 to 70 wt%, based in each case on the binder content of the coating material system.
  • the coating material system of the invention comprises as its component (B) at least one polyisocyanate-containing compound.
  • the polyisocyanate-containing compound which can be used includes all of the compounds known for this purpose to the skilled person (see, for example, in Ulrich Meier-Westhues: Polyurethane. Lacke, Kleb-and Dichtstoffe. Vincentz-Verlag, ISBN: 9783866308961, April 2007) .
  • Suitability as component (B) is possessed, for example, by substituted or unsubstituted aromatic, aliphatic, cycloaliphatic and/or heterocyclic polyisocyanates that are known per se.
  • polyisocyanate-containing compounds examples are as follows: 2, 4-toluene diisocyanate, 2, 6-toluene diisocyanate, diphenylmethane 4, 4’-diisocyanate, diphenylmethane 2, 4’-diisocyanate, p-phenylene diisocyanate, biphenyl diisocyanates, 3, 3’-dimethyl-4, 4’-diphenylene diisocyanate, tetramethylene 1, 4-diisocyanate, hexamethylene 1, 6-diisocyanate, 2, 2, 4-trimethylhexane 1, 6-diisocyanate, isophorone diisocyanate, ethylene diisocyanate, 1, 12-dodecane diisocyanate, cyclobutane 1, 3-diisocyanate, cyclohexane 1, 3-diisocyanate, cyclohexane 1, 4-diisocyanate, methylcyclohexyl di
  • TMXDI is also referred to as m-TMXDI; bisisocyanatopropylbenzene; m-phenyldimethyl diisocyanate; m-tetramethylxylylene diisocyanate; tetramethyl-m-xylylene diisocyanate; 1, 3-bis (2-isocyanato-2-propyl) benzene or 1, 3-bis (alpha-isocyanatoisopropyl) benzene.
  • Preferred polyisocyanate-containing compounds are also the biuret dimers and iminooxadiazinediones of the aforementioned diisocyanates. Also preferred are 1, 6-hexamethylene diisocyanate (HMDI) , isophorone diisocyanate (IPDI) , and 4, 4’-methylenedicyclohexyl diisocyanate, the biuret dimers thereof and/or the iminooxadiazinediones thereof and/or the asymmetrical trimers thereof, such as the asymmetric HDI trimer with fractions of asymmetrical trimers that is obtainable commercially under the name Desmodur N3900.
  • HMDI 1, 6-hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • 4’-methylenedicyclohexyl diisocyanate 4, 4’-methylenedicyclohexyl diisocyanate
  • More preferred polyisocyanate-containing compounds are selected from 1, 6-hexamethylene diisocyanate, isophorone diisocyanate, 4, 4’-methylenedicyclohexyl diisocyanate, the biuret dimers of the aforementioned diisocyanates, the iminooxadiazinediones of the aforementioned diisocyanates and/or the asymmetrical trimers of the aforementioned diisocyanates.
  • the polyisocyanates are polyisocyanate prepolymers having urethane structural units, which are obtained by reaction of polyols with a stoichiometric excess of aforementioned polyisocyanates.
  • Polyisocyanate prepolymers of this kind are described in US-A 4,598,131, for example.
  • Polyisocyanate-containing compounds of component (B) may be present in a suitable solvent (J) , as further set out later on below in connection with the solvent (J) and also with the production method for the coating material system of the invention.
  • the coating material system of the invention is to be provided as a one-component system (1K system)
  • polyisocyanate group-containing compounds (B) whose free isocyanate groups are blocked with blocking agents.
  • the isocyanate groups may for example be blocked with substituted pyrazoles, more particularly with alkyl-substituted pyrazoles such as 3-methylpyrazole, 3, 5-dimethylpyrazole, 4-nitro-3, 5-dimethylpyrazole, or 4-bromo-3, 5-dimethylpyrazole.
  • Particular preference is given to blocking the isocyanate groups of component (B) with 3, 5-dimethylpyrazole.
  • the polyisocyanates thus blocked are reacted with (further) components (A) at elevated temperature, with a network structure being built up for example by transurethanization and release of the blocking component.
  • the blocking agent may optionally escape wholly or partly, or else may remain entirely within the coating film as a further component.
  • Component (B) in the coating material system of the invention may be present in principle in any desired amounts known to the skilled person.
  • the proportion of component (B) is preferably from 20 to 50 wt%, more preferably from 25 to 40 wt%, based in each case on the binder content of the coating material system.
  • the weight fractions of component (A) and of component (B) in the coating material system of the invention are selected such that the molar equivalents ratio of the hydroxyl groups of the polyhydroxyl group-containing compounds of component (A) to the isocyanate groups of the polyisocyanate-containing compound of component (B) is between 1: 0.9 and 1: 1.5, preferably between 1: 0.9 and 1: 1.2, more preferably between 1: 0.95 and 1: 1.1. If there is also a hydroxyl group-containing compound of component (D) present in the coating material system of the invention, then its proportion in terms of the aforesaid molar equivalents ratios is taken into account in the weight fraction of component (A) . In other words, in this scenario, the sum total of the hydroxyl groups of the polyhydroxy group-containing compound of component (A) and the hydroxyl-containing compound of component (D) is to be taken into account.
  • the coating material system of the invention comprises as its component (C) at least one bismuth-containing catalyst according to general formula (Ia) and/or according to general formula (Ib) as defined below.
  • component (C) may contain at least one bismuth-containing catalyst according to general formula (Ia) , but no bismuth-containing catalyst according to general formula (Ib) or vice versa.
  • component (C) contains at least one bismuth-containing catalyst according to general formula (Ia) and at least one bismuth-containing catalyst according to general formula (Ib) .
  • component (C) contains (at least) one bismuth-containing catalyst either according to general formula (Ia) or according to general formula (Ib) . However, it is preferred that component (C) contains at least one bismuth-containing catalyst according to general formula (Ia) .
  • the bismuth-containing catalyst according to general formula (Ia) is defined as follows:
  • R 1 , R 2 and R 3 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1 -C 30 -alkyl, C 6 -C 14 -aryl or C 7 -C 30 -aralkyl,
  • substituents are selected from hydroxy, halogen, carboxyl, -CF 3 , -NH 2 , C 1 -C 6 -alkoxy, C 1 -C 30 -alkyl or C 6 -C 14 -aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3 , -NH 2 or C 1 -C 6 -alkoxy,
  • R 4 and R 5 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1 -C 30 -alkyl or C 7 -C 30 -aralkyl,
  • substituents are selected from hydroxy, halogen, carboxyl, -CF 3 , -NH 2 , C 1 -C 6 -alkoxy, C 1 -C 30 -alkyl or C 6 -C 14 -aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3 , -NH 2 or C 1 -C 6 -alkoxy.
  • R 1 is unsubstituted or at least monosubstituted C 6 -C 14 -aryl, wherein the substituents are selected from hydroxy, chloro, -CF 3 or C 1 -C 6 -alkyl, preferably R 1 is unsubstituted or at least monosubstituted phenyl, wherein the substituents are selected from hydroxy, -CF 3 , methyl or ethyl, more preferably R 1 is unsubstituted or monosubstituted phenyl, wherein the substituent is in para-position and selected from -CF 3 or hydroxy, most preferably R 1 is phenyl.
  • R 2 and R 3 are each, independently from one another, hydrogen or unsubstituted or at least monosubstituted C 6 -C 14 -aryl, wherein the substituents are selected from hydroxy, chloro, -CF 3 or C 1 -C 6 -alkyl, preferably R 2 and R 3 are each, independently from one another, hydrogen or phenyl, most preferably R 2 and R 3 are both hydrogen.
  • R 4 is hydrogen or unsubstituted or at least monosubstituted C 7 -C 30 -aralkyl or C 1 -C 10 -alkyl, wherein the substituents are selected from hydroxy, chloro, -CF 3 or C 1 -C 6 -alkyl, preferably R 4 is hydrogen or unsubstituted or at least monosubstituted -CH 2 -aryl or C 1 -C 6 -alkyl, wherein the substituents are selected from hydroxy, chloro, -CF 3 or C 1 -C 6 -alkyl, more preferably R 4 is hydrogen or unsubstituted or at least monosubstituted -CH 2 -phenyl or C 1 -C 3 -alkyl, wherein the substituents are selected from hydroxy, -CF 3 , methyl or ethyl, even more preferably R 4 is hydrogen, C 1 -C 3 -alkyl or unsubstituted or monosub
  • R 5 is unsubstituted or at least monosubstituted C 1 -C 30 -alkyl, wherein the substituents are selected from hydroxy, chloro or -CF 3 , preferably R 5 is C 1 -C 18 -alkyl, more preferably R 5 is C 3 -C 10 -alkyl, most preferably R 5 is C 6 -C 8 -alkyl.
  • component (C) contains at least one bismuth-containing catalyst according to general formula (Ia) , wherein the residues R 1 to R 6 are defined as follows:
  • R 1 is unsubstituted or monosubstituted phenyl, wherein the substituent is in para-position and selected from -CF 3 or hydroxy, most preferably R 1 is phenyl,
  • R 2 and R 3 are both hydrogen
  • R 4 is -CH 2 -phenyl or ethyl
  • R 5 is C 3 -C 10 -alkyl, most preferably R 5 is C 6 -C 8 -alkyl.
  • component (C) contains at least one bismuth-containing catalyst according to general formula (Ib) .
  • residue R 6 is defined as follows:
  • R 6 is unsubstituted or at least monosubstituted adamantyl, wherein the substituents are selected from C 1 -C 6 -alkyl or hydroxy, preferably R 6 is unsubstituted or monosubstituted adamantyl, wherein the substituent is methyl or hydroxy, most preferably R 6 is adamantyl.
  • the catalyst of component (C) may be present in principle in any desired amounts known to the skilled person in the coating material system of the invention.
  • Component (C) preferably has a fraction of 35 to 2000 ppm by weight, more preferably of 35 to 1000 ppm by weight, and very preferably of 100 to 1000 ppm by weight, based in each case on the binder content of the coating material system.
  • the bismuth-containing catalyst according to general formula (Ia) and/or (Ib) can be prepared by any method known to the person skilled in the art in respect of preparing catalysts containing a metal atom such as bismuth.
  • said bismuth-containing catalysts are obtained by reacting the corresponding acid of the anionic ligands of the bismuth-containing catalysts according to general formula (Ia) or (Ib) with a bismuth-containing compound.
  • a corresponding salt thereof may be applied.
  • the bismuth-containing compound is preferably selected from Bi 2 O 3 , bismuth carbonate, bismuth hydrogen carbonate, bismuth halogenide, Bi (C 6 -C 14 -aryl) 3 , Bi (C 1 -C 12 -alkyl) 3 or metallic bismuth.
  • the reaction is carried out under inert gas atmosphere and/or in the presence of at least one solvent, preferably selected from toluol or tetrahydrofurane. It is also preferred that the reaction takes place for at least ten hours and/or at a temperature of at least 100 °C. It is also preferred that, after the reaction as such, any volatile components of the reaction product are distilled of, the bismuth-containing catalyst is dried in vacuum and/or a crystallization process is carried out.
  • at least one solvent preferably selected from toluol or tetrahydrofurane. It is also preferred that the reaction takes place for at least ten hours and/or at a temperature of at least 100 °C. It is also preferred that, after the reaction as such, any volatile components of the reaction product are distilled of, the bismuth-containing catalyst is dried in vacuum and/or a crystallization process is carried out.
  • a fatty acid ester (E1) may be applied as a starting component in order to add further substituents/residues on the anionic part of the inventive bismuth-containing catalyst, such as adding the substituents R 1 , R 2 , R 3 and/or R 4 to the precursor resembling the residue R 5 in order to end up with an inventive catalyst according to general formula (Ia) .
  • the term “LDA” means lithium diisopropylamide.
  • the corresponding anionic ligand in form of its three acid components (A1a to A1c as well as A2a to A2d) is constructed step by step starting from a suitable precursor, such as the ester (E1) .
  • a suitable precursor such as the ester (E1) .
  • the corresponding acid is reacted with a bismuth-containing compound in order to arrive at a bismuth-containing catalyst according to general formula (Ia) , as shown for the specific catalysts A1 to A3 and B1 to B3 within figure 2.
  • a corresponding bismuth-containing catalyst according to general formula (Ib) is exemplified within figure 2 as catalyst C.
  • the coating material system of the invention there may optionally be other catalysts used additionally, apart from the above-described catalysts of component (C) , these additional catalysts being known to the skilled person in connection with the preparation of polyurethanes or production of coating material systems, but not falling within the definition of the catalysts of component (C) .
  • Examples of other catalysts according to the prior art, which may be used within the coating material system of the present invention in addition to the before-mentioned catalyst of component (C) are, for example, catalysts containing both lithium and bismuth as metal components as described in WO 2016/120160. Further catalysts are based on two salts of an aliphatic monocarboxylic acid containing at least four carbon atoms, wherein the first salt contains bismuth as metal component and the second salt contains magnesium, natrium, potassium or calcium as metal component, as described in WO 2018/069018, can also be used as additional catalysts compared to those as described before for component (C) . However, it is preferred within the context of the present invention that the coating material system does not contain any additional catalyst besides those catalysts as described above according to the general formula (Ia) and/or the general formula (Ib) .
  • the above-defined components (A) to (C) may i) be present separately from one another or ii) may be mixed completely or at least partially with one another, in the coating material system of the invention.
  • the system in question is preferably the two-component system (2K system) already mentioned above, the definition of a 2K system also comprehending those systems in which three or more different components are provided.
  • 2K systems for the purposes of the present invention are in principle all coating material systems where components (A) and (B) are present separately from one another, in particular prior to the application of the system in question, as for example in the formation of a polyurethane or of a coating material.
  • the coating material systems encompassed in the case of the aforementioned second option, second variant, in which the components (A) to (C) are at least partly mixed with one another, are likewise to be interpreted as a 2K system in the sense of the present invention, provided components (A) and (B) are present separately from one another.
  • component (C) may be mixed at least partly or completely with one or both components (A) and (B) .
  • component (C) is mixed with component (A)
  • component (B) is present separately to this mixture of (A) and (C)
  • component (B) it is also possible for component (B) to be mixed with a portion of component (C)
  • the mixtures of (A) and (C) and also of (B) and (C) may additionally comprise at least one optional component as defined hereinafter.
  • the system in question is preferably a one-component system (1K system) as already mentioned above, in which the free isocyanate groups of component (B) are blocked preferably by suitable blocking agents.
  • the individual components (A) to (C) may be provided each in portions, with individual portions possibly mixed in turn with other components, examples being the optional components described hereinafter.
  • components (A) and (B) are provided not in parts, but instead in each case as an individual (complete) component.
  • the catalyst of component (C) in particular, may be at least partly mixed with one another in portions and/or in part-components of at least one of the two components (A) and/or (B) .
  • the catalyst of component (C) is prepared preferably in situ immediately prior to the application of the coating material system in question.
  • all of components (A) to (C) and also, optionally, the optional components described below for the respective coating material system are mixed completely with one another no later than (immediately) prior to the desired application, irrespective of whether the system is a 1K system or a 2K system.
  • Examples of (desired) applications are described in the text below. In the context of these applications, the curing of the coating material system of the invention, already described above, takes place, with formation of polyurethane, by reaction of the components (A) and (B) .
  • the coating material systems of the invention may optionally further comprise at least one further component (D) to (J) , which are specified hereinafter.
  • the optional components (D) to (J) are selected from hydroxyl-containing compounds (D) , aminoplast resins and/or tris (alkoxycarbonylamino) triazines (E) , coatings additives (F) , pigments (H) , other fillers (I) and/or solvents (J) .
  • the optional components (D) to (J) may also be present separately from one another or may be mixed wholly or at least partly with one another and/or mixed with the components (A) to (C) .
  • the coating material system of the invention comprises preferably at least one further component selected from hydroxyl-containing compounds (D) , coatings additives (F) , pigments (H) and/or solvents (J) .
  • the coating material system of the invention comprises optionally as optional component (D) at least one hydroxyl-containing compound.
  • Hydroxyl-containing (hydroxy group-containing) compounds as such are known to the skilled person.
  • the hydroxyl-containing compound (D) generally has two or more hydroxyl groups, preferably two hydroxyl groups. In the context of the present invention, the hydroxyl-containing compound (D) does not fall within the definition of the above-described polyhydroxy group-containing compound (A) .
  • the hydroxyl group-containing compounds (D) are preferably monomeric compounds and/or compounds having a molecular weight ⁇ 500 g/mol, preferably ⁇ 200 g/mol.
  • the hydroxyl-containing compounds (D) are also referred to as low molecular mass polyols.
  • Component (D) where present, has a fraction of 0.5 to 20 wt%, more preferably of 1 to 10 wt%, very preferably of 1 to 5 wt%, based in each case on the binder content of the coating material system.
  • Preferred examples of a hydroxyl-containing compound (D) that are used are ethylene glycol, neopentyl glycol, 1, 3-butanediol, 1, 2-propanediol, or diols of dimerized and subsequently hydrogenated natural fatty acids (trade name 908) .
  • Preference is given to admixing those (low molecular mass) polyols of component (D) in minor fractions of the polyol component (A) –for example, at 1 to 20 wt%, based on the amount of component (A) .
  • the coating material system of the invention comprises optionally, as optional component (E) , at least one aminoplast resin and/or at least one tris (alkoxycarbonylamino) triazine.
  • component (E) has a fraction of 0.5 to 30 wt%, preferably of 0.5 to 15 wt%, based on the binder content of the coating material system.
  • suitable aminoplast resins (E) are all aminoplast resins commonly applied in the coatings industry sector, the reactivity of the aminoplast resin allowing the properties of the resulting coating materials to be controlled.
  • the resins in question are condensation products of aldehydes, more particularly formaldehyde, and, for example, urea, melamine, guanamine, and benzoguanamine.
  • the aminoplast resins comprise alcohol groups, preferably methylol groups, which in general are etherified partly or, preferably, completely with alcohols. Aminoplast resins etherified with lower alcohols are used more particularly.
  • Preferred aminoplast resins used are those etherified with methanol and/or ethanol and/or butanol, examples being products available commercially under the names and
  • aminoplast resins (E) are long-established compounds and are described for example in detail in the American patent application US 2005/0182189 A1, page 1, paragraph [0014] , to page 4, paragraph [0028] .
  • the coating material system of the invention comprises optionally, as optional component (F) , at least one coatings additive.
  • Coating additives as such are known to the skilled person.
  • a coatings additive (F) has a fraction of 0.5 to 30 wt%, preferably of 0.5 to 25 wt%, and more particularly of 1 to 20 wt%, based in each case on the binder content of the coating material system.
  • Suitable coatings additives (F) are:
  • UV absorbers such as, for example, 2- (2-hydroxyphenyl) benzotriazoles, 2-hydroxybenzo phenones, hydroxyphenyl-s-triazines, and oxalanilides;
  • light stabilizers such as those known as HALS compounds ( “hindered amine light stabilizers” ; these are derivatives of 2, 2, 6, 6-tetramethylpiperidine; available commercially for example as from BASF SE) , benzotriazoles such as hydroxyphenylalkylbenzotriazole, or oxalanilides;
  • HALS compounds hindered amine light stabilizers
  • benzotriazoles such as hydroxyphenylalkylbenzotriazole, or oxalanilides
  • reactive diluents different from components (A) and (D) , more particularly reactive diluents which become reactive only through reaction with other constituents and/or with water, such as Incozol or aspartic esters, for example;
  • components (A) and (D) such as silxoanes, fluorine-containing compounds, carboxylic monoesters, phosphoric esters, polyacrylic acids and copolymers thereof, or polyurethanes;
  • - flow control agents especially those based on a polyacrylate.
  • Applied preferably here are copolymers of ethylhexyl acrylate and ethyl acrylate. These copolymers preferably have a very low T G , are relatively nonpolar, and have a low OH number;
  • - film-forming assistants such as cellulose derivatives
  • - rheology control additives different from components (A) and (D) such as the additives known from patents WO 94/22968, EP-A-0 276 501, EP-A-0 249 201, or WO 97/12945; crosslinked polymeric microparticles, as disclosed for example in EP-A-0 008 127; inorganic phyllosilicates such as aluminum magnesium silicates, sodium magnesium phyllosilicates and sodium magnesium fluorine lithium phyllosilicates of the montmorillonite type; silicas such as or synthetic polymers having ionic and/or associative groups such as poly (meth) acrylamide, poly (meth) acrylic acid, polyvinylpyrrolidone, styrene-maleic anhydride copolymers or ethylene-maleic anhydride copolymers and their derivatives, or hydrophobically modified ethoxylated urethanes, or polyacrylates;
  • the coating material system of the invention comprises optionally, as optional component (H) , at least one pigment.
  • Suitable pigments as such are known to the skilled person (see, for example, in Thomas Brock, Michael Groteklaes, Peter Mischke: European Coatings Handbook, Vincentz Verlag, ISBN 3-86630-849-3) .
  • the fraction of the pigments may in principle be arbitrary; it is preferably situated within a P/B range from 0.1 to 3.0 (P/B describes the weight ratio of pigment (P) to binder (B) ; binder is to be understood in this case as the sum total of all film-forming components of the coating system) .
  • pigments are used more particularly when the aim with the coating material compositions is to produce pigmented topcoats or pigmented undercoats, more particularly pigmented topcoats.
  • the coating material system of the invention optionally comprises, as optional component (I) , at least one other filler.
  • Other fillers as such are known to the skilled person.
  • the other filler (I) has a fraction of 0.1 to 30 wt%, based in each case on the binder content of the coating material system.
  • suitable other fillers (I) are carbonates, silicon dioxides, or barium sulfates, as they are or else in modified form.
  • the other fillers (I) are not nanoscale particles.
  • the coating material system of the invention optionally comprises, as optional component (J) , at least one solvent.
  • Solvents as such, especially in connection with the production of polyurethane or of coating material systems, are known to the skilled person.
  • the solvent (J) has a fraction of 20%to 80%, preferably of 30%to 50%, based in each case on the total amount of the coating material system of the invention.
  • Preferred solvents used are those suitable for dissolving the polyisocyanate-containing compounds of component (A) and/or of component (B) .
  • Suitable solvents (J) are those which permit sufficient solubility of the polyisocyanate component and are free from groups reactive toward isocyanates.
  • solvents of this kind are acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, methyl isoamyl ketone, diisobutyl ketone, ethyl acetate, n-butyl acetate, ethylene glycol diacetate, butyrolactone, diethyl carbonate, propylene carbonate, ethylene carbonate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone, methylal, butylal, 1, 3-dioxolane, glycerol formal, benzene, toluene, xylene, n-hexane, cyclohexane, 2-methoxypropy
  • the coating material system of the invention comprises at least one further component (D) to (J) , selected from hydroxyl-containing compounds (D) , aminoplast resins and/or tris (alkoxycarbonylamino) triazines (E) , coatings additives (F) , pigments (H) , other fillers (I) and/or solvents (J) , where
  • ii) are mixed wholly or at least partly with one another and/or with components (A) to (C) .
  • the coating material system is not aqueous, and/or
  • components (A) and/or (B) each form a mixture with at least one solvent (J) , but components (A) and (B) are present separately from one another, and/or
  • the catalyst of component (C) is present entirely or at least partly in at least one of the components (A) or (B) present separately from one another, preferably in component (A) .
  • the coating material system is not aqueous, this means that there is preferably no water at all present in such a coating material system, or that water may occur only in the form of impurities or traces, with a maximum amount of 0.1 wt%, preferably of 0.01 wt%, more particularly of 0.001 wt%, based in each case on the total weight of the corresponding coating material system.
  • the coating material system of the invention is present as a complete mixture of components (A) , (B) , and (C) and also of optionally present components (D) to (J) .
  • the coating material system comprises the following components:
  • the coating material system of the invention may also comprise at least one solvent (J) .
  • a solvent is present, it is included in amounts of 1 to 80 wt%, preferably 5 to 50 wt%, of at least one solvent (J) .
  • the solvent content is based on the overall amount of the coating material system of the invention.
  • a further subject of the present invention is also a method for producing a coating material system as described above.
  • the production method as such is known to the skilled person. If the mandatory components and also, optionally, the optional components of the coating material system are mixed wholly or at least partly with one another, the skilled person knows how such mixing can be implemented. The sequence and/or duration of the individual mixing steps are in principle arbitrary; all of the components may optionally be mixed simultaneously with one another. Where the mandatory components, and also those present optionally of the coating material system of the invention are present separately from one another they are analogously mixed immediately before the application of the coating material system in question.
  • the method of the invention for producing a coating material system is carried out such that components (A) , (B) , and (C) and also the optionally present components (D) and (J) are provided separately from one another and then mixed with one another. Mixing takes place preferably at room temperature; components (A) and (C) are mixed with one another beforehand and/or a mixture comprising component (A) is added.
  • the aforementioned embodiment is preferably carried out immediately before the specific application of the coating material system of the invention. This means that complete mixing of all of the mandatory components (A) to (C) present in the coating material system of the invention, and also the optionally present components (D) to (J) , is not achieved until immediately before the specific application of the coating material system of the invention.
  • the term “immediately before the specific application” embraces a time span from approximately one minute up to two hours.
  • a further subject matter of the present invention is also a method for producing a polyurethane by at least partly or completely curing the above-described coating material system of the invention.
  • the polyurethane is preferably fully cured.
  • the curing of the coating material system of the invention takes place after complete mixing of all the components of the coating material system, more particularly after the mixing of components (A) and (B) .
  • component (B) in the context of a 1K system, is to additionally be protected (blocked) with blocking agents, the blocking agent must first of all be removed before a urethane reaction can take place to produce the polyurethane of the invention.
  • the method for producing the polyurethane therefore takes place preferably as part of a specific application of the coating material system.
  • the production of a polyurethane as such, and the implementation of the curing, are known to the skilled person and have also already been acknowledged in the introductory part of the present invention.
  • the desired/specific application of the coating material system of the invention forms polyurethane by curing of a coating material based on components (A) and (B) in the presence of the catalyst (C) ; the polyurethane is formed preferably in layer form or as a coating.
  • the curing of the coating material (system) of the invention that has been applied may also take place, however, after a certain resting time.
  • the flash-off time serves, for example, for the flow and the degassing of the coating films, or for the evaporation of volatile constituents such as solvents.
  • the resting time may be assisted and/or shortened by the application of increased temperatures and/or by a reduced atmospheric humidity, provided this does not entail any instances of damage or alteration to the coating films, such as premature complete crosslinking, for instance.
  • the thermal curing of the coating material system has no peculiarities in terms of method, but instead can take place in accordance with the customary and known methods such as heating in a forced air oven or irradiation with IR lamps.
  • the thermal cure here may also take place in stages.
  • Another preferred curing method is that of curing with near infrared (NIR radiation) .
  • NIR radiation near infrared
  • the thermal curing takes place advantageously at a temperature of 20 to 200°C for a time of 1 min up to 10 h; at low temperatures, longer curing times may also be applied.
  • relatively low temperatures are usually applied, lying preferably between 20 and 80°C, more particularly between 20 and 60°C.
  • the polyurethane produced in accordance with the method of the invention preferably forms a layer or coating or is at least part of a layer or coating; the layer or coating is preferably a coating film.
  • the polyurethane preferably comprises at least one pigment (H) and/or the polyurethane is applied in layer form on a basecoat film, which optionally comprises at least one pigment (H) , or on an optionally precoated substrate.
  • the curing of the polyurethane prefferably takes place at temperatures of 20 to 80°C, preferably of 20 to 60°C, the optional basecoat film having optionally been dried beforehand at temperatures of 20°C to 80°C.
  • a further subject of the present invention is therefore also a polyurethane which has been produced in accordance with the method as described above.
  • a further subject of the present invention is therefore also the use of the above-described coating material system of the invention and/or of the polyurethane of the invention, produced in accordance with a method as described above, as coating material, in automotive finishing, for the repair of finishes, for automotive refinishing and/or for the coating of parts for installation in or on automobiles, of plastics substrates, or of commercial vehicles, the coating material preferably being a clearcoat or a pigmented paint.
  • the coatings of the invention produced from the coating material systems of the invention exhibit outstanding adhesion even to already cured electrocoat systems, surfacer systems, basecoat systems, or customary and known clearcoat systems, they are outstandingly suitable not only for use in automotive production-line (OEM) finishing but also for automotive refinishing and/or for the coating of parts for installation in and on automobiles and/or for the coating of commercial vehicles.
  • OEM automotive production-line
  • Application of the coating material systems of the invention may be made by any customary application methods such as, for example, spraying, knifecoating, brushing, pouring, dipping, impregnating, trickling, or rolling.
  • the substrate to be coated may itself be at rest, with the application equipment or unit being moved.
  • the substrate to be coated more particularly a coil, may also be moved, with the application unit being at rest relative to the substrate or being moved appropriately.
  • spray application methods such as, for example, compressed air spraying, airless spraying, high-speed rotation, electrostatic spray application (ESTA)
  • hot spray application such as hot air spraying, for example.
  • the coating materials of the invention are outstandingly suitable as decorative, protective and/or effect coatings and coating systems for bodies of means of transport (especially powered vehicles, such as bicycles, motorcycles, coaches, trucks, or automobiles) or parts thereof; for the interior and exterior of edifices; for furniture, windows, and doors; for plastics moldings, more particularly CDs and windows; for small industrial parts, and for coils, containers, and packaging; for white goods; for films; for optical, electrical, and mechanical components; and also for hollow glassware and articles of everyday use.
  • the coating material systems of the invention can therefore be applied, for example, to an optionally precoated substrate, it being possible for the coating materials of the invention to be either pigmented or unpigmented.
  • the coating material systems and paint systems of the invention, more particularly the clearcoat systems are applied in particular in the technologically and esthetically particularly demanding field of automotive production-line (OEM) finishing and for the coating of plastics parts for installation in or on automobile bodies, more particularly for top-class automobile bodies, such as, for example, for producing roofs, tailgates, hoods, fenders, bumpers, spoilers, sills, protective strips, side trim, and the like, and also for automotive refinishing and for the finishing of commercial vehicles, such as, for example, of trucks, chain-driven construction vehicles, such as crane vehicles, wheel loaders, and concrete mixers, for example, buses, rail vehicles, watercraft, aircraft, and also agricultural equipment such as tractors and combines, and parts thereof.
  • OEM automotive production-line
  • the plastics parts consist customarily of ASA, polycarbonates, blends of ASA and polycarbonates, polypropylene, polymethyl methacrylates, or impact-modified polymethyl methacrylates, more particularly of blends of ASA and polycarbonates, preferably with a polycarbonate fraction > 40%, more particularly > 50%.
  • ASA refers in general to impact-modified styrene/acrylonitrile polymers, in which graft copolymers of vinylaromatic compounds, more particularly styrene, and of vinyl cyanides, more particularly acrylonitrile, are present on polyalkyl acrylate rubbers in a copolymer matrix of, in particular, styrene and acrylonitrile.
  • the coating materials of the invention are applied in multistage coating processes, more particularly in processes in which an optionally precoated substrate is coated first with a pigmented basecoat film and thereafter with a film with the coating material composition of the invention.
  • multicoat color and/or effect finishes comprising at least one pigmented basecoat film and at least one clearcoat film disposed thereon, these finishes being characterized in that the clearcoat film has been produced from the coating material composition of the invention.
  • basecoats based on organic solvents
  • suitable basecoats are described in EP-A 0 692 007 and in the documents recited at column 3, lines 50 ff., therein.
  • the applied basecoat is preferably first dried –that is, at least some of the organic solvent and/or water is removed from the basecoat film in an evaporation phase. Drying takes place preferably at temperatures from room temperature to 80°C. After drying has taken place, the coating material composition of the invention is applied.
  • the two-coat finish is subsequently baked, preferably under conditions applied in the context of automotive OEM finishing, at temperatures of 20 to 200°C, for a time of 1 min up to 10 h; in the case of the temperatures applied for automotive refinishing, which are in general between 20 and 80°C, more particularly between 20 and 60°C, longer curing times may also be applied.
  • the coating material system of the invention is used as a transparent clearcoat for the coating of plastics substrates, more particularly of plastics parts for interior or exterior installation.
  • plastics parts for interior or exterior installation are preferably coated likewise in a multistage coating process, in which an optionally precoated substrate or a substrate pretreated for enhanced adhesion of the subsequent coatings (for example by flaming, corona treatment, or plasma treatment of the substrate) is coated first with a pigmented basecoat film and thereafter with a film with the coating material composition of the invention.
  • a further subject of the present invention is therefore also a method for producing a coating, in which at least one coating material system of the invention is applied to an optionally precoated substrate or to a basecoat film.
  • the coating (layer, film) preferably comprises a polyurethane obtained by at least partial or complete curing, preferably by complete curing, of the coating material system.
  • a further subject of the present invention is therefore also a coating (or layer) obtainable by the above-described process for producing the coating.
  • a further subject of the present invention is therefore also the use of a bismuth-containing catalyst according to general formula (Ia) , wherein
  • R 1 , R 2 and R 3 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1 -C 30 -alkyl, C 6 -C 14 -aryl or C 7 -C 30 -aralkyl,
  • substituents are selected from hydroxy, halogen, carboxyl, -CF 3 , -NH 2 , C 1 -C 6 -alkoxy, C 1 -C 30 -alkyl or C 6 -C 14 -aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3 , -NH 2 or C 1 -C 6 -alkoxy,
  • R 4 and R 5 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1 -C 30 -alkyl or C 7 -C 30 -aralkyl,
  • substituents are selected from hydroxy, halogen, carboxyl, -CF 3 , -NH 2 , C 1 -C 6 -alkoxy, C 1 -C 30 -alkyl or C 6 -C 14 -aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3 , -NH 2 or C 1 -C 6 -alkoxy,
  • a coating material system of the invention for the catalysis of the urethane reaction in a coating material system, for the production of polyurethanes, for the production of a polyurethane in accordance with the observations above, for the production of a coating in accordance with the observations above, for the production of a paint, for automotive refinishing, and/or for the coating of parts for installation in or on automobiles, of plastics substrates, or of commercial vehicles.
  • a further subject of the present invention is therefore also the use of a bismuth-containing catalyst according to general formula (Ib) , wherein:
  • R 6 is unsubstituted or at least monosubstituted adamantyl, wherein the substituents are selected from C 1 -C 10 -alkyl, hydroxy, halogen or -CF 3 ,
  • a coating material system of the invention for the catalysis of the urethane reaction in a coating material system, for the production of polyurethanes, for the production of a polyurethane in accordance with the observations above, for the production of a coating in accordance with the observations above, for the production of a paint, for automotive refinishing, and/or for the coating of parts for installation in or on automobiles, of plastics substrates, or of commercial vehicles.
  • a further subject of the present invention is therefore a bismuth-containing catalyst according to the general formula (Ia) , wherein
  • R 1 , R 2 and R 3 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1 -C 30 -alkyl, C 6 -C 14 -aryl or C 7 -C 30 -aralkyl,
  • substituents are selected from hydroxy, halogen, carboxyl, -CF 3 , -NH 2 , C 1 -C 6 -alkoxy, C 1 -C 30 -alkyl or C 6 -C 14 -aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3 , -NH 2 or C 1 -C 6 -alkoxy,
  • R 4 and R 5 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1 -C 30 -alkyl or C 7 -C 30 -aralkyl,
  • substituents are selected from hydroxy, halogen, carboxyl, -CF 3 , -NH 2 , C 1 -C 6 -alkoxy, C 1 -C 30 -alkyl or C 6 -C 14 -aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3 , -NH 2 or C 1 -C 6 -alkoxy.
  • the catalysts B1 and B3 were prepared as shown in figures 1 and 2 above.
  • the catalysts applied within the comparative examples were obtained commercially as described below in further detail. If a co-catalyst ( “CoCat” ) is employed, a lithium-containing catalyst known to a person skilled in the art was used unless mentioned otherwise.
  • a standard tin (DOTL/dioctyltin dilaurate) catalyst is used known to a person skilled in the art.
  • acrylic mouillante is defined as follows: acrylic resin based on hydroxyethylacrylate and ethylhexylacrylate (30/70) OH value 130 mg KOH/g molecular weight 1600-2500 (Mn) 68 %in solvent naphtha
  • Tin sample was cured 30 minutes 60°C.
  • K-Kat 651 Bismuth neodecanoate, a commercialized catalyst from King Industrial Company
  • the onset temperature is used as the sign for the starting crosslinking temperature by DMA (dynamic mechanical analysis) . So, normally the lower onset temperature implies the better catalysis activity.
  • the above test data are from the system with the main catalyst itself without the cocatalyst tested which imply that the developed two Bi catalysts are with lower onset temperature than the tin catalyst and the K-Kat 651 which means the new two Bi catalyst are with comparable activity to the tin catalyst and the K-Kat 651.
  • test according to table 4 is carried out by the comparison the catalysts used as received and the catalyst dissolved in solvent and kept for 1 weeks before using.
  • the conversion of NCO group in the system is checked by 1 H-NMR.
  • the difference in the NCO conversation between the same catalyst with/without the 1 week ageing refer to the stability changes.
  • a catalyst stock solution is prepared by dissolving 5–20 mg catalyst in 10-15 mL of THF.
  • 0.5 mmol HDI and 0.1 mol%catalyst were added to a crimp cap vial.
  • the mixture was diluted with THF until the desired concentration was obtained.
  • 1.0 mmol of n-butanol was added in air and the reaction proceeded with 1H-NMR checked.
  • 1wk means that the catalyst is dissolved in the solvent and kept at 40°C for 1 week before using. The units are in %. The measurement of the reactivity was controlled by 1 H-NMR.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The invention relates to a coating material system which comprises components (A) to (C) and also, optionally, further components, with, in a first option, all components (A) to (C) and also, where present, the further optional components being present separately from one another, in other words, the individual components are not mixed with each other as such but only combined prior to use. In a second option of the coating material system of the invention, conversely, the aforementioned components may also be mixed wholly or at least partly with one another. Where the components are at least partly mixed with one another, this means that, for example, component (C) is mixed with component (A), while component (B) is present separately from this mixture of (A) and (C). Optionally, however, component (B) may also be mixed with a portion of component (C). Furthermore, the mixtures of (A) and (C) and of (B) and (C) may additionally comprise at least one optional component such as a solvent, for example. Component (A) comprises at least one polyhydroxy group-containing compound and component (B) comprises at least one polyisocyanate-containing compound. Component (C), by contrast, is at least one bismuth-containing catalyst according to general formula (Ia) and/or according to general formula (Ib) as defined below. Further components which may be present in the coating material system of the invention include, for example, hydroxyl-containing compounds (B), coating additives (F), pigments (H) and/or solvents (J).

Description

Coating material system based on a bismuth-containing catalyst with sterically bulky substituents Description
The invention relates to a coating material system which comprises components (A) to (C) and also, optionally, further components, with, in a first option, all components (A) to (C) and also, where present, the further optional components being present separately from one another, in other words, the individual components are not mixed with each other as such but only combined prior to use. In a second option of the coating material system of the invention, conversely, the aforementioned components may also be mixed wholly or at least partly with one another. Where the components are at least partly mixed with one another, this means that, for example, component (C) is mixed with component (A) , while component (B) is present separately from this mixture of (A) and (C) . Optionally, however, component (B) may also be mixed with a portion of component (C) . Furthermore, the mixtures of (A) and (C) and of (B) and (C) may additionally comprise at least one optional component such as a solvent, for example.
Component (A) comprises at least one polyhydroxy group-containing compound and component (B) comprises at least one polyisocyanate-containing compound. Component (C) , by contrast, is at least one bismuth-containing catalyst according to general formula (Ia) and/or according to general formula (Ib) as defined below. Further components which may be present in the coating material system of the invention include, for example, hydroxyl-containing compounds (B) , coating additives (F) , pigments (H) and/or solvents (J) .
A further subject of the present invention, then, is a method for producing polyurethanes which are obtained by curing of the coating material system described above. “Curing” (cure) in the sense of the present invention means that the components (A) and (B) present in the coating material system of the invention react with one another in the presence of the catalyst of component (C) to form a polyurethane. The reaction, i.e., the curing, may proceed at least partially, but preferably there is complete curing, meaning that the components (A) and (B) present in the coating material system of the invention undergo complete or near-complete reaction with one another.
Further subjects of the present invention, accordingly, are also methods for producing the coating material system of the invention. Moreover, the use of the coating material system of the invention, or of the polyurethane which has been produced from the coating material system of the invention, as, for example, a coating material, more particularly as a clearcoat or as a pigmented paint, is a subject of the present invention.
A further subject of the present invention is a method for producing a coating using the coating material system of the invention.
A further subject of the present invention is the use of a bismuth-containing catalyst according to general formula (Ia) and/or according to general formula (Ib) of component (C) of the coating material system according to the invention, for the production, for example, of polyurethanes or for the production of a paint. Furthermore, the catalyst as such according to general formula (Ia) that is used in the coating material system of the invention is a further subject of the present invention.
The preparation of polyurethanes by reaction of a compound having at least two hydroxyl groups per molecule with a compound having at least two isocyanate groups per molecule is well known as such. Depending on the reactivity of the compounds in question, it is entirely possible for spontaneous and/or partial curing (reaction of the two reactant components) to take place purely by simple mixing of the respective reactant components. For technical reasons, however, spontaneous reaction is to be suppressed, in order to ensure safe operation. In order to allow the reaction to then proceed with sufficient rapidity, however, catalysts are generally used to enhance the reactivity and/or to provide final properties of the cured film in an appropriate time frame.
Specific preparation of the polyurethane, however, takes place generally in the presence of an appropriate catalyst. In view of the reactivity of the two reactant components of the polyurethane, it is very widespread practice for the reactant components in question to be provided separately from one another, with the catalyst optionally having been possibly added beforehand to the hydroxyl-containing reactant and/or to the isocyanate group-containing reactant. Such systems are widespread in the art under the title “Two component (polyurethane) systems” (2K systems) and are also available commercially as such. Also conceivable are multicomponent systems with more than two components; it may be the case that one component is not compatible with one or the other  component, and that therefore these three components cannot be brought together until directly before application.
An alternative possibility is the provision of one-component systems (mixtures/1K system) in which, for example, the two reactive components and also the catalyst can be provided as a storable mixture by means of blocking of the reactive groups of the individual reactants, as for example by blocking of the free isocyanate groups with suitable blocking agents. In the case of the 1K system, in the individual starting components or optionally in the starting mixture, there are, in practice, frequently other components present as well, such as solvents or coatings additives.
It is also known that polyurethanes, as coating materials or as a constituent of coating materials, in automotive refinish, for example, have a broad field of application. The polyurethane thus acts as a coating material. The corresponding formulations which comprise at least the polyurethane reactants and also a suitable catalyst, and optionally further components such as coatings additives or solvents, are also referred to as a coating material system or coating material composition.
Polyurethane coating materials, then, typically comprise a catalyst, for which not only acidic compounds but also, in particular, tertiary amines and/or metal compounds are applied, such as various tin compounds, more particularly dibutyltin dilaurate and dibutyltin oxide, for example.
In coating materials as well, the use of tin-containing catalysts is to be avoided, owing to the inherent toxicity of many alkyl-tin compounds. Dibutyltin oxide (DBTO) and dibutyltin dilaurate (DBTL) have been categorized accordingly by the EU Commission “Working Group on Classification and Labelling” .
WO 2018/169018 relates to coating material systems based on catalysts containing both lithium and bismuth as metal components. Those catalysts are based on two salts of an aliphatic monocarboxylic acid containing at least four carbon atoms, wherein the first salt contains bismuth as metal component and the second salt contains magnesium, sodium, potassium or calcium as metal component. The respective aliphatic monocarboxylic acid may be branched and/or substituted, but it is preferably linear and unsubstituted. Examples of monocarboxylic acids are 2-ethylhexanoic acid, n-octanoic acid and neodecanoic acid, which are applied as the corresponding salts within the coating material system according to WO 2018/069018. Further mandatory components of said  coating material system are at least one polyhydroxy group-containing compound and at least one polyisocyanate-containing compound.
A comparable coating material system is disclosed in WO 2016/120160, which differs from the one disclosed in WO 2018/069018 in respect of the catalyst applied. The catalyst according to WO 2016/120160 is a catalyst comprising both lithium and bismuth as metal components in a ratio of at least 7: 1 (mol/mol) . The catalyst can be obtained by mixing the respective metal components with organic acids having (long chain) carboxylic acids with 2 to 30 carbon atoms. However, neither WO 2016/120160 nor WO 2018/069018 discloses any bismuth-containing catalysts according to the present invention with sterically bulky substituents such as those according to the ligands of formula (Ia) and/or formula (Ib) of the present invention.
US-A 4,584,362 discloses a bismuth catalyst system for preparing polyurethane elastomers. The polyurethane elastomers are obtained by reacting a polyether or polyester polyol with a polyisocyanate in the presence of a catalytic amount of a bismuth salt of a carboxylic acid having from 2 to 20 carbon atoms. A similar disclosure can be found in US-A 4,742,090 in respect of the production of polyurethane-urea elastomers. The bismuth carboxylate applied therein as catalyst comprises, among others, a bismuth salt of neodecanoic acid.
WO 00/47642 also discloses bismuth carboxylates as catalysts, wherein the respective carboxylic acid is based on a hydrocarbon chain of 11 to 36 carbon atoms and having a molecular weight in the range of from 165 to 465. The catalysts are applied for producing cross-linked block isocyanate waterborne coatings.
V. Sharutin et al., Russian Journal of Inorganic Chemistry, 2008, Vol. 53, No. 11, pages 1733-1736 discloses the synthesis of tris (1-adamantanecarboxylato) bismuth (III) as such. However, it is not disclosed therein that the respective compounds can be used as catalyst and/or within coating material systems.
It was an object of the present invention, therefore, to provide a new coating material system.
The object is achieved by means of a coating material system comprising components (A) to (C) :
(A) at least one polyhydroxy group-containing compound,
(B) at least one polyisocyanate-containing compound, and
(C) at least one bismuth-containing catalyst according to general formula (Ia) and/or according to general formula (Ib) ,
wherein the bismuth-containing catalyst according to general formula (Ia) is defined as follows:
Figure PCTCN2019078333-appb-000001
R 1, R 2 and R 3 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1-C 30-alkyl, C 6-C 14-aryl or C 7-C 30-aralkyl,
wherein the substituents are selected from hydroxy, halogen, carboxyl, -CF 3, -NH 2, C 1-C 6-alkoxy, C 1-C 30-alkyl or C 6-C 14-aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3, -NH 2 or C 1-C 6-alkoxy,
and wherein at least one of the residues R 1, R 2 or R 3 is unsubstituted or at least monosubstituted C 6-C 14-aryl,
R 4 and R 5 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1-C 30-alkyl or C 7-C 30-aralkyl,
wherein the substituents are selected from hydroxy, halogen, carboxyl, -CF 3, -NH 2, C 1-C 6-alkoxy, C 1-C 30-alkyl or C 6-C 14-aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3, -NH 2 or C 1-C 6-alkoxy,
and wherein the bismuth-containing catalyst according to general formula (Ib) is defined as follows:
Figure PCTCN2019078333-appb-000002
R 6 is unsubstituted or at least monosubstituted adamantyl, wherein the substituents are selected from C 1-C 10-alkyl, hydroxy, halogen or -CF 3,
and wherein
i) components (A) , (B) , and (C) are present separately from one another or
ii) are mixed wholly or at least partly with one another.
Among the features of the coating material system of the invention are that the use of toxic, tin-containing catalysts can be avoided and/or that rapid curing is ensured.
An advantage of the present invention can also be seen in the fact that the catalysts applied within the coating material systems according to the present invention have a catalytic activity, which is comparable to the known tin-containing catalysts. However, the catalytic activity of the catalysts applied within the present invention is better than the respective activity of bismuth-containing catalysts according to the prior art, such as catalysts based on bismuth neodecanoate.
Beyond that, the catalysts applied within the present invention show an improved potlife compared to bismuth-containing catalysts according to the prior art as well as an improved hydrolysis stability.
The more bulky the anionic ligand of the catalyst according to general formula (Ia) is, the better the activity of the respective catalyst. For example, catalysts with a quaternary α-carbon atom (i.e., the α-carbon atom does not contain any hydrogen as substituent) has a better activity than the corresponding catalyst with a tertiary α-carbon atom (one of the residues R 4 or R 5 equals hydrogen) .
Furthermore, it has surprisingly been found that the coating material systems, when using polyhydroxy group-containing compounds having acid numbers of not more than 9 mg KOH/g, cure more rapidly than comparable coating material systems which comprise polyhydroxy group-containing compounds having higher acid numbers.
A further advantage of the coating material systems of the invention is to be seen in their use for automotive refinishing and for the coating of commercial vehicles. The coating material systems of the invention ensure good assembly strength after just a very short time. As a result, rapid curing is ensured even under the conditions of refinishing and of the finishing of commercial vehicles –that is, after curing at 60℃ for just 30 minutes, curing is already at such an advanced stage that initial assembly work or demasking operations can be carried out without damage to the coating.
For the purposes of the present invention, the terms “binder content” or “binder fraction” and “binder content determination” refer (unless stated otherwise) to the following:
The “binder content” is in each case the fraction of the coating material system that is soluble in tetrahydrofuran (THF) , said system comprising components (A) to (C) and also, optionally, (D) to (J) . The binder content is determined before the components of the coating material system begin to cure, in other words before curing to give the polyurethane. For the determination, the individual components of the coating material system in question are mixed completely with one another and then a small sample (P) of 1 g of the coating material system is weighed out and dissolved in 100 times the amount of THF, insoluble constituents are removed by filtration, the THF is evaporated off, and then the resulting solids content of the constituents previously dissolved in THF is ascertained by drying at 130℃ for 60 minutes, cooling in a desiccator, and then reweighing. The residue corresponds to the binder content of the sample (P) .
For the purposes of the present invention, definitions such as C 1-C 30-alkyl, as defined above for, for example, the radical R 4 in formula (Ia) , mean that this substituent (radical) is an alkyl radical having from 1 to 30 carbon atoms, whereby optionally present substituents are not considered in the number of carbon atoms. The alkyl radical can be either linear or branched or optionally cyclic. Alkyl radicals which have both a cyclic component and a linear component likewise come within this definition. The same applies to other alkyl radicals such as a C 1-C 6-alkyl radical or a C 3-C 10-alkyl radical. Examples of alkyl radicals are methyl, ethyl, n- propyl, sec-propyl, n-butyl, sec-butyl, isobutyl, 2-ethylhexyl, tert-butyl (tert-Bu/t-Bu) , pentyl, hexyl, heptyl, cyclohexyl, octyl, nonyl or decyl.
For the purposes of the present invention, the term “aryl” or the term “C 6-C 14-aryl” , as defined above for, for example, the radical R 1 in formula (Ia) , means that the substituent (radical) is an aromatic. The respective aromatic has from 6 to 14 carbon atoms, whereby optionally present substituents are not considered in the number of carbon atoms. The aromatic can be a monocyclic, bicyclic or optionally polycyclic aromatic. In the case of bicyclic or polycyclic aromatics, individual rings can optionally be fully or partially saturated. Preferably, all rings of the respective aromatic are completely unsaturated. Preferred examples of aryl are phenyl, naphthyl or anthracyl, in particular phenyl.
For the purposes of the present invention, the definition “C 7-C 30-aralkyl” , as defined above for, for example, the radical R 4 in formula (Ia) , means that the substituent (radical) contains an alkyl radical (such as C 1-C 6-alkyl according to the above-mentioned definitions) , whereby this alkyl radical in turn is substituted with an aryl radical (according to the above-mentioned definitions) . The respective aralkyl substituent has from 7 to 30 carbon atoms, whereby optionally present substituents are not considered in the number of carbon atoms. The alkyl radical itself, which is contained therein, can be either linear or branched or optionally cyclic. The smallest substituent falling under the definition of the term ,, C 7-C 30-aralkyl “according to the present invention is, therefore, C 7-aralkyl, which is the same as ,, -CH 2-phenyl” . For the sake of clarity, it is again indicated in this respect (and exemplified for the radical R 4) that the respective substituent (radical/residue) such as R 4 is bond via its alkyl fragment (-CH 2-fragment) to the α-carbon atom (neighboring carbon atom) according to general formula (Ia) and not bond via its aryl (phenyl) -fragment.
For the purposes of the present invention, the term “C 1-C 6-alkoxy “, as defined above, for example, as (additional) substituent of the radical R 4 in formula (Ia) , means that it is a substituent (radical) which is derived from an alcohol. Therefore, the respective substituent contains an oxygen fragment (-O-) , which in turn is connected with an alkyl rest, such as C 1-C 6-alkyl (according to the above-mentioned definitions) . The alkyl rest itself can be either linear or branched or optionally cyclic.
For the purposes of the present invention, the term “halogen” , as defined above for, for example, the radical R 1 in formula (Ia) , means that the substituent (radical)  is fluorine, chlorine, bromine or iodine, preferably halogen is fluorine or chlorine, particularly preferably halogen is chlorine.
For the purposes of the present invention, the term “unsubstituted or at least monosubstituted C 1-C 30-alkyl, C 6-C 14-aryl or C 7-C 30-aralkyl “, as defined above for, for example, the radical R 1 in formula (Ia) , means that each of the overall three specified substituents (radicals) can either be present in unsubstituted form or disposes of at least one further substituent (monosubstituted) , according to their definitions already mentioned above. If one or more substituents (for example bi-substituted, tri-substituted or even higher substituted) are present, the respective substituents are selected independently of one another from the groups of substituents indicated in each case.
In case of a bi-substituted C 6-C 14-aryl, for example, the respective aryl component, such as phenyl, can be substituted, for example, with a hydroxy and a C 1-C 30-alkyl substituent, such as methyl or ethyl. Alkyl fragments or aryl fragments themselves can in turn contain at least one additional substituent according to the indicated definitions. The substitution can take place at every random position of the respective fragment.
It must be pointed out that both the bismuth-containing catalyst according to general formula (Ia) and the bismuth-containing catalyst according to general formula (Ib) contain the respective substituents (radicals/residues) such as R 1 three times each since each bismuth-containing catalyst contains one bismuth atom (metal or central atom) , which is surrounded by three individual carboxy-containing ligands. By consequence, each of those three carboxy group-containing ligands may have the same definition or a different definition falling under the general formula (Ia) or (Ib) , respectively. In the context of the present invention, it is preferred that each bismuth-containing catalyst contains three identical ligands. By consequence, within this embodiment, each ligand contains three times the same residues R 1 to R 5 in case of a compound falling under the general formula (Ia) and three times the same residue R 6 in case of a compound falling under the general formula (Ib) .
Furthermore, it must be pointed out that the bismuth-containing catalysts according to general formula (Ia) or according to general formula (Ib) are depicted in their salt forms. Salt form means that the bismuth central atom is shown as a (three times positively charged) cation of the respective salt, whereas the three carboxy group ligands are depicted as one-time negatively charged anions each. Usually, the negative charge of the ligand is localized within said carboxy group  and/or the carboxy group is in close local neighborhood to the (three times positively charged) bismuth central atom.
From a scientific point of view, it is also acceptable to choose a notation/depiction for the bismuth-containing catalysts according to the present invention in which a chemical bond between the bismuth central atom and the three ligands according to general formula (Ia) or (Ia) is fully or at least partially developed in each case, instead of the notation for salts, which was used within the scope of the present invention. In other words, this means that the bismuth central atom is not present as positively charged cation, and the respective ligands are not present as negatively charged anions either, but instead the respective charge develops a chemical bond between the respective ligands on the one hand and the bismuth central atom on the other hand. Therefore, within the scope of the present invention, such a definition, which is not based on a salt, also describes the disclosed bismuth-containing catalysts.
Unless otherwise specified in the subsequent description, the unsubstituted definitions of the respective definitions of the radicals R 1 to R 6 are preferred.
The coating material system of the invention and the other subjects of the present invention are defined in more detail hereinbelow.
The first subject of the present invention is the coating material system already set out above, comprising components (A) to (C) and, optionally, a further component (D) to (J) .
The coating material system of the invention comprises as its component (A) at least one polyhydroxy group-containing (polyhydroxyl group-containing) compound. As polyhydroxy group-containing compound of component (A) it is possible to use all compounds known to the skilled person that have at least two hydroxyl groups per molecule. The number of hydroxyl groups (hydroxy groups) per molecule may be arbitrarily high; it is specified by way of the hydroxy number (OH number) , as described hereinafter. The compounds of component (A) are also referred to as “polyols” ; they may be oligomeric and/or polymeric. As component (A) it is therefore also possible to use mixtures of two or more oligomeric and/or polymeric polyols (polyhydroxy group-containing compounds) .
The polyhydroxy group-containing compounds of component (A) preferably have mass-average molecular weights M w ≥ 500 daltons, more particularly M w ≥ 1000 daltons. The M w can be determined by means of gel permeation  chromatography (GPC) against a polystyrene standard (see also below in the experimental section) . Further preferred are mass-average molecular weights M w of between 1000 and 20 000 daltons, more particularly between 1500 and 10 000 daltons.
The polyols preferably have an OH number of 30 to 400 mg KOH/g (polyol) , more particularly between 100 and 300 KOH/g. The hydroxyl number (OH number) indicates how many mg of potassium hydroxide are equivalent to the amount of acetic acid bound by 1 g of substance (polyol) in the acetylation (of the corresponding polyol with acetic acid) . For the determination, the sample is boiled with acetic anhydride-pyridine and the acid formed is titrated with potassium hydroxide solution (DIN 53240-2 (2007-11) ) . In the case of pure poly (meth) acrylates, the OH number may also be determined with sufficient precision by calculation on the basis of the OH-functional monomers applied.
It is preferred, moreover, for the polyols to have an acid number of between 0 and 30 mg KOH/g. With preference the acid number of the polyhydroxy group-containing compound of component (A) is not more than 9 mg KOH/g of the corresponding polyhydroxy group-containing compound, preferably not more than 7 mg KOH/g of the corresponding polyhydroxy group-containing compound, more particularly 0.5 to 5 mg KOH/g of the corresponding polyhydroxy group-containing compound.
The acid number here indicates the number of mg of potassium hydroxide consumed in the neutralization of 1 g of the respective compound (polyol/polyhydroxy group-containing compound) (DIN EN ISO 2114: 2006-11) .
If the polyols have a low acid number, preferably of not more than 9 mg KOH/g of the corresponding polyhydroxy group-containing compound, it is preferable for the polyol in question i) to be based on monomers which have completely esterified acid functions, these monomers preferably being purified prior to their use; ii) to be based on monomers which have only a small amount of free acid functions, or none, the monomers preferably comprising no acid group-containing monomers, more particularly no acrylic acid or no methacrylic acid; and/or iii) to be based on monomers which comprise no phosphate group-containing monomers (PO 4-containing monomers) . With preference all three of the aforesaid options are realized.
The glass transition temperatures (T G values) of the polyols, measured by means of DSC measurements according to DIN EN ISO 11357-2: 2011-04-28, may take  on any desired values, and are preferably between -150 and 150℃, more preferably between 40 and 120℃.
Preferred polyhydroxy group-containing compounds (polyols) are polyester polyols, polyurethane polyols, polysiloxane polyols, polyacrylate polyols and/or polymethacrylate polyols. Examples of such compounds are listed in Poth, Schwalm, Schwarz: Acrylatharze. Vincentz Verlag Hannover, ISBN: 9783866308718. The aforesaid classes of polymer such as polyacrylate polyols or polymethacrylate polyols may all be used in each case as a homopolymer or as a copolymer (chain-growth copolymer) of at least two different monomers. In the context of the present invention, copolymers are used with preference as polyhydroxy group-containing compounds, particularly in the aforesaid classes of polymer. The classes of polymer are based on at least one hydroxy group-containing monomer building block. Monomers (monomer building blocks) suitable for the particular class of polymer are known to the skilled person. The skilled person also knows the specific (polymerization) processes that can be used for producing the respective polymers from the corresponding monomers. Furthermore, there may also be mixtures of at least two different specific polymers of one class of polymer, and/or mixtures of in each case at least one specific polymer from at least two different classes of polymer, present. It is also possible for copolymers to be present, these being polymers comprising fragments which can be assigned to two or more classes of polymer.
Suitable polyester polyols are described in EP-A-0 994 117 and EP-A 1 273 640, for example. Polyurethane polyols are prepared preferably by reaction of polyester polyol prepolymers with suitable di-or polyisocyanates and are described in EP-A 1 273 640, for example. Suitable polysiloxane polyols are described in WO-A-01/09260, for example, where the polysiloxane polyols recited therein may be applied preferably in combination with further polyols, more particularly those having higher glass transition temperatures.
Component (A) more preferably comprises one or more polyacrylate polyols and/or polymethacrylate polyols. The two aforesaid polymers or classes of polymer are also referred to as poly (meth) acrylate polyols. Together with the polyacrylate polyol (s) and/or polymethacrylate polyol (s) it is possible for further oligomeric and/or polymeric polyhydroxyl group-containing compounds to be used, examples being polyester polyols, polyurethane polyols, and polysiloxane polyols, more particularly polyester polyols.
The poly (meth) acrylate polyols used with more preference as component (A) in accordance with the invention are based preferably on at least one of the monomers (monomer building blocks) listed below. More preferably for this purpose is the use of at least one of the following hydroxyl-containing monomer building blocks and optionally at least one of the following monomer building blocks which are not hydroxyl-containing monomer building blocks. Applied with particular preference are copolymers based on at least one hydroxyl-containing monomer building block and at least one monomer building block which contains no hydroxyl groups. Examples of the corresponding monomer building blocks are listed below.
Hydroxyl-containing monomer building blocks used for the poly (meth) acrylate polyols are preferably hydroxyalkyl acrylates and/or hydroxyalkyl methacrylates. They are preferably selected from 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, 3-hydroxypropyl methacrylate, 3-hydroxybutyl acrylate, 3-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate and/or 4-hydroxybutyl methacrylate. Particularly preferred are the hydroxyl-containing monomer building blocks 4-hydroxybutyl acrylate and/or 4-hydroxybutyl methacrylate. The hydroxyl-containing monomer building blocks are used preferably at 20 to 60 wt%, based on the total monomer amount for the respective polymer.
Further monomer building blocks used for the poly (meth) acrylate polyols are preferably alkyl acrylates and/or alkyl methacrylates. They are preferably selected from methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, butyl acrylate, butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, amyl acrylate, amyl methacrylate, hexyl acrylate, hexyl methacrylate, ethylhexyl acrylate, ethylhexyl methacrylate, 3, 3, 5-trimethylhexyl acrylate, 3, 3, 5-trimethylhexyl methacrylate, stearyl acrylate, stearyl methacrylate, lauryl acrylate, lauryl methacrylate, cycloalkyl acrylates and/or cycloalkyl methacrylates. Preferred cycloalkyl (meth) acrylates are cyclopentyl acrylate, cyclopentyl methacrylate, isobornyl acrylate, isobornyl methacrylate, or, in particular, cyclohexyl acrylate and/or cyclohexyl methacrylate. Where the above monomers are used, they are applied preferably in amounts of 35 to 80 wt%, based on the total monomer amount.
Further monomer building blocks used for the poly (meth) acrylate polyols may be vinylaromatic hydrocarbons, such as vinyltoluene, alpha-methylstyrene, or in particular, styrene, amides or nitriles of acrylic or methacrylic acid, vinyl esters or  vinyl ethers, and also acrylic and/or methacrylic acid. If vinylaromatic hydrocarbons are used as monomers, they are applied preferably in amounts of 0.1 to 40 wt%, based on the total monomer amount. If acrylic and/or methacrylic acid is used, this is done preferably in amounts of 0.1 to 5 wt%, based on the total amount of the monomers used.
Furthermore it is possible to use monomer building block compounds which possess a phosphate group. They are prepared by reaction of suitable hydroxyl-containing (meth) acrylic compounds by transesterification.
Such monomers are represented preferably by the general formula (1) :
(R’)  2C = C (R’) (-COO-R”-O-P (O) (-OR)  2)    (1)
where R’= H or CH 3
R”= alkyl or alkyl-O-alkyl, and
R”’= H or alkyl.
In the aforesaid radicals R’, R”, and R”’, alkyl may be branched or unbranched and may optionally be cyclic. The term “alkyl” refers to saturated hydrocarbon radicals having at least one carbon atom, such as methyl (C 1 alkyl) , ethyl (C 2 alkyl) , or hexyl (C 6 alkyl) . There is in principle no limit on the number of carbon atoms; preferably there are not more than 18 C atoms per alkyl. If present, such monomers are used in amounts of 0.1 to 20 wt%, based on the total monomer amount. Monomers of these kinds are available commercially, in the form for example of Sipomer
Figure PCTCN2019078333-appb-000003
from Rhodia Solvay Group.
The poly (meth) acrylate polyols particularly preferred as component (A) in accordance with the invention are preferably copolymers and preferably have mass-average molecular weights Mw of between 1000 and 20 000 daltons, more particularly between 1500 and 10 000 daltons, measured in each case by means of gel permeation chromatography (GPC) against a polystyrene standard.
The glass transition temperature of the poly (meth) acrylate polyols is generally between -150 and 150℃, more particularly between -40 and 120℃ (measured by means of DSC measurements according to DIN-EN-ISO 11357-2: 2011-04-28) .
The poly (meth) acrylate polyols preferably have an OH number of 60 to 250 mg KOH/g (polyol) , more particularly between 70 and 200 mg KOH/g.
It is preferred, moreover, for the poly (meth) acrylate polyols to have an acid number of between 0 and 30 mg KOH/g. With preference the acid number of the poly (meth) acrylate polyols of component (A) is not more than 9 mg KOH/g of the corresponding poly (meth) acrylate polyols, preferably not more than 7 mg KOH/g of the corresponding poly (meth) acrylate polyols, more particularly 0.5 to 5 mg KOH/g of the corresponding poly (meth) acrylate polyols.
The acid number here indicates the number of mg of potassium hydroxide consumed in the neutralization of 1 g of the respective compound (poly (meth) acrylate polyols) (DIN EN ISO 2114: 2006-11) .
If the poly (meth) acrylate polyols which are used as component (A) have a low acid number, preferably an acid number of not more than 9 mg of KOH per gram of the corresponding poly (meth) acrylate polyols, it is preferred for the corresponding poly (meth) acrylate polyol to be based on the following monomeric building blocks (the weight percentage figures are based in each case on the total monomer amount in the polymer in question) :
20 to 60 wt%of at least one hydroxyalkyl acrylate or hydroxyalkyl methacrylate (as defined above) ,
35 to 80 wt%of at least one alkyl acrylate or alkyl methacrylate (as defined above) , and
0 to 40 wt%, preferably 0.1 to 40 wt%, of at least one vinylaromatic hydrocarbon (as defined above) , preferably of styrene.
In connection with the above-recited poly (meth) acrylate polyols having a low acid number, it is further preferred that they are prepared using only a very small amount (not more than 0.5 wt%) , or none, of monomers which possess a free acid function and/or which comprise a phosphate group. In this connection, more particularly, only small amounts, or none, are used of monomers selected from acrylic acid, methacrylic acid, or phosphate group-containing monomers of the above-described general formula (1) .
In the coating material system of the invention, component (A) may be present in principle in any desired proportions known to the skilled person. The proportion of component (A) is preferably from 30 to 80 wt%, more preferably from 50 to 70 wt%, based in each case on the binder content of the coating material system.
The coating material system of the invention comprises as its component (B) at least one polyisocyanate-containing compound. The polyisocyanate-containing compound which can be used includes all of the compounds known for this purpose to the skilled person (see, for example, in Ulrich Meier-Westhues: Polyurethane. Lacke, Kleb-and Dichtstoffe. Vincentz-Verlag, ISBN: 9783866308961, April 2007) . Suitability as component (B) is possessed, for example, by substituted or unsubstituted aromatic, aliphatic, cycloaliphatic and/or heterocyclic polyisocyanates that are known per se.
Examples of preferred polyisocyanate-containing compounds are as follows: 2, 4-toluene diisocyanate, 2, 6-toluene diisocyanate, diphenylmethane 4, 4’-diisocyanate, diphenylmethane 2, 4’-diisocyanate, p-phenylene diisocyanate, biphenyl diisocyanates, 3, 3’-dimethyl-4, 4’-diphenylene diisocyanate, tetramethylene 1, 4-diisocyanate, hexamethylene 1, 6-diisocyanate, 2, 2, 4-trimethylhexane 1, 6-diisocyanate, isophorone diisocyanate, ethylene diisocyanate, 1, 12-dodecane diisocyanate, cyclobutane 1, 3-diisocyanate, cyclohexane 1, 3-diisocyanate, cyclohexane 1, 4-diisocyanate, methylcyclohexyl diisocyanates, hexahydrotoluene 2, 4-diisocyanate, hexahydrotoluene 2, 6-diisocyanate, hexahydrophenylene 1, 3-diisocyanate, hexahydrophenylene 1, 4-diisocyanate, perhydrodiphenylmethane 2, 4’-diisocyanate, 4, 4’-methylenedicyclohexyl diisocyanate (e.g., 
Figure PCTCN2019078333-appb-000004
W from Bayer AG) , tetramethylxylylene diisocyanates (TMXDI; commercially available for example as
Figure PCTCN2019078333-appb-000005
from American Cyanamid) , and mixtures of the aforementioned polyisocyanates. TMXDI is also referred to as m-TMXDI; bisisocyanatopropylbenzene; m-phenyldimethyl diisocyanate; m-tetramethylxylylene diisocyanate; tetramethyl-m-xylylene diisocyanate; 1, 3-bis (2-isocyanato-2-propyl) benzene or 1, 3-bis (alpha-isocyanatoisopropyl) benzene.
Preferred polyisocyanate-containing compounds are also the biuret dimers and iminooxadiazinediones of the aforementioned diisocyanates. Also preferred are 1, 6-hexamethylene diisocyanate (HMDI) , isophorone diisocyanate (IPDI) , and 4, 4’-methylenedicyclohexyl diisocyanate, the biuret dimers thereof and/or the iminooxadiazinediones thereof and/or the asymmetrical trimers thereof, such as the asymmetric HDI trimer with fractions of asymmetrical trimers that is obtainable commercially under the name Desmodur N3900.
More preferred polyisocyanate-containing compounds are selected from 1, 6-hexamethylene diisocyanate, isophorone diisocyanate, 4, 4’-methylenedicyclohexyl diisocyanate, the biuret dimers of the aforementioned  diisocyanates, the iminooxadiazinediones of the aforementioned diisocyanates and/or the asymmetrical trimers of the aforementioned diisocyanates.
In another embodiment of the invention, the polyisocyanates are polyisocyanate prepolymers having urethane structural units, which are obtained by reaction of polyols with a stoichiometric excess of aforementioned polyisocyanates. Polyisocyanate prepolymers of this kind are described in US-A 4,598,131, for example.
Polyisocyanate-containing compounds of component (B) may be present in a suitable solvent (J) , as further set out later on below in connection with the solvent (J) and also with the production method for the coating material system of the invention.
If the coating material system of the invention is to be provided as a one-component system (1K system) , then preference is given to selecting polyisocyanate group-containing compounds (B) whose free isocyanate groups are blocked with blocking agents. The isocyanate groups may for example be blocked with substituted pyrazoles, more particularly with alkyl-substituted pyrazoles such as 3-methylpyrazole, 3, 5-dimethylpyrazole, 4-nitro-3, 5-dimethylpyrazole, or 4-bromo-3, 5-dimethylpyrazole. Particular preference is given to blocking the isocyanate groups of component (B) with 3, 5-dimethylpyrazole. For the formation of polyurethanes (crosslinked urethanes) , the polyisocyanates thus blocked are reacted with (further) components (A) at elevated temperature, with a network structure being built up for example by transurethanization and release of the blocking component. At the temperatures prevailing, the blocking agent may optionally escape wholly or partly, or else may remain entirely within the coating film as a further component.
Component (B) in the coating material system of the invention may be present in principle in any desired amounts known to the skilled person. The proportion of component (B) is preferably from 20 to 50 wt%, more preferably from 25 to 40 wt%, based in each case on the binder content of the coating material system.
It is preferred, moreover, for the weight fractions of component (A) and of component (B) in the coating material system of the invention to be selected such that the molar equivalents ratio of the hydroxyl groups of the polyhydroxyl group-containing compounds of component (A) to the isocyanate groups of the polyisocyanate-containing compound of component (B) is between 1: 0.9 and 1: 1.5, preferably between 1: 0.9 and 1: 1.2, more preferably between 1: 0.95  and 1: 1.1. If there is also a hydroxyl group-containing compound of component (D) present in the coating material system of the invention, then its proportion in terms of the aforesaid molar equivalents ratios is taken into account in the weight fraction of component (A) . In other words, in this scenario, the sum total of the hydroxyl groups of the polyhydroxy group-containing compound of component (A) and the hydroxyl-containing compound of component (D) is to be taken into account.
The coating material system of the invention comprises as its component (C) at least one bismuth-containing catalyst according to general formula (Ia) and/or according to general formula (Ib) as defined below. This means that component (C) may contain at least one bismuth-containing catalyst according to general formula (Ia) , but no bismuth-containing catalyst according to general formula (Ib) or vice versa. However, it is also possible that component (C) contains at least one bismuth-containing catalyst according to general formula (Ia) and at least one bismuth-containing catalyst according to general formula (Ib) . For the sake of completeness, it is indicated that in the context of the present invention it is sufficient that component (C) contains (at least) one bismuth-containing catalyst either according to general formula (Ia) or according to general formula (Ib) . However, it is preferred that component (C) contains at least one bismuth-containing catalyst according to general formula (Ia) .
The bismuth-containing catalyst according to general formula (Ia) is defined as follows:
Figure PCTCN2019078333-appb-000006
R 1, R 2 and R 3 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1-C 30-alkyl, C 6-C 14-aryl or C 7-C 30-aralkyl,
wherein the substituents are selected from hydroxy, halogen, carboxyl, -CF 3, -NH 2, C 1-C 6-alkoxy, C 1-C 30-alkyl or C 6-C 14-aryl and the alkyl-and aryl fragments of these substituents can in turn be at  least monosubstituted with hydroxy, halogen, -CF 3, -NH 2 or C 1-C 6-alkoxy,
and wherein at least one of the residues R 1, R 2 or R 3 is unsubstituted or at least monosubstituted C 6-C 14-aryl,
R 4 and R 5 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1-C 30-alkyl or C 7-C 30-aralkyl,
wherein the substituents are selected from hydroxy, halogen, carboxyl, -CF 3, -NH 2, C 1-C 6-alkoxy, C 1-C 30-alkyl or C 6-C 14-aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3, -NH 2 or C 1-C 6-alkoxy.
Preferred definitions for the residues R 1 to R 6 of bismuth-containing catalysts according to general formula (Ia) are as follows:
R 1 is unsubstituted or at least monosubstituted C 6-C 14-aryl, wherein the substituents are selected from hydroxy, chloro, -CF 3 or C 1-C 6-alkyl, preferably R 1 is unsubstituted or at least monosubstituted phenyl, wherein the substituents are selected from hydroxy, -CF 3, methyl or ethyl, more preferably R 1 is unsubstituted or monosubstituted phenyl, wherein the substituent is in para-position and selected from -CF 3 or hydroxy, most preferably R 1 is phenyl.
R 2 and R 3 are each, independently from one another, hydrogen or unsubstituted or at least monosubstituted C 6-C 14-aryl, wherein the substituents are selected from hydroxy, chloro, -CF 3 or C 1-C 6-alkyl, preferably R 2 and R 3 are each, independently from one another, hydrogen or phenyl, most preferably R 2 and R 3 are both hydrogen.
R 4 is hydrogen or unsubstituted or at least monosubstituted C 7-C 30-aralkyl or C 1-C 10-alkyl, wherein the substituents are selected from hydroxy, chloro, -CF 3 or C 1-C 6-alkyl, preferably R 4 is hydrogen or unsubstituted or at least monosubstituted -CH 2-aryl or C 1-C 6-alkyl, wherein the substituents are selected from hydroxy, chloro, -CF 3 or C 1-C 6-alkyl, more preferably R 4 is hydrogen or unsubstituted or at least monosubstituted -CH 2-phenyl or C 1-C 3-alkyl, wherein the substituents are selected from hydroxy, -CF 3, methyl or ethyl, even more preferably R 4 is hydrogen, C 1-C 3-alkyl or unsubstituted or monosubstituted -CH 2-phenyl, wherein the substituent is  in para-position and selected from -CF 3 or hydroxy, most preferably R 4 is -CH 2-phenyl or ethyl.
R 5 is unsubstituted or at least monosubstituted C 1-C 30-alkyl, wherein the substituents are selected from hydroxy, chloro or -CF 3, preferably R 5 is C 1-C 18-alkyl, more preferably R 5 is C 3-C 10-alkyl, most preferably R 5 is C 6-C 8-alkyl.
In a preferred embodiment of the present invention, component (C) contains at least one bismuth-containing catalyst according to general formula (Ia) , wherein the residues R 1 to R 6 are defined as follows:
R 1 is unsubstituted or monosubstituted phenyl, wherein the substituent is in para-position and selected from -CF 3 or hydroxy, most preferably R 1 is phenyl,
R 2 and R 3 are both hydrogen,
R 4 is -CH 2-phenyl or ethyl,
R 5 is C 3-C 10-alkyl, most preferably R 5 is C 6-C 8-alkyl.
In one embodiment of the present invention, component (C) contains at least one bismuth-containing catalyst according to general formula (Ib) . In case component (C) contains at least one bismuth-containing catalyst according to general formula (Ib) , it is preferred that the residue R 6 is defined as follows:
R 6 is unsubstituted or at least monosubstituted adamantyl, wherein the substituents are selected from C 1-C 6-alkyl or hydroxy, preferably R 6 is unsubstituted or monosubstituted adamantyl, wherein the substituent is methyl or hydroxy, most preferably R 6 is adamantyl.
The catalyst of component (C) may be present in principle in any desired amounts known to the skilled person in the coating material system of the invention. Component (C) preferably has a fraction of 35 to 2000 ppm by weight, more preferably of 35 to 1000 ppm by weight, and very preferably of 100 to 1000 ppm by weight, based in each case on the binder content of the coating material system.
The bismuth-containing catalyst according to general formula (Ia) and/or (Ib) can be prepared by any method known to the person skilled in the art in respect of preparing catalysts containing a metal atom such as bismuth. Usually, said  bismuth-containing catalysts are obtained by reacting the corresponding acid of the anionic ligands of the bismuth-containing catalysts according to general formula (Ia) or (Ib) with a bismuth-containing compound. Instead of the before-mentioned corresponding acid, also a corresponding salt thereof may be applied. The bismuth-containing compound is preferably selected from Bi 2O 3, bismuth carbonate, bismuth hydrogen carbonate, bismuth halogenide, Bi (C 6-C 14-aryl)  3, Bi (C 1-C 12-alkyl)  3 or metallic bismuth.
It is preferred that the reaction is carried out under inert gas atmosphere and/or in the presence of at least one solvent, preferably selected from toluol or tetrahydrofurane. It is also preferred that the reaction takes place for at least ten hours and/or at a temperature of at least 100 ℃. It is also preferred that, after the reaction as such, any volatile components of the reaction product are distilled of, the bismuth-containing catalyst is dried in vacuum and/or a crystallization process is carried out.
In case the bismuth-containing catalyst according to general formula (Ib) has to be prepared, it is also preferred to the above-mentioned article of V. Sharutin et al., Russian Journal of Inorganic Chemistry, 2008, Vol. 53, No. 11, pages 1733-1736.
Furthermore, some specific embodiments/preferred examples for preparing bismuth-containing catalysts according to the present invention are shown in figures 1 and 2. As can be seen from these figures, a fatty acid ester (E1) may be applied as a starting component in order to add further substituents/residues on the anionic part of the inventive bismuth-containing catalyst, such as adding the substituents R 1, R 2, R 3 and/or R 4 to the precursor resembling the residue R 5 in order to end up with an inventive catalyst according to general formula (Ia) . Within figure 1, the term “LDA” means lithium diisopropylamide. As can be seen from figure 1, the corresponding anionic ligand in form of its three acid components (A1a to A1c as well as A2a to A2d) is constructed step by step starting from a suitable precursor, such as the ester (E1) . In a last step, the corresponding acid is reacted with a bismuth-containing compound in order to arrive at a bismuth-containing catalyst according to general formula (Ia) , as shown for the specific catalysts A1 to A3 and B1 to B3 within figure 2. A corresponding bismuth-containing catalyst according to general formula (Ib) is exemplified within figure 2 as catalyst C.
In the coating material system of the invention there may optionally be other catalysts used additionally, apart from the above-described catalysts of component (C) , these additional catalysts being known to the skilled person in  connection with the preparation of polyurethanes or production of coating material systems, but not falling within the definition of the catalysts of component (C) .
Examples of other catalysts according to the prior art, which may be used within the coating material system of the present invention in addition to the before-mentioned catalyst of component (C) are, for example, catalysts containing both lithium and bismuth as metal components as described in WO 2016/120160. Further catalysts are based on two salts of an aliphatic monocarboxylic acid containing at least four carbon atoms, wherein the first salt contains bismuth as metal component and the second salt contains magnesium, natrium, potassium or calcium as metal component, as described in WO 2018/069018, can also be used as additional catalysts compared to those as described before for component (C) . However, it is preferred within the context of the present invention that the coating material system does not contain any additional catalyst besides those catalysts as described above according to the general formula (Ia) and/or the general formula (Ib) .
As already mentioned at the outset, the above-defined components (A) to (C) may i) be present separately from one another or ii) may be mixed completely or at least partially with one another, in the coating material system of the invention. Where components (A) to (C) are present separately from one another, according to the first option, the system in question is preferably the two-component system (2K system) already mentioned above, the definition of a 2K system also comprehending those systems in which three or more different components are provided. 2K systems for the purposes of the present invention are in principle all coating material systems where components (A) and (B) are present separately from one another, in particular prior to the application of the system in question, as for example in the formation of a polyurethane or of a coating material.
This also means, however, that the coating material systems encompassed in the case of the aforementioned second option, second variant, in which the components (A) to (C) are at least partly mixed with one another, are likewise to be interpreted as a 2K system in the sense of the present invention, provided components (A) and (B) are present separately from one another. In this scenario, however, component (C) may be mixed at least partly or completely with one or both components (A) and (B) .
The term “at least partly mixed with one another” has the present meaning in the context of the present invention, this meaning being illustrated exemplarily with an example. For example, component (C) is mixed with component (A) , whereas  component (B) is present separately to this mixture of (A) and (C) . Optionally, however, it is also possible for component (B) to be mixed with a portion of component (C) . Furthermore, the mixtures of (A) and (C) and also of (B) and (C) may additionally comprise at least one optional component as defined hereinafter.
Where components (A) to (C) are mixed completely with one another in the coating material system of the invention, in accordance with above-defined second option, first variant, the system in question is preferably a one-component system (1K system) as already mentioned above, in which the free isocyanate groups of component (B) are blocked preferably by suitable blocking agents.
It is possible for the individual components (A) to (C) to be provided each in portions, with individual portions possibly mixed in turn with other components, examples being the optional components described hereinafter. Preferably, however, components (A) and (B) are provided not in parts, but instead in each case as an individual (complete) component. As described above, however, the catalyst of component (C) , in particular, may be at least partly mixed with one another in portions and/or in part-components of at least one of the two components (A) and/or (B) . In this scenario, the catalyst of component (C) is prepared preferably in situ immediately prior to the application of the coating material system in question.
In accordance with the invention, all of components (A) to (C) and also, optionally, the optional components described below for the respective coating material system are mixed completely with one another no later than (immediately) prior to the desired application, irrespective of whether the system is a 1K system or a 2K system. Examples of (desired) applications are described in the text below. In the context of these applications, the curing of the coating material system of the invention, already described above, takes place, with formation of polyurethane, by reaction of the components (A) and (B) . In view of the in some cases high reactivity of these two components, it is frequently advantageous for these components to be provided separately from one another in the context of the coating material system (i.e., prior to the desired application) (and also in connection with an increased storage stability) . Consequently, the polyurethane reaction in the context of the desired application can be regulated and controlled more effectively and/or in a more targeted way.
Besides the components (A) to (C) already described above, the coating material systems of the invention may optionally further comprise at least one further component (D) to (J) , which are specified hereinafter.
The optional components (D) to (J) are selected from hydroxyl-containing compounds (D) , aminoplast resins and/or tris (alkoxycarbonylamino) triazines (E) , coatings additives (F) , pigments (H) , other fillers (I) and/or solvents (J) .
In analogy to the components (A) to (C) described above, the optional components (D) to (J) may also be present separately from one another or may be mixed wholly or at least partly with one another and/or mixed with the components (A) to (C) .
As an optional component, the coating material system of the invention comprises preferably at least one further component selected from hydroxyl-containing compounds (D) , coatings additives (F) , pigments (H) and/or solvents (J) .
The coating material system of the invention comprises optionally as optional component (D) at least one hydroxyl-containing compound. Hydroxyl-containing (hydroxy group-containing) compounds as such are known to the skilled person. The hydroxyl-containing compound (D) generally has two or more hydroxyl groups, preferably two hydroxyl groups. In the context of the present invention, the hydroxyl-containing compound (D) does not fall within the definition of the above-described polyhydroxy group-containing compound (A) .
The hydroxyl group-containing compounds (D) are preferably monomeric compounds and/or compounds having a molecular weight < 500 g/mol, preferably < 200 g/mol. The hydroxyl-containing compounds (D) are also referred to as low molecular mass polyols.
Component (D) , where present, has a fraction of 0.5 to 20 wt%, more preferably of 1 to 10 wt%, very preferably of 1 to 5 wt%, based in each case on the binder content of the coating material system.
Preferred examples of a hydroxyl-containing compound (D) that are used are ethylene glycol, neopentyl glycol, 1, 3-butanediol, 1, 2-propanediol, or diols of dimerized and subsequently hydrogenated natural fatty acids (trade name 
Figure PCTCN2019078333-appb-000007
908) . Preference is given to admixing those (low molecular mass) polyols of component (D) in minor fractions of the polyol component (A) –for example, at 1 to 20 wt%, based on the amount of component (A) .
The coating material system of the invention comprises optionally, as optional component (E) , at least one aminoplast resin and/or at least one  tris (alkoxycarbonylamino) triazine. Compounds which fall within component (E) of the present invention are known to the skilled person. Where present, component (E) has a fraction of 0.5 to 30 wt%, preferably of 0.5 to 15 wt%, based on the binder content of the coating material system.
Examples of suitable tris (alkoxycarbonylamino) triazines are specified in US-A 4,939,213, in US-A 5,084,541, and in EP-A 0 624 577.
Examples of suitable aminoplast resins (E) are all aminoplast resins commonly applied in the coatings industry sector, the reactivity of the aminoplast resin allowing the properties of the resulting coating materials to be controlled. The resins in question are condensation products of aldehydes, more particularly formaldehyde, and, for example, urea, melamine, guanamine, and benzoguanamine. The aminoplast resins comprise alcohol groups, preferably methylol groups, which in general are etherified partly or, preferably, completely with alcohols. Aminoplast resins etherified with lower alcohols are used more particularly. Preferred aminoplast resins used are those etherified with methanol and/or ethanol and/or butanol, examples being products available commercially under the names
Figure PCTCN2019078333-appb-000008
and
Figure PCTCN2019078333-appb-000009
The aminoplast resins (E) are long-established compounds and are described for example in detail in the American patent application US 2005/0182189 A1, page 1, paragraph [0014] , to page 4, paragraph [0028] .
The coating material system of the invention comprises optionally, as optional component (F) , at least one coatings additive. Coating additives as such are known to the skilled person. Where present, a coatings additive (F) has a fraction of 0.5 to 30 wt%, preferably of 0.5 to 25 wt%, and more particularly of 1 to 20 wt%, based in each case on the binder content of the coating material system.
Examples of suitable coatings additives (F) are:
- in particular, UV absorbers such as, for example, 2- (2-hydroxyphenyl) benzotriazoles, 2-hydroxybenzo phenones, hydroxyphenyl-s-triazines, and oxalanilides;
- in particular, light stabilizers such as those known as HALS compounds ( “hindered amine light stabilizers” ; these are derivatives of 2, 2, 6, 6-tetramethylpiperidine; available commercially for example as
Figure PCTCN2019078333-appb-000010
from BASF SE) , benzotriazoles such as hydroxyphenylalkylbenzotriazole, or oxalanilides;
- radical scavengers;
- slip additives;
- polymerization inhibitors;
- defoamers;
- reactive diluents different from components (A) and (D) , more particularly reactive diluents which become reactive only through reaction with other constituents and/or with water, such as Incozol or aspartic esters, for example;
- wetting agents different from components (A) and (D) , such as silxoanes, fluorine-containing compounds, carboxylic monoesters, phosphoric esters, polyacrylic acids and copolymers thereof, or polyurethanes;
- adhesion promoters;
- flow control agents, especially those based on a polyacrylate. Applied preferably here are copolymers of ethylhexyl acrylate and ethyl acrylate. These copolymers preferably have a very low T G, are relatively nonpolar, and have a low OH number;
- film-forming assistants such as cellulose derivatives;
- fillers in the form of nanoparticles based on silicon dioxide, aluminum oxide, or zirconium oxide; for further details, refer to
Figure PCTCN2019078333-appb-000011
Lexikon “Lacke and Druckfarben” Georg Thieme Verlag, Stuttgart, 1998, pages 250 to 252;
- rheology control additives different from components (A) and (D) , such as the additives known from patents WO 94/22968, EP-A-0 276 501, EP-A-0 249 201, or WO 97/12945; crosslinked polymeric microparticles, as disclosed for example in EP-A-0 008 127; inorganic phyllosilicates such as aluminum magnesium silicates, sodium magnesium phyllosilicates and sodium magnesium fluorine lithium phyllosilicates of the montmorillonite type; silicas such as
Figure PCTCN2019078333-appb-000012
or synthetic polymers having ionic and/or associative groups such as poly (meth) acrylamide, poly (meth) acrylic acid, polyvinylpyrrolidone, styrene-maleic anhydride copolymers or ethylene-maleic anhydride copolymers and their derivatives, or hydrophobically modified ethoxylated urethanes, or polyacrylates;
- flame retardants.
The coating material system of the invention comprises optionally, as optional component (H) , at least one pigment. Suitable pigments as such are known to the skilled person (see, for example, in Thomas Brock, Michael Groteklaes, Peter Mischke: European Coatings Handbook, Vincentz Verlag, ISBN 3-86630-849-3) .
The fraction of the pigments may in principle be arbitrary; it is preferably situated within a P/B range from 0.1 to 3.0 (P/B describes the weight ratio of pigment (P) to  binder (B) ; binder is to be understood in this case as the sum total of all film-forming components of the coating system) .
In accordance with the invention, pigments are used more particularly when the aim with the coating material compositions is to produce pigmented topcoats or pigmented undercoats, more particularly pigmented topcoats.
The coating material system of the invention optionally comprises, as optional component (I) , at least one other filler. Other fillers as such are known to the skilled person. Where present, the other filler (I) has a fraction of 0.1 to 30 wt%, based in each case on the binder content of the coating material system.
Examples of suitable other fillers (I) are carbonates, silicon dioxides, or barium sulfates, as they are or else in modified form. In contrast to the fillers described above as examples of coatings additives (F) , the other fillers (I) are not nanoscale particles.
The coating material system of the invention optionally comprises, as optional component (J) , at least one solvent. Solvents as such, especially in connection with the production of polyurethane or of coating material systems, are known to the skilled person. Where present, the solvent (J) has a fraction of 20%to 80%, preferably of 30%to 50%, based in each case on the total amount of the coating material system of the invention.
Preferred solvents used are those suitable for dissolving the polyisocyanate-containing compounds of component (A) and/or of component (B) .
Suitable solvents (J) are those which permit sufficient solubility of the polyisocyanate component and are free from groups reactive toward isocyanates. Examples of solvents of this kind are acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, methyl isoamyl ketone, diisobutyl ketone, ethyl acetate, n-butyl acetate, ethylene glycol diacetate, butyrolactone, diethyl carbonate, propylene carbonate, ethylene carbonate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone, methylal, butylal, 1, 3-dioxolane, glycerol formal, benzene, toluene, xylene, n-hexane, cyclohexane, 
Figure PCTCN2019078333-appb-000013
2-methoxypropyl acetate (MPA) , and ethyl ethoxypropionate.
In one embodiment of the present invention, the coating material system of the invention comprises at least one further component (D) to (J) , selected from hydroxyl-containing compounds (D) , aminoplast resins and/or  tris (alkoxycarbonylamino) triazines (E) , coatings additives (F) , pigments (H) , other fillers (I) and/or solvents (J) , where
i) the individual components (D) to (J) are present separately from one another or
ii) are mixed wholly or at least partly with one another and/or with components (A) to (C) .
It is preferred, furthermore, if
i) the coating material system is not aqueous, and/or
ii) components (A) and/or (B) each form a mixture with at least one solvent (J) , but components (A) and (B) are present separately from one another, and/or
iii) the catalyst of component (C) is present entirely or at least partly in at least one of the components (A) or (B) present separately from one another, preferably in component (A) .
Where the coating material system is not aqueous, this means that there is preferably no water at all present in such a coating material system, or that water may occur only in the form of impurities or traces, with a maximum amount of 0.1 wt%, preferably of 0.01 wt%, more particularly of 0.001 wt%, based in each case on the total weight of the corresponding coating material system.
In a further preferred embodiment, the coating material system of the invention is present as a complete mixture of components (A) , (B) , and (C) and also of optionally present components (D) to (J) .
In one embodiment of the present invention the coating material system comprises the following components:
- 50 to 70 wt% (based on the binder content of the coating material system) of at least one polyhydroxy group-containing compound (A) , preferably of at least one poly (meth) acrylate polyol,
- 25 to 40 wt% (based on the binder content of the coating material system) of at least one polyisocyanate-containing compound (B) ,
- 100 to 1000 ppm by weight (based on the binder content of the coating material system) of at least one catalyst (C) ,
- 0 to 10 wt%, preferably 1 to 5 wt% (based on the coating material system binder content) of at least one hydroxyl-containing compound (D) ,
- 0 to 25 wt%, preferably 1 to 10 wt% (based on the binder content of the coating material system) of at least one coatings additive (F) , and
- 0 to 300 wt%, preferably 1 to 100 wt% (based on the binder content of the coating material system) of at least one pigment (H) .
In this embodiment, moreover, the coating material system of the invention may also comprise at least one solvent (J) . Where a solvent is present, it is included in amounts of 1 to 80 wt%, preferably 5 to 50 wt%, of at least one solvent (J) . In contrast to the other components, the solvent content is based on the overall amount of the coating material system of the invention.
A further subject of the present invention, accordingly, is also a method for producing a coating material system as described above. The production method as such is known to the skilled person. If the mandatory components and also, optionally, the optional components of the coating material system are mixed wholly or at least partly with one another, the skilled person knows how such mixing can be implemented. The sequence and/or duration of the individual mixing steps are in principle arbitrary; all of the components may optionally be mixed simultaneously with one another. Where the mandatory components, and also those present optionally of the coating material system of the invention are present separately from one another they are analogously mixed immediately before the application of the coating material system in question.
In one embodiment the method of the invention for producing a coating material system is carried out such that components (A) , (B) , and (C) and also the optionally present components (D) and (J) are provided separately from one another and then mixed with one another. Mixing takes place preferably at room temperature; components (A) and (C) are mixed with one another beforehand and/or a mixture comprising component (A) is added.
The aforementioned embodiment is preferably carried out immediately before the specific application of the coating material system of the invention. This means  that complete mixing of all of the mandatory components (A) to (C) present in the coating material system of the invention, and also the optionally present components (D) to (J) , is not achieved until immediately before the specific application of the coating material system of the invention. The term “immediately before the specific application” embraces a time span from approximately one minute up to two hours.
A further subject matter of the present invention, therefore, is also a method for producing a polyurethane by at least partly or completely curing the above-described coating material system of the invention. The polyurethane is preferably fully cured. The curing of the coating material system of the invention takes place after complete mixing of all the components of the coating material system, more particularly after the mixing of components (A) and (B) . If component (B) , in the context of a 1K system, is to additionally be protected (blocked) with blocking agents, the blocking agent must first of all be removed before a urethane reaction can take place to produce the polyurethane of the invention. The method for producing the polyurethane therefore takes place preferably as part of a specific application of the coating material system. The production of a polyurethane as such, and the implementation of the curing, are known to the skilled person and have also already been acknowledged in the introductory part of the present invention.
Expressed in other words, this means that the desired/specific application of the coating material system of the invention forms polyurethane by curing of a coating material based on components (A) and (B) in the presence of the catalyst (C) ; the polyurethane is formed preferably in layer form or as a coating.
The curing of the coating material (system) of the invention that has been applied may also take place, however, after a certain resting time. The flash-off time serves, for example, for the flow and the degassing of the coating films, or for the evaporation of volatile constituents such as solvents. The resting time may be assisted and/or shortened by the application of increased temperatures and/or by a reduced atmospheric humidity, provided this does not entail any instances of damage or alteration to the coating films, such as premature complete crosslinking, for instance.
The thermal curing of the coating material system has no peculiarities in terms of method, but instead can take place in accordance with the customary and known methods such as heating in a forced air oven or irradiation with IR lamps. The  thermal cure here may also take place in stages. Another preferred curing method is that of curing with near infrared (NIR radiation) .
The thermal curing takes place advantageously at a temperature of 20 to 200℃ for a time of 1 min up to 10 h; at low temperatures, longer curing times may also be applied. For automotive refinishing and for the painting of plastics parts, and also for the painting of commercial vehicles, relatively low temperatures are usually applied, lying preferably between 20 and 80℃, more particularly between 20 and 60℃.
The polyurethane produced in accordance with the method of the invention preferably forms a layer or coating or is at least part of a layer or coating; the layer or coating is preferably a coating film.
The polyurethane preferably comprises at least one pigment (H) and/or the polyurethane is applied in layer form on a basecoat film, which optionally comprises at least one pigment (H) , or on an optionally precoated substrate.
It is preferred, moreover, for the curing of the polyurethane to take place at temperatures of 20 to 80℃, preferably of 20 to 60℃, the optional basecoat film having optionally been dried beforehand at temperatures of 20℃ to 80℃.
A further subject of the present invention is therefore also a polyurethane which has been produced in accordance with the method as described above.
A further subject of the present invention is therefore also the use of the above-described coating material system of the invention and/or of the polyurethane of the invention, produced in accordance with a method as described above, as coating material, in automotive finishing, for the repair of finishes, for automotive refinishing and/or for the coating of parts for installation in or on automobiles, of plastics substrates, or of commercial vehicles, the coating material preferably being a clearcoat or a pigmented paint.
Since the coatings of the invention produced from the coating material systems of the invention exhibit outstanding adhesion even to already cured electrocoat systems, surfacer systems, basecoat systems, or customary and known clearcoat systems, they are outstandingly suitable not only for use in automotive production-line (OEM) finishing but also for automotive refinishing and/or for the coating of parts for installation in and on automobiles and/or for the coating of commercial vehicles.
Application of the coating material systems of the invention may be made by any customary application methods such as, for example, spraying, knifecoating, brushing, pouring, dipping, impregnating, trickling, or rolling. At application, the substrate to be coated may itself be at rest, with the application equipment or unit being moved. Alternatively, the substrate to be coated, more particularly a coil, may also be moved, with the application unit being at rest relative to the substrate or being moved appropriately.
Preference is given to employing spray application methods, such as, for example, compressed air spraying, airless spraying, high-speed rotation, electrostatic spray application (ESTA) , optionally in conjunction with hot spray application, such as hot air spraying, for example.
The coating materials of the invention are outstandingly suitable as decorative, protective and/or effect coatings and coating systems for bodies of means of transport (especially powered vehicles, such as bicycles, motorcycles, coaches, trucks, or automobiles) or parts thereof; for the interior and exterior of edifices; for furniture, windows, and doors; for plastics moldings, more particularly CDs and windows; for small industrial parts, and for coils, containers, and packaging; for white goods; for films; for optical, electrical, and mechanical components; and also for hollow glassware and articles of everyday use.
The coating material systems of the invention can therefore be applied, for example, to an optionally precoated substrate, it being possible for the coating materials of the invention to be either pigmented or unpigmented. The coating material systems and paint systems of the invention, more particularly the clearcoat systems, are applied in particular in the technologically and esthetically particularly demanding field of automotive production-line (OEM) finishing and for the coating of plastics parts for installation in or on automobile bodies, more particularly for top-class automobile bodies, such as, for example, for producing roofs, tailgates, hoods, fenders, bumpers, spoilers, sills, protective strips, side trim, and the like, and also for automotive refinishing and for the finishing of commercial vehicles, such as, for example, of trucks, chain-driven construction vehicles, such as crane vehicles, wheel loaders, and concrete mixers, for example, buses, rail vehicles, watercraft, aircraft, and also agricultural equipment such as tractors and combines, and parts thereof.
The plastics parts consist customarily of ASA, polycarbonates, blends of ASA and polycarbonates, polypropylene, polymethyl methacrylates, or impact-modified  polymethyl methacrylates, more particularly of blends of ASA and polycarbonates, preferably with a polycarbonate fraction > 40%, more particularly > 50%.
“ASA” refers in general to impact-modified styrene/acrylonitrile polymers, in which graft copolymers of vinylaromatic compounds, more particularly styrene, and of vinyl cyanides, more particularly acrylonitrile, are present on polyalkyl acrylate rubbers in a copolymer matrix of, in particular, styrene and acrylonitrile.
With particular preference the coating materials of the invention are applied in multistage coating processes, more particularly in processes in which an optionally precoated substrate is coated first with a pigmented basecoat film and thereafter with a film with the coating material composition of the invention. Also subject matter of the invention, accordingly, are multicoat color and/or effect finishes comprising at least one pigmented basecoat film and at least one clearcoat film disposed thereon, these finishes being characterized in that the clearcoat film has been produced from the coating material composition of the invention.
Not only water-thinnable basecoats but also basecoats based on organic solvents can be used. Examples of suitable basecoats are described in EP-A 0 692 007 and in the documents recited at column 3, lines 50 ff., therein. The applied basecoat is preferably first dried –that is, at least some of the organic solvent and/or water is removed from the basecoat film in an evaporation phase. Drying takes place preferably at temperatures from room temperature to 80℃. After drying has taken place, the coating material composition of the invention is applied. The two-coat finish is subsequently baked, preferably under conditions applied in the context of automotive OEM finishing, at temperatures of 20 to 200℃, for a time of 1 min up to 10 h; in the case of the temperatures applied for automotive refinishing, which are in general between 20 and 80℃, more particularly between 20 and 60℃, longer curing times may also be applied.
In a further preferred embodiment of the invention, the coating material system of the invention is used as a transparent clearcoat for the coating of plastics substrates, more particularly of plastics parts for interior or exterior installation. These plastics parts for interior or exterior installation are preferably coated likewise in a multistage coating process, in which an optionally precoated substrate or a substrate pretreated for enhanced adhesion of the subsequent coatings (for example by flaming, corona treatment, or plasma treatment of the substrate) is coated first with a pigmented basecoat film and thereafter with a film with the coating material composition of the invention.
A further subject of the present invention is therefore also a method for producing a coating, in which at least one coating material system of the invention is applied to an optionally precoated substrate or to a basecoat film.
The coating (layer, film) preferably comprises a polyurethane obtained by at least partial or complete curing, preferably by complete curing, of the coating material system.
A further subject of the present invention is therefore also a coating (or layer) obtainable by the above-described process for producing the coating.
A further subject of the present invention is therefore also the use of a bismuth-containing catalyst according to general formula (Ia) , wherein
Figure PCTCN2019078333-appb-000014
R 1, R 2 and R 3 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1-C 30-alkyl, C 6-C 14-aryl or C 7-C 30-aralkyl,
wherein the substituents are selected from hydroxy, halogen, carboxyl, -CF 3, -NH 2, C 1-C 6-alkoxy, C 1-C 30-alkyl or C 6-C 14-aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3, -NH 2 or C 1-C 6-alkoxy,
and wherein at least one of the residues R 1, R 2 or R 3 is unsubstituted or at least monosubstituted C 6-C 14-aryl,
R 4 and R 5 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1-C 30-alkyl or C 7-C 30-aralkyl,
wherein the substituents are selected from hydroxy, halogen, carboxyl, -CF 3, -NH 2, C 1-C 6-alkoxy, C 1-C 30-alkyl or C 6-C 14-aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3, -NH 2 or C 1-C 6-alkoxy,
in a coating material system of the invention as described above, for the catalysis of the urethane reaction in a coating material system, for the production of polyurethanes, for the production of a polyurethane in accordance with the observations above, for the production of a coating in accordance with the observations above, for the production of a paint, for automotive refinishing, and/or for the coating of parts for installation in or on automobiles, of plastics substrates, or of commercial vehicles.
A further subject of the present invention is therefore also the use of a bismuth-containing catalyst according to general formula (Ib) , wherein:
Figure PCTCN2019078333-appb-000015
R 6 is unsubstituted or at least monosubstituted adamantyl, wherein the substituents are selected from C 1-C 10-alkyl, hydroxy, halogen or -CF 3,
in a coating material system of the invention as described above, for the catalysis of the urethane reaction in a coating material system, for the production of polyurethanes, for the production of a polyurethane in accordance with the observations above, for the production of a coating in accordance with the observations above, for the production of a paint, for automotive refinishing, and/or for the coating of parts for installation in or on automobiles, of plastics substrates, or of commercial vehicles.
A further subject of the present invention is therefore a bismuth-containing catalyst according to the general formula (Ia) , wherein
Figure PCTCN2019078333-appb-000016
R 1, R 2 and R 3 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1-C 30-alkyl, C 6-C 14-aryl or C 7-C 30-aralkyl,
wherein the substituents are selected from hydroxy, halogen, carboxyl, -CF 3, -NH 2, C 1-C 6-alkoxy, C 1-C 30-alkyl or C 6-C 14-aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3, -NH 2 or C 1-C 6-alkoxy,
and wherein at least one of the residues R 1, R 2 or R 3 is unsubstituted or at least monosubstituted C 6-C 14-aryl,
R 4 and R 5 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1-C 30-alkyl or C 7-C 30-aralkyl,
wherein the substituents are selected from hydroxy, halogen, carboxyl, -CF 3, -NH 2, C 1-C 6-alkoxy, C 1-C 30-alkyl or C 6-C 14-aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3, -NH 2 or C 1-C 6-alkoxy.
It has to be noted that in connection with the use of the bismuth-containing catalysts according to general formula (Ia) and/or according to general formula (Ib) as described above as well as the bismuth-containing catalyst according to general formula (Ia) as such as described above, also the respective preferred, more preferred, etc. definitions of general formula (Ia) and/or (Ib) or its residues, such as R 1 to R 6, respectively, as described above in connection with the coating material system of the present invention, are also valid.
The invention is illustrated below with examples.
Within the experimental part, the catalysts B1 and B3 were prepared as shown in figures 1 and 2 above. The catalysts applied within the comparative examples ( “comparison” ) were obtained commercially as described below in further detail. If a co-catalyst ( “CoCat” ) is employed, a lithium-containing catalyst known to a person skilled in the art was used unless mentioned otherwise. For comparison reasons, a standard tin (DOTL/dioctyltin dilaurate) catalyst is used known to a person skilled in the art.
Table 1: Recipe
Figure PCTCN2019078333-appb-000017
*acrylic mouillante is defined as follows: acrylic resin based on hydroxyethylacrylate and ethylhexylacrylate (30/70) OH value 130 mg KOH/g molecular weight 1600-2500 (Mn) 68 %in solvent naphtha
Table 2
Figure PCTCN2019078333-appb-000018
Experiment 1: Curing Test
Table 3
Figure PCTCN2019078333-appb-000019
Remarks: Tin sample was cured 30 minutes 60℃.
K-Kat 651: Bismuth neodecanoate, a commercialized catalyst from King Industrial Company
From the above test data in table 3, the following results could be observed:
1. For potlife: Both developed Bi complexes are comparable to tin catalyst which is better than the commercialized Bi complex catalyst K-Kat 651.
2. Activity: The onset temperature is used as the sign for the starting crosslinking temperature by DMA (dynamic mechanical analysis) . So, normally the lower onset temperature implies the better catalysis activity. The above test data are from the system with the main catalyst itself without the cocatalyst tested which imply that the developed two Bi catalysts are with lower onset temperature than the tin catalyst and the K-Kat 651 which means the new two Bi catalyst are with comparable activity to the tin catalyst and the K-Kat 651.
3. Curing temperature: All the above curing temperatures are 60℃
Experiment 2: Stability Test
The test according to table 4 is carried out by the comparison the catalysts used as received and the catalyst dissolved in solvent and kept for 1 weeks before using. The conversion of NCO group in the system is checked by  1H-NMR. The difference in the NCO conversation between the same catalyst with/without the 1 week ageing refer to the stability changes.
The experiments are carried out according to the following standard procedure for screening in NCO/OH reaction:
Prior to the reaction, a catalyst stock solution is prepared by dissolving 5–20 mg catalyst in 10-15 mL of THF. Next, 0.5 mmol HDI and 0.1 mol%catalyst were added to a crimp cap vial. Then, the mixture was diluted with THF until the desired concentration was obtained. At last, 1.0 mmol of n-butanol was added in air and the reaction proceeded with 1H-NMR checked.
Conclusion: The activity of the tin catalyst, Dioctyltin dilaurate (DOTL) , is reduced only by 1 unit, B1/B3 samples is reduced by 3 units, K-Kat 651 shows loss of 6 units. So the Bi catalysts B1 and B3 show promising results in hydrolysis stability.
Table 4
Figure PCTCN2019078333-appb-000020
Remarks: 1wk means that the catalyst is dissolved in the solvent and kept at 40℃ for 1 week before using. The units are in %. The measurement of the reactivity was controlled by  1H-NMR.

Claims (19)

  1. A coating material system comprising components (A) to (C) :
    (A) at least one polyhydroxy group-containing compound,
    (B) at least one polyisocyanate-containing compound, and
    (C) at least one bismuth-containing catalyst according to general formula (Ia) and/or according to general formula (Ib) ,
    wherein the bismuth-containing catalyst according to general formula (Ia) is defined as follows:
    Figure PCTCN2019078333-appb-100001
    R 1, R 2 and R 3 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1-C 30-alkyl, C 6-C 14-aryl or C 7-C 30-aralkyl,
    wherein the substituents are selected from hydroxy, halogen, carboxyl, -CF 3, -NH 2, C 1-C 6-alkoxy, C 1-C 30-alkyl or C 6-C 14-aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3, -NH 2 or C 1-C 6-alkoxy,
    and wherein at least one of the residues R 1, R 2 or R 3 is unsubstituted or at least monosubstituted C 6-C 14-aryl,
    R 4 and R 5 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1-C 30-alkyl or C 7-C 30-aralkyl,
    wherein the substituents are selected from hydroxy, halogen, carboxyl, -CF 3, -NH 2, C 1-C 6-alkoxy, C 1-C 30-alkyl or C 6-C 14-aryl and  the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3, -NH 2 or C 1-C 6-alkoxy,
    and wherein the bismuth-containing catalyst according to general formula (Ib) is defined as follows:
    Figure PCTCN2019078333-appb-100002
    R 6 is unsubstituted or at least monosubstituted adamantyl, wherein the substituents are selected from C 1-C 10-alkyl, hydroxy, halogen or -CF 3,
    and wherein
    i) components (A) , (B) , and (C) are present separately from one another or
    ii) are mixed wholly or at least partly with one another.
  2. The coating material system as claimed in claim 1, wherein the bismuth-containing catalyst of component (C) is at least one bismuth-containing catalyst according to general formula (Ia) , wherein
    i) R 1 is unsubstituted or at least monosubstituted C 6-C 14-aryl, wherein the substituents are selected from hydroxy, chloro, -CF 3 or C 1-C 6-alkyl,
    preferably R 1 is unsubstituted or at least monosubstituted phenyl, wherein the substituents are selected from hydroxy, -CF 3, methyl or ethyl, more preferably R 1 is unsubstituted or monosubstituted phenyl, wherein the substituent is in para-position and selected from -CF 3 or hydroxy, most preferably R 1 is phenyl, and/or
    ii) R 2 and R 3 are each, independently from one another, hydrogen or unsubstituted or at least monosubstituted C 6-C 14-aryl, wherein the substituents are selected from hydroxy, chloro, -CF 3 or C 1-C 6-alkyl,  preferably R 2 and R 3 are each, independently from one another, hydrogen or phenyl, most preferably R 2 and R 3 are both hydrogen, and/or
    iii) R 4 is hydrogen or unsubstituted or at least monosubstituted C 7-C 30-aralkyl or C 1-C 10-alkyl, wherein the substituents are selected from hydroxy, chloro, -CF 3 or C 1-C 6-alkyl,
    preferably R 4 is hydrogen or unsubstituted or at least monosubstituted -CH 2-aryl or C 1-C 6-alkyl, wherein the substituents are selected from hydroxy, chloro, -CF 3 or C 1-C 6-alkyl, more preferably R 4 is hydrogen or unsubstituted or at least monosubstituted -CH 2-phenyl or C 1-C 3-alkyl, wherein the substituents are selected from hydroxy, -CF 3, methyl or ethyl, even more preferably R 4 is hydrogen, C 1-C 3-alkyl or unsubstituted or monosubstituted -CH 2-phenyl, wherein the substituent is in para-position and selected from -CF 3 or hydroxy, most preferably R 4 is -CH 2-phenyl or ethyl, and/or
    iv) R 5 is unsubstituted or at least monosubstituted C 1-C 30-alkyl, wherein the substituents are selected from hydroxy, chloro or -CF 3,
    preferably R 5 is C 1-C 18-alkyl, more preferably R 5 is C 3-C 10-alkyl, most preferably R 5 is C 6-C 8-alkyl.
  3. The coating material system as claimed in claim 1 or 2, wherein
    i) the polyhydroxy group-containing compound of component (A) is selected from the group of the polyacrylate polyols, the polymethacrylate polyols, the polyester polyols, the polyurethane polyols and/or the polysiloxane polyols, more particularly from the group of the polyacrylate polyols and/or the polymethacrylate polyols, and/or
    ii) the polyisocyanate-containing compound of component (B) is selected from 1, 6-hexamethylene diisocyanate, isophorone diisocyanate, 4, 4’-methylene dicyclohexyl diisocyanate, the biuret dimers of the aforesaid diisocyanates, the iminooxadiazinediones of the aforesaid diisocyanates and/or the asymmetrical trimers of the aforesaid diisocyanates
    in the coating material system.
  4. The coating material system as claimed in any of claims 1 to 3, wherein the acid number of the polyhydroxy group-containing compound of component (A) is not more than 9 mg KOH/g of the corresponding polyhydroxy group-containing compound, preferably not more than 7 mg KOH/g of the corresponding polyhydroxy group-containing compound, more particularly 0.5 to 5 mg KOH/g of the corresponding polyhydroxy group-containing compound.
  5. The coating material system as claimed in any of claims 1 to 4, which comprises at least one further component (D) to (J) , selected from hydroxyl group-containing compounds (D) , aminoplast resins and/or tris (alkoxycarbonylamino) triazines (E) , coating additives (F) , pigments (H) , other fillers (I) and/or solvents (J) ,
    where
    i) the individual components (D) to (J) are present separately from one another or
    ii) are mixed wholly or at least partly with one another and/or with components (A) to (C) ,
    the coating material system preferably comprising at least one further component selected from hydroxyl group-containing compounds (D) , coating additives (F) , pigments (H) and/or solvents (J) .
  6. The coating material system as claimed in any of claims 1 to 5, wherein
    i) the coating material system is not aqueous, and/or
    ii) components (A) and/or (B) each form a mixture with at least one solvent (J) , but components (A) and (B) are present separately from one another, and/or
    iii) the catalyst of component (C) is present entirely or at least partly in at least one of the components (A) or (B) present separately from one another, preferably in component (A) .
  7. The coating material system as claimed in any of claims 1 to 6, wherein the bismuth-containing catalyst of component (C) is at least one bismuth-containing catalyst according to general formula (Ib) , wherein R 6 is unsubstituted or at least monosubstituted adamantyl, wherein the substituents are selected from C 1-C 6-alkyl or hydroxy, preferably R 6 is unsubstituted or monosubstituted adamantyl, wherein the substituent is methyl or hydroxy, most preferably R 6 is adamantyl.
  8. The coating material system as claimed in any of claims 1 to 7, wherein the coating material system is present as a complete mixture of components (A) , (B) , and (C) and also of optionally present components (D) to (J) .
  9. A method for producing a coating material system as claimed in claim 8, wherein components (A) , (B) , and (C) and also optionally present components (D) to (J) are provided separately from one another and subsequently mixed with one another,
    the mixing taking place preferably at room temperature, with components (A) and (C) being mixed with one another beforehand and/or component (B) being added to component (A) or to a mixture comprising component (A) .
  10. A method for producing a polyurethane by at least partial or complete curing, preferably by complete curing, of the coating material system as claimed in claim 8.
  11. The method as claimed in claim 10, wherein the polyurethane forms a layer or coating or is at least part of a layer or coating, the layer or coating preferably being a coating-material film.
  12. The method as claimed in claim 10 or 11, wherein the polyurethane comprises at least one pigment (H) and/or wherein the polyurethane is applied in layer form to a basecoat film which optionally comprises at least one pigment (H) , or to an optionally precoated substrate.
  13. The method as claimed in any of claims 10 to 12, wherein the curing of the polyurethane takes place at temperatures of 20 to 80℃, preferably of 20 to 60℃, the optional basecoat film having optionally been dried beforehand at temperatures of 20℃ to 80℃.
  14. The use of a coating system as claimed in any of claims 1 to 8, or of a polyurethane which has been produced in accordance with a method as claimed in any of claims 10 to 13, as coating material, in automotive finishing, for the repair of finishes, for automotive refinishing and/or for the coating of parts for installation in or on automobiles, of plastics substrates, or of commercial vehicles, the coating material preferably being a clearcoat or a pigmented paint.
  15. A method for producing a coating, wherein at least one coating material system as claimed in any of claims 1 to 8 is applied to an optionally precoated substrate or to a basecoat film.
  16. The method as claimed in claim 15, wherein the coating comprises a polyurethane which is obtained by at least partial or complete curing, preferably by complete curing, of the coating material system.
  17. The use of a bismuth-containing catalyst according to general formula (Ia) , wherein
    Figure PCTCN2019078333-appb-100003
    R 1, R 2 and R 3 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1-C 30-alkyl, C 6-C 14-aryl or C 7-C 30-aralkyl,
    wherein the substituents are selected from hydroxy, halogen, carboxyl, -CF 3, -NH 2, C 1-C 6-alkoxy, C 1-C 30-alkyl or C 6-C 14-aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3, -NH 2 or C 1-C 6-alkoxy,
    and wherein at least one of the residues R 1, R 2 or R 3 is unsubstituted or at least monosubstituted C 6-C 14-aryl,
    R 4 and R 5 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1-C 30-alkyl or C 7-C 30-aralkyl,
    wherein the substituents are selected from hydroxy, halogen, carboxyl, -CF 3, -NH 2, C 1-C 6-alkoxy, C 1-C 30-alkyl or C 6-C 14-aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3, -NH 2 or C 1-C 6-alkoxy,
    in a coating material system as claimed in any of claims 1 to 8, for the catalysis of the urethane reaction in a coating material system, for the production of polyurethanes, for the production of a polyurethane as claimed in any of claims 10 to 13, for the production of a paint, for the repair of a paint finish, for automotive refinishing, and/or for the coating of parts for installation in or on automobiles, of plastics substrates, or of commercial vehicles.
  18. A bismuth-containing catalyst according to general formula (Ia) , wherein
    Figure PCTCN2019078333-appb-100004
    R 1, R 2 and R 3 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1-C 30-alkyl, C 6-C 14-aryl or C 7-C 30-aralkyl,
    wherein the substituents are selected from hydroxy, halogen, carboxyl, -CF 3, -NH 2, C 1-C 6-alkoxy, C 1-C 30-alkyl or C 6-C 14-aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3, -NH 2 or C 1-C 6-alkoxy,
    and wherein at least one of the residues R 1, R 2 or R 3 is unsubstituted or at least monosubstituted C 6-C 14-aryl,
    R 4 and R 5 are each, independently of one another, hydrogen or unsubstituted or at least monosubstituted C 1-C 30-alkyl or C 7-C 30-aralkyl,
    wherein the substituents are selected from hydroxy, halogen, carboxyl, -CF 3, -NH 2, C 1-C 6-alkoxy, C 1-C 30-alkyl or C 6-C 14-aryl and the alkyl-and aryl fragments of these substituents can in turn be at least monosubstituted with hydroxy, halogen, -CF 3, -NH 2 or C 1-C 6-alkoxy.
  19. The use of a bismuth-containing catalyst according to general formula (Ib) , wherein:
    Figure PCTCN2019078333-appb-100005
    R 6 is unsubstituted or at least monosubstituted adamantyl, wherein the substituents are selected from C 1-C 10-alkyl, hydroxy, halogen or -CF 3,
    in a coating material system as claimed in any of claims 1 to 8, for the catalysis of the urethane reaction in a coating material system, for the production of polyurethanes, for the production of a polyurethane as claimed in any of claims 10 to 13, for the production of a paint, for the repair of a paint finish, for automotive refinishing, and/or for the coating of parts for installation in or on automobiles, of plastics substrates, or of commercial vehicles.
PCT/CN2019/078333 2019-03-15 2019-03-15 Coating material system based on a bismuth-containing catalyst with sterically bulky substituents WO2020186397A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/078333 WO2020186397A1 (en) 2019-03-15 2019-03-15 Coating material system based on a bismuth-containing catalyst with sterically bulky substituents
CN201980094076.6A CN113614136B (en) 2019-03-15 2019-03-15 Coating systems based on bismuth-containing catalysts having sterically bulky substituents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/078333 WO2020186397A1 (en) 2019-03-15 2019-03-15 Coating material system based on a bismuth-containing catalyst with sterically bulky substituents

Publications (1)

Publication Number Publication Date
WO2020186397A1 true WO2020186397A1 (en) 2020-09-24

Family

ID=72518907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078333 WO2020186397A1 (en) 2019-03-15 2019-03-15 Coating material system based on a bismuth-containing catalyst with sterically bulky substituents

Country Status (2)

Country Link
CN (1) CN113614136B (en)
WO (1) WO2020186397A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021073987A1 (en) * 2019-10-14 2021-04-22 Basf Coatings Gmbh Coating material system based on a bismuth-containing catalyst comprising at least one aromatic substituent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10109302A1 (en) * 2001-02-26 2002-09-05 Basf Ag Thermoplastic polyurethane used for molding and preparing films, is based on reaction of aliphatic diisocyanate with isocyanate-reactive compounds in presence of tin octoate and/or a bismuth catalyst
WO2013087682A1 (en) * 2011-12-12 2013-06-20 Sika Technology Ag Bismuth-containing catalyst for polyurethane compositions
CN107075074A (en) * 2014-10-28 2017-08-18 巴斯夫欧洲公司 For the method for carbamate (methyl) acrylate for producing radiation-hardenable
CA3038858A1 (en) * 2016-10-13 2018-04-19 Basf Coatings Gmbh Coating material system based on salts of an aliphatic monocarboxylic acid
WO2018202566A1 (en) * 2017-05-05 2018-11-08 Basf Se Storage-stable polyurethane casting compound for embedding hollow fibres in the production of filter elements

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1408062A1 (en) * 2002-10-08 2004-04-14 Sika Technology AG Polyurethane composition comprising a Bismuth catalyst
DE102005060828A1 (en) * 2005-12-20 2007-06-28 Bayer Materialscience Ag Process for the preparation of polyaddition compounds
KR101702915B1 (en) * 2008-10-22 2017-02-06 아크조노벨코팅스인터내셔널비.브이. Coating composition comprising a polyisocyanate and a polyol
EP2941446B1 (en) * 2013-01-07 2018-10-10 Basf Se Catalysts for polyurethane coating compounds
WO2015020689A1 (en) * 2013-08-06 2015-02-12 Dow Corning Corporation Catalysts, compositions containing the catalysts, and methods for the preparation thereof
ES2741600T3 (en) * 2015-01-22 2020-02-11 Basf Coatings Gmbh System of coating materials based on polyols with low acid number
RU2017129590A (en) * 2015-01-22 2019-02-22 БАСФ Коатингс ГмбХ COVER SYSTEM BASED ON LI / BI CATALYSTS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10109302A1 (en) * 2001-02-26 2002-09-05 Basf Ag Thermoplastic polyurethane used for molding and preparing films, is based on reaction of aliphatic diisocyanate with isocyanate-reactive compounds in presence of tin octoate and/or a bismuth catalyst
WO2013087682A1 (en) * 2011-12-12 2013-06-20 Sika Technology Ag Bismuth-containing catalyst for polyurethane compositions
CN107075074A (en) * 2014-10-28 2017-08-18 巴斯夫欧洲公司 For the method for carbamate (methyl) acrylate for producing radiation-hardenable
CA3038858A1 (en) * 2016-10-13 2018-04-19 Basf Coatings Gmbh Coating material system based on salts of an aliphatic monocarboxylic acid
WO2018202566A1 (en) * 2017-05-05 2018-11-08 Basf Se Storage-stable polyurethane casting compound for embedding hollow fibres in the production of filter elements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021073987A1 (en) * 2019-10-14 2021-04-22 Basf Coatings Gmbh Coating material system based on a bismuth-containing catalyst comprising at least one aromatic substituent

Also Published As

Publication number Publication date
CN113614136B (en) 2024-01-09
CN113614136A (en) 2021-11-05

Similar Documents

Publication Publication Date Title
CA2821390C (en) Polyurethane compositions for clear coating and pigmented coating materials, applications in automotive refinish, coating of plastics substrates and/or coating of utility vehicles
US11479633B2 (en) Coating material, system based on Li/Bi catalysts
CA2972550C (en) Coating material system based on polyols of low acid number
US11274228B2 (en) Coating agent system based on salts of an aliphatic monocarboxylic acid
AU2012230533B2 (en) Zinc-imidazole-carboxylate-complex-catalysed coating agent composition
AU2013213637B2 (en) Zinc (1-methylimidazole)bis(2-ethylhexanoate) complex catalyzed coating material composition
US20180230329A1 (en) Coating agent system based on bi-catalysts and aromatic carboxylic acids
WO2020186397A1 (en) Coating material system based on a bismuth-containing catalyst with sterically bulky substituents
EP4045555B1 (en) Coating material system based on a bismuth-containing catalyst comprising at least one aromatic substituent
US20220306894A1 (en) Coating material system comprising a mercapto group-containing compound
JP6000289B6 (en) A polyurethane coating composition, a multi-step coating process using the coating composition and the use of the coating composition as a paint incorporating clear lacquers and pigments, or for automotive repair coatings and / or Or use of said coating method for coating plastic substrates and / or transport vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920430

Country of ref document: EP

Kind code of ref document: A1