WO2020185108A1 - Moteur électromagnétique - Google Patents

Moteur électromagnétique Download PDF

Info

Publication number
WO2020185108A1
WO2020185108A1 PCT/RU2019/000151 RU2019000151W WO2020185108A1 WO 2020185108 A1 WO2020185108 A1 WO 2020185108A1 RU 2019000151 W RU2019000151 W RU 2019000151W WO 2020185108 A1 WO2020185108 A1 WO 2020185108A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnets
rotor
permanent magnets
rotation
axis
Prior art date
Application number
PCT/RU2019/000151
Other languages
English (en)
Russian (ru)
Inventor
Евгений Алексеевич НЕСМЕЕВ
Original Assignee
Евгений Алексеевич НЕСМЕЕВ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Евгений Алексеевич НЕСМЕЕВ filed Critical Евгений Алексеевич НЕСМЕЕВ
Priority to PCT/RU2019/000151 priority Critical patent/WO2020185108A1/fr
Publication of WO2020185108A1 publication Critical patent/WO2020185108A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices

Definitions

  • a permanent magnet electromagnetic motor is designed to convert electrical energy into mechanical energy and can be used in various mechanisms, and it can also be used as a generator of electrical energy.
  • the angle between the rotor magnets and the stator magnets passing one against the other is constantly changing and is in parallel when the greatest interaction force is present for a very short time. Moreover, the magnets acquire the position
  • the proposed design of the electromagnetic motor uses not only the repulsive force of the magnets, but also the force of their attraction, and these forces act with maximum efficiency along the tangent to the circle.
  • the presented design of an electromagnetic motor consists of a rotor with magnets installed on it and a housing (stator) on which electromagnets are installed and an electronic control unit (not shown in the figures). Its device is shown in the figures.
  • housing (stator) of 1 electromagnetic motor in section where 4 is a rotor, 2 are electromagnets, 5 are permanent magnets,
  • FIG 4 an example of the orientation of the poles of permanent magnets 5 parallel to the axis of rotation 3 (shown by a conventional line), divided into phases A, B, C of the passage of electromagnets 2 between them and the direction 6 of rotation of the rotor with built-in permanent magnets,
  • FIG 6 an example of the installation of permanent magnets 5 and electromagnets 2 with one pole orientation towards the axis of rotation (shaft) 3, where 5 are permanent magnets, 2 are electromagnets,
  • Figure 7 another view of the section of an electromagnetic motor with the orientation of one of the poles of permanent magnets and electromagnets towards the axis of rotation of Figure 6, where 2 are electromagnets, 5 are permanent magnets.
  • Figure 8 a view of a permanent magnet with a bend, for installation on the rotor of an electromagnetic motor according to the diagram in figure 5.
  • Figure 9 view of a rotor with a perpendicular orientation of the poles of permanent magnets 5 relative to the axis of rotation (shaft) 3.
  • FIG. 10 housing (stator) of an electromagnetic motor 1 with internal mounting locations 9 and electromagnets 2 built into them.
  • Figure 12 is an example of diagonal switching of electromagnets, where 3-axis of rotation (shaft), 5-permanent magnets, rotor 4 of the electromagnetic motor.
  • Figure 13 is an example of placing several rows of electromagnets 2 on the housing (stator) 1 of an electromagnetic motor and several rows of permanent magnets 5 on the rotor 4, the axis of rotation (shaft) 3
  • Figure 14 is an example of the installation of electromagnets 2 on the housing (stator) 1, with the orientation of one of the poles towards the axis of rotation (shaft) 3, where the permanent magnets 5 are installed on the rotor 4, also with the orientation of one of the poles towards the axis of rotation (shaft) ...
  • Figure 15 is an example of the installation of electromagnets 2 on the housing (stator) 1, with orientation perpendicular to the axis of rotation (shaft) 3, where the permanent magnets 5 are installed on the rotor 4,
  • the electromagnetic motor consists of a rotor 4 and a housing (stator) 1 and is structured as follows: electromagnets 2 are built into the mounting locations of the housing (stator) (figure 3), and magnets 5 are built into the mounting locations of the rotor (figure 3), so that near each pole of the magnet was installed one electromagnet (figure 3). Moreover, the electromagnets installed on the external mounting points of the housing (stator) at one moment interact with only one magnet, and the internal ones - with two. Moreover, there are two options for installing magnets, the first option is when cylindrical magnets are installed. In this case, the poles of the permanent magnets 5 come out on two sides of the rotor mounting places (figure 2). The second option, when magnets are installed in the form
  • Electromagnets 2 are built into the housing (stator) mounting positions as shown in figure 10 and their number may not match the number of permanent magnets installed on the rotor. Their number will depend on the calculation of achieving the best performance indicators of the electromagnetic motor.
  • Electromagnetic sensors in turn, electrical impulses are transmitted to the electronic control unit, and the electronic control unit, in turn, according to a certain program, supplies an electric current to the electromagnets, on which a magnetic field arises, which, depending on the program installed on the electronic control unit, creates
  • energy hereinafter energy
  • the moment of supply of the energy pulse is determined by position sensors 11 (figure 11) mounted on the housing, where it monitors the position of the metal mark 10 mounted on the disk 7, fixed on the axis of rotation (shaft) 3 of the electromagnetic motor. That is, when passing near the position sensor 11, the mark 10, the position sensor 11 gives a signal to supply energy to the electromagnets, and when a magnetic field appears in the electromagnets, they interact with the magnetic field of permanent magnets.
  • the magnets according to figure 3 are oriented on the rotor parallel to its axis of rotation (shaft) 3, with the direction of different poles in different directions of the mounting places 9 (figure 2).
  • the energy is supplied to the electromagnets of such polarity so that magnetic poles of opposite magnets appear at the poles of the electromagnets, located in the direction of rotation ( Figures 4 and 5).
  • the electromagnets will attract the magnets to themselves, which will lead to the beginning of the rotation of the rotor (stage A, figure 4).
  • SUBSTITUTE SHEET magnet one more impulse. That is, each electromagnet interacts twice with each magnet, first for attraction, and then for repulsion (or in reverse order) (stages A and C., Figures 4-5). Further, this process is repeated with acceleration during the passage of each magnet, next to other electromagnets.
  • the interaction of electromagnets with permanent magnets is possible, where at first there will be repulsion, and then attraction. That is, the electromagnets will interact with the repulsion with one permanent magnet, and with the attraction with the next, and the moment the power supply of the electromagnets is turned off will be between the permanent magnets.
  • Electromagnet Energy can be supplied to all electromagnets at the same time, or according to a certain scheme.
  • the number of rows of magnets may differ from the number of rows of electromagnets, and the rows of magnets on the rotor can be installed not parallel to the axis of rotation (shaft), but at an angle to it.
  • electromagnets can be installed on the housing (stator).
  • Figure 17 also shows a diagram of the interaction of permanent magnets 5 and electromagnets 2 using the example of one electromagnet 5 in different phases of operation (DEF) and its interaction with several permanent magnets located on a rotating rotor 4.
  • Phase D an electromagnet repels a permanent magnet when on them eponymous poles NN
  • phase E the electromagnet is off, it is located above the area where the poles of the permanent magnet change.
  • Phase F - the electromagnet is turned on and its N pole repels the N pole of a permanent magnet, and at the same moment it attracts the S pole of the next permanent magnet.
  • the example of the interaction of permanent magnets and electromagnets shown in figure 17 is also applicable with other options for placing permanent magnets and

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

L'invention concerne un moteur électromagnétique servant à convertir l'énergie électrique en énergie mécanique, et comprend un corps (stator) avec des électroaimants intégrés, et un rotor avec des aimants permanents intégrés, l'interaction entre ces derniers se faisant selon un programme d'alimentation électrique depuis une unité électronique de commande vers les électroaimants qui, du fait du changement des pôles des électroaimants, interagissent avec les aimants permanents tant en termes d'attraction que de répulsion, et peuvent installés en plusieurs rangées autour de l'axe de rotation (de l'arbre).
PCT/RU2019/000151 2019-03-11 2019-03-11 Moteur électromagnétique WO2020185108A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2019/000151 WO2020185108A1 (fr) 2019-03-11 2019-03-11 Moteur électromagnétique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2019/000151 WO2020185108A1 (fr) 2019-03-11 2019-03-11 Moteur électromagnétique

Publications (1)

Publication Number Publication Date
WO2020185108A1 true WO2020185108A1 (fr) 2020-09-17

Family

ID=72426447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2019/000151 WO2020185108A1 (fr) 2019-03-11 2019-03-11 Moteur électromagnétique

Country Status (1)

Country Link
WO (1) WO2020185108A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1003270A1 (fr) * 1998-11-19 2000-05-24 Moriyama Kogyo Kabushiki Kaisha Détecteur de position d'un pôle magnétique et feuille annulaire avec aimants sous forme de feuille pour moteur à courant continu sans balais
RU126996U1 (ru) * 2012-09-11 2013-04-20 Общество с ограниченной ответственностью "Электропривод Сагдакова" Бесколлекторный электродвигатель постоянного тока
US20140354119A1 (en) * 2012-01-20 2014-12-04 Tms Co., Ltd Permanent magnet-type rotating machine
WO2018081892A1 (fr) * 2016-11-07 2018-05-11 Jude Igwemezie Moteur à aimant à entraînement électromagnétique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1003270A1 (fr) * 1998-11-19 2000-05-24 Moriyama Kogyo Kabushiki Kaisha Détecteur de position d'un pôle magnétique et feuille annulaire avec aimants sous forme de feuille pour moteur à courant continu sans balais
US20140354119A1 (en) * 2012-01-20 2014-12-04 Tms Co., Ltd Permanent magnet-type rotating machine
RU126996U1 (ru) * 2012-09-11 2013-04-20 Общество с ограниченной ответственностью "Электропривод Сагдакова" Бесколлекторный электродвигатель постоянного тока
WO2018081892A1 (fr) * 2016-11-07 2018-05-11 Jude Igwemezie Moteur à aimant à entraînement électromagnétique

Similar Documents

Publication Publication Date Title
US20090001834A1 (en) Permanent magnet motor
KR100816421B1 (ko) 자력회전장치
KR102099891B1 (ko) 마그넷 발전기
EP1850457A3 (fr) Dispositif rotatif de générateur ou de moteur
ATE515827T1 (de) Magnetischer motor
WO2008035105A3 (fr) Moteur à impulsions de flux
CN113366731A (zh) 旋转马达
WO1994001924A1 (fr) Turbine magnetique
WO2020185108A1 (fr) Moteur électromagnétique
CN110635650B (zh) 三定子无刷永磁电机
KR20220107356A (ko) 발전기 전기자의 좌우측에 회전계자 장치하여 좌우계자가 서로 역 방향으로 회전하게 한 발전장치
US20040222756A1 (en) Electric motor
US5633549A (en) Brushless pulse drive motor
CN111555578A (zh) 全相双驱动无刷直流电动机
KR20200089911A (ko) 이중 고정자 구조를 가진 비엘디시 모터
RU180432U1 (ru) Электродвигатель с косыми магнитными полями
EP0183710A1 (fr) Moteur pas a pas a aimants permanents
WO2010068988A1 (fr) Moteur à impulsion électrique asymétrique et système de commande numérique
CN112636491B (zh) 单定子单转子低脉动转矩开关磁阻电动机及其驱动方法
US10965176B2 (en) Electric motors with pole biasing
RU45576U1 (ru) Магнитный двигатель
EP4283837A2 (fr) Générateur magnétique co-polaire
US20210104963A1 (en) First patent magnetic propulsion method
CN219918610U (zh) 飞轮马达
RU102860U1 (ru) Двигатель с вращательным движением на управляемых магнитах

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918809

Country of ref document: EP

Kind code of ref document: A1