WO2020184619A1 - Power storage device, power storage module, and method for manufacturing power storage device - Google Patents

Power storage device, power storage module, and method for manufacturing power storage device Download PDF

Info

Publication number
WO2020184619A1
WO2020184619A1 PCT/JP2020/010584 JP2020010584W WO2020184619A1 WO 2020184619 A1 WO2020184619 A1 WO 2020184619A1 JP 2020010584 W JP2020010584 W JP 2020010584W WO 2020184619 A1 WO2020184619 A1 WO 2020184619A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
resin
storage device
main surface
face
Prior art date
Application number
PCT/JP2020/010584
Other languages
French (fr)
Japanese (ja)
Inventor
寛実 佐藤
米田 圭介
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2020184619A1 publication Critical patent/WO2020184619A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device, a power storage module, and a method for manufacturing a power storage device in which a power storage element is sealed with an exterior material.
  • a structure in which a power storage element having a positive electrode and a negative electrode is sealed with an exterior material together with an electrolytic solution is often used.
  • an exterior material a laminated film in which resin is laminated on both the front and back surfaces of a metal foil is common.
  • the laminated film is trimmed after sealing the power storage element, and unnecessary parts are removed.
  • the metal foil is exposed by trimming, the metal leaf and the external member may be electrically connected, so that an insulating tape is attached to the cut end face to ensure the insulating property.
  • Patent Document 1 discloses a power storage device in which an insulating tape is wrapped around the end of a cell case (laminated film).
  • an object of the present invention is to provide a power storage device, a power storage module, and a method for manufacturing a power storage device, which are excellent in productivity and ensure the insulation of the exterior material.
  • the power storage device includes a power storage element, an electrolytic solution, an exterior material, and a resin coating portion.
  • the power storage element includes a positive electrode, a negative electrode, and a separator that insulates the positive electrode and the negative electrode.
  • the power storage element is immersed in the electrolytic solution.
  • the exterior material includes a metal layer having a first main surface and a second main surface on the opposite side thereof, an internal resin layer made of a resin laminated on the first main surface, and the second main surface.
  • the resin-coated portion is made of a curable resin having an insulating property and covers the end face.
  • the end face where the metal layer of the exterior film is exposed is insulated by a resin coating portion made of a curable resin.
  • the application of curable resin is less difficult to automate than the application of insulating tape, and mass production can be realized. Further, the resin-coated portion is less likely to be peeled off than the insulating tape, and also has an effect of preventing leakage of the electrolytic solution.
  • the curable resin may be a UV (ultraviolet) curable resin.
  • the resin coating portion may be formed by wrapping around the outer resin layer from the end face.
  • the method for manufacturing a power storage device comprises laminating a metal layer having a first main surface and a second main surface on the opposite side thereof and the first main surface.
  • An insulating curable resin is applied to the end face where the metal layer is exposed, which is formed by the trimming. The curable resin is cured to form a resin coating portion that covers the end face.
  • the curable resin is a UV (ultraviolet) curable resin.
  • the element accommodating portion may be masked and the seal region may be irradiated with UV.
  • the power storage module includes a plurality of power storage devices.
  • the power storage device includes a power storage element, an electrolytic solution, an exterior material, and a resin coating portion.
  • the power storage element includes a positive electrode, a negative electrode, and a separator that insulates the positive electrode and the negative electrode.
  • the power storage element is immersed in the electrolytic solution.
  • the exterior material includes a metal layer having a first main surface and a second main surface on the opposite side thereof, an internal resin layer made of a resin laminated on the first main surface, and the second main surface.
  • the resin-coated portion is made of a curable resin having an insulating property and covers the end face.
  • a power storage device As described above, according to the present invention, it is possible to provide a power storage device, a power storage module, and a method for manufacturing a power storage device, which are excellent in productivity and ensure the insulation of the exterior material.
  • FIG. 1 is a perspective view of the power storage device 100 according to the present embodiment.
  • FIG. 2 is a cross-sectional view of the power storage device 100, and is a cross-sectional view taken along the line AA of FIG.
  • the three directions orthogonal to each other are the X direction, the Y direction, and the Z direction, respectively.
  • the power storage device 100 includes a power storage element 101, an exterior material 102, a positive electrode terminal 103, and a negative electrode terminal 104.
  • a resin coating portion 130 is provided on the peripheral edge of the exterior material 102.
  • the power storage element 101 is configured by laminating a positive electrode 111, a negative electrode 112, and a separator 113.
  • the positive electrode 111 is a sheet-shaped member containing a positive electrode material, and for example, the positive electrode material can be laminated on a current collector foil.
  • the current collecting foil is, for example, a porous aluminum foil, and the positive electrode material is a mixture of a positive electrode active material such as activated carbon and a binder resin or the like.
  • the negative electrode 112 is a sheet-like member containing a negative electrode material, and for example, the negative electrode material can be laminated on a current collector foil.
  • the current collector foil is, for example, a porous copper foil, and the negative electrode material is a mixture of a negative electrode active material such as graphite and a binder resin or the like.
  • the separator 113 is a sheet-like member made of a woven fabric, a non-woven fabric, a synthetic resin microporous film, or the like, and insulates the positive electrode 111 and the negative electrode 112.
  • the positive electrode 111 and the negative electrode 112 are laminated via the separator 113 to form the power storage element 101.
  • the number of layers of the positive electrode 111 and the negative electrode 112 is not particularly limited.
  • the power storage element 101 is housed in the exterior material 102 together with an arbitrary electrolytic solution.
  • the exterior material 102 seals the power storage element 101. As shown in FIG. 2, the exterior material 102 is formed by laminating two exterior films 121 to form an element accommodating portion R for accommodating the power storage element 101.
  • FIG. 3 is a schematic view showing the structure of the exterior film 121.
  • the exterior film 121 includes a metal layer 122, an inner resin layer 123, and an outer resin layer 124.
  • the metal layer 122 is a layer made of foil-like metal and prevents the permeation of moisture in the atmosphere. As shown in FIG. 3, the metal layer 122 has a first main surface 122a and a second main surface 122b on the opposite side thereof.
  • the metal layer 122 can be a metal foil made of a metal such as aluminum, copper, nickel or stainless steel.
  • the internal resin layer 123 is laminated on the first main surface 122a, constitutes the inner peripheral surface of the element accommodating portion R, and covers and insulates the metal layer 122.
  • the internal resin layer 123 can be made of polypropylene, for example.
  • the internal resin layer 123 may be made of polyethylene terephthalate, polyethylene, polyphenylene sulfide, polyamide, ethylene-vinyl acetate copolymer, or the like. Further, the internal resin layer 123 may be formed by laminating a plurality of resin layers.
  • the outer resin layer 124 is laminated on the second main surface 122b, constitutes the surface of the power storage device 100, and covers and protects the metal layer 122.
  • the outer resin layer 124 can be made of, for example, polyethylene terephthalate.
  • the outer resin layer 124 may be made of oriented nylon, polyethylene naphthalate, polypropylene, polyimide, polycarbonate, or the like. Further, the outer resin layer 124 may be formed by laminating a plurality of resin layers.
  • FIG. 4 is a plan view of the power storage device 100. As shown in the figure, a seal region S is formed over the outer periphery of the element accommodating portion R. In addition, in FIG. 4 and FIG. 5 below, the resin coating portion 130 is not shown.
  • FIG. 5 is a diagram showing a seal region S, and is a cross-sectional view of the power storage device 100 along the line BB of FIG. As shown by the broken line in the figure, the internal resin layer 123 is heat-sealed in the seal region S, and the two exterior films 121 are attached to each other.
  • the end face of the exterior material 102 at the peripheral edge of the power storage device 100 is referred to as the end face 102a.
  • the metal layer 122 is exposed on the end face 102a.
  • the metal layer 122 exposed on the end face 102a will be referred to as a metal exposed portion 122c.
  • the surface of the exterior material 102 corresponding to the seal region S is designated as the seal surface 102b.
  • the exterior material 102 is trimmed by cutting off an excess portion after heat welding of the seal region S. Therefore, an end face 102a including the exposed metal portion 122c is formed on the peripheral portion of the power storage device 100.
  • the end face 102a is covered with the resin coating portion 130 as described later.
  • the positive electrode terminal 103 is an external terminal of the positive electrode 111.
  • the positive electrode terminal 103 is electrically connected to the positive electrode 111 via a wiring (not shown), and is drawn out from the inside of the element accommodating portion R via between two exterior films 121 in the seal region S.
  • the positive electrode terminal 103 may be a foil made of metal, a wire rod, or the like.
  • the negative electrode terminal 104 is an external terminal of the negative electrode 112.
  • the negative electrode terminal 104 is electrically connected to the negative electrode 112 via wiring (not shown), and is drawn out from the inside of the element accommodating portion R via between two exterior films 121 in the seal region S.
  • the negative electrode terminal 104 may be a foil made of metal, a wire rod, or the like.
  • the type of the power storage device 100 is not particularly limited, and may have a structure in which a power storage element having a positive electrode and a negative electrode and an electrolytic solution are sealed with an exterior material, such as a lithium ion capacitor, a lithium ion secondary battery, and an electric double layer capacitor. Just do it.
  • an end face 102a including the metal exposed portion 122c is formed on the peripheral edge portion (see FIG. 5), and the resin coating portion 130 is provided on the end face 102a.
  • FIG. 6 is a plan view of the power storage device 100 showing the resin coating portion 130.
  • FIG. 7 is a cross-sectional view of the power storage device 100 taken along the line CC of FIG.
  • the resin coating portion 130 is provided on three sides excluding the side where the positive electrode terminal 103 and the negative electrode terminal 104 are provided, out of the four sides which are the peripheral edges of the exterior material 102.
  • the resin coating portion 130 is made of a curable resin having an insulating property.
  • the curable resin can be a UV (ultraviolet) curable resin, a thermosetting resin, or a two-component curable resin, and a UV curable resin is particularly preferable.
  • the resin coating portion 130 may cover at least the end face 102a, but if it is formed so as to wrap around the end face 102a to the sealing surface 102b as shown in FIG. 7, it is difficult to break even if it receives an external force. Suitable.
  • the curable resin forming the resin coating portion 130 is preferably one having a predetermined thixotropy (sway modification). If the thixotropy is small, it flows on the end face 102a, and the thickness of the resin coating portion 130 becomes insufficient.
  • the thixotropy of the curable resin can be adjusted by adding silica or the like.
  • the width of the sealing surface 102b is the width a and the width of the sealing surface 102b of the resin coating portion 130 is the width b
  • b / a is preferably 0.15 or more and 0.5 or less.
  • the width a can be 6 mm and the width b can be 1 mm.
  • the metal exposed portion 122c is covered with the resin coating portion 130, and the metal layer 122 is insulated.
  • the end faces of such exterior materials are insulated by insulating tape.
  • FIG. 8 is a cross-sectional view showing a power storage device 200 according to a comparative example.
  • the exterior material 202 is composed of an exterior film 221 in which an internal resin layer 223 and an external resin layer 224 are laminated on the front and back surfaces of the metal layer 222.
  • a metal exposed portion 222c is present on the end surface 202a of the exterior material 202.
  • An insulating tape T is attached on the end surface 202a and the sealing surface 202b of the exterior film 221 to insulate the exposed metal portion 222c.
  • the end face 102a is insulated by using the resin coating portion 130 as in the present embodiment, the difficulty of automating the insulation process is lower than that of the insulating tape, and mass production can be realized. Further, the resin coating portion 130 is less likely to be peeled off from the exterior material 102 than the insulating tape.
  • the resin coating portion 130 is in close contact with the exterior material 102, even if the electrolytic solution leaks from the seal region S, the resin coating portion 130 can prevent the leakage.
  • the exterior material 102 is cut in the seal area S and trimmed. At this time, as shown in FIG. 5, the end face 102a including the exposed metal portion 122c is formed.
  • a curable resin is applied to the peripheral edge of the exterior material 102.
  • the curable resin can be applied by a dip method in which the peripheral edge of the exterior material 102 is immersed in a container in which the curable resin is stored.
  • an appropriate coating method can be selected depending on the peripheral shape of the exterior material 102, such as coating with a dispenser or printing.
  • the curable resin is cured.
  • the curing of the curable resin may be carried out collectively after applying the curable resin to all the sides of the exterior material 102 that requires insulation, or the application and curing may be repeated one side at a time.
  • the curable resin is a UV curable resin
  • it can be cured by irradiating it with UV.
  • the element accommodating portion R (see FIG. 4) is masked and only the seal region S is irradiated with UV. Can be done. As a result, heat generation due to UV irradiation does not occur in the element accommodating portion R, and deterioration due to heat of the power storage element 101 can be prevented.
  • the resin coating portion 130 is formed by curing the curable resin, and the power storage device 100 can be manufactured. Since the end face 102a can be insulated by applying a curable resin, it is possible to realize a manufacturing method excellent in mass productivity.
  • the power storage device 100 can be mounted on a power storage module.
  • FIG. 9 is an exploded perspective view of the power storage module 150 including the power storage device 100. As shown in the figure, the power storage module 150 includes a plurality of power storage devices 100 and a housing 160.
  • the housing 160 is composed of a frame member 161, a first plate member 162, and a second plate member 163.
  • the frame member 161 is a frame-shaped member made of synthetic resin or the like.
  • the frame member 161 is mounted with a connector electrically connected to the positive electrode terminal 103 and the negative electrode terminal 104 of the power storage device 100, a substrate on which a control circuit of the power storage device 100 is mounted, and the like.
  • the first plate member 162 and the second plate member 163 are plate-shaped members made of a metal such as aluminum. By sandwiching the frame member 161 between the first plate member 162 and the second plate member 163, a storage space surrounded by the frame member 161, the first plate member 162, and the second plate member 163 is formed. The first plate member 162 and the second plate member 163 are fixed to the frame member 161 by screwing or the like.
  • the storage capacity of the power storage module 150 can be secured by increasing the volume of the power storage device 100.
  • the power storage device 100 is arranged close to a member around the power storage device 100 such as the frame member 161.
  • the end face 102a is insulated by the resin coating portion 130, so that the power storage device 100 is surrounded without a risk of short circuit. It is possible to bring it closer to the member. Therefore, it is possible to secure the volume of the power storage device 100 and the power storage capacity of the power storage module 150.
  • FIG. 10 is a plan view of the power storage device 100 having another configuration.
  • the resin coating portion 130 is formed on three sides excluding the side where the positive electrode terminal 103 and the negative electrode terminal 104 are provided, but as shown in FIG. 10, the positive electrode terminal 103 and the negative electrode terminal 104 are formed. It may be provided on different sides.
  • the resin coating portion 130 is provided on two sides except the two sides where the positive electrode terminal 103 and the negative electrode terminal 104 are provided.
  • the exterior material 102 is not limited to the one in which two exterior films 121 are laminated, and may be one in which one exterior film 121 is folded and bonded. Also in this case, the resin coating portion 130 can be formed on the side excluding the side where the exterior film 121 is bent and the side where the positive electrode terminal 103 and the negative electrode terminal 104 are provided.
  • Power storage device 101 Power storage element 101 . Power storage element 102 ... Exterior material 102a ... End face 111 . Positive electrode 112 . Negative electrode 113 ... Separator 121 ... Exterior film 122 ... Metal layer 123 ... Internal resin layer 124 ... External resin layer 130 ... Resin coating part 150 ... Storage module

Abstract

[Problem] To provide a power storage device that has excellent productivity and ensures insulation properties of an exterior material, as well as a power storage module and a method for manufacturing the power storage device. [Solution] A power storage device according to the present invention is provided with: a power storage element; an electrolytic solution; an exterior material; and a resin application section. The exterior material comprises an exterior film having: a metal layer having a first principal surface and a second principal surface on the reverse side of said first principal surface; an inner resin layer that is laminated on the first principal surface and that is formed of a resin; and an outer resin layer that is laminated on the second principal surface and that is formed of a resin. The exterior material has: an element accommodating section for accommodating the power storage element and the electrolytic solution; and a seal region that is an outer peripheral region of the element accommodating section and to which the inner resin layer is fused. An end surface from which the metal layer is exposed is formed in the exterior material. The resin application section is formed of a curable resin having insulation properties and covers the end surface.

Description

蓄電デバイス、蓄電モジュール及び蓄電デバイスの製造方法Manufacturing method of power storage device, power storage module and power storage device
 本発明は、外装材によって蓄電素子を封止した蓄電デバイス、蓄電モジュール及び蓄電デバイスの製造方法に関する。 The present invention relates to a power storage device, a power storage module, and a method for manufacturing a power storage device in which a power storage element is sealed with an exterior material.
 キャパシタや電池等の蓄電デバイスにおいて、正極及び負極を有する蓄電素子を電解液と共に外装材によって封止した構造が多く用いられている。外装材としては金属箔の表裏両面に樹脂を積層したラミネートフィルムが一般的である。 In power storage devices such as capacitors and batteries, a structure in which a power storage element having a positive electrode and a negative electrode is sealed with an exterior material together with an electrolytic solution is often used. As the exterior material, a laminated film in which resin is laminated on both the front and back surfaces of a metal foil is common.
 ラミネートフィルムは蓄電素子を封止した後、トリミングされ、不要な部分が除去される。ここで、トリミングにより金属箔が露出すると、金属箔と外部の部材が導通するおそれがあるため、切断端面には絶縁テープが貼られ、絶縁性が確保される。 The laminated film is trimmed after sealing the power storage element, and unnecessary parts are removed. Here, if the metal foil is exposed by trimming, the metal leaf and the external member may be electrically connected, so that an insulating tape is attached to the cut end face to ensure the insulating property.
 例えば、特許文献1には、セルケース(ラミネートフィルム)の端部に絶縁テープが巻かれた蓄電装置が開示されている。 For example, Patent Document 1 discloses a power storage device in which an insulating tape is wrapped around the end of a cell case (laminated film).
特開2012-204038号公報Japanese Unexamined Patent Publication No. 2012-204038
 しかしながら、この構成では、製造プロセスにおいて絶縁テープを貼付する必要がある。このため、手作業で貼付するにも時間がかかり、自動化も難易度が高いため、量産対応の実現が困難であった。 However, in this configuration, it is necessary to attach insulating tape in the manufacturing process. For this reason, it takes time to apply by hand, and automation is also difficult, so it is difficult to realize mass production.
 以上のような事情に鑑み、本発明の目的は、生産性に優れ、外装材の絶縁性が確保された蓄電デバイス、蓄電モジュール及び蓄電デバイスの製造方法を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a power storage device, a power storage module, and a method for manufacturing a power storage device, which are excellent in productivity and ensure the insulation of the exterior material.
 上記目的を達成するため、本発明の一形態に係る蓄電デバイスは、蓄電素子と、電解液と、外装材と、樹脂塗布部とを具備する。
 上記蓄電素子は、正極と、負極と、上記正極と上記負極を絶縁するセパレータとを備える。
 上記電解液は、上記蓄電素子が浸漬される。
 上記外装材は、第1の主面及びその反対側の第2の主面を有する金属層と、上記第1の主面に積層された樹脂からなる内部樹脂層と、上記第2の主面に積層された樹脂からなる外部樹脂層とを有する外装フィルムからなり、上記蓄電素子及び上記電解液を収容する素子収容部と、上記素子収容部の外周領域であり、上記内部樹脂層が融着したシール領域とを有し、上記金属層が露出する端面が形成されている。
 上記樹脂塗布部は、絶縁性を有する硬化性樹脂からなり、上記端面を被覆する。
In order to achieve the above object, the power storage device according to one embodiment of the present invention includes a power storage element, an electrolytic solution, an exterior material, and a resin coating portion.
The power storage element includes a positive electrode, a negative electrode, and a separator that insulates the positive electrode and the negative electrode.
The power storage element is immersed in the electrolytic solution.
The exterior material includes a metal layer having a first main surface and a second main surface on the opposite side thereof, an internal resin layer made of a resin laminated on the first main surface, and the second main surface. It is composed of an exterior film having an outer resin layer made of a resin laminated on the above, and is an element accommodating portion for accommodating the power storage element and the electrolytic solution, and an outer peripheral region of the element accommodating portion, and the internal resin layer is fused. An end face is formed which has a sealed area and the metal layer is exposed.
The resin-coated portion is made of a curable resin having an insulating property and covers the end face.
 この構成によれば、外装フィルムの金属層が露出する端面が硬化性樹脂からなる樹脂塗布部によって絶縁されている。硬化性樹脂の塗布は絶縁テープの貼付に対して自動化の難易度も低く、量産対応が実現可能である。また、樹脂塗布部は絶縁テープに比べて剥がれにくく、かつ電解液の漏洩防止効果も有する。 According to this configuration, the end face where the metal layer of the exterior film is exposed is insulated by a resin coating portion made of a curable resin. The application of curable resin is less difficult to automate than the application of insulating tape, and mass production can be realized. Further, the resin-coated portion is less likely to be peeled off than the insulating tape, and also has an effect of preventing leakage of the electrolytic solution.
 上記硬化性樹脂は、UV(ultraviolet)硬化性樹脂であってもよい。 The curable resin may be a UV (ultraviolet) curable resin.
 上記樹脂塗布部は、上記端面から上記外部樹脂層上に回り込んで形成されていてもよい。 The resin coating portion may be formed by wrapping around the outer resin layer from the end face.
 上記目的を達成するため、本発明の一形態に係る蓄電デバイスの製造方法は、第1の主面及びその反対側の第2の主面を有する金属層と、上記第1の主面に積層された樹脂からなる内部樹脂層と、上記第2の主面に積層された樹脂からなる外部樹脂層とを有する外装フィルムによって、蓄電素子及び電解液を収容する素子収容部と、上記素子収容部の外周領域であり、上記内部樹脂層が融着したシール領域を有する外装材を形成する。
 上記外装材のシール領域を裁断してトリミングする。
 上記トリミングによって形成された、上記金属層が露出する端面に絶縁性を有する硬化性樹脂を塗布する。
 上記硬化性樹脂を硬化させて上記端面を被覆する樹脂塗布部を形成する。
In order to achieve the above object, the method for manufacturing a power storage device according to one embodiment of the present invention comprises laminating a metal layer having a first main surface and a second main surface on the opposite side thereof and the first main surface. An element accommodating portion for accommodating a power storage element and an electrolytic solution by an exterior film having an internal resin layer made of the resin and an external resin layer made of a resin laminated on the second main surface, and the element accommodating portion. It is an outer peripheral region of the above, and forms an exterior material having a sealing region in which the internal resin layer is fused.
The seal area of the exterior material is cut and trimmed.
An insulating curable resin is applied to the end face where the metal layer is exposed, which is formed by the trimming.
The curable resin is cured to form a resin coating portion that covers the end face.
 上記硬化性樹脂はUV(ultraviolet)硬化性樹脂であり、
 上記硬化性樹脂を硬化させる工程では、上記素子収容部をマスキングして、上記シール領域にUVを照射してもよい。
The curable resin is a UV (ultraviolet) curable resin.
In the step of curing the curable resin, the element accommodating portion may be masked and the seal region may be irradiated with UV.
 上記目的を達成するため、本発明の一形態に係る蓄電モジュールは、複数の蓄電デバイスを具備する。上記蓄電デバイスは、蓄電素子と、電解液と、外装材と、樹脂塗布部とを具備する。
 上記蓄電素子は、正極と、負極と、上記正極と上記負極を絶縁するセパレータとを備える。
 上記電解液は、上記蓄電素子が浸漬される。
 上記外装材は、第1の主面及びその反対側の第2の主面を有する金属層と、上記第1の主面に積層された樹脂からなる内部樹脂層と、上記第2の主面に積層された樹脂からなる外部樹脂層とを有する外装フィルムからなり、上記蓄電素子及び上記電解液を収容する素子収容部と、上記素子収容部の外周領域であり、上記内部樹脂層が融着したシール領域とを有し、上記金属層が露出する端面が形成されている。
 上記樹脂塗布部は、絶縁性を有する硬化性樹脂からなり、上記端面を被覆する。
In order to achieve the above object, the power storage module according to one embodiment of the present invention includes a plurality of power storage devices. The power storage device includes a power storage element, an electrolytic solution, an exterior material, and a resin coating portion.
The power storage element includes a positive electrode, a negative electrode, and a separator that insulates the positive electrode and the negative electrode.
The power storage element is immersed in the electrolytic solution.
The exterior material includes a metal layer having a first main surface and a second main surface on the opposite side thereof, an internal resin layer made of a resin laminated on the first main surface, and the second main surface. It is composed of an exterior film having an outer resin layer made of a resin laminated on the above, and is an element accommodating portion for accommodating the power storage element and the electrolytic solution, and an outer peripheral region of the element accommodating portion, and the internal resin layer is fused. An end face is formed which has a sealed area and the metal layer is exposed.
The resin-coated portion is made of a curable resin having an insulating property and covers the end face.
 以上のように本発明によれば、生産性に優れ、外装材の絶縁性が確保された蓄電デバイス、蓄電モジュール及び蓄電デバイスの製造方法を提供することが可能である。 As described above, according to the present invention, it is possible to provide a power storage device, a power storage module, and a method for manufacturing a power storage device, which are excellent in productivity and ensure the insulation of the exterior material.
本発明の実施形態に係る蓄電デバイスの斜視図である。It is a perspective view of the power storage device which concerns on embodiment of this invention. 同蓄電デバイスの断面図である。It is sectional drawing of the power storage device. 同蓄電デバイスが備える外装材を構成する外装フィルムの断面図である。It is sectional drawing of the exterior film constituting the exterior material included in the power storage device. 同蓄電デバイスの平面図である。It is a top view of the power storage device. 同蓄電デバイスの周縁部の断面図である。It is sectional drawing of the peripheral part of the power storage device. 同蓄電デバイスの平面図である。It is a top view of the power storage device. 同蓄電デバイスが備える樹脂塗布部の断面図である。It is sectional drawing of the resin coating part included in the power storage device. 本発明の比較例に係る蓄電デバイスの断面図である。It is sectional drawing of the power storage device which concerns on the comparative example of this invention. 本発明の実施形態に係る蓄電モジュールの平面図である。It is a top view of the power storage module which concerns on embodiment of this invention. 本発明の実施形態に係る蓄電デバイスの他の構成を示す平面図である。It is a top view which shows the other structure of the power storage device which concerns on embodiment of this invention.
 本発明の実施形態に係る蓄電デバイスについて説明する。 The power storage device according to the embodiment of the present invention will be described.
 [蓄電デバイスの構成]
 図1は、本実施形態に係る蓄電デバイス100の斜視図である。図2は蓄電デバイス100の断面図であり、図1のA-A線での断面図である。なお、各図において相互に直交する3方向をそれぞれX方向、Y方向及びZ方向とする。
[Configuration of power storage device]
FIG. 1 is a perspective view of the power storage device 100 according to the present embodiment. FIG. 2 is a cross-sectional view of the power storage device 100, and is a cross-sectional view taken along the line AA of FIG. In each figure, the three directions orthogonal to each other are the X direction, the Y direction, and the Z direction, respectively.
 図1及び図2に示すように、蓄電デバイス100は、蓄電素子101、外装材102、正極端子103及び負極端子104を備える。外装材102の周縁には樹脂塗布部130が設けられている。 As shown in FIGS. 1 and 2, the power storage device 100 includes a power storage element 101, an exterior material 102, a positive electrode terminal 103, and a negative electrode terminal 104. A resin coating portion 130 is provided on the peripheral edge of the exterior material 102.
 蓄電素子101は、図2に示すように、正極111、負極112及びセパレータ113が積層されて構成されている。 As shown in FIG. 2, the power storage element 101 is configured by laminating a positive electrode 111, a negative electrode 112, and a separator 113.
 正極111は、正極材料を含むシート状の部材であり、例えば集電箔に正極材料を積層したものとすることができる。集電箔は例えば多孔性のアルミニウム箔であり、正極材料は例えば活性炭等の正極活物質とバインダ樹脂等を混合したものである。 The positive electrode 111 is a sheet-shaped member containing a positive electrode material, and for example, the positive electrode material can be laminated on a current collector foil. The current collecting foil is, for example, a porous aluminum foil, and the positive electrode material is a mixture of a positive electrode active material such as activated carbon and a binder resin or the like.
 負極112は、負極材料を含むシート状の部材であり、例えば集電箔に負極材料を積層したものとすることができる。集電箔は例えば多孔性の銅箔であり、負極材料は例えばグラファイト等の負極活物質とバインダ樹脂等を混合したものである。 The negative electrode 112 is a sheet-like member containing a negative electrode material, and for example, the negative electrode material can be laminated on a current collector foil. The current collector foil is, for example, a porous copper foil, and the negative electrode material is a mixture of a negative electrode active material such as graphite and a binder resin or the like.
 セパレータ113は、織布、不織布又は合成樹脂微多孔膜等からなるシート状の部材であり、正極111と負極112を絶縁する。 The separator 113 is a sheet-like member made of a woven fabric, a non-woven fabric, a synthetic resin microporous film, or the like, and insulates the positive electrode 111 and the negative electrode 112.
 正極111及び負極112はセパレータ113を介して積層され、蓄電素子101を構成する。正極111及び負極112の層数は特に限定されない。蓄電素子101は、任意の電解液と共に外装材102に収容されている。 The positive electrode 111 and the negative electrode 112 are laminated via the separator 113 to form the power storage element 101. The number of layers of the positive electrode 111 and the negative electrode 112 is not particularly limited. The power storage element 101 is housed in the exterior material 102 together with an arbitrary electrolytic solution.
 外装材102は、蓄電素子101を封止する。図2に示すように、外装材102は、2枚の外装フィルム121が貼り合わされて構成され、蓄電素子101を収容する素子収容部Rを形成する。 The exterior material 102 seals the power storage element 101. As shown in FIG. 2, the exterior material 102 is formed by laminating two exterior films 121 to form an element accommodating portion R for accommodating the power storage element 101.
 図3は外装フィルム121の構造を示す模式図である。同図に示すように外装フィルム121は、金属層122、内部樹脂層123及び外部樹脂層124を備える。 FIG. 3 is a schematic view showing the structure of the exterior film 121. As shown in the figure, the exterior film 121 includes a metal layer 122, an inner resin layer 123, and an outer resin layer 124.
 金属層122は、箔状の金属からなる層であり、大気中の水分の透過を防止する。金属層122は、図3に示すように、第1主面122aとその反対側の第2主面122bとを有する。金属層122は、アルミニウム、銅、ニッケル又はステンレス等の金属からなる金属箔とすることができる。 The metal layer 122 is a layer made of foil-like metal and prevents the permeation of moisture in the atmosphere. As shown in FIG. 3, the metal layer 122 has a first main surface 122a and a second main surface 122b on the opposite side thereof. The metal layer 122 can be a metal foil made of a metal such as aluminum, copper, nickel or stainless steel.
 内部樹脂層123は、第1主面122aに積層され、素子収容部Rの内周面を構成し、金属層122を被覆して絶縁する。 The internal resin layer 123 is laminated on the first main surface 122a, constitutes the inner peripheral surface of the element accommodating portion R, and covers and insulates the metal layer 122.
 内部樹脂層123は、例えば、ポリプロピレンからなるものとすることができる。この他にも、内部樹脂層123はポリエチレンテレフタレート、ポリエチレン、ポリフェニレンサルファイド、ポリアミド又はエチレン-酢酸ビニル共重合体等からなるものとすることができる。また、内部樹脂層123は複数の樹脂層が積層されて構成されてもよい。 The internal resin layer 123 can be made of polypropylene, for example. In addition, the internal resin layer 123 may be made of polyethylene terephthalate, polyethylene, polyphenylene sulfide, polyamide, ethylene-vinyl acetate copolymer, or the like. Further, the internal resin layer 123 may be formed by laminating a plurality of resin layers.
 外部樹脂層124は、第2主面122bに積層され、蓄電デバイス100の表面を構成し、金属層122を被覆して保護する。 The outer resin layer 124 is laminated on the second main surface 122b, constitutes the surface of the power storage device 100, and covers and protects the metal layer 122.
 外部樹脂層124は、例えばポリエチレンテレフタレートからなるものとすることができる。この他にも外部樹脂層124はオリエンテッドナイロン、ポリエチレンナフタレート、ポリプロピレン、ポリイミド又はポリカーボネート等からなるものとすることができる。また、外部樹脂層124は複数の樹脂層が積層されて構成されてもよい。 The outer resin layer 124 can be made of, for example, polyethylene terephthalate. In addition to this, the outer resin layer 124 may be made of oriented nylon, polyethylene naphthalate, polypropylene, polyimide, polycarbonate, or the like. Further, the outer resin layer 124 may be formed by laminating a plurality of resin layers.
 上記構成を有する外装フィルム121の2枚が蓄電素子101を介して対向し、封止されている。図4は、蓄電デバイス100の平面図である。同図に示すように、素子収容部Rの外周に渡って、シール領域Sが形成されている。なお、図4及び以下の図5では樹脂塗布部130の図示は省略する。 Two outer films 121 having the above configuration face each other via the power storage element 101 and are sealed. FIG. 4 is a plan view of the power storage device 100. As shown in the figure, a seal region S is formed over the outer periphery of the element accommodating portion R. In addition, in FIG. 4 and FIG. 5 below, the resin coating portion 130 is not shown.
 図5はシール領域Sを示す図であり、図4のB-B線での蓄電デバイス100の断面図である。同図において破線で示すように、シール領域Sにおいては内部樹脂層123が熱融着され、2枚の外装フィルム121が貼りあわされている。 FIG. 5 is a diagram showing a seal region S, and is a cross-sectional view of the power storage device 100 along the line BB of FIG. As shown by the broken line in the figure, the internal resin layer 123 is heat-sealed in the seal region S, and the two exterior films 121 are attached to each other.
 また、図5に示すように、蓄電デバイス100の周縁における外装材102の端面を端面102aとする。端面102aには金属層122が露出する。以下、端面102aに露出する金属層122を金属露出部122cとする。さらに、シール領域Sに該当する外装材102の表面をシール面102bとする。 Further, as shown in FIG. 5, the end face of the exterior material 102 at the peripheral edge of the power storage device 100 is referred to as the end face 102a. The metal layer 122 is exposed on the end face 102a. Hereinafter, the metal layer 122 exposed on the end face 102a will be referred to as a metal exposed portion 122c. Further, the surface of the exterior material 102 corresponding to the seal region S is designated as the seal surface 102b.
 外装材102は、シール領域Sの熱溶着の後、余分な部分がカットされ、トリミングされる。このため、蓄電デバイス100の周縁部には金属露出部122cを含む端面102aが形成される。端面102aは後述するように樹脂塗布部130によって被覆される。 The exterior material 102 is trimmed by cutting off an excess portion after heat welding of the seal region S. Therefore, an end face 102a including the exposed metal portion 122c is formed on the peripheral portion of the power storage device 100. The end face 102a is covered with the resin coating portion 130 as described later.
 正極端子103は、正極111の外部端子である。正極端子103は、図示しない配線を介して正極111と電気的に接続され、シール領域Sにおいて2枚の外装フィルム121の間を介して素子収容部Rの内部から外部へ引き出されている。正極端子103は金属からなる箔又は線材等であるものとすることができる。 The positive electrode terminal 103 is an external terminal of the positive electrode 111. The positive electrode terminal 103 is electrically connected to the positive electrode 111 via a wiring (not shown), and is drawn out from the inside of the element accommodating portion R via between two exterior films 121 in the seal region S. The positive electrode terminal 103 may be a foil made of metal, a wire rod, or the like.
 負極端子104は、負極112の外部端子である。負極端子104は、図示しない配線を介して負極112と電気的に接続され、シール領域Sにおいて2枚の外装フィルム121の間を介して素子収容部Rの内部から外部へ引き出されている。負極端子104は金属からなる箔又は線材等であるものとすることができる。 The negative electrode terminal 104 is an external terminal of the negative electrode 112. The negative electrode terminal 104 is electrically connected to the negative electrode 112 via wiring (not shown), and is drawn out from the inside of the element accommodating portion R via between two exterior films 121 in the seal region S. The negative electrode terminal 104 may be a foil made of metal, a wire rod, or the like.
 蓄電デバイス100の種類は特に限定されず、リチウムイオンキャパシタ、リチウムイオン二次電池、電気二重層キャパシタ等、正極及び負極を備える蓄電素子及び電解液を外装材で封止した構造を有するものであればよい。 The type of the power storage device 100 is not particularly limited, and may have a structure in which a power storage element having a positive electrode and a negative electrode and an electrolytic solution are sealed with an exterior material, such as a lithium ion capacitor, a lithium ion secondary battery, and an electric double layer capacitor. Just do it.
 [樹脂塗布部について]
 上記のように、蓄電デバイス100は、周縁部に金属露出部122cを含む端面102aが形成され(図5参照)、端面102aには樹脂塗布部130が設けられている。
[About the resin coating part]
As described above, in the power storage device 100, an end face 102a including the metal exposed portion 122c is formed on the peripheral edge portion (see FIG. 5), and the resin coating portion 130 is provided on the end face 102a.
 図6は、樹脂塗布部130を示す蓄電デバイス100の平面図である。図7は、図6のC-C線での蓄電デバイス100の断面図である。 FIG. 6 is a plan view of the power storage device 100 showing the resin coating portion 130. FIG. 7 is a cross-sectional view of the power storage device 100 taken along the line CC of FIG.
 図6に示すように、外装材102の周縁である4辺のうち、正極端子103及び負極端子104が設けられている辺を除いた3辺には樹脂塗布部130が設けられている。 As shown in FIG. 6, the resin coating portion 130 is provided on three sides excluding the side where the positive electrode terminal 103 and the negative electrode terminal 104 are provided, out of the four sides which are the peripheral edges of the exterior material 102.
 樹脂塗布部130は、絶縁性を有する硬化性樹脂からなる。この硬化性樹脂はUV(ultraviolet)硬化性樹脂、熱硬化性樹脂又は二液性硬化樹脂とすることができるが特にUV硬化性樹脂が好適である。 The resin coating portion 130 is made of a curable resin having an insulating property. The curable resin can be a UV (ultraviolet) curable resin, a thermosetting resin, or a two-component curable resin, and a UV curable resin is particularly preferable.
 樹脂塗布部130は、少なくとも端面102aを被覆するものであればよいが、図7に示すように端面102aからシール面102bに回り込んで形成されていると、外力を受けても破断しにくく、好適である。 The resin coating portion 130 may cover at least the end face 102a, but if it is formed so as to wrap around the end face 102a to the sealing surface 102b as shown in FIG. 7, it is difficult to break even if it receives an external force. Suitable.
 なお、樹脂塗布部130を形成する硬化性樹脂は、所定のチキソトロピー(揺変性)を有するものが好適である。チキソトロピーが小さいと端面102a上において流動し、樹脂塗布部130の厚さが不十分となる。硬化性樹脂のチキソトロピーはシリカ等を添加することによって調整可能である。 The curable resin forming the resin coating portion 130 is preferably one having a predetermined thixotropy (sway modification). If the thixotropy is small, it flows on the end face 102a, and the thickness of the resin coating portion 130 becomes insufficient. The thixotropy of the curable resin can be adjusted by adding silica or the like.
 図7に示すように、シール面102bの幅を幅aとし、樹脂塗布部130のシール面102bにおける幅を幅bとすると、b/aは0.15以上0.5以下が好適である。例えば幅aは6mm、幅bは1mmとすることができる。 As shown in FIG. 7, assuming that the width of the sealing surface 102b is the width a and the width of the sealing surface 102b of the resin coating portion 130 is the width b, b / a is preferably 0.15 or more and 0.5 or less. For example, the width a can be 6 mm and the width b can be 1 mm.
 このように端面102a上に樹脂塗布部130を形成することにより、金属露出部122cが樹脂塗布部130によって被覆され、金属層122が絶縁される。通常、このような外装材の端面は絶縁テープによって絶縁される。 By forming the resin coating portion 130 on the end face 102a in this way, the metal exposed portion 122c is covered with the resin coating portion 130, and the metal layer 122 is insulated. Usually, the end faces of such exterior materials are insulated by insulating tape.
 図8は、比較例に係る蓄電デバイス200を示す断面図である。同図に示すように、外装材202は、金属層222の表裏面に内部樹脂層223及び外部樹脂層224が積層された外装フィルム221からなる。外装材202の端面202aには、金属露出部222cが存在する。 FIG. 8 is a cross-sectional view showing a power storage device 200 according to a comparative example. As shown in the figure, the exterior material 202 is composed of an exterior film 221 in which an internal resin layer 223 and an external resin layer 224 are laminated on the front and back surfaces of the metal layer 222. A metal exposed portion 222c is present on the end surface 202a of the exterior material 202.
 外装フィルム221の端面202a及びシール面202b上には絶縁テープTが貼付され、金属露出部222cが絶縁されている。 An insulating tape T is attached on the end surface 202a and the sealing surface 202b of the exterior film 221 to insulate the exposed metal portion 222c.
 このように、絶縁テープを用いて外装材202の端面202aを絶縁することも可能である。しかしながら、絶縁テープを端面202aに手作業で貼り付けると時間がかかり、自動化も容易ではない。 In this way, it is also possible to insulate the end face 202a of the exterior material 202 by using an insulating tape. However, if the insulating tape is manually attached to the end face 202a, it takes time and automation is not easy.
 これに対し、本実施形態のように樹脂塗布部130を用いて端面102aの絶縁を行う場合、絶縁テープに比べて絶縁工程の自動化の難易度が下がり量産対応の実現が可能となる。また絶縁テープに比べて樹脂塗布部130が外装材102から剥がれる可能性も低い。 On the other hand, when the end face 102a is insulated by using the resin coating portion 130 as in the present embodiment, the difficulty of automating the insulation process is lower than that of the insulating tape, and mass production can be realized. Further, the resin coating portion 130 is less likely to be peeled off from the exterior material 102 than the insulating tape.
 さらに、樹脂塗布部130は外装材102に密着するため、シール領域Sから電解液が漏出した場合にも樹脂塗布部130によって漏出を防止することが可能となる。 Further, since the resin coating portion 130 is in close contact with the exterior material 102, even if the electrolytic solution leaks from the seal region S, the resin coating portion 130 can prevent the leakage.
 [蓄電デバイスの製造方法]
 蓄電デバイス100の製造方法について説明する。蓄電デバイス100の製造工程では、外装フィルム121によって蓄電素子101を囲み、電解液を充填した後、蓄電素子101を収容した素子収容部Rの周囲において内部樹脂層123を熱融着させる。これにより、素子収容部Rの周囲にシール領域Sが形成される。
[Manufacturing method of power storage device]
A method of manufacturing the power storage device 100 will be described. In the manufacturing process of the power storage device 100, the power storage element 101 is surrounded by the exterior film 121, filled with an electrolytic solution, and then the internal resin layer 123 is heat-sealed around the element accommodating portion R containing the power storage element 101. As a result, the seal region S is formed around the element accommodating portion R.
 続いて、シール領域Sにおいて外装材102を裁断し、トリミングを行う。この際、図5に示すように金属露出部122cを含む端面102aが形成される。 Subsequently, the exterior material 102 is cut in the seal area S and trimmed. At this time, as shown in FIG. 5, the end face 102a including the exposed metal portion 122c is formed.
 続いて外装材102の周縁に硬化性樹脂を塗布する。硬化性樹脂の塗布は、硬化性樹脂を貯留した容器に外装材102の周縁を浸すディップ工法によって行うことができる。また、ディップ工法の他にもディスペンサによる塗布や印刷等、外装材102の周縁形状によって適切な塗布工法を選択することができる。 Subsequently, a curable resin is applied to the peripheral edge of the exterior material 102. The curable resin can be applied by a dip method in which the peripheral edge of the exterior material 102 is immersed in a container in which the curable resin is stored. In addition to the dip method, an appropriate coating method can be selected depending on the peripheral shape of the exterior material 102, such as coating with a dispenser or printing.
 続いて硬化性樹脂を硬化させる。硬化性樹脂の硬化は、絶縁が必要な外装材102の辺の全てに硬化性樹脂を塗布した後、まとめて実行してよく、1辺ずつ塗布及び硬化を繰り返してもよい。 Subsequently, the curable resin is cured. The curing of the curable resin may be carried out collectively after applying the curable resin to all the sides of the exterior material 102 that requires insulation, or the application and curing may be repeated one side at a time.
 硬化性樹脂がUV硬化性樹脂の場合、UVを照射することにより硬化させることができるが、この際、素子収容部R(図4参照)をマスキングし、シール領域SにのみUVを照射することができる。これにより素子収容部RにはUV照射による発熱が生じず、蓄電素子101の熱による劣化を防止することが可能である。 When the curable resin is a UV curable resin, it can be cured by irradiating it with UV. At this time, the element accommodating portion R (see FIG. 4) is masked and only the seal region S is irradiated with UV. Can be done. As a result, heat generation due to UV irradiation does not occur in the element accommodating portion R, and deterioration due to heat of the power storage element 101 can be prevented.
 硬化性樹脂の硬化によって図7に示すように樹脂塗布部130が形成され、蓄電デバイス100を製造することができる。硬化性樹脂の塗布によって端面102aを絶縁することができるため、量産性に優れた製造方法を実現することが可能である。 As shown in FIG. 7, the resin coating portion 130 is formed by curing the curable resin, and the power storage device 100 can be manufactured. Since the end face 102a can be insulated by applying a curable resin, it is possible to realize a manufacturing method excellent in mass productivity.
 [蓄電モジュールについて]
 上記蓄電デバイス100は、蓄電モジュールに搭載されるものとすることができる。図9は、蓄電デバイス100を備える蓄電モジュール150の分解斜視図である。同図に示すように蓄電モジュール150は、複数の蓄電デバイス100及び筐体160を備える。
[About power storage module]
The power storage device 100 can be mounted on a power storage module. FIG. 9 is an exploded perspective view of the power storage module 150 including the power storage device 100. As shown in the figure, the power storage module 150 includes a plurality of power storage devices 100 and a housing 160.
 筐体160は、図9に示すように枠部材161、第1板部材162及び第2板部材163によって構成されている。 As shown in FIG. 9, the housing 160 is composed of a frame member 161, a first plate member 162, and a second plate member 163.
 枠部材161は、合成樹脂等からなる枠状の部材である。枠部材161には蓄電デバイス100の正極端子103及び負極端子104にそれぞれ電気的に接続されたコネクタや蓄電デバイス100の制御回路を搭載した基板等が実装されている。 The frame member 161 is a frame-shaped member made of synthetic resin or the like. The frame member 161 is mounted with a connector electrically connected to the positive electrode terminal 103 and the negative electrode terminal 104 of the power storage device 100, a substrate on which a control circuit of the power storage device 100 is mounted, and the like.
 第1板部材162及び第2板部材163は、アルミニウム等の金属からなる板状の部材である。第1板部材162及び第2板部材163が枠部材161を挟むことによって、枠部材161、第1板部材162及び第2板部材163によって囲まれた収容空間が形成される。第1板部材162及び第2板部材163はネジ止め等によって枠部材161に固定される。 The first plate member 162 and the second plate member 163 are plate-shaped members made of a metal such as aluminum. By sandwiching the frame member 161 between the first plate member 162 and the second plate member 163, a storage space surrounded by the frame member 161, the first plate member 162, and the second plate member 163 is formed. The first plate member 162 and the second plate member 163 are fixed to the frame member 161 by screwing or the like.
 蓄電モジュール150においては、蓄電デバイス100の容積を大きくすることで蓄電モジュール150の蓄電容量を確保することができる。一方、蓄電デバイス100の容積を大きくすると、枠部材161等の蓄電デバイス100の周囲の部材に蓄電デバイス100が近接して配置されることになる。 In the power storage module 150, the storage capacity of the power storage module 150 can be secured by increasing the volume of the power storage device 100. On the other hand, when the volume of the power storage device 100 is increased, the power storage device 100 is arranged close to a member around the power storage device 100 such as the frame member 161.
 上記のように蓄電デバイス100においては、正極端子103及び負極端子104が設けられている辺を除き、端面102aが樹脂塗布部130によって絶縁されているため、短絡のおそれなく蓄電デバイス100を周囲の部材に近接させることが可能となる。したがって、蓄電デバイス100の容積を確保し、蓄電モジュール150の蓄電容量を確保することができる。 As described above, in the power storage device 100, except for the sides where the positive electrode terminal 103 and the negative electrode terminal 104 are provided, the end face 102a is insulated by the resin coating portion 130, so that the power storage device 100 is surrounded without a risk of short circuit. It is possible to bring it closer to the member. Therefore, it is possible to secure the volume of the power storage device 100 and the power storage capacity of the power storage module 150.
 なお、蓄電デバイス100のうち正極端子103及び負極端子104が設けられている辺は図示しない外部端子等が配置されるため、必ずしも樹脂塗布部130によって端面102aを絶縁する必要はない。 Since external terminals and the like (not shown) are arranged on the side of the power storage device 100 where the positive electrode terminal 103 and the negative electrode terminal 104 are provided, it is not always necessary to insulate the end face 102a by the resin coating portion 130.
 [蓄電デバイスの他の構成]
 図10は他の構成を有する蓄電デバイス100の平面図である。
[Other configurations of power storage device]
FIG. 10 is a plan view of the power storage device 100 having another configuration.
 上記説明において、樹脂塗布部130は、正極端子103及び負極端子104が設けられている辺を除く3辺に形成されるとしたが、図10に示すように、正極端子103及び負極端子104は異なる辺に設けられてもよい。 In the above description, the resin coating portion 130 is formed on three sides excluding the side where the positive electrode terminal 103 and the negative electrode terminal 104 are provided, but as shown in FIG. 10, the positive electrode terminal 103 and the negative electrode terminal 104 are formed. It may be provided on different sides.
 この場合、樹脂塗布部130は、正極端子103及び負極端子104が設けられた2辺を除く2辺に設けられる。 In this case, the resin coating portion 130 is provided on two sides except the two sides where the positive electrode terminal 103 and the negative electrode terminal 104 are provided.
 また、外装材102は2枚の外装フィルム121を貼り合わせたものに限られず、1枚の外装フィルム121を折り重ね、貼り合わせたものであってもよい。この場合も外装フィルム121を折り曲げた辺及び正極端子103及び負極端子104が設けられた辺を除く辺に樹脂塗布部130を形成することができる。 Further, the exterior material 102 is not limited to the one in which two exterior films 121 are laminated, and may be one in which one exterior film 121 is folded and bonded. Also in this case, the resin coating portion 130 can be formed on the side excluding the side where the exterior film 121 is bent and the side where the positive electrode terminal 103 and the negative electrode terminal 104 are provided.
 100…蓄電デバイス
 101…蓄電素子
 102…外装材
 102a…端面
 111…正極
 112…負極
 113…セパレータ
 121…外装フィルム
 122…金属層
 123…内部樹脂層
 124…外部樹脂層
 130…樹脂塗布部
 150…蓄電モジュール
100 ... Power storage device 101 ... Power storage element 102 ... Exterior material 102a ... End face 111 ... Positive electrode 112 ... Negative electrode 113 ... Separator 121 ... Exterior film 122 ... Metal layer 123 ... Internal resin layer 124 ... External resin layer 130 ... Resin coating part 150 ... Storage module

Claims (6)

  1.  正極と、負極と、前記正極と前記負極を絶縁するセパレータとを備える蓄電素子と、
     前記蓄電素子が浸漬される電解液と、
     第1の主面及びその反対側の第2の主面を有する金属層と、前記第1の主面に積層された樹脂からなる内部樹脂層と、前記第2の主面に積層された樹脂からなる外部樹脂層とを有する外装フィルムからなり、前記蓄電素子及び前記電解液を収容する素子収容部と、前記素子収容部の外周領域であり、前記内部樹脂層が融着したシール領域とを有し、前記金属層が露出する端面が形成された外装材と、
     絶縁性を有する硬化性樹脂からなり、前記端面を被覆する樹脂塗布部と
     を具備する蓄電デバイス。
    A power storage element including a positive electrode, a negative electrode, and a separator that insulates the positive electrode and the negative electrode.
    The electrolytic solution in which the power storage element is immersed and
    A metal layer having a first main surface and a second main surface on the opposite side thereof, an internal resin layer composed of a resin laminated on the first main surface, and a resin laminated on the second main surface. It is composed of an exterior film having an outer resin layer made of the same, an element accommodating portion for accommodating the power storage element and the electrolytic solution, and a sealing region which is an outer peripheral region of the element accommodating portion and in which the internal resin layer is fused. An exterior material having an end face on which the metal layer is exposed,
    A power storage device made of an insulating curable resin and provided with a resin coating portion that covers the end face.
  2.  請求項1に記載の蓄電デバイスであって、
     前記硬化性樹脂は、UV(ultraviolet)硬化性樹脂である
     蓄電デバイス。
    The power storage device according to claim 1.
    The curable resin is a power storage device that is a UV (ultraviolet) curable resin.
  3.  請求項1又は2に記載の蓄電デバイスであって、
     前記樹脂塗布部は、前記端面から前記外部樹脂層上に回り込んで形成されている
     蓄電デバイス。
    The power storage device according to claim 1 or 2.
    The resin coating portion is a power storage device formed by wrapping around the outer resin layer from the end face.
  4.  第1の主面及びその反対側の第2の主面を有する金属層と、前記第1の主面に積層された樹脂からなる内部樹脂層と、前記第2の主面に積層された樹脂からなる外部樹脂層とを有する外装フィルムによって、蓄電素子及び電解液を収容する素子収容部と、前記素子収容部の外周領域であり、前記内部樹脂層が融着したシール領域を有する外装材を形成し、
     前記外装材のシール領域を裁断してトリミングし、
     前記トリミングによって形成された、前記金属層が露出する端面に絶縁性を有する硬化性樹脂を塗布し、
     前記硬化性樹脂を硬化させて前記端面を被覆する樹脂塗布部を形成する
     蓄電デバイスの製造方法。
    A metal layer having a first main surface and a second main surface on the opposite side thereof, an internal resin layer composed of a resin laminated on the first main surface, and a resin laminated on the second main surface. An exterior film having an outer resin layer composed of an outer resin layer comprises an element accommodating portion for accommodating a power storage element and an electrolytic solution, and an exterior material having a sealing region which is an outer peripheral region of the element accommodating portion and in which the internal resin layer is fused. Form and
    The seal area of the exterior material is cut and trimmed.
    An insulating curable resin is applied to the end face where the metal layer is exposed, which is formed by the trimming.
    A method for manufacturing a power storage device, in which the curable resin is cured to form a resin coating portion that covers the end face.
  5.  請求項4に記載の蓄電デバイスの製造方法であって、
     前記硬化性樹脂はUV(ultraviolet)硬化性樹脂であり、
     前記硬化性樹脂を硬化させる工程では、前記素子収容部をマスキングして、前記シール領域にUVを照射する
     蓄電デバイスの製造方法。
    The method for manufacturing a power storage device according to claim 4.
    The curable resin is a UV (ultraviolet) curable resin.
    In the step of curing the curable resin, a method for manufacturing a power storage device that masks the element accommodating portion and irradiates the seal region with UV.
  6.  正極と、負極と、前記正極と前記負極を絶縁するセパレータとを備える蓄電素子と、
     前記蓄電素子が浸漬される電解液と、
     第1の主面及びその反対側の第2の主面を有する金属層と、前記第1の主面に積層された樹脂からなる内部樹脂層と、前記第2の主面に積層された樹脂からなる外部樹脂層とを有する外装フィルムからなり、前記蓄電素子及び前記電解液を収容する素子収容部と、前記素子収容部の外周領域であり、前記内部樹脂層が融着したシール領域とを有し、前記金属層が露出する端面が形成された外装材と、
     絶縁性を有する硬化性樹脂からなり、前記端面を被覆する樹脂塗布部と
     を備える複数の蓄電デバイスを具備する
     蓄電モジュール。
    A power storage element including a positive electrode, a negative electrode, and a separator that insulates the positive electrode and the negative electrode.
    The electrolytic solution in which the power storage element is immersed and
    A metal layer having a first main surface and a second main surface on the opposite side thereof, an internal resin layer composed of a resin laminated on the first main surface, and a resin laminated on the second main surface. It is composed of an exterior film having an outer resin layer made of the same, an element accommodating portion for accommodating the power storage element and the electrolytic solution, and a sealing region which is an outer peripheral region of the element accommodating portion and in which the internal resin layer is fused. An exterior material having an end face on which the metal layer is exposed,
    A power storage module comprising a plurality of power storage devices made of a curable resin having an insulating property and having a resin coating portion covering the end face.
PCT/JP2020/010584 2019-03-14 2020-03-11 Power storage device, power storage module, and method for manufacturing power storage device WO2020184619A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019047393A JP2020150164A (en) 2019-03-14 2019-03-14 Power storage device, power storage module, and manufacturing method of power storage device
JP2019-047393 2019-03-14

Publications (1)

Publication Number Publication Date
WO2020184619A1 true WO2020184619A1 (en) 2020-09-17

Family

ID=72426435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010584 WO2020184619A1 (en) 2019-03-14 2020-03-11 Power storage device, power storage module, and method for manufacturing power storage device

Country Status (2)

Country Link
JP (1) JP2020150164A (en)
WO (1) WO2020184619A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189911A (en) * 1989-01-18 1990-07-25 Murata Mfg Co Ltd Sealing resin composition
JP2004079434A (en) * 2002-08-21 2004-03-11 Nissan Motor Co Ltd Unit cell, cell module and cell pack
JP2005064207A (en) * 2003-08-11 2005-03-10 Tdk Corp Electrochemical device and method of manufacturing same
JP2013016358A (en) * 2011-07-04 2013-01-24 Sony Corp Photoelectric conversion element module
WO2017135437A1 (en) * 2016-02-05 2017-08-10 Tdk株式会社 Electrochemical device and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189911A (en) * 1989-01-18 1990-07-25 Murata Mfg Co Ltd Sealing resin composition
JP2004079434A (en) * 2002-08-21 2004-03-11 Nissan Motor Co Ltd Unit cell, cell module and cell pack
JP2005064207A (en) * 2003-08-11 2005-03-10 Tdk Corp Electrochemical device and method of manufacturing same
JP2013016358A (en) * 2011-07-04 2013-01-24 Sony Corp Photoelectric conversion element module
WO2017135437A1 (en) * 2016-02-05 2017-08-10 Tdk株式会社 Electrochemical device and method for manufacturing same

Also Published As

Publication number Publication date
JP2020150164A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP3941917B2 (en) Electric double layer capacitor manufacturing method and electric double layer capacitor
KR101216422B1 (en) Secondary Battery Having Sealing Portion of Improved Insulating Property
KR101280798B1 (en) Electrochemical device and process of manufacturing same
JP2006278897A (en) Electrochemical device
JP6743664B2 (en) Power storage device and method of manufacturing power storage device
US9450217B2 (en) Pouch battery and manufacturing method thereof
US4732825A (en) Flat cell
JP2011086760A (en) Energy storage element
JP7468233B2 (en) Energy Storage Module
KR20190037110A (en) Electrochemical device
WO2020184619A1 (en) Power storage device, power storage module, and method for manufacturing power storage device
CN105720292B (en) Electrochemical cell and portable device
JP6560876B2 (en) Laminated battery and method of manufacturing the same
KR20030045681A (en) Electric power stroage device
JP5717193B2 (en) battery
JP2001357824A (en) Sealed battery
KR101713062B1 (en) Battery Cell Having Sealing Tape Covering Whole Outer Surface of Electrode Assembly
JP7165526B2 (en) electrochemical element
JP6817143B2 (en) Laminated battery
US9030805B2 (en) Capacitor and capacitor module using the same
JP4524360B2 (en) Lithium ion battery
JP2016197491A (en) Jacket material for battery and battery using the same
JPH07169453A (en) Battery
JP6627552B2 (en) Electrode assembly and power storage device
JPH11260328A (en) Sheet-like battery with proper sealing property and manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770823

Country of ref document: EP

Kind code of ref document: A1