WO2020184563A1 - Method for producing resin container and apparatus for producing resin container - Google Patents

Method for producing resin container and apparatus for producing resin container Download PDF

Info

Publication number
WO2020184563A1
WO2020184563A1 PCT/JP2020/010313 JP2020010313W WO2020184563A1 WO 2020184563 A1 WO2020184563 A1 WO 2020184563A1 JP 2020010313 W JP2020010313 W JP 2020010313W WO 2020184563 A1 WO2020184563 A1 WO 2020184563A1
Authority
WO
WIPO (PCT)
Prior art keywords
preform
temperature
resin container
temperature control
gas
Prior art date
Application number
PCT/JP2020/010313
Other languages
French (fr)
Japanese (ja)
Inventor
大三郎 竹花
淳一 丸山
康秀 丸山
Original Assignee
日精エー・エス・ビー機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日精エー・エス・ビー機械株式会社 filed Critical 日精エー・エス・ビー機械株式会社
Priority to JP2021505082A priority Critical patent/JPWO2020184563A1/ja
Publication of WO2020184563A1 publication Critical patent/WO2020184563A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C2049/023Combined blow-moulding and manufacture of the preform or the parison using inherent heat of the preform, i.e. 1 step blow moulding

Definitions

  • the present invention relates to a method for manufacturing a resin container and an apparatus for manufacturing a resin container.
  • Patent Document 1 in a temperature control station provided with a temperature control pot and an air introduction core, air of a predetermined pressure is introduced into the injection-molded preform to bring the outer wall of the preform into close contact with the temperature control pod.
  • a method for cooling and imparting a temperature distribution is disclosed. Further, the document discloses that the contact time between the inner wall of the temperature control pod and the preform is about 5.5 seconds.
  • the container can be molded by securing the wall thickness of the portion most likely to be thin.
  • a method of controlling the temperature of the preform that can be performed is disclosed.
  • the injection-molded preform is heated and temperature-controlled in a temperature control device, and then placed on the side of the preform that tends to become thin when it is made into a container. Cooling air is blown from (horizontal direction).
  • the temperature distribution of multiple preforms immediately after injection molding tends to be uneven. If the temperature distributions of the plurality of preforms are not uniform, the wall thicknesses of the plurality of manufactured containers may become non-uniform and the same quality may not be produced. Further, if the preform alone does not have a temperature distribution suitable for manufacturing the container, the appearance and physical properties of the container alone may be poor.
  • An object of the present invention is to provide a method for manufacturing a resin container and an apparatus for manufacturing a resin container, which can manufacture a high-quality resin container even when the resin container is manufactured at high speed.
  • the method for manufacturing a resin container of the present disclosure that can solve the above problems is An injection molding process that injects a resin-made bottomed preform and A temperature control process that controls the temperature of the injection-molded preform while cooling it, A method for manufacturing a resin container, comprising a blow molding step of blowing-molding the temperature-controlled preform to manufacture a resin container.
  • a gas is blown from the outside of the preform to a high temperature part which is a part having a higher temperature than other parts in the preform. This is a method for manufacturing a resin container.
  • the resin container manufacturing apparatus of the present disclosure capable of solving the above problems is An injection molding part that injects a resin-made bottomed preform, A temperature control unit that controls the temperature of the injection-molded preform while cooling it, A device for producing a resin container, comprising a blow molding unit for producing a resin container by blow molding the temperature-controlled preform.
  • the temperature control part The preform is provided with a gas blowing portion for blowing gas from the outside of the preform. It is a manufacturing device for resin containers.
  • the present invention it is possible to provide a method for manufacturing a resin container and an apparatus for manufacturing a resin container, which can manufacture a high-quality resin container even when the resin container is manufactured at high speed.
  • FIG. 1 is a functional block diagram of the manufacturing apparatus 10.
  • the manufacturing apparatus 10 includes an injection molding section 11 for manufacturing the preform 20 and a temperature control section 12 for adjusting the temperature of the manufactured preform 20.
  • An injection device 15 for supplying a resin material as a raw material is connected to the injection molding unit 11.
  • the manufacturing apparatus 10 includes a blow molding unit (an example of a blow apparatus) 13 for blowing the preform 20 to manufacture a container, and a take-out portion 14 for taking out the manufactured container.
  • the injection molding unit 11, the temperature control unit 12, the blow molding unit 13, and the take-out unit 14 are provided at positions rotated by a predetermined angle (90 degrees in this embodiment) about the transport means 16.
  • the transport means 16 is composed of a rotating plate or the like, and as shown in FIGS. 2 and 4 described later, the preform 20 or the container in a state where the neck portion 22 is supported by the neck mold 17 attached to the rotating plate. Is configured to be transported to each part as the rotating plate rotates.
  • the injection molding unit 11 shown in FIG. 1 includes an injection cavity type, an injection core type, a neck type, and the like, which are not shown.
  • a bottomed preform is formed by pouring a synthetic resin material such as a polyester resin (for example, PET: polyethylene terephthalate) from the injection device 15 into the preform-shaped space formed by molding these molds. 20 is manufactured.
  • the preform 20 has an optimum wall thickness distribution (shape) depending on the container, and the body thickness (average thickness, wall thickness) of the preform 20 is, for example, 1.0 to 8.0 mm, preferably 1.5 to. It is set to 3.5, more preferably 2.0 to 3.0 mm.
  • the temperature control unit 12 is configured to adjust the temperature of the preform 20 manufactured by the injection molding unit 11 while cooling it to a temperature suitable for final blowing.
  • the blow molding unit 13 includes a stretch rod, a blow core type, a blow cavity type, and the like (not shown).
  • the blow molding unit 13 stretches the preform 20 temperature-controlled by the temperature control unit 12 with, for example, a stretching rod, and introduces air from the blow core mold to inflate the preform 20 into a blow cavity type shape to inflate the container. It is configured to be moldable.
  • FIG. 2 is a diagram showing the configuration of the temperature control unit 12.
  • the temperature control unit 12 includes a device 30 having a plurality of gas blowing units 32.
  • the device 30 includes a gas blowing portion 32, a first fixing plate 31, a spacer member 33, a second fixing plate 35, a valve fixing portion 37, and a valve 34 and a tube 36 described later. These are connected and unitized.
  • the unit is fixed to the elevating device 40 of the manufacturing apparatus 10 via the second fixing plate 35.
  • the first fixing plate 31 includes a through hole formed so as to communicate from the side surface to the upper surface thereof.
  • Ventilation can be performed from the side surface side to the upper surface side of the first fixing plate 31 or in the opposite direction.
  • a gas blowing portion 32 is installed on the upper surface where the through hole is located.
  • a valve fixing portion 37 is formed on the side surface of the spacer member 33. The height of the spacer member 33 in the vertical direction can be changed, and the distance between the preform 20 and the gas blowing portion 32 can be adjusted.
  • the number of gas blowing portions 32 is not particularly limited, but may be combined with the number of preforms formed by injection molding.
  • the gas blowing portion 32 is configured to blow gas from the outside onto the body portion 21 of the preform 20 conveyed to the temperature controlling portion 12. Air is usually used as the gas to be blown from the gas blowing portion 32, but any gas such as nitrogen and argon that does not cause a problem in the resin container can be used.
  • the gas blowing portion 32 is located below the bottom portion 24 of the preform 20 which is conveyed to the temperature controlling portion 12.
  • the gas blowing portion 32 is composed of a nozzle.
  • the inclination angle ⁇ of the nozzle is adjustable.
  • the nozzle tilt angle ⁇ refers to the angle formed by the nozzle tilt direction B and the vertical direction A.
  • the nozzle can be tilted toward the back or front of the paper in FIG. 2, and the tilt angle ⁇ is a three-dimensional tilt angle with respect to the vertical direction A.
  • the device 30 includes a valve 34 configured so that the flow rate of the gas blown from the gas blowing portion 32 can be adjusted. Gas is supplied to the gas outlet 32 from a compressor or the like via a tube 36, and the flow rate can be adjusted by a valve 34. Although shown in a simplified manner in FIG. 2, the device 30 includes a number of valves 34 and tubes 36 corresponding to the gas outlet 32, and the flow rate of the gas blown from each gas outlet 32 is individually increased. It is possible to adjust (independently).
  • the temperature control unit 12 includes a temperature control rod 40 configured to be in contact with the inner surface of the body 21 of the preform 20 conveyed from the injection molding unit 11.
  • the temperature control rod 40 is configured to be able to move up and down.
  • the temperature control rod 40 is set to a temperature at which the preform 20 can be temperature-controlled to a temperature suitable for blow molding.
  • the temperature control rod 40 is preferably set to a temperature equal to or lower than the glass transition point of the resin constituting the preform 20 (for example, 80 ° C. or lower in the case of PET).
  • FIG. 3 is a diagram showing a flowchart of a method for manufacturing a resin container.
  • the container of the present embodiment has an injection molding step S1 for injection molding the preform 20, a temperature control step S2 for controlling the temperature while cooling the preform 20, and a blow molding process for the temperature controlled preform 20. It is manufactured through the blow molding step S3 to be manufactured, and the container is taken out by opening the neck portion 22 from the neck mold 17.
  • the injection molding process S1 will be described.
  • a plurality of preforms are formed by pouring a resin material from the injection device 15 into a preform-shaped space formed by molding the injection cavity type, the injection core type, the neck type, and the like. 20 is manufactured.
  • the preform 20 is transferred from the injection molding section 11 to the temperature control section 12. Move.
  • heat exchange heat transfer
  • the temperature of the inner and outer surface layers of the preform 20 is set higher than that at the time of injection mold release. Raise to a higher temperature, eg 100-130 ° C.
  • the temperature control step S2 will be described with reference to FIGS. 2 and 4.
  • the temperature control rod 40 is brought into contact with the inner surface of the preform 20 that has been moved to the temperature control section 12.
  • the contact of the temperature control rod 40 is carried out by lowering the temperature control rod 40 from the upper standby position.
  • the temperature control rod 40 makes uniform surface contact with the inner surface of the preform 20 in the circumferential direction.
  • the temperature of the preform 20 is controlled while being cooled from the inside (inner surface layer side).
  • the device 30 gas blowing portion 32
  • the device 30 gas blowing portion 32
  • gas is blown from the gas blowing portion 32 to the high temperature portion 50 of the body portion 21 of the preform 20.
  • gas is blown from the gas blowing portion 32 located below the bottom portion 24 of the preform 20 toward the side surface of the body portion 21 of the preform 20.
  • the vertical direction here does not mean only the pure vertical direction, but also includes the diagonal direction.
  • the operation order of the temperature control rod 40 and the device 30 may be the reverse of the above operation. That is, the temperature control rod 40 and the device 30 may be moved up and down so as to adjust (cool) the temperature of the preform 20 after blowing gas onto the high temperature portion 50 of the body 21 of the preform 20.
  • the high temperature portion 50 of the preform 20 in the present application will be described with reference to FIG.
  • the high temperature part 50 is a part having a higher temperature than the other parts 52 in the preform 20.
  • the preform 20 tends to have an irregular temperature distribution in the circumferential direction due to temperature unevenness of the resin material, eccentricity of the mold (injection core type and injection cavity type), and the like. Therefore, if the cooling in the injection molding process is minimized, the high temperature portion 50 can exist. Further, as shown in FIG. 4, the high temperature portion 50 tends to extend in the vertical direction (from the bottom portion to the neck portion) of the preform.
  • each high temperature portion 50 may exist at a different position, for example, a different position in the circumferential direction.
  • a different position in the circumferential direction of the preform 20 when the preform 20 is viewed from the side in the temperature control portion 12 as shown in FIG. In one preform 20, the high temperature portion 50 is present on the right side, whereas in the other preform 20, the high temperature portion 50 is present on the left side.
  • gas is blown onto the high temperature portions 50 existing in each of the plurality of preforms 20 by adjusting the inclination angle ⁇ of each nozzle (gas blowing portion 32).
  • the position where the high temperature portion 50 exists is regular to some extent according to the molding conditions of the injection molding portion 11, the mold, and the like, it may be fixed as it is if an appropriate inclination angle ⁇ can be determined.
  • the determination of the appropriate tilt angle ⁇ may be carried out by identifying the hot spot 50 by checking the degree of uneven thickness of the container manufactured by the test run. Further, an appropriate inclination angle ⁇ may be determined by directly specifying the high temperature portion 50 of the preform 20 by thermography or the like.
  • the flow rate of the gas is adjusted by the valve 34 according to the degree of high temperature of the high temperature portion 50 of the preform 20, and the gas is blown to the preform 20.
  • the degree of high temperature of the high temperature portion 50 is also regular to some extent, it may be fixed as it is once an appropriate flow rate can be determined. The determination of the appropriate flow rate may be carried out by several test runs or the like.
  • the temperature of the preform 20 is eliminated while cooling the preform 20, and the temperature of the preform 20 is controlled to a temperature suitable for blow molding.
  • the blow molding step S3 will be described.
  • the preform 20 is housed in the blow cavity mold. Subsequently, while optionally stretching the preform 20 with a stretching rod, the preform 20 is inflated to the shape of a container by introducing blow air from the blow core mold to manufacture a container. After that, the container is opened from the mold of the blow molding unit 13, and the container is conveyed to the take-out unit 14 to take out the container. A container is manufactured by the above procedure.
  • the preform immediately after injection molding tends to have an uneven temperature distribution in the circumferential direction.
  • the reason for this is that there is temperature unevenness in the resin material kneaded by the injection device (screw), and that temperature unevenness occurs when the resin material passes through the narrow part, corner part, and branch part in the hot runner.
  • the injection core type is slightly eccentric with respect to the injection cavity type, and an uneven thickness / temperature unevenness is formed. If the temperature distribution of the preform is not uniform, the wall thickness of the manufactured container may become non-uniform, resulting in poor appearance and physical properties.
  • the temperature control part simply sticking the preform to the temperature control pod and cooling it will control the temperature of the high temperature part and the non-high temperature part of the preform in the same way, so that the temperature distribution of the preform will be uniform. It took a long time, and it was not enough to aim for further speedup.
  • gas is blown from the outside of the preform 20 to the high temperature portion 50 of the preform 20 while cooling the preform 20 in the temperature control step S2.
  • the gas sprayed from the outside onto the high temperature portion 50 can eliminate the uneven temperature of the preform 20, and can realize uniform temperature distribution of the preform 20 in a short time.
  • the manufacturing apparatus of the present embodiment by providing the preform 20 with a gas blowing portion 32 that blows gas from the outside of the preform 20, the unbalanced temperature of the preform 20 can be eliminated.
  • the temperature distribution of the preform 20 can be made uniform in a short time. As a result, a high-quality resin container can be manufactured even when the resin container is manufactured at high speed.
  • the temperature control rod 40 is brought into contact with the inner surface of the preform 20 (surface contact) to suppress the deformation of the preform 20, and the body portion of the preform 20 is suppressed from the inside.
  • the temperature can be adjusted while cooling the bottom 24 and the bottom 24.
  • the uneven temperature of the preform 20 can be eliminated by the gas blown from the outside.
  • the temperature control portion 12 is provided with the temperature control rod 40, so that the deformation of the preform is suppressed and the body and bottom 24 of the preform 20 are cooled from the inside. You can control the temperature while adjusting.
  • the uneven temperature of the preform 20 can be eliminated by the gas blown from the gas blowing portion 32.
  • rapid cooling of the preform 20 and elimination of the unbalanced temperature can be realized in a short time, and even when a resin container is manufactured at high speed, a higher quality resin container can be manufactured.
  • gas is blown to the high temperature portion 50 from the bottom 24 side of the preform 20 toward the side surface of the preform 20.
  • the gas blowing portion 32 since the gas blowing portion 32 is provided at the position on the bottom 24 side of the preform 20, the gas blowing portion 32 is directed from the bottom 24 side of the preform 20 toward the side surface of the preform 20. Gas can be sprayed on the high temperature portion 50. As a result, the gas can be efficiently sprayed on the high temperature portion 50 existing in the vertical direction of the preform 20, and the uneven temperature of the preform 20 can be efficiently eliminated.
  • the preform 20 immediately after injection molding tends to have an uneven temperature distribution in the circumferential direction. Unless the temperature distributions of all these preforms 20 are made uniform, it is not possible to simultaneously manufacture a plurality of high-quality resin containers.
  • the temperature distribution of the preforms 20 can be made uniform at the same time by blowing a gas onto the high temperature portion 50 of the preforms 20.
  • the standby time of the temperature control unit 12 is short (for example, 5.5 seconds or less (when the machine operating time is about 1.5 seconds, the temperature control processing time of the preform 20 is 4.0 seconds or less)).
  • the fact that the temperature distributions of the plurality of preforms 20 can be made uniform at the same time means that the temperature distributions of the plurality of preforms 20 are made uniform in one batch, and that the temperature distributions of the plurality of preforms 20 are made uniform at exactly the same time. Not intended.
  • the degree of high temperature of the high temperature portion of the preform immediately after injection molding may differ for the same reason that the temperature distribution in the circumferential direction tends to be uneven in the preform immediately after injection molding described above. .. Therefore, in order to equalize the temperature, it is desirable to blow a large flow rate of gas to a portion having a high temperature and a small flow rate of gas to a portion having a low temperature.
  • the uneven temperature state of the preform 20 is suitably eliminated even with a short standby time in the temperature control unit 12. It is possible to manufacture a high-quality resin container.
  • the gas blowing portion 32 is a nozzle, and the inclination angle ⁇ of the nozzle can be adjusted so that the nozzle is aligned with the high temperature portion 50 of the preform 20. Therefore, gas can be sprayed from the bottom 24 side according to the shape of the body of the preform 20. As a result, it is possible to more efficiently eliminate the uneven temperature of the preform 20. Further, by adjusting the inclination angle ⁇ for the plurality of preforms 20 and blowing gas onto each of the high temperature portions 50, the temperature distribution of each of the preforms 20 can be made uniform at the same time. As a result, even with a short standby time in the temperature control unit 12, it is possible to eliminate the uneven temperature state that differs for each preform 20, and it is possible to simultaneously manufacture a plurality of high-quality resin containers.
  • valve 34 which is configured so that the flow rate of the gas can be adjusted, it is possible to blow the gas at a flow rate corresponding to the degree of high temperature of each high temperature portion 50. It becomes. As a result, even with a short standby time in the temperature control unit 12, it is possible to eliminate the uneven temperature state that differs for each preform, and it is possible to simultaneously manufacture a plurality of high-quality resin containers.
  • the present invention is not limited to the above-described embodiment, and can be freely modified, improved, and the like as appropriate.
  • the material, shape, size, numerical value, form, number, arrangement location, etc. of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
  • FIG. 2 an example (FIG. 2) in which the gas blowing portion 32 is on the lower side with respect to the preform 20 has been described, but depending on the mode of transportation, the bottom 24 of the preform 20 faces upward and the gas blowing portion 32 may be arranged on the upper side.
  • a nozzle in which the gas blowing unit 32 blows gas supplied from an air compressor or the like has been described, but a fan with blades, a fan without blades, a circulator, or the like may be used. However, it is preferable to use a nozzle because the gas can be intensively blown to the locally existing high temperature portion 50.
  • the mode of changing the flow rate of the gas to be blown according to the degree of high temperature of the high temperature portion has been described, but the temperature of the gas to be blown may be changed.
  • it is preferable to change the flow rate of the gas because it is possible to eliminate the unbalanced temperature of the preform by a simple means.
  • a method for manufacturing a resin container in which a gas is blown from the outside of the preform to a high temperature portion which is a portion having a higher temperature than other portions in the preform.
  • the temperature control rod is brought into contact with the inner surface of the preform.
  • a gas is sprayed from the outside of the preform onto the high temperature portion of the preform.
  • a plurality of preforms are injection molded.
  • the temperature control step the temperature is controlled while cooling the plurality of preforms.
  • [6] In the temperature control step The method for producing a resin container according to any one of [1] to [5], wherein a gas having a flow rate corresponding to the degree of high temperature of the high temperature portion of the preform is sprayed onto the preform.
  • a device for producing a resin container comprising a blow molding unit for producing a resin container by blow molding the temperature-controlled preform.
  • the temperature control part A device for manufacturing a resin container, which comprises a gas blowing portion for blowing gas from the outside of the preform onto the preform.
  • the temperature control section The resin container manufacturing apparatus according to [7], further comprising a temperature control rod that is in contact with the inner surface of the preform to control the temperature of the preform.
  • the gas blowing portion is provided at a position on the bottom side of the preform.
  • the resin container manufacturing apparatus according to [7] or [8].
  • the gas blowing portion is a nozzle.
  • the tilt angle of the nozzle is configured to be adjustable.
  • a valve configured to adjust the flow rate of the gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

A method for producing a resin container, which comprises: an injection molding step for injection molding a bottomed preform (20) that is formed from a resin; a temperature control step for cooling and controlling the temperature of the injection molded preform (20); and a blow molding step for producing a resin container by blow molding the temperature-controlled preform (20). This method for producing a resin container is configured such that in the temperature control step, a gas is blown to a high-temperature portion, the temperature of which is high in comparison to the other portions of the preform (20), from the outside of the preform (20).

Description

樹脂製容器の製造方法および樹脂製容器の製造装置Resin container manufacturing method and resin container manufacturing equipment
 本発明は、樹脂製容器の製造方法および樹脂製容器の製造装置に関する。 The present invention relates to a method for manufacturing a resin container and an apparatus for manufacturing a resin container.
 特許文献1には、温調ポットとエア導入用コアとを備える温調ステーションにおいて、射出成形されたプリフォームの内部に所定圧力のエアを導入してプリフォームの外壁を温調ポッドに密着させて、冷却及び温度分布付与を行う方法が開示されている。また、同文献には、温調ポッド内壁とプリフォームとの接触時間は5.5秒程度であることが開示されている。 According to Patent Document 1, in a temperature control station provided with a temperature control pot and an air introduction core, air of a predetermined pressure is introduced into the injection-molded preform to bring the outer wall of the preform into close contact with the temperature control pod. A method for cooling and imparting a temperature distribution is disclosed. Further, the document discloses that the contact time between the inner wall of the temperature control pod and the preform is about 5.5 seconds.
 特許文献2には、ネック部の中心軸から胴部までの距離が短い部分と長い部分とを有する容器であっても、最も薄肉となりやすい部位の肉厚を確保して容器を成形することができる、プリフォームの温調方法が開示されている。同文献に開示される温調方法では、射出成形されたプリフォームを温調装置において加熱、温調した後、容器にした際に薄肉になりやすいプリフォームの部分に、プリフォームの真横側(水平方向)から冷却エアを吹き付けている。 According to Patent Document 2, even if the container has a portion having a short distance from the central axis of the neck portion to the body portion and a portion having a long portion, the container can be molded by securing the wall thickness of the portion most likely to be thin. A method of controlling the temperature of the preform that can be performed is disclosed. In the temperature control method disclosed in the same document, the injection-molded preform is heated and temperature-controlled in a temperature control device, and then placed on the side of the preform that tends to become thin when it is made into a container. Cooling air is blown from (horizontal direction).
日本国特開平5-185493号公報Japanese Patent Application Laid-Open No. 5-185493 日本国特許第3893067号公報Japanese Patent No. 3893067
 近年、ホットパリソン式の樹脂製容器の製造装置の更なる生産性の向上、具体的には、成形サイクル時間の一層の短縮化が切望されている。当該装置において容器の製造速度を高速化するには、射出成形工程の冷却時間の短縮化が効果的である。 In recent years, further improvement in productivity of hot parison type resin container manufacturing equipment, specifically, further reduction in molding cycle time has been desired. In order to increase the manufacturing speed of the container in the apparatus, it is effective to shorten the cooling time in the injection molding process.
 射出成形工程の冷却時間を短くすると、射出成形直後の複数のプリフォームは温度分布が不揃いの状態になりやすい。複数のプリフォームの温度分布が均一化されていないと、製造された複数の容器の肉厚が不均一となり同等品質に製造できない恐れがある。また、プリフォーム単体が容器製造に適した温度分布を備えていないと、容器単体で外観・物性不良が生じる恐れがある。 If the cooling time in the injection molding process is shortened, the temperature distribution of multiple preforms immediately after injection molding tends to be uneven. If the temperature distributions of the plurality of preforms are not uniform, the wall thicknesses of the plurality of manufactured containers may become non-uniform and the same quality may not be produced. Further, if the preform alone does not have a temperature distribution suitable for manufacturing the container, the appearance and physical properties of the container alone may be poor.
 本発明は、高速で樹脂製容器を製造する場合でも良質の樹脂製容器を製造できる、樹脂製容器の製造方法および樹脂製容器の製造装置を提供することを目的とする。 An object of the present invention is to provide a method for manufacturing a resin container and an apparatus for manufacturing a resin container, which can manufacture a high-quality resin container even when the resin container is manufactured at high speed.
 上記課題を解決することのできる本開示の樹脂製容器の製造方法は、
 樹脂製の有底のプリフォームを射出成形する射出成形工程と、
 射出成形された前記プリフォームを冷却しつつ温調する温調工程と、
 温調された前記プリフォームをブロー成形して樹脂製容器を製造するブロー成形工程と、を有する樹脂製容器の製造方法であって、
 前記温調工程において、
  前記プリフォームの中の他の部位と比較して高温となっている部位である高温部位に前記プリフォームの外側から気体を吹き付ける、
樹脂製容器の製造方法である。
The method for manufacturing a resin container of the present disclosure that can solve the above problems is
An injection molding process that injects a resin-made bottomed preform and
A temperature control process that controls the temperature of the injection-molded preform while cooling it,
A method for manufacturing a resin container, comprising a blow molding step of blowing-molding the temperature-controlled preform to manufacture a resin container.
In the temperature control process
A gas is blown from the outside of the preform to a high temperature part which is a part having a higher temperature than other parts in the preform.
This is a method for manufacturing a resin container.
 また、上記課題を解決することのできる本開示の樹脂製容器の製造装置は、
 樹脂製の有底のプリフォームを射出成形する射出成形部と、
 射出成形された前記プリフォームを冷却しつつ温調する温調部と、
 温調された前記プリフォームをブロー成形して樹脂製容器を製造するブロー成形部と、を備える樹脂製容器の製造装置であって、
 前記温調部が、
  前記プリフォームに、前記プリフォームの外側から気体を吹き付ける気体吹出部を備える、
樹脂製容器の製造装置である。
Further, the resin container manufacturing apparatus of the present disclosure capable of solving the above problems is
An injection molding part that injects a resin-made bottomed preform,
A temperature control unit that controls the temperature of the injection-molded preform while cooling it,
A device for producing a resin container, comprising a blow molding unit for producing a resin container by blow molding the temperature-controlled preform.
The temperature control part
The preform is provided with a gas blowing portion for blowing gas from the outside of the preform.
It is a manufacturing device for resin containers.
 本発明によれば、高速で樹脂製容器を製造する場合でも良質の樹脂製容器を製造できる、樹脂製容器の製造方法および樹脂製容器の製造装置を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a resin container and an apparatus for manufacturing a resin container, which can manufacture a high-quality resin container even when the resin container is manufactured at high speed.
樹脂製容器の製造装置の機能ブロック図である。It is a functional block diagram of the manufacturing apparatus of a resin container. 温調部の構成を示す図である。It is a figure which shows the structure of the temperature control part. 樹脂製容器の製造方法のフローチャートである。It is a flowchart of the manufacturing method of a resin container. プリフォームの高温部位を示す図である。It is a figure which shows the high temperature part of a preform.
 以下、本発明の実施形態について、図面を参照して説明する。尚、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The dimensions of each member shown in this drawing may differ from the actual dimensions of each member for convenience of explanation.
 まず、図1を参照して、樹脂製容器を製造するための製造装置10について説明する。図1は製造装置10の機能ブロック図である。 First, a manufacturing apparatus 10 for manufacturing a resin container will be described with reference to FIG. FIG. 1 is a functional block diagram of the manufacturing apparatus 10.
 図1に示すように、製造装置10は、プリフォーム20を製造するための射出成形部11と、製造されたプリフォーム20の温度を調整するための温調部12とを備えている。射出成形部11には、原材料である樹脂材料を供給する射出装置15が接続されている。また、製造装置10は、プリフォーム20をブローして容器を製造するためのブロー成形部(ブロー装置の一例)13と、製造された容器を取り出すための取出部14とを備えている。 As shown in FIG. 1, the manufacturing apparatus 10 includes an injection molding section 11 for manufacturing the preform 20 and a temperature control section 12 for adjusting the temperature of the manufactured preform 20. An injection device 15 for supplying a resin material as a raw material is connected to the injection molding unit 11. Further, the manufacturing apparatus 10 includes a blow molding unit (an example of a blow apparatus) 13 for blowing the preform 20 to manufacture a container, and a take-out portion 14 for taking out the manufactured container.
 射出成形部11と温調部12とブロー成形部13と取出部14とは、搬送手段16を中心として所定角度(本実施形態では90度)ずつ回転した位置に設けられている。搬送手段16は回転板等で構成されており、後述する図2および図4に示すように、回転板に取付けられているネック型17によりネック部22が支持された状態のプリフォーム20又は容器が、回転板の回転に伴って各部に搬送されるように構成されている。 The injection molding unit 11, the temperature control unit 12, the blow molding unit 13, and the take-out unit 14 are provided at positions rotated by a predetermined angle (90 degrees in this embodiment) about the transport means 16. The transport means 16 is composed of a rotating plate or the like, and as shown in FIGS. 2 and 4 described later, the preform 20 or the container in a state where the neck portion 22 is supported by the neck mold 17 attached to the rotating plate. Is configured to be transported to each part as the rotating plate rotates.
 図1に示す射出成形部11は、図示を省略する射出キャビティ型、射出コア型、ネック型等を備えている。これらの型が型締めされることで形成されるプリフォーム形状の空間内に、射出装置15からポリエステル系樹脂(例えばPET:ポリエチレンテレフタレート)等の合成樹脂材料を流し込むことにより、有底のプリフォーム20が製造される。プリフォーム20は容器に応じ最適な肉厚分布(形状)を有しており、その胴部の厚み(平均厚、肉厚)としては例えば1.0~8.0mm、好ましくは1.5~3.5、更に好ましくは2.0~3.0mmに設定される。 The injection molding unit 11 shown in FIG. 1 includes an injection cavity type, an injection core type, a neck type, and the like, which are not shown. A bottomed preform is formed by pouring a synthetic resin material such as a polyester resin (for example, PET: polyethylene terephthalate) from the injection device 15 into the preform-shaped space formed by molding these molds. 20 is manufactured. The preform 20 has an optimum wall thickness distribution (shape) depending on the container, and the body thickness (average thickness, wall thickness) of the preform 20 is, for example, 1.0 to 8.0 mm, preferably 1.5 to. It is set to 3.5, more preferably 2.0 to 3.0 mm.
 温調部12は、射出成形部11で製造されたプリフォーム20の温度を、最終ブローするための適した温度に冷却しつつ調整するように構成されている。ブロー成形部13は、図示を省略する延伸ロッド、ブローコア型、ブローキャビティ型等を備えている。ブロー成形部13は、温調部12で温調されたプリフォーム20を例えば延伸ロッドで延伸しつつ、ブローコア型からエアを導入してプリフォーム20をブローキャビティ型の形状に膨らませて、容器を成形可能に構成されている。 The temperature control unit 12 is configured to adjust the temperature of the preform 20 manufactured by the injection molding unit 11 while cooling it to a temperature suitable for final blowing. The blow molding unit 13 includes a stretch rod, a blow core type, a blow cavity type, and the like (not shown). The blow molding unit 13 stretches the preform 20 temperature-controlled by the temperature control unit 12 with, for example, a stretching rod, and introduces air from the blow core mold to inflate the preform 20 into a blow cavity type shape to inflate the container. It is configured to be moldable.
 ここで、図2を参照して、温調部12について詳細に説明する。図2は、温調部12の構成を示す図である。図2に示すように温調部12は、複数の気体吹出部32を有する装置30を備えている。装置30は、気体吹出部32、第1の固定板31、スペーサー部材33、第2の固定板35、バルブ固定部37、並びに、後述するバルブ34およびチューブ36を備える。これらは連結されてユニット化されている。当該ユニットは第2の固定板35を介して製造装置10の昇降装置40に固定されている。第1の固定板31は、その側面から上面にかけて連通して形成された貫通孔を備える。当該貫通孔を介して第1の固定板31の側面側から上面側へ、あるいはその逆方向において、通気できる。当該貫通孔が位置する上面に気体吹出部32が設置されている。スペーサー部材33の側面に、バルブ固定部37が形成されている。スペーサー部材33はその上下方向の高さを変更でき、プリフォーム20と気体吹出部32との距離を調整可能に構成されている。 Here, the temperature control unit 12 will be described in detail with reference to FIG. FIG. 2 is a diagram showing the configuration of the temperature control unit 12. As shown in FIG. 2, the temperature control unit 12 includes a device 30 having a plurality of gas blowing units 32. The device 30 includes a gas blowing portion 32, a first fixing plate 31, a spacer member 33, a second fixing plate 35, a valve fixing portion 37, and a valve 34 and a tube 36 described later. These are connected and unitized. The unit is fixed to the elevating device 40 of the manufacturing apparatus 10 via the second fixing plate 35. The first fixing plate 31 includes a through hole formed so as to communicate from the side surface to the upper surface thereof. Through the through hole, ventilation can be performed from the side surface side to the upper surface side of the first fixing plate 31 or in the opposite direction. A gas blowing portion 32 is installed on the upper surface where the through hole is located. A valve fixing portion 37 is formed on the side surface of the spacer member 33. The height of the spacer member 33 in the vertical direction can be changed, and the distance between the preform 20 and the gas blowing portion 32 can be adjusted.
 気体吹出部32の数は、特に限定されるものではないが射出成形にて成形されるプリフォームの数と合わせてもよい。気体吹出部32は、温調部12に搬送されたプリフォーム20の胴部21に外側から気体を吹き付けるように構成されている。気体吹出部32から吹き付けられる気体としては、通常空気(エア)が用いられるが、窒素、アルゴン等、樹脂製容器に不具合を生じさせない気体であれば任意のものを使用できる。具体的には、気体吹出部32は温調部12に搬送されるプリフォーム20の底部24の下に位置している。本実施形態において気体吹出部32はノズルで構成されている。 The number of gas blowing portions 32 is not particularly limited, but may be combined with the number of preforms formed by injection molding. The gas blowing portion 32 is configured to blow gas from the outside onto the body portion 21 of the preform 20 conveyed to the temperature controlling portion 12. Air is usually used as the gas to be blown from the gas blowing portion 32, but any gas such as nitrogen and argon that does not cause a problem in the resin container can be used. Specifically, the gas blowing portion 32 is located below the bottom portion 24 of the preform 20 which is conveyed to the temperature controlling portion 12. In the present embodiment, the gas blowing portion 32 is composed of a nozzle.
 ノズルの傾斜角度θは調整可能に構成されている。図2において、ノズルの傾斜角度θは、ノズルの傾斜方向Bと、垂直方向Aと、がなす角度を指している。なお、図2の紙面奥または手前方向にもノズルは傾斜可能であり、傾斜角度θは垂直方向Aに対する3次元の傾斜角度である。プリフォーム20の胴部21の外表面に沿って上側から下側にかけて延びる方向にノズルの気体の吹き出し口が位置するように、傾斜角度θを調整すると好ましい。また、ノズルが設置された位置がプリフォーム20の中心軸の延長線上にあると好ましい。 The inclination angle θ of the nozzle is adjustable. In FIG. 2, the nozzle tilt angle θ refers to the angle formed by the nozzle tilt direction B and the vertical direction A. The nozzle can be tilted toward the back or front of the paper in FIG. 2, and the tilt angle θ is a three-dimensional tilt angle with respect to the vertical direction A. It is preferable to adjust the inclination angle θ so that the gas outlet of the nozzle is located in the direction extending from the upper side to the lower side along the outer surface of the body portion 21 of the preform 20. Further, it is preferable that the position where the nozzle is installed is on the extension line of the central axis of the preform 20.
 装置30は、気体吹出部32から吹き付けられる気体の流量を調整可能に構成されているバルブ34を備えている。気体吹出部32にはコンプレッサー等からチューブ36を介して気体が供給され、バルブ34によってその流量が調節可能である。図2では簡略化されて示されているが、装置30は気体吹出部32に対応する数のバルブ34およびチューブ36を備えており、各気体吹出部32から吹き付けられる気体の流量をそれぞれ個別に(独立して)調整することが可能とされている。 The device 30 includes a valve 34 configured so that the flow rate of the gas blown from the gas blowing portion 32 can be adjusted. Gas is supplied to the gas outlet 32 from a compressor or the like via a tube 36, and the flow rate can be adjusted by a valve 34. Although shown in a simplified manner in FIG. 2, the device 30 includes a number of valves 34 and tubes 36 corresponding to the gas outlet 32, and the flow rate of the gas blown from each gas outlet 32 is individually increased. It is possible to adjust (independently).
 また、温調部12は、射出成形部11から搬送されたプリフォーム20の胴部21の内面に当接可能に構成された温調ロッド40を備えている。温調ロッド40は昇降可能に構成されている。温調ロッド40は、ブロー成形に適した温度にプリフォーム20を温調することが可能な温度に設定されている。温調ロッド40は、プリフォーム20を構成する樹脂のガラス転移点以下(例えばPETの場合は80℃以下)の温度に設定されていると好ましい。 Further, the temperature control unit 12 includes a temperature control rod 40 configured to be in contact with the inner surface of the body 21 of the preform 20 conveyed from the injection molding unit 11. The temperature control rod 40 is configured to be able to move up and down. The temperature control rod 40 is set to a temperature at which the preform 20 can be temperature-controlled to a temperature suitable for blow molding. The temperature control rod 40 is preferably set to a temperature equal to or lower than the glass transition point of the resin constituting the preform 20 (for example, 80 ° C. or lower in the case of PET).
 続いて、本実施形態に係る容器の製造方法について説明する。図3は、樹脂製容器の製造方法のフローチャートを示す図である。本実施形態の容器は、プリフォーム20を射出成形する射出成形工程S1と、プリフォーム20を冷却しつつ温調する温調工程S2と、温調されたプリフォーム20をブロー成形して容器を製造するブロー成形工程S3と、を経て製造され、ネック部22をネック型17から開放することで容器が取り出される。 Subsequently, the method for manufacturing the container according to the present embodiment will be described. FIG. 3 is a diagram showing a flowchart of a method for manufacturing a resin container. The container of the present embodiment has an injection molding step S1 for injection molding the preform 20, a temperature control step S2 for controlling the temperature while cooling the preform 20, and a blow molding process for the temperature controlled preform 20. It is manufactured through the blow molding step S3 to be manufactured, and the container is taken out by opening the neck portion 22 from the neck mold 17.
 まず、射出成形工程S1について説明する。射出成形工程S1において、射出キャビティ型、射出コア型、ネック型等が型締めされることで形成されるプリフォーム形状の空間内に、射出装置15から樹脂材料を流し込むことにより、複数のプリフォーム20を製造する。樹脂充填工程の終了直後または樹脂充填工程後に設けられた一定時間(最小限、例えば樹脂充填工程時間の1/2以下)の冷却工程後に射出成形部11から温調部12へとプリフォーム20を移動させる。この移動時にプリフォーム20の表面層(スキン層)と内部層(コア層)との間で熱交換(熱移動)を行わせ、プリフォーム20の内外表面層の温度を射出離型時よりも高い温度、例えば100~130℃に上昇させる。 First, the injection molding process S1 will be described. In the injection molding step S1, a plurality of preforms are formed by pouring a resin material from the injection device 15 into a preform-shaped space formed by molding the injection cavity type, the injection core type, the neck type, and the like. 20 is manufactured. Immediately after the end of the resin filling step or after the cooling step for a certain period of time (minimum, for example, 1/2 or less of the resin filling step time) provided after the resin filling step, the preform 20 is transferred from the injection molding section 11 to the temperature control section 12. Move. During this movement, heat exchange (heat transfer) is performed between the surface layer (skin layer) and the inner layer (core layer) of the preform 20, and the temperature of the inner and outer surface layers of the preform 20 is set higher than that at the time of injection mold release. Raise to a higher temperature, eg 100-130 ° C.
 次に、図2および図4を参照して温調工程S2について説明する。まず、温調部12へと移動されたプリフォーム20の内面に、温調ロッド40を当接させる。温調ロッド40の当接は、温調ロッド40を上方待機位置から降下させることにより実施される。本実施形態において、温調ロッド40は、プリフォーム20の内面に対して、周方向に均一に面接触する。温調ロッド40をプリフォーム20の内面に当接させることにより、プリフォーム20を内側(内表面層側)より冷却しつつ温調する。そして、装置30(気体吹出部32)を下方待機位置から上昇させて、気体吹出部32をプリフォーム20の底部24に近づける。温調ロッド40がプリフォーム20の内面に当接した状態で、気体吹出部32からプリフォーム20の胴部21の高温部位50に気体を吹き付ける。具体的には、プリフォーム20の底部24の下に位置する気体吹出部32からプリフォーム20の胴部21の側面に向けて気体を吹き付ける。これにより、プリフォーム20の胴部21に縦方向に亘って存在する帯状の高温部位50に効率よく気体を吹き付けることができる。なお、ここでいう縦方向とは純粋な垂直方向のみを指すのではなく、斜め方向となっているものも含む。気体の吹き付けが完了した後、温調ロッド40を上方待機位置に上昇させ、装置30(気体吹出部32)を下方待機位置に下降させる。なお、温調ロッド40と装置30(気体吹出部32)の動作順序は上記と逆の動作として良い。つまり、プリフォーム20の胴部21の高温部位50に気体を吹き付けた後、プリフォーム20を温度調整(冷却)するように、温調ロッド40と装置30を昇降させてもよい。 Next, the temperature control step S2 will be described with reference to FIGS. 2 and 4. First, the temperature control rod 40 is brought into contact with the inner surface of the preform 20 that has been moved to the temperature control section 12. The contact of the temperature control rod 40 is carried out by lowering the temperature control rod 40 from the upper standby position. In the present embodiment, the temperature control rod 40 makes uniform surface contact with the inner surface of the preform 20 in the circumferential direction. By bringing the temperature control rod 40 into contact with the inner surface of the preform 20, the temperature of the preform 20 is controlled while being cooled from the inside (inner surface layer side). Then, the device 30 (gas blowing portion 32) is raised from the lower standby position to bring the gas blowing portion 32 closer to the bottom 24 of the preform 20. With the temperature control rod 40 in contact with the inner surface of the preform 20, gas is blown from the gas blowing portion 32 to the high temperature portion 50 of the body portion 21 of the preform 20. Specifically, gas is blown from the gas blowing portion 32 located below the bottom portion 24 of the preform 20 toward the side surface of the body portion 21 of the preform 20. As a result, the gas can be efficiently sprayed on the band-shaped high temperature portion 50 existing in the body portion 21 of the preform 20 in the vertical direction. The vertical direction here does not mean only the pure vertical direction, but also includes the diagonal direction. After the gas blowing is completed, the temperature control rod 40 is raised to the upper standby position, and the device 30 (gas blowing portion 32) is lowered to the lower standby position. The operation order of the temperature control rod 40 and the device 30 (gas blowing unit 32) may be the reverse of the above operation. That is, the temperature control rod 40 and the device 30 may be moved up and down so as to adjust (cool) the temperature of the preform 20 after blowing gas onto the high temperature portion 50 of the body 21 of the preform 20.
 ここで、本願におけるプリフォーム20の高温部位50について、図4を参照して説明する。高温部位50は、プリフォーム20の中の他の部位52と比較して高温となっている部位である。射出成形直後のプリフォーム20は、樹脂材料の温度ムラや金型(射出コア型と射出キャビティ型)の偏芯等によって周方向の温度分布が不揃いの状態になりやすい。そのため、射出成形工程での冷却を最小限とすると、高温部位50が存在し得ることとなる。また、高温部位50は、図4に示すように、プリフォームの縦方向(底部からネック部にかけて)に延びて存在する傾向にある。さらに、複数のプリフォーム20で比較すると、それぞれの高温部位50は異なる位置、例えば周方向において異なる位置、に存在し得る。複数のプリフォーム20の高温部位50が、プリフォーム20の周方向において異なる位置に存在する場合の例としては、図4に示すように温調部12においてプリフォーム20を側面視した時に、1つのプリフォーム20では右側に高温部位50が存在するのに対し、もう1つのプリフォーム20では左側に高温部位50が存在する場合が挙げられる。 Here, the high temperature portion 50 of the preform 20 in the present application will be described with reference to FIG. The high temperature part 50 is a part having a higher temperature than the other parts 52 in the preform 20. Immediately after injection molding, the preform 20 tends to have an irregular temperature distribution in the circumferential direction due to temperature unevenness of the resin material, eccentricity of the mold (injection core type and injection cavity type), and the like. Therefore, if the cooling in the injection molding process is minimized, the high temperature portion 50 can exist. Further, as shown in FIG. 4, the high temperature portion 50 tends to extend in the vertical direction (from the bottom portion to the neck portion) of the preform. Further, when compared with a plurality of preforms 20, each high temperature portion 50 may exist at a different position, for example, a different position in the circumferential direction. As an example of the case where the high temperature portions 50 of the plurality of preforms 20 are present at different positions in the circumferential direction of the preform 20, when the preform 20 is viewed from the side in the temperature control portion 12 as shown in FIG. In one preform 20, the high temperature portion 50 is present on the right side, whereas in the other preform 20, the high temperature portion 50 is present on the left side.
 温調工程S2では、複数のプリフォーム20のそれぞれに存在する高温部位50に、それぞれのノズル(気体吹出部32)の傾斜角度θを調整することで気体を吹き付ける。ここで高温部位50が存在する位置は射出成形部11の成形条件や金型等に応じてある程度規則的であるため、適切な傾斜角度θを決定できたらそのまま固定してもよい。適切な傾斜角度θの決定は、テスト運転によって製造される容器の偏肉の程度を確認することで高温部位50を特定することによって実施されてもよい。また、サーモグラフィー等によって直接プリフォーム20の高温部位50を特定することで、適切な傾斜角度θを決定してもよい。 In the temperature control step S2, gas is blown onto the high temperature portions 50 existing in each of the plurality of preforms 20 by adjusting the inclination angle θ of each nozzle (gas blowing portion 32). Here, since the position where the high temperature portion 50 exists is regular to some extent according to the molding conditions of the injection molding portion 11, the mold, and the like, it may be fixed as it is if an appropriate inclination angle θ can be determined. The determination of the appropriate tilt angle θ may be carried out by identifying the hot spot 50 by checking the degree of uneven thickness of the container manufactured by the test run. Further, an appropriate inclination angle θ may be determined by directly specifying the high temperature portion 50 of the preform 20 by thermography or the like.
 また温調工程S2では、プリフォーム20の高温部位50の高温の程度に応じて、バルブ34によって気体の流量を調整して、プリフォーム20に気体を吹き付ける。ここで高温部位50の高温の程度もある程度規則的であるため、適切な流量を決定できたらそのまま固定してもよい。適切な流量の決定は、数回の試験運転等によって実施されても良い。 Further, in the temperature control step S2, the flow rate of the gas is adjusted by the valve 34 according to the degree of high temperature of the high temperature portion 50 of the preform 20, and the gas is blown to the preform 20. Here, since the degree of high temperature of the high temperature portion 50 is also regular to some extent, it may be fixed as it is once an appropriate flow rate can be determined. The determination of the appropriate flow rate may be carried out by several test runs or the like.
 以上の温調工程S2によって、プリフォーム20を冷却しつつプリフォーム20の偏温を解消して、ブロー成形に適した温度までプリフォーム20を温調する。 By the above temperature control step S2, the temperature of the preform 20 is eliminated while cooling the preform 20, and the temperature of the preform 20 is controlled to a temperature suitable for blow molding.
 次に、ブロー成形工程S3について説明する。ブロー成形工程S3において、ブローキャビティ型にプリフォーム20を収容する。続いて、任意選択的にプリフォーム20を延伸ロッドによって延伸させつつ、ブローコア型からブローエアを導入することでプリフォーム20を容器の形状まで膨らませ、容器を製造する。その後、ブロー成形部13の金型から容器を開放して、取出部14へ容器を搬送して容器を取り出す。以上の手順によって、容器が製造される。 Next, the blow molding step S3 will be described. In the blow molding step S3, the preform 20 is housed in the blow cavity mold. Subsequently, while optionally stretching the preform 20 with a stretching rod, the preform 20 is inflated to the shape of a container by introducing blow air from the blow core mold to manufacture a container. After that, the container is opened from the mold of the blow molding unit 13, and the container is conveyed to the take-out unit 14 to take out the container. A container is manufactured by the above procedure.
 ところで、ホットパリソン式ブロー成形機(ISBM)の容器の製造速度を高速化するには、射出成形工程の冷却時間の短縮化が効果的である。その一方で、射出成形工程の冷却時間の短縮化に伴うプリフォームの冷却不足に起因する容器の外観・物性不良を抑制するために、射出成形工程後に後冷却を行うことが考えられる。 By the way, in order to increase the manufacturing speed of the container of the hot parison type blow molding machine (ISBM), it is effective to shorten the cooling time in the injection molding process. On the other hand, in order to suppress poor appearance and physical properties of the container due to insufficient cooling of the preform due to the shortening of the cooling time in the injection molding process, it is conceivable to perform post-cooling after the injection molding process.
 ここで、上述のように射出成形直後のプリフォームは、周方向の温度分布が不揃いの状態になりやすい。この理由として、射出装置(スクリュー)で混錬された樹脂材料に温度ムラが存在すること、ホットランナー内の狭隘部や角部・分岐部を樹脂材料が通過する際に温度ムラが発生すること、射出コア型が射出キャビティ型に対し僅かに偏芯し偏肉・偏温状況が形成されること、等が挙げられる。プリフォームの温度分布が均一化されていないと、製造された容器の肉厚が不均一となり外観・物性不良が生じる恐れがある。 Here, as described above, the preform immediately after injection molding tends to have an uneven temperature distribution in the circumferential direction. The reason for this is that there is temperature unevenness in the resin material kneaded by the injection device (screw), and that temperature unevenness occurs when the resin material passes through the narrow part, corner part, and branch part in the hot runner. , The injection core type is slightly eccentric with respect to the injection cavity type, and an uneven thickness / temperature unevenness is formed. If the temperature distribution of the preform is not uniform, the wall thickness of the manufactured container may become non-uniform, resulting in poor appearance and physical properties.
 従来の射出成形工程において十分なプリフォームの冷却時間を確保した後、温調部でプリフォームを加熱する方法では、射出成形直後の温度ムラは射出成形工程での冷却によって解消されていたため、上記のことは重大な問題ではなかった。しかし、射出成形工程の冷却時間を短縮化する場合、射出成形直後の温度ムラにより容器の成形不良が生じる可能性が高い。この成形不良により、外観や物性等の仕様を満足した容器が製造できず、また、略同等品質の容器が同時に複数製造できない恐れがある。また、温調部において単に温調ポッドにプリフォームを張り付けて冷却するだけでは、プリフォームの高温部分と非高温部分とを同じように温調するため、プリフォームの温度分布を均一化するのに時間がかかり、更なる高速化を目指す上では不十分であった。 In the conventional method of heating the preform in the temperature control part after securing a sufficient cooling time of the preform in the injection molding process, the temperature unevenness immediately after the injection molding is eliminated by the cooling in the injection molding process. That wasn't a serious problem. However, when the cooling time in the injection molding process is shortened, there is a high possibility that molding defects of the container will occur due to temperature unevenness immediately after injection molding. Due to this molding defect, it may not be possible to manufacture a container satisfying specifications such as appearance and physical properties, and it may not be possible to manufacture a plurality of containers having substantially the same quality at the same time. Also, in the temperature control part, simply sticking the preform to the temperature control pod and cooling it will control the temperature of the high temperature part and the non-high temperature part of the preform in the same way, so that the temperature distribution of the preform will be uniform. It took a long time, and it was not enough to aim for further speedup.
 本実施形態の製造方法では、温調工程S2においてプリフォーム20を冷却しつつ、プリフォーム20の高温部位50にプリフォーム20の外側から気体を吹き付けている。外側から高温部位50に吹き付けられる気体によりプリフォーム20の偏温を解消でき、短時間でプリフォーム20の温度分布の均一化を実現できる。また、本実施形態の製造装置によれば、温調部12がプリフォーム20に、プリフォーム20の外側から気体を吹き付ける気体吹出部32を備えることにより、プリフォーム20の偏温を解消でき、短時間でプリフォーム20の温度分布の均一化を実現できる。これにより、高速で樹脂製容器を製造する場合でも良質の樹脂製容器を製造できる。 In the manufacturing method of the present embodiment, gas is blown from the outside of the preform 20 to the high temperature portion 50 of the preform 20 while cooling the preform 20 in the temperature control step S2. The gas sprayed from the outside onto the high temperature portion 50 can eliminate the uneven temperature of the preform 20, and can realize uniform temperature distribution of the preform 20 in a short time. Further, according to the manufacturing apparatus of the present embodiment, by providing the preform 20 with a gas blowing portion 32 that blows gas from the outside of the preform 20, the unbalanced temperature of the preform 20 can be eliminated. The temperature distribution of the preform 20 can be made uniform in a short time. As a result, a high-quality resin container can be manufactured even when the resin container is manufactured at high speed.
 また、本実施形態の製造方法では、温調ロッド40をプリフォーム20の内面に当接(面接触)させることで、プリフォーム20の変形を抑制しつつ、また内側よりプリフォーム20の胴部や底部24を冷却しつつ温調することができる。また、温調ロッド40による温調と合わせて、外側から吹き付けられる気体によりプリフォーム20の偏温を解消できる。また、本実施形態の製造装置によれば、温調部12が温調ロッド40を備えることにより、プリフォームの変形を抑制しつつ、また内側よりプリフォーム20の胴部や底部24を冷却しつつ温調することができる。また、温調ロッド40による温調と合わせて、気体吹出部32から吹き付けられる気体によりプリフォーム20の偏温を解消できる。これにより、短時間でのプリフォーム20の急冷と偏温の解消を実現でき、高速で樹脂製容器を製造する場合でもさらに良質の樹脂製容器を製造できる。 Further, in the manufacturing method of the present embodiment, the temperature control rod 40 is brought into contact with the inner surface of the preform 20 (surface contact) to suppress the deformation of the preform 20, and the body portion of the preform 20 is suppressed from the inside. The temperature can be adjusted while cooling the bottom 24 and the bottom 24. Further, in addition to the temperature control by the temperature control rod 40, the uneven temperature of the preform 20 can be eliminated by the gas blown from the outside. Further, according to the manufacturing apparatus of the present embodiment, the temperature control portion 12 is provided with the temperature control rod 40, so that the deformation of the preform is suppressed and the body and bottom 24 of the preform 20 are cooled from the inside. You can control the temperature while adjusting. Further, in addition to the temperature control by the temperature control rod 40, the uneven temperature of the preform 20 can be eliminated by the gas blown from the gas blowing portion 32. As a result, rapid cooling of the preform 20 and elimination of the unbalanced temperature can be realized in a short time, and even when a resin container is manufactured at high speed, a higher quality resin container can be manufactured.
 また、本実施形態の製造方法では、プリフォーム20の底部24側からプリフォーム20の側面に向けて高温部位50に気体を吹き付ける。また、本実施形態の製造装置によれば、気体吹出部32がプリフォーム20の底部24側の位置に設けられていることにより、プリフォーム20の底部24側からプリフォーム20の側面に向けて高温部位50に気体を吹き付けることができる。これにより、プリフォーム20の縦方向に亘って存在する高温部位50に効率良く気体を吹き付けることができ、プリフォーム20の偏温の解消を効率よく実現できる。 Further, in the manufacturing method of the present embodiment, gas is blown to the high temperature portion 50 from the bottom 24 side of the preform 20 toward the side surface of the preform 20. Further, according to the manufacturing apparatus of the present embodiment, since the gas blowing portion 32 is provided at the position on the bottom 24 side of the preform 20, the gas blowing portion 32 is directed from the bottom 24 side of the preform 20 toward the side surface of the preform 20. Gas can be sprayed on the high temperature portion 50. As a result, the gas can be efficiently sprayed on the high temperature portion 50 existing in the vertical direction of the preform 20, and the uneven temperature of the preform 20 can be efficiently eliminated.
 また、図4に示すように、射出成形直後のプリフォーム20は周方向の温度分布が不揃いの状態になりやすい。これら全てのプリフォーム20の温度分布が均一化されていないと、良質な樹脂製容器を複数同時に製造することはできない。本実施形態の方法では、複数のプリフォーム20を形成する場合において、プリフォーム20の高温部位50に気体を吹き付けることで、プリフォーム20の温度分布を同時に均一化することができる。これにより、温調部12の待機時間が短い成形条件(例えば5.5秒以下(機械動作時間が約1.5秒の場合、プリフォーム20の温調処理時間は4.0秒以下))であっても、プリフォーム20毎に相違する偏温状態を解消でき、良質の樹脂製容器を複数同時に製造できる。なお、複数のプリフォーム20の温度分布を同時に均一化することができるとは、1バッチにおいて複数のプリフォーム20の温度分布を均一化することを指し、厳密に同じ時間に均一化することを意図するものではない。 Further, as shown in FIG. 4, the preform 20 immediately after injection molding tends to have an uneven temperature distribution in the circumferential direction. Unless the temperature distributions of all these preforms 20 are made uniform, it is not possible to simultaneously manufacture a plurality of high-quality resin containers. In the method of the present embodiment, when a plurality of preforms 20 are formed, the temperature distribution of the preforms 20 can be made uniform at the same time by blowing a gas onto the high temperature portion 50 of the preforms 20. As a result, molding conditions in which the standby time of the temperature control unit 12 is short (for example, 5.5 seconds or less (when the machine operating time is about 1.5 seconds, the temperature control processing time of the preform 20 is 4.0 seconds or less)). Even so, it is possible to eliminate the uneven temperature state that differs for each preform 20, and it is possible to simultaneously manufacture a plurality of high-quality resin containers. The fact that the temperature distributions of the plurality of preforms 20 can be made uniform at the same time means that the temperature distributions of the plurality of preforms 20 are made uniform in one batch, and that the temperature distributions of the plurality of preforms 20 are made uniform at exactly the same time. Not intended.
 また、上述した射出成形直後のプリフォームは周方向の温度分布が不揃いの状態になりやすいこととして考えられる理由と同様の理由から、射出成形直後のプリフォームの高温部位の高温の程度も異なり得る。そのため、温度の均温化をする上で、高温の程度が大きい部位には大きい流量の気体を吹き付け、高温の程度が小さい部位には小さい流量の気体を吹き付けることが望ましい。本実施形態の方法では、高温部位50の高温の程度に応じた流量の気体を吹き付けることにより、短い温調部12での待機時間であっても、プリフォーム20の偏温状態を好適に解消でき、良質の樹脂製容器を製造できる。 Further, the degree of high temperature of the high temperature portion of the preform immediately after injection molding may differ for the same reason that the temperature distribution in the circumferential direction tends to be uneven in the preform immediately after injection molding described above. .. Therefore, in order to equalize the temperature, it is desirable to blow a large flow rate of gas to a portion having a high temperature and a small flow rate of gas to a portion having a low temperature. In the method of the present embodiment, by spraying a gas at a flow rate corresponding to the degree of high temperature of the high temperature portion 50, the uneven temperature state of the preform 20 is suitably eliminated even with a short standby time in the temperature control unit 12. It is possible to manufacture a high-quality resin container.
 また、本実施形態の製造装置によれば、気体吹出部32がノズルであり、当該ノズルの傾斜角度θが調整可能であることにより、プリフォーム20の高温部位50に対してノズルを位置合わせして、プリフォーム20の胴部形状に応じて底部24側より気体を吹き付けることができる。これにより、プリフォーム20の偏温の解消をさらに効率良く実現できる。また、複数のプリフォーム20に対して、傾斜角度θを調整して各々の高温部位50に気体を吹き付けることで、各々のプリフォーム20の温度分布を同時に均一化することができる。これにより、短い温調部12での待機時間であっても、プリフォーム20毎に相違する偏温状態を解消でき、良質の樹脂製容器を複数同時に製造できる。 Further, according to the manufacturing apparatus of the present embodiment, the gas blowing portion 32 is a nozzle, and the inclination angle θ of the nozzle can be adjusted so that the nozzle is aligned with the high temperature portion 50 of the preform 20. Therefore, gas can be sprayed from the bottom 24 side according to the shape of the body of the preform 20. As a result, it is possible to more efficiently eliminate the uneven temperature of the preform 20. Further, by adjusting the inclination angle θ for the plurality of preforms 20 and blowing gas onto each of the high temperature portions 50, the temperature distribution of each of the preforms 20 can be made uniform at the same time. As a result, even with a short standby time in the temperature control unit 12, it is possible to eliminate the uneven temperature state that differs for each preform 20, and it is possible to simultaneously manufacture a plurality of high-quality resin containers.
 また、本実施形態の製造装置によれば、気体の流量を調整可能に構成されているバルブ34を備えることで、各々の高温部位50の高温の程度に応じた流量の気体を吹き付けることが可能となる。これにより、短い温調部12での待機時間であっても、プリフォーム毎に相違する偏温状態を解消でき、良質の樹脂製容器を複数同時に製造できる。 Further, according to the manufacturing apparatus of the present embodiment, by providing the valve 34 which is configured so that the flow rate of the gas can be adjusted, it is possible to blow the gas at a flow rate corresponding to the degree of high temperature of each high temperature portion 50. It becomes. As a result, even with a short standby time in the temperature control unit 12, it is possible to eliminate the uneven temperature state that differs for each preform, and it is possible to simultaneously manufacture a plurality of high-quality resin containers.
 なお、本発明は、上述した実施形態に限定されず、適宜、変形、改良等が自在である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所等は、本発明を達成できるものであれば任意であり、限定されない。 The present invention is not limited to the above-described embodiment, and can be freely modified, improved, and the like as appropriate. In addition, the material, shape, size, numerical value, form, number, arrangement location, etc. of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
 上述した実施形態において、気体吹出部32がプリフォーム20に対して下側となる例(図2)を説明したが、搬送の態様によってはプリフォーム20の底部24が上向きとなって気体吹出部32が上側に配置されていてもよい。 In the above-described embodiment, an example (FIG. 2) in which the gas blowing portion 32 is on the lower side with respect to the preform 20 has been described, but depending on the mode of transportation, the bottom 24 of the preform 20 faces upward and the gas blowing portion 32 may be arranged on the upper side.
 上述した実施形態において、気体吹出部32がエアコンプレッサー等から供給される気体を吹き付けるノズルの例を説明したが、羽根つき扇風機、羽なし扇風機、サーキュレーター等を用いてもよい。ただし、ノズルを採用すると、局所的に存在する高温部位50に集中的に気体を吹き付けることができ好ましい。 In the above-described embodiment, an example of a nozzle in which the gas blowing unit 32 blows gas supplied from an air compressor or the like has been described, but a fan with blades, a fan without blades, a circulator, or the like may be used. However, it is preferable to use a nozzle because the gas can be intensively blown to the locally existing high temperature portion 50.
 上述した実施形態において、高温部位の高温の程度に応じて、吹き付ける気体の流量を変更する態様を説明したが、吹き付ける気体の温度を変更してもよい。ただし、気体の流量を変更する態様のほうが簡便な手段でプリフォームの偏温の解消を実現でき、好ましい。 In the above-described embodiment, the mode of changing the flow rate of the gas to be blown according to the degree of high temperature of the high temperature portion has been described, but the temperature of the gas to be blown may be changed. However, it is preferable to change the flow rate of the gas because it is possible to eliminate the unbalanced temperature of the preform by a simple means.
 以下、上述した実施形態およびその変形から抽出される態様を列記する。
[1] 樹脂製の有底のプリフォームを射出成形する射出成形工程と、
 射出成形された前記プリフォームを冷却しつつ温調する温調工程と、
 温調された前記プリフォームをブロー成形して樹脂製容器を製造するブロー成形工程と、を有する樹脂製容器の製造方法であって、
 前記温調工程において、
  前記プリフォームの中の他の部位と比較して高温となっている部位である高温部位に前記プリフォームの外側から気体を吹き付ける、樹脂製容器の製造方法。
[2] 前記温調工程において、
  前記プリフォームの内面に温調ロッドを当接させ、
  前記温調ロッドが前記プリフォームの内面に当接した状態で、前記プリフォームの前記高温部位に前記プリフォームの外側から気体を吹き付ける、[1]に記載の樹脂製容器の製造方法。
[3] 前記温調工程において、
  前記プリフォームの前記高温部位に前記プリフォームの外側から気体を吹き付け、
  その後前記プリフォームの内面に温調ロッドを当接させる、[1]に記載の樹脂製容器の製造方法。
[4] 前記温調工程において、
  前記プリフォームの底部側から前記プリフォームの側面に向けてプリフォームの前記高温部位に気体を吹き付ける、[1]~[3]のいずれかに記載の樹脂製容器の製造方法。
[5] 前記射出成形工程において、複数のプリフォームを射出成形し、
 前記温調工程において、複数のプリフォームを冷却しつつ温調する、
[1]~[4]のいずれかに記載の樹脂製容器の製造方法。
[6] 前記温調工程において、
  前記プリフォームに、前記プリフォームの前記高温部位の高温の程度に応じた流量の気体を吹き付ける、[1]~[5]のいずれかに樹脂製容器の製造方法。
[7] 樹脂製の有底のプリフォームを射出成形する射出成形部と、
 射出成形された前記プリフォームを冷却しつつ温調する温調部と、
 温調された前記プリフォームをブロー成形して樹脂製容器を製造するブロー成形部と、を備える樹脂製容器の製造装置であって、
 前記温調部が、
  前記プリフォームに、前記プリフォームの外側から気体を吹き付ける気体吹出部を備える、樹脂製容器の製造装置。
[8] 前記温調部が、
  前記プリフォームの内面に当接されて前記プリフォームを温調する温調ロッドを備える、[7]に記載の樹脂製容器の製造装置。
[9] 前記気体吹出部が前記プリフォームの底部側の位置に設けられている、
[7]または[8]に記載の樹脂製容器の製造装置。
[10] 前記気体吹出部がノズルであり、
 前記ノズルの傾斜角度が調整可能に構成されている、
[7]~[9]のいずれかに記載の樹脂製容器の製造装置。
[11]
 前記気体の流量を調整可能に構成されているバルブを備える、
[7]~[10]のいずれかに記載の樹脂製容器の製造装置。
Hereinafter, embodiments extracted from the above-described embodiments and modifications thereof will be listed.
[1] An injection molding process for injecting a resin-made bottomed preform and
A temperature control process that controls the temperature of the injection-molded preform while cooling it,
A method for manufacturing a resin container, comprising a blow molding step of blowing-molding the temperature-controlled preform to manufacture a resin container.
In the temperature control process
A method for manufacturing a resin container, in which a gas is blown from the outside of the preform to a high temperature portion which is a portion having a higher temperature than other portions in the preform.
[2] In the temperature control step,
The temperature control rod is brought into contact with the inner surface of the preform.
The method for manufacturing a resin container according to [1], wherein gas is blown from the outside of the preform onto the high temperature portion of the preform while the temperature control rod is in contact with the inner surface of the preform.
[3] In the temperature control step,
A gas is sprayed from the outside of the preform onto the high temperature portion of the preform.
The method for manufacturing a resin container according to [1], wherein the temperature control rod is then brought into contact with the inner surface of the preform.
[4] In the temperature control step,
The method for producing a resin container according to any one of [1] to [3], wherein gas is blown onto the high temperature portion of the preform from the bottom side of the preform toward the side surface of the preform.
[5] In the injection molding step, a plurality of preforms are injection molded.
In the temperature control step, the temperature is controlled while cooling the plurality of preforms.
The method for manufacturing a resin container according to any one of [1] to [4].
[6] In the temperature control step,
The method for producing a resin container according to any one of [1] to [5], wherein a gas having a flow rate corresponding to the degree of high temperature of the high temperature portion of the preform is sprayed onto the preform.
[7] An injection-molded part that injects a resin-made bottomed preform and
A temperature control unit that controls the temperature of the injection-molded preform while cooling it,
A device for producing a resin container, comprising a blow molding unit for producing a resin container by blow molding the temperature-controlled preform.
The temperature control part
A device for manufacturing a resin container, which comprises a gas blowing portion for blowing gas from the outside of the preform onto the preform.
[8] The temperature control section
The resin container manufacturing apparatus according to [7], further comprising a temperature control rod that is in contact with the inner surface of the preform to control the temperature of the preform.
[9] The gas blowing portion is provided at a position on the bottom side of the preform.
The resin container manufacturing apparatus according to [7] or [8].
[10] The gas blowing portion is a nozzle.
The tilt angle of the nozzle is configured to be adjustable.
The device for manufacturing a resin container according to any one of [7] to [9].
[11]
A valve configured to adjust the flow rate of the gas.
The device for manufacturing a resin container according to any one of [7] to [10].
 なお、本願は、2019年3月11日付で出願された日本国特許出願(特願2019-043584)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2019-043584) filed on March 11, 2019, and the entire application is incorporated by citation. Also, all references cited here are taken in as a whole.
10:製造装置、11:射出成形部、12:温調部、13:ブロー成形部、14:取出部、15:射出装置、16:搬送手段、17:ネック型、20:プリフォーム、22:ネック部、24:底部、30:装置、32:気体吹出部、34:バルブ、40:温調ロッド、50:高温部位、S1:射出成形工程、S2:温調工程、S3:ブロー成形工程 10: Manufacturing equipment, 11: Injection molding part, 12: Temperature control part, 13: Blow molding part, 14: Extraction part, 15: Injection equipment, 16: Transport means, 17: Neck type, 20: Preform, 22: Neck part, 24: bottom, 30: device, 32: gas blowout part, 34: valve, 40: temperature control rod, 50: high temperature part, S1: injection molding process, S2: temperature control process, S3: blow molding process

Claims (10)

  1.  樹脂製の有底のプリフォームを射出成形する射出成形工程と、
     射出成形された前記プリフォームを冷却しつつ温調する温調工程と、
     温調された前記プリフォームをブロー成形して樹脂製容器を製造するブロー成形工程と、を有する樹脂製容器の製造方法であって、
     前記温調工程において、
      前記プリフォームの中の他の部位と比較して高温となっている部位である高温部位に前記プリフォームの外側から気体を吹き付ける、樹脂製容器の製造方法。
    An injection molding process that injects a resin-made bottomed preform and
    A temperature control process that controls the temperature of the injection-molded preform while cooling it,
    A method for manufacturing a resin container, comprising a blow molding step of blowing-molding the temperature-controlled preform to manufacture a resin container.
    In the temperature control process
    A method for manufacturing a resin container, in which a gas is blown from the outside of the preform to a high temperature portion which is a portion having a higher temperature than other portions in the preform.
  2.  前記温調工程において、
      前記プリフォームの内面に温調ロッドを当接させ、
      前記温調ロッドが前記プリフォームの内面に当接した状態で、前記プリフォームの前記高温部位に前記プリフォームの外側から気体を吹き付ける、請求項1に記載の樹脂製容器の製造方法。
    In the temperature control process
    The temperature control rod is brought into contact with the inner surface of the preform.
    The method for manufacturing a resin container according to claim 1, wherein a gas is blown from the outside of the preform onto the high temperature portion of the preform while the temperature control rod is in contact with the inner surface of the preform.
  3.  前記温調工程において、
      前記プリフォームの底部側から前記プリフォームの側面に向けてプリフォームの前記高温部位に気体を吹き付ける、請求項1に記載の樹脂製容器の製造方法。
    In the temperature control process
    The method for manufacturing a resin container according to claim 1, wherein gas is blown onto the high temperature portion of the preform from the bottom side of the preform toward the side surface of the preform.
  4.  前記射出成形工程において、複数のプリフォームを射出成形し、
     前記温調工程において、複数のプリフォームを冷却しつつ温調する、
    請求項1に樹脂製容器の製造方法。
    In the injection molding step, a plurality of preforms are injection molded,
    In the temperature control step, the temperature is controlled while cooling the plurality of preforms.
    The method for manufacturing a resin container according to claim 1.
  5.  前記温調工程において、
      前記プリフォームに、前記プリフォームの前記高温部位の高温の程度に応じた流量の気体を吹き付ける、請求項1に樹脂製容器の製造方法。
    In the temperature control process
    The method for manufacturing a resin container according to claim 1, wherein a gas having a flow rate corresponding to the degree of high temperature of the high temperature portion of the preform is sprayed onto the preform.
  6.  樹脂製の有底のプリフォームを射出成形する射出成形部と、
     射出成形された前記プリフォームを冷却しつつ温調する温調部と、
     温調された前記プリフォームをブロー成形して樹脂製容器を製造するブロー成形部と、を備える樹脂製容器の製造装置であって、
     前記温調部が、
      前記プリフォームに、前記プリフォームの外側から気体を吹き付ける気体吹出部を備える、樹脂製容器の製造装置。
    An injection molding part that injects a resin-made bottomed preform,
    A temperature control unit that controls the temperature of the injection-molded preform while cooling it,
    A device for producing a resin container, comprising a blow molding unit for producing a resin container by blow molding the temperature-controlled preform.
    The temperature control part
    A device for manufacturing a resin container, which comprises a gas blowing portion for blowing gas from the outside of the preform onto the preform.
  7.  前記温調部が、
      前記プリフォームの内面に当接されて前記プリフォームを温調する温調ロッドを備える、請求項6に記載の樹脂製容器の製造装置。
    The temperature control part
    The resin container manufacturing apparatus according to claim 6, further comprising a temperature control rod that abuts on the inner surface of the preform to control the temperature of the preform.
  8.  前記気体吹出部が前記プリフォームの底部側の位置に設けられている、
    請求項6に記載の樹脂製容器の製造装置。
    The gas blowing portion is provided at a position on the bottom side of the preform.
    The resin container manufacturing apparatus according to claim 6.
  9.  前記気体吹出部がノズルであり、
     前記ノズルの傾斜角度が調整可能に構成されている、
    請求項6に記載の樹脂製容器の製造装置。
    The gas outlet is a nozzle.
    The tilt angle of the nozzle is configured to be adjustable.
    The resin container manufacturing apparatus according to claim 6.
  10.  前記気体の流量を調整可能に構成されているバルブを備える、
    請求項6に記載の樹脂製容器の製造装置。
    A valve configured to adjust the flow rate of the gas.
    The resin container manufacturing apparatus according to claim 6.
PCT/JP2020/010313 2019-03-11 2020-03-10 Method for producing resin container and apparatus for producing resin container WO2020184563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021505082A JPWO2020184563A1 (en) 2019-03-11 2020-03-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019043584 2019-03-11
JP2019-043584 2019-03-11

Publications (1)

Publication Number Publication Date
WO2020184563A1 true WO2020184563A1 (en) 2020-09-17

Family

ID=72426683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010313 WO2020184563A1 (en) 2019-03-11 2020-03-10 Method for producing resin container and apparatus for producing resin container

Country Status (2)

Country Link
JP (1) JPWO2020184563A1 (en)
WO (1) WO2020184563A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5356261A (en) * 1976-11-02 1978-05-22 Yamamura Glass Co Ltd Hollow molding method
JPS59230725A (en) * 1983-06-13 1984-12-25 Katashi Aoki Parison temperature controlling method for injection drawing blow molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5356261A (en) * 1976-11-02 1978-05-22 Yamamura Glass Co Ltd Hollow molding method
JPS59230725A (en) * 1983-06-13 1984-12-25 Katashi Aoki Parison temperature controlling method for injection drawing blow molding

Also Published As

Publication number Publication date
JPWO2020184563A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
KR20190087658A (en) Manufacturing method of resin container, mold unit and molding machine
US11731336B2 (en) Production device and production method for resin containers
CN113613860B (en) Resin container manufacturing apparatus, resin container manufacturing method, and temperature adjustment method
US20240059004A1 (en) Device and method for producing resin container
US20240308127A1 (en) Temperature adjusting device, temperature adjusting method, and resin container manufacturing method
WO2020184563A1 (en) Method for producing resin container and apparatus for producing resin container
US11958230B2 (en) Method for producing resin container and device for producing resin container
US11260576B2 (en) Injection stretch blow molding machine and method for molding polythylene container
US11135759B2 (en) Blow molding apparatus and blow molding method
JP5750426B2 (en) Biaxial stretch blow molding method and injection / biaxial stretch blow molding system
US12076905B2 (en) Method for producing resin container and apparatus for producing resin container
WO2024143537A1 (en) Production device for resin container, production method for resin container, and mold for temperature adjustment
JPH10278101A (en) Single stage type apparatus and method for manufacture of container composed of thermoplastic material
US20240140015A1 (en) Production method and production device for resin container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770737

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770737

Country of ref document: EP

Kind code of ref document: A1