WO2020184474A1 - Analyzing device - Google Patents

Analyzing device Download PDF

Info

Publication number
WO2020184474A1
WO2020184474A1 PCT/JP2020/009829 JP2020009829W WO2020184474A1 WO 2020184474 A1 WO2020184474 A1 WO 2020184474A1 JP 2020009829 W JP2020009829 W JP 2020009829W WO 2020184474 A1 WO2020184474 A1 WO 2020184474A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical resonator
light source
frequency
gas
Prior art date
Application number
PCT/JP2020/009829
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 賢二
真一 二宮
英生 富田
哲夫 井口
西澤 典彦
フォルカ ゾンネンシャイン
稜平 寺林
直浩 神谷
Original Assignee
積水メディカル株式会社
国立大学法人東海国立大学機構
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社, 国立大学法人東海国立大学機構, 株式会社島津製作所 filed Critical 積水メディカル株式会社
Priority to JP2021505046A priority Critical patent/JPWO2020184474A1/ja
Publication of WO2020184474A1 publication Critical patent/WO2020184474A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude

Definitions

  • the present invention relates to an analyzer.
  • radiocarbon isotope 14C as a labeling compound to a living body and analyze it in order to evaluate the pharmacokinetics of pharmaceuticals.
  • Phase I and Phase IIa It has been analyzed.
  • a very small amount of radiocarbon isotope 14 C (hereinafter, “ 14 C")
  • 14 C Administering and analyzing the drug (also called) to the human body is expected to significantly shorten the development lead time in the drug discovery process because it provides insight into the efficacy and toxicity of drugs caused by pharmacological problems. ing.
  • FIG. 1 is a conceptual diagram of a carbon isotope analyzer according to an embodiment.
  • FIG. 2 is a conceptual diagram of the carbon isotope analyzer according to the embodiment.
  • 3A and 3B are a histogram of the beat RF spectrum and the beat line width measured when passive feedback is used.
  • FIG. 4 is a diagram showing the intensity of the return light from the optical resonator and the error signal obtained by stabilization by passive feedback.
  • FIG. 5 is a diagram showing the intensity of the return light from the resonator and the error signal when stabilization by passive feedback is not used.
  • FIG. 6 is a diagram showing the time change of the light intensity transmitted through the optical resonator.
  • FIG. 7 is a diagram showing the frequency drift of the quantum cascade laser.
  • FIG. 8 is a diagram showing a 4.5 ⁇ m band absorption spectrum of 14 CO 2 and a competing gas.
  • 9A and 9B are diagrams showing the principle of high-speed scanning cavity ring-down absorption spectroscopy using laser light.
  • FIG. 10 is a diagram showing the temperature dependence of the absorption amounts ⁇ of 13 CO 2 and 14 CO 2 in CRDS.
  • FIG. 11 is a conceptual diagram of a modified example of the optical resonator.
  • FIG. 12 is a diagram showing the relationship between the absorption wavelength and the absorption intensity of the analysis sample.
  • 13 (a) and 13 (b) are diagrams showing the time change of the ringdown rate and the pressure inside the cell due to the difference in the automatic valve opening / closing operation method when the sample gas is introduced into the gas cell.
  • the light source is preferably a quantum cascade laser.
  • the gas to be analyzed is preferably a carbon dioxide isotope containing the radioactive carbon isotope 14 C. That is, the gas to be analyzed is preferably a gas containing the radioactive carbon dioxide isotope 14 CO 2 .
  • the light having the absorption wavelength of the carbon dioxide isotope is preferably light in the 4.5 ⁇ m band.
  • FIG. 1 is a conceptual diagram of a carbon isotope analyzer according to an embodiment.
  • the carbon isotope analyzer 1 includes a light generator 20, a carbon dioxide isotope generator 40, a spectroscopic device 10, and an arithmetic unit 30.
  • the radioactive isotope 14 C which is a carbon isotope
  • the light having an absorption wavelength of the carbon dioxide isotope 14 CO 2 produced from the radioisotope 14 C is light in the 4.5 ⁇ m band.
  • biological sample refers to blood, plasma, serum, urine, feces, bile, saliva, other body fluids and secretions, exhaled gas, oral gas, skin gas, other biological gas, and even the liver. It means any sample that can be collected from a living body, such as various organs such as heart, liver, kidney, brain, and skin, and their crushed substances.
  • origin of the biological sample includes all organisms including animals, plants and microorganisms, preferably mammals, and more preferably humans. Mammals include, but are not limited to, humans, monkeys, mice, rats, guinea pigs, rabbits, sheep, goats, horses, cows, pigs, dogs, cats and the like.
  • the light generator 20 uses a light source 23, a waveguide 21 that guides light emitted from the light source 23, a branching means (beam splitter) 27 provided on the waveguide 21, and a luminous flux branched by the branching means 27.
  • a passive feedback unit 25 for receiving is provided.
  • the passive feedback unit 25 reflects the light from the condenser lens 25 and transmits the light to the light source 23 via the condenser lens 25 and the branch means 27, and the condenser lens 25b that collects the light corresponding to the branch means 27. It has a mirror 25a to be sent back. Since the passive feedback unit 25 reduces the dependence of the rear reflection on the angle adjustment, it is possible to easily re-enter the QCL described later.
  • a quantum cascade laser (Quantum Cascade Laser: QCL) capable of emitting light having a wavelength in the mid-infrared region can be used.
  • QCL Quantum Cascade Laser
  • the waveguide 21 it is preferable to use an optical fiber capable of transmitting the generated high-intensity ultrashort pulsed light without deteriorating the characteristics.
  • the material a fiber made of molten quartz can be used.
  • the light generator 20 further includes an optical separator 29, a polarizer 22, a ⁇ / 4 wave plate, a detector 24, a mixer 26a, a low bus filter 26b, and a PID (Proportional-Integral-Differential).
  • a PDH lock unit including a control servo 28 is provided.
  • EOM electro-optical phase modulator
  • a photodiode can be used as the detector 24.
  • the PID control servo 28 is an example of a feedback control unit.
  • an isolator between the optical separator 29 and the light source 23 to prevent the return light from the resonator.
  • a laser current controller that corrects the frequency by modulating the current.
  • the light that has passed through the low bus filter 26b is output by the PID control servo 28 as two PID control voltages, a higher frequency component and a lower frequency component.
  • a higher frequency component laser current (PID fast )
  • PID slow mirror distance
  • the light is phase-modulated and the reflected light intensity is demodulated at that modulation frequency to obtain signals with different codes before and after the resonance frequency, which is fed back as an error signal to resonate the light frequency. It can be locked to the resonance frequency of the vessel.
  • the frequency of light can be stabilized and the line width of light can be narrowed.
  • the electro-optical phase modulator EOM modulates the phase frequency of the laser with a line width of several tens to several hundreds of kHz of the resonator.
  • the modulated laser passes through the polarizing plate and the ⁇ / 4 wave plate, and is incident on the optical resonator to be stabilized. Since the return light from the optical resonator passes through the ⁇ / 4 wave plate twice and rotates 90 degrees with the incident light, it can be taken out by a polarizing plate and detected by a photodetector.
  • the output of the photodetector and the EOM modulation frequency signal are mixed by a mixer and passed through a low-pass filter to obtain an error signal.
  • the output for PID control of the laser current based on the high frequency component of this error signal (PID fast ) and the output for PID control of the mirror distance of passive feedback based on the low frequency component (PID slow ) are servoed. generate. It can be stabilized by feeding back the PID fast and PID slow to the piezo element that changes the mirror distance between the laser current and the passive feedback, and matching the laser frequency to the resonance frequency of the optical resonator. The obtained results are shown in FIGS. 3 to 7.
  • the carbon dioxide isotope generator 40 As the carbon dioxide isotope generating device 40, various devices can be used without particular limitation as long as the carbon isotope can be converted into the carbon dioxide isotope.
  • the carbon dioxide isotope generator 40 preferably has a function of oxidizing the sample and converting carbon contained in the sample into carbon dioxide.
  • carbon dioxide such as a total organic carbon (hereinafter referred to as "TOC") generator, a sample gas generator for gas chromatography, a sample gas generator for combustion ion chromatography, and an elemental analyzer (EA).
  • a carbon generator (G) 41 can be used.
  • these CO and N 2 O each have an absorption spectrum in the 4.5 ⁇ m band, and therefore compete with the absorption spectrum in the 4.5 ⁇ m band of 14 CO 2 . Therefore, it is preferable to remove CO and N 2 O in order to improve the analysis sensitivity.
  • Examples of the method for removing CO and N 2 O include a method for collecting and separating 14 CO 2 as follows. Further, the oxidation catalyst or platinum catalyst, CO, a method of removing and reducing the N 2 O, and the combined use of the collection and separation methods used.
  • FIG. 9A and 9B are diagrams showing the principle of cavity ring-down spectroscopy (hereinafter, also referred to as “CRDS”) using a laser beam.
  • CRDS cavity ring-down spectroscopy
  • FIG. 9A when the piezo element 13 is operated and the mirror spacing satisfies the resonance condition, a high-intensity signal is transmitted from the optical resonator.
  • the incident light when the incident light is blocked, the light accumulated in the optical resonator decreases exponentially with time.
  • an exponential attenuation signal [Ringdown signal] as shown in FIG. 9A can be observed.
  • Another method of observing the ringdown signal is to quickly block the input laser beam with an optical switch.
  • the transmitted time-dependent ringdown signal has a curve as shown by the dotted line in FIG. 9A.
  • the optical resonator is filled with an absorbent substance, as shown by the solid line in FIG. 9A, the laser beam is absorbed each time it reciprocates in the optical resonator, so that the light attenuation time is shortened. Since the decay time of this light depends on the concentration of the light-absorbing substance in the optical cavity and the wavelength of the incident laser light, the absolute concentration of the absorbing substance can be calculated by applying Beer-Lambert's law. Further, the concentration of the absorbent substance in the optical cavity can be measured by measuring the amount of change in the attenuation rate (ring down rate) which is proportional to the concentration of the absorbent substance in the optical cavity.
  • the transmitted light leaked from the optical resonator is detected by a photodetector, the 14 CO 2 concentration is calculated using an arithmetic unit, and then the 14 C concentration can be calculated from the 14 CO 2 concentration.
  • the intervals between the mirrors 12a and 12b of the optical resonator 11, the radius of curvature of the mirrors 12a and 12b, the length and width in the longitudinal direction of the main body, and the like are preferably changed according to the absorption wavelength of the carbon dioxide isotope to be analyzed.
  • the assumed optical resonator length is 1 mm to 10 m. In the case of carbon dioxide isotope 14 C, a long optical cavity length is effective in securing the optical path length, but as the optical resonator length increases, the volume of the gas cell increases and the required sample amount increases.
  • the optical resonator length is preferably between 10 cm and 60 cm. Further, the radius of curvature of the mirrors 12a and 12b is preferably the same as or longer than the optical resonator length.
  • the mirror spacing can be adjusted on the order of several micrometers to several tens of micrometers as an example. Fine adjustment by the piezo element 13 can also be performed in order to create the optimum resonance condition.
  • a pair of mirrors 12a and 12b a pair of concave mirrors has been illustrated and described, but if a sufficient optical path can be obtained, a combination of a concave mirror and a plane mirror or a combination of plane mirrors can be used. It doesn't matter if there is.
  • the cell 16 filled with the gas to be analyzed preferably has a smaller volume. This is because the resonance effect of light can be effectively obtained even with a small number of analytical samples.
  • the capacity of the cell 16 can be exemplified by 8 mL to 1000 mL.
  • the cell volume can be appropriately selected depending on the amount of 14 C source that can be used for measurement, for example, and 80 mL to 120 mL of cells are suitable for 14 C sources that can be obtained in large quantities such as urine, such as blood and For 14 C sources with limited availability, such as tears, 8 mL-12 mL cells are suitable.
  • FIG. 10 is a diagram showing the temperature dependence of ⁇ due to the absorption of 13 CO 2 and 14 CO 2 obtained by calculation. From FIG. 10, 14 C / Total C 10 -10, 10 -11, in 10 -12, for a equal to or absorption by 13 CO 2 at room temperature 300K exceeds the absorption of 14 CO 2, the cooling I found that I needed to do it. On the other hand, it can be seen that if the variation ⁇ 0 to 10 1 s -1 of the ringdown rate, which is a noise component derived from the optical resonator, can be realized, the measurement of 14 C / Total C ratio to 10-11 can be realized. From this, it became clear that cooling of about -40 degrees Celsius is required as the temperature at the time of analysis. For example, when the 14 C / Total C and 10-11 as the lower limit of quantification, increase of CO 2 gas partial pressure by concentration of CO 2 gas (e.g. 20%), suggesting that it is necessary and the temperature ..
  • FIG. 13 shows a conceptual diagram (partially cutaway diagram) of a specific embodiment of the optical resonator.
  • the optical resonator 51 is arranged at both ends of a cylindrical heat insulating chamber 58 as a vacuum device, a measuring gas cell 56 arranged in the heat insulating chamber 58, and a measuring gas cell 56. Cools the pair of high-reflectivity mirrors 52, the mirror drive mechanism 55 arranged at one end of the measurement gas cell 56, the ring piezo actuator 53 arranged at the other end of the measurement gas cell 56, and the measurement gas cell 56.
  • a Peltier element 59 is provided, and a water-cooled heat sink 54 having a cooling pipe 54a connected to a circulation cooler (not shown). The water-cooled heat sink 54 can dissipate heat generated from the Peltier element 59.
  • Figure 12 (quoted from Applied Physics Vol.24, pp.381-386, 1981) shows the absorption wavelengths of analytical samples 12 C 16 O 2 , 13 C 18 O 2 , 13 C 16 O 2 , and 14 C 16 O 2. The relationship of absorption strength is shown.
  • carbon dioxide containing each carbon isotope has a unique absorption line. In actual absorption, each absorption line has a finite width due to the spread due to the pressure and temperature of the sample. Therefore, it is preferable that the pressure of the sample is atmospheric pressure or less and the temperature is 273K (0 ° C.) or less.
  • the specific set temperature in the optical resonator 11 is preferably 273 K (0 ° C.) or less.
  • the lower limit is not particularly limited, but from the viewpoint of cooling effect and economy, it is preferable to cool to 173K to 253K (-100 ° C to -20 ° C), particularly to about 233K (-40 ° C).
  • a cooling device for cooling the optical resonator 11 may be provided in the spectroscopic device 10. Since the light absorption of 14 CO 2 is temperature-dependent, by lowering the set temperature in the optical resonator 11 with a cooling device, the absorption line of 14 CO 2 and the absorption line of 13 CO 2 and 12 CO 2 can be separated. This is because it becomes easier to distinguish and the absorption intensity of 14 CO 2 becomes stronger.
  • the cooling device for cooling the optical resonator 11 include a Peltier element. In addition to the Peltier element, for example, a liquid nitrogen tank, a dry ice tank, or the like can be used. From the viewpoint of miniaturizing the spectroscopic device 11, it is preferable to use a Peltier element, and from the viewpoint of reducing the manufacturing cost of the device, it is preferable to use a liquid nitrogen water tank or a dry ice tank.
  • the dehumidifying condition is preferably a gas condition (moisture content) that does not cause dew condensation or freezing under the temperature condition when the CRDS analysis cell is cooled to ⁇ 40 ° C. or lower (233 K or lower).
  • Dehumidification may be performed by a cooling means such as a Peltier element, but dehumidification may also be performed by a membrane separation method using a polymer film for removing water vapor such as a fluorine-based ion exchange resin film.
  • a hygroscopic agent or a gas dryer may be arranged in the carbon dioxide generation unit (sample introduction unit).
  • the hygroscopic agent for example, CaH 2 , CaSO 4, Mg (ClO 4 ) 2 , molecular sieve, H 2 SO 4 , Sicacide, phosphorus pentoxide, Sicapent (registered trademark) or silica gel should be used. Can be done. Of these, phosphorus pentoxide, sikapent (registered trademark), CaH 2 , Mg (ClO 4 ) 2 or molecular sieves are preferable, and sikapent (registered trademark) is more preferable.
  • a Nafion (registered trademark) dryer manufactured by Perma Pure Inc. is preferable.
  • the hygroscopic agent and the gas dryer may be used alone or in combination.
  • the above-mentioned "gas condition (moisture content) that does not condense or freeze under the temperature condition" was confirmed by measuring the dew point.
  • the dehumidification can be performed so that the dew point is ⁇ 40 ° C. or lower (233K or lower).
  • the dew point display may be an instantaneous dew point or an average dew point per unit time. The dew point can be measured using a commercially available dew point sensor.
  • the Zentor dew point sensor HTF Al2O3 (registered trademark) (manufactured by Mitsubishi Chemical Analytech), Vaisala DRYCAP (registered trademark) DM70 handy type dew point meter ( (Made by Vaisala) can be used.
  • ⁇ Carbon dioxide isotope introduction emission control device As a method of introducing the carbon dioxide isotope generated by the carbon dioxide isotope generation device 40 of FIG. 1 into the spectroscopic device 10, there are a flow through method (Flow through) and a stopped flow method (Stopped flow).
  • the flow-through method does not require a complicated introduction mechanism, so sample analysis can be performed relatively easily, but it is not suitable for high-sensitivity measurement.
  • the stopped flow method enables high-sensitivity measurement, but has a drawback that introduction control is required and sample loss is likely to occur. Therefore, the present inventors have studied the problem of introduction control in the stopped flow method capable of high-sensitivity measurement. As a result, the above-mentioned problems have been solved by optimizing the design of the automatic valve opening / closing system and the gas filling method.
  • the carbon dioxide isotope introduction / discharge device 60 as shown in FIG. 1 can be used.
  • the carbon dioxide isotope introduction / emission control device 60 of FIG. 1 is provided on the introduction pipe 61a connecting the carbon dioxide isotope generation device 40 and the optical resonator 11 and on the upstream side (carbon dioxide isotope generation device 40 side) of the introduction pipe 61a.
  • the introduction valve 63b arranged on the downstream side (optical resonator 11 side) of the introduction pipe 61a, the discharge pipe 61b connecting the optical resonator 11 and the pump 65, and the discharge pipe 61b. It is provided with a discharge valve 63c provided.
  • the three-port valve 63a is closed to make the pressure in the carbon dioxide generator higher than the atmospheric pressure. Further, the introduction valve 63b and the discharge valve 63c are opened to make the pressure in the cell lower than the atmospheric pressure. Specifically, it is set to 30 Torr or less, more preferably 10 Torr or less.
  • the carbon dioxide generator used as a sample introduction system needs to keep flowing the carrier gas at a constant flow rate. In this case, by closing the three-port valve 63a and opening it to the atmosphere, it is possible to prevent the carrier gas from the carbon dioxide generator before the CO 2 gas is released from being introduced into the gas cell. Further, by opening the introduction valve 63b and the discharge valve 63c, the gas from the three port valve 63a to the inside of the gas cell is discharged, so that the pressure in the gas cell can be reduced.
  • the column temperature is heated to the threshold temperature or higher.
  • the threshold temperature is 80 ° C. to 200 ° C., preferably 90 ° C. to 120 ° C., and more preferably 90 ° C. to 110 ° C. Since the column temperature CO 2 gas exceeds a certain temperature is emitted in pulses, by any timing CO 2 gas to grasp whether released, CO 2 gas discharged in pulses within the gas cell You can see the time to reach it.
  • the present inventors have found that the CO 2 gas reaches the gas cell several seconds after the column temperature exceeds a predetermined temperature (threshold temperature). Specifically, it was found that when the threshold temperature is 100 ° C., the CO 2 gas reaches the gas cell after 20 to 30 seconds, preferably 25 to 27 seconds.
  • the three-port valve 63a is opened, the introduction valve 63b is closed, and the gas (carbon dioxide isotope) is introduced into the gas cell.
  • the introduction time varies depending on the size of the gas cell and the like, but is preferably less than 1 second.
  • the valve 63c is closed.
  • the third step With the introduction valve 63b closed, the three-port valve 63a is closed, the pressure in the carbon dioxide generator is made higher than the atmospheric pressure, and the pressure in the gas cell is lowered.
  • the gas pressure rises from 0 Torr to 60 Torr in 1 second until the three-port valve 63a is opened to introduce the gas from the carbon dioxide generator into the gas cell and then the introduction valve is closed. If nothing is done, the gas cell pressure is too high and it is not suitable for measuring the absorption line. Therefore, the pressure in the gas cell is reduced in the fourth step.
  • the discharge valve 63c is opened (for about 1 second) until the pressure in the gas cell reaches about 10 to 40 Torr, and then the discharge valve 63c is closed.
  • the pressure in the gas cell is preferably 18-22 Torr.
  • the discharge valve 63c is opened with the introduction valve 63b closed, the pressure in the gas cell gradually decreases because the gas in the gas cell is discharged. After the pressure in the gas cell drops to about 20 Torr, the discharge valve 63c is closed.
  • FIG. 13A and FIG. 13B show the relationship between the ringdown rate and the gas cell pressure change in the optical resonator when the carbon dioxide isotope introduction / emission control device of the present invention is used.
  • the three port valve 63a, the introduction valve 63b, and the discharge valve 63c are opened, and the carrier gas from the carbon dioxide generator before the CO 2 gas is released is introduced into the gas cell.
  • the pressure inside the cell after the introduction of CO 2 gas is as high as about 60 Torr, which is not suitable for measuring absorption lines.
  • carrier gas exists in the cell when the CO 2 gas reaches the gas cell, when the CO 2 gas is confined in the gas cell, it is diluted with the carrier gas, the CO 2 gas concentration in the cell decreases, and the CO 2 gas
  • the ring-down signal which is proportional to the amount of carbon dioxide absorbed, becomes smaller.
  • the valve is appropriately opened and closed by using the carbon dioxide isotope introduction / emission control device of the present invention, the cell after the introduction of CO 2 gas is used.
  • the pressure inside is about 20 Torr, which is suitable for measuring the absorption line, and since dilution with the carrier gas hardly occurs, the CO 2 gas concentration in the cell does not decrease, and the ring-down signal does not decrease.
  • the wavelength of the laser was constantly swept, and the absorption line spectrum of CO 2 was acquired approximately once every 5 seconds.
  • the arithmetic unit 30 of FIG. 1 is particularly limited as long as it can measure the concentration of the absorbent substance in the optical resonator from the above-mentioned decay time and ring down rate and can measure the carbon isotope concentration from the concentration of the absorbent substance.
  • the arithmetic control unit 31 may be configured by arithmetic means or the like used in a normal computer system such as a CPU.
  • Examples of the input device 32 include a pointing device such as a keyboard and a mouse.
  • Examples of the display device 33 include an image display device such as a liquid crystal display and a monitor.
  • Examples of the output device 34 include a printer and the like.
  • As the storage device 35 a storage device such as a ROM, RAM, or magnetic disk can be used.
  • the detection sensitivity for the radiocarbon isotope 14 C in the sample is assumed to be about "0.1 dpm / ml".
  • the carbon isotope analyzer 1 has an advantageous effect that it can measure a sample containing a low concentration of radioactive carbon isotopes.
  • the detection sensitivity of the radiocarbon isotope 14C in the sample of the carbon isotope analyzer 1 is about "0.1 dpm / ml", more preferably "0.1 dpm / ml" or less.
  • the carbon isotope analyzer has been described above with reference to embodiments, the carbon isotope analyzer is not limited to the apparatus according to the above-described embodiment, and various modifications can be made. A modified example of the carbon isotope analyzer will be described below, focusing on the changes.
  • the spectroscopic device may further include vibration absorbing means. This is because it is possible to prevent the mirror spacing from shifting due to vibration from the outside of the spectroscope and improve the measurement accuracy.
  • vibration absorbing means for example, a shock absorber (polymer gel) or a seismic isolation device can be used.
  • a seismic isolation device a device capable of applying vibration of the opposite phase of the external vibration to the spectroscopic device can be used.
  • the mirror spacing is adjusted by the piezo element 13 in the spectroscopic device 10 as the ring-down signal acquisition means.
  • the optical resonator in the light generator 20 is used.
  • a light blocking device for blocking light to 11 may be provided to control on / off of the irradiation light applied to the optical resonator.
  • various devices can be used without particular limitation as long as they can quickly block light having an absorption wavelength of carbon dioxide isotope, and for example, an optical switch can be used. It is necessary to block the light sufficiently faster than the decay time of the light in the optical resonator.
  • Radioisotope 14C will be described as an example for analysis.
  • the biological carbon source is removed by performing deproteinization as a pretreatment of the biological sample.
  • the protein removal method include a protein removal method in which a protein is insolubilized with an acid or an organic solvent, a protein removal method by ultrafiltration or dialysis utilizing a difference in molecular size, and a protein removal method by solid phase extraction.
  • the deproteinization method using an organic solvent is preferable because the 14 C-labeled compound can be extracted and the organic solvent itself can be easily removed.
  • the organic solvent is first added to the biological sample to insolubilize the protein. At this time, the 14 C-labeled compound adsorbed on the protein is extracted into the organic solvent-containing solution.
  • the organic solvent-containing solution may be collected in another container, and then an organic solvent may be further added to the residual to extract the solution.
  • the extraction operation may be repeated a plurality of times. If the biological sample is feces, an organ such as a lung, or other form that is difficult to mix uniformly with an organic solvent, the biological sample and the organic solvent are uniformly mixed by homogenizing the biological sample. It is preferable to carry out a treatment for the above. If necessary, the insolubilized protein may be removed by centrifugation, filtration through a filter, or the like. The extract containing the 14 C labeled compound is then dried by evaporating the organic solvent to remove the carbon source from the organic solvent. As the organic solvent, methanol (Methanol), ethanol (EtOH), or acetonitrile (ACN) is preferable, and acetonitrile is more preferable.
  • Methanol ethanol
  • EtOH ethanol
  • ACN acetonitrile
  • Step S3 The pretreated biological sample is heated and burned to generate a gas containing carbon dioxide isotope 14 CO 2 from a radioactive isotope 14 C source. Then, N 2 O and CO are removed from the obtained gas.
  • Step S4 Moisture is removed from the obtained 14 CO 2 .
  • the 14 CO 2 or passed over drying agent such as calcium carbonate it is preferred to remove water by condensation of moisture by cooling the 14 CO 2.
  • the reduction in the mirror reflectance due to icing and frosting of the optical resonator 11 due to the water content contained in CO 2 lowers the detection sensitivity, and therefore the analysis accuracy is improved by removing the water content.
  • Step S5 14 CO 2 is filled in the optical resonator 11 having a pair of mirrors 12a and 12b as shown in FIG. Then, it is preferable to cool 14 CO 2 to 273 K (0 ° C.) or less. This is because the absorption intensity of the irradiation light is increased. Further, it is preferable to keep the optical resonator 11 in a vacuum atmosphere. This is because the measurement accuracy is improved by reducing the influence of the external temperature.
  • Step S7 The irradiation light is sent into the optical resonator via the ⁇ / 4 wave plate, and the carbon dioxide isotope 14 CO 2 is irradiated with the irradiation light to resonate.
  • the optical separator (switch) 29 blocks the light incident on the optical resonator 11.
  • Step S8 The light returned from the optical resonator is sent to the PID controller via the ⁇ / 4 wavelength plate and the polarizer to output the PID control voltage, the high frequency component is sent directly to the light source, and the low frequency component is sent. It is sent to the light source via the passive feedback unit (PDH lock process).
  • PDH lock process passive feedback unit
  • Step S9 The ringdown signal obtained by irradiating the carbon dioxide isotope with the irradiation light is measured.
  • the mirror spacing is 10 to 60 cm and the radius of curvature of the mirror is the same as or greater than the mirror spacing.
  • a medical diagnostic device and an environmental measurement device including a part of the configuration described in the embodiment can be manufactured in the same manner.
  • the light generator described in the embodiment can be used as the measuring device.
  • a piezo element is attached to the mirror, and the applied voltage of the piezo is modulated so that the QCL frequency becomes stable using the error signal from the PDH.
  • the QCL driver current was modulated so that the QCL frequency became stable using the error signal from the PDH.
  • a polarizing plate Thiorlabs, model number: WP12LM-IRA
  • a ⁇ / 4 plate Thiorlabs, model number: WPLQ05M-4500
  • EO-12.5T3-MIR (resonance frequency: 11.0 to 13.8 MHz, AR coating: 3.0 to 4.5 ⁇ m) manufactured by QUBIG was used for the EOM.
  • ADU Analog to Digital Unit manufactured by QUBIG, which is a dedicated RF driver, was also used.
  • the output of the photodetector for measuring reflected light is mixed with the modulated signal of EOM by a mixer, and an error signal for PDH is generated by passing through a low-pass filter.
  • PID fast The output for PID control of the laser current based on the high frequency component of this error signal (PID fast) and the output for PID control of the mirror distance of passive feedback based on the low frequency component (PID slow) are supplied to the Digilock module. Generated. PID fast and PID slow were fed back to the piezo element that changed the mirror distance of the laser current and passive feedback, and the laser frequency was matched to the resonance frequency of the optical cavity and stabilized.
  • the characteristics of frequency stabilization by passive feedback were evaluated using the beat signals of a mid-infrared optical frequency comb and a quantum cascade laser with stable frequencies.
  • the RF spectrum of the beat measured when passive feedback is used is shown in FIG. 3A. It was observed that the passive feedback narrowed the beat line width and improved the strength.
  • the RF spectrum of the beat was repeatedly measured (RBW: 100 kHz, Sweep time: 1 ms, measurement time: 600 s).
  • a histogram of the beat line width when passive feedback is used is shown in FIG. 3B. It can be seen that the beat line width is narrowed by using passive feedback. From now on, the QCL can be narrowed by passive feedback.
  • FIG. 6 shows the time change of the light intensity transmitted through the optical resonator.
  • the laser current is modulated, a resonance peak can be seen according to the transmitted light characteristics of the FPI (Fabry-Perot interferometer).
  • FPI Fabry-Perot interferometer
  • FIG. 7 shows the time change of the center wavelength of the RF spectrum of the measured beat. Without PDH frequency stabilization, the beat signal fluctuates significantly beyond ⁇ about 20 MHz. On the other hand, it can be seen that the frequency fluctuation of the QCL can be suppressed to about ⁇ 10 MHz by stabilizing the frequency by PDH.
  • the frequency fluctuation ( ⁇ about 10 MHz) of the quantum cascade laser stabilized by PDH fluctuates with the temperature change of the resonator length of the optical resonator. It was suggested that it was derived from.
  • the laser frequency When acquiring a ring-down signal with CRDS, the laser frequency only needs to match the resonance frequency determined by the resonator length of the optical resonator for CRDS, so fluctuations due to temperature changes in the resonator length of the optical resonator Does not have to be considered.
  • carbon was exemplified as an analysis target.
  • the present invention is not limited to this, and any gas such as hydrogen (which may be deuterium) may be analyzed.
  • the cavity is formed by two mirrors provided in the optical resonator
  • the present invention is not limited to this, and three or more mirrors are used.
  • the cavity may be constructed of mirrors of.
  • Carbon isotope analyzer 10 Spectrometer 11 Optical resonator 12 Mirror 13 Piezo element 15 Photodetector 16 cell 20 Light generator 21 Optical fiber 22 Polarizer 23 Light source 24 Detector 25 Passive feedback 25a Mirror 25b Condensing lens 26a Mixer 26b Low bus filter 28 PID control servo 29 Optical separator 30 Arithmetic device 40 Carbon dioxide isotope generator 60 Carbon dioxide isotope introduction / discharge control device 61a Introduction pipe 61b Discharge pipe 63a Three port valve 63b Introduction valve 63c Discharge valve 65 Pump

Abstract

Provided is an analyzing device provided with: a light source; an optical resonator that is filled with gas to be analyzed and that receives light radiated from the light source; a photodetector that detects the intensity of light radiated from the optical resonator; a passive feedback unit for stabilizing the wavelength of the light radiated from the light source by optically feeding the light radiated from the light source back to the light source; a PDH locking unit for locking the frequency of the light radiated from the light source to the resonant frequency of the optical resonator; and a feedback control unit that outputs a control signal having a first frequency for PDH locking to the light source and that outputs a control signal having a second frequency for passive feedback to the passive feedback unit, wherein the first frequency is higher than the second frequency.

Description

分析装置Analysis equipment
 本発明は、分析装置に関する。 The present invention relates to an analyzer.
 炭素同位体は、従来より炭素循環に基づく環境動態評価や年代測定による歴史学の実証研究など、文理に渡る広範な応用展開がなされている。炭素同位体は、地域・環境によりわずかに異なるものの、安定同位体元素である12Cと13Cはそれぞれ98.89%と1.11%、放射性同位体14Cは1×10-10%天然に存在している。同位体は重量の相違があるだけで、化学的には同じ挙動を示すため、存在比の低い同位体の濃度を人工的な操作により高くし、精度よく測定を行うことで様々な反応過程の観測が可能となる。 Carbon isotopes have been widely applied to various fields such as environmental dynamics evaluation based on the carbon cycle and empirical research on history by dating. Although the carbon isotopes differ slightly depending on the region and environment, the stable isotopes 12 C and 13 C are 98.89% and 1.11%, respectively, and the radioactive isotope 14 C is 1 × 10-10 % natural. Exists in. Since isotopes have the same chemical behavior except for the difference in weight, the concentration of isotopes with a low abundance ratio is increased by artificial manipulation, and accurate measurement is performed to perform various reaction processes. Observation becomes possible.
 特に、臨床の分野においては医薬品体内動態評価を行うために、標識化合物として、例えば放射性炭素同位体14Cを生体に投与し分析することは極めて有用であり、例えばPhase I、Phase IIaにおいて実際に分析されている。ヒトにおいて薬理作用を発現すると推定される投与量(薬効発現量)を超えない用量(以下「マイクロドーズ」ともいう)の標識化合物として、極微量の放射性炭素同位体14C(以下「14C」ともいう)を人体に投与し、分析することは、体内動態の問題に起因する医薬品の薬効・毒性についての知見が得られるため、創薬プロセスにおける開発リードタイムを大幅に短縮するものとして期待されている。 In particular, in the clinical field, it is extremely useful to administer, for example, radiocarbon isotope 14C as a labeling compound to a living body and analyze it in order to evaluate the pharmacokinetics of pharmaceuticals. For example, in Phase I and Phase IIa, It has been analyzed. As a labeled compound at a dose (hereinafter, also referred to as "microdose") that does not exceed the dose (drug discovery level) estimated to exert a pharmacological action in humans, a very small amount of radiocarbon isotope 14 C (hereinafter, " 14 C") Administering and analyzing the drug (also called) to the human body is expected to significantly shorten the development lead time in the drug discovery process because it provides insight into the efficacy and toxicity of drugs caused by pharmacological problems. ing.
特許第6004412号公報Japanese Patent No. 6004412
 本発明者等は、簡易、かつ迅速な14Cの分析が可能な炭素同位体分析装置およびそれを用いた炭素同位体分析方法を提案した(特許文献1参照)。これにより、14Cを用いたマイクロドーズの研究を簡易かつ安価に行なえることとなった。
 ここで、14Cの分析に用いられ得る中赤外(MIR)レーザの1態様として、分布帰還型(DFB)量子カスケードレーザ(以下「QCL」ともいう。)システムの要望が高まっている。その理由は、それらのシステムは市販されており、数ナノメートルの広いモードホップフリー同調範囲と数MHzの典型的な線幅の単一モード発光で簡単に取り扱えるからである。
The present inventors have proposed a carbon isotope analyzer capable of simple and rapid analysis of 14 C and a carbon isotope analysis method using the same (see Patent Document 1). As a result, research on microdose using 14C can be carried out easily and inexpensively.
Here, there is an increasing demand for a distributed feedback (DFB) quantum cascade laser (hereinafter, also referred to as “QCL”) system as one aspect of a mid-infrared (MIR) laser that can be used for 14C analysis. The reason is that these systems are commercially available and can be easily handled with a wide mode hop-free tuning range of a few nanometers and a single mode emission with a typical line width of a few MHz.
 ところが、QCLシステムは、多くの分光用途においては上記の性能で十分であるが、レーザとCRDSで使用される高フィネス光共振器(反射率R>99.9%)とのカップリングにおいては、線幅100kHz以下が求められていた。
 このように、14Cの分析を行なうに当たっては、光源の安定性の更なる改善が求められていた。そこで、本発明は、光源の安定性が改善された、分析装置およびそれを用いた分析方法を提供することを課題とする。
However, although the above performance is sufficient for many spectroscopic applications in the QCL system, the coupling between the laser and the high finesse optical resonator (reflectance R> 99.9%) used in the CRDS is sufficient. A line width of 100 kHz or less has been required.
As described above, in conducting the analysis of 14C , further improvement in the stability of the light source was required. Therefore, an object of the present invention is to provide an analyzer and an analysis method using the analyzer, in which the stability of the light source is improved.
 上記の課題は、炭素同位体だけでなく、任意の気相の分析対象について当てはまる。 The above issues apply not only to carbon isotopes but also to the analysis target of any gas phase.
[1]光源と;分析対象のガスが充填され、光源から出射する光を受ける光共振器と;光共振器から出射する光の強度を検出する光検出器と;光源から出射する光を光学的に光源にフィードバックさせることにより、光源から出射する光の波長安定化を行うためのパッシブフィードバック部と;光源から出射する光の周波数を光共振器の共振周波数にロックするためのPDHロック部と;PDHロック用の第1周波数を有する制御信号を光源に出力し、パッシブフィードバック用の第2周波数を有する制御信号をパッシブフィードバック部に出力するフィードバック制御部と;を備え、第1周波数は、第2周波数よりも高い、分析装置。
 [2]光源は、量子カスケードレーザである[1]に記載の分析装置。
 [3]分析対象のガスは、放射性炭素同位体14Cを含む二酸化炭素同位体である[1]又は[2]に記載の分析装置。
 [4]二酸化炭素同位体の吸収波長を有する光は、4.5μm帯の光である[1]~[3]のいずれか1項に記載の分析装置。
 [5]分光装置は、光共振器を冷却する冷却装置をさらに備える[1]~[4]のいずれか1項に記載の分析装置。
 [6]分光装置は、光共振器を収容する真空装置をさらに備える[1]~[5]のいずれか1項に記載の分析装置。
 [7]分光装置は、振動吸収手段をさらに備える[1]~[6]のいずれか1項に記載の分析装置。
 [8]放射性炭素同位体14Cに対する検出感度は、0.1dpm/ml程度である[1]~[7]のいずれか1項に記載の分析装置。
 [9]炭素同位体から二酸化炭素同位体を生成する工程と;二酸化炭素同位体を1対のミラーを有する光共振器内に充填する工程と;光源から二酸化炭素同位体の吸収波長を有する照射光を発生させる工程と;照射光をλ/4波長板を介して光共振器内に照射する工程と;光共振器から戻った光を、例えばλ/4波長板と偏光子を介して、フィードバック制御部に送りフィードバック制御電圧を出力し、高い周波数成分を直接光源に送り、低い周波数成分をパッシブフィードバックを介して光源に送るPDHロック工程と;二酸化炭素同位体に照射光を照射し共振させた際に得られる透過光の強度を測定する工程と;透過光の強度から炭素同位体濃度を計算する工程と、を有する分析方法。
 [10]炭素同位体は放射性炭素同位体14Cであり、二酸化炭素同位体は放射性二酸化炭素同位体14COである[9]に記載の分析方法。
[1] A light source; an optical resonator filled with a gas to be analyzed and receiving light emitted from the light source; an optical detector for detecting the intensity of light emitted from the optical resonator; optically emitting light emitted from the light source A passive feedback section for stabilizing the wavelength of the light emitted from the light source by feeding it back to the light source; and a PDH lock section for locking the frequency of the light emitted from the light source to the resonance frequency of the optical resonator. A feedback control unit that outputs a control signal having a first frequency for PDH lock to a light source and outputs a control signal having a second frequency for passive feedback to a passive feedback unit; the first frequency is a first frequency. An analyzer that is higher than 2 frequencies.
[2] The analyzer according to [1], wherein the light source is a quantum cascade laser.
[3] The analyzer according to [1] or [2], wherein the gas to be analyzed is a carbon dioxide isotope containing a radiocarbon isotope 14C.
[4] The analyzer according to any one of [1] to [3], wherein the light having an absorption wavelength of carbon dioxide isotope is light in the 4.5 μm band.
[5] The analyzer according to any one of [1] to [4], further comprising a cooling device for cooling the optical resonator.
[6] The analyzer according to any one of [1] to [5], further comprising a vacuum device for accommodating an optical resonator.
[7] The analyzer according to any one of [1] to [6], further comprising a vibration absorbing means.
[8] Detection sensitivity for radiocarbon 14 C, is about 0.1dpm / ml [1] analyzer according to any one of - [7].
[9] A step of producing a carbon dioxide isotope from a carbon isotope; a step of filling the carbon dioxide isotope into an optical cavity having a pair of mirrors; and an irradiation having an absorption wavelength of the carbon dioxide isotope from a light source. The step of generating light; the step of irradiating the irradiation light into the optical cavity through the λ / 4 wavelength plate; and the step of irradiating the light returned from the optical cavity through, for example, the λ / 4 wavelength plate and the polarizer. PDH lock process that outputs the feedback control voltage to the feedback control unit, sends the high wavelength component directly to the light source, and sends the low frequency component to the light source via passive feedback; the carbon dioxide isotope is irradiated with irradiation light to resonate. An analysis method comprising a step of measuring the intensity of transmitted light obtained at the time; and a step of calculating the carbon isotope concentration from the intensity of transmitted light.
[10] The analysis method according to [9], wherein the carbon isotope is radiocarbon isotope 14C and the carbon dioxide isotope is radiocarbon dioxide isotope 14 CO 2 .
図1は実施形態に係る炭素同位体分析装置の概念図である。FIG. 1 is a conceptual diagram of a carbon isotope analyzer according to an embodiment. 図2は実施形態に係る炭素同位体分析装置の概念図である。FIG. 2 is a conceptual diagram of the carbon isotope analyzer according to the embodiment. 図3A、図3Bは、パッシブフィードバックを用いた際に測定された、ビートのRFスペクトルと、ビート線幅のヒストグラムである。3A and 3B are a histogram of the beat RF spectrum and the beat line width measured when passive feedback is used. 図4はパッシブフィードバックによる安定化によって得られた光共振器からの戻り光の強度とエラー信号を示す図である。FIG. 4 is a diagram showing the intensity of the return light from the optical resonator and the error signal obtained by stabilization by passive feedback. 図5は、パッシブフィードバックによる安定化を用いない場合の共振器からの戻り光の強度とエラー信号を示す図である。FIG. 5 is a diagram showing the intensity of the return light from the resonator and the error signal when stabilization by passive feedback is not used. 図6は光共振器透過光強度の時間変化を示す図である。FIG. 6 is a diagram showing the time change of the light intensity transmitted through the optical resonator. 図7は量子カスケードレーザの周波数のドリフトを示す図である。FIG. 7 is a diagram showing the frequency drift of the quantum cascade laser. 図8は14COと競合ガスの4.5μm帯吸収スペクトルを示す図である。FIG. 8 is a diagram showing a 4.5 μm band absorption spectrum of 14 CO 2 and a competing gas. 図9A、図9Bはレーザ光を用いた高速走査型のキャビティーリングダウン吸収分光法の原理を示す図である。9A and 9B are diagrams showing the principle of high-speed scanning cavity ring-down absorption spectroscopy using laser light. 図10はCRDSにおける13CO14COの吸収量Δβの温度依存性を示す図である。FIG. 10 is a diagram showing the temperature dependence of the absorption amounts Δβ of 13 CO 2 and 14 CO 2 in CRDS. 図11は光共振器の変形例の概念図である。FIG. 11 is a conceptual diagram of a modified example of the optical resonator. 図12は分析試料の吸収波長と吸収強度の関係を示す図である。FIG. 12 is a diagram showing the relationship between the absorption wavelength and the absorption intensity of the analysis sample. 図13(a)、図13(b)は試料ガスをガスセルに導入する際の自動バルブ開閉動作方法の違いによる、リングダウンレートおよびセル内圧力の時間変化を示す図である。13 (a) and 13 (b) are diagrams showing the time change of the ringdown rate and the pressure inside the cell due to the difference in the automatic valve opening / closing operation method when the sample gas is introduced into the gas cell.
 実施形態を挙げて本発明の説明を行うが、本発明は以下の実施形態に限定されるものではない。図中同一の機能又は類似の機能を有するものについては、同一又は類似の符号を付して説明を省略する。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 The present invention will be described with reference to embodiments, but the present invention is not limited to the following embodiments. In the figure, those having the same function or similar functions are designated by the same or similar reference numerals and the description thereof will be omitted. However, the drawings are schematic. Therefore, the specific dimensions and the like should be determined in light of the following explanations. In addition, it goes without saying that the drawings include parts having different dimensional relationships and ratios from each other.
(分析装置)
 本発明者等は研究の結果、遅延自己注入として知られている光フィードバックを用いる方法に着目した。この受動フィードバックをQCLに応用することにより、レーザ線幅を低減することができることを知見した。
(Analysis equipment)
As a result of research, the present inventors have focused on a method using optical feedback known as delayed self-injection. It was found that the laser beam width can be reduced by applying this passive feedback to the QCL.
 即ち、実施形態に係る分析装置は、光源と;分析対象のガスが充填され、光源から出射する光を受ける光共振器と;光共振器から出射する光の強度を検出する光検出器と;光源から出射する光を光学的に光源にフィードバックさせることにより、光源から出射する光の波長安定化を行うためのパッシブフィードバック部と;光源から出射する光の周波数を光共振器の共振周波数にロックするためのPDH(Pound Drever Hall)ロック部と;PDHロック用の第1周波数を有する制御信号を光源に出力し、パッシブフィードバック用の第2周波数を有する制御信号をパッシブフィードバック部に出力するフィードバック制御部と;を備え、第1周波数は、第2周波数よりも高い、分析装置に関する。 That is, the analyzer according to the embodiment includes a light source; an optical resonator filled with a gas to be analyzed and receiving light emitted from the light source; and an optical detector that detects the intensity of light emitted from the optical resonator; A passive feedback unit for stabilizing the wavelength of the light emitted from the light source by optically feeding back the light emitted from the light source to the light source; and locking the frequency of the light emitted from the light source to the resonance frequency of the optical resonator. PDH (Pound Drever Hall) lock unit for PDH lock; feedback control that outputs the control signal with the first frequency for PDH lock to the light source and outputs the control signal with the second frequency for passive feedback to the passive feedback unit. With respect to the analyzer, the first frequency is higher than the second frequency.
 ここで、光源は、量子カスケードレーザであることが好ましい。また分析対象のガスは、放射性炭素同位体14Cを含む二酸化炭素同位体であることが好ましい。即ち、分析対象のガスは、放射性二酸化炭素同位体14COを含むガスであることが好ましい。二酸化炭素同位体の吸収波長を有する光は、4.5μm帯の光であることが好ましい。 Here, the light source is preferably a quantum cascade laser. The gas to be analyzed is preferably a carbon dioxide isotope containing the radioactive carbon isotope 14 C. That is, the gas to be analyzed is preferably a gas containing the radioactive carbon dioxide isotope 14 CO 2 . The light having the absorption wavelength of the carbon dioxide isotope is preferably light in the 4.5 μm band.
 分光装置は、光共振器を冷却する冷却装置をさらに備えることが好ましい。分光装置は、光共振器を収容する真空装置をさらに備えることが好ましい。分光装置は、振動吸収手段をさらに備えることが好ましい。放射性炭素同位体14Cに対する検出感度は、0.1dpm/ml程度であることが好ましい。
 以下に、分析対象を放射性同位体14Cとする炭素同位体分析装置を例に挙げてより詳細に説明する。
It is preferable that the spectroscope further includes a cooling device for cooling the optical resonator. It is preferable that the spectroscope further includes a vacuum device that houses an optical resonator. The spectroscope is preferably further provided with vibration absorbing means. Detection sensitivity for radiocarbon 14 C, is preferably about 0.1dpm / ml.
Hereinafter, a carbon isotope analyzer whose analysis target is the radioactive isotope 14 C will be described in more detail by taking as an example.
(炭素同位体分析装置)
 図1は、実施形態に係る炭素同位体分析装置の概念図である。炭素同位体分析装置1は、光発生装置20と、二酸化炭素同位体生成装置40と、分光装置10と、さらに演算装置30とを備える。ここでは、分析対象として、炭素同位体である放射性同位体14Cを例にあげて説明する。なお、放射性同位体14Cから生成される二酸化炭素同位体14COの吸収波長を有する光は4.5μm帯の光である。詳細は後述するが、分析対象物質の吸収線、光発生装置、及び光共振器モードの複合による選択性により、高感度化を実現することが可能となる。
(Carbon isotope analyzer)
FIG. 1 is a conceptual diagram of a carbon isotope analyzer according to an embodiment. The carbon isotope analyzer 1 includes a light generator 20, a carbon dioxide isotope generator 40, a spectroscopic device 10, and an arithmetic unit 30. Here, as an analysis target, the radioactive isotope 14 C, which is a carbon isotope, will be described as an example. The light having an absorption wavelength of the carbon dioxide isotope 14 CO 2 produced from the radioisotope 14 C is light in the 4.5 μm band. Although the details will be described later, it is possible to realize high sensitivity by the selectivity of the absorption line of the substance to be analyzed, the light generator, and the optical resonator mode.
 本明細書において「炭素同位体」とは、特に断りのない限り安定炭素同位体12C、13C、及び放射性炭素同位体14Cを意味する。また、単に元素記号「C」と表示される場合、天然存在比での炭素同位体混合物を意味する。
 酸素の安定同位体は16O、17O及び18Oが存在するが、元素記号「O」と表示される場合、天然存在比での酸素同位体混合物を意味する。
 「二酸化炭素同位体」とは、特に断りのない限り12CO13CO及び14COを意味する。また、単に「CO」と表示される場合、天然存在比の炭素及び酸素同位体により構成される二酸化炭素分子を意味する。
As used herein, the term "carbon isotope" means stable carbon isotopes 12 C, 13 C, and radiocarbon isotopes 14 C, unless otherwise specified. Also, when simply displayed as the element symbol "C", it means a carbon isotope mixture in the natural abundance ratio.
There are 16 O, 17 O and 18 O stable isotopes of oxygen, but when the element symbol "O" is displayed, it means an oxygen isotope mixture in the natural abundance ratio.
"Carbon dioxide isotope" means 12 CO 2 , 13 CO 2 and 14 CO 2 unless otherwise noted. When simply displayed as "CO 2 ", it means a carbon dioxide molecule composed of carbon and oxygen isotopes having a natural abundance ratio.
 本明細書において「生体試料」とは、血液、血漿、血清、尿、糞便、胆汁、唾液、その他の体液や分泌液、呼気ガス、口腔ガス、皮膚ガス、その他の生体ガス、さらには、肺、心臓、肝臓、腎臓、脳、皮膚などの各種臓器およびこれらの破砕物など、生体から採取し得るあらゆる試料を意味する。さらに、当該生体試料の由来は、動物、植物、微生物を含むあらゆる生物が挙げられ、好ましくは哺乳動物、より好ましくはヒトの由来である。哺乳動物としては、ヒト、サル、マウス、ラット、モルモット、ウサギ、ヒツジ、ヤギ、ウマ、ウシ、ブタ、イヌ、ネコなどが挙げられるが、これらに限定されない。 As used herein, the term "biological sample" refers to blood, plasma, serum, urine, feces, bile, saliva, other body fluids and secretions, exhaled gas, oral gas, skin gas, other biological gas, and even the liver. It means any sample that can be collected from a living body, such as various organs such as heart, liver, kidney, brain, and skin, and their crushed substances. Furthermore, the origin of the biological sample includes all organisms including animals, plants and microorganisms, preferably mammals, and more preferably humans. Mammals include, but are not limited to, humans, monkeys, mice, rats, guinea pigs, rabbits, sheep, goats, horses, cows, pigs, dogs, cats and the like.
〈光発生装置〉
 図1の光発生装置20としては、二酸化炭素同位体の吸収波長を有する光を発生できる装置であれば特に制限されることなく種々の装置を用いることができる。ここでは、放射性炭素同位体14Cの吸収波長である4.5μm帯の光を簡易に発生させ、しかも装置サイズがコンパクトな光発生装置を例に挙げて説明する。
<Light generator>
As the light generator 20 of FIG. 1, various devices can be used without particular limitation as long as they can generate light having an absorption wavelength of carbon dioxide isotope. Here, a light generator that simply generates light in the 4.5 μm band, which is the absorption wavelength of the radioactive carbon isotope 14 C, and has a compact device size will be described as an example.
 光発生装置20は、光源23と、光源23から出射する光を導光する導波路21と、導波路21上に設けられた分岐手段(ビームスプリッタ)27と、分岐手段27により分岐した光束を受けるパッシブフィードバック(passive feedback)部25とを備える。パッシブフィードバック部25は、分岐手段27から当対する光を集光する集光レンズ25bと、集光レンズ25からの光を反射して集光レンズ25及び分岐手段27を介して光源23に光を送り返すミラー25aとを有する。パッシブフィードバック部25により角度調整に及ぼす後方反射の依存性が小さくなることで、後述のQCLへの容易な再入射が可能となる。 The light generator 20 uses a light source 23, a waveguide 21 that guides light emitted from the light source 23, a branching means (beam splitter) 27 provided on the waveguide 21, and a luminous flux branched by the branching means 27. A passive feedback unit 25 for receiving is provided. The passive feedback unit 25 reflects the light from the condenser lens 25 and transmits the light to the light source 23 via the condenser lens 25 and the branch means 27, and the condenser lens 25b that collects the light corresponding to the branch means 27. It has a mirror 25a to be sent back. Since the passive feedback unit 25 reduces the dependence of the rear reflection on the angle adjustment, it is possible to easily re-enter the QCL described later.
 光源23としては、中赤外域の波長の光を出射させることが可能な量子カスケードレーザ(Quantum Cascade Laser: QCL)を用いることができる。導波路21としては、生成した高強度な超短パルス光の特性を劣化させずに伝送できる光ファイバーを用いることが好ましい。材料は、溶融石英でできたファイバーを用いることができる。 As the light source 23, a quantum cascade laser (Quantum Cascade Laser: QCL) capable of emitting light having a wavelength in the mid-infrared region can be used. As the waveguide 21, it is preferable to use an optical fiber capable of transmitting the generated high-intensity ultrashort pulsed light without deteriorating the characteristics. As the material, a fiber made of molten quartz can be used.
 光発生装置20は、さらに、光学分離器29と、偏光子22と、λ/4波長板と、検出器24と、混合器26aと、ローバスフィルタ26bと、PID(Proportional-Integral-Differential)制御用サーボ28とを備えるPDHロック部を備える。光学分離器29としては電気光学位相変調器(EOM)を用いることができる。検出器24としてはフォトダイオードを用いることができる。PID制御用サーボ28は、フィードバック制御部の一例である。 The light generator 20 further includes an optical separator 29, a polarizer 22, a λ / 4 wave plate, a detector 24, a mixer 26a, a low bus filter 26b, and a PID (Proportional-Integral-Differential). A PDH lock unit including a control servo 28 is provided. As the optical separator 29, an electro-optical phase modulator (EOM) can be used. A photodiode can be used as the detector 24. The PID control servo 28 is an example of a feedback control unit.
 なお、図示していないが、光学分離器29と光源23の間に、共振器からの戻りの光を防ぐアイソレータを配置することが好ましい。また、電流の変調により周波数を補正するレーザ電流コントローラを配置することが好ましい。 Although not shown, it is preferable to arrange an isolator between the optical separator 29 and the light source 23 to prevent the return light from the resonator. Further, it is preferable to arrange a laser current controller that corrects the frequency by modulating the current.
 光学分離器29からの光は、λ/4波長板を通って、光共振器11に送り込まれる。光共振器11で反射して戻ってきた光(エラー信号)は、再度λ/4波長板を通った後に、偏光子22により偏光された後、検出器24に送り込まれ、混合器26aで混合される。 The light from the optical separator 29 is sent to the optical resonator 11 through the λ / 4 wave plate. The light (error signal) reflected by the optical resonator 11 passes through the λ / 4 wave plate again, is polarized by the polarizer 22, is sent to the detector 24, and is mixed by the mixer 26a. Will be done.
 ローバスフィルタ26bを通った光は、PID制御用サーボ28において、より高い周波数成分とより低い周波数成分の2つのPID制御電圧として出力される。ここでは、より高い周波数成分(レーザ電流(PIDfast))を光源23に送ることにより、レーザ周波数が高い周波数帯の不安定性を補正し安定化することができる。またより低い周波数成分をパッシブフィードバック部25のミラー25aに送り、ミラー距離(PIDslow)を補正することで、低い周波数帯の不安定性が安定化される。ミラー距離の補正は図示されていないがピエゾ素子などを用いて制御することができる。
 これにより、光に位相変調をかけて、反射光強度をその変調周波数で復調することで共鳴周波数の前後で符号の異なる信号が得られ、それをエラー信号としてフィードバックをかけ、光の周波数を共振器の共鳴周波数にロックすることができる。
The light that has passed through the low bus filter 26b is output by the PID control servo 28 as two PID control voltages, a higher frequency component and a lower frequency component. Here, by sending a higher frequency component (laser current (PID fast )) to the light source 23, instability in a frequency band having a high laser frequency can be corrected and stabilized. Further, by sending a lower frequency component to the mirror 25a of the passive feedback unit 25 and correcting the mirror distance (PID slow ), the instability of the low frequency band is stabilized. Although the correction of the mirror distance is not shown, it can be controlled by using a piezo element or the like.
As a result, the light is phase-modulated and the reflected light intensity is demodulated at that modulation frequency to obtain signals with different codes before and after the resonance frequency, which is fed back as an error signal to resonate the light frequency. It can be locked to the resonance frequency of the vessel.
 PDHロック部を備えることで、光の周波数の安定化を図り、また光の線幅を狭くすることができる。 By providing the PDH lock unit, the frequency of light can be stabilized and the line width of light can be narrowed.
 次に、図2を参照しつつ、PDHロック部とパッシブフィードバック部の作用効果をより詳しく説明する。図2はPDHロック部とパッシブフィードバック部を備えるレイアウトの一例を示す概念図である。ここでは、QCLドライバーと、光源としての分布帰還型(DFB)の量子カスケードレーザ(QCL)とを用いた例を示す。 Next, the effects of the PDH lock unit and the passive feedback unit will be described in more detail with reference to FIG. FIG. 2 is a conceptual diagram showing an example of a layout including a PDH lock unit and a passive feedback unit. Here, an example using a QCL driver and a distributed feedback type (DFB) quantum cascade laser (QCL) as a light source is shown.
 電気光学位相変調器EOMによりレーザの位相周波数を共振器の線幅数十~数百kHzよりも大きく変調する。変調されたレーザは、偏光板とλ/4波長板を通過し、安定化の対象となる光共振器に入射される。光共振器からの戻り光はλ/4波長板を2回通過することで入射光と90度回転するため、偏光板にて取り出すことができ、光検出器で検出される。光検出器の出力とEOMの変調周波数信号が混合器で混合され、ローパスフィルタを通過することでエラー信号が得られる。このエラー信号の高い周波数成分を基にレーザ電流をPID制御するための出力(PIDfast)、低い周波数成分を基にパッシブフィードバックのミラー距離をPID制御するための出力(PIDslow)をサーボにて発生させる。PIDfastとPIDslowをレーザ電流とパッシブフィードバックのミラー距離を変更するピエゾ素子にフィードバックし、レーザ周波数を光共振器の共鳴周波数に一致させることで、安定化させることができる。得られた結果を図3~図7に示す。 The electro-optical phase modulator EOM modulates the phase frequency of the laser with a line width of several tens to several hundreds of kHz of the resonator. The modulated laser passes through the polarizing plate and the λ / 4 wave plate, and is incident on the optical resonator to be stabilized. Since the return light from the optical resonator passes through the λ / 4 wave plate twice and rotates 90 degrees with the incident light, it can be taken out by a polarizing plate and detected by a photodetector. The output of the photodetector and the EOM modulation frequency signal are mixed by a mixer and passed through a low-pass filter to obtain an error signal. The output for PID control of the laser current based on the high frequency component of this error signal (PID fast ) and the output for PID control of the mirror distance of passive feedback based on the low frequency component (PID slow ) are servoed. generate. It can be stabilized by feeding back the PID fast and PID slow to the piezo element that changes the mirror distance between the laser current and the passive feedback, and matching the laser frequency to the resonance frequency of the optical resonator. The obtained results are shown in FIGS. 3 to 7.
〈二酸化炭素同位体生成装置〉
 二酸化炭素同位体生成装置40は、炭素同位体を二酸化炭素同位体に変換可能であれば特に制限されることなく種々の装置を用いることができる。二酸化炭素同位体生成装置40としては、試料を酸化させ、試料中に含まれる炭素を二酸化炭素にする機能を有していることが好ましい。
 例えば全有機炭素(total organic carbon 以下「TOC」という)発生装置、ガスクロマトグラフィー用の試料ガス発生装置、燃焼イオンクロマトグラフィー用の試料ガス発生装置、元素分析装置(Elemental Analyzer:EA)等の二酸化炭素生成装置(G)41を用いることができる。
<Carbon dioxide isotope generator>
As the carbon dioxide isotope generating device 40, various devices can be used without particular limitation as long as the carbon isotope can be converted into the carbon dioxide isotope. The carbon dioxide isotope generator 40 preferably has a function of oxidizing the sample and converting carbon contained in the sample into carbon dioxide.
For example, carbon dioxide such as a total organic carbon (hereinafter referred to as "TOC") generator, a sample gas generator for gas chromatography, a sample gas generator for combustion ion chromatography, and an elemental analyzer (EA). A carbon generator (G) 41 can be used.
 なお、有機元素分析計を用いる場合のキャリアガスは、少なくとも炭素、窒素及び硫黄元素をできるだけ含まないガスが好ましく、ヘリウムガス(He)が例示できる。キャリアガスの流量は、50mL/minから500mL/minの範囲が好ましく、100mL/minから300mL/minの範囲がより好ましい。 When using an organic element analyzer, the carrier gas is preferably a gas containing at least carbon, nitrogen and sulfur elements as much as possible, and helium gas (He) can be exemplified. The flow rate of the carrier gas is preferably in the range of 50 mL / min to 500 mL / min, more preferably in the range of 100 mL / min to 300 mL / min.
 図8に、273K、CO分圧20%、CO分圧1.0×10-4%、NO分圧3.0×10-8%の条件下における14COと競合ガス13CO,CO,及びNOの4.5μm帯吸収スペクトルを示す。
 前処理後の生体試料を燃焼させることにより、二酸化炭素同位体14CO(以下、「14CO」ともいう)を含むガスを生成できる。しかし、14COの発生と共に、CO、NOといった夾雑ガスも発生する。これらCO、NOは、図8に示すように、それぞれ4.5μm帯の吸収スペクトルを有するので、14COが有する4.5μm帯の吸収スペクトルと競合する。そのため、分析感度を向上させるために、CO、NOを除去することが好ましい。
 CO、NOの除去方法としては、以下のように14COを捕集・分離する方法が挙げられる。また、酸化触媒や白金触媒により、CO、NOを除去・低減する方法、及び捕集・分離方法との併用が挙げられる。
FIG. 8 shows 14 CO 2 and 13 CO competing gas under the conditions of 273 K, CO 2 partial pressure 20%, CO partial pressure 1.0 × 10 -4 %, and N 2 O partial pressure 3.0 × 10 -8 %. The 4.5 μm band absorption spectra of 2 , CO, and N 2 O are shown.
By burning the biological sample after the pretreatment, a gas containing the carbon dioxide isotope 14 CO 2 (hereinafter, also referred to as “ 14 CO 2 ”) can be generated. However, with the generation of 14 CO 2 , contaminant gases such as CO and N 2 O are also generated. As shown in FIG. 8, these CO and N 2 O each have an absorption spectrum in the 4.5 μm band, and therefore compete with the absorption spectrum in the 4.5 μm band of 14 CO 2 . Therefore, it is preferable to remove CO and N 2 O in order to improve the analysis sensitivity.
Examples of the method for removing CO and N 2 O include a method for collecting and separating 14 CO 2 as follows. Further, the oxidation catalyst or platinum catalyst, CO, a method of removing and reducing the N 2 O, and the combined use of the collection and separation methods used.
〈分光装置〉
 図1に示すように、分光装置10は、光共振器11と、光共振器11からの透過光の強度を検出する光検出器15とを備える。光共振器(Optical resonator or Optical cavity)11は、分析対象の二酸化炭素同位体が封入される筒状の本体と、本体の内部の長手方向の一端と他端に凹面が向かい合うように配置された高反射率の1対のミラー12a、12b(高い反射率:99.99%以上が好ましい)と、本体内部の他端に配置されたミラー12a、12b間隔を調整するピエゾ素子13と、分析対象ガスが充填されるセル16と、を備える。なお、ここでは図示を省略しているが、本体の側部に二酸化炭素同位体を注入するためのガス注入口や、本体内の気圧を調整する気圧調整口を設けておくことが好ましい。
 光共振器内部11にレーザ光を入射し閉じ込めると、レーザ光はミラーの反射率に対応した強度の光を出力しながら、数千回~一万回というオーダーで多重反射を繰り返す。そのため実効的な光路が数10kmにも及ぶため、光共振器内部に封入された分析対象のガスが極微量であっても大きな吸収量を得ることができる。
<Spectroscopic device>
As shown in FIG. 1, the spectroscopic device 10 includes an optical resonator 11 and a photodetector 15 that detects the intensity of transmitted light from the optical resonator 11. The optical resonator or optical cavity 11 is arranged so that the cylindrical main body in which the carbon dioxide isotope to be analyzed is encapsulated and the concave surfaces face each other at one end and the other end in the longitudinal direction inside the main body. A pair of mirrors 12a and 12b with high reflectance (high reflectance: preferably 99.99% or more), a piezo element 13 arranged at the other end of the main body and adjusting the interval between the mirrors 12a and 12b, and a gas to be analyzed A cell 16 to be filled is provided. Although not shown here, it is preferable to provide a gas injection port for injecting carbon dioxide isotope and a pressure adjusting port for adjusting the air pressure in the main body on the side of the main body.
When the laser beam is incident on the inside 11 of the optical resonator and confined, the laser beam repeats multiple reflections on the order of several thousand times to 10,000 times while outputting light having an intensity corresponding to the reflectance of the mirror. Therefore, since the effective optical path extends to several tens of kilometers, a large amount of absorption can be obtained even if the amount of gas to be analyzed enclosed inside the optical resonator is extremely small.
 図9A、図9Bはレーザ光を用いたキャビティーリングダウン分光法(Cavity Ring-Down Spectroscopy 以下「CRDS」ともいう)の原理を示す図である。
 図9Aに示すように、ピエゾ素子13を作動させてミラー間隔が共鳴条件を満たすようになったときは、高強度の信号が光共振器から透過される。一方、入射光を遮断すると、光共振器内に蓄積された光は時間に対し指数関数的に減少する。光共振器からの出力光強度を測定することで、図9Aに示すような指数関数的な減衰信号[リングダウン信号(Ringdown signal)]を観測することができる。リングダウン信号を観測する別の方法として、入力レーザ光を光学スイッチにて素早く遮断する方法が挙げられる。
9A and 9B are diagrams showing the principle of cavity ring-down spectroscopy (hereinafter, also referred to as “CRDS”) using a laser beam.
As shown in FIG. 9A, when the piezo element 13 is operated and the mirror spacing satisfies the resonance condition, a high-intensity signal is transmitted from the optical resonator. On the other hand, when the incident light is blocked, the light accumulated in the optical resonator decreases exponentially with time. By measuring the output light intensity from the optical resonator, an exponential attenuation signal [Ringdown signal] as shown in FIG. 9A can be observed. Another method of observing the ringdown signal is to quickly block the input laser beam with an optical switch.
 光共振器の内部に吸収物質が充填されていない場合、透過してくる時間依存のリングダウン信号は図9Aの点線で示すような曲線となる。一方、光共振器内に吸光物質が充填されている場合、図9Aの実線で示すように、レーザ光が光共振器内で往復するごとに吸収されるため、光の減衰時間が短くなる。この光の減衰時間は、光共振器内の吸光物質濃度及び入射レーザ光の波長に依存しているため、Beer-Lambertの法則を適用することで吸収物質の絶対濃度を算出することができる。また光共振器内の吸収物質濃度と比例関係にある減衰率(リングダウンレート)の変化量を測定することにより、光共振器内の吸収物質濃度を測定することができる。 When the inside of the optical resonator is not filled with an absorbent substance, the transmitted time-dependent ringdown signal has a curve as shown by the dotted line in FIG. 9A. On the other hand, when the optical resonator is filled with an absorbent substance, as shown by the solid line in FIG. 9A, the laser beam is absorbed each time it reciprocates in the optical resonator, so that the light attenuation time is shortened. Since the decay time of this light depends on the concentration of the light-absorbing substance in the optical cavity and the wavelength of the incident laser light, the absolute concentration of the absorbing substance can be calculated by applying Beer-Lambert's law. Further, the concentration of the absorbent substance in the optical cavity can be measured by measuring the amount of change in the attenuation rate (ring down rate) which is proportional to the concentration of the absorbent substance in the optical cavity.
 光共振器から漏れ出た透過光を光検出器により検知し、演算装置を用いて14CO濃度を算出した後、14CO濃度から14C濃度を算出することができる。 The transmitted light leaked from the optical resonator is detected by a photodetector, the 14 CO 2 concentration is calculated using an arithmetic unit, and then the 14 C concentration can be calculated from the 14 CO 2 concentration.
 光共振器11のミラー12a、12b間隔、ミラー12a、12bの曲率半径、本体の長手方向長さや幅等は、分析対象である二酸化炭素同位体が持つ吸収波長により変化させることが好ましい。想定される光共振器長は1mm~10mが挙げられる。
 二酸化炭素同位体14Cの場合、光共振器長が長いことは光路長を確保するのに有効であるが、光共振器長が長くなるとガスセルの体積が増え、必要な試料量が増えるため、光共振器長は10cm~60cmの間が好ましい。またミラー12a、12bの曲率半径は、光共振器長と同じか、長くすることが好ましい。
The intervals between the mirrors 12a and 12b of the optical resonator 11, the radius of curvature of the mirrors 12a and 12b, the length and width in the longitudinal direction of the main body, and the like are preferably changed according to the absorption wavelength of the carbon dioxide isotope to be analyzed. The assumed optical resonator length is 1 mm to 10 m.
In the case of carbon dioxide isotope 14 C, a long optical cavity length is effective in securing the optical path length, but as the optical resonator length increases, the volume of the gas cell increases and the required sample amount increases. The optical resonator length is preferably between 10 cm and 60 cm. Further, the radius of curvature of the mirrors 12a and 12b is preferably the same as or longer than the optical resonator length.
 なおミラー間隔は、ピエゾ素子13を駆動することにより、一例として数マイクロメートルから数十マイクロメートルのオーダーで調整することが可能である。最適な共鳴条件を作り出すために、ピエゾ素子13による微調整を行うこともできる。
 なお、1対のミラー12a、12bとしては、1対の凹面鏡を図示して説明してきたが、十分な光路が得られるのであれば、その他にも凹面鏡と平面鏡の組み合わせや、平面鏡同士の組み合わせであっても構わない。
By driving the piezo element 13, the mirror spacing can be adjusted on the order of several micrometers to several tens of micrometers as an example. Fine adjustment by the piezo element 13 can also be performed in order to create the optimum resonance condition.
As the pair of mirrors 12a and 12b, a pair of concave mirrors has been illustrated and described, but if a sufficient optical path can be obtained, a combination of a concave mirror and a plane mirror or a combination of plane mirrors can be used. It doesn't matter if there is.
 ミラー12a、12bを構成する材料としては、サファイアガラスを用いることができる。
 分析対象ガスを充填するセル16は、容積がより小さいことが好ましい。少ない分析試料であっても効果的に光の共振効果を得ることができるからである。セル16の容量は、8mL~1000mLが例示できる。セル容量は、例えば測定に供することができる14C源の量に応じて適宜好ましい容量を選択でき、尿のように大量に入手できる14C源では80mL~120mLのセルが好適であり、血液や涙液のように入手量が限られる14C源では8mL~12mLのセルが好適である。
Sapphire glass can be used as the material constituting the mirrors 12a and 12b.
The cell 16 filled with the gas to be analyzed preferably has a smaller volume. This is because the resonance effect of light can be effectively obtained even with a small number of analytical samples. The capacity of the cell 16 can be exemplified by 8 mL to 1000 mL. The cell volume can be appropriately selected depending on the amount of 14 C source that can be used for measurement, for example, and 80 mL to 120 mL of cells are suitable for 14 C sources that can be obtained in large quantities such as urine, such as blood and For 14 C sources with limited availability, such as tears, 8 mL-12 mL cells are suitable.
(光共振器の安定性条件の評価)
 CRDSにおける14CO吸収量と検出限界を評価するため、分光データに基づく計算を行った。12CO13COなどに関する分光データは大気吸収線データベース(HITRAN)を利用し、14COに関しては文献値(「S. Dobos et al., Z. Naturforsch, 44a, 633-639 (1989)」)を使用した。
 ここで、14COの吸収によるリングダウンレート(指数関数的減衰の割合)の変化量Δβ(=β-β0、β:試料有りの減衰率、β0:試料なしの減衰率)は、14COの光吸収断面積σ14、分子数密度N、光速cにより以下のように表せる。
 Δβ=σ14(λ,T,P)N(T,P,X14)c
 (式中、σ14、Nは、レーザ光波長λ、温度T、圧力P、X14=14C/TotalC比の関数である。)
(Evaluation of stability conditions of optical resonator)
Calculations based on spectroscopic data were performed to evaluate the 14 CO 2 absorption and detection limit in CRDS. For spectroscopic data on 12 CO 2 , 13 CO 2, etc., the atmospheric absorption line database (HITRAN) was used, and for 14 CO 2 , literature values (“S. Dobos et al., Z. Naturforsch, 44a, 633-639 (1989)) )")It was used.
Here, the amount of change Δβ (= β-β 0 , β: attenuation rate with sample, β 0 : attenuation rate without sample) of the ringdown rate (rate of exponential decay) due to absorption of 14 CO 2 is 14 CO 2 can be expressed as follows by the light absorption cross section σ 14 , the molecular number density N, and the light velocity c.
Δβ = σ 14 (λ, T, P) N (T, P, X 14 ) c
(In the equation, σ 14 , N are functions of the laser light wavelength λ, the temperature T, the pressure P, and the X 14 = 14 C / Total C ratio.)
 図10は、計算で求められた13CO14COの吸収によるΔβの温度依存性を示す図である。図10より、14C/TotalCが10-10、10-11、10-12では、室温300Kでの13COによる吸収が14COの吸収量を超えるか同程度となるため、冷却を行う必要があることが分かった。
 一方、光共振器由来のノイズ成分であるリングダウンレートのばらつきΔβ0~10-1が実現できれば、14C/TotalC比~10-11の測定を実現できることが分かる。これにより、分析時の温度として摂氏-40度程度の冷却が必要であることが明らかとなった。例えば、定量下限として14C/TotalCを10-11とすると、COガスの濃縮によるCOガス分圧の上昇(例えば20%)と、前記温度条件とが必要であることが示唆される。
FIG. 10 is a diagram showing the temperature dependence of Δβ due to the absorption of 13 CO 2 and 14 CO 2 obtained by calculation. From FIG. 10, 14 C / Total C 10 -10, 10 -11, in 10 -12, for a equal to or absorption by 13 CO 2 at room temperature 300K exceeds the absorption of 14 CO 2, the cooling I found that I needed to do it.
On the other hand, it can be seen that if the variation Δβ 0 to 10 1 s -1 of the ringdown rate, which is a noise component derived from the optical resonator, can be realized, the measurement of 14 C / Total C ratio to 10-11 can be realized. From this, it became clear that cooling of about -40 degrees Celsius is required as the temperature at the time of analysis. For example, when the 14 C / Total C and 10-11 as the lower limit of quantification, increase of CO 2 gas partial pressure by concentration of CO 2 gas (e.g. 20%), suggesting that it is necessary and the temperature ..
 光共振器11について説明したが、光共振器の具体的態様の概念図(一部切欠図)を図13に示す。図13に示すように、光共振器51は、真空装置としての円筒状の断熱用チャンバー58と、断熱用チャンバー58内に配置された測定用ガスセル56と、測定用ガスセル56の両端に配置された1対の高反射率ミラー52と、測定用ガスセル56の一端に配置されたミラー駆動機構55と、測定用ガスセル56の他端に配置されたリングピエゾアクチュエーター53と、測定用ガスセル56を冷却するペルチェ素子59と、循環冷却器(図示せず)に接続された冷却パイプ54aを有する水冷ヒートシンク54と、を備える。なお、水冷ヒートシンク54により、ペルチェ素子59から出る熱を放熱させることができる。 Although the optical resonator 11 has been described, FIG. 13 shows a conceptual diagram (partially cutaway diagram) of a specific embodiment of the optical resonator. As shown in FIG. 13, the optical resonator 51 is arranged at both ends of a cylindrical heat insulating chamber 58 as a vacuum device, a measuring gas cell 56 arranged in the heat insulating chamber 58, and a measuring gas cell 56. Cools the pair of high-reflectivity mirrors 52, the mirror drive mechanism 55 arranged at one end of the measurement gas cell 56, the ring piezo actuator 53 arranged at the other end of the measurement gas cell 56, and the measurement gas cell 56. A Peltier element 59 is provided, and a water-cooled heat sink 54 having a cooling pipe 54a connected to a circulation cooler (not shown). The water-cooled heat sink 54 can dissipate heat generated from the Peltier element 59.
〈冷却装置〉
 図12(Applied Physics Vol.24, pp.381-386, 1981より引用)は、分析試料1216131813161416の吸収波長と吸収強度の関係を示す。図12に示すように、それぞれの炭素同位体を含む二酸化炭素は、固有の吸収線を有している。実際の吸収では、各吸収線は試料の圧力や温度に起因する拡がりによって有限の幅を持つ。このため、試料の圧力は大気圧以下、温度は273K(0℃)以下にすることが好ましい。
<Cooling system>
Figure 12 (quoted from Applied Physics Vol.24, pp.381-386, 1981) shows the absorption wavelengths of analytical samples 12 C 16 O 2 , 13 C 18 O 2 , 13 C 16 O 2 , and 14 C 16 O 2. The relationship of absorption strength is shown. As shown in FIG. 12, carbon dioxide containing each carbon isotope has a unique absorption line. In actual absorption, each absorption line has a finite width due to the spread due to the pressure and temperature of the sample. Therefore, it is preferable that the pressure of the sample is atmospheric pressure or less and the temperature is 273K (0 ° C.) or less.
 14COの吸収強度は温度依存性があるため、光共振器11内の設定温度を、できるだけ低く設定することが好ましい。具体的な光共振器11内の設定温度は273K(0℃)以下が好ましい。下限値は特に制限はないが、冷却効果と経済的観点から、173K~253K(-100℃~-20℃)、特に233K(-40℃)程度に冷却することが好ましい。 Since the absorption intensity of 14 CO 2 is temperature-dependent, it is preferable to set the set temperature in the optical resonator 11 as low as possible. The specific set temperature in the optical resonator 11 is preferably 273 K (0 ° C.) or less. The lower limit is not particularly limited, but from the viewpoint of cooling effect and economy, it is preferable to cool to 173K to 253K (-100 ° C to -20 ° C), particularly to about 233K (-40 ° C).
 図1に図示されてはいないが、分光装置10内に、光共振器11を冷却する冷却装置を設けてもよい。14COの光吸収は温度依存性を有するため、冷却装置により光共振器11内の設定温度を低くすることで、14COの吸収線と13CO12COの吸収線との区別が容易になり、14COの吸収強度が強くなるからである。光共振器11を冷却する冷却装置としては、ペルチェ素子が挙げられる。ペルチェ素子の他にも、例えば、液体窒素槽、ドライアイス槽などを用いることができる。分光装置11を小型化できる観点からはペルチェ素子を用いることが好ましく、装置の製造コストを下げる観点からは液体窒素水槽もしくはドライアイス槽を用いることが好ましい。 Although not shown in FIG. 1, a cooling device for cooling the optical resonator 11 may be provided in the spectroscopic device 10. Since the light absorption of 14 CO 2 is temperature-dependent, by lowering the set temperature in the optical resonator 11 with a cooling device, the absorption line of 14 CO 2 and the absorption line of 13 CO 2 and 12 CO 2 can be separated. This is because it becomes easier to distinguish and the absorption intensity of 14 CO 2 becomes stronger. Examples of the cooling device for cooling the optical resonator 11 include a Peltier element. In addition to the Peltier element, for example, a liquid nitrogen tank, a dry ice tank, or the like can be used. From the viewpoint of miniaturizing the spectroscopic device 11, it is preferable to use a Peltier element, and from the viewpoint of reducing the manufacturing cost of the device, it is preferable to use a liquid nitrogen water tank or a dry ice tank.
〈除湿装置〉
 図1の光共振器11を冷却する際、除湿装置により、光共振器11内を除湿することが好ましい。
 除湿条件は、CRDS分析セルを-40℃以下(233K以下)に冷却した場合に、その温度条件下で結露・凍結しないガス条件(水分量)になることが好ましい。ペルチェ素子等の冷却手段により除湿してもよいが、フッ素系イオン交換樹脂膜といった水蒸気除去用高分子膜を使用した膜分離法により除湿することもできる。また二酸化炭素生成部(試料導入部ユニット)内に、吸湿剤もしくはガスドライヤーを配置してもよい。
<Dehumidifier>
When cooling the optical resonator 11 of FIG. 1, it is preferable to dehumidify the inside of the optical resonator 11 with a dehumidifying device.
The dehumidifying condition is preferably a gas condition (moisture content) that does not cause dew condensation or freezing under the temperature condition when the CRDS analysis cell is cooled to −40 ° C. or lower (233 K or lower). Dehumidification may be performed by a cooling means such as a Peltier element, but dehumidification may also be performed by a membrane separation method using a polymer film for removing water vapor such as a fluorine-based ion exchange resin film. Further, a hygroscopic agent or a gas dryer may be arranged in the carbon dioxide generation unit (sample introduction unit).
 吸湿剤としては、例えば、CaH、CaSO4、Mg(ClO)、モレキュラーシーブ、HSO、シカサイド(Sicacide)、五酸化リン、シカペント(Sicapent)(登録商標)またはシリカゲルを用いることができる。なかでも、五酸化リン、シカペント(登録商標)、CaH、Mg(ClO)またはモレキュラーシーブが好ましく、シカペント(登録商標)がより好ましい。ガスドライヤーとしては、ナフィオン(登録商標)ドライヤー(Nafion dryers:Perma Pure Inc.製)が好ましい。吸湿剤とガスドライヤーはそれぞれ単独で用いてもよいし、併用してもよい。上述の「その温度条件下で結露・凍結しないガス条件(水分量)」は、露点を測定して確認した。言い換えると、-40℃以下(233K以下)の露点となるように、除湿できることが好ましい。露点の表示は、瞬間露点であっても、単位時間当たりの平均露点であってもよい。露点の測定は、市販の露点センサーを用いて測定することができ、例えば、ゼントール露点センサーHTF Al2O3(登録商標)(三菱化学アナリテック社製)、ヴァイサラDRYCAP(登録商標)DM70ハンディタイプ露点計(ヴァイサラ社製)が使用できる。 As the hygroscopic agent, for example, CaH 2 , CaSO 4, Mg (ClO 4 ) 2 , molecular sieve, H 2 SO 4 , Sicacide, phosphorus pentoxide, Sicapent (registered trademark) or silica gel should be used. Can be done. Of these, phosphorus pentoxide, sikapent (registered trademark), CaH 2 , Mg (ClO 4 ) 2 or molecular sieves are preferable, and sikapent (registered trademark) is more preferable. As the gas dryer, a Nafion (registered trademark) dryer (manufactured by Perma Pure Inc.) is preferable. The hygroscopic agent and the gas dryer may be used alone or in combination. The above-mentioned "gas condition (moisture content) that does not condense or freeze under the temperature condition" was confirmed by measuring the dew point. In other words, it is preferable that the dehumidification can be performed so that the dew point is −40 ° C. or lower (233K or lower). The dew point display may be an instantaneous dew point or an average dew point per unit time. The dew point can be measured using a commercially available dew point sensor. For example, the Zentor dew point sensor HTF Al2O3 (registered trademark) (manufactured by Mitsubishi Chemical Analytech), Vaisala DRYCAP (registered trademark) DM70 handy type dew point meter ( (Made by Vaisala) can be used.
〈真空装置〉
 図1に図示されてはいないが、光共振器11を真空装置内に配置してもよい。光共振器11が外気に晒されることを防止して外部温度の影響を軽減することにより分析精度が向上するからである。
 真空装置としては、光共振器11を収納でき、また光発生装置20からの照射光を光共振器11内に照射でき、透過光を光検出器に透過できるものであれば、特に制限なく様々な真空装置を用いることができる。
<Vacuum device>
Although not shown in FIG. 1, the optical resonator 11 may be arranged in the vacuum apparatus. This is because the analysis accuracy is improved by preventing the optical resonator 11 from being exposed to the outside air and reducing the influence of the external temperature.
The vacuum device is not particularly limited as long as it can accommodate the optical resonator 11, irradiate the irradiation light from the light generator 20 into the optical resonator 11, and transmit the transmitted light to the light detector. Vacuum device can be used.
〈二酸化炭素同位体導入排出制御装置〉
 図1の二酸化炭素同位体生成装置40で生成された二酸化炭素同位体を分光装置10に導入する方法としては、フロースルー法(Flow through)とストップドフロー法(Stopped flow)とがある。フロースルー法は、複雑な導入機構が不要なので比較的簡易に試料解析ができるが、高感度測定に不向きである。一方、ストップドフロー法は、高感度測定が可能であるが、導入制御が必要であり、サンプルのロスが生じ易いという欠点がある。そこで、本発明者等は、高感度測定が可能なストップドフロー法において、導入制御の課題について検討した。その結果、自動バルブ開閉系デザインの最適化と、ガス封入方法を最適化することにより、上述の課題を解決するに至った。
<Carbon dioxide isotope introduction emission control device>
As a method of introducing the carbon dioxide isotope generated by the carbon dioxide isotope generation device 40 of FIG. 1 into the spectroscopic device 10, there are a flow through method (Flow through) and a stopped flow method (Stopped flow). The flow-through method does not require a complicated introduction mechanism, so sample analysis can be performed relatively easily, but it is not suitable for high-sensitivity measurement. On the other hand, the stopped flow method enables high-sensitivity measurement, but has a drawback that introduction control is required and sample loss is likely to occur. Therefore, the present inventors have studied the problem of introduction control in the stopped flow method capable of high-sensitivity measurement. As a result, the above-mentioned problems have been solved by optimizing the design of the automatic valve opening / closing system and the gas filling method.
 自動バルブ開閉系デザインの1つとしては、図1に示されるような、二酸化炭素同位体導入排出装置60を用いることができる。図1の二酸化炭素同位体導入排出制御装置60は、二酸化炭素同位体生成装置40と光共振器11をつなぐ導入管61aと、導入管61aの上流側(二酸化炭素同位体生成装置40側)に配置されたスリーポート弁63aと、導入管61aの下流側(光共振器11側)に配置された導入弁63bと、光共振器11とポンプ65をつなぐ排出管61bと、排出管61b上に設けられた排出弁63cと、を備える。 As one of the automatic valve opening / closing system designs, the carbon dioxide isotope introduction / discharge device 60 as shown in FIG. 1 can be used. The carbon dioxide isotope introduction / emission control device 60 of FIG. 1 is provided on the introduction pipe 61a connecting the carbon dioxide isotope generation device 40 and the optical resonator 11 and on the upstream side (carbon dioxide isotope generation device 40 side) of the introduction pipe 61a. On the three-port valve 63a arranged, the introduction valve 63b arranged on the downstream side (optical resonator 11 side) of the introduction pipe 61a, the discharge pipe 61b connecting the optical resonator 11 and the pump 65, and the discharge pipe 61b. It is provided with a discharge valve 63c provided.
 二酸化炭素同位体導入排出装置60のスリーポート弁63a等の開放タイミングを図ることにより、ガスをセル内に封入することができる。具体的には以下のタイミングで制御することができる。 The gas can be sealed in the cell by timing the opening of the three-port valve 63a of the carbon dioxide isotope introduction / discharge device 60. Specifically, it can be controlled at the following timing.
 まず第一の工程において、スリーポート弁63aを閉じ、二酸化炭素生成装置内の圧力を大気圧よりも高くする。また、導入弁63bと排出弁63cを開放し、セル内の圧力を大気圧よりも低くする。具体的には30Torr以下、より好ましくは10Torr以下とする。
 試料導入系として用いられる二酸化炭素生成装置は、一定の流量でキャリアガスを流し続ける必要がある。この場合、スリーポート弁63aを閉じ大気開放しておくことにより、COガスが放出される前の二酸化炭素生成装置からのキャリアガスがガスセルに導入されることを防止できる。さらに、導入弁63bと排出弁63cを開放することにより、スリーポート弁63aからガスセル内までのガスが排出されることにより、ガスセル内の圧力を低下させることができる。
First, in the first step, the three-port valve 63a is closed to make the pressure in the carbon dioxide generator higher than the atmospheric pressure. Further, the introduction valve 63b and the discharge valve 63c are opened to make the pressure in the cell lower than the atmospheric pressure. Specifically, it is set to 30 Torr or less, more preferably 10 Torr or less.
The carbon dioxide generator used as a sample introduction system needs to keep flowing the carrier gas at a constant flow rate. In this case, by closing the three-port valve 63a and opening it to the atmosphere, it is possible to prevent the carrier gas from the carbon dioxide generator before the CO 2 gas is released from being introduced into the gas cell. Further, by opening the introduction valve 63b and the discharge valve 63c, the gas from the three port valve 63a to the inside of the gas cell is discharged, so that the pressure in the gas cell can be reduced.
 次に、第二の工程においてカラム温度を閾値温度以上まで加熱する。閾値温度は、具体的には80℃~200℃、好ましくは90℃~120℃、より好ましくは90℃~110℃である。
 カラム温度が一定の温度を超えるとCOガスがパルス状に放出されるため、どのタイミングでCOガスが放出されるかを把握することにより、パルス状に放出されたCOガスがガスセルに到達するまでの時間がわかる。本発明者らは、カラム温度を監視することにより、カラム温度が所定の温度(閾値温度)を超えてから数秒後にCOガスがガスセルに到達することを知見した。具体的には、閾値温度が100℃の場合、20秒から30秒、好ましくは25秒から27秒後にCOガスがガスセルに到達することを知見した。
Next, in the second step, the column temperature is heated to the threshold temperature or higher. Specifically, the threshold temperature is 80 ° C. to 200 ° C., preferably 90 ° C. to 120 ° C., and more preferably 90 ° C. to 110 ° C.
Since the column temperature CO 2 gas exceeds a certain temperature is emitted in pulses, by any timing CO 2 gas to grasp whether released, CO 2 gas discharged in pulses within the gas cell You can see the time to reach it. By monitoring the column temperature, the present inventors have found that the CO 2 gas reaches the gas cell several seconds after the column temperature exceeds a predetermined temperature (threshold temperature). Specifically, it was found that when the threshold temperature is 100 ° C., the CO 2 gas reaches the gas cell after 20 to 30 seconds, preferably 25 to 27 seconds.
 第三の工程において、カラム温度が閾値温度に到達してから数秒後に、スリーポート弁63aを開放し、また導入弁63bを閉じ、ガス(二酸化炭素同位体)をガスセル内に導入する。導入時間はガスセルの大きさ等により変化するものであるが1秒未満が好ましい。なお、出弁63cは閉じておく。 In the third step, a few seconds after the column temperature reaches the threshold temperature, the three-port valve 63a is opened, the introduction valve 63b is closed, and the gas (carbon dioxide isotope) is introduced into the gas cell. The introduction time varies depending on the size of the gas cell and the like, but is preferably less than 1 second. The valve 63c is closed.
 第四の工程において、導入弁63bを閉じたままで、スリーポート弁63aを閉じ、二酸化炭素生成装置内の圧力を大気圧よりも高くし、ガスセル内の圧力を下げる。
 第三の工程において、ガス圧は、スリーポート弁63aを開放してガスを二酸化炭素生成装置からガスセルに導入し、その後、導入弁を閉じるまでの1秒間で0Torrから60Torrまで上昇する。このままではガスセル圧力が高すぎ、吸収線の測定に向かない。そのため、第四の工程においてガスセル内の圧力を下げる。
In the fourth step, with the introduction valve 63b closed, the three-port valve 63a is closed, the pressure in the carbon dioxide generator is made higher than the atmospheric pressure, and the pressure in the gas cell is lowered.
In the third step, the gas pressure rises from 0 Torr to 60 Torr in 1 second until the three-port valve 63a is opened to introduce the gas from the carbon dioxide generator into the gas cell and then the introduction valve is closed. If nothing is done, the gas cell pressure is too high and it is not suitable for measuring the absorption line. Therefore, the pressure in the gas cell is reduced in the fourth step.
 第五の工程において、ガスセル内の圧力が10~40Torr程度になるまで排出弁63cを開放し(約1秒間)、その後、排出弁63cを閉じる。ガスセル内の圧力は、好ましくは18~22Torrである。
 導入弁63bが閉じられた状態で排出弁63cを開放すると、ガスセル内のガスが排出されるために、ガスセル内の圧力が徐々に低下する。ガスセル内の圧力が20Torr程度まで低下した後に、排出弁63cを閉じる。
In the fifth step, the discharge valve 63c is opened (for about 1 second) until the pressure in the gas cell reaches about 10 to 40 Torr, and then the discharge valve 63c is closed. The pressure in the gas cell is preferably 18-22 Torr.
When the discharge valve 63c is opened with the introduction valve 63b closed, the pressure in the gas cell gradually decreases because the gas in the gas cell is discharged. After the pressure in the gas cell drops to about 20 Torr, the discharge valve 63c is closed.
 なお、図13(a)、図13(b)に、本発明の二酸化炭素同位体導入排出制御装置を用いた場合の、光共振器内におけるリングダウンレートとガスセル圧力変化の関係を示す。
 上段(図13(a))はスリーポート弁63aと導入弁63bと排出弁63cを開放し、CO2ガスが放出される前の二酸化炭素生成装置からのキャリアガスをガスセルに導入しておき、CO2ガスが放出さてガスセルに到達した瞬間にスリーポート弁63aと導入弁63bと排出弁63cを同時に閉じた場合のリングダウンレートとガスセル圧力変化の関係である。CO2ガスの導入後のセル内の圧力は約60Torrと高く、吸収線の測定に向かない。また、CO2ガスがガスセルに到達した際にセル内にキャリアガスが存在するため、CO2ガスをガスセルに閉じ込めるとキャリアガスで希釈され、セル内のCO2ガス濃度が低下し、CO2ガスの吸収量に比例するリングダウン信号が小さくなる。
 これと比較し、下段(図13(b))に示すように、本発明の二酸化炭素同位体導入排出制御装置を用いて適切にバルブを自動開閉した場合は、CO2ガスの導入後のセル内の圧力は約20Torrであり、吸収線の測定に適しており、キャリアガスとの希釈もほぼ起こらないため、セル内のCO2ガス濃度が減少せず、リングダウン信号は減少しない。
 なお、図13に示すデータを得る際に、レーザの波長を常に掃引し、およそ5秒に1回ずつにCO2の吸収線スペクトルを取得した。
In addition, FIG. 13A and FIG. 13B show the relationship between the ringdown rate and the gas cell pressure change in the optical resonator when the carbon dioxide isotope introduction / emission control device of the present invention is used.
In the upper stage (FIG. 13 (a)), the three port valve 63a, the introduction valve 63b, and the discharge valve 63c are opened, and the carrier gas from the carbon dioxide generator before the CO 2 gas is released is introduced into the gas cell. This is the relationship between the ringdown rate and the gas cell pressure change when the three-port valve 63a, the introduction valve 63b, and the discharge valve 63c are closed at the same time when the CO 2 gas is released and reaches the gas cell. The pressure inside the cell after the introduction of CO 2 gas is as high as about 60 Torr, which is not suitable for measuring absorption lines. In addition, since carrier gas exists in the cell when the CO 2 gas reaches the gas cell, when the CO 2 gas is confined in the gas cell, it is diluted with the carrier gas, the CO 2 gas concentration in the cell decreases, and the CO 2 gas The ring-down signal, which is proportional to the amount of carbon dioxide absorbed, becomes smaller.
In comparison with this, as shown in the lower part (FIG. 13 (b)), when the valve is appropriately opened and closed by using the carbon dioxide isotope introduction / emission control device of the present invention, the cell after the introduction of CO 2 gas is used. The pressure inside is about 20 Torr, which is suitable for measuring the absorption line, and since dilution with the carrier gas hardly occurs, the CO 2 gas concentration in the cell does not decrease, and the ring-down signal does not decrease.
When obtaining the data shown in FIG. 13, the wavelength of the laser was constantly swept, and the absorption line spectrum of CO 2 was acquired approximately once every 5 seconds.
〈演算装置〉
 図1の演算装置30としては、上述の減衰時間やリングダウンレートから光共振器内の吸収物質濃度を測定し、吸収物質濃度から炭素同位体濃度を測定できるものであれば特に制限されることなく種々の装置を用いることができる。
 演算制御部31としては、CPU等の通常のコンピュータシステムで用いられる演算手段等で構成すればよい。入力装置32としては、例えばキーボード、マウス等のポインティングデバイスが挙げられる。表示装置33としては、例えば液晶ディスプレイ、モニタ等の画像表示装置等が挙げられる。出力装置34としては、例えばプリンタ等が挙げられる。記憶装置35としてはROM、RAM、磁気ディスクなどの記憶装置が使用可能である。
<Arithmetic logic unit>
The arithmetic unit 30 of FIG. 1 is particularly limited as long as it can measure the concentration of the absorbent substance in the optical resonator from the above-mentioned decay time and ring down rate and can measure the carbon isotope concentration from the concentration of the absorbent substance. Various devices can be used without.
The arithmetic control unit 31 may be configured by arithmetic means or the like used in a normal computer system such as a CPU. Examples of the input device 32 include a pointing device such as a keyboard and a mouse. Examples of the display device 33 include an image display device such as a liquid crystal display and a monitor. Examples of the output device 34 include a printer and the like. As the storage device 35, a storage device such as a ROM, RAM, or magnetic disk can be used.
 上述の炭素同位体分析装置1をマイクロドーズに用いる場合、サンプル中の放射性炭素同位体14Cに対する検出感度は「0.1dpm/ml」程度が想定される。この検出感度「0.1dpm/ml」を達成するためには、光源として「狭帯域レーザ」を用いるだけでは不十分であり、光源の波長(周波数)の安定性が求められる。即ち、吸収線の波長からずれないこと、線幅が狭いことが要件となる。この点、炭素同位体分析装置1は、低濃度の放射性炭素同位体を含む検体に対しても測定が可能であるという有利な作用効果を奏する。
炭素同位体分析装置1のサンプル中の放射性炭素同位体14Cの検出感度は「0.1dpm/ml」程度、より好ましくは「0.1dpm/ml」以下である。
When the above-mentioned carbon isotope analyzer 1 is used for microdose, the detection sensitivity for the radiocarbon isotope 14 C in the sample is assumed to be about "0.1 dpm / ml". In order to achieve this detection sensitivity of "0.1 dpm / ml", it is not enough to use a "narrow band laser" as a light source, and stability of the wavelength (frequency) of the light source is required. That is, it is a requirement that the wavelength of the absorption line does not deviate and that the line width is narrow. In this respect, the carbon isotope analyzer 1 has an advantageous effect that it can measure a sample containing a low concentration of radioactive carbon isotopes.
The detection sensitivity of the radiocarbon isotope 14C in the sample of the carbon isotope analyzer 1 is about "0.1 dpm / ml", more preferably "0.1 dpm / ml" or less.
 なお、先行文献(廣本 和郎等、「キャビティーリングダウン分光に基づく14C連続モニタリングの設計検討」、日本原子力学会春の年会予稿集、2010年3月19日、P432)には、原子力発電関連の使用済み燃料の濃度モニタリングに関連して、CRDSにより二酸化炭素中の14C濃度を測定する旨が開示されている。しかし、先行文献に記載された、高速フーリエ変換(FFT)を用いた信号処理方法は、データ処理が早くなるものの、ベースラインのゆらぎが大きくなるため、検出感度「0.1dpm/ml」を達成することは困難である。 In addition, the prior literature (Kazuo Hiromoto et al., "Design study of 14C continuous monitoring based on cavity ring-down spectroscopy", Proceedings of the Atomic Energy Society of Japan Spring Annual Meeting, March 19, 2010, P432) is related to nuclear power generation. It is disclosed that CRDS measures the concentration of 14 C in carbon dioxide in connection with the monitoring of the concentration of spent fuel in Japan. However, the signal processing method using the fast Fourier transform (FFT) described in the prior art achieves a detection sensitivity of "0.1 dpm / ml" because the baseline fluctuation becomes large although the data processing becomes faster. It's difficult to do.
 以上、炭素同位体分析装置について実施形態を挙げて説明してきたが、炭素同位体分析装置は、上述の実施形態に係る装置に限定されることなく、種々の変更を加えることができる。以下に炭素同位体分析装置の変形例について変更点を中心に説明する。 Although the carbon isotope analyzer has been described above with reference to embodiments, the carbon isotope analyzer is not limited to the apparatus according to the above-described embodiment, and various modifications can be made. A modified example of the carbon isotope analyzer will be described below, focusing on the changes.
 分光装置は、振動吸収手段をさらに備えてもよい。分光装置の外部からの振動によりミラー間隔がずれることを防止して、測定精度を上げることができるからである。振動吸収手段としては、例えば衝撃吸収剤(高分子ゲル)や免震装置を用いることができる。免震装置としては外部振動の逆位相の振動を分光装置に与えることができる装置を用いることができる。 The spectroscopic device may further include vibration absorbing means. This is because it is possible to prevent the mirror spacing from shifting due to vibration from the outside of the spectroscope and improve the measurement accuracy. As the vibration absorbing means, for example, a shock absorber (polymer gel) or a seismic isolation device can be used. As the seismic isolation device, a device capable of applying vibration of the opposite phase of the external vibration to the spectroscopic device can be used.
 上述の実施形態においては、リングダウン信号の取得手段として、分光装置10内においてピエゾ素子13によるミラー間隔の調整を用いたが、リングダウン信号を得るために、光発生装置20内において光共振器11への光を遮断する光遮断装置を設けて光共振器に照射される照射光のオンオフ制御を行う構成としてもよい。光遮断装置としては、二酸化炭素同位体の吸収波長の光をすばやく遮断できる装置であれば特に制限されることなく種々の装置を用いることができ、例えば光学スイッチを用いることができる。なお、光共振器内の光の減衰時間よりも十分にすばやく光を遮断する必要がある。 In the above-described embodiment, the mirror spacing is adjusted by the piezo element 13 in the spectroscopic device 10 as the ring-down signal acquisition means. However, in order to obtain the ring-down signal, the optical resonator in the light generator 20 is used. A light blocking device for blocking light to 11 may be provided to control on / off of the irradiation light applied to the optical resonator. As the light blocking device, various devices can be used without particular limitation as long as they can quickly block light having an absorption wavelength of carbon dioxide isotope, and for example, an optical switch can be used. It is necessary to block the light sufficiently faster than the decay time of the light in the optical resonator.
(生体試料の前処理)
 生体試料の前処理は、広義には、生体由来の炭素源除去工程と、夾雑ガス除去(分離)工程とが含まれる。が、ここでは、生体由来の炭素源除去工程を中心に説明する。
 マイクロドーズ試験では極微量の14C標識化合物が含まれる生体試料(例えば、血液、血漿、尿、糞、胆汁など)について分析が行われる。そのため、分析効率を上げるためには、生体試料の前処理を行うことが好ましい。CRDS装置の特性上、生体試料中14Cと全炭素との比(14C/TotalC)が測定の検出感度を決定する要素の一つであるため、生体試料中から生体由来の炭素源を除去することが好ましい。
 生体試料の前処理には14Cを濃縮する意義も含まれる。この場合、後述される有機溶媒を用いる方法と、生体試料そのものを濃縮乾固する方法がある。前者は14C/TotalCの向上が見込まれ、後者は14Cのロスなく測定が可能となるメリットがある。
(Pretreatment of biological sample)
In a broad sense, the pretreatment of a biological sample includes a step of removing a carbon source derived from the living body and a step of removing (separating) a contaminant gas. However, here, the step of removing the carbon source derived from the living body will be mainly described.
The microdose test analyzes biological samples containing trace amounts of 14 C labeled compounds (eg, blood, plasma, urine, feces, bile, etc.). Therefore, in order to improve the analysis efficiency, it is preferable to perform pretreatment of the biological sample. Due to the characteristics of the CRDS device, the ratio of 14 C to total carbon in the biological sample ( 14 C / Total C) is one of the factors that determine the detection sensitivity of the measurement. Therefore, the carbon source derived from the biological sample is selected from the biological sample. It is preferable to remove it.
Pretreatment of biological samples also includes the significance of concentrating 14 C. In this case, there are a method using an organic solvent described later and a method of concentrating and drying the biological sample itself. The former is expected to improve 14 C / Total C, and the latter has the advantage of being able to measure without loss of 14 C.
(炭素同位体分析方法)
 分析対象として放射性同位体14Cを例にあげて説明する。
(Carbon isotope analysis method)
Radioisotope 14C will be described as an example for analysis.
[ステップS1]まず図1に示すような炭素同位体分析装置1を用意する。また放射性同位体14C源として、14Cを含む生体試料、例えば、血液、血漿、尿、糞、胆汁などを用意する。 [Step S1] First, a carbon isotope analyzer 1 as shown in FIG. 1 is prepared. As radioisotopes 14 C sources, biological sample containing 14 C, for example, prepared blood, plasma, urine, feces, bile and the like.
[ステップS2]生体試料の前処理として除タンパクを行うことにより、生体由来炭素源を除去する。除タンパクの方法としては、酸や有機溶媒によりタンパク質の不溶化させる除タンパク法、分子サイズの違いを利用する限外濾過または透析による除タンパク法、固相抽出による除タンパク法等が例示できる。後述するように、14C標識化合物の抽出が行えることや、有機溶媒自身の除去が容易であることから、有機溶媒による除タンパク法が好ましい。
 有機溶媒を用いた除タンパク法の場合、まず生体試料に有機溶媒を添加し、タンパク質を不溶化する。このとき、タンパク質に吸着している14C標識化合物が、有機溶媒含有溶液へ抽出される。14C標識化合物の回収率を高めるために、前記有機溶媒含有溶液を別の容器に採取後、残差にさらに有機溶媒を添加し、抽出する操作を行ってもよい。前記抽出操作は複数回繰り返してもよい。なお、生体試料が糞である場合、肺など臓器である場合等、有機溶媒と均一に混合しにくい形態の場合には、該生体試料をホモジネートする等、生体試料と有機溶媒とが均一に混合されるための処理をすることが好ましい。また必要に応じて、不溶化したタンパク質を、遠心操作、フィルターによるろ過等により除去してもよい。
 その後、有機溶媒を蒸発させることにより14C標識化合物を含む抽出物を乾固させ、有機溶媒由来の炭素源を取り除く。前記有機溶媒は、メタノール(MeOH)、エタノール(EtOH)、またはアセトニトリル(ACN)が好ましく、アセトニトリルがさらに好ましい。
[Step S2] The biological carbon source is removed by performing deproteinization as a pretreatment of the biological sample. Examples of the protein removal method include a protein removal method in which a protein is insolubilized with an acid or an organic solvent, a protein removal method by ultrafiltration or dialysis utilizing a difference in molecular size, and a protein removal method by solid phase extraction. As will be described later, the deproteinization method using an organic solvent is preferable because the 14 C-labeled compound can be extracted and the organic solvent itself can be easily removed.
In the case of the protein removal method using an organic solvent, the organic solvent is first added to the biological sample to insolubilize the protein. At this time, the 14 C-labeled compound adsorbed on the protein is extracted into the organic solvent-containing solution. 14 In order to increase the recovery rate of the C-labeled compound, the organic solvent-containing solution may be collected in another container, and then an organic solvent may be further added to the residual to extract the solution. The extraction operation may be repeated a plurality of times. If the biological sample is feces, an organ such as a lung, or other form that is difficult to mix uniformly with an organic solvent, the biological sample and the organic solvent are uniformly mixed by homogenizing the biological sample. It is preferable to carry out a treatment for the above. If necessary, the insolubilized protein may be removed by centrifugation, filtration through a filter, or the like.
The extract containing the 14 C labeled compound is then dried by evaporating the organic solvent to remove the carbon source from the organic solvent. As the organic solvent, methanol (Methanol), ethanol (EtOH), or acetonitrile (ACN) is preferable, and acetonitrile is more preferable.
[ステップS3]前処理後の生体試料を加熱・燃焼させて、放射性同位体14C源から二酸化炭素同位体14COを含むガスを生成する。そして、得られたガスからN2O、COを除去する。 [Step S3] The pretreated biological sample is heated and burned to generate a gas containing carbon dioxide isotope 14 CO 2 from a radioactive isotope 14 C source. Then, N 2 O and CO are removed from the obtained gas.
[ステップS4]得られた14COから水分を取り除く。例えば二酸化炭素同位体生成装置40内にて、14COを炭酸カルシウム等の乾燥剤上を通過させたり、14COを冷却して水分を結露させることにより水分を除去することが好ましい。14COに含まれる水分に起因する光共振器11の着氷・着霜によるミラー反射率低下が検出感度を低下させるため、水分を除去しておくことで分析精度が上がるからである。なお、分光工程を考慮すると、分光装置10へ14COを導入する前に、14COを冷却しておくことが好ましい。室温の14COを導入すると、共振器の温度が大きく変化し、分析精度が低下するためである。 [Step S4] Moisture is removed from the obtained 14 CO 2 . For example at the carbon dioxide isotope generating apparatus 40, the 14 CO 2 or passed over drying agent such as calcium carbonate, it is preferred to remove water by condensation of moisture by cooling the 14 CO 2. 14 This is because the reduction in the mirror reflectance due to icing and frosting of the optical resonator 11 due to the water content contained in CO 2 lowers the detection sensitivity, and therefore the analysis accuracy is improved by removing the water content. In consideration of the spectroscopic process, it is preferable to cool the 14 CO 2 before introducing the 14 CO 2 into the spectroscopic device 10. This is because when 14 CO 2 at room temperature is introduced, the temperature of the resonator changes significantly and the analysis accuracy decreases.
[ステップS5]14COを、図1に示すような1対のミラー12a、12bを有する光共振器11内に充填する。そして14COを273K(0℃)以下に冷却することが好ましい。照射光の吸収強度が高まるからである。また光共振器11を真空雰囲気に保つことが好ましい。外部温度の影響を軽減させることで、測定精度が高まるからである。 [Step S5] 14 CO 2 is filled in the optical resonator 11 having a pair of mirrors 12a and 12b as shown in FIG. Then, it is preferable to cool 14 CO 2 to 273 K (0 ° C.) or less. This is because the absorption intensity of the irradiation light is increased. Further, it is preferable to keep the optical resonator 11 in a vacuum atmosphere. This is because the measurement accuracy is improved by reducing the influence of the external temperature.
[ステップS6]光源23からレーザ光を発生させ、得られた光を導波路21に伝送する。光源としてはQCLを用いることが好ましい。光源23からの光を分岐手段27を用いて分岐させ、分岐させた光を集光レンズ25bに集光し、集光させた光をミラー25aを用いて反射させ、ミラー25aと分岐手段27を介して光源23に送り返す(フィードバック工程)。
 以上のようにして、二酸化炭素同位体14COの吸収波長の4.5μm帯の光を照射光として発生させる。
[Step S6] Laser light is generated from the light source 23, and the obtained light is transmitted to the waveguide 21. It is preferable to use a QCL as a light source. The light from the light source 23 is branched by using the branching means 27, the branched light is focused on the condenser lens 25b, the condensed light is reflected by the mirror 25a, and the mirror 25a and the branching means 27 are combined. It is sent back to the light source 23 via the light source 23 (feedback step).
As described above, light in the 4.5 μm band of the absorption wavelength of the carbon dioxide isotope 14 CO 2 is generated as irradiation light.
[ステップS7]照射光をλ/4波長板を介して光共振器内に送り、二酸化炭素同位体14COに照射光を照射し共振させる。その際、測定精度を上げるためには、光共振器11の外部からの振動を吸収し、ミラー12a、12b間隔にずれが生じないようにすることが好ましい。また照射光が空気に触れないように、導波路21の下流側の他端をミラー12aに当接させながら照射することが好ましい。そして光共振器11からの透過光の強度を測定する。なお、リングダウン信号を得るためには、共鳴から非共鳴となるように、共振器長を高速に変化させるか、光共振器11に入射する光を遮断する方法がある。ここでは、光学分離器(スイッチ)29により、光共振器11に入射する光を遮断している。 [Step S7] The irradiation light is sent into the optical resonator via the λ / 4 wave plate, and the carbon dioxide isotope 14 CO 2 is irradiated with the irradiation light to resonate. At that time, in order to improve the measurement accuracy, it is preferable to absorb the vibration from the outside of the optical resonator 11 so that the intervals between the mirrors 12a and 12b do not deviate. Further, it is preferable to irradiate the mirror 12a with the other end on the downstream side of the waveguide 21 so as not to come into contact with the air. Then, the intensity of the transmitted light from the optical resonator 11 is measured. In order to obtain the ringdown signal, there is a method of changing the resonator length at high speed or blocking the light incident on the optical resonator 11 so as to be non-resonant from resonance. Here, the optical separator (switch) 29 blocks the light incident on the optical resonator 11.
[ステップS8]光共振器から戻った光を、λ/4波長板と偏光子を介してPID制御装置に送りPID制御電圧を出力し、高い周波数成分を直接前記光源に送り、低い周波数成分をパッシブフィードバック部を介して光源に送る(PDHロック工程)。 [Step S8] The light returned from the optical resonator is sent to the PID controller via the λ / 4 wavelength plate and the polarizer to output the PID control voltage, the high frequency component is sent directly to the light source, and the low frequency component is sent. It is sent to the light source via the passive feedback unit (PDH lock process).
[ステップS9]二酸化炭素同位体に前記照射光を照射して得られるリングダウン信号を測定する。 [Step S9] The ringdown signal obtained by irradiating the carbon dioxide isotope with the irradiation light is measured.
[ステップS10]透過光の強度から炭素同位体14C濃度を計算する。 [Step S10] The carbon isotope 14 C concentration is calculated from the intensity of the transmitted light.
(その他の実施形態)
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As mentioned above, the present invention has been described by embodiment, but the statements and drawings that form part of this disclosure should not be understood to limit the invention. Various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art from this disclosure.
 実施形態に係る炭素同位体分析装置においては、分析対象である炭素同位体として放射性同位体14Cを中心に説明した。放射性同位体14Cの他にも、安定同位体元素である12C、13Cを分析することができる。その場合の照射光としては、例えば、12C及び13C 分析を12CO及び13COの吸収線分析として行う場合は、2μm帯や1.6μm帯の光を用いることが好ましい。 In the carbon isotope analyzer according to the embodiment, the radioisotope 14C has been mainly described as the carbon isotope to be analyzed. In addition to the radioactive isotope 14 C, stable isotope elements 12 C and 13 C can be analyzed. As the irradiation light in that case, for example, when the 12 C and 13 C analysis is performed as the absorption line analysis of 12 CO 2 and 13 CO 2 , it is preferable to use the light in the 2 μm band or the 1.6 μm band.
 12CO、及び13COの吸収線分析を行う場合、ミラー間隔は10~60cm、ミラーの曲率半径はミラー間隔と同じかそれ以上、とすることが好ましい。 When performing absorption line analysis of 12 CO 2 and 13 CO 2 , it is preferable that the mirror spacing is 10 to 60 cm and the radius of curvature of the mirror is the same as or greater than the mirror spacing.
 なお、12C、13C、14Cはそれぞれ化学的には同じ挙動を示すが、安定同位体元素12C、13Cよりも放射性同位体14Cの天然存在比が低いことから、放射性同位体14Cはその濃度を人工的な操作により高くし、精度よく測定を行うことで様々な反応過程の観測が可能となる。 Although 12 C, 13 C, and 14 C each behave chemically the same, the natural abundance ratio of the radioactive isotope 14 C is lower than that of the stable isotope elements 12 C and 13 C. It is possible to observe various reaction processes by increasing the concentration of 14 C by artificial manipulation and performing accurate measurements.
 その他にも、例えば、実施形態において説明した構成を一部に含む医療診断装置、環境測定装置も同様に製造することができる。また実施形態において説明した光発生装置を測定装置として用いることができる。 In addition, for example, a medical diagnostic device and an environmental measurement device including a part of the configuration described in the embodiment can be manufactured in the same manner. Further, the light generator described in the embodiment can be used as the measuring device.
 このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, it goes without saying that the present invention includes various embodiments not described here. Therefore, the technical scope of the present invention is defined only by the matters specifying the invention relating to the reasonable claims from the above description.
 ここで、再度図2を参照し、実施例を説明する。この実施例で示す数値や具体的な製品名は例示であって、本発明を限定するものと解釈すべきではない。 Here, an embodiment will be described with reference to FIG. 2 again. The numerical values and specific product names shown in this example are examples and should not be construed as limiting the present invention.
 パッシブフィードバックとPDHによる周波数安定化を中赤外CRDSシステムに適用する実験を行った。レーザとしてDFB-QCLを用いた。PDHで安定化する対象の光共振器にはCRDS用光共振器(共振器長:46 cm、共振線幅:26 kHz)とショートキャビティ(共振器長:6 cm、共振線幅:250 kHz)を用いた。ビームスプリッタ(透過対反射率:50:50)を用いてQCLの光を2手に分け、一方をミラーで反射してQCLに戻すことでパッシブフィードバック系を構築した。 An experiment was conducted to apply passive feedback and frequency stabilization by PDH to a mid-infrared CRDS system. A DFB-QCL was used as the laser. The optical cavities to be stabilized by PDH are CRDS optical cavities (resonant length: 46 cm, resonance line width: 26 kHz) and short cavities (resonant length: 6 cm, resonance line width: 250 kHz). Was used. A passive feedback system was constructed by splitting the QCL light into two hands using a beam splitter (transmission vs. reflectance: 50:50), reflecting one of them with a mirror and returning it to the QCL.
 ミラーにはピエゾ素子が取り付けられており、PDHによるエラー信号を用いてQCL周波数が安定になるようにピエゾの印可電圧を変調した。また、PDHによるエラー信号を用いてQCL周波数が安定になるようにQCLドライバーの電流を変調した。光共振器からの反射光の観測には偏光板(Thorlabs社製、型番:WP12LM-IRA)とλ/4板(Thorlabs社製、型番:WPLQ05M-4500)を用いていた。反射光測定用の光検出器にはVigo社製MCT光検出器PVI-3TE-5(時定数:≦20 ns)を使用した。EOMにはQUBIG社製EO-12.5T3-MIR(共鳴周波数:11.0~13.8 MHz、ARコーティング:3.0~4.5 μm)を用いた。また専用RFドライバーであるQUBIG社製ADU(Analog to Digital Unit)を併せて使用した。反射光測定用の光検出器の出力(反射光の光強度信号)を混合器でEOMの変調信号と混合し、ローパスフィルタを通ることでPDH用のエラー信号を生成し。 A piezo element is attached to the mirror, and the applied voltage of the piezo is modulated so that the QCL frequency becomes stable using the error signal from the PDH. In addition, the QCL driver current was modulated so that the QCL frequency became stable using the error signal from the PDH. A polarizing plate (Thorlabs, model number: WP12LM-IRA) and a λ / 4 plate (Thorlabs, model number: WPLQ05M-4500) were used to observe the reflected light from the optical resonator. A Vigo MCT photodetector PVI-3TE-5 (time constant: ≤20 ns) was used as the photodetector for the reflected light measurement. EO-12.5T3-MIR (resonance frequency: 11.0 to 13.8 MHz, AR coating: 3.0 to 4.5 μm) manufactured by QUBIG was used for the EOM. In addition, ADU (Analog to Digital Unit) manufactured by QUBIG, which is a dedicated RF driver, was also used. The output of the photodetector for measuring reflected light (light intensity signal of reflected light) is mixed with the modulated signal of EOM by a mixer, and an error signal for PDH is generated by passing through a low-pass filter.
 このエラー信号の高い周波数成分を基にレーザ電流をPID制御するための出力(PID fast)、低い周波数成分を基にパッシブフィードバックのミラー距離をPID制御するための出力(PID slow)をDigilockモジュールにて発生させた。PID fast とPID slowをレーザ電流とパッシブフィードバックのミラー距離を変更するピエゾ素子にフィードバックし、レーザ周波数を光共振器の共鳴周波数に一致させ、安定化させた。 The output for PID control of the laser current based on the high frequency component of this error signal (PID fast) and the output for PID control of the mirror distance of passive feedback based on the low frequency component (PID slow) are supplied to the Digilock module. Generated. PID fast and PID slow were fed back to the piezo element that changed the mirror distance of the laser current and passive feedback, and the laser frequency was matched to the resonance frequency of the optical cavity and stabilized.
 周波数が安定な中赤外光周波数コムと量子カスケードレーザのビート信号を用いてパッシブフィードバックによる周波数安定化の特性評価を行った。パッシブフィードバックを用いた際に測定されたビートのRFスペクトルを図3Aに示す。パッシブフィードバックによりビート線幅が細くなり、強度が向上することが観測された。各パッシブフィードバック条件を詳しく比較するために、ビートのRFスペクトルを繰り返し測定した(RBW:100 kHz、Sweep time:1 ms、測定時間:600 s)。パッシブフィードバックを用いた際のビート線幅のヒストグラムを図3Bに示す。パッシブフィードバックを用いることでビート線幅が細くなっていることがわかる。これからパッシブフィードバックによりQCLを狭帯域化できた。 The characteristics of frequency stabilization by passive feedback were evaluated using the beat signals of a mid-infrared optical frequency comb and a quantum cascade laser with stable frequencies. The RF spectrum of the beat measured when passive feedback is used is shown in FIG. 3A. It was observed that the passive feedback narrowed the beat line width and improved the strength. In order to compare each passive feedback condition in detail, the RF spectrum of the beat was repeatedly measured (RBW: 100 kHz, Sweep time: 1 ms, measurement time: 600 s). A histogram of the beat line width when passive feedback is used is shown in FIG. 3B. It can be seen that the beat line width is narrowed by using passive feedback. From now on, the QCL can be narrowed by passive feedback.
 パッシブフィードバックによる安定化によって得られる光共振器からの戻り光の強度とエラー信号を図4に示す。パッシブフィードバックによる安定化により、高いS/Nでエラー信号が得られている。一方、図5に示すパッシブフィードバックによる安定化を用いない場合には、レーザ周波数の変動に伴ってエラー信号にノイズが発生し、S/Nが低下することがわかる。エラー信号によってレーザ周波数にフードバック制御を行うため、高いS/N比でエラー信号の取得が可能できれば、レーザ周波数をより安定に制御できる。 Fig. 4 shows the intensity of the return light from the optical resonator and the error signal obtained by stabilization by passive feedback. Due to the stabilization by passive feedback, the error signal is obtained with high S / N. On the other hand, when the stabilization by passive feedback shown in FIG. 5 is not used, it can be seen that noise is generated in the error signal due to the fluctuation of the laser frequency and the S / N is lowered. Since the hoodback control is performed on the laser frequency by the error signal, if the error signal can be acquired with a high S / N ratio, the laser frequency can be controlled more stably.
PDHとパッシブフィードバックによって光共振器の共鳴周波数とレーザ周波数が一致した状態が維持できるかを確認した。図6に光共振器透過光強度の時間変化を示す。レーザ電流を変調すると、FPI (Fabry-Perot interferometer)の透過光特性に応じた共鳴ピークが見られる。パッシブシートバックのみで安定化した場合、光共振器透過光強度は共鳴ピークの強度の近傍で維持されるものの、高い周波数成分の変動が見られ、常に共鳴状態が維持できているとは言えない。パッシブフィードバックとPDHと組み合わせると、共鳴状態が維持され、高い周波数成分の変動もないことが示された。 It was confirmed whether the resonance frequency of the optical resonator and the laser frequency could be maintained in agreement by PDH and passive feedback. FIG. 6 shows the time change of the light intensity transmitted through the optical resonator. When the laser current is modulated, a resonance peak can be seen according to the transmitted light characteristics of the FPI (Fabry-Perot interferometer). When stabilized only with the passive seat back, the optical resonator transmitted light intensity is maintained near the intensity of the resonance peak, but fluctuations in high frequency components are observed, and it cannot be said that the resonance state is always maintained. .. It was shown that when combined with passive feedback and PDH, the resonance state was maintained and there was no variation in high frequency components.
 パッシブフィードバックは用いずにPDHによってCRDS用光共振器にレーザを安定化したとき、極めて周波数が安定な中赤外光周波数コムと量子カスケードレーザのビート信号の中心周波数の時間変化を測定した。図7に測定されたビートのRFスペクトルの中心波長の時間変化を示す。PDHによる周波数安定化を用いない場合、ビート信号は±約20 MHzを超えて大きく変動する。一方、PDHによる周波数安定化を行うと、QCLの周波数変動を±10 MHz程度に抑制できることがわかる。また、同時に測定した光共振器(CRDS cell)の温度の変化から、PDHにより安定化された量子カスケードレーザの周波数変動(±約10 MHz)は光共振器の共振器長の温度変化に伴う変動に由来すると示唆された。CRDSにてリングダウン信号を取得する際には、CRDS用の光共振器の共振器長によって決まる共鳴周波数にレーザ周波数が一致すればよいため、光共振器の共振器長の温度変化に伴う変動は考慮しなくてよい。 When the laser was stabilized in the optical resonator for CRDS by PDH without using passive feedback, the time change of the center frequency of the beat signal of the mid-infrared optical frequency comb and the quantum cascade laser, which are extremely stable in frequency, was measured. FIG. 7 shows the time change of the center wavelength of the RF spectrum of the measured beat. Without PDH frequency stabilization, the beat signal fluctuates significantly beyond ± about 20 MHz. On the other hand, it can be seen that the frequency fluctuation of the QCL can be suppressed to about ± 10 MHz by stabilizing the frequency by PDH. Also, from the change in the temperature of the optical cavity (CRDS cell) measured at the same time, the frequency fluctuation (± about 10 MHz) of the quantum cascade laser stabilized by PDH fluctuates with the temperature change of the resonator length of the optical resonator. It was suggested that it was derived from. When acquiring a ring-down signal with CRDS, the laser frequency only needs to match the resonance frequency determined by the resonator length of the optical resonator for CRDS, so fluctuations due to temperature changes in the resonator length of the optical resonator Does not have to be considered.
 なお、本明細書で説明した実施形態および実施例では、分析対象として炭素を例示した。本発明はこれに限定されることなく、任意のガス、例えば水素(重水素であってもよい)を分析対象としてよい。 In the embodiments and examples described in the present specification, carbon was exemplified as an analysis target. The present invention is not limited to this, and any gas such as hydrogen (which may be deuterium) may be analyzed.
 また、本明細書で説明した実施形態および実施例では、光共振器に備えられる2枚のミラーでキャビティを構成する例を説明したが、本発明はこれに限定されることなく、3枚以上のミラーでキャビティを構成してもよい。 Further, in the embodiments and examples described in the present specification, an example in which the cavity is formed by two mirrors provided in the optical resonator has been described, but the present invention is not limited to this, and three or more mirrors are used. The cavity may be constructed of mirrors of.
  1 炭素同位体分析装置
 10 分光装置
 11 光共振器
 12 ミラー
 13 ピエゾ素子
 15 光検出器
 16 セル
 20 光発生装置
 21 光ファイバー
 22 偏光子
 23 光源
 24 検出器
 25 パッシブフィードバック
 25a ミラー
 25b 集光レンズ
 26a 混合器
 26b ローバスフィルタ
 28 PID制御用サーボ
 29 光学分離器
 30 演算装置
 40 二酸化炭素同位体生成装置
 60 二酸化炭素同位体導入排出制御装置
 61a 導入管
 61b 排出管
 63a スリーポート弁
 63b 導入弁
 63c 排出弁
 65 ポンプ
1 Carbon isotope analyzer 10 Spectrometer 11 Optical resonator 12 Mirror 13 Piezo element 15 Photodetector 16 cell 20 Light generator 21 Optical fiber 22 Polarizer 23 Light source 24 Detector 25 Passive feedback 25a Mirror 25b Condensing lens 26a Mixer 26b Low bus filter 28 PID control servo 29 Optical separator 30 Arithmetic device 40 Carbon dioxide isotope generator 60 Carbon dioxide isotope introduction / discharge control device 61a Introduction pipe 61b Discharge pipe 63a Three port valve 63b Introduction valve 63c Discharge valve 65 Pump

Claims (8)

  1.  光源と、
     分析対象のガスが充填され、前記光源から出射する光を受ける光共振器と、
     前記光共振器から出射する光の強度を検出する光検出器と、
     前記光源から出射する光を光学的に前記光源にフィードバックさせることにより、前記光源から出射する光の波長安定化を行うためのパッシブフィードバック部と、
     前記光源から出射する光の周波数を前記光共振器の共振周波数にロックするためのPDHロック部と、
     PDHロック用の第1周波数を有する制御信号を前記光源に出力し、パッシブフィードバック用の第2周波数を有する制御信号を前記パッシブフィードバック部に出力するフィードバック制御部と、を備え、
     前記第1周波数は、前記第2周波数よりも高い、分析装置。
    Light source and
    An optical resonator filled with the gas to be analyzed and receiving light emitted from the light source,
    An optical detector that detects the intensity of light emitted from the optical resonator, and
    A passive feedback unit for stabilizing the wavelength of the light emitted from the light source by optically feeding back the light emitted from the light source to the light source.
    A PDH lock unit for locking the frequency of light emitted from the light source to the resonance frequency of the optical resonator, and
    A feedback control unit that outputs a control signal having a first frequency for PDH lock to the light source and outputs a control signal having a second frequency for passive feedback to the passive feedback unit is provided.
    An analyzer in which the first frequency is higher than the second frequency.
  2.  前記光源は、量子カスケードレーザである請求項1に記載の分析装置。 The analyzer according to claim 1, wherein the light source is a quantum cascade laser.
  3.  前記分析対象のガスは、放射性炭素同位体14Cを含む二酸化炭素同位体である請求項1又は2に記載の分析装置。 The analyzer according to claim 1 or 2, wherein the gas to be analyzed is a carbon dioxide isotope containing a radiocarbon isotope 14C .
  4.  前記二酸化炭素同位体の吸収波長を有する光は、4.5μm帯の光である請求項1~3のいずれか1項に記載の分析装置。 The analyzer according to any one of claims 1 to 3, wherein the light having an absorption wavelength of the carbon dioxide isotope is light in the 4.5 μm band.
  5.  前記分光装置は、前記光共振器を冷却する冷却装置をさらに備える請求項1~4のいずれか1項に記載の分析装置。 The analyzer according to any one of claims 1 to 4, further comprising a cooling device for cooling the optical resonator.
  6.  前記分光装置は、前記光共振器を収容する真空装置をさらに備える請求項1~5のいずれか1項に記載の分析装置。 The analyzer according to any one of claims 1 to 5, wherein the spectroscopic device further includes a vacuum device accommodating the optical resonator.
  7.  前記分光装置は、振動吸収手段をさらに備える請求項1~6のいずれか1項に記載の分析装置。 The analyzer according to any one of claims 1 to 6, wherein the spectroscopic device further includes vibration absorbing means.
  8.  前記放射性炭素同位体14Cに対する検出感度は、0.1dpm/ml程度である請求項1~7のいずれか1項に記載の分析装置。 The detection sensitivity for radiocarbon 14 C, analysis device according to any one of claims 1 to 7 is about 0.1dpm / ml.
PCT/JP2020/009829 2019-03-08 2020-03-06 Analyzing device WO2020184474A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021505046A JPWO2020184474A1 (en) 2019-03-08 2020-03-06

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962815474P 2019-03-08 2019-03-08
US62/815,474 2019-03-08
JP2019-151601 2019-08-21
JP2019151601 2019-08-21

Publications (1)

Publication Number Publication Date
WO2020184474A1 true WO2020184474A1 (en) 2020-09-17

Family

ID=72426361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009829 WO2020184474A1 (en) 2019-03-08 2020-03-06 Analyzing device

Country Status (2)

Country Link
JP (1) JPWO2020184474A1 (en)
WO (1) WO2020184474A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168841A (en) * 2001-11-29 2003-06-13 Japan Science & Technology Corp Resonator and stabilizer for laser
JP2012244182A (en) * 2011-05-24 2012-12-10 Honeywell Internatl Inc Frequency stabilization laser system
US20150185141A1 (en) * 2012-03-29 2015-07-02 Imra America, Inc. Methods for precision optical frequency synthesis and molecular detection
CN105067565A (en) * 2015-08-28 2015-11-18 清华大学 Laser cavity ring-down gas spectral measurement system based on femtosecond optical frequency combing
JP2017507344A (en) * 2014-01-24 2017-03-16 カリフォルニア インスティチュート オブ テクノロジー Stabilized microwave frequency source
JP2018502289A (en) * 2014-12-02 2018-01-25 クロメトリック、リミテッドQrometric Limited Spectroscopic apparatus and spectral method
WO2018135619A1 (en) * 2017-01-20 2018-07-26 積水メディカル株式会社 Carbon isotope analysis device and carbon isotope analysis method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168841A (en) * 2001-11-29 2003-06-13 Japan Science & Technology Corp Resonator and stabilizer for laser
JP2012244182A (en) * 2011-05-24 2012-12-10 Honeywell Internatl Inc Frequency stabilization laser system
US20150185141A1 (en) * 2012-03-29 2015-07-02 Imra America, Inc. Methods for precision optical frequency synthesis and molecular detection
JP2017507344A (en) * 2014-01-24 2017-03-16 カリフォルニア インスティチュート オブ テクノロジー Stabilized microwave frequency source
JP2018502289A (en) * 2014-12-02 2018-01-25 クロメトリック、リミテッドQrometric Limited Spectroscopic apparatus and spectral method
CN105067565A (en) * 2015-08-28 2015-11-18 清华大学 Laser cavity ring-down gas spectral measurement system based on femtosecond optical frequency combing
WO2018135619A1 (en) * 2017-01-20 2018-07-26 積水メディカル株式会社 Carbon isotope analysis device and carbon isotope analysis method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"An introduction to pound-Drever-Hall laser frequency stabilization", AMERICAN JOURNAL OF PHYSICS, vol. 69, no. 1, 1 January 2001 (2001-01-01), pages 79 - 87, XP055144240 *
"Diode Laser Locking and Linewidth Narrowing", TOPTICA PHOTONICS APPLICATION , APPL-1012, 27 January 2012 (2012-01-27), pages 1 - 8, XP055200256 *
"Frequency-stabilized cavity ring-down spectroscopy", CHEMICAL PHYSICS LETTERS, vol. 536, 21 March 2012 (2012-03-21), pages 1 - 8, XP028480387 *
"Long-Term Stable Online Acetylene Detection by a CEAS System with Suppression of Cavity", SENSORS, vol. 19, no. 3, 26 January 2019 (2019-01-26), pages 1 - 11, XP055739388 *
"Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer", REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 82, 16 June 2011 (2011-06-16), pages 063107, XP012146477 *

Also Published As

Publication number Publication date
JPWO2020184474A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP7097583B2 (en) Carbon isotope analyzer and carbon isotope analysis method
JP6824496B2 (en) Carbon isotope analyzer and carbon isotope analysis method
US10557790B2 (en) Carbon isotope analysis device and carbon isotope analysis method
Wojtas et al. Ultrasensitive laser spectroscopy for breath analysis
JP7256501B2 (en) Light generator, carbon isotope analyzer and carbon isotope analysis method using the same
Sonnenschein et al. A cavity ring-down spectrometer for study of biomedical radiocarbon-labeled samples
JP7393767B2 (en) Light generation device, carbon isotope analysis device and carbon isotope analysis method using the same
WO2019142944A1 (en) Carbon isotope analysis device and carbon isotope analysis method
JP2016156752A (en) Carbon isotope analysis device and carbon isotope analysis method
WO2020184474A1 (en) Analyzing device
JP6792778B2 (en) Carbon isotope analyzer and carbon isotope analysis method
JP2016156706A (en) Carbon isotope analysis device and carbon isotope analysis method
JP2022168861A (en) Device and method for analyzing carbon isotopes
JP2021032632A (en) Carbon isotope analyzer for plant sample analysis and carbon isotope analysis method for plant sample analysis using the same
Ognibene et al. Quantification of 14C by Optical Spectrometry
Murnick Laser assisted ratio analysis-An alternative to GC/IRMS for CO 2
Donohue Development of chemical sensors using novel infrared sources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505046

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769210

Country of ref document: EP

Kind code of ref document: A1