WO2020184359A1 - Battery - Google Patents

Battery Download PDF

Info

Publication number
WO2020184359A1
WO2020184359A1 PCT/JP2020/009334 JP2020009334W WO2020184359A1 WO 2020184359 A1 WO2020184359 A1 WO 2020184359A1 JP 2020009334 W JP2020009334 W JP 2020009334W WO 2020184359 A1 WO2020184359 A1 WO 2020184359A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
mass
particles
battery
Prior art date
Application number
PCT/JP2020/009334
Other languages
French (fr)
Japanese (ja)
Inventor
良太 ▲柳▼澤
剛正 山本
Original Assignee
株式会社エンビジョンAescエナジーデバイス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンビジョンAescエナジーデバイス filed Critical 株式会社エンビジョンAescエナジーデバイス
Publication of WO2020184359A1 publication Critical patent/WO2020184359A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery.
  • the non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode and a separator.
  • the separator is located between the positive electrode and the negative electrode.
  • Patent Document 1 describes an example of a separator.
  • the separator includes a polyethylene microporous membrane and a heat resistant porous layer on both sides of the polyethylene microporous membrane.
  • the heat-resistant porous layer contains an inorganic filler composed of polymethaphenylene isophthalamide and aluminum hydroxide.
  • Patent Document 2 describes an example of a separator.
  • the separator includes a polyethylene microporous membrane and a porous layer on both sides of the polyethylene microporous membrane.
  • the porous layer contains an inorganic filler composed of meta-type total aromatic polyamide and ⁇ -alumina.
  • Patent Documents 3 and 4 describe an example of a separator.
  • the separator includes a polyethylene porous film and a heat resistant porous layer on the polyethylene porous film.
  • the heat-resistant porous layer contains liquid crystal polyester and alumina particles.
  • Patent Document 5 describes improving the resistance of a battery crush test.
  • Patent Document 5 specifies the tensile elongation of the positive electrode, the tensile elongation of the negative electrode, and the tensile elongation of the separator in order to improve the resistance to the crushing test.
  • gas for example, carbon dioxide gas generated by oxidative decomposition of carbonic acid ester in the electrolytic solution
  • the residual gas in the cell may cause various troubles (for example, an increase in the distance between the adjacent positive electrode and the negative electrode or an increase in the internal pressure of the cell).
  • An example of an object of the present invention is to reduce residual gas in a cell.
  • Other objects of the invention will become apparent from the disclosure herein.
  • a positive electrode including a current collector having a first surface and a second surface opposite to the first surface, and a first active material layer located on the first surface of the current collector.
  • the first insulating layer of the positive electrode facing the first active material layer and Including The first active material layer is Li a Ni b M 1-b O 2 (0.95 ⁇ a ⁇ 1.05, b ⁇ 0.50, M is Co, Mn, Al, Ti, Zr, Na, It contains active material particles represented by (one or more elements selected from Ba and Mg).
  • the first insulating layer contains magnesium hydroxide particles and contains magnesium hydroxide particles.
  • a battery is provided in which the product of the grain size and the specific surface area of the magnesium hydroxide particles is 0.7 times or more the product of the grain size and the specific surface area of the active material particles.
  • the residual gas in the cell can be reduced.
  • FIG. 1 is a top view of the battery 10 according to the embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA'of FIG.
  • FIG. 3 is an enlarged view of a part of FIG. FIG. 2 does not show the exterior material 400 shown in FIG. 1 for the sake of explanation.
  • the battery 10 includes a positive electrode 100 and a first insulating layer 322.
  • the positive electrode 100 includes a current collector 110 and a first active material layer 122.
  • the current collector 110 has a first surface 112 and a second surface 114.
  • the second surface 114 is on the opposite side of the first surface 112.
  • the first active material layer 122 is located on the first surface 112 of the current collector 110.
  • the first insulating layer 322 faces the first active material layer 122 of the positive electrode 100.
  • the first active material layer 122 is Li a Ni b M 1-b O 2 (0.95 ⁇ a ⁇ 1.05, b ⁇ 0.50, M is Co, Mn, Al, Ti, Zr, Na, It contains active material particles represented by (one or more elements selected from Ba and Mg).
  • the first insulating layer 322 contains magnesium hydroxide particles. The product of the grain size and the specific surface area of the magnesium hydroxide particles is 0.7 times or more the product of the grain size and the specific surface area of the active material particles.
  • the residual gas in the cell (in the space closed by the exterior material 400 described later) can be reduced.
  • the present inventor has newly focused on the relationship between the product of the grain and specific surface area of magnesium hydroxide particles and the product of the grain and specific surface area of active material particles in order to reduce the residual gas in the cell.
  • the residual gas in the cell is reduced according to the relationship between the product of magnesium hydroxide and the product of the active material particles, as will be described in detail later.
  • composition ratio b of Li a Ni b M 1-b O 2 may be b ⁇ 0.80. Even in this case, according to the present embodiment, the residual gas in the cell can be reduced.
  • the battery 10 includes a first lead 130, a second lead 230, and an exterior material 400.
  • the first lead 130 is electrically connected to the positive electrode 100 shown in FIG.
  • the first lead 130 may be formed of, for example, aluminum or an aluminum alloy.
  • the second lead 230 is electrically connected to the negative electrode 200 shown in FIG.
  • the second lead 230 may be formed of, for example, copper or a copper alloy or a nickel-plated product thereof.
  • the exterior material 400 has a rectangular shape having four sides.
  • the first lead 130 and the second lead 230 protrude from a common one of the four sides of the exterior material 400.
  • the first lead 130 and the second lead 230 may protrude from different sides (for example, sides opposite to each other) of the four sides of the exterior material 400.
  • the exterior material 400 contains the laminate 12 shown in FIG. 2 together with an electrolytic solution (not shown).
  • the exterior material 400 may include, for example, a thermosetting resin layer and a barrier layer, and may be a laminated film including, for example, a thermosetting resin layer and a barrier layer.
  • the resin material forming the thermosetting resin layer may be, for example, polyethylene (PE), polypropylene, nylon, polyethylene terephthalate (PET) or the like.
  • the thickness of the thermosetting resin layer is, for example, 20 ⁇ m or more and 200 ⁇ m or less, preferably 30 ⁇ m or more and 150 ⁇ m or less, and more preferably 50 ⁇ m or more and 100 ⁇ m or less.
  • the barrier layer has a barrier property such as prevention of leakage of electrolytic solution or invasion of moisture from the outside, and for example, metal such as stainless steel (SUS) foil, aluminum foil, aluminum alloy foil, copper foil, and titanium foil. It may be a barrier layer formed by.
  • the thickness of the barrier layer is, for example, 10 ⁇ m or more and 100 ⁇ m or less, preferably 20 ⁇ m or more and 80 ⁇ m or less, and more preferably 30 ⁇ m or more and 50 ⁇ m or less.
  • thermosetting resin layer of the laminated film may be one layer or two or more layers.
  • barrier layer of the laminated film may be one layer or two or more layers.
  • the electrolytic solution is, for example, a non-aqueous electrolytic solution.
  • This non-aqueous electrolytic solution may contain a lithium salt and a solvent that dissolves the lithium salt.
  • Lithium salt for example, LiClO 4, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lower fatty acid lithium carboxylate and the like may be used.
  • Solvents that dissolve the lithium salt are carbonate esters such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), It contains carbonates such as methyl ethyl carbonate (MEC) and vinylene carbonate (VC).
  • carbonate esters such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), It contains carbonates such as methyl ethyl carbonate (MEC) and vinylene carbonate (VC).
  • Solvents include lactones such as ⁇ -butyrolactone and ⁇ -valerolactone; ethers such as trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, tetrahydrofuran and 2-methyltetraxide; sulfoxides such as dimethyl sulfoxide; 1, Oxolanes such as 3-dioxolane and 4-methyl-1,3-dioxolane; nitrogen-containing solvents such as acetonitrile, nitromethane, formamide and dimethylformamide; methyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and propionic acid.
  • lactones such as ⁇ -butyrolactone and ⁇ -valerolactone
  • ethers such as trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, tetrahydrofuran and 2-methyltetrax
  • Organic acid esters such as ethyl; phosphoric acid triesters and jigrimes; triglimes; sulfolanes such as sulfolanes and methyl sulfoxides; oxazolidinones such as 3-methyl-2-oxazolidinone; 1,3-propanesulton, 1,4 -Sultons such as butane sulton and nafta sulton may be further contained. These substances may be used alone or in combination.
  • the carbonic acid ester in the solvent may be oxidatively decomposed by charging and discharging in the vicinity of the positive electrode 100 to generate carbon dioxide gas.
  • the residual carbon dioxide gas in the cell may cause various troubles (increasing the distance between the positive electrode 100 and the negative electrode 200 or increasing the internal pressure of the cell (pressure in the space closed by the exterior material 400)). In this embodiment, such obstacles can be reduced.
  • the electrolytic solution may further contain an additive, and the additive is, for example, a sulfonic acid ester such as a cyclic sulfonic acid ester.
  • the additive is, for example, a sulfonic acid ester such as a cyclic sulfonic acid ester.
  • the laminated body 12 includes a plurality of positive electrodes 100, a plurality of negative electrodes 200, and a separator 300.
  • the plurality of positive electrodes 100 and the plurality of negative electrodes 200 are alternately laminated.
  • the separator 300 is folded in a zigzag so that a part of the separator 300 is located between the adjacent positive electrode 100 and the negative electrode 200.
  • a plurality of separators 300 separated from each other may be located between the adjacent positive electrode 100 and the negative electrode 200.
  • the positive electrode 100 includes a current collector 110 and an active material layer 120 (first active material layer 122 and second active material layer 124).
  • the current collector 110 has a first surface 112 and a second surface 114.
  • the second surface 114 is on the opposite side of the first surface 112.
  • the first active material layer 122 is on the first surface 112 of the current collector 110.
  • the second active material layer 124 is on the second surface 114 of the current collector 110.
  • the current collector 110 may be formed of, for example, aluminum, stainless steel, nickel, titanium, or an alloy thereof.
  • the shape of the current collector 110 may be, for example, foil, flat plate or mesh.
  • the active material layer 120 (first active material layer 122 and second active material layer 124) contains active material particles, a binder resin, and a conductive auxiliary agent.
  • the active material particles contained in the active material layer 120 are Li a Ni b M 1-b O 2 (M is Co, Mn, Al, Ti, Zr. , At least one element selected from Na, Ba and Mg.).
  • Li a Ni b M 1-b O 2 is, for example, Lithium-nickel composite oxide; Lithium-nickel-A1 composite oxide (A1 is one of cobalt, manganese, aluminum, titanium, zirconium, sodium, barium and magnesium); Lithium-nickel-B1-B2 composite oxide (each of B1 and B2 is one of cobalt, manganese, aluminum, titanium, zirconium, sodium, barium and magnesium; B1 and B2 are different from each other); Lithium-nickel-C1-C2-C3 composite oxides (each of C1 to C3 is one of cobalt, manganese, aluminum, titanium, zirconium, sodium, barium and magnesium. C1 to C3 are different from each other.
  • Lithium-nickel-D1-D2-D3-D4 composite oxide (each of D1 to D4 is one of cobalt, manganese, aluminum, titanium, zirconium, sodium, barium and magnesium. D1 to C4 are each other. different.); Lithium-nickel-E1-E2-E3-E4-E5 composite oxide (each of E1 to E5 is one of cobalt, manganese, aluminum, titanium, zirconium, sodium, barium and magnesium.
  • E1 to E5 are , Different from each other.); Lithium-nickel-F1-F2-F3-F4-F5-F6 composite oxide (each of F1 to F6 is one of cobalt, manganese, aluminum, titanium, zirconium, sodium, barium and magnesium. F1 to F6 are different from each other.); Lithium-nickel-G1-G2-G3-G4-G5-G6-G7 composite oxide (each of G1 to G7 is one of cobalt, manganese, aluminum, titanium, zirconium, sodium, barium and magnesium.
  • G1 to G7 are different from each other.); Or is a lithium-nickel-cobalt-manganese-aluminum-titanium-zirconium-sodium-barium-magnesium composite oxide.
  • the composition ratio a of Li a Ni b M 1-b O 2 is, for example, 0.95 ⁇ a ⁇ 1.05.
  • the composition ratio b of Li a Ni b M 1-b O 2 can be appropriately determined according to, for example, the energy density of the battery 10.
  • the energy density of the battery 10 increases with a large composition ratio b.
  • the composition ratio b is, for example, b ⁇ 0.50, preferably b ⁇ 0.80.
  • the active material contained in the active material layer 120 is lithium and a transition metal such as a lithium-cobalt composite oxide and a lithium-manganese composite oxide. composite oxides; TiS 2, FeS, transition metal sulfides such as MoS 2; MnO, V 2 O 5, V 6 O 13, TiO transition metal oxides such as 2, a olivine-type lithium phosphorus oxides such as May be good.
  • the olivine-type lithium phosphorus oxide is, for example, at least one element in the group consisting of Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, Nb and Fe. It contains lithium, phosphorus, and oxygen. These compounds may be those in which some elements are partially replaced with other elements in order to improve their properties. These substances may be used alone or in combination.
  • the density of the active material contained in the active material layer 120 is, for example, 2.0 g / cm 3 or more and 4.0 g / cm 3 or less, preferably 2.4 g. / cm 3 or more 3.8 g / cm 3 or less, more preferably 2.8 g / cm 3 or more 3.6 g / cm 3 or less.
  • the active material particles contained in the active material layer 120 have, for example, a specific surface area of 0.25 m 2 / g or more and 1.45 m 2 / g or less. You may.
  • the thickness of the active material layer (first active material layer 122 or second active material layer 124) on one of the two surfaces (first surface 112 and second surface 114) of the current collector 110 is, for example, a battery. It can be appropriately determined according to the rate of 10. The rate of the battery 10 increases as the thickness becomes thinner.
  • the thickness is, for example, 60 ⁇ m or less, preferably 50 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • the total thickness of the active material layers (first active material layer 122 and second active material layer 124) on both sides (first surface 112 and second surface 114) of the current collector 110 is, for example, the rate of the battery 10. It can be determined as appropriate. The rate of the battery 10 increases as the thickness becomes thinner.
  • the thickness is, for example, 120 ⁇ m or less, preferably 100 ⁇ m or less, and more preferably 80 ⁇ m or less.
  • the active material layer 120 (first active material layer 122 and second active material layer 124) can be manufactured, for example, as follows. First, the active material, the binder resin and the conductive additive are dispersed in an organic solvent to prepare a slurry.
  • the organic solvent is, for example, N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • this slurry is applied onto the first surface 112 of the current collector 110, the slurry is dried, and if necessary, pressing is performed to perform the active material layer 120 (first active material layer) on the current collector 110. 122) is formed.
  • the second active material layer 124 can also be formed in the same manner.
  • the binder resin contained in the active material layer 120 is, for example, polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF).
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • the amount of the binder resin contained in the active material layer 120 can be appropriately determined.
  • the first active material layer 122 has, for example, 0.1 part by mass or more and 10.0 parts by mass or less, preferably 0.5 parts by mass or more and 5.0 with respect to the total mass of 100 parts by mass of the first active material layer 122. It contains a binder resin of 2.0 parts by mass or more, more preferably 4.0 parts by mass or less by mass or less. The same applies to the second active material layer 124.
  • the conductive additive contained in the active material layer 120 is, for example, carbon black, Ketjen black, acetylene black, natural graphite, artificial graphite, carbon fiber and the like. ..
  • the graphite may be, for example, scaly graphite or spheroidal graphite. These substances may be used alone or in combination.
  • the amount of the conductive additive contained in the active material layer 120 can be appropriately determined according to, for example, the cycle characteristics of the battery 10.
  • the cycle characteristics of the battery 10 improve as the amount of the conductive auxiliary agent in the active material layer 120 increases.
  • the first active material layer 122 has, for example, 3.0 parts by mass or more and 8.0 parts by mass or less, preferably 5.0 parts by mass or more and 6.0 parts by mass with respect to the total mass of 100 parts by mass of the first active material layer 122. Contains less than parts by mass of conductive aid. The same applies to the second active material layer 124.
  • the active material particles of the first active material layer 122 or the second active material layer 124 may contain lithium hydroxide (LiOH).
  • Lithium hydroxide is a raw material for active material particles. Lithium hydroxide may remain as an impurity in the active material particles after the process of producing the active material particles.
  • the active material particles may contain, for example, 0.43 parts by mass or more or 0.52 parts by mass or more of lithium hydroxide with respect to 100 parts by mass of the total mass of the active material particles.
  • the negative electrode 200 includes a current collector 210 and an active material layer 220 (first active material layer 222 and second active material layer 224).
  • the current collector 210 has a first surface 212 and a second surface 214.
  • the second surface 214 is on the opposite side of the first surface 212.
  • the first active material layer 222 is on the first surface 212 of the current collector 210.
  • the second active material layer 224 is on the second surface 214 of the current collector 210.
  • the current collector 210 may be formed of, for example, copper, stainless steel, nickel, titanium, or an alloy thereof.
  • the shape of the current collector 210 may be, for example, foil, flat plate or mesh.
  • the active material layer 220 (first active material layer 222 and second active material layer 224) contains an active material and a binder resin.
  • the active material layer 220 may further contain a conductive auxiliary agent, if necessary.
  • the active material contained in the active material layer 220 is, for example, graphite, amorphous carbon, diamond-like carbon, fullerene, carbon nanotube, carbon nanohorn which occludes lithium.
  • Carbon materials such as carbon materials; lithium-based metal materials such as lithium metals and lithium alloys; Si-based materials such as Si, SiO 2 , SiO x (0 ⁇ x ⁇ 2), Si-containing composite materials; It is a sex polymer material or the like. These substances may be used alone or in combination.
  • the active material layer 220 (first active material layer 222 and second active material layer 224) is a first group of graphite particles (for example, natural graphite) having a first average particle size and a first average hardness. It may contain a second group of graphite particles (eg, natural graphite) having a 2 average particle size and a 2nd average hardness.
  • the second average particle size may be smaller than the first average particle size, the second average hardness may be higher than the first average hardness, and the total mass of the graphite particles in the second group is that of the graphite particles in the first group.
  • the total mass of the graphite particles in the second group may be, for example, 20 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the total mass of the graphite particles in the first group. ..
  • the density of the active material contained in the active material layer 220 is, for example, 1.2 g / cm 3 or more and 2.0 g / cm 3 or less, preferably 1.3 g. / Cm 3 or more and 1.9 g / cm 3 or less, more preferably 1.4 g / cm 3 or more and 1.8 g / cm 3 or less.
  • the thickness of the active material layer (first active material layer 222 or second active material layer 224) on one of both surfaces (first surface 212 and second surface 214) of the current collector 210 is, for example, a battery. It can be appropriately determined according to the rate of 10. The rate of the battery 10 increases as the thickness becomes thinner.
  • the thickness is, for example, 60 ⁇ m or less, preferably 55 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the total thickness of the active material layers (first active material layer 222 and second active material layer 224) on both sides (first surface 212 and second surface 214) of the current collector 210 is, for example, the rate of the battery 10. It can be determined as appropriate. The rate of the battery 10 increases as the thickness becomes thinner.
  • the thickness is, for example, 120 ⁇ m or less, preferably 110 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the active material layer 220 (first active material layer 222 and second active material layer 224) can be manufactured, for example, as follows. First, the active material and the binder resin are dispersed in a solvent to prepare a slurry.
  • the solvent may be, for example, an organic solvent such as N-methyl-2-pyrrolidone (NMP), or water.
  • NMP N-methyl-2-pyrrolidone
  • this slurry is applied onto the first surface 212 of the current collector 210, the slurry is dried, and if necessary, a press is performed to perform an active material layer 220 (first active material layer) on the current collector 210. 222) is formed.
  • the second active material layer 224 can also be formed in the same manner.
  • the binder resin contained in the active material layer 220 is, for example, polyvinylidene fluoride (PVDF) or the like when an organic solvent is used as the solvent for obtaining the slurry.
  • PVDF polyvinylidene fluoride
  • It can be a binder resin, and when water is used as a solvent for obtaining a slurry, it can be, for example, a rubber-based binder (for example, SBR (styrene-butadiene rubber)) or an acrylic-based binder resin.
  • SBR styrene-butadiene rubber
  • acrylic-based binder resin acrylic-based binder resin.
  • Such an aqueous binder resin may be in the form of an emulsion.
  • an aqueous binder and a thickener such as CMC (carboxymethyl cellulose) in combination.
  • the amount of the binder resin contained in the active material layer 220 can be appropriately determined.
  • the first active material layer 222 is, for example, 0.1 part by mass or more and 10.0 parts by mass or less, preferably 0.5 parts by mass or more and 8.0 with respect to the total mass of 100 parts by mass of the first active material layer 222. It contains a binder resin of 1 part by mass or less, more preferably 1.0 part by mass or more and 5.0 parts by mass or less, and even more preferably 1.0 part by mass or more and 3.0 parts by mass or less.
  • the separator 300 includes a base material 310 and an insulating layer 320 (first insulating layer 322 and second insulating layer 324).
  • the base material 310 has a first surface 312 and a second surface 314.
  • the second surface 314 is on the opposite side of the first surface 312.
  • the first insulating layer 322 is on the first surface 312 of the base material 310.
  • the second insulating layer 324 is on the second surface 314 of the base material 310.
  • the separator 300 includes an insulating layer 320 (first insulating layer 322 and second insulating layer 324) on both surfaces (first surface 312 and second surface 314) of the base material 310.
  • the separator 300 may include the insulating layer 320 only on one of the two surfaces (first surface 312 and second surface 314) of the base material 310.
  • the separator 300 has a function of electrically insulating the positive electrode 100 and the negative electrode 200 and allowing ions (for example, lithium ions) to pass therethrough.
  • the separator 300 can be, for example, a porous separator.
  • the shape of the separator 300 can be appropriately determined according to the shape of the positive electrode 100 or the negative electrode 200, and can be, for example, a rectangle.
  • the base material 310 preferably contains a resin layer containing a heat-resistant resin.
  • the resin layer contains a heat-resistant resin as a main component, and specifically, 50 parts by mass or more, preferably 70 parts by mass or more, and more preferably 90 parts by mass with respect to 100 parts by mass of the total mass of the resin layer.
  • the above heat-resistant resin is contained, and 100 parts by mass of the heat-resistant resin may be contained with respect to 100 parts by mass of the total mass of the resin layer.
  • the resin layer may be a single layer, or may be two or more types of layers.
  • Heat-resistant resins include, for example, polyethylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly-m-phenylene terephthalate, poly-p-phenylene isophthalate, polycarbonate, polyester carbonate, aliphatic polyamide, total aromatic polyamide, and semi-aroma.
  • Aromatic polyamide total aromatic polyester, polyphenylene sulfide, polyparaphenylene benzobisoxazole, polyimide, polyarylate, polyetherimide, polyamideimide, polyacetal, polyether ether ketone, polysulfone, polyether sulfone, fluororesin, poly One or more selected from ether nitrile, modified polyphenylene ether and the like.
  • the insulating layer 320 (first insulating layer 322 and second insulating layer 324) can be manufactured, for example, as follows. First, a solution is prepared by dispersing magnesium hydroxide particles and a resin in a solvent.
  • the solvent is, for example, water, alcohols such as ethanol, N-methylpyrrolidone (NMP), toluene, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like.
  • NMP N-methylpyrrolidone
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • a solution is applied onto the first surface 312 of the base material 310 to form the insulating layer 320 (first insulating layer 322).
  • the second insulating layer 324 can also be formed in the same manner.
  • the magnesium hydroxide particles may have, for example, a specific surface area of 4.0 m 2 / g or more and 8.0 m 2 / g or less.
  • the sulfonic acid ester may contain 5.0 parts by mass or more of sulfonic acid groups with respect to 100 parts by mass of the total mass of the magnesium hydroxide particles.
  • the sulfonic acid ester is easily adsorbed on the magnesium hydroxide particles. Therefore, it is preferable that the ratio of the mass of the sulfonic acid ester to the mass of the magnesium hydroxide particles is relatively large.
  • the resin contained in the insulating layer 320 is, for example, an aromatic polyamide resin such as a meta-aromatic polyamide or a para-aromatic polyamide; carboxymethyl cellulose (CMC) or the like.
  • CMC carboxymethyl cellulose
  • Cellular resin acrylic resin
  • fluororesin such as polyvinylidene fluoride (PVDF); etc.
  • aromatic polyamide resins are preferable, and meta-aromatic polyamides are more preferable. These substances may be used alone or in combination.
  • the thickness of the base material 310 can be appropriately determined, and can be, for example, 5.0 ⁇ m or more and 10.0 ⁇ m or less, preferably 6.0 ⁇ m or more and 10.0 ⁇ m or less.
  • the total thickness of the first insulating layer 322 and the thickness of the second insulating layer 324 can be appropriately determined, for example, 10.0 ⁇ m or more and 20.0 ⁇ m or less, preferably 12.5 ⁇ m or more and 17.5 ⁇ m or less. Can be.
  • the thickness of the separator 300 can be appropriately determined, and can be, for example, 15.0 ⁇ m or more and 30.0 ⁇ m or less, preferably 16.0 ⁇ m or more and 27.5 ⁇ m or less.
  • the first surface 112 of the positive electrode 100 faces the first surface 312 of the separator 300
  • the first surface 212 of the negative electrode 200 is the second surface of the separator 300. They overlap each other so as to face surface 314.
  • Example 1 The battery 10 was manufactured as follows.
  • the positive electrode 100 was formed as follows. First, the following materials were dispersed in an organic solvent to prepare a slurry. Active material particles: 94.0 parts by mass of lithium nickel-containing composite oxide (Chemical formula: Li 1.01 (Ni 0.80 Co 0.15 Al 0.05 ) O 2 ) (Active material particles are of active material particles. It contains 0.43 parts by mass of lithium hydroxide (LiOH) with respect to 100 parts by mass of the total mass.
  • Active material particles 94.0 parts by mass of lithium nickel-containing composite oxide (Chemical formula: Li 1.01 (Ni 0.80 Co 0.15 Al 0.05 ) O 2 )
  • Active material particles are of active material particles. It contains 0.43 parts by mass of lithium hydroxide (LiOH) with respect to 100 parts by mass of the total mass.
  • Conductive aid 2.0 parts by mass of spheroidal graphite and 1.0 parts by mass of scaly graphite
  • Binder resin 3.0 parts by mass of polyvinylidene fluoride (PVDF)
  • Thickness 15 ⁇ m (1st active material layer 122) Density: 3.35 g / cm 3 Thickness: 36.6 ⁇ m Metsuke of active material particles A1: 115.1 g / m 2 Specific surface area of active material particles S1 m : 0.25 m 2 / g (Second active material layer 124) Density: 3.35 g / cm 3 Thickness: 36.6 ⁇ m Metsuke of active material particles A1: 115.1 g / m 2 Specific surface area of active material particles S1 m : 0.25 m 2 / g
  • the negative electrode 200 was formed as follows. First, the following materials were dispersed in water to prepare a slurry. Active material: 77.36 parts by mass of natural graphite (average particle size: 16.0 ⁇ m) and 19.34 parts by mass of natural graphite (average particle size: 10.5 ⁇ m) Conductive aid: 0.3 parts by mass of spheroidal graphite Binder resin: 2.0 parts by mass of styrene-butadiene rubber (SBR) Thickener: 1.0 parts by mass of carboxymethyl cellulose (CMC) Next, this slurry is applied on both sides (first surface 212 and second surface 214) of the copper foil (current collector 210), the slurry is dried, pressed, and the active material layer 220 (first active surface) is carried out.
  • Active material 77.36 parts by mass of natural graphite (average particle size: 16.0 ⁇ m) and 19.34 parts by mass of natural graphite (average particle size: 10.5 ⁇ m)
  • Conductive aid 0.3 parts by mass
  • the material layer 222 and the second active material layer 224) were formed. Details of the current collector 210, the first active material layer 222, and the second active material layer 224 are as follows. (Current collector 210) Thickness: 8 ⁇ m (1st active material layer 222) Density: 1.55 g / cm 3 Thickness: 50.0 ⁇ m (Second active material layer 224) Density: 1.55 g / cm 3 Thickness: 50.0 ⁇ m
  • the separator 300 was formed as follows. First, the following materials were dispersed in a solvent to prepare a solution. Inorganic filler: 75 parts by mass of magnesium hydroxide Resin: 25 parts by mass of meta-aromatic polyamide Next, this solution is applied on both sides (first surface 312 and second surface 314) of a polyethylene film (base material 310).
  • the insulating layer 320 (first insulating layer 322 and second insulating layer 324) was formed. Details of the base material 310, the first insulating layer 322, and the second insulating layer 324 are as follows.
  • the laminated body 12 was formed so that 14 positive electrodes 100 and 14 negative electrodes 200 were alternately arranged and the separator 300 was folded back in a zigzag manner.
  • the battery 10 was manufactured by accommodating the laminate 12 together with the electrolytic solution in the exterior material 400.
  • the electrolytic solution contains the following supporting salts, solvents and additives.
  • Supporting salt LiPF 6
  • Solvents 30% by volume ethylene carbonate (EC), 60% by volume diethyl carbonate (DEC) and 10% by volume methyl ethyl carbonate (MEC).
  • Cyclic sulfonic acid ester Cyclic sulfonic acid ester contains 0.27 parts by mass of sulfonic acid groups with respect to 100 parts by mass of the total mass of the active material particles of the first active material layer 122 or the second active material layer 124. Included), 1.5 parts by mass of vinylene carbonate with respect to 100 parts by mass of the total mass of the electrolytic solution and 1.0 part by mass of fluoroethylene carbonate with respect to 100 parts by mass of the total mass of the electrolytic solution.
  • the reduction of residual gas was evaluated for the battery 10. Specifically, initial charging was performed at a temperature of 25 ° C. with a constant current of a charging rate of 0.15 C and a charge termination voltage of 4.2 V and 2.3 A. The volume V 0 (cc) of the battery 10 before the initial charge and the volume V charge (cc) of the battery 10 after the initial charge were measured. The reduction of residual gas was evaluated according to the following criteria. ⁇ : V charge / V 0 ⁇ 100 was less than 115% ⁇ : V charge / V 0 ⁇ 100 was 115% or more
  • the cycle characteristics of the battery 10 were evaluated. Specifically, a cycle test was carried out at a temperature of 45 ° C. with a charge rate of 1.0 C, a discharge rate of 1.0 C, a charge end voltage of 4.2 V, and a discharge end voltage of 2.5 V. The discharge capacity C 10 (mAh) at the 10th cycle and the discharge capacity C 500 (mAh) at the 500th cycle were measured. The cycle characteristics were evaluated according to the following criteria. ⁇ : C 500 / C 10 ⁇ 100 was 90% or more ⁇ : C 500 / C 10 ⁇ 100 was less than 90%
  • Table 1 shows the conditions of the positive electrode 100, the conditions of the separator 300, the reduction of residual gas, and the cycle characteristics in Example 1.
  • the conditions of the positive electrode 100 and the conditions of the separator 300 in Examples 2 to 9 and Comparative Examples 1 to 4 are the same as the conditions of the positive electrode 100 and the conditions of the separator 300 in Example 1, except for the points shown in Table 1. And said.
  • "-" in Comparative Example 4 means that the first insulating layer 322 and the second insulating layer 324 do not contain magnesium hydroxide particles.
  • Table 1 shows the reduction of residual gas and the cycle characteristics in each of Examples 2 to 9 and Comparative Examples 1 to 4.
  • the product P2 of the magnesium hydroxide particles having a grain A2 and the specific surface area S2 m is the product P1 of the active material particles having a grain A1 and a specific surface area S1 m . It may be 0.7 times or more of (the numerical value (0.7) is rounded to one significant digit).
  • the residual gas in the cell can be reduced according to the relationship between the product P1 and the product P2.
  • the reason why the residual gas is reduced by the relationship between the product P1 and the product P2 is presumed to be as follows. It is presumed that most of the gas generated by the initial charge is carbon dioxide gas generated by the oxidative decomposition of the carbonic acid ester contained in the electrolytic solution.
  • the product P1 corresponds to the total surface area of the active material particles per unit area
  • the product P2 corresponds to the total surface area of the magnesium hydroxide particles per unit area.
  • the larger the product P1 the larger the surface area of the chemical reaction that generates carbon dioxide (that is, the total surface area of the active material particles), and the more carbon dioxide can be generated.
  • the surface area of the chemical reaction that absorbs carbon dioxide gas that is, the total surface area of the magnesium hydroxide particles
  • the absorption of carbon dioxide gas can be increased.
  • the surface area of the chemical reaction that absorbs carbon dioxide gas that is, product P2
  • the ratio of the thickness of the first insulating layer 322 to the thickness of the base material 310 or the ratio of the thickness of the second insulating layer 324 to the thickness of the base material 310 is 3.8 /. It may be 7.5 or more and 4.0 / 3.0 or less.
  • the residual gas does not depend on the relationship between the thickness of the base material 310 and the thickness of the first insulating layer 322 or the relationship between the thickness of the base material 310 and the thickness of the second insulating layer 324, at least in the above-mentioned range. It will be reduced.
  • the active material particles of the first active material layer 122 or the second active material layer 124 are the total mass of the active material particles. It may contain 0.52 parts by mass or more of lithium hydroxide with respect to 100 parts by mass.
  • the cycle characteristics tend to deteriorate when the amount of lithium hydroxide is relatively large.
  • the products P1 and P2 are described above even when the amount of lithium hydroxide is relatively large. When there is a relationship, it can be said that deterioration of cycle characteristics can be reduced.
  • the reason why the cycle characteristics tend to deteriorate when the amount of lithium hydroxide is relatively large is presumed to be as follows.
  • the reaction of lithium hydroxide and carbon dioxide gas deposits high-resistance lithium carbonate (Li 2 CO 3 ) on the surface of the positive electrode 100, which can inhibit the intercalation of Li ions on the surface of the positive electrode 100.
  • the conductive path formed between the active material particles by the conductive auxiliary agent is blocked by lithium carbonate, and the electron transfer resistance of the positive electrode 100 can be increased.
  • lithium hydroxide between the primary particles of the active material particles can be eluted into the electrolytic solution to form lithium carbonate so as to cover the surface of the secondary particles of the active material particles.
  • Battery 12 Laminated body 100 Positive electrode 110 Current collector 112 First surface 114 Second surface 120 Active material layer 122 First active material layer 124 Second active material layer 130 First lead 200 Negative electrode 210 Current collector 212 First surface 214 2nd surface 220 Active material layer 222 1st active material layer 224 2nd active material layer 230 2nd lead 300 Separator 310 Base material 312 1st surface 314 2nd surface 320 Insulating layer 322 1st insulating layer 324 2nd insulating layer 400 Exterior material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

A battery (10) includes a positive electrode (100) and a first insulation layer (322). The positive electrode (100) includes a current collector (110) and a first active material layer (122). The current collector (110) has a first surface (112) and a second surface (114). The second surface (114) is on the reverse side from the first surface (112). The first active material layer (122) is positioned on the first surface (112) of the current collector (110). The first insulation layer (322) faces the first active material layer (122) of the positive electrode (100). The first active material layer (122) includes active material particles represented by LiaNibM1-bO2 (where, 0.95≤a≤1.05, b≥0.50, and M is at least one element selected from among Co, Mn, Al, Ti, Zr, Na, Ba, and Mg). The first insulation layer (322) includes magnesium hydroxide particles. The product of the basis weight and specific surface area of the magnesium hydroxide particles is 0.7 or more times greater than the product of the basis weight and specific surface area of the active material particles.

Description

電池battery
 本発明は、電池に関する。 The present invention relates to a battery.
 電池の一種として、二次電池、特に、非水電解質二次電池が開発されている。非水電解質二次電池は、正極、負極及びセパレータを含んでいる。セパレータは、正極及び負極の間に位置している。 As a type of battery, a secondary battery, especially a non-aqueous electrolyte secondary battery, has been developed. The non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode and a separator. The separator is located between the positive electrode and the negative electrode.
 特許文献1には、セパレータの一例について記載されている。セパレータは、ポリエチレン微多孔膜及びポリエチレン微多孔膜の両面上の耐熱性多孔質層を含んでいる。耐熱性多孔質層は、ポリメタフェニレンイソフタルアミド及び水酸化アルミニウムからなる無機フィラーを含んでいる。 Patent Document 1 describes an example of a separator. The separator includes a polyethylene microporous membrane and a heat resistant porous layer on both sides of the polyethylene microporous membrane. The heat-resistant porous layer contains an inorganic filler composed of polymethaphenylene isophthalamide and aluminum hydroxide.
 特許文献2には、セパレータの一例について記載されている。セパレータは、ポリエチレン微多孔膜及びポリエチレン微多孔膜の両面上の多孔質層を含んでいる。多孔質層は、メタ型全芳香族ポリアミド及びα-アルミナからなる無機フィラーを含んでいる。 Patent Document 2 describes an example of a separator. The separator includes a polyethylene microporous membrane and a porous layer on both sides of the polyethylene microporous membrane. The porous layer contains an inorganic filler composed of meta-type total aromatic polyamide and α-alumina.
 特許文献3及び4には、セパレータの一例について記載されている。セパレータは、ポリエチレン多孔質フィルム及びポリエチレン多孔質フィルム上の耐熱多孔層を含んでいる。耐熱多孔層は、液晶ポリエステル及びアルミナ粒子を含んでいる。 Patent Documents 3 and 4 describe an example of a separator. The separator includes a polyethylene porous film and a heat resistant porous layer on the polyethylene porous film. The heat-resistant porous layer contains liquid crystal polyester and alumina particles.
 特許文献5には、電池の圧壊試験の耐性を向上させることについて記載されている。特許文献5では、圧壊試験の耐性を向上させるため、正極の引張伸び率、負極の引張伸び率及びセパレータの引張伸び率を特定している。 Patent Document 5 describes improving the resistance of a battery crush test. Patent Document 5 specifies the tensile elongation of the positive electrode, the tensile elongation of the negative electrode, and the tensile elongation of the separator in order to improve the resistance to the crushing test.
特開2009-231281号公報Japanese Unexamined Patent Publication No. 2009-231281 特開2010-160939号公報Japanese Unexamined Patent Publication No. 2010-160939 特開2008-311221号公報Japanese Unexamined Patent Publication No. 2008-31221 特開2008-307893号公報Japanese Unexamined Patent Publication No. 2008-307893 特開2010-165664号公報JP-A-2010-165664
 非水電解質二次電池、特にリチウムイオン電池では、充放電においてガス(例えば、電解液内の炭酸エステルの酸化分解によって発生する炭酸ガス)が発生することがある。セル内の残留ガスは、様々な支障(例えば、隣り合う正極及び負極間の距離の拡大又はセルの内圧の上昇)を引き起こすおそれがある。 In non-aqueous electrolyte secondary batteries, especially lithium ion batteries, gas (for example, carbon dioxide gas generated by oxidative decomposition of carbonic acid ester in the electrolytic solution) may be generated during charging and discharging. The residual gas in the cell may cause various troubles (for example, an increase in the distance between the adjacent positive electrode and the negative electrode or an increase in the internal pressure of the cell).
 本発明の目的の一例は、セル内の残留ガスを低減することにある。本発明の他の目的は、本明細書の開示から明らかになるであろう。 An example of an object of the present invention is to reduce residual gas in a cell. Other objects of the invention will become apparent from the disclosure herein.
 本発明の一態様によれば、
 第1面と、前記第1面の反対側の第2面と、を有する集電体と、前記集電体の前記第1面上に位置する第1活物質層と、を含む正極と、
 前記正極の前記第1活物質層に対向する第1絶縁層と、
を含み、
 前記第1活物質層は、LiNi1-b(0.95≦a≦1.05、b≧0.50、Mは、Co、Mn、Al、Ti、Zr、Na、Ba及びMgの中から選ばれる一種以上の元素である。)によって示される活物質粒子を含み、
 前記第1絶縁層は、水酸化マグネシウム粒子を含み、
 前記水酸化マグネシウム粒子の目付及び比表面積の積は、前記活物質粒子の目付及び比表面積の積の0.7倍以上である、電池が提供される。
According to one aspect of the invention
A positive electrode including a current collector having a first surface and a second surface opposite to the first surface, and a first active material layer located on the first surface of the current collector.
The first insulating layer of the positive electrode facing the first active material layer and
Including
The first active material layer is Li a Ni b M 1-b O 2 (0.95 ≦ a ≦ 1.05, b ≧ 0.50, M is Co, Mn, Al, Ti, Zr, Na, It contains active material particles represented by (one or more elements selected from Ba and Mg).
The first insulating layer contains magnesium hydroxide particles and contains magnesium hydroxide particles.
A battery is provided in which the product of the grain size and the specific surface area of the magnesium hydroxide particles is 0.7 times or more the product of the grain size and the specific surface area of the active material particles.
 本発明の上述した一態様によれば、セル内の残留ガスを低減することができる。 According to the above-described aspect of the present invention, the residual gas in the cell can be reduced.
実施形態に係る電池の上面図である。It is a top view of the battery which concerns on embodiment. 図1のA-A´断面図である。It is sectional drawing of AA'of FIG. 図2の一部分を拡大した図である。It is an enlarged view of a part of FIG.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same constituents will be referred to with the same numerals, and the description thereof will not be repeated.
 図1は、実施形態に係る電池10の上面図である。図2は、図1のA-A´断面図である。図3は、図2の一部分を拡大した図である。図2では、説明のため、図1に示した外装材400を示していない。 FIG. 1 is a top view of the battery 10 according to the embodiment. FIG. 2 is a cross-sectional view taken along the line AA'of FIG. FIG. 3 is an enlarged view of a part of FIG. FIG. 2 does not show the exterior material 400 shown in FIG. 1 for the sake of explanation.
 図3を用いて、電池10の概要を説明する。電池10は、正極100及び第1絶縁層322を含んでいる。正極100は、集電体110及び第1活物質層122を含んでいる。集電体110は、第1面112及び第2面114を有している。第2面114は、第1面112の反対側にある。第1活物質層122は、集電体110の第1面112上に位置している。第1絶縁層322は、正極100の第1活物質層122に対向している。第1活物質層122は、LiNi1-b(0.95≦a≦1.05、b≧0.50、Mは、Co、Mn、Al、Ti、Zr、Na、Ba及びMgの中から選ばれる一種以上の元素である。)によって示される活物質粒子を含んでいる。第1絶縁層322は、水酸化マグネシウム粒子を含んでいる。水酸化マグネシウム粒子の目付及び比表面積の積は、活物質粒子の目付及び比表面積の積の0.7倍以上である。 The outline of the battery 10 will be described with reference to FIG. The battery 10 includes a positive electrode 100 and a first insulating layer 322. The positive electrode 100 includes a current collector 110 and a first active material layer 122. The current collector 110 has a first surface 112 and a second surface 114. The second surface 114 is on the opposite side of the first surface 112. The first active material layer 122 is located on the first surface 112 of the current collector 110. The first insulating layer 322 faces the first active material layer 122 of the positive electrode 100. The first active material layer 122 is Li a Ni b M 1-b O 2 (0.95 ≦ a ≦ 1.05, b ≧ 0.50, M is Co, Mn, Al, Ti, Zr, Na, It contains active material particles represented by (one or more elements selected from Ba and Mg). The first insulating layer 322 contains magnesium hydroxide particles. The product of the grain size and the specific surface area of the magnesium hydroxide particles is 0.7 times or more the product of the grain size and the specific surface area of the active material particles.
 本実施形態によれば、セル内(後述する外装材400によって閉ざされた空間内)の残留ガスを低減することができる。具体的には、本発明者は、セル内の残留ガスを低減するため、水酸化マグネシウム粒子の目付及び比表面積の積及び活物質粒子の目付及び比表面積の積の関係に新規に着目した。本発明者が検討したところ、詳細を後述するように、水酸化マグネシウムの当該積及び活物質粒子の当該積の関係に応じて、セル内の残留ガスが低減されることが明らかとなった。 According to this embodiment, the residual gas in the cell (in the space closed by the exterior material 400 described later) can be reduced. Specifically, the present inventor has newly focused on the relationship between the product of the grain and specific surface area of magnesium hydroxide particles and the product of the grain and specific surface area of active material particles in order to reduce the residual gas in the cell. As a result of the examination by the present inventor, it has been clarified that the residual gas in the cell is reduced according to the relationship between the product of magnesium hydroxide and the product of the active material particles, as will be described in detail later.
 LiNi1-bの組成比bは、b≧0.80であってもよい。この場合においても、本実施形態によれば、セル内の残留ガスを低減することができる。 The composition ratio b of Li a Ni b M 1-b O 2 may be b ≧ 0.80. Even in this case, according to the present embodiment, the residual gas in the cell can be reduced.
 図1を用いて、電池10の詳細を説明する。 The details of the battery 10 will be described with reference to FIG.
 電池10は、第1リード130、第2リード230及び外装材400を含んでいる。 The battery 10 includes a first lead 130, a second lead 230, and an exterior material 400.
 第1リード130は、図2に示す正極100に電気的に接続されている。第1リード130は、例えば、アルミニウム又はアルミニウム合金で形成させてもよい。 The first lead 130 is electrically connected to the positive electrode 100 shown in FIG. The first lead 130 may be formed of, for example, aluminum or an aluminum alloy.
 第2リード230は、図2に示す負極200に電気的に接続されている。第2リード230は、例えば、銅若しくは銅合金又はそれらにニッケルメッキを施したもので形成させてもよい。 The second lead 230 is electrically connected to the negative electrode 200 shown in FIG. The second lead 230 may be formed of, for example, copper or a copper alloy or a nickel-plated product thereof.
 図1に示す例において、外装材400は、4辺を有する矩形形状を有している。図1に示す例において、第1リード130及び第2リード230は、外装材400の4辺のうちの共通の1辺から突出している。他の例において、第1リード130及び第2リード230は、外装材400の4辺のうちの異なる辺(例えば、互いに反対側の辺)から突出していてもよい。 In the example shown in FIG. 1, the exterior material 400 has a rectangular shape having four sides. In the example shown in FIG. 1, the first lead 130 and the second lead 230 protrude from a common one of the four sides of the exterior material 400. In another example, the first lead 130 and the second lead 230 may protrude from different sides (for example, sides opposite to each other) of the four sides of the exterior material 400.
 外装材400は、図2に示す積層体12を電解液(不図示)とともに収容している。 The exterior material 400 contains the laminate 12 shown in FIG. 2 together with an electrolytic solution (not shown).
 外装材400は、例えば、熱融着性樹脂層及びバリア層を含み、例えば、熱融着性樹脂層及びバリア層を含む積層フィルムにしてもよい。 The exterior material 400 may include, for example, a thermosetting resin layer and a barrier layer, and may be a laminated film including, for example, a thermosetting resin layer and a barrier layer.
 熱融着性樹脂層を形成する樹脂材料は、例えば、ポリエチレン(PE)、ポリプロピレン、ナイロン、ポリエチレンテレフタレート(PET)等にしてもよい。熱融着性樹脂層の厚さは、例えば、20μm以上200μm以下、好ましくは30μm以上150μm以下、より好ましくは50μm以上100μm以下である。 The resin material forming the thermosetting resin layer may be, for example, polyethylene (PE), polypropylene, nylon, polyethylene terephthalate (PET) or the like. The thickness of the thermosetting resin layer is, for example, 20 μm or more and 200 μm or less, preferably 30 μm or more and 150 μm or less, and more preferably 50 μm or more and 100 μm or less.
 バリア層は、例えば、電解液の漏出又は外部からの水分の侵入防止といったバリア性を有しており、例えば、ステンレス(SUS)箔、アルミニウム箔、アルミニウム合金箔、銅箔、チタン箔等の金属により形成されたバリア層にしてもよい。バリア層の厚さは、例えば、10μm以上100μm以下、好ましくは20μm以上80μm以下、より好ましくは30μm以上50μm以下である。 The barrier layer has a barrier property such as prevention of leakage of electrolytic solution or invasion of moisture from the outside, and for example, metal such as stainless steel (SUS) foil, aluminum foil, aluminum alloy foil, copper foil, and titanium foil. It may be a barrier layer formed by. The thickness of the barrier layer is, for example, 10 μm or more and 100 μm or less, preferably 20 μm or more and 80 μm or less, and more preferably 30 μm or more and 50 μm or less.
 積層フィルムの熱融着性樹脂層は、1層であってもよいし、又は2層以上であってもよい。同様にして、積層フィルムのバリア層は、1層であってもよいし、又は2層以上であってもよい。 The thermosetting resin layer of the laminated film may be one layer or two or more layers. Similarly, the barrier layer of the laminated film may be one layer or two or more layers.
 電解液は、例えば、非水電解液である。この非水電解液は、リチウム塩及びリチウム塩を溶解する溶媒を含んでいてもよい。 The electrolytic solution is, for example, a non-aqueous electrolytic solution. This non-aqueous electrolytic solution may contain a lithium salt and a solvent that dissolves the lithium salt.
 リチウム塩は、例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウム等にしてもよい。 Lithium salt, for example, LiClO 4, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lower fatty acid lithium carboxylate and the like may be used.
 リチウム塩を溶解する溶媒は、炭酸エステル、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ビニレンカーボネート(VC)等のカーボネート類を含んでいる。溶媒は、γ-ブチロラクトン、γ-バレロラクトン等のラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、ホルムアミド、ジメチルホルムアミド等の含窒素溶媒;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等の有機酸エステル類;リン酸トリエステルやジグライム類;トリグライム類;スルホラン、メチルスルホラン等のスルホラン類;3-メチル-2-オキサゾリジノン等のオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトン等のスルトン類等をさらに含んでいてもよい。これらの物質は、単独で使用されてもよいし、又は組み合わせて使用されてもよい。 Solvents that dissolve the lithium salt are carbonate esters such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), It contains carbonates such as methyl ethyl carbonate (MEC) and vinylene carbonate (VC). Solvents include lactones such as γ-butyrolactone and γ-valerolactone; ethers such as trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, tetrahydrofuran and 2-methyltetraxide; sulfoxides such as dimethyl sulfoxide; 1, Oxolanes such as 3-dioxolane and 4-methyl-1,3-dioxolane; nitrogen-containing solvents such as acetonitrile, nitromethane, formamide and dimethylformamide; methyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and propionic acid. Organic acid esters such as ethyl; phosphoric acid triesters and jigrimes; triglimes; sulfolanes such as sulfolanes and methyl sulfoxides; oxazolidinones such as 3-methyl-2-oxazolidinone; 1,3-propanesulton, 1,4 -Sultons such as butane sulton and nafta sulton may be further contained. These substances may be used alone or in combination.
 溶媒内の炭酸エステルは、正極100の近傍において、充放電によって酸化分解して、炭酸ガスを発生させることがある。セル内の残留炭酸ガスは、様々な支障(正極100及び負極200間の距離の拡大又はセルの内圧(外装材400によって閉ざされた空間内の圧力)の上昇)を引き起こすおそれがある。本実施形態においては、このような支障を低減することができる。 The carbonic acid ester in the solvent may be oxidatively decomposed by charging and discharging in the vicinity of the positive electrode 100 to generate carbon dioxide gas. The residual carbon dioxide gas in the cell may cause various troubles (increasing the distance between the positive electrode 100 and the negative electrode 200 or increasing the internal pressure of the cell (pressure in the space closed by the exterior material 400)). In this embodiment, such obstacles can be reduced.
 電解液は、添加剤をさらに含んでいてもよい、添加剤は、例えば、環状スルホン酸エステル等のスルホン酸エステルである。 The electrolytic solution may further contain an additive, and the additive is, for example, a sulfonic acid ester such as a cyclic sulfonic acid ester.
 図2を用いて、積層体12の詳細を説明する。 The details of the laminated body 12 will be described with reference to FIG.
 積層体12は、複数の正極100、複数の負極200及びセパレータ300を含んでいる。複数の正極100及び複数の負極200は、交互に積層されている。図2に示す例では、セパレータ300は、隣り合う正極100及び負極200の間にセパレータ300の一部分が位置するように、つづら折りに折り返されている。他の例において、互いに離間した複数のセパレータ300が、隣り合う正極100及び負極200の間に位置していてもよい。 The laminated body 12 includes a plurality of positive electrodes 100, a plurality of negative electrodes 200, and a separator 300. The plurality of positive electrodes 100 and the plurality of negative electrodes 200 are alternately laminated. In the example shown in FIG. 2, the separator 300 is folded in a zigzag so that a part of the separator 300 is located between the adjacent positive electrode 100 and the negative electrode 200. In another example, a plurality of separators 300 separated from each other may be located between the adjacent positive electrode 100 and the negative electrode 200.
 図3を用いて、正極100、負極200及びセパレータ300のそれぞれの詳細を説明する。 The details of each of the positive electrode 100, the negative electrode 200, and the separator 300 will be described with reference to FIG.
 正極100は、集電体110及び活物質層120(第1活物質層122及び第2活物質層124)を含んでいる。集電体110は、第1面112及び第2面114を有している。第2面114は、第1面112の反対側にある。第1活物質層122は、集電体110の第1面112上にある。第2活物質層124は、集電体110の第2面114上にある。 The positive electrode 100 includes a current collector 110 and an active material layer 120 (first active material layer 122 and second active material layer 124). The current collector 110 has a first surface 112 and a second surface 114. The second surface 114 is on the opposite side of the first surface 112. The first active material layer 122 is on the first surface 112 of the current collector 110. The second active material layer 124 is on the second surface 114 of the current collector 110.
 集電体110は、例えば、アルミニウム、ステンレス鋼、ニッケル、チタン又はこれらの合金で形成させてもよい。集電体110の形状は、例えば、箔、平板又はメッシュにしてもよい。 The current collector 110 may be formed of, for example, aluminum, stainless steel, nickel, titanium, or an alloy thereof. The shape of the current collector 110 may be, for example, foil, flat plate or mesh.
 活物質層120(第1活物質層122及び第2活物質層124)は、活物質粒子、バインダー樹脂及び導電助剤を含んでいる。 The active material layer 120 (first active material layer 122 and second active material layer 124) contains active material particles, a binder resin, and a conductive auxiliary agent.
 活物質層120(第1活物質層122及び第2活物質層124)に含まれる活物質粒子は、LiNi1-b(Mは、Co、Mn、Al、Ti、Zr、Na、Ba及びMgの中から選ばれる少なくとも一種以上の元素である。)によって示される。LiNi1-bは、例えば、
 リチウム-ニッケル複合酸化物;
 リチウム-ニッケル-A1複合酸化物(A1は、コバルト、マンガン、アルミニウム、チタン、ジルコニウム、ナトリウム、バリウム及びマグネシウムのうちの一である。);
 リチウム-ニッケル-B1-B2複合酸化物(B1及びB2のそれぞれは、コバルト、マンガン、アルミニウム、チタン、ジルコニウム、ナトリウム、バリウム及びマグネシウムのうちの一である。B1及びB2は、互いに異なる。);
 リチウム-ニッケル-C1-C2-C3複合酸化物(C1~C3のそれぞれは、コバルト、マンガン、アルミニウム、チタン、ジルコニウム、ナトリウム、バリウム及びマグネシウムのうちの一である。C1~C3は、互いに異なる。);
 リチウム-ニッケル-D1-D2-D3-D4複合酸化物(D1~D4のそれぞれは、コバルト、マンガン、アルミニウム、チタン、ジルコニウム、ナトリウム、バリウム及びマグネシウムのうちの一である。D1~C4は、互いに異なる。);
 リチウム-ニッケル-E1-E2-E3-E4-E5複合酸化物(E1~E5のそれぞれは、コバルト、マンガン、アルミニウム、チタン、ジルコニウム、ナトリウム、バリウム及びマグネシウムのうちの一である。E1~E5は、互いに異なる。);
 リチウム-ニッケル-F1-F2-F3-F4-F5-F6複合酸化物(F1~F6のそれぞれは、コバルト、マンガン、アルミニウム、チタン、ジルコニウム、ナトリウム、バリウム及びマグネシウムのうちの一である。F1~F6は、互いに異なる。); 
 リチウム-ニッケル-G1-G2-G3-G4-G5-G6-G7複合酸化物(G1~G7のそれぞれは、コバルト、マンガン、アルミニウム、チタン、ジルコニウム、ナトリウム、バリウム及びマグネシウムのうちの一である。G1~G7は、互いに異なる。);又は
 リチウム-ニッケル-コバルト-マンガン-アルミニウム-チタン-ジルコニウム-ナトリウム-バリウム-マグネシウム複合酸化物
である。LiNi1-bの組成比aは、例えば、0.95≦a≦1.05である。LiNi1-bの組成比bは、例えば電池10のエネルギー密度に応じて適宜決定することができる。電池10のエネルギー密度は、組成比bが大きい高くなる。組成比bは、例えば、b≧0.50、好ましくはb≧0.80である。他の例において、活物質層120(第1活物質層122及び第2活物質層124)に含まれる活物質は、リチウム-コバルト複合酸化物、リチウム-マンガン複合酸化物等のリチウム及び遷移金属の複合酸化物;TiS、FeS、MoS等の遷移金属硫化物;MnO、V、V13、TiO等の遷移金属酸化物、オリビン型リチウムリン酸化物等であってもよい。オリビン型リチウムリン酸化物は、例えば、Mn、Cr、Co、Cu、Ni、V、Mo、Ti、Zn、Al、Ga、Mg、B、Nb及びFeからなる群のうちの少なくとも1種の元素と、リチウムと、リンと、酸素とを含んでいる。これらの化合物は、その特性を向上させるために一部の元素を部分的に他の元素に置換したものであってもよい。これらの物質は、単独で使用されてもよいし、又は組み合わせて使用されてもよい。
The active material particles contained in the active material layer 120 (first active material layer 122 and second active material layer 124) are Li a Ni b M 1-b O 2 (M is Co, Mn, Al, Ti, Zr. , At least one element selected from Na, Ba and Mg.). Li a Ni b M 1-b O 2 is, for example,
Lithium-nickel composite oxide;
Lithium-nickel-A1 composite oxide (A1 is one of cobalt, manganese, aluminum, titanium, zirconium, sodium, barium and magnesium);
Lithium-nickel-B1-B2 composite oxide (each of B1 and B2 is one of cobalt, manganese, aluminum, titanium, zirconium, sodium, barium and magnesium; B1 and B2 are different from each other);
Lithium-nickel-C1-C2-C3 composite oxides (each of C1 to C3 is one of cobalt, manganese, aluminum, titanium, zirconium, sodium, barium and magnesium. C1 to C3 are different from each other. );
Lithium-nickel-D1-D2-D3-D4 composite oxide (each of D1 to D4 is one of cobalt, manganese, aluminum, titanium, zirconium, sodium, barium and magnesium. D1 to C4 are each other. different.);
Lithium-nickel-E1-E2-E3-E4-E5 composite oxide (each of E1 to E5 is one of cobalt, manganese, aluminum, titanium, zirconium, sodium, barium and magnesium. E1 to E5 are , Different from each other.);
Lithium-nickel-F1-F2-F3-F4-F5-F6 composite oxide (each of F1 to F6 is one of cobalt, manganese, aluminum, titanium, zirconium, sodium, barium and magnesium. F1 to F6 are different from each other.);
Lithium-nickel-G1-G2-G3-G4-G5-G6-G7 composite oxide (each of G1 to G7 is one of cobalt, manganese, aluminum, titanium, zirconium, sodium, barium and magnesium. G1 to G7 are different from each other.); Or is a lithium-nickel-cobalt-manganese-aluminum-titanium-zirconium-sodium-barium-magnesium composite oxide. The composition ratio a of Li a Ni b M 1-b O 2 is, for example, 0.95 ≦ a ≦ 1.05. The composition ratio b of Li a Ni b M 1-b O 2 can be appropriately determined according to, for example, the energy density of the battery 10. The energy density of the battery 10 increases with a large composition ratio b. The composition ratio b is, for example, b ≧ 0.50, preferably b ≧ 0.80. In another example, the active material contained in the active material layer 120 (first active material layer 122 and second active material layer 124) is lithium and a transition metal such as a lithium-cobalt composite oxide and a lithium-manganese composite oxide. composite oxides; TiS 2, FeS, transition metal sulfides such as MoS 2; MnO, V 2 O 5, V 6 O 13, TiO transition metal oxides such as 2, a olivine-type lithium phosphorus oxides such as May be good. The olivine-type lithium phosphorus oxide is, for example, at least one element in the group consisting of Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, Nb and Fe. It contains lithium, phosphorus, and oxygen. These compounds may be those in which some elements are partially replaced with other elements in order to improve their properties. These substances may be used alone or in combination.
 活物質層120(第1活物質層122及び第2活物質層124)に含まれる活物質の密度は、例えば、2.0g/cm以上4.0g/cm以下、好ましくは2.4g/cm以上3.8g/cm以下、より好ましくは2.8g/cm以上3.6g/cm以下である。 The density of the active material contained in the active material layer 120 (the first active material layer 122 and the second active material layer 124) is, for example, 2.0 g / cm 3 or more and 4.0 g / cm 3 or less, preferably 2.4 g. / cm 3 or more 3.8 g / cm 3 or less, more preferably 2.8 g / cm 3 or more 3.6 g / cm 3 or less.
 活物質層120(第1活物質層122及び第2活物質層124)に含まれる活物質粒子は、例えば、0.25m/g以上1.45m/g以下の比表面積を有していてもよい。 The active material particles contained in the active material layer 120 (the first active material layer 122 and the second active material layer 124) have, for example, a specific surface area of 0.25 m 2 / g or more and 1.45 m 2 / g or less. You may.
 集電体110の両面(第1面112及び第2面114)のうちの一方の面上の活物質層(第1活物質層122又は第2活物質層124)の厚さは、例えば電池10のレートに応じて適宜決定することができる。電池10のレートは、当該厚さが薄いほど高くなる。当該厚さは、例えば、60μm以下、好ましくは50μm以下、より好ましくは40μm以下である。 The thickness of the active material layer (first active material layer 122 or second active material layer 124) on one of the two surfaces (first surface 112 and second surface 114) of the current collector 110 is, for example, a battery. It can be appropriately determined according to the rate of 10. The rate of the battery 10 increases as the thickness becomes thinner. The thickness is, for example, 60 μm or less, preferably 50 μm or less, and more preferably 40 μm or less.
 集電体110の両面(第1面112及び第2面114)上の活物質層(第1活物質層122及び第2活物質層124)の厚さの合計は、例えば電池10のレートに応じて適宜決定することができる。電池10のレートは、当該厚さが薄いほど高くなる。当該厚さは、例えば、120μm以下、好ましくは100μm以下、より好ましくは80μm以下である。 The total thickness of the active material layers (first active material layer 122 and second active material layer 124) on both sides (first surface 112 and second surface 114) of the current collector 110 is, for example, the rate of the battery 10. It can be determined as appropriate. The rate of the battery 10 increases as the thickness becomes thinner. The thickness is, for example, 120 μm or less, preferably 100 μm or less, and more preferably 80 μm or less.
 活物質層120(第1活物質層122及び第2活物質層124)は、例えば次のようにして製造可能である。まず、活物質、バインダー樹脂及び導電助剤を有機溶媒中に分散させてスラリーを調製する。有機溶媒は、例えば、N-メチル-2-ピロリドン(NMP)である。次いで、このスラリーを集電体110の第1面112上に塗布し、スラリーを乾燥させ、必要に応じてプレスを実施して、集電体110上に活物質層120(第1活物質層122)を形成する。第2活物質層124も同様にして形成可能である。 The active material layer 120 (first active material layer 122 and second active material layer 124) can be manufactured, for example, as follows. First, the active material, the binder resin and the conductive additive are dispersed in an organic solvent to prepare a slurry. The organic solvent is, for example, N-methyl-2-pyrrolidone (NMP). Next, this slurry is applied onto the first surface 112 of the current collector 110, the slurry is dried, and if necessary, pressing is performed to perform the active material layer 120 (first active material layer) on the current collector 110. 122) is formed. The second active material layer 124 can also be formed in the same manner.
 活物質層120(第1活物質層122及び第2活物質層124)に含まれるバインダー樹脂は、例えば、ポリテトラフルオロエチレン(PTFE)又はポリフッ化ビニリデン(PVDF)である。 The binder resin contained in the active material layer 120 (the first active material layer 122 and the second active material layer 124) is, for example, polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF).
 活物質層120(第1活物質層122又は第2活物質層124)に含まれるバインダー樹脂の量は、適宜決定することができる。第1活物質層122は、第1活物質層122の総質量100質量部に対して、例えば、0.1質量部以上10.0質量部以下、好ましくは0.5質量部以上5.0質量部以下、より好ましくは2.0質量部以上4.0質量部以下のバインダー樹脂を含んでいる。第2活物質層124についても同様である。 The amount of the binder resin contained in the active material layer 120 (the first active material layer 122 or the second active material layer 124) can be appropriately determined. The first active material layer 122 has, for example, 0.1 part by mass or more and 10.0 parts by mass or less, preferably 0.5 parts by mass or more and 5.0 with respect to the total mass of 100 parts by mass of the first active material layer 122. It contains a binder resin of 2.0 parts by mass or more, more preferably 4.0 parts by mass or less by mass or less. The same applies to the second active material layer 124.
 活物質層120(第1活物質層122及び第2活物質層124)に含まれる導電助剤は、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、天然黒鉛、人工黒鉛、炭素繊維等である。黒鉛は、例えば、鱗片状黒鉛又は球状黒鉛であってもよい。これらの物質は、単独で使用されてもよいし、又は組み合わせて使用されてもよい。 The conductive additive contained in the active material layer 120 (the first active material layer 122 and the second active material layer 124) is, for example, carbon black, Ketjen black, acetylene black, natural graphite, artificial graphite, carbon fiber and the like. .. The graphite may be, for example, scaly graphite or spheroidal graphite. These substances may be used alone or in combination.
 活物質層120(第1活物質層122又は第2活物質層124)に含まれる導電助剤の量は、例えば電池10のサイクル特性に応じて適宜決定することができる。電池10のサイクル特性は、活物質層120の導電助剤の量が大きいほど向上する。第1活物質層122は、第1活物質層122の総質量100質量部に対して、例えば、3.0質量部以上8.0質量部以下、好ましくは5.0質量部以上6.0質量部以下の導電助剤を含んでいる。第2活物質層124についても同様である。 The amount of the conductive additive contained in the active material layer 120 (first active material layer 122 or second active material layer 124) can be appropriately determined according to, for example, the cycle characteristics of the battery 10. The cycle characteristics of the battery 10 improve as the amount of the conductive auxiliary agent in the active material layer 120 increases. The first active material layer 122 has, for example, 3.0 parts by mass or more and 8.0 parts by mass or less, preferably 5.0 parts by mass or more and 6.0 parts by mass with respect to the total mass of 100 parts by mass of the first active material layer 122. Contains less than parts by mass of conductive aid. The same applies to the second active material layer 124.
 第1活物質層122又は第2活物質層124の活物質粒子は、水酸化リチウム(LiOH)を含んでいてもよい。水酸化リチウムは、活物質粒子の原料である。水酸化リチウムは、活物質粒子の製造プロセス後、活物質粒子の不純物として残り得る。活物質粒子は、活物質粒子の総質量100質量部に対して例えば0.43質量部以上又は0.52質量部以上の水酸化リチウムを含んでいてもよい。 The active material particles of the first active material layer 122 or the second active material layer 124 may contain lithium hydroxide (LiOH). Lithium hydroxide is a raw material for active material particles. Lithium hydroxide may remain as an impurity in the active material particles after the process of producing the active material particles. The active material particles may contain, for example, 0.43 parts by mass or more or 0.52 parts by mass or more of lithium hydroxide with respect to 100 parts by mass of the total mass of the active material particles.
 負極200は、集電体210及び活物質層220(第1活物質層222及び第2活物質層224)を含んでいる。集電体210は、第1面212及び第2面214を有している。第2面214は、第1面212の反対側にある。第1活物質層222は、集電体210の第1面212上にある。第2活物質層224は、集電体210の第2面214上にある。 The negative electrode 200 includes a current collector 210 and an active material layer 220 (first active material layer 222 and second active material layer 224). The current collector 210 has a first surface 212 and a second surface 214. The second surface 214 is on the opposite side of the first surface 212. The first active material layer 222 is on the first surface 212 of the current collector 210. The second active material layer 224 is on the second surface 214 of the current collector 210.
 集電体210は、例えば、銅、ステンレス鋼、ニッケル、チタン又はこれらの合金で形成させてもよい。集電体210の形状は、例えば、箔、平板又はメッシュにしてもよい。 The current collector 210 may be formed of, for example, copper, stainless steel, nickel, titanium, or an alloy thereof. The shape of the current collector 210 may be, for example, foil, flat plate or mesh.
 活物質層220(第1活物質層222及び第2活物質層224)は、活物質及びバインダー樹脂を含んでいる。活物質層220は、必要に応じて、導電助剤をさらに含んでいてもよい。 The active material layer 220 (first active material layer 222 and second active material layer 224) contains an active material and a binder resin. The active material layer 220 may further contain a conductive auxiliary agent, if necessary.
 活物質層220(第1活物質層222及び第2活物質層224)に含まれる活物質は、例えば、リチウムを吸蔵する黒鉛、非晶質炭素、ダイヤモンド状炭素、フラーレン、カーボンナノチューブ、カーボンナノホーン等の炭素材料;リチウム金属、リチウム合金等のリチウム系金属材料;Si、SiO、SiO(0<x≦2)、Si含有複合材料等のSi系材料;ポリアセン、ポリアセチレン、ポリピロール等の導電性ポリマー材料等である。これらの物質は、単独で使用されてもよいし、又は組み合わせて使用されてもよい。一例において、活物質層220(第1活物質層222及び第2活物質層224)は、第1平均粒径及び第1平均硬度を有する第1群の黒鉛粒子(例えば、天然黒鉛)及び第2平均粒径及び第2平均硬度を有する第2群の黒鉛粒子(例えば、天然黒鉛)を含んでいてもよい。第2平均粒径は第1平均粒径より小さくてもよく、第2平均硬度は第1平均硬度より高くてもよく、第2群の黒鉛粒子の総質量は、第1群の黒鉛粒子の総質量より小さくてもよく、第2群の黒鉛粒子の総質量は、第1群の黒鉛粒子の総質量100質量部に対して、例えば、20質量部以上30質量部以下であってもよい。 The active material contained in the active material layer 220 (the first active material layer 222 and the second active material layer 224) is, for example, graphite, amorphous carbon, diamond-like carbon, fullerene, carbon nanotube, carbon nanohorn which occludes lithium. Carbon materials such as carbon materials; lithium-based metal materials such as lithium metals and lithium alloys; Si-based materials such as Si, SiO 2 , SiO x (0 <x ≦ 2), Si-containing composite materials; It is a sex polymer material or the like. These substances may be used alone or in combination. In one example, the active material layer 220 (first active material layer 222 and second active material layer 224) is a first group of graphite particles (for example, natural graphite) having a first average particle size and a first average hardness. It may contain a second group of graphite particles (eg, natural graphite) having a 2 average particle size and a 2nd average hardness. The second average particle size may be smaller than the first average particle size, the second average hardness may be higher than the first average hardness, and the total mass of the graphite particles in the second group is that of the graphite particles in the first group. It may be smaller than the total mass, and the total mass of the graphite particles in the second group may be, for example, 20 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the total mass of the graphite particles in the first group. ..
 活物質層220(第1活物質層222及び第2活物質層224)に含まれる活物質の密度は、例えば、1.2g/cm以上2.0g/cm以下、好ましくは1.3g/cm以上1.9g/cm以下、より好ましくは1.4g/cm以上1.8g/cm以下である。 The density of the active material contained in the active material layer 220 (the first active material layer 222 and the second active material layer 224) is, for example, 1.2 g / cm 3 or more and 2.0 g / cm 3 or less, preferably 1.3 g. / Cm 3 or more and 1.9 g / cm 3 or less, more preferably 1.4 g / cm 3 or more and 1.8 g / cm 3 or less.
 集電体210の両面(第1面212及び第2面214)のうちの一方の面上の活物質層(第1活物質層222又は第2活物質層224)の厚さは、例えば電池10のレートに応じて適宜決定することができる。電池10のレートは、当該厚さが薄いほど高くなる。当該厚さは、例えば、60μm以下、好ましくは55μm以下、より好ましくは50μm以下である。 The thickness of the active material layer (first active material layer 222 or second active material layer 224) on one of both surfaces (first surface 212 and second surface 214) of the current collector 210 is, for example, a battery. It can be appropriately determined according to the rate of 10. The rate of the battery 10 increases as the thickness becomes thinner. The thickness is, for example, 60 μm or less, preferably 55 μm or less, and more preferably 50 μm or less.
 集電体210の両面(第1面212及び第2面214)上の活物質層(第1活物質層222及び第2活物質層224)の厚さの合計は、例えば電池10のレートに応じて適宜決定することができる。電池10のレートは、当該厚さが薄いほど高くなる。当該厚さは、例えば、120μm以下、好ましくは110μm以下、より好ましくは100μm以下である。 The total thickness of the active material layers (first active material layer 222 and second active material layer 224) on both sides (first surface 212 and second surface 214) of the current collector 210 is, for example, the rate of the battery 10. It can be determined as appropriate. The rate of the battery 10 increases as the thickness becomes thinner. The thickness is, for example, 120 μm or less, preferably 110 μm or less, and more preferably 100 μm or less.
 活物質層220(第1活物質層222及び第2活物質層224)は、例えば次のようにして製造可能である。まず、活物質及びバインダー樹脂を溶媒中に分散させてスラリーを調製する。溶媒は、例えば、N-メチル-2-ピロリドン(NMP)等の有機溶媒であってもよいし、又は水であってもよい。次いで、このスラリーを集電体210の第1面212上に塗布し、スラリーを乾燥させ、必要に応じてプレスを実施して、集電体210上に活物質層220(第1活物質層222)を形成する。第2活物質層224も同様にして形成可能である。 The active material layer 220 (first active material layer 222 and second active material layer 224) can be manufactured, for example, as follows. First, the active material and the binder resin are dispersed in a solvent to prepare a slurry. The solvent may be, for example, an organic solvent such as N-methyl-2-pyrrolidone (NMP), or water. Next, this slurry is applied onto the first surface 212 of the current collector 210, the slurry is dried, and if necessary, a press is performed to perform an active material layer 220 (first active material layer) on the current collector 210. 222) is formed. The second active material layer 224 can also be formed in the same manner.
 活物質層220(第1活物質層222及び第2活物質層224)に含まれるバインダー樹脂は、スラリーを得るための溶媒として有機溶媒を用いた場合、例えば、ポリフッ化ビニリデン(PVDF)等のバインダー樹脂にすることができ、スラリーを得るための溶媒として水を用いた場合、例えば、ゴム系バインダー(例えば、SBR(スチレン・ブタジエンゴム))又はアクリル系バインダー樹脂にすることができる。このような水系バインダー樹脂は、エマルジョン形態にしてもよい。溶媒として水を用いる場合、水系バインダー及びCMC(カルボキシメチルセルロース)等の増粘剤を併用することが好ましい。 The binder resin contained in the active material layer 220 (the first active material layer 222 and the second active material layer 224) is, for example, polyvinylidene fluoride (PVDF) or the like when an organic solvent is used as the solvent for obtaining the slurry. It can be a binder resin, and when water is used as a solvent for obtaining a slurry, it can be, for example, a rubber-based binder (for example, SBR (styrene-butadiene rubber)) or an acrylic-based binder resin. Such an aqueous binder resin may be in the form of an emulsion. When water is used as the solvent, it is preferable to use an aqueous binder and a thickener such as CMC (carboxymethyl cellulose) in combination.
 活物質層220(第1活物質層222又は第2活物質層224)に含まれるバインダー樹脂の量は、適宜決定することができる。第1活物質層222は、第1活物質層222の総質量100質量部に対して、例えば、0.1質量部以上10.0質量部以下、好ましくは0.5質量部以上8.0質量部以下、より好ましくは1.0質量部以上5.0質量部以下、さらにより好ましくは1.0質量部以上3.0質量部以下のバインダー樹脂を含んでいる。第2活物質層224についても同様である。 The amount of the binder resin contained in the active material layer 220 (the first active material layer 222 or the second active material layer 224) can be appropriately determined. The first active material layer 222 is, for example, 0.1 part by mass or more and 10.0 parts by mass or less, preferably 0.5 parts by mass or more and 8.0 with respect to the total mass of 100 parts by mass of the first active material layer 222. It contains a binder resin of 1 part by mass or less, more preferably 1.0 part by mass or more and 5.0 parts by mass or less, and even more preferably 1.0 part by mass or more and 3.0 parts by mass or less. The same applies to the second active material layer 224.
 セパレータ300は、基材310及び絶縁層320(第1絶縁層322及び第2絶縁層324)を含んでいる。基材310は、第1面312及び第2面314を有している。第2面314は、第1面312の反対側にある。第1絶縁層322は、基材310の第1面312上にある。第2絶縁層324は、基材310の第2面314上にある。 The separator 300 includes a base material 310 and an insulating layer 320 (first insulating layer 322 and second insulating layer 324). The base material 310 has a first surface 312 and a second surface 314. The second surface 314 is on the opposite side of the first surface 312. The first insulating layer 322 is on the first surface 312 of the base material 310. The second insulating layer 324 is on the second surface 314 of the base material 310.
 図3に示す例において、セパレータ300は、基材310の両面(第1面312及び第2面314)上に絶縁層320(第1絶縁層322及び第2絶縁層324)を含んでいる。他の例において、セパレータ300は、基材310の両面(第1面312及び第2面314)のうちの一方の面上のみに絶縁層320を含んでいてもよい。 In the example shown in FIG. 3, the separator 300 includes an insulating layer 320 (first insulating layer 322 and second insulating layer 324) on both surfaces (first surface 312 and second surface 314) of the base material 310. In another example, the separator 300 may include the insulating layer 320 only on one of the two surfaces (first surface 312 and second surface 314) of the base material 310.
 セパレータ300は、正極100及び負極200を電気的に絶縁させ、イオン(例えば、リチウムイオン)を透過させる機能を有している。セパレータ300は、例えば、多孔性セパレータにすることができる。 The separator 300 has a function of electrically insulating the positive electrode 100 and the negative electrode 200 and allowing ions (for example, lithium ions) to pass therethrough. The separator 300 can be, for example, a porous separator.
 セパレータ300の形状は、正極100又は負極200の形状に応じて適宜決定することができ、例えば、矩形にすることができる。 The shape of the separator 300 can be appropriately determined according to the shape of the positive electrode 100 or the negative electrode 200, and can be, for example, a rectangle.
 基材310は、耐熱性樹脂を含む樹脂層を含んでいることが好ましい。樹脂層は、耐熱性樹脂を主成分として含んでおり、具体的には、樹脂層の総質量100質量部に対して、50質量部以上、好ましくは70質量部以上、より好ましくは90質量部以上の耐熱性樹脂を含んでおり、樹脂層の総質量100質量部に対して100質量部の耐熱性樹脂を含んでいてもよい。樹脂層は、単層であってもよいし、又は二種以上の層であってもよい。 The base material 310 preferably contains a resin layer containing a heat-resistant resin. The resin layer contains a heat-resistant resin as a main component, and specifically, 50 parts by mass or more, preferably 70 parts by mass or more, and more preferably 90 parts by mass with respect to 100 parts by mass of the total mass of the resin layer. The above heat-resistant resin is contained, and 100 parts by mass of the heat-resistant resin may be contained with respect to 100 parts by mass of the total mass of the resin layer. The resin layer may be a single layer, or may be two or more types of layers.
 耐熱性樹脂は、例えば、ポリエチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ-m-フェニレンテレフタレート、ポリ-p-フェニレンイソフタレート、ポリカーボネート、ポリエステルカーボネート、脂肪族ポリアミド、全芳香族ポリアミド、半芳香族ポリアミド、全芳香族ポリエステル、ポリフェニレンサルファイド、ポリパラフェニレンベンゾビスオキサゾール、ポリイミド、ポリアリレート、ポリエーテルイミド、ポリアミドイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルホン、フッ素系樹脂、ポリエーテルニトリル、変性ポリフェニレンエーテル等から選択される一種又は二種以上である。 Heat-resistant resins include, for example, polyethylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly-m-phenylene terephthalate, poly-p-phenylene isophthalate, polycarbonate, polyester carbonate, aliphatic polyamide, total aromatic polyamide, and semi-aroma. Aromatic polyamide, total aromatic polyester, polyphenylene sulfide, polyparaphenylene benzobisoxazole, polyimide, polyarylate, polyetherimide, polyamideimide, polyacetal, polyether ether ketone, polysulfone, polyether sulfone, fluororesin, poly One or more selected from ether nitrile, modified polyphenylene ether and the like.
 絶縁層320(第1絶縁層322及び第2絶縁層324)は、例えば以下のようにして製造可能である。まず、水酸化マグネシウム粒子及び樹脂を溶媒中に分散させて溶液を調製する。溶媒は、例えば、水、エタノール等のアルコール類、N-メチルピロリドン(NMP)、トルエン、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等である。次いで、基材310の第1面312上に溶液を塗布して絶縁層320(第1絶縁層322)を形成する。第2絶縁層324も同様にして形成可能である。 The insulating layer 320 (first insulating layer 322 and second insulating layer 324) can be manufactured, for example, as follows. First, a solution is prepared by dispersing magnesium hydroxide particles and a resin in a solvent. The solvent is, for example, water, alcohols such as ethanol, N-methylpyrrolidone (NMP), toluene, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like. Next, a solution is applied onto the first surface 312 of the base material 310 to form the insulating layer 320 (first insulating layer 322). The second insulating layer 324 can also be formed in the same manner.
 水酸化マグネシウム粒子は、例えば、4.0m/g以上8.0m/g以下の比表面積を有していてもよい。 The magnesium hydroxide particles may have, for example, a specific surface area of 4.0 m 2 / g or more and 8.0 m 2 / g or less.
 電解液がスルホン酸エステルを含む場合、スルホン酸エステルは、水酸化マグネシウム粒子の総質量100質量部に対して5.0質量部以上のスルホン酸基を含んでいてもよい。スルホン酸エステルは、水酸化マグネシウム粒子に吸着されやすい。したがって、水酸化マグネシウム粒子の質量に対するスルホン酸エステルの質量の比は比較的大きいことが好ましい。 When the electrolytic solution contains a sulfonic acid ester, the sulfonic acid ester may contain 5.0 parts by mass or more of sulfonic acid groups with respect to 100 parts by mass of the total mass of the magnesium hydroxide particles. The sulfonic acid ester is easily adsorbed on the magnesium hydroxide particles. Therefore, it is preferable that the ratio of the mass of the sulfonic acid ester to the mass of the magnesium hydroxide particles is relatively large.
 絶縁層320(第1絶縁層322及び第2絶縁層324)に含まれる樹脂は、例えば、メタ系芳香族ポリアミド、パラ系芳香族ポリアミド等の芳香族ポリアミド系樹脂;カルボキシメチルセルロース(CMC)等のセルロース系樹脂;アクリル系樹脂;ポリビニリデンフロライド(PVDF)等のフッ素系樹脂;等である。これらの中でも、芳香族ポリアミド系樹脂が好ましく、メタ系芳香族ポリアミドがより好ましい。これらの物質は、単独で使用されてもよいし、又は組み合わせて使用されてもよい。 The resin contained in the insulating layer 320 (the first insulating layer 322 and the second insulating layer 324) is, for example, an aromatic polyamide resin such as a meta-aromatic polyamide or a para-aromatic polyamide; carboxymethyl cellulose (CMC) or the like. Cellular resin; acrylic resin; fluororesin such as polyvinylidene fluoride (PVDF); etc. Among these, aromatic polyamide resins are preferable, and meta-aromatic polyamides are more preferable. These substances may be used alone or in combination.
 基材310の厚さは、適宜決定することができ、例えば、5.0μm以上10.0μm以下、好ましくは、6.0μm以上10.0μm以下にすることができる。 The thickness of the base material 310 can be appropriately determined, and can be, for example, 5.0 μm or more and 10.0 μm or less, preferably 6.0 μm or more and 10.0 μm or less.
 第1絶縁層322の厚さ及び第2絶縁層324の厚さの合計は、適宜決定することができ、例えば、10.0μm以上20.0μm以下、好ましくは、12.5μm以上17.5μm以下にすることができる。 The total thickness of the first insulating layer 322 and the thickness of the second insulating layer 324 can be appropriately determined, for example, 10.0 μm or more and 20.0 μm or less, preferably 12.5 μm or more and 17.5 μm or less. Can be.
 セパレータ300の厚さは、適宜決定することができ、例えば、15.0μm以上30.0μm以下、好ましくは16.0μm以上27.5μm以下にすることができる。 The thickness of the separator 300 can be appropriately determined, and can be, for example, 15.0 μm or more and 30.0 μm or less, preferably 16.0 μm or more and 27.5 μm or less.
 図3に示す例では、正極100、負極200及びセパレータ300は、正極100の第1面112がセパレータ300の第1面312に対向し、かつ負極200の第1面212がセパレータ300の第2面314に対向するように、互いに重なっている。 In the example shown in FIG. 3, in the positive electrode 100, the negative electrode 200, and the separator 300, the first surface 112 of the positive electrode 100 faces the first surface 312 of the separator 300, and the first surface 212 of the negative electrode 200 is the second surface of the separator 300. They overlap each other so as to face surface 314.
(実施例1)
 以下のようにして電池10を製造した。
(Example 1)
The battery 10 was manufactured as follows.
 正極100を次のようにして形成した。まず、以下の材料を有機溶媒に分散させてスラリーを調製した。
  活物質粒子:94.0質量部のリチウムニッケル含有複合酸化物(化学式:Li1.01(Ni0.80Co0.15Al0.05)O)(活物質粒子は、活物質粒子の総質量100質量部に対して0.43質量部の水酸化リチウム(LiOH)を含んでいる。)
  導電助剤:2.0質量部の球状黒鉛及び1.0質量部の鱗片状黒鉛
  バインダー樹脂:3.0質量部のポリフッ化ビニリデン(PVDF)
次いで、このスラリーをアルミニウム箔(集電体110)の両面(第1面112及び第2面114)上に塗布し、スラリーを乾燥させ、プレスを実施して、活物質層120(第1活物質層122及び第2活物質層124)を形成した。集電体110、第1活物質層122及び第2活物質層124の詳細は、以下のとおりである。
(集電体110)
  厚さ:15μm
(第1活物質層122)
  密度:3.35g/cm
  厚さ:36.6μm
  活物質粒子の目付A1:115.1g/m
  活物質粒子の比表面積S1:0.25m/g
(第2活物質層124)
  密度:3.35g/cm
  厚さ:36.6μm
  活物質粒子の目付A1:115.1g/m
  活物質粒子の比表面積S1:0.25m/g
The positive electrode 100 was formed as follows. First, the following materials were dispersed in an organic solvent to prepare a slurry.
Active material particles: 94.0 parts by mass of lithium nickel-containing composite oxide (Chemical formula: Li 1.01 (Ni 0.80 Co 0.15 Al 0.05 ) O 2 ) (Active material particles are of active material particles. It contains 0.43 parts by mass of lithium hydroxide (LiOH) with respect to 100 parts by mass of the total mass.
Conductive aid: 2.0 parts by mass of spheroidal graphite and 1.0 parts by mass of scaly graphite Binder resin: 3.0 parts by mass of polyvinylidene fluoride (PVDF)
Next, this slurry is applied on both sides (first surface 112 and second surface 114) of the aluminum foil (current collector 110), the slurry is dried, pressed, and the active material layer 120 (first active surface) is carried out. The material layer 122 and the second active material layer 124) were formed. Details of the current collector 110, the first active material layer 122, and the second active material layer 124 are as follows.
(Current collector 110)
Thickness: 15 μm
(1st active material layer 122)
Density: 3.35 g / cm 3
Thickness: 36.6 μm
Metsuke of active material particles A1: 115.1 g / m 2
Specific surface area of active material particles S1 m : 0.25 m 2 / g
(Second active material layer 124)
Density: 3.35 g / cm 3
Thickness: 36.6 μm
Metsuke of active material particles A1: 115.1 g / m 2
Specific surface area of active material particles S1 m : 0.25 m 2 / g
 負極200を次のようにして形成した。まず、以下の材料を水に分散させてスラリーを調製した。
  活物質:77.36質量部の天然黒鉛(平均粒径:16.0μm)及び19.34質量部の天然黒鉛(平均粒径:10.5μm)
  導電助剤:0.3質量部の球状黒鉛
  バインダー樹脂:2.0質量部のスチレン・ブタジエンゴム(SBR)
  増粘剤:1.0質量部のカルボキシメチルセルロース(CMC)
次いで、このスラリーを銅箔(集電体210)の両面(第1面212及び第2面214)上に塗布し、スラリーを乾燥させ、プレスを実施して、活物質層220(第1活物質層222及び第2活物質層224)を形成した。集電体210、第1活物質層222及び第2活物質層224の詳細は、以下のとおりである。
(集電体210)
  厚さ:8μm
(第1活物質層222)
  密度:1.55g/cm
  厚さ:50.0μm
(第2活物質層224)
  密度:1.55g/cm
  厚さ:50.0μm
The negative electrode 200 was formed as follows. First, the following materials were dispersed in water to prepare a slurry.
Active material: 77.36 parts by mass of natural graphite (average particle size: 16.0 μm) and 19.34 parts by mass of natural graphite (average particle size: 10.5 μm)
Conductive aid: 0.3 parts by mass of spheroidal graphite Binder resin: 2.0 parts by mass of styrene-butadiene rubber (SBR)
Thickener: 1.0 parts by mass of carboxymethyl cellulose (CMC)
Next, this slurry is applied on both sides (first surface 212 and second surface 214) of the copper foil (current collector 210), the slurry is dried, pressed, and the active material layer 220 (first active surface) is carried out. The material layer 222 and the second active material layer 224) were formed. Details of the current collector 210, the first active material layer 222, and the second active material layer 224 are as follows.
(Current collector 210)
Thickness: 8 μm
(1st active material layer 222)
Density: 1.55 g / cm 3
Thickness: 50.0 μm
(Second active material layer 224)
Density: 1.55 g / cm 3
Thickness: 50.0 μm
 セパレータ300を次のようにして形成した。まず、以下の材料を溶媒中に分散させて溶液を調製した。
  無機フィラー:75質量部の水酸化マグネシウム
  樹脂:25質量部のメタ系芳香族ポリアミド
次いで、この溶液をポリエチレンフィルム(基材310)の両面(第1面312及び第2面314)上に塗布して絶縁層320(第1絶縁層322及び第2絶縁層324)を形成した。基材310、第1絶縁層322及び第2絶縁層324の詳細は、以下のとおりである。
(基材310)
  厚さ:6.0μm
(第1絶縁層322)
  厚さ:8.0μm
  水酸化マグネシウム粒子の目付A2:4.8g/m
  水酸化マグネシウム粒子の比表面積S2:6.1m/g
(第2絶縁層324)
  厚さ:8.0μm
  水酸化マグネシウム粒子の目付A2:4.8g/m
  水酸化マグネシウム粒子の比表面積S2:6.1m/g
The separator 300 was formed as follows. First, the following materials were dispersed in a solvent to prepare a solution.
Inorganic filler: 75 parts by mass of magnesium hydroxide Resin: 25 parts by mass of meta-aromatic polyamide Next, this solution is applied on both sides (first surface 312 and second surface 314) of a polyethylene film (base material 310). The insulating layer 320 (first insulating layer 322 and second insulating layer 324) was formed. Details of the base material 310, the first insulating layer 322, and the second insulating layer 324 are as follows.
(Base material 310)
Thickness: 6.0 μm
(First Insulation Layer 322)
Thickness: 8.0 μm
Metsuke of magnesium hydroxide particles A2: 4.8 g / m 2
Specific surface area of magnesium hydroxide particles S2 m : 6.1 m 2 / g
(Second insulation layer 324)
Thickness: 8.0 μm
Metsuke of magnesium hydroxide particles A2: 4.8 g / m 2
Specific surface area of magnesium hydroxide particles S2 m : 6.1 m 2 / g
 積層体12を、図2に示すように、14個の正極100及び14個の負極200が交互に並び、かつセパレータ300がつづら折りに折り返されるように、形成した。 As shown in FIG. 2, the laminated body 12 was formed so that 14 positive electrodes 100 and 14 negative electrodes 200 were alternately arranged and the separator 300 was folded back in a zigzag manner.
 電池10を、図1に示すように、積層体12を電解液とともに外装材400に収容させて、製造した。電解液は、以下の支持塩、溶媒及び添加剤を含んでいる。
  支持塩:LiPF
  溶媒:30体積%のエチレンカーボネート(EC)、60体積%のジエチルカーボネート(DEC)及び10体積%のメチルエチルカーボネート(MEC)
  添加剤:環状スルホン酸エステル(環状スルホン酸エステルは、第1活物質層122又は第2活物質層124の活物質粒子の総質量100質量部に対して0.27質量部のスルホン酸基を含んでいる。)、電解液の総質量100質量部に対して1.5質量部のビニレンカーボネート及び電解液の総質量100質量部に対して1.0質量部のフルオロエチレンカーボネート
As shown in FIG. 1, the battery 10 was manufactured by accommodating the laminate 12 together with the electrolytic solution in the exterior material 400. The electrolytic solution contains the following supporting salts, solvents and additives.
Supporting salt: LiPF 6
Solvents: 30% by volume ethylene carbonate (EC), 60% by volume diethyl carbonate (DEC) and 10% by volume methyl ethyl carbonate (MEC).
Additive: Cyclic sulfonic acid ester (Cyclic sulfonic acid ester contains 0.27 parts by mass of sulfonic acid groups with respect to 100 parts by mass of the total mass of the active material particles of the first active material layer 122 or the second active material layer 124. Included), 1.5 parts by mass of vinylene carbonate with respect to 100 parts by mass of the total mass of the electrolytic solution and 1.0 part by mass of fluoroethylene carbonate with respect to 100 parts by mass of the total mass of the electrolytic solution.
 電池10について、残留ガスの低減を評価した。具体的には、温度25℃において、充電レート0.15C、充電終止電圧4.2V、2.3Aの定電流として、初期充電を実施した。初期充電前の電池10の体積V(cc)及び初期充電後の電池10の体積Vcharge(cc)を測定した。以下の基準で残留ガスの低減を評価した。
  ○:Vcharge/V×100が115%未満であった
  ×:Vcharge/V×100が115%以上であった
The reduction of residual gas was evaluated for the battery 10. Specifically, initial charging was performed at a temperature of 25 ° C. with a constant current of a charging rate of 0.15 C and a charge termination voltage of 4.2 V and 2.3 A. The volume V 0 (cc) of the battery 10 before the initial charge and the volume V charge (cc) of the battery 10 after the initial charge were measured. The reduction of residual gas was evaluated according to the following criteria.
◯: V charge / V 0 × 100 was less than 115% ×: V charge / V 0 × 100 was 115% or more
 電池10について、サイクル特性を評価した。具体的には、温度45℃において、充電レート1.0C、放電レート1.0C、充電終止電圧4.2V及び放電終止電圧2.5Vとしてサイクル試験を実施した。10サイクル目の放電容量C10(mAh)及び500サイクル目の放電容量C500(mAh)を測定した。以下の基準でサイクル特性を評価した。
  ○:C500/C10×100が90%以上であった
  ×:C500/C10×100が90%未満であった
The cycle characteristics of the battery 10 were evaluated. Specifically, a cycle test was carried out at a temperature of 45 ° C. with a charge rate of 1.0 C, a discharge rate of 1.0 C, a charge end voltage of 4.2 V, and a discharge end voltage of 2.5 V. The discharge capacity C 10 (mAh) at the 10th cycle and the discharge capacity C 500 (mAh) at the 500th cycle were measured. The cycle characteristics were evaluated according to the following criteria.
◯: C 500 / C 10 × 100 was 90% or more ×: C 500 / C 10 × 100 was less than 90%
 表1は、実施例1における正極100の条件、セパレータ300の条件、残留ガスの低減及びサイクル特性を示している。 Table 1 shows the conditions of the positive electrode 100, the conditions of the separator 300, the reduction of residual gas, and the cycle characteristics in Example 1.
 実施例2~9及び比較例1~4のそれぞれにおける正極100の条件及びセパレータ300の条件は、表1に示す点を除いて、実施例1における正極100の条件及びセパレータ300の条件とそれぞれ同様とした。なお、表1において、比較例4における「-」は、第1絶縁層322及び第2絶縁層324が水酸化マグネシウム粒子を含まないことを意味する。 The conditions of the positive electrode 100 and the conditions of the separator 300 in Examples 2 to 9 and Comparative Examples 1 to 4 are the same as the conditions of the positive electrode 100 and the conditions of the separator 300 in Example 1, except for the points shown in Table 1. And said. In Table 1, "-" in Comparative Example 4 means that the first insulating layer 322 and the second insulating layer 324 do not contain magnesium hydroxide particles.
 実施例2~9及び比較例1~4のそれぞれにおける残留ガスの低減及びサイクル特性は、表1に示すようになった。 Table 1 shows the reduction of residual gas and the cycle characteristics in each of Examples 2 to 9 and Comparative Examples 1 to 4.
 実施例1~9の結果及び比較例1~4の結果の比較より、水酸化マグネシウム粒子の目付A2及び比表面積S2の積P2は、活物質粒子の目付A1及び比表面積S1の積P1の0.7倍以上にしてもよい(数値(0.7)は、有効数字1桁に丸められている。)。積P1及び積P2の関係に応じて、セル内の残留ガスを低減することができる。 From the comparison of the results of Examples 1 to 9 and the results of Comparative Examples 1 to 4, the product P2 of the magnesium hydroxide particles having a grain A2 and the specific surface area S2 m is the product P1 of the active material particles having a grain A1 and a specific surface area S1 m . It may be 0.7 times or more of (the numerical value (0.7) is rounded to one significant digit). The residual gas in the cell can be reduced according to the relationship between the product P1 and the product P2.
 積P1及び積P2の関係によって残留ガスが低減する理由は、次のとおりと推測される。初期充電によって発生するガスの多くは、電解液内に含まれる炭酸エステルの酸化分解によって発生する炭酸ガスであると推測される。積P1は、単位面積当たりの活物質粒子の総表面積に相当し、積P2は、単位面積当たりの水酸化マグネシウム粒子の総表面積に相当する。積P1が大きいほど、炭酸ガスを発生させる化学反応の表面積(つまり、活物質粒子の総表面積)が大きくなり、炭酸ガスの発生が増加し得る。これに対して、積P2が大きいほど、炭酸ガスを吸収する化学反応の表面積(つまり、水酸化マグネシウム粒子の総表面積)が大きくなり、炭酸ガスの吸収が増加し得る。実施例1~9のそれぞれでは、炭酸ガスを吸収する化学反応の表面積(つまり、積P2)は、炭酸ガスを発生させる化学反応の表面積(つまり、積P1)に対して比較的大きな比を有しており、これによって、残留炭酸ガスが低減される。 The reason why the residual gas is reduced by the relationship between the product P1 and the product P2 is presumed to be as follows. It is presumed that most of the gas generated by the initial charge is carbon dioxide gas generated by the oxidative decomposition of the carbonic acid ester contained in the electrolytic solution. The product P1 corresponds to the total surface area of the active material particles per unit area, and the product P2 corresponds to the total surface area of the magnesium hydroxide particles per unit area. The larger the product P1, the larger the surface area of the chemical reaction that generates carbon dioxide (that is, the total surface area of the active material particles), and the more carbon dioxide can be generated. On the other hand, as the product P2 is larger, the surface area of the chemical reaction that absorbs carbon dioxide gas (that is, the total surface area of the magnesium hydroxide particles) becomes larger, and the absorption of carbon dioxide gas can be increased. In each of Examples 1 to 9, the surface area of the chemical reaction that absorbs carbon dioxide gas (that is, product P2) has a relatively large ratio to the surface area of the chemical reaction that generates carbon dioxide gas (that is, product P1). As a result, the residual carbon dioxide gas is reduced.
 実施例1~9の結果より、基材310の厚さに対する第1絶縁層322の厚さの比又は基材310の厚さに対する第2絶縁層324の厚さの比は、3.8/7.5以上4.0/3.0以下にしてもよい。残留ガスは、少なくとも上述した範囲において、基材310の厚さ及び第1絶縁層322の厚さの関係又は基材310の厚さ及び第2絶縁層324の厚さの関係に依存せずに低減される。 From the results of Examples 1 to 9, the ratio of the thickness of the first insulating layer 322 to the thickness of the base material 310 or the ratio of the thickness of the second insulating layer 324 to the thickness of the base material 310 is 3.8 /. It may be 7.5 or more and 4.0 / 3.0 or less. The residual gas does not depend on the relationship between the thickness of the base material 310 and the thickness of the first insulating layer 322 or the relationship between the thickness of the base material 310 and the thickness of the second insulating layer 324, at least in the above-mentioned range. It will be reduced.
 実施例2、3、7及び8の結果及び比較例1、3及び4の結果の比較より、第1活物質層122又は第2活物質層124の活物質粒子は、活物質粒子の総質量100質量部に対して0.52質量部以上の水酸化リチウムを含んでいてもよい。具体的には、比較例2の結果及び比較例1、3及び4の結果の比較より、サイクル特性は、水酸化リチウムの量が比較的多い場合に劣化する傾向がある。しかしながら、実施例2、3、7及び8の結果及び比較例1、3及び4の結果の比較より、水酸化リチウムの量が比較的多い場合であっても、積P1及び積P2が上述した関係を有する場合、サイクル特性の劣化を低減することができるといえる。 From the comparison of the results of Examples 2, 3, 7 and 8 and the results of Comparative Examples 1, 3 and 4, the active material particles of the first active material layer 122 or the second active material layer 124 are the total mass of the active material particles. It may contain 0.52 parts by mass or more of lithium hydroxide with respect to 100 parts by mass. Specifically, from the comparison of the results of Comparative Example 2 and the results of Comparative Examples 1, 3 and 4, the cycle characteristics tend to deteriorate when the amount of lithium hydroxide is relatively large. However, as compared with the results of Examples 2, 3, 7 and 8 and the results of Comparative Examples 1, 3 and 4, the products P1 and P2 are described above even when the amount of lithium hydroxide is relatively large. When there is a relationship, it can be said that deterioration of cycle characteristics can be reduced.
 水酸化リチウムの量が比較的多い場合にサイクル特性が劣化する傾向がある理由は、次のとおりと推測される。第1に、水酸化リチウム及び炭酸ガスの反応によって正極100の表面に高抵抗の炭酸リチウム(LiCO)が堆積され、正極100の表面におけるLiイオンのインターカレーションが阻害され得る。第2に、導電助剤によって活物質粒子間に形成された導電パスが炭酸リチウムによって遮断され、正極100の電子移動抵抗が増加し得る。第3に、活物質粒子の一次粒子間の水酸化リチウムが電解液に溶出して活物質粒子の二次粒子の表面を覆うように炭酸リチウムが形成され得る。 The reason why the cycle characteristics tend to deteriorate when the amount of lithium hydroxide is relatively large is presumed to be as follows. First, the reaction of lithium hydroxide and carbon dioxide gas deposits high-resistance lithium carbonate (Li 2 CO 3 ) on the surface of the positive electrode 100, which can inhibit the intercalation of Li ions on the surface of the positive electrode 100. Secondly, the conductive path formed between the active material particles by the conductive auxiliary agent is blocked by lithium carbonate, and the electron transfer resistance of the positive electrode 100 can be increased. Third, lithium hydroxide between the primary particles of the active material particles can be eluted into the electrolytic solution to form lithium carbonate so as to cover the surface of the secondary particles of the active material particles.
 水酸化リチウムの量が比較的多い場合であっても、積P1及び積P2の関係に応じてサイクル特性の劣化が低減される理由は、次のとおりと推測される。上述したように、積P1及び積P2の関係に応じて炭酸ガスを低減することができる。したがって、水酸化リチウム及び炭酸ガスの反応を低減することができる。 Even when the amount of lithium hydroxide is relatively large, the reason why the deterioration of the cycle characteristics is reduced according to the relationship between the product P1 and the product P2 is presumed to be as follows. As described above, the carbon dioxide gas can be reduced according to the relationship between the product P1 and the product P2. Therefore, the reaction between lithium hydroxide and carbon dioxide can be reduced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上、図面を参照して本発明の実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments and examples of the present invention have been described above with reference to the drawings, these are examples of the present invention, and various configurations other than the above can be adopted.
 この出願は、2019年3月8日に出願された日本出願特願2019-042199号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Application Japanese Patent Application No. 2019-042199 filed on March 8, 2019, and incorporates all of its disclosures herein.
10 電池
12 積層体
100 正極
110 集電体
112 第1面
114 第2面
120 活物質層
122 第1活物質層
124 第2活物質層
130 第1リード
200 負極
210 集電体
212 第1面
214 第2面
220 活物質層
222 第1活物質層
224 第2活物質層
230 第2リード
300 セパレータ
310 基材
312 第1面
314 第2面
320 絶縁層
322 第1絶縁層
324 第2絶縁層
400 外装材
10 Battery 12 Laminated body 100 Positive electrode 110 Current collector 112 First surface 114 Second surface 120 Active material layer 122 First active material layer 124 Second active material layer 130 First lead 200 Negative electrode 210 Current collector 212 First surface 214 2nd surface 220 Active material layer 222 1st active material layer 224 2nd active material layer 230 2nd lead 300 Separator 310 Base material 312 1st surface 314 2nd surface 320 Insulating layer 322 1st insulating layer 324 2nd insulating layer 400 Exterior material

Claims (6)

  1.  第1面と、前記第1面の反対側の第2面と、を有する集電体と、前記集電体の前記第1面上に位置する第1活物質層と、を含む正極と、
     前記正極の前記第1活物質層に対向する第1絶縁層と、
    を含み、
     前記第1活物質層は、LiNi1-b(0.95≦a≦1.05、b≧0.50、Mは、Co、Mn、Al、Ti、Zr、Na、Ba及びMgの中から選ばれる一種以上の元素である。)によって示される活物質粒子を含み、
     前記第1絶縁層は、水酸化マグネシウム粒子を含み、
     前記水酸化マグネシウム粒子の目付及び比表面積の積は、前記活物質粒子の目付及び比表面積の積の0.7倍以上である、電池。
    A positive electrode including a current collector having a first surface and a second surface opposite to the first surface, and a first active material layer located on the first surface of the current collector.
    The first insulating layer of the positive electrode facing the first active material layer and
    Including
    The first active material layer is Li a Ni b M 1-b O 2 (0.95 ≦ a ≦ 1.05, b ≧ 0.50, M is Co, Mn, Al, Ti, Zr, Na, It contains active material particles represented by (one or more elements selected from Ba and Mg).
    The first insulating layer contains magnesium hydroxide particles and contains magnesium hydroxide particles.
    A battery in which the product of the grain size and the specific surface area of the magnesium hydroxide particles is 0.7 times or more the product of the grain size and the specific surface area of the active material particles.
  2.  請求項1に記載の電池において、
     前記正極に対向するセパレータと、
     前記正極とは反対側から前記セパレータに対向する負極と、
    をさらに含み、
     前記セパレータは、前記第1絶縁層と、前記負極に対向する第2絶縁層と、前記第1絶縁層及び前記第2絶縁層の間に位置する基材と、を含む、電池。
    In the battery according to claim 1,
    The separator facing the positive electrode and
    A negative electrode facing the separator from the side opposite to the positive electrode,
    Including
    The separator comprises a first insulating layer, a second insulating layer facing the negative electrode, and a base material located between the first insulating layer and the second insulating layer.
  3.  請求項1又は2に記載の電池において、
     前記水酸化マグネシウム粒子は、4.0m/g以上8.0m/g以下の比表面積を有する、電池。
    In the battery according to claim 1 or 2.
    The magnesium hydroxide particles are a battery having a specific surface area of 4.0 m 2 / g or more and 8.0 m 2 / g or less.
  4.  請求項1から3までのいずれか一項に記載の電池において、
     前記活物質粒子は、前記活物質粒子の総質量100質量部に対して0.52質量部以上の水酸化リチウムをさらに含む、電池。
    In the battery according to any one of claims 1 to 3,
    The active material particles are a battery further containing 0.52 parts by mass or more of lithium hydroxide with respect to 100 parts by mass of the total mass of the active material particles.
  5.  請求項1から4までのいずれか一項に記載の電池において、
     スルホン酸エステルを含む電解液をさらに含み、
     前記スルホン酸エステルは、前記水酸化マグネシウム粒子の総質量100質量部に対して5.0質量部以上のスルホン酸基を含む、電池。
    In the battery according to any one of claims 1 to 4.
    Further containing an electrolytic solution containing a sulfonic acid ester,
    The sulfonic acid ester is a battery containing 5.0 parts by mass or more of sulfonic acid groups with respect to 100 parts by mass of the total mass of the magnesium hydroxide particles.
  6.  請求項1から5までのいずれか一項に記載の電池において、
     前記第1絶縁層は、芳香族ポリアミドをさらに含む、電池。
    In the battery according to any one of claims 1 to 5,
    The first insulating layer is a battery further containing an aromatic polyamide.
PCT/JP2020/009334 2019-03-08 2020-03-05 Battery WO2020184359A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-042199 2019-03-08
JP2019042199A JP7348733B2 (en) 2019-03-08 2019-03-08 battery

Publications (1)

Publication Number Publication Date
WO2020184359A1 true WO2020184359A1 (en) 2020-09-17

Family

ID=72354441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009334 WO2020184359A1 (en) 2019-03-08 2020-03-05 Battery

Country Status (2)

Country Link
JP (2) JP7348733B2 (en)
WO (1) WO2020184359A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108444A (en) * 2009-11-16 2011-06-02 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011108516A (en) * 2009-11-18 2011-06-02 Teijin Ltd Electrode sheet for nonaqueous secondary battery, and nonaqueous secondary battery employing the same
WO2018221709A1 (en) * 2017-06-02 2018-12-06 協和化学工業株式会社 Magnesium hydroxide used for nonaqueous secondary battery separator, nonaqueous secondary battery separator, and nonaqueous secondary battery
KR20190108842A (en) * 2018-03-15 2019-09-25 삼성에스디아이 주식회사 Positive electrode for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108444A (en) * 2009-11-16 2011-06-02 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011108516A (en) * 2009-11-18 2011-06-02 Teijin Ltd Electrode sheet for nonaqueous secondary battery, and nonaqueous secondary battery employing the same
WO2018221709A1 (en) * 2017-06-02 2018-12-06 協和化学工業株式会社 Magnesium hydroxide used for nonaqueous secondary battery separator, nonaqueous secondary battery separator, and nonaqueous secondary battery
KR20190108842A (en) * 2018-03-15 2019-09-25 삼성에스디아이 주식회사 Positive electrode for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
JP2020145128A (en) 2020-09-10
JP7348733B2 (en) 2023-09-21
JP2023165682A (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP5286054B2 (en) Nonaqueous electrolyte secondary battery
JP5246747B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
EP3322024B1 (en) Nonaqueous electrolyte battery and battery pack
US11855276B2 (en) Electrode for secondary battery and secondary battery
WO2019193691A1 (en) Positive electrode, electrode group and nonaqueous electrolyte battery
JP5258499B2 (en) Non-aqueous secondary battery
JP6697377B2 (en) Lithium ion secondary battery
JPWO2019073595A1 (en) Lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
WO2020184359A1 (en) Battery
JP7027648B2 (en) Lithium ion secondary battery
WO2020184360A1 (en) Battery
JP7198041B2 (en) battery
JP4447831B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
WO2020202307A1 (en) Lithium ion secondary battery
JP2021132020A (en) Negative electrode for lithium secondary battery, and lithium secondary battery
JP7027649B2 (en) Lithium ion secondary battery
US20230102390A1 (en) Non-aqueous electrolyte and lithium-ion secondary battery
WO2020189298A1 (en) Electrode, method for producing electrode, and battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20768968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20768968

Country of ref document: EP

Kind code of ref document: A1