WO2020184270A1 - Flame-retardant polyamide resin composition - Google Patents

Flame-retardant polyamide resin composition Download PDF

Info

Publication number
WO2020184270A1
WO2020184270A1 PCT/JP2020/008807 JP2020008807W WO2020184270A1 WO 2020184270 A1 WO2020184270 A1 WO 2020184270A1 JP 2020008807 W JP2020008807 W JP 2020008807W WO 2020184270 A1 WO2020184270 A1 WO 2020184270A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
flame
resin composition
retardant
semi
Prior art date
Application number
PCT/JP2020/008807
Other languages
French (fr)
Japanese (ja)
Inventor
英人 小笠原
翔平 小泉
功 鷲尾
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN202080012179.6A priority Critical patent/CN113412298A/en
Priority to JP2021504942A priority patent/JP7152592B2/en
Publication of WO2020184270A1 publication Critical patent/WO2020184270A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a flame-retardant polyamide resin composition, a molded product thereof, and electrical and electronic parts.
  • a polyamide resin that can be molded into a predetermined shape by heating and melting has been used.
  • Polyamides widely used include aliphatic polyamides such as 6 nylon and 66 nylon. Such aliphatic polyamides have good moldability, but on the other hand, they have sufficient heat resistance as a raw material for surface mount components such as connectors, which are manufactured through a process of being exposed to a high temperature such as a reflow soldering process. Does not have.
  • 46 nylon was developed as a polyamide with high heat resistance.
  • 46 nylon has a problem of high water absorption, and therefore, the dimensions of electrical and electronic parts molded using the 46 nylon resin composition may change due to water absorption.
  • problems such as blisters, so-called swelling, occur due to heating in the reflow soldering process.
  • lead-free solder has a higher melting point than conventional lead solder. Therefore, the mounting temperature has inevitably risen by 10 to 20 ° C., and the use of 46 nylon has become difficult.
  • Aromatic polyamides derived from aromatic dicarboxylic acids such as terephthalic acid and aliphatic alkylenediamines have been developed.
  • Aromatic polyamide is more excellent in heat resistance and low water absorption than aliphatic polyamide such as 46 nylon.
  • Halogen-containing flame retardants such as brominated polyphenylene ether, brominated polystyrene, and polybrominated styrene are concerned about the generation of dioxin compounds during combustion. Therefore, there is a demand from the market for the provision of flame-retardant polyamide resin compositions containing halogen-free flame retardants from halogen-containing flame retardants. Among them, the use of phosphinate compounds has attracted attention (see Patent Documents 1 to 5).
  • the conventional polyamide resin composition containing a phosphinate compound has both high flame retardancy and high mechanical properties.
  • electrical and electronic components along with high flame retardancy and reflow heat resistance for use in electrical and electronic components such as fine pitch connectors, which are thin and have a short distance between connector terminals, and small, thin-walled components.
  • a resin composition having even higher mechanical properties is desired.
  • the present inventor has a flame-retardant polyamide resin composition containing at least two different semi-aromatic polyamide resins as polyamide resin components and containing a phosphinate compound as a flame retardant.
  • the product has excellent mechanical properties such as high bending strength and high toughness without causing deterioration of reflow heat resistance and flame retardancy, and have completed the present invention. That is, the first aspect of the present invention relates to the following flame-retardant polyamide resin composition.
  • Polyamide resin component (A) 20 to 80% by mass, A flame-retardant polyamide resin composition containing 3 to 30% by mass of a flame retardant (B) having no halogen group in the molecule and 10 to 50% by mass of a reinforcing material (C) (however, (A), The ratio of (B) and (C) is mass% with respect to the total amount of the flame retardant polyamide resin composition),
  • the polyamide resin component (A) contains a semi-aromatic polyamide resin (A-1) and a semi-aromatic polyamide resin (A-2) different from the semi-aromatic polyamide resin (A-1).
  • the flame retardant (B) is a flame-retardant polyamide resin composition which is a phosphinate compound.
  • the semi-aromatic polyamide resin (A-1) and the semi-aromatic polyamide resin (A-2) are both crystalline resins having a melting point of 270 ° C. or higher and 340 ° C. or lower, or one of them is 270.
  • At least one of the semi-aromatic polyamide resin (A-1) and the semi-aromatic polyamide resin (A-2) has a terephthalic acid component unit of 30 to 100 mol% as a dicarboxylic acid component, other than terephthalic acid.
  • Aromatic polyfunctional carboxylic acid component unit (a-1) consisting of 0 to 70 mol% of aromatic polyfunctional carboxylic acid component unit and / or 0 to 60 mol% of aliphatic polyfunctional carboxylic acid component unit having 4 to 20 carbon atoms.
  • the flame retardant (B) is a flame retardant containing a phosphinate compound of formula (I) and / or a bisphosphinate compound of formula (II) and / or a polymer thereof. [1] ] To [4].
  • the flame-retardant polyamide resin composition according to any one of [4].
  • R 1 and R 2 identical or different, a straight-chain or branched C 1 -C 6 alkyl and / or aryl
  • R 3 is a straight-chain or branched C 1 -C 10 alkylene, C 6 -C 10 arylene, C 6 -C 10 alkylarylene or C 6 -C 10 arylalkylene
  • M is one selected from the group consisting of Mg, Ca, Al, Sb, Sn, Ge, Ti, Zn, Fe, Zr, Ce, Bi, Sr, Mn, Li, Na, K and protonated nitrogen bases.
  • m indicates an integer of 1 to 4
  • n indicates an integer of 1 to 4
  • x indicates an integer of 1 to 4.
  • the flame retardant according to [8], wherein the metal oxide is at least one selected from the group consisting of an iron oxide, a magnesium oxide, a zinc oxide, and a zinc composite oxide.
  • Sexual polyamide resin composition [10] The flame-retardant polyamide resin composition according to any one of [1] to [9], further containing 0.1 to 5% by mass of the flame retardant aid (E).
  • E flame retardant aid
  • the second aspect of the present invention relates to a molded product obtained by molding the flame-retardant polyamide resin composition.
  • the third aspect of the present invention relates to an electric / electronic component obtained by molding the flame-retardant polyamide resin composition.
  • the flame-retardant polyamide resin composition of the present invention is halogen-free, does not generate hydrogen halide during combustion, has a reduced environmental load, and has high mechanical properties such as bending strength and toughness. Excellent heat resistance and flame retardancy in the reflow soldering process. As described above, the industrial value of the flame-retardant polyamide resin composition of the present invention is extremely high.
  • the molded product of the flame-retardant polyamide resin composition of the present invention is particularly preferably used as an electric / electronic component such as a fine pitch connector having a thin wall and a short distance between connector terminals.
  • the flame-retardant polyamide resin composition of the present invention comprises a semi-aromatic polyamide resin (A-1) and a semi-aromatic polyamide resin (A-2) different from the semi-aromatic polyamide resin (A-1). Including, the polyamide resin component (A) is contained.
  • the semi-aromatic polyamide resin is a polyamide resin containing a structural unit having an aromatic ring and a structural unit having an aliphatic chain.
  • the polyamide resin component (A) is not particularly limited as long as it can withstand the reflow soldering process, but at least one of the semi-aromatic polyamide resins (A-1) and (A-2) is the following polyfunctional carboxylic acid.
  • a structure containing a component unit (a-1) and a polyfunctional amine component unit (a-2) is preferable, and a structure containing both of the following component units is more preferable.
  • Polyfunctional carboxylic acid component unit (a-1) The polyfunctional carboxylic acid component unit (a-1) constituting the semi-aromatic polyamide resin (A-1) and / or (A-2) is based on the total amount of the polyfunctional carboxylic acid component unit (a-1).
  • the terephthalic acid component unit is 30 to 100 mol%
  • the aromatic polyfunctional carboxylic acid component unit other than terephthalic acid is 0 to 70 mol%
  • aromatic polyfunctional carboxylic acid component units other than terephthalic acid include, for example, isophthalic acid, 2-methylterephthalic acid, naphthalenedicarboxylic acid, phthalic anhydride, trimellitic acid, pyromellitic acid, trimellitic anhydride, and pyrochloride.
  • Merit acid and the like can be mentioned.
  • units derived from isophthalic acid are particularly preferred.
  • these may be used alone or in combination of two or more.
  • the addition amount is such that the resin does not gel, specifically, 10 mol% or less of the total 100 mol% of all carboxylic acid component units.
  • the aliphatic polyfunctional carboxylic acid component unit is a unit derived from an aliphatic polyfunctional carboxylic acid compound having 4 to 20, preferably 4 to 12, and more preferably 6 to 10 carbon atoms.
  • examples of such compounds include adipic acid, suberic acid, azelaic acid, sebacic acid, decandicarboxylic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid and the like. Of these, adipic acid is particularly preferable from the viewpoint of improving mechanical properties.
  • a trifunctional or higher functional polyfunctional carboxylic acid compound can be appropriately used as needed. However, the amount of the trifunctional or higher functional carboxylic acid compound should be limited so that the resin does not gel, and specifically, it is preferably 10 mol% or less based on the total of all carboxylic acid component units. ..
  • the semi-aromatic polyamide resin (A-1) and / or (A-2) contained 30 to 100 mol% of the terephthalic acid component unit with respect to the total amount of the polyfunctional carboxylic acid component unit (a-1). It is preferably contained in an amount of 50 to 100 mol%, more preferably 60 to 100 mol%, still more preferably 60 to 70 mol%, and the aromatic polyfunctional carboxylic acid component unit other than terephthalic acid is 0 to 70 mol%. It is preferably contained in an amount of 0 to 40 mol%.
  • the content of the aromatic polyfunctional carboxylic acid component, particularly terephthalic acid increases, the amount of moisture absorbed tends to decrease and the reflow heat resistance tends to improve.
  • the polyamide resin component (A) contained in the polyamide resin composition used in the reflow soldering process using lead-free solder is a semi-aromatic component containing 55 mol% or more, preferably 60 mol% or more of terephthalic acid component units. It is preferable to contain a polyamide resin.
  • the semi-aromatic polyamide resin (A-1) and / or (A-2) contains 0 to 60 mol%, preferably 0 to 50 mol% of the aliphatic polyfunctional carboxylic acid component unit having 4 to 20 carbon atoms. %, More preferably in an amount of 30-40 mol%.
  • the polyfunctional amine component unit (a-2) constituting the semi-aromatic polyamide resin (A-1) and / or (A-2) contained in the flame-retardant polyamide resin composition of the present invention is linear and / or Examples thereof include polyfunctional amine component units having 4 to 25 carbon atoms having side chains, preferably linear and / or 4 to 12 carbon atoms having side chains, and more preferably 4 to 10 linear carbon atoms. .. Further, the polyfunctional amine component unit (a-2) may contain an alicyclic polyfunctional amine component unit.
  • linear polyfunctional amine component unit examples include 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, and 1, , 10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane. Of these, 1,6-diaminohexane is preferable.
  • linear aliphatic diamine component unit having a side chain examples include 2-methyl-1,5-diaminopentane, 2-methyl-1,6-diaminohexane, and 2-methyl-1,7-diamino.
  • examples thereof include heptane, 2-methyl-1,8-diaminooctane, 2-methyl-1,9-diaminononane, 2-methyl-1,10-diaminodecane and 2-methyl-1,11-diaminoundecane.
  • 2-methyl-1,5-diaminopentane and 2-methyl-1,8-diaminooctane are preferable.
  • 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis (aminomethyl) cyclohexane, bis (4-aminocyclohexyl) methane, 4,4'-diamino-3 , 3'-Dimethyldicyclohexylmethane is preferred; especially 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) methane, 1,3-bis (aminocyclohexyl) methane, 1,3- Component units derived from alicyclic diamines such as bis (aminomethyl) cyclohexane are preferred.
  • the amount added so as not to gel the resin specifically, 10 mol% or less of the total 100 mol% of all amine component units is prefer
  • the polyfunctional amine component unit (a-2) is particularly preferably composed of only the above-mentioned linear polyfunctional amine component unit.
  • Specifically preferred linear polyfunctional amine components are 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10- Diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane can be mentioned.
  • 1,6-diaminohexane is preferable. It is preferable to use these linear polyfunctional amine components because the reflow heat resistance tends to be improved.
  • the semi-aromatic polyamide resins (A-1) and (A-2) contained in the flame-retardant polyamide resin composition of the present invention have an extreme viscosity [ ⁇ ] measured in 96.5% sulfuric acid at a temperature of 25 ° C. It is preferably 0.5 to 1.25 dl / g, more preferably 0.6 to 1.15 dl / g, and further preferably 0.6 to 1.05 dl / g.
  • the ultimate viscosities [ ⁇ ] of the semi-aromatic polyamide resins (A-1) and (A-2) are in this range, a polyamide resin composition having excellent fluidity, reflow heat resistance, and high toughness can be obtained.
  • the semi-aromatic polyamide resins (A-1) and (A-2) contained in the flame-retardant polyamide resin composition of the present invention may be crystalline or amorphous, but at least one of them must be crystalline. preferable.
  • the crystalline semi-aromatic polyamide resin has a melting point, and in the present invention, the heat absorption peak based on melting when the temperature is raised at 10 ° C./min using a differential scanning calorimeter (DSC) is set to the semi-aromatic polyamide. It can be measured as the melting point (Tm) of the resin.
  • the melting point of the semi-aromatic polyamide resin measured in this way is preferably 270 to 340 ° C, more preferably 290 to 340 ° C, and even more preferably 315 to 330 ° C.
  • Semi-aromatic polyamide resins having melting points in this range have particularly excellent heat resistance.
  • the flame-retardant polyamide resin composition of the present invention is used in a lead-free reflow soldering process, particularly using a lead-free solder having a high melting point. Sufficient heat resistance is achieved even when used in a soldering process.
  • the melting point is 340 ° C. or lower, the melting point is lower than 350 ° C., which is the decomposition point of polyamide, so that decomposition gas is not generated during molding and discoloration of the molded product does not occur, and sufficient thermal stability is achieved. Obtainable.
  • semi-aromatic polyamide resins A-1 and (A-2) having different melting points (Tm) are blended to obtain the blend.
  • the melting point (Tm) can be measured using a differential scanning calorimetry (DSC) as described above.
  • DSC differential scanning calorimetry
  • the melting point of the semi-aromatic polyamide resin blend measured in this way is observed as a single peak. This means that the resin is homogenized, and as a result, it is considered that the glass transition temperature of the resin composition of the present invention rises and the thermal stability is improved.
  • the flame retardant (B) used in the present invention which does not have a halogen group in the molecule, is added for the purpose of reducing the flammability of the resin.
  • the flame retardant (B) is preferably a phosphinate compound, more preferably a phosphinic acid metal salt compound.
  • flame retardant (B) is compounds represented by the following formulas (I) and / or formulas (II).
  • R 1 and R 2 identical or different, a straight-chain or branched C 1 -C 6 alkyl and / or aryl
  • R 3 is a straight-chain or branched C 1 -C 10 alkylene, C 6 -C 10 arylene, C 6 -C 10 alkylarylene or C 6 -C 10 arylalkylene
  • M is one selected from the group consisting of Mg, Ca, Al, Sb, Sn, Ge, Ti, Zn, Fe, Zr, Ce, Bi, Sr, Mn, Li, Na, K and protonated nitrogen bases.
  • m indicates an integer of 1 to 4
  • n indicates an integer of 1 to 4
  • x indicates an integer of 1 to 4.
  • Specific compounds of the phosphinate compound include calcium dimethylphosphinate, magnesium dimethylphosphinate, aluminum dimethylphosphinate, zinc dimethylphosphinate, calcium ethylmethylphosphinate, magnesium ethylmethylphosphinate, aluminum ethylmethylphosphinate, and ethyl.
  • it is calcium dimethylphosphinate, aluminum dimethylphosphinate, zinc dimethylphosphinate, calcium ethylmethylphosphinate, aluminum ethylmethylphosphinate, zinc ethylmethylphosphinate, calcium diethylphosphinate, aluminum diethylphosphinate, zinc diethylphosphine. Yes; more preferably aluminum diethylphosphinate.
  • Typical examples of the flame retardant (B) containing the phosphinate compound used in the present invention include EXOLIT OP1230 and OP930 manufactured by Clariant Japan.
  • the flame-retardant polyamide resin composition of the present invention may contain a reinforcing material (C), and has various inorganic shapes such as fibrous, powdery, granular, plate-like, needle-like, cloth-like, and mat-like. Fillers can be used and can be used alone or in combination with a plurality of materials.
  • powdery or plate-like inorganic compounds such as silica, silica-alumina, calcium carbonate, titanium dioxide, talc, wallastonite, caustic soil, clay, kaolin, spherical glass, mica, sekkou, and red iron oxide; Needle-shaped inorganic compounds such as potassium; glass fiber (glass fiber), potassium titanate fiber, metal-coated glass fiber, ceramic fiber, wallastnite, carbon fiber, metal carbide fiber, hardened metal fiber, asbestos fiber and boron fiber Inorganic fibers such as; further, organic fibers such as aramid fibers and carbon fibers are mentioned as the reinforcing material (C). As the reinforcing material (C), a fibrous substance is preferable, and glass fiber is more preferable.
  • the reinforcing material (C) a fibrous substance is preferable, and glass fiber is more preferable.
  • the reinforcing material (C) is a fibrous substance, particularly glass fiber
  • the moldability of the flame-retardant polyamide resin composition of the present invention is improved, and the tensile strength, bending strength, flexural modulus, etc. of the molded body are improved.
  • Mechanical properties and heat distortion properties such as heat distortion temperature are improved.
  • the average length of the glass fibers is usually in the range of 0.1 to 20 mm, preferably 0.2 to 6 mm.
  • the aspect ratio of the glass fiber (L (average length of the glass fiber) / D (average outer diameter of the glass fiber)) is usually in the range of 10 to 5000, preferably 2000 to 3000. Glass fibers having an average length and aspect ratio within such a range are preferably used.
  • the different diameter ratio (ratio of major axis to minor axis) of the fiber cross section is larger than 1, preferably the different diameter ratio, for the purpose of preventing warpage of the molded product. It is effective to use a fibrous substance of 1.5 to 6.0.
  • the above-mentioned filler can be used by treating it with a silane coupling agent, a titanium coupling agent, or the like.
  • the surface may be treated with a silane compound such as vinyltriethoxysilane, 2-aminopropyltriethoxysilane, or 2-glycidoxypropyltriethoxysilane.
  • the fibrous filler may be coated with a sizing agent.
  • a sizing agent acrylic compounds typified by (meth) acrylic acid and (meth) acrylic acid ester, carboxylic acid compounds having a carbon-carbon double bond other than methacrylic acid such as maleic anhydride, and epoxy compounds. , Urethane compounds and amine compounds. Further, these can be combined to form a reinforcing material (C).
  • Preferred combinations include combinations of acrylic compounds / carboxylic acid compounds, urethane compounds / carboxylic acid compounds, and urethane compounds / amine compounds.
  • the above-mentioned surface treatment agent may be used in combination with a sizing agent, and the combined use improves the bondability between the fibrous filler in the composition of the present invention and other components in the composition, resulting in improved appearance and strength characteristics. improves.
  • the reinforcing material (C) is preferably added in a proportion of 10 to 50% by mass, preferably 10 to 45% by mass, in the flame-retardant polyamide resin composition of the present invention.
  • the flame-retardant polyamide resin composition of the present invention may contain a metal compound component (D) selected from a metal hydroxide and a metal oxide, and preferably contains a metal oxide. By containing these, the corrosion and wear of the steel material due to the polyamide resin composition can be further suppressed.
  • the metal hydroxide and the metal oxide can be used alone or in combination of a plurality of compounds.
  • the metal of the metal hydroxide and the metal oxide is preferably a group 1 to 12 metal of the periodic table of elements, and more preferably a metal of groups 2 to 12 of the same periodic table.
  • the metal oxide is preferably an oxide of a Group 2 to 12 element in the Periodic Table of the Elements, more preferably an oxide of a Group 4 to 12 element, and even more preferably an oxide of a Group 7 to 12 element.
  • Metal hydroxides and metal oxides, especially metal oxides, are used in extruders used to produce flame-retardant polyamide resin compositions, molding machines used to obtain molded articles using the compositions, and the like. It is effective in suppressing corrosion and wear of steel materials such as screws, cylinders, dies, and nozzles of the equipment used. In particular, it exerts a high suppressing effect under high temperature conditions such that the processing temperature is 270 ° C. or higher.
  • the metal hydroxide and the metal oxide may be particles having an average particle diameter of 0.01 to 20 ⁇ m, preferably an average particle diameter of 0.01 to 10 ⁇ m, more preferably 0.01 to 5 ⁇ m, and further preferably 0. Particles of 0.01 to 3 ⁇ m, particularly preferably 0.01 to 1 ⁇ m, particularly preferably 0.01 to 0.3 ⁇ m can be used. This is to obtain a higher effect of suppressing corrosion and wear.
  • the particle amount (%) in each particle size section of the primary particle is plotted using an image diffractometer (Luzex IIIU) based on a transmission electron micrograph. The distribution curve can be obtained, and the cumulative distribution curve can be obtained from the obtained distribution curve and used as the value when the cumulative degree of the cumulative distribution curve is 50%.
  • the BET specific surface area of the metal oxide or metal hydroxide may be 1 to 50 m 2 / g, preferably 3 to 40 m 2 / g, and more preferably 5 to 40 m 2 / g.
  • the average particle size and the BET specific surface area are within the above ranges, it is often possible to obtain a molded product having excellent flame retardancy and reflow heat resistance while suppressing corrosion wear of the steel material. If the average particle size exceeds 20 ⁇ m or the BET specific surface area is less than 1 m 2 / g, the effect of suppressing corrosion and wear may not be sufficiently obtained.
  • the average particle size is less than 0.01 ⁇ m or the BET specific surface area exceeds 50 m 2 / g, the effect of suppressing corrosion and wear can be obtained, but flame retardancy, reflow heat resistance, and thermal stability during molding are obtained. Tends to decrease.
  • the metal compound component (D) selected from the metal hydroxide and the metal oxide traps the decomposition product of the flame retardant (B). Since it is considered that the trap of the decomposition product of the flame retardant (B) occurs mainly on the surface of the metal hydroxide and the metal oxide component, it is advantageous that the component has a small particle size, that is, a high specific surface area. it is conceivable that. Therefore, it is considered that metal hydroxides and metal oxides in a specific particle size range (for example, particles having an average particle size of 0.01 to 20 ⁇ m) are advantageous in suppressing corrosion wear, which is a subject of the present application.
  • Preferred metal elements of the metal hydroxide and the metal oxide used in the present invention include iron, magnesium and zinc, more preferably magnesium and zinc, and particularly preferably zinc.
  • preferable specific metal hydroxides or metal oxides include magnesium hydroxide, magnesium oxide, and zinc oxide.
  • Other preferred examples include composite oxides of metals, more preferably zinc composite oxides such as zinc tintate and zinc hydroxytinate. Of these, zinc oxide, zinc nitrate, magnesium oxide, and magnesium hydroxide are preferable. Further, ordinary single metal oxides are preferable to composite oxides, and zinc oxide is a particularly preferable specific example.
  • borate which is one of the composite oxides, is not regarded as a metal oxide in the present invention.
  • an element having a Lewis acidic potential such as boron is contained, it is presumed that corrosion resistance is unlikely to be exhibited because the trapping effect of the decomposition product of the flame retardant described later is reduced.
  • the flame retardant polyamide resin composition of the present invention may contain a flame retardant aid (E).
  • the flame retardant aid (E) is effective for exhibiting a high flame retardant effect even with a small amount of the flame retardant added.
  • Specific examples thereof include metal oxides and metal hydroxides, and these compounds can be used alone or in combination with a plurality of compounds. Specifically, zinc borate, boehmite, zinc tinate, iron oxide, and tin oxide are preferable, and zinc borate is more preferable.
  • the flame retardant aid (E) 0.1 to 5% by mass, preferably 0.5 to 5% by mass, in the flame-retardant polyamide resin composition of the present invention. , More preferably 1 to 3% by mass.
  • melamine tris (hydroxyethyl) isocyanurate (THEIC), melamine phosphate (MP), melamine polyphosphate (MPP), melamine as nitrogen-based flame-retardant aids (E)
  • TEEIC tris (hydroxyethyl) isocyanurate
  • MP melamine phosphate
  • MPP melamine polyphosphate
  • E nitrogen-based flame-retardant aids
  • Nitrogen compounds such as cyanurate (MC) and phosphazene compounds such as cyclic phosphazene compounds and / or linear phosphazene compounds can be used in combination.
  • the flame retardant polyamide resin composition of the present invention is a flame retardant aid, a flame retardant, an antioxidant, a radical trapping agent, and heat-resistant stable, as long as the object of the present invention is not impaired.
  • Agents, weather stabilizers, fluidity improvers, plastics, thickeners, antistatics, mold release agents, pigments, dyes, inorganic or organic fillers, nucleating agents, fiber reinforcements, carbon black, talc, clay It may contain various known compounding agents such as an inorganic compound such as mica.
  • the flame-retardant polyamide resin composition of the present invention may contain an additive such as a commonly used ion scavenger.
  • the flame-retardant polyamide resin composition of the present invention further improves heat resistance, flame retardancy, rigidity, tensile strength, bending strength, and impact strength by containing the fiber reinforcing agent among the above. ..
  • the flame-retardant polyamide resin composition of the present invention may contain other polymers as long as the object of the present invention is not impaired.
  • other polymers include polyethylene, polypropylene, poly4-methyl-1-pentene, ethylene / 1-butene copolymer, propylene / ethylene copolymer, propylene / 1-butene copolymer, and polyolefin elastomer.
  • Polyolefins such as, polystyrene, polyamide, polycarbonate, polyacetal, polysulphon, polyphenylene oxide, fluororesin, silicone resin, SEBS, Teflon (registered trademark) and the like.
  • modified polyolefins are, for example, a polyolefin modified with a carboxyl group, an acid anhydride group, an amino group, or the like.
  • modified polyolefins include modified aromatic vinyl compounds such as modified polyethylene and modified SEBS / conjugated diene copolymers or hydrides thereof, and modified polyolefin elastomers such as modified ethylene / propylene copolymers. It is preferable that these components do not meet the UL94V-0 standard.
  • the content of these polymers is preferably 4% by mass or less, more preferably 2% by mass or less, and further. It is preferably 1% by mass or less.
  • the flame-retardant polyamide resin composition of the present invention contains a polyamide resin component (A) containing a semi-aromatic polyamide resin (A-2) different from the semi-aromatic polyamide resin (A-1). Therefore, the total amount of the semi-aromatic polyamide resin (A-1) and (A-2) is the amount of the polyamide resin component (A).
  • the ratio of the polyamide resin component (A) (which is the total of the semi-aromatic polyamide resins (A-1) and (A-2)) to the total amount of the polyamide resin composition is 20 to 80% by mass, preferably 35 to 35. It is 60% by mass.
  • the content of the polyamide resin component (A) in the flame-retardant polyamide resin composition is 20% by mass or more, sufficient toughness can be obtained. Further, when the content of the polyamide resin component (A) in the flame-retardant polyamide resin composition is 80% by mass or less, a sufficient flame retardant can be contained and flame retardancy can be obtained.
  • the polyamide resin component (A) may contain other semi-aromatic polyamide resins other than the semi-aromatic polyamide resins (A-1) and (A-2) as long as the object of the present invention is not impaired. Good. When other semi-aromatic polyamide resins are included, the total amount of the semi-aromatic polyamide resins is taken as the amount of the polyamide resin component (A).
  • the combination of the semi-aromatic polyamide resin (A-1) and (A-2) is not particularly limited, and can be selected according to the physical properties required for the flame-retardant polyamide resin composition.
  • a semi-aromatic polyamide resin having low fluidity for example, to prevent the fluidity from becoming too low
  • Polyamide 6T / 6I and Polyamide 6T / DT are preferably combined with a highly fluid semi-aromatic polyamide resin (for example, Polyamide 6T / 66).
  • the semi-aromatic polyamide resins (A-1) and (A-2) are dicarboxylic acid components of the polyamide resin component (A) (that is, the sum of the semi-aromatic polyamide resins (A-1) and (A-2)).
  • Types and formulations of semi-aromatic polyamide resins (A-1) and (A-2) so that the ratio of the total amount of aromatic dicarboxylic acid component units to the total amount of units is 67 mol% or more and 80 mol% or less. It is preferable to select the amount.
  • the ratio of the total amount of the aromatic dicarboxylic acid component units is 67 mol% or more, the strength is improved because the aromatic components are sufficiently present.
  • the ratio of the total amount of the aromatic dicarboxylic acid component unit to the total amount of the dicarboxylic acid component unit is more preferably 67 mol% or more and 75 mol% or less.
  • At least one of the semi-aromatic polyamide resins (A-1) and (A-2) is a crystalline resin having a melting point of 270 ° C. or higher and 340 ° C. or lower.
  • both the semi-aromatic polyamide resins (A-1) and (A-2) are crystalline resins having a melting point of 270 ° C. or higher and 340 ° C. or lower, or one of them has a melting point of 270 ° C. or higher and 340 ° C. or lower. More preferably, it is a crystalline resin and the other is an amorphous resin.
  • both the semi-aromatic polyamide resins (A-1) and (A-2) are crystalline resins having a melting point of 270 ° C. or higher and 340 ° C. or lower, it may be possible to particularly increase the reflow heat resistance temperature.
  • the flame-retardant polyamide resin composition of the present invention is used in a lead-free reflow soldering process, particularly in a soldering process using lead-free solder having a high melting point, sufficient heat resistance is obtained, which is preferable.
  • Examples of such a combination of the semi-aromatic polyamide resin include a combination of polyamide 6T / 66 (melting point: 320 ° C.) and polyamide 6T / 6I (melting point: 330 ° C.), and polyamide 6T / 66 (melting point: 320 ° C.). Examples thereof include a combination with polyamide 6T / DT (melting point: 300 ° C.).
  • one of the semi-aromatic polyamide resins (A-1) and (A-2) is a crystalline resin having a melting point of 270 ° C. or higher and 340 ° C. or lower and the other is an amorphous resin
  • a flame-retardant polyamide resin is used. Since the crystallinity of the composition is particularly low, it is preferable from the viewpoint of increasing the toughness of the flame-retardant polyamide resin composition.
  • Examples of such a combination of semi-aromatic polyamide resins include a combination of polyamide 6T / 66 (melting point: 320 ° C.) and polyamide 6I / 6T (amorphous).
  • PA6T / 66 in combination with another semi-aromatic polyamide resin because it is excellent in mechanical properties such as fluidity during molding of the flame-retardant polyamide resin composition, heat resistance in the reflow soldering process, strength and toughness. ..
  • the blending ratio of the semi-aromatic polyamide resins (A-1) and (A-2) is not particularly limited, and can be determined based on desired physical properties and the ratio of the aromatic dicarboxylic acid component unit. it can.
  • a semi-aromatic polyamide resin (A-1) containing an aromatic dicarboxylic acid component unit and an aliphatic dicarboxylic acid component unit as a dicarboxylic acid component unit and a half containing only an aromatic dicarboxylic acid component unit as a dicarboxylic acid component unit.
  • the mass ratio of (A-1) / (A-2) can be 5/95 to 95/5, but is limited to this.
  • the mass ratio of (A-1) / (A-2) is preferably 50/50 to 95/5, more preferably 50/50 to 90/10, and even more preferably 55/45 to 85/15.
  • the ratio of the semi-aromatic polyamide resin (A-2) is 5 or more, a sufficient effect is obtained for improving the mechanical properties, while when it is 95 or less, a sufficient effect is obtained for reflow heat resistance and fluidity. Be done.
  • the flame-retardant polyamide resin composition preferably contains the flame retardant (B) in an amount of 3 to 30% by mass, preferably 7 to 20% by mass, based on the total amount of the polyamide resin composition.
  • the content of the flame retardant (B) in the flame-retardant polyamide resin composition is 3% by mass or more, sufficient flame retardancy can be obtained, and when it is 30% by mass or less, the flow during injection molding. It is preferable because the property does not deteriorate.
  • the flame-retardant polyamide resin composition preferably contains the reinforcing material (C) in an amount of 10 to 50% by mass, preferably 10 to 45% by mass, based on the total amount of the polyamide resin composition. When this ratio is 50% by mass or less, the fluidity at the time of injection molding does not decrease, which is preferable.
  • the flame-retardant polyamide resin composition contains a metal compound component (D) selected from a metal hydroxide and a metal oxide, preferably a metal oxide, in an amount of 0.05 to 2 mass with respect to the total amount of the polyamide resin composition. %, preferably 0.1 to 1% by mass, more preferably 0.1 to 0.5% by mass.
  • a sufficient effect of suppressing corrosion and abrasion of the steel material is sufficient.
  • flame retardancy, reflow heat resistance, and thermal stability during molding are not deteriorated, which is preferable.
  • the flame retardant aid (E) is preferably 0.1 to 5% by mass, more preferably 0.5 to 5% by mass, and further, based on the total amount of the polyamide resin composition. It is preferably 1 to 3% by mass.
  • the content of the flame retardant aid (E) in the flame-retardant polyamide resin composition is 0.1% by mass or more, a sufficient effect of suppressing corrosion and wear of the steel material is obtained, and it is 5% by mass or less. , Flame retardancy, reflow heat resistance, and thermal stability during molding are not deteriorated, which is preferable.
  • the flame-retardant polyamide resin composition of the present invention has a flammability evaluation of V-0 according to the UL94 standard. More specifically, the flame-retardant polyamide resin composition of the present invention preferably has a flammability evaluation of V-0 according to the UL94 standard at a thickness of 0.8 mm or less.
  • the reflow heat resistant temperature after absorbing moisture at a temperature of 40 ° C. and a relative humidity of 95% for 96 hours is preferably 245 to 280 ° C., more preferably 250 to 280 ° C., still more preferably 255 to 280 ° C. It is preferably 255 to 270 ° C.
  • the fracture energy which is an index of toughness, is preferably 660 to 800 mJ, more preferably 660 to 750 mJ, and even more preferably 665 to 720 mJ.
  • the flow length obtained by injection molding of the resin into the bar flow mold is preferably 30 to 90 mm, more preferably 40 to 70 mm.
  • the flame-retardant polyamide resin composition of the present invention has extremely excellent characteristics and is halogen-free (that is, the content of chlorine and bromine is low), so that the risk of dioxin generation is low. It has excellent thermal stability during molding under high temperature conditions, and can exhibit high flame retardancy during combustion. Further, the flame-retardant polyamide resin composition of the present invention can exhibit excellent mechanical properties such as high bending strength and toughness after molding.
  • the flame-retardant polyamide resin composition of the present invention can be suitably used particularly for electrical and electronic component applications.
  • the flame-retardant polyamide resin composition of the present invention can be produced by using a known resin kneading method for each of the above-mentioned components. For example, a method of mixing each of the above-mentioned components with a Henschel mixer, a V blender, a ribbon blender, a tumbler blender, etc., or after mixing, melt-kneading with a uniaxial extruder, a multi-screw extruder, a kneader, a Banbury mixer, etc. A method of graining or grinding can be adopted.
  • the flame-retardant polyamide resin composition of the present invention can be molded into various molded bodies by using known molding methods such as a compression molding method, an injection molding method, and an extrusion molding method.
  • a molding method is preferable, and a molding machine is used for molding in an atmosphere of an inert gas typified by nitrogen, argon, or helium, specifically, for example, at a flow rate of 0.1 to 10 ml / min. It is possible to further reduce the corrosion and wear of steel materials such as cylinders and screws.
  • the flame-retardant polyamide resin composition of the present invention is excellent in terms of mechanical properties (particularly bending strength and toughness), reflow heat resistance, and flame retardancy. Therefore, the flame-retardant polyamide resin composition of the present invention can be used in fields where these properties are required or in the field of precision molding. Specific examples thereof include electrical components for automobiles, current breakers, connectors, switches, jacks, plugs, breakers, electrical and electronic components such as LED reflective materials, and various molded bodies such as coil bobbins and housings.
  • the polyamide resin sample was heated using a DSC7 manufactured by Perkin Elemer, held at 330 ° C. for 5 minutes, then lowered to 23 ° C. at a rate of 10 ° C./min, and then heated at 10 ° C./min.
  • the endothermic peak based on melting at this time was taken as the melting point of the polyamide resin.
  • the polyamide resin composition was injection-molded under the following conditions to prepare a test piece having a thickness of 3.2 mm. Molding machine: SE75EV-A manufactured by Sumitomo Heavy Industries, Ltd. Molding machine cylinder temperature: 330 ° C Mold temperature: 120 ° C The prepared test piece was left at a temperature of 23 ° C. in a nitrogen atmosphere for 24 hours. Next, a bending test was performed under an atmosphere of a temperature of 23 ° C. and a relative humidity of 50% at a bending tester: AB5 manufactured by NTESCO, a span of 51 mm, and a bending speed of 12.7 mm / min. The energy (toughness) required to break the test piece was determined from the bending strength, strain amount, and elastic modulus.
  • the prepared test piece was humidity-controlled at a temperature of 40 ° C. and a relative humidity of 95% for 96 hours.
  • the test piece subjected to the humidity control treatment was placed on a glass epoxy substrate having a thickness of 1 mm.
  • a temperature sensor was installed on this board.
  • the glass epoxy substrate on which the test piece was placed was set in an air reflow soldering apparatus (AIS-20-82-C manufactured by Atec Techtron Co., Ltd.), and the temperature profile reflow step shown in FIG. 1 was performed. As shown in FIG. 1, the temperature is raised to 230 ° C.
  • a predetermined set temperature (a is 270 ° C., b is 265 ° C., c is 260 ° C., d is 255 ° C., e was heated to 235 ° C.) and then lowered to 230 ° C.
  • a predetermined set temperature (a is 270 ° C., b is 265 ° C., c is 260 ° C., d is 255 ° C., e was heated to 235 ° C.) and then lowered to 230 ° C.
  • the reflow heat resistance temperature of a test piece that has absorbed moisture tends to be inferior to that in an absolutely dry state.
  • the polyamide resin component (A), flame retardant (B), reinforcing material (C), metal hydroxide (D), and other components used in Examples and Comparative Examples are shown.
  • Polyamide resin component (A) (Polyamide 6T / 66) Composition: Dicarboxylic acid component unit (terephthalic acid: 62.5 mol%, adipic acid: 37.5 mol%), diamine component unit (1,6-diaminohexane: 100 mol%) Extreme viscosity [ ⁇ ]: 0.8 dl / g Melting point: 320 ° C
  • Polyamide 12 Polyamide 12 (PA12): UBESTA 3014B, manufactured by Ube Industries, Ltd.
  • Metal compound component (D) Zinc oxide, average particle size 0.02 ⁇ m
  • the above polyamide resin was manufactured by the following method.
  • the low-order condensate was extracted by releasing it into the atmosphere from a spray nozzle installed in the lower part of the autoclave. Then, the low-order condensate was cooled to room temperature, the low-order condensate was pulverized with a pulverizer to a particle size of 1.5 mm or less, and dried at 110 ° C. for 24 hours. The water content of the obtained low-order condensate was 4100 ppm, and the ultimate viscosity [ ⁇ ] was 0.15 dl / g. Next, this low-order condensate was placed in a shelf-stage solid-phase polymerization apparatus, and after nitrogen substitution, the temperature was raised to 180 ° C.
  • the reaction was carried out for 1 hour and 30 minutes, and the temperature was lowered to room temperature.
  • the ultimate viscosity [ ⁇ ] of the obtained prepolymer was 0.20 dl / g.
  • PA6T / 66 which is a semi-aromatic polyamide resin, was obtained.
  • the reaction product produced in the reactor was withdrawn into a receiver connected to the reactor and the pressure was set to be about 10 kg / cm 2 lower, and the ultimate viscosity [ ⁇ ] was 0.15 dl.
  • a prepolymer of / g was obtained.
  • the obtained prepolymer was dried and then melt-polymerized at a cylinder set temperature of 330 ° C. using a twin-screw extruder to obtain PA6T / DT, which is a semi-aromatic polyamide resin.
  • the low-order condensate was extracted by releasing it into the atmosphere from a spray nozzle installed in the lower part of the autoclave. Then, the low-order condensate was cooled to room temperature, pulverized with a pulverizer to a particle size of 1.5 mm or less, and dried at 110 ° C. for 24 hours.
  • the water content of the obtained low-order condensate was 3000 ppm, and the ultimate viscosity [ ⁇ ] was 0.14 dl / g.
  • PA6I / 6T which is a semi-aromatic polyamide resin
  • the internal temperature was raised to 250 ° C. over 3 hours.
  • the internal pressure of the autoclave was increased to 3.03 MPa.
  • the low condensate was extracted by releasing it into the atmosphere from a spray nozzle installed in the lower part of the autoclave. Then, after cooling to room temperature, it was pulverized with a pulverizer to a particle size of 1.5 mm or less, and dried at 110 ° C. for 24 hours.
  • the water content of the obtained low condensate was 4100 ppm, and the ultimate viscosity [ ⁇ ] was 0.15 dl / g.
  • this low condensate was placed in a shelf-stage solid-phase polymerization apparatus, and after nitrogen substitution, the temperature was raised to 180 ° C. over about 1 hour and 30 minutes. Then, the reaction was carried out for 1 hour and 30 minutes, and the temperature was lowered to room temperature.
  • PA6T / 6I / 66 was obtained.
  • Examples 1 to 8 and [Comparative Examples 1 to 3] Each of the above components was mixed in an amount ratio as shown in Table 1, mounted on an extruder with a twin-screw vent set at a temperature of 320 ° C., and melt-kneaded to obtain a pellet-shaped flame-retardant polyamide resin composition. .. Next, each property of the obtained flame-retardant polyamide resin composition was evaluated, and the results are shown in Table 1.
  • Example 2 in which the ratio of the total amount of the aromatic dicarboxylic acid component unit is 67 mol% or more and 80 mol% or less is the same except that the ratio of the total amount of the aromatic dicarboxylic acid component unit is less than 67 mol%.
  • the bending strength and toughness are high. It is considered that this is because the aromatic component is sufficiently present.
  • a crystalline resin (a combination of PA6T / 66 and PA6T / 6I or PA6T / DT) in which both the semi-aromatic polyamide resins (A-1) and (A-2) have a melting point of 270 ° C. or higher and 340 ° C. or lower.
  • the flame-retardant polyamide resin compositions of Examples 1 and 2 had a very high reflow heat resistance temperature of 255 ° C.
  • one of the semi-aromatic polyamide resins (A-1) and (A-2) is a crystalline resin (PA6T / 66) having a melting point of 270 ° C. or higher and 340 ° C. or lower, and the other is an amorphous resin (PA6I).
  • the flame-retardant polyamide resin composition of Example 3 of / 6T) had a very high toughness exceeding 700 mJ. It is considered that this is because the crystallinity of the flame-retardant polyamide resin composition is particularly low
  • Comparative Example 2 containing the semi-aromatic polyamide resin and the aliphatic polyamide resin as the polyamide resin component (A), the bending strength, elastic modulus and toughness were lower than those in Comparative Example 1, and the reflow heat resistance temperature was also high. It decreased and the flame retardancy was rejected. Further, in Comparative Example 3 in which PA6T / 6I / 66 having the same monomer composition as in Example 1 in which PA6T / 66 and PA6T / 6I were used alone was used alone, the flame retardancy was good, but the bending strength and bending strength were improved. The toughness was very low, and the flow length and reflow heat resistance temperature were also low.
  • the flame-retardant polyamide resin composition of the present invention does not contain a halogen-based flame retardant, has excellent bending strength and toughness, and also has excellent reflow heat resistance and flame retardancy.
  • it can be suitably used for electrical and electronic applications in which parts are assembled by a surface mount method using high melting point solder such as lead-free solder.
  • high melting point solder such as lead-free solder.
  • it can be applied to the field of thin-walled parts for the above-mentioned applications.
  • it can be satisfactorily used for applications in the precision molding field.

Abstract

The present invention addresses the problem of providing a flame-retardant polyamide resin composition that is free from halogens and generates no halogenated hydrogens when burned, has a reduced environmental impact, further has superb mechanical properties such as flexural strength and toughness, and exhibits excellent heat resistance and flame retardancy in a reflow soldering step. The problem is solved by: a flame-retardant polyamide resin composition containing 20-80 mass% of a polyamide resin component (A) including a semi-aromatic polyamide resin (A-1) and a semi-aromatic polyamide resin (A-2) different from the semi-aromatic polyamide resin (A-1), 3-15 mass% of a flame retardant (B) which is a phosphinic acid salt compound and does not have a halogen group in the molecule, and 0-50 mass% of a reinforcing material (C) (the proportions of (A), (B), and (C) are expressed as mass% with respect to the total amount of the flame-retardant polyamide resin composition); a molded article thereof; and electrical and electronic components.

Description

難燃性ポリアミド樹脂組成物Flame-retardant polyamide resin composition
 本発明は、難燃性ポリアミド樹脂組成物、その成形体、および電気電子部品に関する。 The present invention relates to a flame-retardant polyamide resin composition, a molded product thereof, and electrical and electronic parts.
 従来から電子部品を形成する素材として、加熱溶融により所定の形状に成形可能なポリアミド樹脂が使用されている。広汎に使用されるポリアミドとしては、6ナイロン、66ナイロンなどの脂肪族ポリアミドがある。このような脂肪族ポリアミドは良好な成形性を有するが、一方で、リフローはんだ工程のように高温に晒される工程を経て製造される、コネクターのような表面実装部品の原料としての充分な耐熱性を有していない。 Conventionally, as a material for forming electronic parts, a polyamide resin that can be molded into a predetermined shape by heating and melting has been used. Polyamides widely used include aliphatic polyamides such as 6 nylon and 66 nylon. Such aliphatic polyamides have good moldability, but on the other hand, they have sufficient heat resistance as a raw material for surface mount components such as connectors, which are manufactured through a process of being exposed to a high temperature such as a reflow soldering process. Does not have.
 このような背景から、高い耐熱性を有するポリアミドとして46ナイロンが開発された。しかしながら、46ナイロンは吸水率が高いという問題があり、そのため46ナイロン樹脂組成物を用いて成形された電気電子部品は、吸水により寸法が変化することがある。成形体が吸水していると、リフローはんだ工程での加熱によりブリスター、いわゆる膨れが発生するなどの問題が生じる。特に、近年環境問題の観点から、鉛フリーはんだを使用した表面実装方式に移行しつつある。鉛フリーはんだは、従来の鉛はんだよりも融点が高い。よって、必然的に実装温度も従来より10~20℃上昇してきており、46ナイロンの使用は困難な情況になってきている。 Against this background, 46 nylon was developed as a polyamide with high heat resistance. However, 46 nylon has a problem of high water absorption, and therefore, the dimensions of electrical and electronic parts molded using the 46 nylon resin composition may change due to water absorption. When the molded body absorbs water, problems such as blisters, so-called swelling, occur due to heating in the reflow soldering process. In particular, in recent years, from the viewpoint of environmental problems, there is a shift to a surface mounting method using lead-free solder. Lead-free solder has a higher melting point than conventional lead solder. Therefore, the mounting temperature has inevitably risen by 10 to 20 ° C., and the use of 46 nylon has become difficult.
 これに対して、テレフタル酸などの芳香族ジカルボン酸と脂肪族アルキレンジアミンとから誘導される芳香族ポリアミドが開発された。芳香族ポリアミドは、46ナイロンなどの脂肪族ポリアミドと比べて、より一層耐熱性、低吸水性に優れる。 In response to this, aromatic polyamides derived from aromatic dicarboxylic acids such as terephthalic acid and aliphatic alkylenediamines have been developed. Aromatic polyamide is more excellent in heat resistance and low water absorption than aliphatic polyamide such as 46 nylon.
 一方、上記コネクターのような電気電子部品は、一般にUL94 V-0規格のような高い難燃性を有する必要がある場合が多い。従来のポリアミド樹脂組成物は、上記規格に適合させるために、臭素化ポリフェニレンエーテルや、臭素化ポリスチレン、ポリ臭素化スチレンのようなハロゲン含有難燃剤を使用していた。 On the other hand, electrical and electronic components such as the above connectors generally need to have high flame retardancy such as UL94 V-0 standard. Conventional polyamide resin compositions use halogen-containing flame retardants such as brominated polyphenylene ether, brominated polystyrene, and polybrominated styrene in order to comply with the above standards.
 臭素化ポリフェニレンエーテルや、臭素化ポリスチレン、ポリ臭素化スチレンのようなハロゲン含有難燃剤は、燃焼時にダイオキシン化合物の発生が懸念される。そのため、ハロゲン含有難燃剤から、ハロゲンフリー難燃剤を含む難燃性ポリアミド樹脂組成物の提供が、市場から要求されている。そのなかで、ホスフィン酸塩化合物の利用が注目されている(特許文献1~5を参照)。 Halogen-containing flame retardants such as brominated polyphenylene ether, brominated polystyrene, and polybrominated styrene are concerned about the generation of dioxin compounds during combustion. Therefore, there is a demand from the market for the provision of flame-retardant polyamide resin compositions containing halogen-free flame retardants from halogen-containing flame retardants. Among them, the use of phosphinate compounds has attracted attention (see Patent Documents 1 to 5).
国際公開第2008/062755号International Publication No. 2008/062755 国際公開第2008/126381号International Publication No. 2008/126381 国際公開第2009/037858号International Publication No. 2009/037858 国際公開第2009/037859号International Publication No. 2009/037859 国際公開第2010/073595号International Publication No. 2010/073595
 ホスフィン酸塩化合物を含む従来のポリアミド樹脂組成物は高い難燃性と高い機械物性とを両立するものである。しかし、電気電子部品のさらなる小型化などに伴い、薄肉でコネクター端子間距離が短いファインピッチコネクターなどの電気電子部品や薄肉小型部品などに使用するための、高い難燃性やリフロー耐熱性と共に、さらに高い機械物性を有する樹脂組成物が望まれている。 The conventional polyamide resin composition containing a phosphinate compound has both high flame retardancy and high mechanical properties. However, with the further miniaturization of electrical and electronic components, along with high flame retardancy and reflow heat resistance for use in electrical and electronic components such as fine pitch connectors, which are thin and have a short distance between connector terminals, and small, thin-walled components. A resin composition having even higher mechanical properties is desired.
 本発明者は、このような状況に鑑みて鋭意研究した結果、ポリアミド樹脂成分として少なくとも2種の異なる半芳香族ポリアミド樹脂を含み、且つホスフィン酸塩化合物を難燃剤として含む難燃性ポリアミド樹脂組成物が、リフロー耐熱性や難燃性の低下を生じることなく、高い曲げ強度や高い靱性といった優れた機械物性を有することを見出し、本発明を完成するに至った。すなわち、本発明の第一は、以下の難燃性ポリアミド樹脂組成物に関する。 As a result of diligent research in view of such a situation, the present inventor has a flame-retardant polyamide resin composition containing at least two different semi-aromatic polyamide resins as polyamide resin components and containing a phosphinate compound as a flame retardant. We have found that the product has excellent mechanical properties such as high bending strength and high toughness without causing deterioration of reflow heat resistance and flame retardancy, and have completed the present invention. That is, the first aspect of the present invention relates to the following flame-retardant polyamide resin composition.
 [1] ポリアミド樹脂成分(A)20~80質量%、
 分子中にハロゲン基を有さない難燃剤(B)3~30質量%、および
 強化材(C)10~50質量%を含有する難燃性ポリアミド樹脂組成物であり(但し、(A)、(B)および(C)の割合は、難燃性ポリアミド樹脂組成物の総量に対する質量%であり)、
 前記ポリアミド樹脂成分(A)は、半芳香族ポリアミド樹脂(A-1)と、前記半芳香族ポリアミド樹脂(A-1)とは異なる半芳香族ポリアミド樹脂(A-2)とを含み、
 前記難燃剤(B)は、ホスフィン酸塩化合物である、難燃性ポリアミド樹脂組成物。
 [2] 前記ポリアミド樹脂成分(A)のジカルボン酸成分単位の総量に対する、芳香族ジカルボン酸成分単位の総量の割合は、67モル%以上80モル%以下である、[1]に記載の難燃性ポリアミド樹脂組成物。
 [3] 前記半芳香族ポリアミド樹脂(A-1)および前記半芳香族ポリアミド樹脂(A-2)は、両方が270℃以上340℃以下の融点を有する結晶性樹脂である、または一方が270℃以上340℃以下の融点を有する結晶性樹脂であり、他方が非晶性樹脂である、[2]に記載の難燃性ポリアミド樹脂組成物。
 [4] 前記半芳香族ポリアミド樹脂(A-1)および前記半芳香族ポリアミド樹脂(A-2)の少なくとも一方は、ジカルボン酸成分として、テレフタル酸成分単位を30~100モル%、テレフタル酸以外の芳香族多官能カルボン酸成分単位0~70モル%、および/または炭素原子数4~20の脂肪族多官能カルボン酸成分単位0~60モル%からなる多官能アミン成分単位(a-1)と、炭素原子数4~25の多官能アミン成分単位(a-2)とを含む、[1]~[3]に記載の難燃性ポリアミド樹脂組成物。
 [5] 前記難燃剤(B)は、式(I)のホスフィン酸塩化合物、および/または式(II)のビスホスフィン酸塩化合物、および/またはこれらのポリマーを含む難燃剤である、[1]~[4]のいずれかに記載の難燃性ポリアミド樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
[式中、
 RおよびRは互いに同じかまたは異なり、直鎖状のまたは枝分かれしたC-Cアルキルおよび/またはアリールであり、
 Rは直鎖状のまたは枝分かれしたC-C10アルキレン、C-C10アリーレン、C-C10アルキルアリーレンまたはC-C10アリールアルキレンであり、
 Mは、Mg、Ca、Al、Sb、Sn、Ge、Ti、Zn、Fe、Zr、Ce、Bi、Sr、Mn、Li、Na、Kおよびプロトン化窒素塩基からなる群より選ばれる1種であり、
 mは1~4の整数を示し、nは1~4の整数を示し、xは1~4の整数を示す。]
 [6] 前記強化材(C)は繊維状物質である、[1]~[5]のいずれかに記載の難燃性ポリアミド樹脂組成物。
 [7] 金属水酸化物および金属酸化物から選ばれる金属化合物成分(D)をさらに0.05~2質量%含み、
 前記金属水酸化物および前記金属酸化物は、元素周期律表の第2~12族に存在する元素を含む化合物であり、かつ平均粒子径は、0.01~20μmである、[1]~[6]のいずれかに記載の難燃性ポリアミド樹脂組成物。
 [8] 前記金属化合物成分(D)は金属酸化物である、[7]に記載の難燃性ポリアミド樹脂組成物。
 [9] 前記金属酸化物は、鉄の酸化物、マグネシウムの酸化物、亜鉛の酸化物、および亜鉛の複合酸化物からなる群より選ばれる少なくとも1種である、[8]に記載の難燃性ポリアミド樹脂組成物。
 [10] 難燃助剤(E)をさらに0.1~5質量%含む、[1]~[9]のいずれかに記載の難燃性ポリアミド樹脂組成物。
 [11] 前記難燃助剤(E)は、ホウ酸亜鉛である、[10]に記載の難燃性ポリアミド樹脂組成物。
[1] Polyamide resin component (A) 20 to 80% by mass,
A flame-retardant polyamide resin composition containing 3 to 30% by mass of a flame retardant (B) having no halogen group in the molecule and 10 to 50% by mass of a reinforcing material (C) (however, (A), The ratio of (B) and (C) is mass% with respect to the total amount of the flame retardant polyamide resin composition),
The polyamide resin component (A) contains a semi-aromatic polyamide resin (A-1) and a semi-aromatic polyamide resin (A-2) different from the semi-aromatic polyamide resin (A-1).
The flame retardant (B) is a flame-retardant polyamide resin composition which is a phosphinate compound.
[2] The flame retardant according to [1], wherein the ratio of the total amount of the aromatic dicarboxylic acid component unit to the total amount of the dicarboxylic acid component unit of the polyamide resin component (A) is 67 mol% or more and 80 mol% or less. Sexual polyamide resin composition.
[3] The semi-aromatic polyamide resin (A-1) and the semi-aromatic polyamide resin (A-2) are both crystalline resins having a melting point of 270 ° C. or higher and 340 ° C. or lower, or one of them is 270. The flame-retardant polyamide resin composition according to [2], which is a crystalline resin having a melting point of ° C. or higher and 340 ° C. or lower, and the other is an amorphous resin.
[4] At least one of the semi-aromatic polyamide resin (A-1) and the semi-aromatic polyamide resin (A-2) has a terephthalic acid component unit of 30 to 100 mol% as a dicarboxylic acid component, other than terephthalic acid. Aromatic polyfunctional carboxylic acid component unit (a-1) consisting of 0 to 70 mol% of aromatic polyfunctional carboxylic acid component unit and / or 0 to 60 mol% of aliphatic polyfunctional carboxylic acid component unit having 4 to 20 carbon atoms. The flame-retardant polyamide resin composition according to [1] to [3], which comprises a polyfunctional amine component unit (a-2) having 4 to 25 carbon atoms.
[5] The flame retardant (B) is a flame retardant containing a phosphinate compound of formula (I) and / or a bisphosphinate compound of formula (II) and / or a polymer thereof. [1] ] To [4]. The flame-retardant polyamide resin composition according to any one of [4].
Figure JPOXMLDOC01-appb-C000002
[During the ceremony,
R 1 and R 2, identical or different, a straight-chain or branched C 1 -C 6 alkyl and / or aryl,
R 3 is a straight-chain or branched C 1 -C 10 alkylene, C 6 -C 10 arylene, C 6 -C 10 alkylarylene or C 6 -C 10 arylalkylene,
M is one selected from the group consisting of Mg, Ca, Al, Sb, Sn, Ge, Ti, Zn, Fe, Zr, Ce, Bi, Sr, Mn, Li, Na, K and protonated nitrogen bases. Yes,
m indicates an integer of 1 to 4, n indicates an integer of 1 to 4, and x indicates an integer of 1 to 4. ]
[6] The flame-retardant polyamide resin composition according to any one of [1] to [5], wherein the reinforcing material (C) is a fibrous substance.
[7] Further containing 0.05 to 2% by mass of the metal compound component (D) selected from the metal hydroxide and the metal oxide.
The metal hydroxide and the metal oxide are compounds containing elements existing in Groups 2 to 12 of the Periodic Table of the Elements, and have an average particle size of 0.01 to 20 μm, [1] to The flame-retardant polyamide resin composition according to any one of [6].
[8] The flame-retardant polyamide resin composition according to [7], wherein the metal compound component (D) is a metal oxide.
[9] The flame retardant according to [8], wherein the metal oxide is at least one selected from the group consisting of an iron oxide, a magnesium oxide, a zinc oxide, and a zinc composite oxide. Sexual polyamide resin composition.
[10] The flame-retardant polyamide resin composition according to any one of [1] to [9], further containing 0.1 to 5% by mass of the flame retardant aid (E).
[11] The flame-retardant polyamide resin composition according to [10], wherein the flame retardant aid (E) is zinc borate.
 本発明の第二は、上記難燃性ポリアミド樹脂組成物を成形した成形体に関する。
 [12] [1]~[11]のいずれかに記載の難燃性ポリアミド樹脂組成物を成形して得られる成形体。
The second aspect of the present invention relates to a molded product obtained by molding the flame-retardant polyamide resin composition.
[12] A molded product obtained by molding the flame-retardant polyamide resin composition according to any one of [1] to [11].
 本発明の第三は、上記難燃性ポリアミド樹脂組成物を成形した電気電子部品に関する。
 [13] [1]~[11]のいずれかに記載の難燃性ポリアミド樹脂組成物を成形して得られる電気電子部品。
The third aspect of the present invention relates to an electric / electronic component obtained by molding the flame-retardant polyamide resin composition.
[13] An electrical and electronic component obtained by molding the flame-retardant polyamide resin composition according to any one of [1] to [11].
 本発明の難燃性ポリアミド樹脂組成物は、ハロゲンフリーであって、燃焼時にハロゲン化水素を発生させることなく、環境負荷が低減されており、さらには曲げ強度や靭性等の機械物性が高く、リフローはんだ工程における耐熱性や難燃性に優れる。このように、本発明の難燃性ポリアミド樹脂組成物の工業的価値は極めて高い。 The flame-retardant polyamide resin composition of the present invention is halogen-free, does not generate hydrogen halide during combustion, has a reduced environmental load, and has high mechanical properties such as bending strength and toughness. Excellent heat resistance and flame retardancy in the reflow soldering process. As described above, the industrial value of the flame-retardant polyamide resin composition of the present invention is extremely high.
 そのため本発明の難燃性ポリアミド樹脂組成物の成形品は、特に、薄肉でコネクター端子間距離が短いファインピッチコネクターなどの電気電子部品として好ましく用いられる。 Therefore, the molded product of the flame-retardant polyamide resin composition of the present invention is particularly preferably used as an electric / electronic component such as a fine pitch connector having a thin wall and a short distance between connector terminals.
本願の実施例および比較例にて実施した、リフロー耐熱性試験のリフロー工程の温度と時間との関係を示す図である。It is a figure which shows the relationship between the temperature and time of the reflow process of the reflow heat resistance test carried out in the Example and the comparative example of this application.
 以下、本発明について詳細に説明する。
 [ポリアミド樹脂成分(A)]
 本発明の難燃性ポリアミド樹脂組成物は、半芳香族ポリアミド樹脂(A-1)と、前記半芳香族ポリアミド樹脂(A-1)とは異なる半芳香族ポリアミド樹脂(A-2)とを含む、ポリアミド樹脂成分(A)を含む。本発明において半芳香族ポリアミド樹脂とは、芳香環を有する構造単位と、脂肪族鎖を有する構造単位とを含むポリアミド樹脂である。ポリアミド樹脂成分(A)としてリフローはんだ工程に耐えうる樹脂である限り特に限定はないが、半芳香族ポリアミド樹脂(A-1)および(A-2)の少なくとも一方が、下記の多官能カルボン酸成分単位(a-1)と、多官能アミン成分単位(a-2)とを含む構造であることが好ましく、両方が下記成分単位を含む構造であることがより好ましい。
Hereinafter, the present invention will be described in detail.
[Polyamide resin component (A)]
The flame-retardant polyamide resin composition of the present invention comprises a semi-aromatic polyamide resin (A-1) and a semi-aromatic polyamide resin (A-2) different from the semi-aromatic polyamide resin (A-1). Including, the polyamide resin component (A) is contained. In the present invention, the semi-aromatic polyamide resin is a polyamide resin containing a structural unit having an aromatic ring and a structural unit having an aliphatic chain. The polyamide resin component (A) is not particularly limited as long as it can withstand the reflow soldering process, but at least one of the semi-aromatic polyamide resins (A-1) and (A-2) is the following polyfunctional carboxylic acid. A structure containing a component unit (a-1) and a polyfunctional amine component unit (a-2) is preferable, and a structure containing both of the following component units is more preferable.
 [多官能カルボン酸成分単位(a-1)]
 半芳香族ポリアミド樹脂(A-1)および/または(A-2)を構成する多官能カルボン酸成分単位(a-1)は、多官能カルボン酸成分単位(a-1)の合計量に対して、テレフタル酸成分単位30~100モル%、テレフタル酸以外の芳香族多官能カルボン酸成分単位0~70モル%、および/または炭素原子数4~20の脂肪族多官能カルボン酸成分単位0~60モル%を有する。
[Polyfunctional carboxylic acid component unit (a-1)]
The polyfunctional carboxylic acid component unit (a-1) constituting the semi-aromatic polyamide resin (A-1) and / or (A-2) is based on the total amount of the polyfunctional carboxylic acid component unit (a-1). The terephthalic acid component unit is 30 to 100 mol%, the aromatic polyfunctional carboxylic acid component unit other than terephthalic acid is 0 to 70 mol%, and / or the aliphatic polyfunctional carboxylic acid component unit 0 to 20 having 4 to 20 carbon atoms. It has 60 mol%.
 このうちテレフタル酸以外の芳香族多官能カルボン酸成分単位としては、例えばイソフタル酸、2-メチルテレフタル酸、ナフタレンジカルボン酸、無水フタル酸、トリメリット酸、ピロメリット酸、無水トリメリット酸、無水ピロメリット酸などが挙げられる。これらのなかでは、特にイソフタル酸から誘導される単位が好ましい。また、これらは単独でも2種類以上組み合わせても構わない。3官能以上の多官能カルボン酸化合物を含む場合は、樹脂がゲル化しないような添加量、具体的には全カルボン酸成分単位の合計100モル%中10モル%以下にすることが好ましい。 Among these, aromatic polyfunctional carboxylic acid component units other than terephthalic acid include, for example, isophthalic acid, 2-methylterephthalic acid, naphthalenedicarboxylic acid, phthalic anhydride, trimellitic acid, pyromellitic acid, trimellitic anhydride, and pyrochloride. Merit acid and the like can be mentioned. Of these, units derived from isophthalic acid are particularly preferred. In addition, these may be used alone or in combination of two or more. When a trifunctional or higher functional polyfunctional carboxylic acid compound is contained, it is preferable that the addition amount is such that the resin does not gel, specifically, 10 mol% or less of the total 100 mol% of all carboxylic acid component units.
 また、脂肪族多官能カルボン酸成分単位は、炭素原子数が4~20、好ましくは4~12、さらに好ましくは6~10の脂肪族多官能カルボン酸化合物から誘導される単位である。このような化合物の例としては、例えば、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸などが挙げられる。この中でも、アジピン酸が機械物性向上の観点で特に好ましい。この他にも、必要に応じて適宜3官能以上の多官能カルボン酸化合物を使用することができる。ただし、3官能以上の多官能カルボン酸化合物は樹脂がゲル化しないような量に留めるべきであり、具体的には全カルボン酸成分単位の合計に対して、10モル%以下にすることが好ましい。 The aliphatic polyfunctional carboxylic acid component unit is a unit derived from an aliphatic polyfunctional carboxylic acid compound having 4 to 20, preferably 4 to 12, and more preferably 6 to 10 carbon atoms. Examples of such compounds include adipic acid, suberic acid, azelaic acid, sebacic acid, decandicarboxylic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid and the like. Of these, adipic acid is particularly preferable from the viewpoint of improving mechanical properties. In addition to this, a trifunctional or higher functional polyfunctional carboxylic acid compound can be appropriately used as needed. However, the amount of the trifunctional or higher functional carboxylic acid compound should be limited so that the resin does not gel, and specifically, it is preferably 10 mol% or less based on the total of all carboxylic acid component units. ..
 半芳香族ポリアミド樹脂(A-1)および/または(A-2)は、多官能カルボン酸成分単位(a-1)の合計量に対して、テレフタル酸成分単位は、30~100モル%、好ましくは50~100モル%、より好ましくは60~100モル%、さらに好ましくは60~70モル%の量で含有され、テレフタル酸以外の芳香族多官能カルボン酸成分単位は0~70モル%、好ましくは0~40モル%の量で含有されることが好ましい。芳香族多官能カルボン酸成分、特にテレフタル酸の含有率が増大すると、吸湿量が低下し、リフロー耐熱性が向上する傾向にある。特に、鉛フリーはんだを使用したリフローはんだ工程において使用されるポリアミド樹脂組成物に含まれるポリアミド樹脂成分(A)は、テレフタル酸成分単位を55モル%以上、好ましくは60モル%以上含む半芳香族ポリアミド樹脂を含むことが好ましい。 The semi-aromatic polyamide resin (A-1) and / or (A-2) contained 30 to 100 mol% of the terephthalic acid component unit with respect to the total amount of the polyfunctional carboxylic acid component unit (a-1). It is preferably contained in an amount of 50 to 100 mol%, more preferably 60 to 100 mol%, still more preferably 60 to 70 mol%, and the aromatic polyfunctional carboxylic acid component unit other than terephthalic acid is 0 to 70 mol%. It is preferably contained in an amount of 0 to 40 mol%. When the content of the aromatic polyfunctional carboxylic acid component, particularly terephthalic acid, increases, the amount of moisture absorbed tends to decrease and the reflow heat resistance tends to improve. In particular, the polyamide resin component (A) contained in the polyamide resin composition used in the reflow soldering process using lead-free solder is a semi-aromatic component containing 55 mol% or more, preferably 60 mol% or more of terephthalic acid component units. It is preferable to contain a polyamide resin.
 さらに、半芳香族ポリアミド樹脂(A-1)および/または(A-2)は、炭素原子数4~20の脂肪族多官能カルボン酸成分単位を0~60モル%、好ましくは0~50モル%、さらに好ましくは30~40モル%の量で含むことが好ましい。 Further, the semi-aromatic polyamide resin (A-1) and / or (A-2) contains 0 to 60 mol%, preferably 0 to 50 mol% of the aliphatic polyfunctional carboxylic acid component unit having 4 to 20 carbon atoms. %, More preferably in an amount of 30-40 mol%.
 [多官能アミン成分単位(a-2)]
 本発明の難燃性ポリアミド樹脂組成物に含まれる半芳香族ポリアミド樹脂(A-1)および/または(A-2)を構成する多官能アミン成分単位(a-2)は、直鎖およびまたは側鎖を有する炭素原子数4~25、好ましくは直鎖およびまたは側鎖を有する炭素原子数4~12、より好ましくは直鎖の炭素原子数が4~10の多官能アミン成分単位が挙げられる。さらに、多官能アミン成分単位(a-2)は、脂環族多官能アミン成分単位を含んでいてもよい。
[Polyfunctional amine component unit (a-2)]
The polyfunctional amine component unit (a-2) constituting the semi-aromatic polyamide resin (A-1) and / or (A-2) contained in the flame-retardant polyamide resin composition of the present invention is linear and / or Examples thereof include polyfunctional amine component units having 4 to 25 carbon atoms having side chains, preferably linear and / or 4 to 12 carbon atoms having side chains, and more preferably 4 to 10 linear carbon atoms. .. Further, the polyfunctional amine component unit (a-2) may contain an alicyclic polyfunctional amine component unit.
 直鎖多官能アミン成分単位の具体的な例としては、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンが挙げられる。この中でも、1,6-ジアミノヘキサンが好ましい。 Specific examples of the linear polyfunctional amine component unit include 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, and 1, , 10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane. Of these, 1,6-diaminohexane is preferable.
 側鎖を有する直鎖脂肪族ジアミン成分単位の具体的な例としては、2-メチル-1,5-ジアミノペンタン、2-メチル-1,6-ジアミノヘキサン、2-メチル-1,7-ジアミノヘプタン、2-メチル-1,8-ジアミノオクタン、2-メチル-1,9-ジアミノノナン、2-メチル-1,10-ジアミノデカン、2-メチル-1,11-ジアミノウンデカン等が挙げられる。この中では、2-メチル-1,5-ジアミノペンタン、2-メチル-1,8-ジアミノオクタンが好ましい。 Specific examples of the linear aliphatic diamine component unit having a side chain include 2-methyl-1,5-diaminopentane, 2-methyl-1,6-diaminohexane, and 2-methyl-1,7-diamino. Examples thereof include heptane, 2-methyl-1,8-diaminooctane, 2-methyl-1,9-diaminononane, 2-methyl-1,10-diaminodecane and 2-methyl-1,11-diaminoundecane. Of these, 2-methyl-1,5-diaminopentane and 2-methyl-1,8-diaminooctane are preferable.
 脂環族多官能アミン成分単位としては、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、イソホロンジアミン、ピペラジン、2,5-ジメチルピペラジン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)プロパン、4,4'-ジアミノ-3,3'-ジメチルジシクロヘキシルプロパン、4,4'-ジアミノ-3,3'-ジメチルジシクロヘキシルメタン、4,4'-ジアミノ-3,3'-ジメチル-5,5'-ジメチルジシクロヘキシルメタン、4,4'-ジアミノ-3,3'-ジメチル-5,5'-ジメチルジシクロヘキシルプロパン、α,α'-ビス(4-アミノシクロヘキシル)-p-ジイソプロピルベンゼン、α,α'-ビス(4-アミノシクロヘキシル)-m-ジイソプロピルベンゼン、α,α’-ビス(4-アミノシクロヘキシル)-1,4-シクロヘキサン、α,α'-ビス(4-アミノシクロヘキシル)-1,3-シクロヘキサン等の脂環族ジアミンから誘導される成分単位を挙げることができる。これらの脂環族ジアミン成分単位のうちでは、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ビス(アミノメチル)シクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、4,4'-ジアミノ-3,3'-ジメチルジシクロヘキシルメタンが好ましく;特に、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、1,3-ビス(アミノシクロヘキシル)メタン、1,3-ビス(アミノメチル)シクロヘキサン等の脂環族ジアミンから誘導される成分単位が好ましい。3官能以上の多官能アミン化合物を使用する場合は、樹脂がゲル化しないような添加量、具体的には全アミン成分単位の合計100モル%中10モル%以下にすることが好ましい。 As the alicyclic polyfunctional amine component unit, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, isophoronediamine, Piperazine, 2,5-dimethylpiperazin, bis (4-aminocyclohexyl) methane, bis (4-aminocyclohexyl) propane, 4,4'-diamino-3,3'-dimethyldicyclohexylpropane, 4,4'-diamino- 3,3'-Dimethyldicyclohexylmethane, 4,4'-diamino-3,3'-dimethyl-5,5'-dimethyldicyclohexylmethane, 4,4'-diamino-3,3'-dimethyl-5,5' -Dimethyldicyclohexylpropane, α, α'-bis (4-aminocyclohexyl) -p-diisopropylbenzene, α, α'-bis (4-aminocyclohexyl) -m-diisopropylbenzene, α, α'-bis (4-aminocyclohexyl) Examples of component units derived from alicyclic diamines such as aminocyclohexyl) -1,4-cyclohexane and α, α'-bis (4-aminocyclohexyl) -1,3-cyclohexane can be mentioned. Among these alicyclic diamine component units, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis (aminomethyl) cyclohexane, bis (4-aminocyclohexyl) methane, 4,4'-diamino-3 , 3'-Dimethyldicyclohexylmethane is preferred; especially 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) methane, 1,3-bis (aminocyclohexyl) methane, 1,3- Component units derived from alicyclic diamines such as bis (aminomethyl) cyclohexane are preferred. When a trifunctional or higher functional amine compound is used, the amount added so as not to gel the resin, specifically, 10 mol% or less of the total 100 mol% of all amine component units is preferable.
 多官能アミン成分単位(a-2)は、これらの中でも、上述した直鎖多官能アミン成分単位のみからなることが特に好ましい。具体的に好ましい直鎖多官能アミン成分は、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンが挙げられる。この中でも、1,6-ジアミノヘキサンが好ましい。これらの直鎖多官能アミン成分を用いると、特にリフロー耐熱性が向上する傾向にあるので好ましい。 Among these, the polyfunctional amine component unit (a-2) is particularly preferably composed of only the above-mentioned linear polyfunctional amine component unit. Specifically preferred linear polyfunctional amine components are 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10- Diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane can be mentioned. Of these, 1,6-diaminohexane is preferable. It is preferable to use these linear polyfunctional amine components because the reflow heat resistance tends to be improved.
 本発明の難燃性ポリアミド樹脂組成物に含まれる半芳香族ポリアミド樹脂(A-1)および(A-2)は、温度25℃、96.5%硫酸中で測定した極限粘度[η]が、好ましくは0.5~1.25dl/gであり、より好ましくは0.6~1.15dl/gであり、更に好ましくは0.6~1.05dl/gである。半芳香族ポリアミド樹脂(A-1)および(A-2)の極限粘度[η]がこの範囲にある場合、流動性、リフロー耐熱性、高靭性に優れるポリアミド樹脂組成物を得ることができる。 The semi-aromatic polyamide resins (A-1) and (A-2) contained in the flame-retardant polyamide resin composition of the present invention have an extreme viscosity [η] measured in 96.5% sulfuric acid at a temperature of 25 ° C. It is preferably 0.5 to 1.25 dl / g, more preferably 0.6 to 1.15 dl / g, and further preferably 0.6 to 1.05 dl / g. When the ultimate viscosities [η] of the semi-aromatic polyamide resins (A-1) and (A-2) are in this range, a polyamide resin composition having excellent fluidity, reflow heat resistance, and high toughness can be obtained.
 本発明の難燃性ポリアミド樹脂組成物に含まれる半芳香族ポリアミド樹脂(A-1)および(A-2)は結晶性でも、非晶性でもよいが、少なくとも一方が結晶性であることが好ましい。結晶性の半芳香族ポリアミド樹脂は融点を有し、本発明においては、示差走査熱量計(DSC)を用いて10℃/分で昇温したときの融解に基づく吸熱ピークを、半芳香族ポリアミド樹脂の融点(Tm)として測定されうる。そのようにして測定される半芳香族ポリアミド樹脂の融点は、270~340℃が好ましく、290~340℃がより好ましく、更に好ましくは315~330℃である。融点がこのような範囲にある半芳香族ポリアミド樹脂は、特に優れた耐熱性を有する。また、融点が270℃以上、さらに290℃以上、特に315~330℃であると、本発明の難燃性ポリアミド樹脂組成物を、鉛フリーリフローはんだ工程、特に高融点を有する鉛フリーはんだを使用したはんだ工程に使用しても、十分な耐熱性が奏される。一方、融点が340℃以下であると、ポリアミドの分解点である350℃より低い融点となるので、成形時に分解ガスの発生、成形品の変色等を生じることがなく、十分な熱安定性を得ることができる。 The semi-aromatic polyamide resins (A-1) and (A-2) contained in the flame-retardant polyamide resin composition of the present invention may be crystalline or amorphous, but at least one of them must be crystalline. preferable. The crystalline semi-aromatic polyamide resin has a melting point, and in the present invention, the heat absorption peak based on melting when the temperature is raised at 10 ° C./min using a differential scanning calorimeter (DSC) is set to the semi-aromatic polyamide. It can be measured as the melting point (Tm) of the resin. The melting point of the semi-aromatic polyamide resin measured in this way is preferably 270 to 340 ° C, more preferably 290 to 340 ° C, and even more preferably 315 to 330 ° C. Semi-aromatic polyamide resins having melting points in this range have particularly excellent heat resistance. Further, when the melting point is 270 ° C. or higher, further 290 ° C. or higher, particularly 315 to 330 ° C., the flame-retardant polyamide resin composition of the present invention is used in a lead-free reflow soldering process, particularly using a lead-free solder having a high melting point. Sufficient heat resistance is achieved even when used in a soldering process. On the other hand, when the melting point is 340 ° C. or lower, the melting point is lower than 350 ° C., which is the decomposition point of polyamide, so that decomposition gas is not generated during molding and discoloration of the molded product does not occur, and sufficient thermal stability is achieved. Obtainable.
 尚、本発明においては、2種類の異なる半芳香族ポリアミド樹脂を併用するが、融点(Tm)が異なる半芳香族ポリアミド樹脂(A-1)および(A-2)をブレンドし、当該ブレンドの融点(Tm)を、上述のように示差走査熱量計(DSC)を用いて測定することができる。このようにして測定した半芳香族ポリアミド樹脂ブレンドの融点は、単一のピークとして観測される。これは、樹脂が均一化されていることを意味し、その結果として本発明の樹脂組成物のガラス転移温度は上昇し、熱安定性が向上すると考えられる。 In the present invention, two different types of semi-aromatic polyamide resins are used in combination, but semi-aromatic polyamide resins (A-1) and (A-2) having different melting points (Tm) are blended to obtain the blend. The melting point (Tm) can be measured using a differential scanning calorimetry (DSC) as described above. The melting point of the semi-aromatic polyamide resin blend measured in this way is observed as a single peak. This means that the resin is homogenized, and as a result, it is considered that the glass transition temperature of the resin composition of the present invention rises and the thermal stability is improved.
 [難燃剤(B)]
 本発明で用いられる、分子中にハロゲン基を有さない難燃剤(B)は、樹脂の燃焼性を低下させる目的で添加するものである。難燃剤(B)は、好ましくはホスフィン酸塩化合物であり、より好ましくはホスフィン酸金属塩化合物である。
[Flame Retardant (B)]
The flame retardant (B) used in the present invention, which does not have a halogen group in the molecule, is added for the purpose of reducing the flammability of the resin. The flame retardant (B) is preferably a phosphinate compound, more preferably a phosphinic acid metal salt compound.
 難燃剤(B)として具体的には、以下の式(I)および/または式(II)で表される化合物が代表例である。
Figure JPOXMLDOC01-appb-C000003
Specific examples of the flame retardant (B) are compounds represented by the following formulas (I) and / or formulas (II).
Figure JPOXMLDOC01-appb-C000003
 式(I)および式(II)において、RおよびRは互いに同じかまたは異なり、直鎖状のまたは枝分かれしたC-Cアルキルおよび/またはアリールであり、
 Rは直鎖状のまたは枝分かれしたC-C10アルキレン、C-C10アリーレン、C-C10アルキルアリーレンまたはC-C10アリールアルキレンであり、
 Mは、Mg、Ca、Al、Sb、Sn、Ge、Ti、Zn、Fe、Zr、Ce、Bi、Sr、Mn、Li、Na、Kおよびプロトン化窒素塩基からなる群より選ばれる1種であり、
 mは1~4の整数を示し、nは1~4の整数を示し、xは1~4の整数を示す。
In formulas (I) and (II), R 1 and R 2, identical or different, a straight-chain or branched C 1 -C 6 alkyl and / or aryl,
R 3 is a straight-chain or branched C 1 -C 10 alkylene, C 6 -C 10 arylene, C 6 -C 10 alkylarylene or C 6 -C 10 arylalkylene,
M is one selected from the group consisting of Mg, Ca, Al, Sb, Sn, Ge, Ti, Zn, Fe, Zr, Ce, Bi, Sr, Mn, Li, Na, K and protonated nitrogen bases. Yes,
m indicates an integer of 1 to 4, n indicates an integer of 1 to 4, and x indicates an integer of 1 to 4.
 ホスフィン酸塩化合物の具体的化合物としては、ジメチルホスフィン酸カルシウム、ジメチルホスフィン酸マグネシウム、ジメチルホスフィン酸アルミニウム、ジメチルホスフィン酸亜鉛、エチルメチルホスフィン酸カルシウム、エチルメチルホスフィン酸マグネシウム、エチルメチルホスフィン酸アルミニウム、エチルメチルホスフィン酸亜鉛、ジエチルホスフィン酸カルシウム、ジエチルホスフィン酸マグネシウム、ジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛、メチル-n-プロピルホスフィン酸カルシウム、メチル-n-プロピルホスフィン酸マグネシウム、メチル-n-プロピルホスフィン酸アルミニウム、メチル-n-プロピルホスフィン酸亜鉛、メタンジ(メチルホスフィン酸)カルシウム、メタンジ(メチルホスフィン酸)マグネシウム、メタンジ(メチルホスフィン酸)アルミニウム、メタンジ(メチルホスフィン酸)亜鉛、ベンゼン-1,4-(ジメチルホスフィン酸)カルシウム、ベンゼン-1,4-(ジメチルホスフィン酸)マグネシウム、ベンゼン-1,4-(ジメチルホスフィン酸)アルミニウム、ベンゼン-1,4-(ジメチルホスフィン酸)亜鉛、メチルフェニルホスフィン酸カルシウム、メチルフェニルホスフィン酸マグネシウム、メチルフェニルホスフィン酸アルミニウム、メチルフェニルホスフィン酸亜鉛、ジフェニルホスフィン酸カルシウム、ジフェニルホスフィン酸マグネシウム、ジフェニルホスフィン酸アルミニウム、ジフェニルホスフィン酸亜鉛が挙げられる。好ましくはジメチルホスフィン酸カルシウム、ジメチルホスフィン酸アルミニウム、ジメチルホスフィン酸亜鉛、エチルメチルホスフィン酸カルシウム、エチルメチルホスフィン酸アルミニウム、エチルメチルホスフィン酸亜鉛、ジエチルホスフィン酸カルシウム、ジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛であり;さらに好ましくはジエチルホスフィン酸アルミニウムである。 Specific compounds of the phosphinate compound include calcium dimethylphosphinate, magnesium dimethylphosphinate, aluminum dimethylphosphinate, zinc dimethylphosphinate, calcium ethylmethylphosphinate, magnesium ethylmethylphosphinate, aluminum ethylmethylphosphinate, and ethyl. Zinc methylphosphinate, calcium diethylphosphinate, magnesium diethylphosphinate, aluminum diethylphosphinate, zinc diethylphosphinate, calcium methyl-n-propylphosphinate, magnesium methyl-n-propylphosphinate, methyl-n-propylphosphinic acid Aluminum, zinc methyl-n-propylphosphinate, calcium methanedi (methylphosphinic acid), magnesium methanedi (methylphosphinic acid), aluminum methanedi (methylphosphinic acid), zinc methanedi (methylphosphinic acid), benzene-1,4-( Calcium dimethylphosphinic acid, magnesium benzene-1,4- (dimethylphosphinic acid), aluminum benzene-1,4- (dimethylphosphinic acid), zinc benzene-1,4- (dimethylphosphinic acid), calcium methylphenylphosphinate , Magnesium methylphenylphosphinate, aluminum methylphenylphosphinate, zinc methylphenylphosphinate, calcium diphenylphosphinate, magnesium diphenylphosphinate, aluminum diphenylphosphinate, zinc diphenylphosphinate. Preferably, it is calcium dimethylphosphinate, aluminum dimethylphosphinate, zinc dimethylphosphinate, calcium ethylmethylphosphinate, aluminum ethylmethylphosphinate, zinc ethylmethylphosphinate, calcium diethylphosphinate, aluminum diethylphosphinate, zinc diethylphosphine. Yes; more preferably aluminum diethylphosphinate.
 本発明で使用されるホスフィン酸塩化合物を含む難燃剤(B)の代表例としては、例えばクラリアントジャパン社製のEXOLIT OP1230やOP930などが挙げられる。 Typical examples of the flame retardant (B) containing the phosphinate compound used in the present invention include EXOLIT OP1230 and OP930 manufactured by Clariant Japan.
 [強化材(C)]
 本発明の難燃性ポリアミド樹脂組成物は強化材(C)を含有してもよく、繊維状、粉状、粒状、板状、針状、クロス状、マット状などの形状を有する種々の無機充填材を使用することができ、単独あるいは複数のものと併用して使用することが可能である。さらに詳述すると、シリカ、シリカアルミナ、炭酸カルシウム、二酸化チタン、タルク、ワラストナイト、ケイソウ土、クレー、カオリン、球状ガラス、マイカ、セッコウ、ベンガラなどの粉状あるいは板状の無機化合物;チタン酸カリウムなどの針状の無機化合物;ガラス繊維(グラスファイバー)、チタン酸カリウム繊維、金属被覆ガラス繊維、セラミックス繊維、ワラストナイト、炭素繊維、金属炭化物繊維、金属硬化物繊維、アスベスト繊維およびホウ素繊維などの無機繊維;さらにはアラミド繊維、炭素繊維のような有機繊維が、強化材(C)として挙げられる。強化材(C)は、なかでも繊維状物質が好ましく、より好ましくはガラス繊維が挙げられる。
[Reinforcing material (C)]
The flame-retardant polyamide resin composition of the present invention may contain a reinforcing material (C), and has various inorganic shapes such as fibrous, powdery, granular, plate-like, needle-like, cloth-like, and mat-like. Fillers can be used and can be used alone or in combination with a plurality of materials. More specifically, powdery or plate-like inorganic compounds such as silica, silica-alumina, calcium carbonate, titanium dioxide, talc, wallastonite, caustic soil, clay, kaolin, spherical glass, mica, sekkou, and red iron oxide; Needle-shaped inorganic compounds such as potassium; glass fiber (glass fiber), potassium titanate fiber, metal-coated glass fiber, ceramic fiber, wallastnite, carbon fiber, metal carbide fiber, hardened metal fiber, asbestos fiber and boron fiber Inorganic fibers such as; further, organic fibers such as aramid fibers and carbon fibers are mentioned as the reinforcing material (C). As the reinforcing material (C), a fibrous substance is preferable, and glass fiber is more preferable.
 強化材(C)が、繊維状物質、特にガラス繊維である場合、本発明の難燃性ポリアミド樹脂組成物の成形性が向上するとともに、その成形体の引張り強度、曲げ強度、曲げ弾性率等の機械的特性および熱変形温度などの耐熱特性が向上する。 When the reinforcing material (C) is a fibrous substance, particularly glass fiber, the moldability of the flame-retardant polyamide resin composition of the present invention is improved, and the tensile strength, bending strength, flexural modulus, etc. of the molded body are improved. Mechanical properties and heat distortion properties such as heat distortion temperature are improved.
 このような効果は、特にガラス繊維で顕著である場合が多い。ガラス繊維の平均長さは、通常は0.1~20mm、好ましくは0.2~6mmの範囲にある。さらに、ガラス繊維のアスペクト比(L(ガラス繊維の平均長さ)/D(ガラス繊維の平均外径))は、通常は10~5000、好ましくは2000~3000の範囲にある。このような範囲内の平均長さおよびアスペクト比を有するガラス繊維が好ましく使用される。 Such an effect is often remarkable especially in glass fiber. The average length of the glass fibers is usually in the range of 0.1 to 20 mm, preferably 0.2 to 6 mm. Further, the aspect ratio of the glass fiber (L (average length of the glass fiber) / D (average outer diameter of the glass fiber)) is usually in the range of 10 to 5000, preferably 2000 to 3000. Glass fibers having an average length and aspect ratio within such a range are preferably used.
 さらに、繊維状の強化材(C)を使用する場合、成形品の反りを防止する目的で、繊維断面の異径比(長径と短径の比)が1より大きい、好ましくは異径比が1.5~6.0の繊維状物質を用いることが有効である。 Further, when the fibrous reinforcing material (C) is used, the different diameter ratio (ratio of major axis to minor axis) of the fiber cross section is larger than 1, preferably the different diameter ratio, for the purpose of preventing warpage of the molded product. It is effective to use a fibrous substance of 1.5 to 6.0.
 また、上記充填材をシランカップリング剤あるいはチタンカップリング剤などで処理して使用することもできる。たとえばビニルトリエトキシシラン、2-アミノプロピルトリエトキシシラン、2-グリシドキシプロピルトリエトキシシランなどのシラン系化合物で表面処理されていてもよい。 Further, the above-mentioned filler can be used by treating it with a silane coupling agent, a titanium coupling agent, or the like. For example, the surface may be treated with a silane compound such as vinyltriethoxysilane, 2-aminopropyltriethoxysilane, or 2-glycidoxypropyltriethoxysilane.
 強化材(C)のうち、繊維状充填材は、集束剤が塗布されていてもよい。集束剤としては、(メタ)アクリル酸や(メタ)アクリル酸エステルに代表されるアクリル系化合物、無水マレイン酸などのメタアクリル酸以外の炭素-炭素二重結合を有するカルボン酸化合物、エポキシ系化合物、ウレタン系化合物、アミン系化合物が挙げられる。またこれらを組み合わせて強化材(C)とすることもできる。好ましい組合せは、アクリル系化合物/カルボン酸化合物、ウレタン系化合物/カルボン酸化合物、ウレタン系化合物/アミン系化合物の組合せが挙げられる。上記表面処理剤を、集束剤と併用してもよく、併用により本発明の組成物中の繊維状充填材と、組成物中の他の成分との結合性が向上し、外観および強度特性が向上する。 Of the reinforcing material (C), the fibrous filler may be coated with a sizing agent. As the focusing agent, acrylic compounds typified by (meth) acrylic acid and (meth) acrylic acid ester, carboxylic acid compounds having a carbon-carbon double bond other than methacrylic acid such as maleic anhydride, and epoxy compounds. , Urethane compounds and amine compounds. Further, these can be combined to form a reinforcing material (C). Preferred combinations include combinations of acrylic compounds / carboxylic acid compounds, urethane compounds / carboxylic acid compounds, and urethane compounds / amine compounds. The above-mentioned surface treatment agent may be used in combination with a sizing agent, and the combined use improves the bondability between the fibrous filler in the composition of the present invention and other components in the composition, resulting in improved appearance and strength characteristics. improves.
 強化材(C)は、本発明の難燃性ポリアミド樹脂組成物中に、10~50質量%、好ましくは10~45質量%の割合で添加することが好ましい。 The reinforcing material (C) is preferably added in a proportion of 10 to 50% by mass, preferably 10 to 45% by mass, in the flame-retardant polyamide resin composition of the present invention.
 [金属化合物成分(D)]
 本発明の難燃性ポリアミド樹脂組成物は、金属水酸化物および金属酸化物から選ばれる金属化合物成分(D)を含有していてもよく、好ましくは金属酸化物を含有する。これらを含有することで、ポリアミド樹脂組成物による鋼材の腐食磨耗を、より抑制することができる。金属水酸化物および金属酸化物は、単独または複数の化合物を併用することができる。
[Metal compound component (D)]
The flame-retardant polyamide resin composition of the present invention may contain a metal compound component (D) selected from a metal hydroxide and a metal oxide, and preferably contains a metal oxide. By containing these, the corrosion and wear of the steel material due to the polyamide resin composition can be further suppressed. The metal hydroxide and the metal oxide can be used alone or in combination of a plurality of compounds.
 金属水酸化物および金属酸化物の金属は、元素周期律表の第1~12族金属であることが好ましく、より好ましくは同周期律表の第2~12族金属である。特に、金属酸化物としては、元素周期律表の第2~12族元素の酸化物が好ましく、より好ましくは第4~12族元素、更に好ましくは第7~12族元素の酸化物である。 The metal of the metal hydroxide and the metal oxide is preferably a group 1 to 12 metal of the periodic table of elements, and more preferably a metal of groups 2 to 12 of the same periodic table. In particular, the metal oxide is preferably an oxide of a Group 2 to 12 element in the Periodic Table of the Elements, more preferably an oxide of a Group 4 to 12 element, and even more preferably an oxide of a Group 7 to 12 element.
 金属水酸化物および金属酸化物、特に金属酸化物は、難燃性ポリアミド樹脂組成物を製造するために使用する押出機、該組成物を用いて成形体を得るために使用する成形機などで用いられる装置のスクリュー、シリンダー、ダイス、ノズルなどの鋼材の腐食磨耗を抑制するのに有効である。特に、加工温度が270℃以上となるような高温下の条件において、高い抑制効果を奏する。 Metal hydroxides and metal oxides, especially metal oxides, are used in extruders used to produce flame-retardant polyamide resin compositions, molding machines used to obtain molded articles using the compositions, and the like. It is effective in suppressing corrosion and wear of steel materials such as screws, cylinders, dies, and nozzles of the equipment used. In particular, it exerts a high suppressing effect under high temperature conditions such that the processing temperature is 270 ° C. or higher.
 金属水酸化物および金属酸化物は、平均粒子径0.01~20μmの粒子であってもよく、好ましくは平均粒子径0.01~10μm、より好ましくは0.01~5μm、さらに好ましくは0.01~3μm、特に好ましくは0.01~1μm、殊に好ましくは0.01~0.3μmの粒子を用いることができる。これはより高い腐食磨耗抑制効果を得るためである。金属水酸化物および金属酸化物の平均粒子径は、透過型電子顕微鏡写真をもとに、画像回折装置(ルーゼックスIIIU)を用いて一次粒子の各粒子径区間における粒子量(%)をプロットして分布曲線を求め、得られた分布曲線から累積分布曲線を求め、この累積分布曲線における累積度50%のときの値とすることができる。 The metal hydroxide and the metal oxide may be particles having an average particle diameter of 0.01 to 20 μm, preferably an average particle diameter of 0.01 to 10 μm, more preferably 0.01 to 5 μm, and further preferably 0. Particles of 0.01 to 3 μm, particularly preferably 0.01 to 1 μm, particularly preferably 0.01 to 0.3 μm can be used. This is to obtain a higher effect of suppressing corrosion and wear. For the average particle size of metal hydroxide and metal oxide, the particle amount (%) in each particle size section of the primary particle is plotted using an image diffractometer (Luzex IIIU) based on a transmission electron micrograph. The distribution curve can be obtained, and the cumulative distribution curve can be obtained from the obtained distribution curve and used as the value when the cumulative degree of the cumulative distribution curve is 50%.
 また、金属酸化物または金属水酸化物のBET比表面積は、1~50m/gであればよく、好ましくは3~40m/g、より好ましくは5~40m/gである。平均粒子径、およびBET比表面積が上記範囲であることで、鋼材の腐食磨耗が抑制され、かつ難燃性、リフロー耐熱性に優れた成形体を得ることが可能となる場合が多い。平均粒子径が20μmを超えるか、BET比表面積が1m/g未満であると、腐食磨耗抑制効果が十分に得られない場合がある。一方、平均粒子径が0.01μm未満であったり、BET比表面積が50m/gを超えると、腐食磨耗抑制効果は得られるものの、難燃性、リフロー耐熱性、および成形時の熱安定性が低下する傾向にある。 The BET specific surface area of the metal oxide or metal hydroxide may be 1 to 50 m 2 / g, preferably 3 to 40 m 2 / g, and more preferably 5 to 40 m 2 / g. When the average particle size and the BET specific surface area are within the above ranges, it is often possible to obtain a molded product having excellent flame retardancy and reflow heat resistance while suppressing corrosion wear of the steel material. If the average particle size exceeds 20 μm or the BET specific surface area is less than 1 m 2 / g, the effect of suppressing corrosion and wear may not be sufficiently obtained. On the other hand, if the average particle size is less than 0.01 μm or the BET specific surface area exceeds 50 m 2 / g, the effect of suppressing corrosion and wear can be obtained, but flame retardancy, reflow heat resistance, and thermal stability during molding are obtained. Tends to decrease.
 本発明の難燃性ポリアミド樹脂組成物においては、金属水酸化物および金属酸化物から選ばれる金属化合物成分(D)が、難燃剤(B)の分解物をトラップしていると推察される。難燃剤(B)の分解物のトラップは、主に金属水酸化物および金属酸化物成分の表面で起こっていると考えられるので、粒子径が小さい、即ち比表面積が高い成分であることが有利と考えられる。このため特定の粒子径範囲(例えば、平均粒子径0.01~20μmの粒子)の金属水酸化物および金属酸化物が、本願の課題である腐蝕摩耗の抑制に有利であると考えられる。 In the flame-retardant polyamide resin composition of the present invention, it is presumed that the metal compound component (D) selected from the metal hydroxide and the metal oxide traps the decomposition product of the flame retardant (B). Since it is considered that the trap of the decomposition product of the flame retardant (B) occurs mainly on the surface of the metal hydroxide and the metal oxide component, it is advantageous that the component has a small particle size, that is, a high specific surface area. it is conceivable that. Therefore, it is considered that metal hydroxides and metal oxides in a specific particle size range (for example, particles having an average particle size of 0.01 to 20 μm) are advantageous in suppressing corrosion wear, which is a subject of the present application.
 本発明で用いられる金属水酸化物および金属酸化物の好ましい金属元素としては、鉄、マグネシウム、亜鉛が挙げられ、より好ましくはマグネシウム、亜鉛であり、特に好ましくは亜鉛である。 Preferred metal elements of the metal hydroxide and the metal oxide used in the present invention include iron, magnesium and zinc, more preferably magnesium and zinc, and particularly preferably zinc.
 好ましい具体的な金属水酸化物または金属酸化物の例としては、水酸化マグネシウム、酸化マグネシウム、酸化亜鉛が挙げられる。他の好ましい例としては、金属の複合酸化物、より好ましくは錫酸亜鉛、ヒドロキシ錫酸亜鉛等の亜鉛の複合酸化物が挙げられる。これらの中でも酸化亜鉛、錫酸亜鉛、酸化マグネシウム、水酸化マグネシウムが好ましい。また、複合酸化物よりも通常の単一金属酸化物が好ましく、特に好ましい具体例は、酸化亜鉛が挙げられる。 Examples of preferable specific metal hydroxides or metal oxides include magnesium hydroxide, magnesium oxide, and zinc oxide. Other preferred examples include composite oxides of metals, more preferably zinc composite oxides such as zinc tintate and zinc hydroxytinate. Of these, zinc oxide, zinc nitrate, magnesium oxide, and magnesium hydroxide are preferable. Further, ordinary single metal oxides are preferable to composite oxides, and zinc oxide is a particularly preferable specific example.
 ただし、複合酸化物の一つである硼酸塩は、本発明における金属酸化物とはみなされない。硼素のようなルイス酸性のポテンシャルのある元素を含む場合、後述する難燃剤の分解物のトラップ効果が減じるため、耐腐食性が発現し難いのではないかと推測される。 However, borate, which is one of the composite oxides, is not regarded as a metal oxide in the present invention. When an element having a Lewis acidic potential such as boron is contained, it is presumed that corrosion resistance is unlikely to be exhibited because the trapping effect of the decomposition product of the flame retardant described later is reduced.
 本発明の難燃性ポリアミド樹脂組成物は、難燃助剤(E)を含有していてもよい。難燃助剤(E)としては、少量の難燃剤添加量で高い難燃効果を発揮するために有効である。具体的には、金属酸化物および金属水酸化物が挙げられ、これらの化合物は単独、あるいは複数の化合物と併用して用いることができる。具体的には硼酸亜鉛、ベーマイト、錫酸亜鉛、酸化鉄、酸化錫が好ましく、より好ましくは硼酸亜鉛である。 The flame retardant polyamide resin composition of the present invention may contain a flame retardant aid (E). The flame retardant aid (E) is effective for exhibiting a high flame retardant effect even with a small amount of the flame retardant added. Specific examples thereof include metal oxides and metal hydroxides, and these compounds can be used alone or in combination with a plurality of compounds. Specifically, zinc borate, boehmite, zinc tinate, iron oxide, and tin oxide are preferable, and zinc borate is more preferable.
 難燃助剤(E)として金属酸化物または金属水酸化物を用いる場合は、本発明の難燃性ポリアミド樹脂組成物中に0.1~5質量%、好ましくは0.5~5質量%、さらに好ましくは1~3質量%である。上記範囲内の難燃助剤を添加することで、難燃性ポリアミド樹脂組成物に、安定した難燃性と成形時の熱安定性とを付与することができる。 When a metal oxide or a metal hydroxide is used as the flame retardant aid (E), 0.1 to 5% by mass, preferably 0.5 to 5% by mass, in the flame-retardant polyamide resin composition of the present invention. , More preferably 1 to 3% by mass. By adding a flame retardant aid within the above range, stable flame retardancy and thermal stability during molding can be imparted to the flame retardant polyamide resin composition.
 上記の他、難燃助剤(E)として、窒素系難燃助剤としてはメラミン、トリス(ヒドロキシエチル)イソシアヌレート(THEIC)、メラミンホスフェイト(MP)、メラミンポリホスフェイト(MPP)、メラミンシアヌレート(MC)など窒素系化合物や、環状ホスファゼン化合物および/または直鎖状ホスファゼン化合物などのホスファゼン化合物を併用して用いることができる。 In addition to the above, melamine, tris (hydroxyethyl) isocyanurate (THEIC), melamine phosphate (MP), melamine polyphosphate (MPP), melamine as nitrogen-based flame-retardant aids (E) Nitrogen compounds such as cyanurate (MC) and phosphazene compounds such as cyclic phosphazene compounds and / or linear phosphazene compounds can be used in combination.
 [その他の添加剤]
 本発明の難燃性ポリアミド樹脂組成物は、上記各成分に加えて、本発明の目的を損なわない範囲で、上記以外の難燃助剤、難燃剤、酸化防止剤、ラジカル捕捉剤、耐熱安定剤、耐候安定剤、流動性向上剤、可塑剤、増粘剤、帯電防止剤、離型剤、顔料、染料、無機あるいは有機充填剤、核剤、繊維補強剤、カーボンブラック、タルク、クレー、マイカ等無機化合物などの、種々公知の配合剤を含有していてもよい。また、本発明の難燃性ポリアミド樹脂組成物は、通常用いられるイオン捕捉剤などの添加剤を含有してもよい。イオン捕捉剤としては、例えばハイドロタルサイト、ゼオライトが知られている。特に本発明の難燃性ポリアミド樹脂組成物は、上記のうち繊維補強剤を含有していることにより、より一層耐熱性、難燃性、剛性、引張強度、曲げ強度、衝撃強度が向上される。
[Other additives]
In addition to the above components, the flame retardant polyamide resin composition of the present invention is a flame retardant aid, a flame retardant, an antioxidant, a radical trapping agent, and heat-resistant stable, as long as the object of the present invention is not impaired. Agents, weather stabilizers, fluidity improvers, plastics, thickeners, antistatics, mold release agents, pigments, dyes, inorganic or organic fillers, nucleating agents, fiber reinforcements, carbon black, talc, clay, It may contain various known compounding agents such as an inorganic compound such as mica. Further, the flame-retardant polyamide resin composition of the present invention may contain an additive such as a commonly used ion scavenger. As the ion scavenger, for example, hydrotalcite and zeolite are known. In particular, the flame-retardant polyamide resin composition of the present invention further improves heat resistance, flame retardancy, rigidity, tensile strength, bending strength, and impact strength by containing the fiber reinforcing agent among the above. ..
 さらに本発明の難燃性ポリアミド樹脂組成物は、本発明の目的を損なわない範囲で他の重合体を含有していてもよい。このような他の重合体としては、ポリエチレン、ポリプロピレン、ポリ4-メチル-1-ペンテン、エチレン・1-ブテン共重合体、プロピレン・エチレン共重合体、プロピレン・1-ブテン共重合体、ポリオレフィンエラストマーなどのポリオレフィン;ポリスチレン、ポリアミド、ポリカーボネート、ポリアセタール、ポリスルフォン、ポリフェニレンオキシド、フッ素樹脂、シリコーン樹脂、SEBS、テフロン(登録商標)などが挙げられる。これら以外にも、ポリオレフィンの変性体等が挙げられる。ポリオレフィンの変性体は、例えばカルボキシル基、酸無水物基、アミノ基等で変性されたポリオレフィンである。ポリオレフィンの変性体の例には、変性ポリエチレン、変性SEBSなどの変性芳香族ビニル化合物・共役ジエン共重合体またはその水素化物、変性エチレン・プロピレン共重合体などの変性ポリオレフィンエラストマーなどが挙げられる。これらの成分は、UL94V-0規格を満たさないことが好ましい。 Further, the flame-retardant polyamide resin composition of the present invention may contain other polymers as long as the object of the present invention is not impaired. Examples of such other polymers include polyethylene, polypropylene, poly4-methyl-1-pentene, ethylene / 1-butene copolymer, propylene / ethylene copolymer, propylene / 1-butene copolymer, and polyolefin elastomer. Polyolefins such as, polystyrene, polyamide, polycarbonate, polyacetal, polysulphon, polyphenylene oxide, fluororesin, silicone resin, SEBS, Teflon (registered trademark) and the like. In addition to these, modified polyolefins and the like can be mentioned. The modified polyolefin is, for example, a polyolefin modified with a carboxyl group, an acid anhydride group, an amino group, or the like. Examples of modified polyolefins include modified aromatic vinyl compounds such as modified polyethylene and modified SEBS / conjugated diene copolymers or hydrides thereof, and modified polyolefin elastomers such as modified ethylene / propylene copolymers. It is preferable that these components do not meet the UL94V-0 standard.
 本発明の難燃性ポリアミド樹脂組成物に含まれる各成分の合計が100質量%である場合のこれらの重合体の含有率は、好ましくは4質量%以下、より好ましくは2質量%以下、更に好ましくは1質量%以下である。 When the total of each component contained in the flame-retardant polyamide resin composition of the present invention is 100% by mass, the content of these polymers is preferably 4% by mass or less, more preferably 2% by mass or less, and further. It is preferably 1% by mass or less.
 [難燃性ポリアミド樹脂組成物]
 本発明の難燃性ポリアミド樹脂組成物は、半芳香族ポリアミド樹脂(A-1)とは異なる半芳香族ポリアミド樹脂(A-2)とを含む、ポリアミド樹脂成分(A)を含有する。よって、半芳香族ポリアミド樹脂(A-1)および(A-2)の合計量が、ポリアミド樹脂成分(A)の量となる。ポリアミド樹脂組成物の総量に対する、(半芳香族ポリアミド樹脂(A-1)および(A-2)の合計である)ポリアミド樹脂成分(A)の割合は、20~80質量%、好ましくは35~60質量%である。難燃性ポリアミド樹脂組成物中のポリアミド樹脂成分(A)の含有量が20質量%以上であると、十分な靭性を得ることができる。また、難燃性ポリアミド樹脂組成物中のポリアミド樹脂成分(A)の含有量が80質量%以下であると、十分な難燃剤を含むことができ、難燃性を得ることができる。
[Flame-retardant polyamide resin composition]
The flame-retardant polyamide resin composition of the present invention contains a polyamide resin component (A) containing a semi-aromatic polyamide resin (A-2) different from the semi-aromatic polyamide resin (A-1). Therefore, the total amount of the semi-aromatic polyamide resin (A-1) and (A-2) is the amount of the polyamide resin component (A). The ratio of the polyamide resin component (A) (which is the total of the semi-aromatic polyamide resins (A-1) and (A-2)) to the total amount of the polyamide resin composition is 20 to 80% by mass, preferably 35 to 35. It is 60% by mass. When the content of the polyamide resin component (A) in the flame-retardant polyamide resin composition is 20% by mass or more, sufficient toughness can be obtained. Further, when the content of the polyamide resin component (A) in the flame-retardant polyamide resin composition is 80% by mass or less, a sufficient flame retardant can be contained and flame retardancy can be obtained.
 上述したように、融点(Tm)が異なる半芳香族ポリアミド樹脂(A-1)および(A-2)のブレンドにおいては、樹脂が均一化されるため、示差走査熱量計(DSC)を用いて測定した融点(Tm)は単一のピークとして観測され、ガラス転移温度が上昇し、熱安定性が向上する。よって、本発明においては、2種類の異なる半芳香族ポリアミド樹脂を併用することによって、1種のポリアミド樹脂のみを含む組成物と比べて、高い熱安定性を達成することができる。また、2種類の異なる半芳香族ポリアミド樹脂を併用に結晶化度も下げるため、難燃性ポリアミド樹脂組成物が固化した際に堅く、脆くならず、靱性が向上する。尚、ポリアミド樹脂成分(A)は、本発明の目的が損なわれない範囲で、半芳香族ポリアミド樹脂(A-1)および(A-2)以外の、他の半芳香族ポリアミド樹脂を含んでもよい。他の半芳香族ポリアミド樹脂が含まれる場合には、半芳香族ポリアミド樹脂の合計量をポリアミド樹脂成分(A)の量とする。 As described above, in the blends of semi-aromatic polyamide resins (A-1) and (A-2) having different melting points (Tm), the resins are homogenized, so a differential scanning calorimeter (DSC) is used. The measured melting point (Tm) is observed as a single peak, which increases the glass transition temperature and improves thermal stability. Therefore, in the present invention, by using two different types of semi-aromatic polyamide resins in combination, higher thermal stability can be achieved as compared with a composition containing only one type of polyamide resin. Further, since the crystallinity is lowered by using two different types of semi-aromatic polyamide resins in combination, the flame-retardant polyamide resin composition is hard and not brittle when solidified, and the toughness is improved. The polyamide resin component (A) may contain other semi-aromatic polyamide resins other than the semi-aromatic polyamide resins (A-1) and (A-2) as long as the object of the present invention is not impaired. Good. When other semi-aromatic polyamide resins are included, the total amount of the semi-aromatic polyamide resins is taken as the amount of the polyamide resin component (A).
 半芳香族ポリアミド樹脂(A-1)および(A-2)の組み合わせに特に限定はなく、難燃性ポリアミド樹脂組成物に必要な物性に応じて選択することができる。例えば、難燃性ポリアミド樹脂組成物をコネクターのような微細な電気電子部品に使用する場合には、流動性が低くなり過ぎるのを防止するために、流動性の低い半芳香族ポリアミド樹脂(例えば、ポリアミド6T/6Iやポリアミド6T/DT)は、流動性の高い半芳香族ポリアミド樹脂(例えば、ポリアミド6T/66)と組合わせることが好ましい。 The combination of the semi-aromatic polyamide resin (A-1) and (A-2) is not particularly limited, and can be selected according to the physical properties required for the flame-retardant polyamide resin composition. For example, when the flame-retardant polyamide resin composition is used for fine electrical and electronic parts such as connectors, a semi-aromatic polyamide resin having low fluidity (for example, to prevent the fluidity from becoming too low) is used. , Polyamide 6T / 6I and Polyamide 6T / DT) are preferably combined with a highly fluid semi-aromatic polyamide resin (for example, Polyamide 6T / 66).
 半芳香族ポリアミド樹脂(A-1)および(A-2)は、ポリアミド樹脂成分(A)(即ち、半芳香族ポリアミド樹脂(A-1)および(A-2)の合計)のジカルボン酸成分単位の総量に対する、芳香族ジカルボン酸成分単位の総量の割合が、67モル%以上80モル%以下となるように、半芳香族ポリアミド樹脂(A-1)および(A-2)の種類および配合量を選択することが好ましい。芳香族ジカルボン酸成分単位の総量の割合が、67モル%以上であると、芳香族成分が十分に存在するため、強度が向上する。一方、80モル%以下であると、難燃性ポリアミド樹脂組成物を成形した際に、堅くなり過ぎないことから、適度な靱性が保たれる。また、融点も高すぎないため、樹脂組成物の調製が容易である。ジカルボン酸成分単位の総量に対する、芳香族ジカルボン酸成分単位の総量の割合は、67モル%以上75モル%以下であることがより好ましい。 The semi-aromatic polyamide resins (A-1) and (A-2) are dicarboxylic acid components of the polyamide resin component (A) (that is, the sum of the semi-aromatic polyamide resins (A-1) and (A-2)). Types and formulations of semi-aromatic polyamide resins (A-1) and (A-2) so that the ratio of the total amount of aromatic dicarboxylic acid component units to the total amount of units is 67 mol% or more and 80 mol% or less. It is preferable to select the amount. When the ratio of the total amount of the aromatic dicarboxylic acid component units is 67 mol% or more, the strength is improved because the aromatic components are sufficiently present. On the other hand, when it is 80 mol% or less, when the flame-retardant polyamide resin composition is molded, it does not become too hard, so that appropriate toughness is maintained. Moreover, since the melting point is not too high, the resin composition can be easily prepared. The ratio of the total amount of the aromatic dicarboxylic acid component unit to the total amount of the dicarboxylic acid component unit is more preferably 67 mol% or more and 75 mol% or less.
 半芳香族ポリアミド樹脂(A-1)および(A-2)の少なくとも一方が、270℃以上340℃以下の融点を有する結晶性樹脂であることが好ましい。また、半芳香族ポリアミド樹脂(A-1)および(A-2)の両方が270℃以上340℃以下の融点を有する結晶性樹脂である、または一方が270℃以上340℃以下の融点を有する結晶性樹脂であり、他方が非晶性樹脂であることがより好ましい。 It is preferable that at least one of the semi-aromatic polyamide resins (A-1) and (A-2) is a crystalline resin having a melting point of 270 ° C. or higher and 340 ° C. or lower. Further, both the semi-aromatic polyamide resins (A-1) and (A-2) are crystalline resins having a melting point of 270 ° C. or higher and 340 ° C. or lower, or one of them has a melting point of 270 ° C. or higher and 340 ° C. or lower. More preferably, it is a crystalline resin and the other is an amorphous resin.
 半芳香族ポリアミド樹脂(A-1)および(A-2)の両方が270℃以上340℃以下の融点を有する結晶性樹脂であると、リフロー耐熱温度を特に高くすることが可能になり得る。例えば、本発明の難燃性ポリアミド樹脂組成物を、鉛フリーリフローはんだ工程、特に高融点を有する鉛フリーはんだを使用したはんだ工程に使用しても、十分な耐熱性が奏されるため好ましい。このような半芳香族ポリアミド樹脂の組み合わせとしては、ポリアミド6T/66(融点:320℃)とポリアミド6T/6I(融点:330℃)との組み合わせ、およびポリアミド6T/66(融点:320℃)とポリアミド6T/DT(融点:300℃)との組み合わせなどが挙げられる。 When both the semi-aromatic polyamide resins (A-1) and (A-2) are crystalline resins having a melting point of 270 ° C. or higher and 340 ° C. or lower, it may be possible to particularly increase the reflow heat resistance temperature. For example, even if the flame-retardant polyamide resin composition of the present invention is used in a lead-free reflow soldering process, particularly in a soldering process using lead-free solder having a high melting point, sufficient heat resistance is obtained, which is preferable. Examples of such a combination of the semi-aromatic polyamide resin include a combination of polyamide 6T / 66 (melting point: 320 ° C.) and polyamide 6T / 6I (melting point: 330 ° C.), and polyamide 6T / 66 (melting point: 320 ° C.). Examples thereof include a combination with polyamide 6T / DT (melting point: 300 ° C.).
 半芳香族ポリアミド樹脂(A-1)および(A-2)の一方が270℃以上340℃以下の融点を有する結晶性樹脂であり、他方が非晶性樹脂であると、難燃性ポリアミド樹脂組成物の結晶化度が特に低くなるため、難燃性ポリアミド樹脂組成物の靱性を高める観点から好ましい。このような半芳香族ポリアミド樹脂の組み合わせとしては、ポリアミド6T/66(融点:320℃)とポリアミド6I/6T(非晶性)との組み合わせなどが挙げられる。PA6T/66と他の半芳香族ポリアミド樹脂とを組み合わせて使用すると、難燃性ポリアミド樹脂組成物の成形時の流動性、リフローはんだ工程における耐熱性、強度や靭性等の機械物性に優れるため好ましい。 When one of the semi-aromatic polyamide resins (A-1) and (A-2) is a crystalline resin having a melting point of 270 ° C. or higher and 340 ° C. or lower and the other is an amorphous resin, a flame-retardant polyamide resin is used. Since the crystallinity of the composition is particularly low, it is preferable from the viewpoint of increasing the toughness of the flame-retardant polyamide resin composition. Examples of such a combination of semi-aromatic polyamide resins include a combination of polyamide 6T / 66 (melting point: 320 ° C.) and polyamide 6I / 6T (amorphous). It is preferable to use PA6T / 66 in combination with another semi-aromatic polyamide resin because it is excellent in mechanical properties such as fluidity during molding of the flame-retardant polyamide resin composition, heat resistance in the reflow soldering process, strength and toughness. ..
 上述したように、半芳香族ポリアミド樹脂(A-1)および(A-2)の配合比に特に限定はなく、所望の物性や、芳香族ジカルボン酸成分単位の割合に基づき、決定することができる。例えば、ジカルボン酸成分単位として芳香族ジカルボン酸成分単位と脂肪族ジカルボン酸成分単位とを含む半芳香族ポリアミド樹脂(A-1)と、ジカルボン酸成分単位として芳香族ジカルボン酸成分単位のみを含む半芳香族ポリアミド樹脂(A-2)とを併用する場合には、(A-1)/(A-2)の質量比は、5/95~95/5とすることができるが、これに限定されるものではない。(A-1)/(A-2)の質量比は好ましくは50/50~95/5、より好ましくは50/50~90/10、更に好ましくは55/45~85/15である。半芳香族ポリアミド樹脂(A-2)割合が5以上であると、機械物性の向上に十分な効果が得られ、一方、95以下であると、リフロー耐熱性や流動性に十分な効果が得られる。 As described above, the blending ratio of the semi-aromatic polyamide resins (A-1) and (A-2) is not particularly limited, and can be determined based on desired physical properties and the ratio of the aromatic dicarboxylic acid component unit. it can. For example, a semi-aromatic polyamide resin (A-1) containing an aromatic dicarboxylic acid component unit and an aliphatic dicarboxylic acid component unit as a dicarboxylic acid component unit, and a half containing only an aromatic dicarboxylic acid component unit as a dicarboxylic acid component unit. When used in combination with the aromatic polyamide resin (A-2), the mass ratio of (A-1) / (A-2) can be 5/95 to 95/5, but is limited to this. It is not something that is done. The mass ratio of (A-1) / (A-2) is preferably 50/50 to 95/5, more preferably 50/50 to 90/10, and even more preferably 55/45 to 85/15. When the ratio of the semi-aromatic polyamide resin (A-2) is 5 or more, a sufficient effect is obtained for improving the mechanical properties, while when it is 95 or less, a sufficient effect is obtained for reflow heat resistance and fluidity. Be done.
 本発明においては、このように2種以上の半芳香族ポリアミド樹脂を併用することによって、難燃性やリフロー耐熱性を維持しつつ、機械物性を向上することができる。 In the present invention, by using two or more kinds of semi-aromatic polyamide resins in combination in this way, it is possible to improve mechanical properties while maintaining flame retardancy and reflow heat resistance.
 難燃性ポリアミド樹脂組成物は、ポリアミド樹脂組成物の総量に対して、難燃剤(B)を3~30質量%、好ましくは7~20質量%含むことが好ましい。難燃性ポリアミド樹脂組成物中の難燃剤(B)の含有量が、3質量%以上であると、十分な難燃性を得ることができ、30質量%以下であると射出成形時の流動性が低下することがなく好ましい。 The flame-retardant polyamide resin composition preferably contains the flame retardant (B) in an amount of 3 to 30% by mass, preferably 7 to 20% by mass, based on the total amount of the polyamide resin composition. When the content of the flame retardant (B) in the flame-retardant polyamide resin composition is 3% by mass or more, sufficient flame retardancy can be obtained, and when it is 30% by mass or less, the flow during injection molding. It is preferable because the property does not deteriorate.
 難燃性ポリアミド樹脂組成物は、ポリアミド樹脂組成物の総量に対して、強化材(C)を10~50質量%、好ましくは10~45質量%の割合で含むことが好ましい。この割合が50質量%以下であると、射出成形時における流動性が低下せずに好ましい。 The flame-retardant polyamide resin composition preferably contains the reinforcing material (C) in an amount of 10 to 50% by mass, preferably 10 to 45% by mass, based on the total amount of the polyamide resin composition. When this ratio is 50% by mass or less, the fluidity at the time of injection molding does not decrease, which is preferable.
 難燃性ポリアミド樹脂組成物は、ポリアミド樹脂組成物の総量に対して、金属水酸化物および金属酸化物から選ばれる金属化合物成分(D)、好ましくは金属酸化物を、0.05~2質量%、好ましくは0.1~1質量%、より好ましくは0.1~0.5質量%の割合で含む。難燃性ポリアミド樹脂組成物中の金属水酸化物および金属酸化物から選ばれる金属化合物成分(D)の含有量が0.05質量%以上であると、鋼材の腐食磨耗抑制に十分な効果が得られ、10質量%以下であると、難燃性、リフロー耐熱性、および成形時の熱安定性が低下することがなく好ましい。 The flame-retardant polyamide resin composition contains a metal compound component (D) selected from a metal hydroxide and a metal oxide, preferably a metal oxide, in an amount of 0.05 to 2 mass with respect to the total amount of the polyamide resin composition. %, preferably 0.1 to 1% by mass, more preferably 0.1 to 0.5% by mass. When the content of the metal compound component (D) selected from the metal hydroxide and the metal oxide in the flame-retardant polyamide resin composition is 0.05% by mass or more, a sufficient effect of suppressing corrosion and abrasion of the steel material is sufficient. When it is obtained and is 10% by mass or less, flame retardancy, reflow heat resistance, and thermal stability during molding are not deteriorated, which is preferable.
 難燃性ポリアミド樹脂組成物は、ポリアミド樹脂組成物の総量に対して、難燃助剤(E)を、好ましくは0.1~5質量%、より好ましくは0.5~5質量%、さらに好ましくは1~3質量%である。難燃性ポリアミド樹脂組成物中の難燃助剤(E)の含有量が0.1質量%以上であると、鋼材の腐食磨耗抑制に十分な効果が得られ、5質量%以下であると、難燃性、リフロー耐熱性、および成形時の熱安定性が低下することがなく好ましい。 In the flame-retardant polyamide resin composition, the flame retardant aid (E) is preferably 0.1 to 5% by mass, more preferably 0.5 to 5% by mass, and further, based on the total amount of the polyamide resin composition. It is preferably 1 to 3% by mass. When the content of the flame retardant aid (E) in the flame-retardant polyamide resin composition is 0.1% by mass or more, a sufficient effect of suppressing corrosion and wear of the steel material is obtained, and it is 5% by mass or less. , Flame retardancy, reflow heat resistance, and thermal stability during molding are not deteriorated, which is preferable.
 本発明の難燃性ポリアミド樹脂組成物は、UL94規格に準じた燃焼性評価がV-0である。より具体的に言えば、本発明の難燃性ポリアミド樹脂組成物は、0.8mm以下の厚みにおける、UL94規格に準じた燃焼性評価がV-0であることが好ましい。 The flame-retardant polyamide resin composition of the present invention has a flammability evaluation of V-0 according to the UL94 standard. More specifically, the flame-retardant polyamide resin composition of the present invention preferably has a flammability evaluation of V-0 according to the UL94 standard at a thickness of 0.8 mm or less.
 また、温度40℃、相対湿度95%で96時間吸湿させた後の、リフロー耐熱温度は245~280℃であることが好ましく、より好ましくは250~280℃、さらに好ましくは255~280℃、特に好ましくは255~270℃である。 The reflow heat resistant temperature after absorbing moisture at a temperature of 40 ° C. and a relative humidity of 95% for 96 hours is preferably 245 to 280 ° C., more preferably 250 to 280 ° C., still more preferably 255 to 280 ° C. It is preferably 255 to 270 ° C.
 靭性の指標となる破壊エネルギーは、660~800mJであることが好ましく、より好ましくは660~750mJ、さらに好ましくは665~720mJである。バーフロー金型への樹脂の射出成形によって求めた流動長は30~90mmであることが好ましく、より好ましくは40~70mmである。 The fracture energy, which is an index of toughness, is preferably 660 to 800 mJ, more preferably 660 to 750 mJ, and even more preferably 665 to 720 mJ. The flow length obtained by injection molding of the resin into the bar flow mold is preferably 30 to 90 mm, more preferably 40 to 70 mm.
 このように、本発明の難燃性ポリアミド樹脂組成物は極めて優れた特徴を有しており、ハロゲンフリーである(すなわち、塩素、臭素の含有率が低い)ので、ダイオキシン発生のリスクが少なく、高い温度条件下における成形時の熱安定性に優れ、燃焼時に高い難燃性を発現することが可能である。さらに、本発明の難燃性ポリアミド樹脂組成物は、成形後に高い曲げ強度や靱性といった優れた機械特性を発揮することができる。本発明の難燃性ポリアミド樹脂組成物は、特に電気電子部品用途に好適に使用可能である。 As described above, the flame-retardant polyamide resin composition of the present invention has extremely excellent characteristics and is halogen-free (that is, the content of chlorine and bromine is low), so that the risk of dioxin generation is low. It has excellent thermal stability during molding under high temperature conditions, and can exhibit high flame retardancy during combustion. Further, the flame-retardant polyamide resin composition of the present invention can exhibit excellent mechanical properties such as high bending strength and toughness after molding. The flame-retardant polyamide resin composition of the present invention can be suitably used particularly for electrical and electronic component applications.
 [難燃性ポリアミド樹脂組成物の調製方法]
 本発明の難燃性ポリアミド樹脂組成物は、上述した各成分を公知の樹脂混練方法を用いて製造することができる。例えば、上述した各成分を、ヘンシェルミキサー、Vブレンダー、リボンブレンダー、タンブラーブレンダーなどで混合する方法、あるいは、混合後さらに一軸押出機、多軸押出機、ニーダー、バンバリーミキサーなどで溶融混練後、造粒または粉砕する方法を採用することができる。
[Method for preparing flame-retardant polyamide resin composition]
The flame-retardant polyamide resin composition of the present invention can be produced by using a known resin kneading method for each of the above-mentioned components. For example, a method of mixing each of the above-mentioned components with a Henschel mixer, a V blender, a ribbon blender, a tumbler blender, etc., or after mixing, melt-kneading with a uniaxial extruder, a multi-screw extruder, a kneader, a Banbury mixer, etc. A method of graining or grinding can be adopted.
 [成形体および電子電気部品材料]
 本発明の難燃性ポリアミド樹脂組成物は、圧縮成形法、射出成形法、押出成形法などの公知の成形法を利用することにより、各種成形体に成形することができる。特に、射出成形法が好適で、窒素、アルゴン、ヘリウムに代表される不活性ガスの雰囲気下、具体的には、例えば、0.1~10ml/分の流量下で成形することで、成形機のシリンダー、スクリュー等の鋼材の腐食磨耗をさらに低減させることが可能となる。
[Molded parts and electronic and electrical component materials]
The flame-retardant polyamide resin composition of the present invention can be molded into various molded bodies by using known molding methods such as a compression molding method, an injection molding method, and an extrusion molding method. In particular, an injection molding method is preferable, and a molding machine is used for molding in an atmosphere of an inert gas typified by nitrogen, argon, or helium, specifically, for example, at a flow rate of 0.1 to 10 ml / min. It is possible to further reduce the corrosion and wear of steel materials such as cylinders and screws.
 本発明の難燃性ポリアミド樹脂組成物は、機械特性(特に曲げ強度および靱性)、リフロー耐熱性、難燃性の面に優れている。したがって、本発明の難燃性ポリアミド樹脂組成物は、これらの特性が要求される分野、あるいは精密成形分野の用途に用いることができる。具体的には、自動車用電装部品、電流遮断器、コネクター、スイッチ、ジャック、プラグ、ブレーカー、LED反射材料などの電気電子部品、コイルボビン、ハウジング等の各種成形体が挙げられる。 The flame-retardant polyamide resin composition of the present invention is excellent in terms of mechanical properties (particularly bending strength and toughness), reflow heat resistance, and flame retardancy. Therefore, the flame-retardant polyamide resin composition of the present invention can be used in fields where these properties are required or in the field of precision molding. Specific examples thereof include electrical components for automobiles, current breakers, connectors, switches, jacks, plugs, breakers, electrical and electronic components such as LED reflective materials, and various molded bodies such as coil bobbins and housings.
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例によって限定して解釈されない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention will not be construed as being limited to these Examples.
 実施例および比較例において、各性状の測定および評価は以下の方法で実施した。
 [極限粘度[η]]
 JIS K6810-1977に準拠して、ポリアミド樹脂0.5gを96.5%硫酸溶液50mlに溶解し、ウベローデ粘度計を使用し、25±0.05℃の条件下で試料溶液の流下秒数を測定した。測定結果から、以下の式に基づいてポリアミド樹脂の極限粘度[η]を算出した。
 [η]=ηSP/[C(1+0.205ηSP)]
 ηSP=(t-t0)/t0
 [η]:極限粘度(dl/g)
 ηSP:比粘度、C:試料濃度(g/dl)
 t:試料溶液の流下秒数(秒)
 t0:ブランク硫酸の流下秒数(秒)
In the examples and comparative examples, the measurement and evaluation of each property were carried out by the following methods.
[Ultimate viscosity [η]]
In accordance with JIS K6810-1977, 0.5 g of polyamide resin was dissolved in 50 ml of 96.5% sulfuric acid solution, and the number of seconds of flow of the sample solution under the condition of 25 ± 0.05 ° C. was measured using an Ubbelohde viscometer. It was measured. From the measurement results, the ultimate viscosity [η] of the polyamide resin was calculated based on the following formula.
[Η] = ηSP / [C (1 + 0.205ηSP)]
ηSP = (t-t0) / t0
[Η]: Extreme viscosity (dl / g)
ηSP: Specific viscosity, C: Sample concentration (g / dl)
t: Number of seconds (seconds) of flow of the sample solution
t0: Number of seconds (seconds) of blank sulfuric acid flowing down
 [融点(Tm)]
 ポリアミド樹脂の試料を、PerkinElemer社製DSC7を用いて加熱し、一旦330℃で5分間保持し、次いで10℃/分の速度で23℃まで降温せしめた後、10℃/分で昇温した。このときの融解に基づく吸熱ピークをポリアミド樹脂の融点とした。
[Melting point (Tm)]
The polyamide resin sample was heated using a DSC7 manufactured by Perkin Elemer, held at 330 ° C. for 5 minutes, then lowered to 23 ° C. at a rate of 10 ° C./min, and then heated at 10 ° C./min. The endothermic peak based on melting at this time was taken as the melting point of the polyamide resin.
 [曲げ試験]
 ポリアミド樹脂組成物を以下の条件で射出成形して、厚さ3.2mmの試験片を作製した。
 成型機:住友重機械工業(株)社製、SE75EV-A
 成形機シリンダー温度:330℃
 金型温度:120℃
 作製した試験片を、温度23℃、窒素雰囲気下で24時間放置した。
 次いで、温度23℃、相対湿度50%の雰囲気下で曲げ試験機:NTESCO社製 AB5、スパン51mm、曲げ速度12.7mm/分で曲げ試験を行った。
 曲げ強度、歪量および弾性率から、その試験片を破壊するのに要するエネルギー(靭性)を求めた。
[Bending test]
The polyamide resin composition was injection-molded under the following conditions to prepare a test piece having a thickness of 3.2 mm.
Molding machine: SE75EV-A manufactured by Sumitomo Heavy Industries, Ltd.
Molding machine cylinder temperature: 330 ° C
Mold temperature: 120 ° C
The prepared test piece was left at a temperature of 23 ° C. in a nitrogen atmosphere for 24 hours.
Next, a bending test was performed under an atmosphere of a temperature of 23 ° C. and a relative humidity of 50% at a bending tester: AB5 manufactured by NTESCO, a span of 51 mm, and a bending speed of 12.7 mm / min.
The energy (toughness) required to break the test piece was determined from the bending strength, strain amount, and elastic modulus.
 [流動長試験(流動性)]
 実施例および比較例で製造したポリアミド樹脂組成物を、幅10mm、厚み0.5mmのバーフロー金型を使用して、以下の条件で射出し、金型内の樹脂の流動長(mm)を測定した。
 射出成形機:(株)ソディック プラステック、ツパールTR40S3A
 射出設定圧力:2000kg/cm
 シリンダー設定温度:各ポリアミド樹脂の融点+10℃
 金型温度:120℃
[Flow length test (liquidity)]
The polyamide resin compositions produced in Examples and Comparative Examples were injected using a bar flow mold having a width of 10 mm and a thickness of 0.5 mm under the following conditions to determine the flow length (mm) of the resin in the mold. It was measured.
Injection molding machine: Sodick Plastic Co., Ltd., Tupearl TR40S3A
Injection set pressure: 2000 kg / cm 2
Cylinder set temperature: Melting point of each polyamide resin + 10 ° C
Mold temperature: 120 ° C
 [リフロー耐熱性試験]
 実施例および比較例で製造したポリアミド樹脂組成物を、以下の条件で射出成形して、長さ64mm、幅6mm、厚さ0.8mmの試験片を調製した。
 成形機:(株)ソディック プラステック、ツパールTR40S3A
 成形機シリンダー温度:各ポリアミド樹脂の融点+10℃
 金型温度:100℃
[Reflow heat resistance test]
The polyamide resin compositions produced in Examples and Comparative Examples were injection-molded under the following conditions to prepare test pieces having a length of 64 mm, a width of 6 mm, and a thickness of 0.8 mm.
Molding machine: Sodick Plus Tech Co., Ltd., Tupearl TR40S3A
Molding machine cylinder temperature: Melting point of each polyamide resin + 10 ° C
Mold temperature: 100 ° C
 調製した試験片を温度40℃、相対湿度95%で96時間調湿した。
 調湿処理を行った試験片を、厚み1mmのガラスエポキシ基板上に載置した。この基板上に温度センサーを設置した。試験片を載置したガラスエポキシ基板を、エアーリフローはんだ装置(エイテックテクトロン(株)製AIS-20-82-C)にセットし、図1に示す温度プロファイルのリフロー工程を行った。図1に示されるように、所定の速度で温度230℃まで昇温し;次いで、20秒間で所定の設定温度(aは270℃、bは265℃、cは260℃、dは255℃、eは235℃)まで加熱したのち;230℃まで降温した。このとき、試験片が溶融せず、且つ表面にブリスターが発生しない設定温度の最大値を求め、この設定温度の最大値をリフロー耐熱温度とした。
The prepared test piece was humidity-controlled at a temperature of 40 ° C. and a relative humidity of 95% for 96 hours.
The test piece subjected to the humidity control treatment was placed on a glass epoxy substrate having a thickness of 1 mm. A temperature sensor was installed on this board. The glass epoxy substrate on which the test piece was placed was set in an air reflow soldering apparatus (AIS-20-82-C manufactured by Atec Techtron Co., Ltd.), and the temperature profile reflow step shown in FIG. 1 was performed. As shown in FIG. 1, the temperature is raised to 230 ° C. at a predetermined rate; then, in 20 seconds, a predetermined set temperature (a is 270 ° C., b is 265 ° C., c is 260 ° C., d is 255 ° C., e was heated to 235 ° C.) and then lowered to 230 ° C. At this time, the maximum value of the set temperature at which the test piece did not melt and blister did not occur on the surface was obtained, and the maximum value of this set temperature was defined as the reflow heat resistant temperature.
 一般的に、吸湿した試験片のリフロー耐熱温度は、絶乾状態のそれと比較して劣る傾向にある。 In general, the reflow heat resistance temperature of a test piece that has absorbed moisture tends to be inferior to that in an absolutely dry state.
 [燃焼性試験]
 実施例および比較例で製造したポリアミド樹脂組成物を、以下の条件で射出成形して、1/32インチ×1/2×5インチの試験片を調製した。調製した試験片を用いて、UL94規格(1991年6月18日付のUL Test No.UL94)に準拠して、垂直燃焼試験を行い、難燃性を評価した。
 成形機:(株)ソディック プラステック、ツパールTR40S3A
 成形機シリンダー温度:各ポリアミド樹脂の融点+10℃
 金型温度:120℃
[Combustibility test]
The polyamide resin compositions produced in Examples and Comparative Examples were injection-molded under the following conditions to prepare 1/32 inch × 1/2 × 5 inch test pieces. Using the prepared test piece, a vertical combustion test was conducted in accordance with the UL94 standard (UL Test No. UL94 dated June 18, 1991), and the flame retardancy was evaluated.
Molding machine: Sodick Plus Tech Co., Ltd., Tupearl TR40S3A
Molding machine cylinder temperature: Melting point of each polyamide resin + 10 ° C
Mold temperature: 120 ° C
 実施例および比較例において用いたポリアミド樹脂成分(A)、難燃剤(B)、強化材(C)、金属水酸化物(D)、その他の成分を示す。 The polyamide resin component (A), flame retardant (B), reinforcing material (C), metal hydroxide (D), and other components used in Examples and Comparative Examples are shown.
 [ポリアミド樹脂成分(A)]
 (ポリアミド6T/66)
 組成:ジカルボン酸成分単位(テレフタル酸:62.5モル%、アジピン酸:37.5モル%)、ジアミン成分単位(1,6-ジアミノヘキサン:100モル%)
 極限粘度[η]:0.8dl/g
 融点:320℃
[Polyamide resin component (A)]
(Polyamide 6T / 66)
Composition: Dicarboxylic acid component unit (terephthalic acid: 62.5 mol%, adipic acid: 37.5 mol%), diamine component unit (1,6-diaminohexane: 100 mol%)
Extreme viscosity [η]: 0.8 dl / g
Melting point: 320 ° C
(ポリアミド6T/6I)
 組成:ジカルボン酸成分単位(テレフタル酸:70モル%、イソフタル酸:30モル%)、ジアミン成分単位(1,6-ジアミノヘキサン:100モル%)極限粘度[η]:1.0dl/g融点:330℃
(Polyamide 6T / 6I)
Composition: Dicarboxylic acid component unit (terephthalic acid: 70 mol%, isophthalic acid: 30 mol%), diamine component unit (1,6-diaminohexane: 100 mol%) Extreme viscosity [η]: 1.0 dl / g Melting point: 330 ℃
(ポリアミド6T/DT)
 組成:ジカルボン酸成分単位(テレフタル酸:100モル%)、ジアミン成分単位(2-メチル1,5ペンタンジアミン:50モル%、1,6-ジアミノヘキサン:50モル%)
 極限粘度[η]:0.9dl/g
 融点:300℃
(Polyamide 6T / DT)
Composition: Dicarboxylic acid component unit (terephthalic acid: 100 mol%), diamine component unit (2-methyl 1,5 pentanediamine: 50 mol%, 1,6-diaminohexane: 50 mol%)
Extreme viscosity [η]: 0.9 dl / g
Melting point: 300 ° C
(ポリアミド6I/6T)
 組成:ジカルボン酸成分単位(テレフタル酸:33モル%、イソフタル酸:67モル%)、ジアミン成分単位(1,6-ジアミノヘキサン:100モル%)
 極限粘度[η]:0.65dl/g
 非晶性
(Polyamide 6I / 6T)
Composition: Dicarboxylic acid component unit (terephthalic acid: 33 mol%, isophthalic acid: 67 mol%), diamine component unit (1,6-diaminohexane: 100 mol%)
Extreme viscosity [η]: 0.65 dl / g
Amorphous
(ポリアミド12)
 ポリアミド12(PA12):宇部興産(株)製、UBESTA 3014B
(Polyamide 12)
Polyamide 12 (PA12): UBESTA 3014B, manufactured by Ube Industries, Ltd.
(ポリアミド6T/6I/66)
 組成:ジカルボン酸成分単位(テレフタル酸:44モル%、イソフタル酸:36モル%、アジピン酸:20モル%)、ジアミン成分単位(1,6-ジアミノヘキサン:100モル%)
 極限粘度[η]:1.2dl/g
 融点:260℃
(Polyamide 6T / 6I / 66)
Composition: Dicarboxylic acid component unit (terephthalic acid: 44 mol%, isophthalic acid: 36 mol%, adipic acid: 20 mol%), diamine component unit (1,6-diaminohexane: 100 mol%)
Extreme viscosity [η]: 1.2 dl / g
Melting point: 260 ° C
 [難燃剤(B)]
  クラリアントジャパン株式会社製、EXOLIT OP1230(ホスフィン酸塩化合物)
 リン含有量:23.8質量%
[Flame Retardant (B)]
EXOLIT OP1230 (phosphinate compound) manufactured by Clariant Japan Co., Ltd.
Phosphorus content: 23.8% by mass
 [強化材(C)]
 ガラス繊維/日本電気硝子(株)製、ECS03T-262H
[Reinforcing material (C)]
Glass fiber / Nippon Electric Glass Co., Ltd., ECS03T-262H
 [金属化合物成分(D)]
 酸化亜鉛、平均粒子径0.02μm
[Metal compound component (D)]
Zinc oxide, average particle size 0.02 μm
 上記ポリアミド樹脂成分(A)、難燃剤(B)、強化材(C)、金属化合物成分(D)以外に、硼酸亜鉛(難燃助剤、U.S.Borax社製、Firebrake 500)、タルク(松村産業(株)製、商品名:ハイフィラー#100ハクド95)、12ヒドロキシステアリン酸Ba(滑剤、日東化成工業(株)製、BS-6)を用いた。 In addition to the above-mentioned polyamide resin component (A), flame retardant (B), reinforcing material (C), and metal compound component (D), zinc borate (flame retardant, manufactured by US Borax, Firebrake 500), talc. (Matsumura Sangyo Co., Ltd., trade name: High Filler # 100 Hakudo 95), 12-hydroxystearic acid Ba (sliding, Nitto Kasei Kogyo Co., Ltd., BS-6) was used.
 上記のポリアミド樹脂は、以下の方法で製造した。 The above polyamide resin was manufactured by the following method.
 [製造例1]
 ポリアミド6T/66(PA6T/66)の製造
 1,6-ヘキサンジアミン2905g(25.0モル)、テレフタル酸2475g(14.9モル)、アジピン酸1461g(10.0モル)、安息香酸73.2g(0.60モル)、次亜リン酸ナトリウム一水和物5.7gおよび蒸留水545gを内容量13.6Lのオートクレーブに入れ、窒素置換した。190℃から攪拌を開始し、3時間かけて内部温度を250℃まで昇温させた。このとき、オートクレーブの内圧を3.03MP(A)まで昇圧させた。このまま1時間反応を続けた後、オートクレーブ下部に設置したスプレーノズルから大気放出して、低次縮合物を抜き出した。その後、この低縮合物を室温まで冷却後、低次縮合物を粉砕機で1.5mm以下の粒子径まで粉砕し、110℃で24時間乾燥させた。得られた低次縮合物の水分量は4100ppm、極限粘度[η]は0.15dl/gであった。
 次に、この低次縮合物を棚段式固相重合装置に入れ、窒素置換後、約1時間30分かけて180℃まで昇温させた。その後、1時間30分反応させて、室温まで降温させた。得られたプレポリマーの極限粘度[η]は、0.20dl/gであった。
 その後、得られたプレポリマーを、スクリュー径30mm、L/D=36の二軸押出機にて、バレル設定温度を330℃、スクリュー回転数200rpm、6kg/hの樹脂供給速度で溶融重合させて、半芳香族ポリアミド樹脂であるPA6T/66を得た。
[Manufacturing Example 1]
Production of Polyamide 6T / 66 (PA6T / 66) 1,6-Hexamethylenediamine 2905 g (25.0 mol), Terephthalic Acid 2475 g (14.9 mol), Adipic Acid 1461 g (10.0 mol), Benzoic Acid 73.2 g (0.60 mol), 5.7 g of sodium hypophosphate monohydrate and 545 g of distilled water were placed in an autoclave having a content of 13.6 L and substituted with nitrogen. Stirring was started at 190 ° C. and the internal temperature was raised to 250 ° C. over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.03 MP (A). After continuing the reaction for 1 hour as it was, the low-order condensate was extracted by releasing it into the atmosphere from a spray nozzle installed in the lower part of the autoclave. Then, the low-order condensate was cooled to room temperature, the low-order condensate was pulverized with a pulverizer to a particle size of 1.5 mm or less, and dried at 110 ° C. for 24 hours. The water content of the obtained low-order condensate was 4100 ppm, and the ultimate viscosity [η] was 0.15 dl / g.
Next, this low-order condensate was placed in a shelf-stage solid-phase polymerization apparatus, and after nitrogen substitution, the temperature was raised to 180 ° C. over about 1 hour and 30 minutes. Then, the reaction was carried out for 1 hour and 30 minutes, and the temperature was lowered to room temperature. The ultimate viscosity [η] of the obtained prepolymer was 0.20 dl / g.
Then, the obtained prepolymer was melt-polymerized by a twin-screw extruder having a screw diameter of 30 mm and L / D = 36 at a barrel set temperature of 330 ° C., a screw rotation speed of 200 rpm, and a resin supply rate of 6 kg / h. , PA6T / 66, which is a semi-aromatic polyamide resin, was obtained.
 [製造例2]
 ポリアミド6T/6I(PA6T/6I)の製造
 原料を、1,6-ジアミノヘキサン2800g(24.1モル)、テレフタル酸2774g(16.7モル)、イソフタル酸1196g(7.2モル)、安息香酸36.6g(0.30モル)、および次亜リン酸ナトリウム-水和物5.7gに変えた以外は、半芳香族ポリアミド樹脂(A-1)の調製と同様にして、半芳香族ポリアミド樹脂であるPA6T/6Iを調製した。
[Manufacturing Example 2]
Production of Polyamide 6T / 6I (PA6T / 6I) Raw materials are 1,6-diaminohexane 2800 g (24.1 mol), terephthalic acid 2774 g (16.7 mol), isophthalic acid 1196 g (7.2 mol), benzoic acid. Semi-aromatic polyamide in the same manner as the preparation of semi-aromatic polyamide resin (A-1), except that it was changed to 36.6 g (0.30 mol) and 5.7 g of sodium hypophosphate-hydrate. The resin PA6T / 6I was prepared.
 [製造例3]
 ポリアミド6T/DT(PA6T/DT)の製造
 1,6-ヘキサンジアミン1312g(11.3モル)、2-メチル-1,5-ペンタンジアミン1312g(11.3モル)、テレフタル酸3655g(22.0モル)、次亜リン酸ナトリウム5.5g(5.2×10-2モル)、およびイオン交換水640mlを1リットルの反応器に仕込み、窒素置換後、250℃、35kg/cmの条件で1時間反応させた。1,6-ヘキサンジアミンと2-メチル-1,5-ペンタンジアミンとのモル比は50:50とした。1時間経過後、反応器内に生成した反応生成物を、この反応器と連結され、かつ圧力が約10kg/cm低く設定された受器に抜き出して、極限粘度[η]が0.15dl/gであるプレポリマーを得た。
 次いで、得られたプレポリマーを乾燥させた後、二軸押出機を用いてシリンダー設定温度330℃で溶融重合させて、半芳香族ポリアミド樹脂であるPA6T/DTを得た。
[Production Example 3]
Production of Polyamide 6T / DT (PA6T / DT) 1,6-Hexamethylenediamine 1312 g (11.3 mol), 2-Methyl-1,5-pentanediamine 1312 g (11.3 mol), Terephthalic acid 3655 g (22.0 mol) mol), sodium hypophosphite 5.5g (5.2 × 10 -2 mol), and deionized water 640ml were charged into a 1 liter reactor. after nitrogen substitution, 250 ° C., under the conditions of 35 kg / cm 2 It was allowed to react for 1 hour. The molar ratio of 1,6-hexanediamine to 2-methyl-1,5-pentanediamine was 50:50. After 1 hour, the reaction product produced in the reactor was withdrawn into a receiver connected to the reactor and the pressure was set to be about 10 kg / cm 2 lower, and the ultimate viscosity [η] was 0.15 dl. A prepolymer of / g was obtained.
Next, the obtained prepolymer was dried and then melt-polymerized at a cylinder set temperature of 330 ° C. using a twin-screw extruder to obtain PA6T / DT, which is a semi-aromatic polyamide resin.
 [製造例4]
 ポリアミド6I/6T(PA6I/6T)の製造
 1,6-ヘキサンジアミン2800g(24.1モル)、テレフタル酸1390g(8.4モル)、イソフタル酸2581g(15.5モル)、安息香酸109.5g(0.9モル)、次亜リン酸ナトリウム一水和物5.7gおよび蒸留水545gを、内容量13.6Lのオートクレーブに入れ、窒素置換した。190℃から攪拌を開始し、3時間かけて内部温度を250℃まで昇温した。このとき、オートクレーブの内圧を3.02MPaまで昇圧した。このまま1時間反応を続けた後、オートクレーブ下部に設置したスプレーノズルから大気放出して低次縮合物を抜き出した。その後、低次縮合物を室温まで冷却後、粉砕機で1.5mm以下の粒子径まで粉砕し、110℃で24時間乾燥した。得られた低次縮合物の水分量は3000ppm、極限粘度[η]は0.14dl/gであった。
 次に、この低次縮合物を、スクリュー径30mm、L/D=36の二軸押出機にて、バレル設定温度330℃、スクリュー回転数200rpm、6kg/hの樹脂供給速度で溶融重合させて、半芳香族ポリアミド樹脂であるPA6I/6Tを得た。
[Manufacturing Example 4]
Production of Polyamide 6I / 6T (PA6I / 6T) 1,6-Hexanediamine 2800 g (24.1 mol), terephthalic acid 1390 g (8.4 mol), isophthalic acid 2581 g (15.5 mol), benzoic acid 109.5 g (0.9 mol), 5.7 g of sodium hypophosphate monohydrate and 545 g of distilled water were placed in an autoclave having a content of 13.6 L and substituted with nitrogen. Stirring was started from 190 ° C. and the internal temperature was raised to 250 ° C. over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.02 MPa. After continuing the reaction for 1 hour as it was, the low-order condensate was extracted by releasing it into the atmosphere from a spray nozzle installed in the lower part of the autoclave. Then, the low-order condensate was cooled to room temperature, pulverized with a pulverizer to a particle size of 1.5 mm or less, and dried at 110 ° C. for 24 hours. The water content of the obtained low-order condensate was 3000 ppm, and the ultimate viscosity [η] was 0.14 dl / g.
Next, this low-order condensate is melt-polymerized by a twin-screw extruder having a screw diameter of 30 mm and L / D = 36 at a barrel set temperature of 330 ° C., a screw rotation speed of 200 rpm, and a resin supply speed of 6 kg / h. , PA6I / 6T, which is a semi-aromatic polyamide resin, was obtained.
 [製造例5]
 ポリアミド6T/6I/66(PA6T/6I/66)の製造
 テレフタル酸1741g(10.5モル)、1,6-ヘキサンジアミン2800g(24.1モル)、イソフタル酸1437g(9.0モル)、アジピン酸699g(4.8モル)、安息香酸36.5g(0.3モル)、次亜リン酸ナトリウム-水和物5.7g(原料に対して0.08重量%)及び蒸留水545gを内容量13.6Lのオートクレーブに入れ、窒素置換した。190℃から攪拌を開始し、3時間かけて内部温度を250℃まで昇温した。このとき、オートクレーブの内圧を3.03MPaまで昇圧した。このまま1時間反応を続けた後、オートクレーブ下部に設置したスプレーノズルから大気放出して低縮合物を抜き出した。その後、室温まで冷却後、粉砕機で1.5mm以下の粒子径まで粉砕し、110℃で24時間乾燥した。得られた低縮合物の水分量は4100ppm、極限粘度[η]は0.15dl/gであった。次に、この低縮合物を棚段式固相重合装置にいれ、窒素置換後、約1時間30分かけて180℃まで昇温した。その後、1時間30分反応し、室温まで降温した。得られたポリアミドの極限粘度[η]は0.20dl/gであった。その後、スクリュー径30mm、L/D=36の二軸押出機にて、バレル設定温度330℃、スクリュー回転数200rpm、6Kg/hの樹脂供給速度で溶融重合させて、半芳香族ポリアミド樹脂であるPA6T/6I/66を得た。
[Production Example 5]
Production of Polyamide 6T / 6I / 66 (PA6T / 6I / 66) 1741 g (10.5 mol) of terephthalic acid, 2800 g (24.1 mol) of 1,6-hexanediamine, 1437 g (9.0 mol) of isophthalic acid, adipic acid Contains 699 g (4.8 mol) of acid, 36.5 g (0.3 mol) of benzoic acid, 5.7 g of sodium hypophosphate-hydrate (0.08% by weight based on raw material) and 545 g of distilled water. It was placed in an autoclave in an amount of 13.6 L and replaced with nitrogen. Stirring was started from 190 ° C. and the internal temperature was raised to 250 ° C. over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.03 MPa. After continuing the reaction for 1 hour as it was, the low condensate was extracted by releasing it into the atmosphere from a spray nozzle installed in the lower part of the autoclave. Then, after cooling to room temperature, it was pulverized with a pulverizer to a particle size of 1.5 mm or less, and dried at 110 ° C. for 24 hours. The water content of the obtained low condensate was 4100 ppm, and the ultimate viscosity [η] was 0.15 dl / g. Next, this low condensate was placed in a shelf-stage solid-phase polymerization apparatus, and after nitrogen substitution, the temperature was raised to 180 ° C. over about 1 hour and 30 minutes. Then, the reaction was carried out for 1 hour and 30 minutes, and the temperature was lowered to room temperature. The ultimate viscosity [η] of the obtained polyamide was 0.20 dl / g. Then, it is melt-polymerized with a twin-screw extruder having a screw diameter of 30 mm and L / D = 36 at a barrel set temperature of 330 ° C., a screw rotation speed of 200 rpm, and a resin supply rate of 6 kg / h to obtain a semi-aromatic polyamide resin. PA6T / 6I / 66 was obtained.
 [実施例1~8]および[比較例1~3]
 上記各成分を、表1に示すような量比で混合し、温度320℃に設定した二軸ベント付押出機に実装し、溶融混練してペレット状の難燃性ポリアミド樹脂組成物を得た。次いで、得られた難燃性ポリアミド樹脂組成物について各性状を評価し、その結果を表1に示す。
[Examples 1 to 8] and [Comparative Examples 1 to 3]
Each of the above components was mixed in an amount ratio as shown in Table 1, mounted on an extruder with a twin-screw vent set at a temperature of 320 ° C., and melt-kneaded to obtain a pellet-shaped flame-retardant polyamide resin composition. .. Next, each property of the obtained flame-retardant polyamide resin composition was evaluated, and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示されるように、難燃剤(B)と共に、1種の半芳香族ポリアミド樹脂のみをポリアミド樹脂成分(A)として含有する比較例1と比べて、2種類の異なる半芳香族ポリアミド樹脂をポリアミド樹脂成分(A)として含有する実施例1~8では、難燃性、リフロー耐熱温度および流動長を高く維持しながらも、機械物性(特に曲げ強度および靱性)が向上することがわかる。 As shown in Table 1, two different types of semi-aromatic polyamide resins are compared with Comparative Example 1 in which only one type of semi-aromatic polyamide resin is contained as the polyamide resin component (A) together with the flame retardant (B). It can be seen that in Examples 1 to 8 containing the polyamide resin component (A), mechanical properties (particularly bending strength and toughness) are improved while maintaining high flame retardancy, reflow heat resistant temperature and flow length.
 また、芳香族ジカルボン酸成分単位の総量の割合が、67モル%以上80モル%以下である実施例2は、芳香族ジカルボン酸成分単位の総量の割合が67モル%未満であること以外は同様の組成である実施例4と5と比較して、曲げ強度および靱性が高かい。これは、く、芳香族成分が十分に存在するためと考えられる。 Further, Example 2 in which the ratio of the total amount of the aromatic dicarboxylic acid component unit is 67 mol% or more and 80 mol% or less is the same except that the ratio of the total amount of the aromatic dicarboxylic acid component unit is less than 67 mol%. Compared with Examples 4 and 5 having the composition of, the bending strength and toughness are high. It is considered that this is because the aromatic component is sufficiently present.
 半芳香族ポリアミド樹脂(A-1)および(A-2)の両方が270℃以上340℃以下の融点を有する結晶性樹脂(PA6T/66と、PA6T/6IまたはPA6T/DTとの組み合わせ)である実施例1および2の難燃性ポリアミド樹脂組成物は、リフロー耐熱温度が255℃と非常に高かった。また、半芳香族ポリアミド樹脂(A-1)および(A-2)の一方が270℃以上340℃以下の融点を有する結晶性樹脂(PA6T/66)であり、他方が非晶性樹脂(PA6I/6T)である実施例3の難燃性ポリアミド樹脂組成物は、靱性が700mJを超えて非常に高かった。これは難燃性ポリアミド樹脂組成物の結晶化度が特に低くなるためと考えられる。 A crystalline resin (a combination of PA6T / 66 and PA6T / 6I or PA6T / DT) in which both the semi-aromatic polyamide resins (A-1) and (A-2) have a melting point of 270 ° C. or higher and 340 ° C. or lower. The flame-retardant polyamide resin compositions of Examples 1 and 2 had a very high reflow heat resistance temperature of 255 ° C. Further, one of the semi-aromatic polyamide resins (A-1) and (A-2) is a crystalline resin (PA6T / 66) having a melting point of 270 ° C. or higher and 340 ° C. or lower, and the other is an amorphous resin (PA6I). The flame-retardant polyamide resin composition of Example 3 of / 6T) had a very high toughness exceeding 700 mJ. It is considered that this is because the crystallinity of the flame-retardant polyamide resin composition is particularly low.
 一方、半芳香族ポリアミド樹脂と、脂肪族ポリアミド樹脂とをポリアミド樹脂成分(A)として含有する比較例2は、曲げ強度、弾性率および靱性が比較例1よりも低下し、さらにリフロー耐熱温度も低下し、難燃性は不合格となった。また、PA6T/66とPA6T/6Iを併用した実施例1と同様のモノマー構成であるPA6T/6I/66を単独で使用した比較例3は、難燃性は良好であったものの、曲げ強度および靱性が非常に低く、さらに流動長とリフロー耐熱温度も低かった。 On the other hand, in Comparative Example 2 containing the semi-aromatic polyamide resin and the aliphatic polyamide resin as the polyamide resin component (A), the bending strength, elastic modulus and toughness were lower than those in Comparative Example 1, and the reflow heat resistance temperature was also high. It decreased and the flame retardancy was rejected. Further, in Comparative Example 3 in which PA6T / 6I / 66 having the same monomer composition as in Example 1 in which PA6T / 66 and PA6T / 6I were used alone was used alone, the flame retardancy was good, but the bending strength and bending strength were improved. The toughness was very low, and the flow length and reflow heat resistance temperature were also low.
 本出願は、2019年3月12日出願の特願2019-044932に基づく優先権を主張する。当該出願明細書に記載された内容は、全て本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2019-044932 filed on March 12, 2019. All the contents described in the application specification are incorporated in the application specification.
 本発明の難燃性ポリアミド樹脂組成物は、ハロゲン系難燃剤を含有せず、優れた曲げ強度および靭性を有し、さらに優れたリフロー耐熱性および難燃性も有する。特に、鉛フリーはんだのような高融点はんだを使用して表面実装方式で部品を組み立てる電気・電子用途に好適に用いることができる。好ましくは、上記用途の薄肉部品分野に適用できる。あるいは精密成形分野の用途にも良好に用いることができる。 The flame-retardant polyamide resin composition of the present invention does not contain a halogen-based flame retardant, has excellent bending strength and toughness, and also has excellent reflow heat resistance and flame retardancy. In particular, it can be suitably used for electrical and electronic applications in which parts are assembled by a surface mount method using high melting point solder such as lead-free solder. Preferably, it can be applied to the field of thin-walled parts for the above-mentioned applications. Alternatively, it can be satisfactorily used for applications in the precision molding field.

Claims (13)

  1.  ポリアミド樹脂成分(A)20~80質量%、
     分子中にハロゲン基を有さない難燃剤(B)3~30質量%、および
     強化材(C)10~50質量%を含有する難燃性ポリアミド樹脂組成物であり(但し、(A)、(B)および(C)の割合は、難燃性ポリアミド樹脂組成物の総量に対する質量%であり)、
     前記ポリアミド樹脂成分(A)は、半芳香族ポリアミド樹脂(A-1)と、前記半芳香族ポリアミド樹脂(A-1)とは異なる半芳香族ポリアミド樹脂(A-2)とを含み、
     前記難燃剤(B)は、ホスフィン酸塩化合物である、難燃性ポリアミド樹脂組成物。
    Polyamide resin component (A) 20 to 80% by mass,
    A flame-retardant polyamide resin composition containing 3 to 30% by mass of a flame retardant (B) having no halogen group in the molecule and 10 to 50% by mass of a reinforcing material (C) (however, (A), The ratio of (B) and (C) is mass% with respect to the total amount of the flame retardant polyamide resin composition),
    The polyamide resin component (A) contains a semi-aromatic polyamide resin (A-1) and a semi-aromatic polyamide resin (A-2) different from the semi-aromatic polyamide resin (A-1).
    The flame retardant (B) is a flame-retardant polyamide resin composition which is a phosphinate compound.
  2.  前記ポリアミド樹脂成分(A)のジカルボン酸成分単位の総量に対する、芳香族ジカルボン酸成分単位の総量の割合は、67モル%以上80モル%以下である、請求項1に記載の難燃性ポリアミド樹脂組成物。 The flame-retardant polyamide resin according to claim 1, wherein the ratio of the total amount of the aromatic dicarboxylic acid component unit to the total amount of the dicarboxylic acid component unit of the polyamide resin component (A) is 67 mol% or more and 80 mol% or less. Composition.
  3.  前記半芳香族ポリアミド樹脂(A-1)および前記半芳香族ポリアミド樹脂(A-2)は、
     両方が270℃以上340℃以下の融点を有する結晶性樹脂である、または
     一方が270℃以上340℃以下の融点を有する結晶性樹脂であり、他方が非晶性樹脂である、請求項1または2に記載の難燃性ポリアミド樹脂組成物。
    The semi-aromatic polyamide resin (A-1) and the semi-aromatic polyamide resin (A-2) are
    Claim 1 or claim, wherein both are crystalline resins having a melting point of 270 ° C. or higher and 340 ° C. or lower, or one is a crystalline resin having a melting point of 270 ° C. or higher and 340 ° C. or lower and the other is an amorphous resin. 2. The flame-retardant polyamide resin composition according to 2.
  4.  前記半芳香族ポリアミド樹脂(A-1)および前記半芳香族ポリアミド樹脂(A-2)の少なくとも一方は、
     ジカルボン酸成分として、テレフタル酸成分単位を30~100モル%、テレフタル酸以外の芳香族多官能カルボン酸成分単位0~70モル%、および/または炭素原子数4~20の脂肪族多官能カルボン酸成分単位0~60モル%からなる多官能アミン成分単位(a-1)と、
     炭素原子数4~25の多官能アミン成分単位(a-2)とを含む、請求項1~3のいずれか一項に記載の難燃性ポリアミド樹脂組成物。
    At least one of the semi-aromatic polyamide resin (A-1) and the semi-aromatic polyamide resin (A-2)
    As the dicarboxylic acid component, the terephthalic acid component unit is 30 to 100 mol%, the aromatic polyfunctional carboxylic acid component unit other than terephthalic acid is 0 to 70 mol%, and / or the aliphatic polyfunctional carboxylic acid having 4 to 20 carbon atoms. Polyfunctional amine component unit (a-1) consisting of component unit 0 to 60 mol% and
    The flame-retardant polyamide resin composition according to any one of claims 1 to 3, which comprises a polyfunctional amine component unit (a-2) having 4 to 25 carbon atoms.
  5.  前記難燃剤(B)は、式(I)のホスフィン酸塩化合物、および/または式(II)のビスホスフィン酸塩化合物、および/またはこれらのポリマーを含む難燃剤である、請求項1~4のいずれか一項に記載の難燃性ポリアミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     RおよびRは互いに同じかまたは異なり、直鎖状のまたは枝分かれしたC-Cアルキルおよび/またはアリールであり、
     Rは直鎖状のまたは枝分かれしたC-C10アルキレン、C-C10アリーレン、C-C10アルキルアリーレンまたはC-C10アリールアルキレンであり、
     Mは、Mg、Ca、Al、Sb、Sn、Ge、Ti、Zn、Fe、Zr、Ce、Bi、Sr、Mn、Li、Na、Kおよびプロトン化窒素塩基からなる群より選ばれる1種であり、
     mは1~4の整数を示し、nは1~4の整数を示し、xは1~4の整数を示す。]
    The flame retardant (B) is a flame retardant containing the phosphinate compound of the formula (I) and / or the bisphosphinate compound of the formula (II) and / or a polymer thereof. The flame retardant polyamide resin composition according to any one of the above.
    Figure JPOXMLDOC01-appb-C000001
    [During the ceremony,
    R 1 and R 2, identical or different, a straight-chain or branched C 1 -C 6 alkyl and / or aryl,
    R 3 is a straight-chain or branched C 1 -C 10 alkylene, C 6 -C 10 arylene, C 6 -C 10 alkylarylene or C 6 -C 10 arylalkylene,
    M is one selected from the group consisting of Mg, Ca, Al, Sb, Sn, Ge, Ti, Zn, Fe, Zr, Ce, Bi, Sr, Mn, Li, Na, K and protonated nitrogen bases. Yes,
    m indicates an integer of 1 to 4, n indicates an integer of 1 to 4, and x indicates an integer of 1 to 4. ]
  6.  前記強化材(C)は繊維状物質である、請求項1~5のいずれか一項に記載の難燃性ポリアミド樹脂組成物。 The flame-retardant polyamide resin composition according to any one of claims 1 to 5, wherein the reinforcing material (C) is a fibrous substance.
  7.  金属水酸化物および金属酸化物から選ばれる金属化合物成分(D)をさらに0.05~2質量%含み、
     前記金属水酸化物および前記金属酸化物は、元素周期律表の第2~12族に存在する元素を含む化合物であり、かつ平均粒子径は、0.01~20μmである、請求項1~6のいずれか一項に記載の難燃性ポリアミド樹脂組成物。
    Further containing 0.05 to 2% by mass of the metal compound component (D) selected from the metal hydroxide and the metal oxide,
    The metal hydroxide and the metal oxide are compounds containing elements existing in groups 2 to 12 of the Periodic Table of the Elements, and the average particle size is 0.01 to 20 μm, claims 1 to 1. The flame-retardant polyamide resin composition according to any one of 6.
  8.  前記金属化合物成分(D)は金属酸化物である、請求項7に記載の難燃性ポリアミド樹脂組成物。 The flame-retardant polyamide resin composition according to claim 7, wherein the metal compound component (D) is a metal oxide.
  9.  前記金属酸化物は、鉄の酸化物、マグネシウムの酸化物、亜鉛の酸化物、および亜鉛の複合酸化物からなる群より選ばれる少なくとも1種である、請求項8に記載の難燃性ポリアミド樹脂組成物。 The flame-retardant polyamide resin according to claim 8, wherein the metal oxide is at least one selected from the group consisting of an iron oxide, a magnesium oxide, a zinc oxide, and a zinc composite oxide. Composition.
  10.  難燃助剤(E)をさらに0.1~5質量%含む、請求項1~9のいずれか一項に記載の難燃性ポリアミド樹脂組成物。 The flame-retardant polyamide resin composition according to any one of claims 1 to 9, further containing 0.1 to 5% by mass of the flame-retardant aid (E).
  11.  前記難燃助剤(E)は、ホウ酸亜鉛である、請求項10に記載の難燃性ポリアミド樹脂組成物。 The flame retardant polyamide resin composition according to claim 10, wherein the flame retardant aid (E) is zinc borate.
  12.  請求項1~11のいずれか一項に記載の難燃性ポリアミド樹脂組成物を成形して得られる成形体。 A molded product obtained by molding the flame-retardant polyamide resin composition according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか一項に記載の難燃性ポリアミド樹脂組成物を成形して得られる電気電子部品。 An electrical and electronic component obtained by molding the flame-retardant polyamide resin composition according to any one of claims 1 to 11.
PCT/JP2020/008807 2019-03-12 2020-03-03 Flame-retardant polyamide resin composition WO2020184270A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080012179.6A CN113412298A (en) 2019-03-12 2020-03-03 Flame-retardant polyamide resin composition
JP2021504942A JP7152592B2 (en) 2019-03-12 2020-03-03 Flame-retardant polyamide resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-044932 2019-03-12
JP2019044932 2019-03-12

Publications (1)

Publication Number Publication Date
WO2020184270A1 true WO2020184270A1 (en) 2020-09-17

Family

ID=72426429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008807 WO2020184270A1 (en) 2019-03-12 2020-03-03 Flame-retardant polyamide resin composition

Country Status (3)

Country Link
JP (1) JP7152592B2 (en)
CN (1) CN113412298A (en)
WO (1) WO2020184270A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817316A (en) * 2021-08-12 2021-12-21 金发科技股份有限公司 Semi-aromatic polyamide resin composition and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116178942A (en) * 2022-12-16 2023-05-30 江苏金发科技新材料有限公司 Semi-aromatic polyamide composite material and preparation method and application thereof
CN115960457A (en) * 2022-12-16 2023-04-14 江苏金发科技新材料有限公司 Flame-retardant semi-aromatic polyamide composite material and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079212A (en) * 2007-08-24 2009-04-16 Ems-Patent Ag High-temperature polyamide molding compound reinforced with flat glass fiber
JP2012522116A (en) * 2009-03-30 2012-09-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Flame retardant semi-aromatic polyamide resin composition and articles therefrom
JP2013523958A (en) * 2010-03-30 2013-06-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Flame retardant polyamide resin composition and article containing the same
JP2013542311A (en) * 2010-11-10 2013-11-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Halogen-free flame retardant polyamide composition
JP2015110764A (en) * 2013-11-05 2015-06-18 東レ株式会社 Polyamide resin and polyamide resin composition
JP2015120908A (en) * 2013-12-20 2015-07-02 エーエムエス−パテント アクチェンゲゼルシャフト Plastic molding material and use thereof
JP2017500705A (en) * 2013-12-20 2017-01-05 ディーエスエム アイピー アセッツ ビー.ブイ. Fine pitch connector socket

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079212A (en) * 2007-08-24 2009-04-16 Ems-Patent Ag High-temperature polyamide molding compound reinforced with flat glass fiber
JP2012522116A (en) * 2009-03-30 2012-09-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Flame retardant semi-aromatic polyamide resin composition and articles therefrom
JP2013523958A (en) * 2010-03-30 2013-06-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Flame retardant polyamide resin composition and article containing the same
JP2013542311A (en) * 2010-11-10 2013-11-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Halogen-free flame retardant polyamide composition
JP2015110764A (en) * 2013-11-05 2015-06-18 東レ株式会社 Polyamide resin and polyamide resin composition
JP2015120908A (en) * 2013-12-20 2015-07-02 エーエムエス−パテント アクチェンゲゼルシャフト Plastic molding material and use thereof
JP2017500705A (en) * 2013-12-20 2017-01-05 ディーエスエム アイピー アセッツ ビー.ブイ. Fine pitch connector socket

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817316A (en) * 2021-08-12 2021-12-21 金发科技股份有限公司 Semi-aromatic polyamide resin composition and preparation method and application thereof
CN113817316B (en) * 2021-08-12 2023-09-26 金发科技股份有限公司 Semi-aromatic polyamide resin composition and preparation method and application thereof

Also Published As

Publication number Publication date
CN113412298A (en) 2021-09-17
JPWO2020184270A1 (en) 2021-11-04
JP7152592B2 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
TWI470027B (en) Flame-retadrant polyamide composition, molded article, method of facricating molded article by polyamide composition and electronics element
JP5271894B2 (en) Flame retardant polyamide composition
TWI414560B (en) Flame retardant polyamide composition
JP5276000B2 (en) Flame retardant polyamide composition
JP5199663B2 (en) Flame retardant polyamide composition
EP2414446B1 (en) Flame resistant semiaromatic polyamide resin composition and articles therefrom
JP4860611B2 (en) Flame retardant polyamide composition
WO2020184270A1 (en) Flame-retardant polyamide resin composition
JP5275999B2 (en) Flame retardant polyamide composition
KR101143893B1 (en) Flame-retardant polyamide composition and use thereof
JP2007269937A (en) Flame-retardant polyamide composition
JP2013227556A (en) Polyamide resin composition for case of information communication device
JP6420995B2 (en) Flame-retardant polyamide resin composition and molded article thereof
JP4519663B2 (en) Flame retardant polyamide composition and use thereof
JPWO2019155982A1 (en) Thermoplastic resin composition and molded article formed by molding the thermoplastic resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504942

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769855

Country of ref document: EP

Kind code of ref document: A1