WO2020183995A1 - Inductor - Google Patents

Inductor Download PDF

Info

Publication number
WO2020183995A1
WO2020183995A1 PCT/JP2020/004234 JP2020004234W WO2020183995A1 WO 2020183995 A1 WO2020183995 A1 WO 2020183995A1 JP 2020004234 W JP2020004234 W JP 2020004234W WO 2020183995 A1 WO2020183995 A1 WO 2020183995A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
wiring
particles
less
wirings
Prior art date
Application number
PCT/JP2020/004234
Other languages
French (fr)
Japanese (ja)
Inventor
佳宏 古川
圭佑 奥村
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020217028620A priority Critical patent/KR20210137029A/en
Priority to CN202080019742.2A priority patent/CN113544803A/en
Publication of WO2020183995A1 publication Critical patent/WO2020183995A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/28Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder dispersed or suspended in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to an inductor.
  • inductors are mounted on electronic devices and used as passive elements such as voltage conversion members.
  • a rectangular parallelepiped chip body made of a magnetic material and an internal conductor such as copper embedded inside the chip body, and the cross-sectional shape of the chip body and the cross-sectional shape of the internal conductor are similar.
  • An inductor has been proposed (see Patent Document 1). That is, in the inductor of Patent Document 1, a magnetic material is coated around a wiring (inner conductor) having a rectangular parallelepiped shape (rectangular parallelepiped shape).
  • anisotropic magnetic particles such as flat magnetic particles as a magnetic material and to orient the anisotropic magnetic particles around the wiring to improve the inductance of the inductor. ..
  • the present invention provides an inductor having good inductance and capable of suppressing crosstalk.
  • the present invention [1] includes a plurality of wirings and a magnetic layer covering the plurality of wirings, and the plurality of wirings are arranged at intervals from each other in the first direction, and the plurality of wirings.
  • Each comprises a lead wire and an insulating layer covering the lead wire, and the magnetic layer contains anisotropic magnetic particles and a binder, and is the center of the wires between the plurality of wires adjacent to each other.
  • a first-direction alignment region in which the anisotropic magnetic particles are oriented along the first direction is formed so as to include a virtual line passing through the above-mentioned virtual line, and the distance of the first-direction orientation region is on the virtual line.
  • the anisotropic magnetic particles can be easily oriented along the outer peripheral direction around the plurality of wirings. Therefore, the inductance can be improved.
  • a first-direction alignment region in which the anisotropic magnetic particles are oriented along the first direction is formed so as to include an imaginary line passing through the centers of a plurality of wirings, and the distance between the first-direction orientation regions is increased. It is 50% or less with respect to the distance between the wirings on the virtual line. That is, in the space between the wirings, which is the path of the magnetic flux flowing along the first direction, the distance of the first direction orientation region is shorter than the other distances. Therefore, the influence of magnetism from one wiring to the other wiring can be reduced, and crosstalk can be suppressed.
  • the present invention [2] includes the inductor according to [1], each of which has a first region around the plurality of wirings in which the anisotropic magnetic particles are oriented along the outer peripheral direction of the wiring. .. Therefore, the inductance can be improved.
  • the present invention [3] includes the inductor according to [2], each of which has a second region around the plurality of wirings, wherein the anisotropic magnetic particles are not oriented along the outer peripheral direction. Therefore, the DC superimposition characteristic can be improved.
  • the inductance is good and crosstalk can be suppressed.
  • FIG. 1A-B is an embodiment of the inductor of the present invention
  • FIG. 1A is a plan view
  • FIG. 1B is a sectional view taken along the line AA of FIG. 1A
  • FIG. 2 shows a partially enlarged view of the broken line portion of FIG. 1B
  • 3A-B show the inductor manufacturing process shown in FIGS. 1A-B
  • FIG. 3A shows an arrangement process
  • FIG. 3B shows a lamination process.
  • FIG. 4 shows an actual SEM photographic sectional view of the inductor shown in FIGS. 1A-B.
  • FIG. 5 shows a cross-sectional view of a modified example of the inductor of the present invention (a form in which the central portion of the second region is located on the first virtual line).
  • the left-right direction of the paper surface is the first direction
  • the left side of the paper surface is one side of the first direction
  • the right side of the paper surface is the other side of the first direction.
  • the vertical direction of the paper surface is the second direction (direction orthogonal to the first direction)
  • the upper side of the paper surface is one side of the second direction (one direction in the wiring axis direction)
  • the lower side of the paper surface is the other side of the second direction (the other direction of the wiring axis).
  • the paper thickness direction is the vertical direction (third direction orthogonal to the first and second directions, thickness direction)
  • the front side of the paper is the upper side (one side of the third direction, one side of the thickness direction)
  • the back side of the paper is.
  • the lower side (the other side in the third direction, the other side in the thickness direction). Specifically, it conforms to the direction arrows in each figure.
  • the inductor 1 has a substantially rectangular shape in a plan view extending in the plane direction (first direction and second direction).
  • the inductor 1 includes a plurality of (two) wirings 2 and a magnetic layer 3.
  • Each of the plurality of wirings 2 includes a first wiring 4 and a second wiring 5 arranged at intervals in the width direction (first direction) from the first wiring 4.
  • the first wiring 4 extends long in the second direction and has, for example, a substantially U-shape in a plan view. As shown in FIG. 2, the first wiring 4 has a substantially circular shape in cross section.
  • the first wiring 4 includes a lead wire 6 and an insulating layer 7 that covers the lead wire 6.
  • the lead wire 6 extends long in the second direction and has, for example, a substantially U-shape in a plan view. Further, the lead wire 6 has a substantially circular shape in cross section that shares the central axis with the first wiring 4.
  • the material of the lead wire 6 is, for example, a metal conductor such as copper, silver, gold, aluminum, nickel, and an alloy thereof, and copper is preferable.
  • the conducting wire 6 may have a single-layer structure, or may have a multi-layer structure in which the surface of a core conductor (for example, copper) is plated (for example, nickel).
  • the radius R1 of the lead wire 6 is, for example, 25 ⁇ m or more, preferably 50 ⁇ m or more, and for example, 2000 ⁇ m or less, preferably 200 ⁇ m or less.
  • the insulating layer 7 is a layer for protecting the lead wire 6 from chemicals and water and preventing a short circuit of the lead wire 6.
  • the insulating layer 7 is arranged so as to cover the entire outer peripheral surface of the conducting wire 6.
  • the insulating layer 7 has a substantially annular shape in cross section that shares the central axis (center C1) with the first wiring 4.
  • Examples of the material of the insulating layer 7 include insulating resins such as polyvinylformal, polyester, polyesterimide, polyamide (including nylon), polyimide, polyamideimide, and polyurethane. These may be used alone or in combination of two or more.
  • insulating resins such as polyvinylformal, polyester, polyesterimide, polyamide (including nylon), polyimide, polyamideimide, and polyurethane. These may be used alone or in combination of two or more.
  • the insulating layer 7 may be composed of a single layer or may be composed of a plurality of layers.
  • the thickness R2 of the insulating layer 7 is substantially uniform in the radial direction of the wiring 2 at any position in the circumferential direction, for example, 1 ⁇ m or more, preferably 3 ⁇ m or more, and for example, 100 ⁇ m or less, preferably 100 ⁇ m or less. , 50 ⁇ m or less.
  • the ratio (R1 / R2) of the radius R1 of the lead wire 6 to the thickness R2 of the insulating layer 7 is, for example, 1 or more, preferably 10 or more, and for example, 200 or less, preferably 100 or less.
  • the radius (R1 + R2) of the first wiring 4 is, for example, 25 ⁇ m or more, preferably 50 ⁇ m or more, and for example, 2000 ⁇ m or less, preferably 200 ⁇ m or less.
  • the center-to-center distance D2 of the first wiring 4 is the same distance as the center-to-center distance D1 between a plurality of wirings 2 described later, and is, for example, 20 ⁇ m or more, preferably 20 ⁇ m or more. It is 50 ⁇ m or more, and is, for example, 3000 ⁇ m or less, preferably 2000 ⁇ m or less.
  • the second wiring 5 has the same shape as the first wiring 4 and has the same configuration, dimensions, and materials. That is, the second wiring 5 includes a lead wire 6 and an insulating layer 7 covering the lead wire 6 as in the first wiring 4.
  • the distance S between the first wiring 4 and the second wiring 5 is the shortest distance between the outer peripheral edge of the first wiring 4 and the outer peripheral edge of the second wiring 5, that is, the first wiring 4 and the second wiring 5 It is the distance of L2 on the first virtual line in the magnetic layer 3 located between.
  • the interval S between the wirings 2 (4, 5) is, for example, 20 ⁇ m or more, preferably 70 ⁇ m or more, and for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the distance D1 between the centers of the first wiring 4 and the second wiring 5 is, for example, 20 ⁇ m or more, preferably 50 ⁇ m or more, and for example, 3000 ⁇ m or less, preferably 2000 ⁇ m or less.
  • the magnetic layer 3 is a layer for improving the inductance.
  • the magnetic layer 3 is arranged so as to cover the entire outer peripheral surface of the plurality of wirings 2.
  • the magnetic layer 3 forms the outer shape of the inductor 1.
  • the magnetic layer 3 has a substantially rectangular shape in a plan view extending in the plane direction (first direction and second direction). Further, the magnetic layer 3 exposes the second-direction end edges of the plurality of wirings 2 on the other surface in the second direction.
  • the magnetic layer 3 is formed of a magnetic composition containing anisotropic magnetic particles 8 and a binder 9.
  • Examples of the magnetic material constituting the anisotropic magnetic particle (hereinafter, also abbreviated as “particle”) 8 include a soft magnetic material and a hard magnetic material.
  • a soft magnetic material is preferably used from the viewpoint of inductance.
  • the soft magnetic material examples include a single metal body containing one kind of metal element in a pure substance state, for example, one or more kinds of metal elements (first metal element) and one or more kinds of metal elements (second metal element).
  • first metal element one or more kinds of metal elements
  • second metal element one or more kinds of metal elements
  • the single metal body examples include a single metal composed of only one kind of metal element (first metal element).
  • the first metal element is appropriately selected from, for example, iron (Fe), cobalt (Co), nickel (Ni), and other metal elements that can be contained as the first metal element of the soft magnetic material. ..
  • the single metal body includes, for example, a core containing only one kind of metal element and a surface layer containing an inorganic substance and / or an organic substance that modifies a part or all of the surface of the core, for example.
  • examples thereof include an organic metal compound containing a first metal element and a form in which an inorganic metal compound is decomposed (thermal decomposition, etc.).
  • thermal decomposition etc.
  • iron powder obtained by thermally decomposing an organic iron compound (specifically, carbonyl iron) containing iron as the first metal element (sometimes referred to as carbonyl iron powder). And so on.
  • the position of the layer containing the inorganic substance and / or the organic substance that modifies the portion containing only one kind of metal element is not limited to the above-mentioned surface.
  • the organometallic compound or inorganic metal compound capable of obtaining a single metal body is not particularly limited, and a known or commonly used organometallic compound or inorganic metal compound capable of obtaining a soft magnetic single metal body is not particularly limited. Can be appropriately selected from.
  • the alloy body is a eutectic of one or more kinds of metal elements (first metal element) and one or more kinds of metal elements (second metal element) and / or non-metal elements (carbon, nitrogen, silicon, phosphorus, etc.). It is not particularly limited as long as it is a body and can be used as an alloy body of a soft magnetic material.
  • the first metal element is an essential element in the alloy body, and examples thereof include iron (Fe), cobalt (Co), and nickel (Ni). If the first metal element is Fe, the alloy body is an Fe-based alloy, and if the first metal element is Co, the alloy body is a Co-based alloy, and the first metal element is Ni. For example, the alloy body is a Ni-based alloy.
  • the second metal element is an element (sub-component) secondarily contained in the alloy body, and is a metal element that is compatible (cofusable) with the first metal element.
  • iron (Fe) the first. 1 When the metal element is other than Fe), Cobalt (Co) (when the first metal element is other than Co), Nickel (Ni) (when the first metal element is other than Ni), Chromium (Cr), Aluminum (Al), Silicon (Si), Copper (Cu), Silver (Ag), Manganese (Mn), Calcium (Ca), Barium (Ba), Titanium (Ti), Zirconium (Zr), Hafnium (Hf), Vanadium (V), Niob (Nb), Tantal (Ta), Molybdenum (Mo), Tungsten (W), Ruthenium (Ru), Rodium (Rh), Zinc (Zn), Gallium (Ga), Indium (In), Examples thereof include germanium (Ge), tin (Sn), lead (Pb), scandium (Sc), a
  • the non-metal element is an element (sub-component) secondarily contained in the alloy body, and is a non-metal element that is compatible (combined) with the first metal element.
  • boron (B) and carbon examples thereof include (C), nitrogen (N), silicon (Si), phosphorus (P) and sulfur (S). These can be used alone or in combination of two or more.
  • Fe-based alloys examples include magnetic stainless steel (Fe-Cr-Al-Si alloy) (including electromagnetic stainless steel), sentust (Fe-Si-Al alloy) (including super sentust), and permalloy (including supersendust).
  • magnetic stainless steel Fe-Cr-Al-Si alloy
  • sentust Fe-Si-Al alloy
  • permalloy including supersendust
  • Fe-Ni alloy Fe-Ni alloy
  • Fe-Ni-Mo alloy Fe-Ni-Mo-Cu alloy
  • Fe-Ni-Co alloy Fe-Cr alloy
  • Fe-Cr-Al alloy Fe-Ni-Cr alloy
  • Fe- Ni—Cr—Si alloy silicon copper (Fe—Cu—Si alloy)
  • Fe—Si alloy Fe—Si—B (—Cu—Nb) alloy
  • Fe—B—Si—Cr alloy Fe—Si—Cr -Ni alloy
  • Fe-Si-Cr alloy Fe-Si-Al-Ni-Cr alloy
  • Fe-Ni-Si-Co alloy Fe-N alloy, Fe-C alloy, Fe-B alloy, Fe-P alloy
  • Ferrites stainless ferrites, Mn-Mg-based ferrites, Mn-Zn-based ferrites, Ni-Zn-based ferrites, Ni-Zn-Cu-based ferrites, Cu-Zn-based ferrites, Cu-Mg-Zn-based
  • Co-based alloys examples include Co-Ta-Zr and cobalt (Co) -based amorphous alloys.
  • Ni-based alloys which are examples of alloys, include Ni—Cr alloys.
  • an alloy body is preferable, an Fe-based alloy is more preferable, and Sendust (Fe—Si—Al alloy) is more preferable, from the viewpoint of magnetic properties.
  • the soft magnetic material preferably a single metal body, more preferably a single metal body containing an iron element in a pure substance state, still more preferably iron alone or iron powder (carbonyl iron powder). Can be mentioned.
  • the shape of the particles 8 examples include a flat shape (plate shape) and a needle shape from the viewpoint of anisotropy, and preferably from the viewpoint of good relative magnetic permeability in the plane direction (two-dimensional). Flat shape is mentioned.
  • the magnetic layer 3 may further contain non-anisotropic magnetic particles in addition to the anisotropic magnetic particles 8.
  • the non-anisotropic magnetic particles may have a shape such as a spherical shape, a granular shape, a lump shape, or a pellet shape.
  • the average particle size of the non-anisotropic magnetic particles is, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 150 ⁇ m or less.
  • the flatness (flatness) of the flat particles 8 is, for example, 8 or more, preferably 15 or more, and for example, 500 or less, preferably 450 or less.
  • the flatness is calculated as, for example, an aspect ratio obtained by dividing the average particle diameter (average length) (described later) of the particles 8 by the average thickness of the particles 8.
  • the average particle diameter (average length) of the particles 8 is, for example, 3.5 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 150 ⁇ m or less. If the particles 8 are flat, their average thickness is, for example, 0.1 ⁇ m or more, preferably 0.2 ⁇ m or more, and for example, 3.0 ⁇ m or less, preferably 2.5 ⁇ m or less.
  • binder 9 examples include a thermosetting resin and a thermoplastic resin.
  • thermosetting resin examples include epoxy resin, phenol resin, melamine resin, thermosetting polyimide resin, unsaturated polyester resin, polyurethane resin, silicone resin and the like. From the viewpoint of adhesiveness, heat resistance and the like, epoxy resin and phenol resin are preferable.
  • thermoplastic resin examples include acrylic resin, ethylene-vinyl acetate copolymer, polycarbonate resin, polyamide resin (6-nylon, 6,6-nylon, etc.), thermoplastic polyimide resin, saturated polyester resin (PET, PBT, etc.). ) And so on. Acrylic resin is preferable.
  • the binder 9 includes a combination of a thermosetting resin and a thermoplastic resin. More preferably, the combined use of an acrylic resin, an epoxy resin and a phenol resin can be mentioned. As a result, the particles 8 can be more reliably fixed around the wiring 2 in a predetermined orientation state and with a high filling.
  • the magnetic composition can also contain additives such as a thermosetting catalyst, inorganic particles, organic particles, and a cross-linking agent, if necessary.
  • the particles 8 are uniformly arranged while being oriented in the binder 9.
  • the magnetic layer 3 has a peripheral region 11 and an outer region 12 in a cross-sectional view.
  • the peripheral region 11 is a peripheral region of the wiring 2, and is located around the plurality of wirings 2 so as to come into contact with the plurality of wirings 2.
  • the peripheral region 11 has a substantially annular shape in cross section that shares the central axis with the wiring 2. More specifically, the peripheral region 11 is 1.5 times the radius of the wiring 2 (the average distance from the center (centroid) C1 of the wiring 2 to the outer peripheral surface; R1 + R2) of the magnetic layer 3 (preferably). , 1.2 times value, more preferably 1 time value, further preferably 0.8 times value, particularly preferably 0.5 times value), in the region extending radially outward from the outer peripheral surface of the wiring 2. is there.
  • the peripheral region 11 is arranged around each of the plurality of wirings 2, that is, around the first wiring 4 and the second wiring 5.
  • the peripheral region 11 includes a plurality of (two) first regions 13 and a plurality of (two) second regions 14, respectively.
  • the plurality of first regions 13 are circumferential orientation regions. That is, in the first region 13, the particles 8 are oriented along the circumferential direction (outer peripheral direction) of the wiring 2 (first wiring 4 or second wiring 5).
  • the plurality of first regions 13 are arranged on the upper side (one side in the third direction) and the lower side (the other side in the third direction) of the wiring 2 so as to face each other with the center C1 of the wiring 2 interposed therebetween. That is, the plurality of first regions 13 include an upper first region 15 arranged on the upper side of the wiring 2 and a lower first region 16 arranged on the lower side of the wiring 2. Further, the center C1 of the wiring 2 is located at the center in the vertical direction of the upper first region 15 and the lower first region 16.
  • the direction in which the relative magnetic permeability of the particles 8 is high is abbreviated as the tangent of a circle centered on the center C1 of the wiring 2.
  • Match More specifically, when the angle formed by the plane direction of the particle 8 and the tangent line of the circle in which the particle 8 is located is 15 ° or less, it is defined that the particle 8 is oriented in the circumferential direction. ..
  • the ratio of the number of particles 8 oriented in the circumferential direction to the total number of particles 8 contained in the first region 13 exceeds, for example, 50%, preferably 70% or more, and more preferably 70% or more. , 80% or more. That is, the first region 13 may contain particles 8 that are not oriented in the circumferential direction, for example, less than 50%, preferably 30% or less, and more preferably 20% or less.
  • the total area ratio of the plurality of first regions 13 is, for example, 40% or more, preferably 50% or more, more preferably 60% or more, and for example, 90% or less with respect to the entire peripheral region 11. , Preferably 80% or less.
  • the circumferential relative permeability of the first region 13 is, for example, 5 or more, preferably 10 or more, more preferably 30 or more, and for example, 500 or less.
  • the radial relative magnetic permeability is, for example, 1 or more, preferably 5 or more, and for example, 100 or less, preferably 50 or less, more preferably 25 or less.
  • the ratio of the relative magnetic permeability in the circumferential direction to the radial direction (circumferential direction / radial direction) is, for example, 2 or more, preferably 5 or more, and for example, 50 or less. If the relative magnetic permeability is in the above range, the inductance is excellent.
  • the specific magnetic permeability can be measured by, for example, an impedance analyzer (manufactured by Agilent, “4291B”) using a magnetic material test fixture.
  • the plurality of second regions 14 are circumferential non-oriented regions. That is, in the second region 14, the particles 8 are not oriented along the circumferential direction (outer peripheral direction) of the wiring 2. In other words, in the second region 14, the particles 8 are oriented or not oriented along a direction other than the circumferential direction of the wiring 2 (for example, the first direction or the radial direction).
  • the plurality of second regions 14 are arranged on one side and the other side of the wiring 2 in the first direction so as to face each other with the wiring 2 interposed therebetween. That is, the plurality of second regions 14 are located on one side of the second region 17 of the wiring 2 (first wiring 4 or the second wiring 5) arranged on one side in the first direction and on the other side of the wiring 2 in the first direction. It has a second region 18 on the other side to be arranged.
  • the second region 17 on one side and the second region 18 on the other side are substantially line-symmetrical with respect to the second virtual line L3.
  • the second virtual line L3 is a straight line that passes through the center C1 of the first wiring 4 or the second wiring and extends in the vertical direction.
  • the direction in which the relative magnetic permeability of the particles 8 is high coincides with the tangent line of the circle centered on the center C1 of the wiring 2. do not do. More specifically, when the angle formed by the plane direction of the particle 8 and the tangent line of the circle in which the particle 8 is located exceeds 15 °, it is defined that the particle 8 is not oriented in the circumferential direction. ..
  • the ratio of the number of particles 8 that are not oriented in the circumferential direction to the total number of particles 8 included in the second region 14 exceeds 50%, preferably 70% or more, and for example. , 95% or less, preferably 90% or less.
  • the second region 14 may include, for example, particles 8 oriented in the circumferential direction.
  • the ratio of the number of particles 8 oriented in the circumferential direction to the total number of particles 8 included in the second region 14 is less than 50%, preferably 30% or less, and for example, 5 % Or more, preferably 10% or more.
  • the particles 8 oriented in the circumferential direction are included, the particles 8 oriented in the circumferential direction are preferably arranged on the innermost side of the second region 14, that is, on the surface of the wiring 2.
  • the total area ratio of the plurality of second regions 14 is, for example, 10% or more, preferably 20% or more, and for example, 60% or less, preferably 50% or less, based on the entire peripheral region 11. More preferably, it is 40% or less.
  • the center C2 of the second region 14 does not exist on the first virtual line L2. That is, the center C2 is located below the first virtual line L2, preferably below the first virtual line L2 by a distance of 0.1 times the radius R, and more preferably. , Is located below the first virtual line L2 by a distance of 0.3 times the radius R. More specifically, the center C2 is preferably located 10 ⁇ m below, more preferably 30 ⁇ m below the first virtual line L2.
  • center C2 of the second region 14 is located between the first virtual line L2 and the second virtual line L3. That is, the center C2 of the second region 14 does not exist on either the first virtual line L2 or the second virtual line L3.
  • the center C2 of the second region 14 is the center of the virtual arc L1 connecting one end in the circumferential direction and the other end in the circumferential direction in the second region 14. More specifically, the center C2 of the second region 14 is the center of the virtual arc L1 connecting the radial center of one end edge in the circumferential direction and the radial center of the other end edge in the circumferential direction in the second region 14. Is.
  • the first virtual line L2 is a straight line extending in the first direction through the centers C1 of a plurality of wirings 2 adjacent to each other.
  • the intersection (top) 19 is formed by at least two types of particles 8 having different orientation directions. That is, the particles 8 (first particles) that are located relatively upward in the second region 14 and are oriented in the first direction from the circumferential direction toward the lower end side of the second region 14 in the circumferential direction of the wiring 2. ) And relatively lower side (lower side than the first particle) in the second region 14, and from the circumferential direction to the first direction toward the upper end side of the second region 14 in the circumferential direction.
  • the oriented particles 8 (second particles) form at least two sides in a substantially triangular shape, thereby forming the intersection 19.
  • the first particle and the second particle have a substantially triangular shape (preferably an acute-angled triangular shape) together with the particle 8 (third particle) oriented in the circumferential direction inside the second region 14.
  • the intersection 19 does not exist between the first wiring 4 and the second wiring 5 on the first virtual line L2 passing through the center thereof. That is, the intersection 19 is arranged below the first virtual line L2 at a position separated from the virtual arc L1. More specifically, the angle ⁇ formed by the straight line connecting the center of the intersection 19 and the center C1 of the wiring 2 and the first virtual line L2 is, for example, 15 ° or more, preferably 45 ° or more, and also. For example, it is 75 ° or less, preferably 60 ° or less.
  • the filling rate of the particles 8 is, for example, 40% by volume or more, preferably 45% by volume or more, and for example, 90 volumes. % Or less, preferably 70% by volume or less. If the filling rate is at least the above lower limit, the inductance is excellent.
  • the filling rate can be calculated by measuring the actual specific gravity, binarizing the cross-sectional view of the SEM photograph, and the like.
  • the plurality of first regions 13 and the plurality of second regions 14 are arranged so as to be adjacent to each other in the circumferential direction. Specifically, the upper first region 15, the one-sided second region 17, the lower first region 16, and the other-side second region 18 are continuous in this order in the circumferential direction.
  • the boundary (one end edge or the other end edge) in the circumferential direction between the first region 13 and the second region 14 is a virtual straight line extending radially outward from the center of the wiring 2.
  • the outer region 12 is a region other than the peripheral region 11 in the magnetic layer 3.
  • the outer region 12 is arranged outside the peripheral region 11 so as to be continuous with the peripheral region 11.
  • the particles 8 are oriented along the plane direction (particularly the first direction).
  • the direction in which the relative magnetic permeability of the particles 8 is high substantially coincides with the first direction. More specifically, the case where the angle formed by the plane direction of the particle 8 and the first direction is 15 ° or less is defined as the particle 8 being oriented in the first direction.
  • the ratio of the number of particles 8 oriented in the first direction to the total number of particles 8 contained in the outer region 12 exceeds 50%, preferably 70% or more, and more. Preferably, it is 90% or more. That is, the outer region 12 may contain less than 50%, preferably 30% or less, more preferably 10% or less of the particles 8 that are not oriented in the first direction.
  • the specific magnetic permeability in the first direction is, for example, 5 or more, preferably 10 or more, more preferably 30 or more, and for example, 500 or less.
  • the relative magnetic permeability in the vertical direction is, for example, 1 or more, preferably 5 or more, and for example, 100 or less, preferably 50 or less, more preferably 25 or less.
  • the ratio of the relative magnetic permeability in the first direction to the vertical direction (first direction / vertical direction) is, for example, 2 or more, preferably 5 or more, and for example, 50 or less. If the relative magnetic permeability is in the above range, the inductance is excellent.
  • the filling rate of the particles 8 is, for example, 40% by volume or more, preferably 45% by volume or more, and for example, 90% by volume or less, preferably 70% by volume or less. If the filling rate is at least the above lower limit, the inductance is excellent.
  • a first direction orientation region 10 including the first virtual line L2 is formed between the plurality of wirings 2 including the peripheral region 11 and the outer region 12. That is, the first direction orientation region 10 is located between the plurality of wirings 2 in the cross section of the inductor 1 cut along the first direction and the vertical direction, and includes the first virtual line L2. Specifically, the first orientation region 10 is centered on the first virtual line L2 at the vertical position, and the vertical length is 40% of the radius R1 of the lead wire 6 (preferably 50 ⁇ m). It is a region in which the particles 8 are oriented along the first direction.
  • the ratio of the number of particles 8 oriented in the first direction to the total number of particles 8 included in the first direction oriented region 10 is, for example, 85% or more, preferably 90% or more, more preferably. , 95% or more. That is, the first-direction orientation region 10 may contain particles 8 that are not oriented in the first direction, for example, 15% or less, preferably 10% or less, and more preferably 5% or less.
  • the particles 8 are not oriented in the first direction in the region adjacent to one side and the other side in the first direction of the first direction orientation region 10.
  • the first direction distance N of the first direction orientation region 10 is, for example, 500 ⁇ m or less, preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less, and for example, 10 ⁇ m or more, preferably 40 ⁇ m or more.
  • the first direction distance N of the first direction orientation region 10 is 60% or less, preferably 50% or less, more preferably 30% or less, and more preferably 30% or less with respect to the distance S between the wirings. For example, 5% or more.
  • the above ratio (N / S ⁇ 100%) is equal to or less than the above upper limit, crosstalk between the wirings 2 can be suppressed.
  • the length T 1 of the magnetic layer 3 in the first direction is, for example, 5 mm or more, preferably 10 mm or more, and for example, 5000 mm or less, preferably 2000 mm or less.
  • the length T 2 in the second direction of the magnetic layer 3 is, for example, 5 mm or more, preferably 10 mm or more, and for example, 5000 mm or less, preferably 2000 mm or less.
  • the vertical length (thickness) T 3 of the magnetic layer 3 is, for example, 100 ⁇ m or more, preferably 200 ⁇ m or more, and for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the method for manufacturing the inductor 1 includes, for example, a preparation step, a placement step, and a lamination step in order.
  • a plurality of wirings 2 and two anisotropic magnetic sheets 20 are prepared.
  • Each of the two anisotropic magnetic sheets 20 has a sheet shape extending in the plane direction and is formed of a magnetic composition.
  • the particles 8 are oriented in the plane direction.
  • two semi-cured (B stage) anisotropic magnetic sheets 20 are used.
  • anisotropic magnetic sheet 20 examples include soft magnetic thermosetting adhesive films and soft magnetic films described in JP-A-2014-165363 and JP-A-2015-92544.
  • a plurality of wirings 2 are arranged on the upper surface of one anisotropic magnetic sheet 20, and the other anisotropic magnetic sheet 20 is arranged so as to face each other above the plurality of wirings 2. To do.
  • the lower anisotropic magnetic sheet 21 is placed on a horizontal table, and subsequently, a plurality of wirings 2 are placed on the upper surface of the lower anisotropic magnetic sheet 21 in the first direction at desired intervals. Deploy.
  • the upper anisotropic magnetic sheet 22 is arranged on the lower anisotropic magnetic sheet 21 and the upper side of the plurality of wirings 2 at intervals.
  • two anisotropic magnetic sheets 20 are laminated so as to embed a plurality of wirings 2.
  • the upper anisotropic magnetic sheet 22 is pressed downward.
  • the plurality of wirings 2 are slightly subducted into the lower anisotropic magnetic sheet 21 by pressing, and the particles are submerged in the subducted portion. 8 is oriented along the plurality of wires 2. That is, the lower first region 16 is formed.
  • the upper anisotropic magnetic sheet 22 is coated along the plurality of wirings 2, and the particles 8 are oriented along the plurality of wirings 2 and laminated on the upper surface of the lower anisotropic magnetic sheet 21. .. That is, on the upper side of the wiring 2, the upper first region 15 is formed by the upper anisotropic magnetic sheet 22, and on both sides (sides) of the first direction of the wiring 2, the lower anisotropic magnetic sheet 21 is formed. In the vicinity of the contact with the upper anisotropic magnetic sheet 22, the particles 8 oriented thereto collide with each other, and as a result, the second region 14 and the intersection 19 are formed.
  • the anisotropic magnetic sheet 20 If the anisotropic magnetic sheet 20 is in a semi-cured state, it is heated. As a result, the anisotropic magnetic sheet 20 is in a cured state (C stage). Further, the contact interface 25 of the two anisotropic magnetic sheets 20 disappears, and the two anisotropic magnetic sheets 20 form one magnetic layer 3.
  • an inductor 1 including a wiring 2 having a substantially circular cross section and a magnetic layer 3 covering the wiring 2 can be obtained. That is, the inductor 1 is formed by laminating a plurality of (two) anisotropic magnetic sheets 20 so as to sandwich the wiring 2.
  • a cross-sectional view (SEM photograph) of an example of the actual inductor 1 is shown in FIG.
  • the inductor 1 is a component of an electronic device, that is, a component for manufacturing an electronic device, and is distributed as a single component without including an electronic element (chip, capacitor, etc.) or a mounting substrate on which the electronic element is mounted. , An industrially usable device.
  • the inductor 1 is mounted (embedded) in, for example, an electronic device.
  • the electronic device includes a mounting board and electronic elements (chips, capacitors, etc.) mounted on the mounting board. Then, the inductor 1 is mounted on a mounting substrate via a connecting member such as solder, is electrically connected to other electronic devices, and acts as a passive element such as a coil.
  • the particles 8 are easily oriented along the circumferential direction around the plurality of wirings 2. be able to. Therefore, since the easy axis of magnetization of the particles 8 is the same as the direction of the magnetic field lines generated around the wiring, the inductance can be improved.
  • a first-direction orientation region 10 in which the particles 8 are oriented along the first direction is formed so as to overlap with the first virtual line L2, and the distance N in the first direction of the first-direction orientation region 10 is set. , 50% or less with respect to the distance S between the wirings 2 on the first virtual line L2. That is, in the space between the wirings 2 which are the paths of the magnetic flux flowing along the first direction, the distance N of the first direction orientation region 10 is located on both sides of the other distance (that is, the first direction orientation region 10). , The region where the particles 8 are not oriented in the first direction). Therefore, the influence of magnetism from one wiring 2 (first wiring 4 or second wiring 5) to the other wiring (second wiring 5 or first wiring 4) can be reduced, and crosstalk can be suppressed.
  • each of the peripheral regions 11 of the plurality of wirings 2 has a first region 13 which is a circumferential orientation region. Therefore, the inductance can be improved.
  • each of the peripheral regions 11 of the plurality of wirings 2 has a second region 14 which is a non-oriented region in the circumferential direction. Therefore, since the magnetizing difficulty axis of the particles 8 is the same as the direction of the magnetic field lines generated around the wiring, the DC superimposition characteristic is good.
  • the center C2 in the second region 14 does not exist on the first virtual line L2. Therefore, the distance that the magnetic flux reaches from the first wiring 4 to the second wiring 5 via the second region 14 can be increased. That is, the distance through which the magnetic flux between the wirings 2 passes can be substantially increased. Therefore, the influence of magnetism on the first wiring 4 to the second wiring 5 can be reduced, and crosstalk can be further suppressed.
  • the center C2 in the second region 14 does not exist on the first virtual line L2, but for example, as shown in FIG. 5, the center C2 in the second region 14 is the first virtual line. It may exist on the line L2.
  • the embodiment shown in FIG. 5 is substantially line symmetric with respect to the first virtual line L2.
  • FIGS. 1A and 2 can be mentioned from the viewpoint of further reducing crosstalk.
  • the wiring 2 has a substantially circular shape in cross-sectional view, but the cross-sectional view shape is not particularly limited.
  • a substantially elliptical shape and a substantially rectangular shape are formed. Including), may have a substantially indefinite shape.
  • at least one side may be curved, or at least one corner may be curved.
  • the peripheral region 11 is the average of the longest length and the shortest length from the center of gravity C1 of the wiring 2 to the outer peripheral surface of the wiring 2 ([longest length + shortest length] / 2). This is a region that is 1.5 times the value of the above and extends outward from the outer peripheral surface of the wiring 2.
  • two wirings 2 are provided, but the number thereof is not limited and may be three or more.
  • each wiring 2 has a substantially U-shape in a plan view, but the shape is not limited and is appropriately set.
  • the magnetic layer 3 may also have an alignment mark.
  • the proportion of the anisotropic magnetic particles 8 in the magnetic layer 3 may be uniform in the magnetic layer 3 and may increase as the distance from each wiring 2 increases, or It may be lower.
  • the inductor of the present invention can be used as a passive element such as a voltage conversion member, for example.

Abstract

This inductor (1) comprises a plurality of wires (2) and a magnetic layer (3). The plurality of wires (2) are spaced apart from each other in a first direction. Each of the plurality of wires (2) has a conductor (6) and an insulating layer (7). A first direction aligned region (10) is formed between an adjacent plurality of wires (2) so as to include a virtual line (L2) that passes through the centers (C1) of the wires (2), the first direction aligned region (10) having anisotropic magnetic particles (8) arranged therein along a first direction. The range (N) of the first direction aligned region (10) is at most 60% of the space (S) between the wires (2) on the first virtual line (L2).

Description

インダクタInductor
 本発明は、インダクタに関する。 The present invention relates to an inductor.
 インダクタは、電子機器などに搭載されて、電圧変換部材などの受動素子として用いられることが知られている。 It is known that inductors are mounted on electronic devices and used as passive elements such as voltage conversion members.
 例えば、磁性体材料からなる直方体状のチップ本体部と、そのチップ本体部の内部に埋設された銅などの内部導体とを備え、チップ本体部の断面形状と内部導体の断面形状とが相似形であるインダクタが提案されている(特許文献1参照。)。すなわち、特許文献1のインダクタでは、断面視矩形状(直方体状)の配線(内部導体)の周囲に磁性体材料が被覆されている。 For example, it is provided with a rectangular parallelepiped chip body made of a magnetic material and an internal conductor such as copper embedded inside the chip body, and the cross-sectional shape of the chip body and the cross-sectional shape of the internal conductor are similar. An inductor has been proposed (see Patent Document 1). That is, in the inductor of Patent Document 1, a magnetic material is coated around a wiring (inner conductor) having a rectangular parallelepiped shape (rectangular parallelepiped shape).
特開平10-144526号公報Japanese Unexamined Patent Publication No. 10-144526
 ところで、磁性体材料として、扁平状磁性粒子などの異方性磁性粒子を用いて、配線の周囲に、その異方性磁性粒子を配向させて、インダクタのインダクタンスを向上させることが検討されている。 By the way, it has been studied to use anisotropic magnetic particles such as flat magnetic particles as a magnetic material and to orient the anisotropic magnetic particles around the wiring to improve the inductance of the inductor. ..
 しかしながら、特許文献1のインダクタでは、配線が、断面視矩形状であるため、角部などの存在によって、その配線の周囲に異方性磁性粒子を配向させにくい不具合が生じる。そのため、インダクタンスの向上が不十分となる場合がある。 However, in the inductor of Patent Document 1, since the wiring has a rectangular shape in cross section, there is a problem that it is difficult to align the anisotropic magnetic particles around the wiring due to the presence of corners and the like. Therefore, the improvement of the inductance may be insufficient.
 また、複数の配線を備えるインダクタも要望されている。しかしながら、インダクタが複数の配線を備えると、異方性磁性粒子によって、隣り合う配線同士の磁気が影響し合い、ノイズが発生する不具合(クロストーク)が生じる。 There is also a demand for inductors with multiple wires. However, when the inductor is provided with a plurality of wires, the anisotropic magnetic particles affect the magnetism of the adjacent wires, causing a problem (crosstalk) in which noise is generated.
 本発明は、インダクタンスが良好であり、クロストークを抑制できるインダクタを提供する。 The present invention provides an inductor having good inductance and capable of suppressing crosstalk.
 本発明[1]は、複数の配線と、前記複数の配線を被覆する磁性層とを備え、前記複数の配線は、第1方向において、互いに間隔を隔てて配置されており、前記複数の配線は、それぞれ、導線と、前記導線を被覆する絶縁層とを備え、前記磁性層は、異方性磁性粒子と、バインダとを含有し、互いに隣り合う前記複数の配線間において、それら配線の中心を通る仮想線を含むように、前記異方性磁性粒子が前記第1方向に沿って配向する第1方向配向領域が形成されており、前記第1方向配向領域の距離が、前記仮想線上の前記配線間の間隔に対して60%以下である、インダクタを含む。 The present invention [1] includes a plurality of wirings and a magnetic layer covering the plurality of wirings, and the plurality of wirings are arranged at intervals from each other in the first direction, and the plurality of wirings. Each comprises a lead wire and an insulating layer covering the lead wire, and the magnetic layer contains anisotropic magnetic particles and a binder, and is the center of the wires between the plurality of wires adjacent to each other. A first-direction alignment region in which the anisotropic magnetic particles are oriented along the first direction is formed so as to include a virtual line passing through the above-mentioned virtual line, and the distance of the first-direction orientation region is on the virtual line. Includes an inductor that is 60% or less of the spacing between the wires.
 このインダクタによれば、複数の配線と、複数の配線を被覆する磁性層とを備えるため、複数の配線の周辺に、異方性磁性粒子が外周方向に沿って容易に配向することができる。よって、インダクタンスを向上させることができる。 According to this inductor, since a plurality of wirings and a magnetic layer covering the plurality of wirings are provided, the anisotropic magnetic particles can be easily oriented along the outer peripheral direction around the plurality of wirings. Therefore, the inductance can be improved.
 また、複数の配線の中心を通る仮想線を含むように、異方性磁性粒子が第1方向に沿って配向する第1方向配向領域が形成されており、第1方向配向領域の距離が、前記仮想線上の配線間の間隔に対して50%以下である。すなわち、第1方向に沿って流れる磁束の通り道である配線間のスペースにおいて、第1方向配向領域の距離が、それ以外の距離よりも短い。よって、一方の配線から他方の配線への磁気に関する影響を低減でき、クロストークを抑制することができる。 Further, a first-direction alignment region in which the anisotropic magnetic particles are oriented along the first direction is formed so as to include an imaginary line passing through the centers of a plurality of wirings, and the distance between the first-direction orientation regions is increased. It is 50% or less with respect to the distance between the wirings on the virtual line. That is, in the space between the wirings, which is the path of the magnetic flux flowing along the first direction, the distance of the first direction orientation region is shorter than the other distances. Therefore, the influence of magnetism from one wiring to the other wiring can be reduced, and crosstalk can be suppressed.
 本発明[2]は、前記複数の配線の周囲には、それぞれ、前記異方性磁性粒子が前記配線の外周方向に沿って配向する第1領域を有する、[1]に記載のインダクタを含む。よって、インダクタンスを向上させることができる。 The present invention [2] includes the inductor according to [1], each of which has a first region around the plurality of wirings in which the anisotropic magnetic particles are oriented along the outer peripheral direction of the wiring. .. Therefore, the inductance can be improved.
 本発明[3]は、前記複数の配線の周囲には、それぞれ、前記異方性磁性粒子が前記外周方向に沿って配向しない第2領域をさらに有する、[2]に記載のインダクタを含む。
よって、直流重畳特性を向上させることができる。
The present invention [3] includes the inductor according to [2], each of which has a second region around the plurality of wirings, wherein the anisotropic magnetic particles are not oriented along the outer peripheral direction.
Therefore, the DC superimposition characteristic can be improved.
 本発明のインダクタによれば、インダクタンスが良好であり、クロストークを抑制することができる。 According to the inductor of the present invention, the inductance is good and crosstalk can be suppressed.
図1A-Bは、本発明のインダクタの一実施形態であって、図1Aは、平面視図、図1Bは、図1AのA-A断面図を示す。1A-B is an embodiment of the inductor of the present invention, FIG. 1A is a plan view, and FIG. 1B is a sectional view taken along the line AA of FIG. 1A. 図2は、図1Bの破線部の部分拡大図を示す。FIG. 2 shows a partially enlarged view of the broken line portion of FIG. 1B. 図3A-Bは、図1A-Bに示すインダクタの製造工程であって、図3Aは、配置工程、図3Bは、積層工程を示す。3A-B show the inductor manufacturing process shown in FIGS. 1A-B, FIG. 3A shows an arrangement process, and FIG. 3B shows a lamination process. 図4は、図1A-Bに示すインダクタの実際のSEM写真断面図を示す。FIG. 4 shows an actual SEM photographic sectional view of the inductor shown in FIGS. 1A-B. 図5は、本発明のインダクタの変形例(第2領域の中心部が第1仮想線上に位置する形態)の断面図を示す。FIG. 5 shows a cross-sectional view of a modified example of the inductor of the present invention (a form in which the central portion of the second region is located on the first virtual line).
 図1Aにおいて、紙面左右方向は、第1方向であって、紙面左側が第1方向一方側、紙面右側が第1方向他方側である。紙面上下方向は、第2方向(第1方向と直交する方向)であって、紙面上側が第2方向一方側(配線軸方向一方向)、紙面下側が第2方向他方側(配線軸他方向)である。紙面紙厚方向は、上下方向(第1方向および第2方向と直交する第3方向、厚み方向)であって、紙面手前側が上側(第3方向一方側、厚み方向一方側)、紙面奥側が下側(第3方向他方側、厚み方向他方側)である。具体的には、各図の方向矢印に準拠する。 In FIG. 1A, the left-right direction of the paper surface is the first direction, the left side of the paper surface is one side of the first direction, and the right side of the paper surface is the other side of the first direction. The vertical direction of the paper surface is the second direction (direction orthogonal to the first direction), the upper side of the paper surface is one side of the second direction (one direction in the wiring axis direction), and the lower side of the paper surface is the other side of the second direction (the other direction of the wiring axis). ). The paper thickness direction is the vertical direction (third direction orthogonal to the first and second directions, thickness direction), the front side of the paper is the upper side (one side of the third direction, one side of the thickness direction), and the back side of the paper is. The lower side (the other side in the third direction, the other side in the thickness direction). Specifically, it conforms to the direction arrows in each figure.
  <一実施形態>
 1.インダクタ
 本発明のインダクタの一実施形態を、図1A-図2を参照して説明する。
<One Embodiment>
1. 1. Inductor An embodiment of the inductor of the present invention will be described with reference to FIGS. 1A-2.
 図1A-Bに示すように、インダクタ1は、面方向(第1方向および第2方向)に延びる平面視略矩形状を有する。 As shown in FIGS. 1A and 1B, the inductor 1 has a substantially rectangular shape in a plan view extending in the plane direction (first direction and second direction).
 インダクタ1は、図1A-図2に示すように、複数(2つ)の配線2と、磁性層3とを備える。 As shown in FIGS. 1A-2, the inductor 1 includes a plurality of (two) wirings 2 and a magnetic layer 3.
 (配線)
 複数の配線2は、それぞれ、第1配線4と、第1配線4と幅方向(第1方向)に間隔を隔てて配置される第2配線5とを備える。
(wiring)
Each of the plurality of wirings 2 includes a first wiring 4 and a second wiring 5 arranged at intervals in the width direction (first direction) from the first wiring 4.
 第1配線4は、図1A-Bに示すように、第2方向に長尺に延び、例えば、平面視略U字形状を有する。第1配線4は、図2に示すように、断面視略円形状を有する。 As shown in FIGS. 1A and 1B, the first wiring 4 extends long in the second direction and has, for example, a substantially U-shape in a plan view. As shown in FIG. 2, the first wiring 4 has a substantially circular shape in cross section.
 第1配線4は、導線6と、それを被覆する絶縁層7とを備える。 The first wiring 4 includes a lead wire 6 and an insulating layer 7 that covers the lead wire 6.
 導線6は、第2方向に長尺に延び、例えば、平面視略U字形状を有する。また、導線6は、第1配線4と中心軸線を共有する断面視略円形状を有する。 The lead wire 6 extends long in the second direction and has, for example, a substantially U-shape in a plan view. Further, the lead wire 6 has a substantially circular shape in cross section that shares the central axis with the first wiring 4.
 導線6の材料は、例えば、銅、銀、金、アルミニウム、ニッケル、これらの合金などの金属導体であり、好ましくは、銅が挙げられる。導線6は、単層構造であってもよく、コア導体(例えば、銅)の表面にめっき(例えば、ニッケル)などがされた複層構造であってもよい。 The material of the lead wire 6 is, for example, a metal conductor such as copper, silver, gold, aluminum, nickel, and an alloy thereof, and copper is preferable. The conducting wire 6 may have a single-layer structure, or may have a multi-layer structure in which the surface of a core conductor (for example, copper) is plated (for example, nickel).
 導線6の半径R1は、例えば、25μm以上、好ましくは、50μm以上であり、また、例えば、2000μm以下、好ましくは、200μm以下である。 The radius R1 of the lead wire 6 is, for example, 25 μm or more, preferably 50 μm or more, and for example, 2000 μm or less, preferably 200 μm or less.
 絶縁層7は、導線6を薬品や水から保護し、また、導線6の短絡を防止するための層である。絶縁層7は、導線6の外周面全面を被覆するように、配置されている。 The insulating layer 7 is a layer for protecting the lead wire 6 from chemicals and water and preventing a short circuit of the lead wire 6. The insulating layer 7 is arranged so as to cover the entire outer peripheral surface of the conducting wire 6.
 絶縁層7は、第1配線4と中心軸線(中心C1)を共有する断面視略円環形状を有する。 The insulating layer 7 has a substantially annular shape in cross section that shares the central axis (center C1) with the first wiring 4.
 絶縁層7の材料としては、例えば、ポリビニルホルマール、ポリエステル、ポリエステルイミド、ポリアミド(ナイロンを含む)、ポリイミド、ポリアミドイミド、ポリウレタンなどの絶縁性樹脂が挙げられる。これらは、1種単独で用いてもよく、2種以上併用してもよい。 Examples of the material of the insulating layer 7 include insulating resins such as polyvinylformal, polyester, polyesterimide, polyamide (including nylon), polyimide, polyamideimide, and polyurethane. These may be used alone or in combination of two or more.
 絶縁層7は、単層から構成されていてもよく、複数の層から構成されていてもよい。 The insulating layer 7 may be composed of a single layer or may be composed of a plurality of layers.
 絶縁層7の厚みR2は、円周方向のいずれの位置においても配線2の径方向において略均一であり、例えば、1μm以上、好ましくは、3μm以上であり、また、例えば、100μm以下、好ましくは、50μm以下である。 The thickness R2 of the insulating layer 7 is substantially uniform in the radial direction of the wiring 2 at any position in the circumferential direction, for example, 1 μm or more, preferably 3 μm or more, and for example, 100 μm or less, preferably 100 μm or less. , 50 μm or less.
 絶縁層7の厚みR2に対する、導線6の半径R1の比(R1/R2)は、例えば、1以上、好ましくは、10以上であり、例えば、200以下、好ましくは、100以下である。 The ratio (R1 / R2) of the radius R1 of the lead wire 6 to the thickness R2 of the insulating layer 7 is, for example, 1 or more, preferably 10 or more, and for example, 200 or less, preferably 100 or less.
 第1配線4の半径(R1+R2)は、例えば、25μm以上、好ましくは、50μm以上であり、また、例えば、2000μm以下、好ましくは、200μm以下である。 The radius (R1 + R2) of the first wiring 4 is, for example, 25 μm or more, preferably 50 μm or more, and for example, 2000 μm or less, preferably 200 μm or less.
 第1配線4が略U字形状である場合、第1配線4の中心間距離D2は、後述する複数の配線2間の中心間距離D1と同一距離であり、例えば、20μm以上、好ましくは、50μm以上であり、また、例えば、3000μm以下、好ましくは、2000μm以下である。 When the first wiring 4 has a substantially U-shape, the center-to-center distance D2 of the first wiring 4 is the same distance as the center-to-center distance D1 between a plurality of wirings 2 described later, and is, for example, 20 μm or more, preferably 20 μm or more. It is 50 μm or more, and is, for example, 3000 μm or less, preferably 2000 μm or less.
 第2配線5は、第1配線4と同一形状であり、同一の構成、寸法および材料を備える。すなわち、第2配線5は、第1配線4と同様に、導線6と、それを被覆する絶縁層7とを備える。 The second wiring 5 has the same shape as the first wiring 4 and has the same configuration, dimensions, and materials. That is, the second wiring 5 includes a lead wire 6 and an insulating layer 7 covering the lead wire 6 as in the first wiring 4.
 第1配線4と第2配線5との間隔Sは、第1配線4の外周縁と、第2配線5の外周縁との最短距離であり、すなわち、第1配線4と第2配線5との間に位置する磁性層3における第1仮想線上L2の距離である。具体的には、配線2(4、5)間の間隔Sは、例えば、20μm以上、好ましくは、70μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。 The distance S between the first wiring 4 and the second wiring 5 is the shortest distance between the outer peripheral edge of the first wiring 4 and the outer peripheral edge of the second wiring 5, that is, the first wiring 4 and the second wiring 5 It is the distance of L2 on the first virtual line in the magnetic layer 3 located between. Specifically, the interval S between the wirings 2 (4, 5) is, for example, 20 μm or more, preferably 70 μm or more, and for example, 2000 μm or less, preferably 1000 μm or less.
 第1配線4と第2配線5との中心間距離D1は、例えば、20μm以上、好ましくは、50μm以上であり、また、例えば、3000μm以下、好ましくは、2000μm以下である。 The distance D1 between the centers of the first wiring 4 and the second wiring 5 is, for example, 20 μm or more, preferably 50 μm or more, and for example, 3000 μm or less, preferably 2000 μm or less.
 (磁性層)
 磁性層3は、インダクタンスを向上させるための層である。
(Magnetic layer)
The magnetic layer 3 is a layer for improving the inductance.
 磁性層3は、複数の配線2の外周面全面を被覆するように、配置されている。磁性層3は、インダクタ1の外形をなす。具体的には、磁性層3は、面方向(第1方向および第2方向)に延びる平面視略矩形状を有する。また、磁性層3は、その第2方向他方面において、複数の配線2の第2方向端縁を露出する。 The magnetic layer 3 is arranged so as to cover the entire outer peripheral surface of the plurality of wirings 2. The magnetic layer 3 forms the outer shape of the inductor 1. Specifically, the magnetic layer 3 has a substantially rectangular shape in a plan view extending in the plane direction (first direction and second direction). Further, the magnetic layer 3 exposes the second-direction end edges of the plurality of wirings 2 on the other surface in the second direction.
 磁性層3は、異方性磁性粒子8およびバインダ9を含有する磁性組成物から形成されている。 The magnetic layer 3 is formed of a magnetic composition containing anisotropic magnetic particles 8 and a binder 9.
 異方性磁性粒子(以下、「粒子」とも略する。)8を構成する磁性材料としては、軟磁性体、硬磁性体が挙げられる。好ましくは、インダクタンスの観点から、軟磁性体が挙げられる。 Examples of the magnetic material constituting the anisotropic magnetic particle (hereinafter, also abbreviated as “particle”) 8 include a soft magnetic material and a hard magnetic material. A soft magnetic material is preferably used from the viewpoint of inductance.
 軟磁性体としては、例えば、1種類の金属元素を純物質の状態で含む単一金属体、例えば、1種類以上の金属元素(第1金属元素)と、1種類以上の金属元素(第2金属元素)および/または非金属元素(炭素、窒素、ケイ素、リンなど)との共融体(混合物)である合金体が挙げられる。これらは、単独または併用することができる。 Examples of the soft magnetic material include a single metal body containing one kind of metal element in a pure substance state, for example, one or more kinds of metal elements (first metal element) and one or more kinds of metal elements (second metal element). Examples thereof include alloys that are eutectic (mixtures) with metallic elements) and / or non-metallic elements (carbon, nitrogen, silicon, phosphorus, etc.). These can be used alone or in combination.
 単一金属体としては、例えば、1種類の金属元素(第1金属元素)のみからなる金属単体が挙げられる。第1金属元素としては、例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、その他、軟磁性体の第1金属元素として含有することが可能な金属元素の中から適宜選択される。 Examples of the single metal body include a single metal composed of only one kind of metal element (first metal element). The first metal element is appropriately selected from, for example, iron (Fe), cobalt (Co), nickel (Ni), and other metal elements that can be contained as the first metal element of the soft magnetic material. ..
 また、単一金属体としては、例えば、1種類の金属元素のみを含むコアと、そのコアの表面の一部または全部を修飾する無機物および/または有機物を含む表面層とを含む形態、例えば、第1金属元素を含む有機金属化合物や無機金属化合物が分解(熱分解など)された形態などが挙げられる。後者の形態として、より具体的には、第1金属元素として鉄を含む有機鉄化合物(具体的には、カルボニル鉄)が熱分解された鉄粉(カルボニル鉄粉と称される場合がある)などが挙げられる。なお、1種類の金属元素のみを含む部分を修飾する無機物および/または有機物を含む層の位置は、上記のような表面に限定されない。なお、単一金属体を得ることができる有機金属化合物や無機金属化合物としては、特に制限されず、軟磁性体の単一金属体を得ることができる公知乃至慣用の有機金属化合物や無機金属化合物から適宜選択することができる。 The single metal body includes, for example, a core containing only one kind of metal element and a surface layer containing an inorganic substance and / or an organic substance that modifies a part or all of the surface of the core, for example. Examples thereof include an organic metal compound containing a first metal element and a form in which an inorganic metal compound is decomposed (thermal decomposition, etc.). In the latter form, more specifically, iron powder obtained by thermally decomposing an organic iron compound (specifically, carbonyl iron) containing iron as the first metal element (sometimes referred to as carbonyl iron powder). And so on. The position of the layer containing the inorganic substance and / or the organic substance that modifies the portion containing only one kind of metal element is not limited to the above-mentioned surface. The organometallic compound or inorganic metal compound capable of obtaining a single metal body is not particularly limited, and a known or commonly used organometallic compound or inorganic metal compound capable of obtaining a soft magnetic single metal body is not particularly limited. Can be appropriately selected from.
 合金体は、1種類以上の金属元素(第1金属元素)と、1種類以上の金属元素(第2金属元素)および/または非金属元素(炭素、窒素、ケイ素、リンなど)との共融体であり、軟磁性体の合金体として利用することができるものであれば特に制限されない。 The alloy body is a eutectic of one or more kinds of metal elements (first metal element) and one or more kinds of metal elements (second metal element) and / or non-metal elements (carbon, nitrogen, silicon, phosphorus, etc.). It is not particularly limited as long as it is a body and can be used as an alloy body of a soft magnetic material.
 第1金属元素は、合金体における必須元素であり、例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)などが挙げられる。なお、第1金属元素がFeであれば、合金体は、Fe系合金とされ、第1金属元素がCoであれば、合金体は、Co系合金とされ、第1金属元素がNiであれば、合金体は、Ni系合金とされる。 The first metal element is an essential element in the alloy body, and examples thereof include iron (Fe), cobalt (Co), and nickel (Ni). If the first metal element is Fe, the alloy body is an Fe-based alloy, and if the first metal element is Co, the alloy body is a Co-based alloy, and the first metal element is Ni. For example, the alloy body is a Ni-based alloy.
 第2金属元素は、合金体に副次的に含有される元素(副成分)であり、第1金属元素に相溶(共融)する金属元素であって、例えば、鉄(Fe)(第1金属元素がFe以外である場合)、コバルト(Co)(第1金属元素がCo以外である場合)、ニッケル(Ni)(第1金属元素がNi以外である場合)、クロム(Cr)、アルミニウム(Al)、ケイ素(Si)、銅(Cu)、銀(Ag)、マンガン(Mn)、カルシウム(Ca)、バリウム(Ba)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、モリブデン(Mo)、タングステン(W)、ルテニウム(Ru)、ロジウム(Rh)、亜鉛(Zn)、ガリウム(Ga)、インジウム(In)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、スカンジウム(Sc)、イットリウム(Y)、ストロンチウム(Sr)、各種希土類元素などが挙げられる。これらは、単独使用または2種以上併用することができる。 The second metal element is an element (sub-component) secondarily contained in the alloy body, and is a metal element that is compatible (cofusable) with the first metal element. For example, iron (Fe) (the first). 1 When the metal element is other than Fe), Cobalt (Co) (when the first metal element is other than Co), Nickel (Ni) (when the first metal element is other than Ni), Chromium (Cr), Aluminum (Al), Silicon (Si), Copper (Cu), Silver (Ag), Manganese (Mn), Calcium (Ca), Barium (Ba), Titanium (Ti), Zirconium (Zr), Hafnium (Hf), Vanadium (V), Niob (Nb), Tantal (Ta), Molybdenum (Mo), Tungsten (W), Ruthenium (Ru), Rodium (Rh), Zinc (Zn), Gallium (Ga), Indium (In), Examples thereof include germanium (Ge), tin (Sn), lead (Pb), scandium (Sc), ruthenium (Y), strontium (Sr), and various rare earth elements. These can be used alone or in combination of two or more.
 非金属元素は、合金体に副次的に含有される元素(副成分)であり、第1金属元素に相溶(共融)する非金属元素であって、例えば、ホウ素(B)、炭素(C)、窒素(N)、ケイ素(Si)、リン(P)、硫黄(S)などが挙げられる。これらは、単独使用または2種以上併用することができる。 The non-metal element is an element (sub-component) secondarily contained in the alloy body, and is a non-metal element that is compatible (combined) with the first metal element. For example, boron (B) and carbon. Examples thereof include (C), nitrogen (N), silicon (Si), phosphorus (P) and sulfur (S). These can be used alone or in combination of two or more.
 合金体の一例であるFe系合金として、例えば、磁性ステンレス(Fe-Cr-Al-Si合金)(電磁ステンレスを含む)、センダスト(Fe-Si-Al合金)(スーパーセンダストを含む)、パーマロイ(Fe-Ni合金)、Fe-Ni-Mo合金、Fe-Ni-Mo-Cu合金、Fe-Ni-Co合金、Fe-Cr合金、Fe-Cr-Al合金、Fe-Ni-Cr合金、Fe-Ni-Cr-Si合金、ケイ素銅(Fe-Cu-Si合金)、Fe-Si合金、Fe-Si―B(-Cu-Nb)合金、Fe-B-Si-Cr合金、Fe-Si-Cr-Ni合金、Fe-Si-Cr合金、Fe-Si-Al-Ni-Cr合金、Fe-Ni-Si-Co合金、Fe-N合金、Fe-C合金、Fe-B合金、Fe-P合金、フェライト(ステンレス系フェライト、さらには、Mn-Mg系フェライト、Mn-Zn系フェライト、Ni-Zn系フェライト、Ni-Zn-Cu系フェライト、Cu-Zn系フェライト、Cu-Mg-Zn系フェライトなどのソフトフェライトを含む)、パーメンジュール(Fe-Co合金)、Fe-Co-V合金、Fe基アモルファス合金などが挙げられる。 Examples of Fe-based alloys that are examples of alloys include magnetic stainless steel (Fe-Cr-Al-Si alloy) (including electromagnetic stainless steel), sentust (Fe-Si-Al alloy) (including super sentust), and permalloy (including supersendust). Fe-Ni alloy), Fe-Ni-Mo alloy, Fe-Ni-Mo-Cu alloy, Fe-Ni-Co alloy, Fe-Cr alloy, Fe-Cr-Al alloy, Fe-Ni-Cr alloy, Fe- Ni—Cr—Si alloy, silicon copper (Fe—Cu—Si alloy), Fe—Si alloy, Fe—Si—B (—Cu—Nb) alloy, Fe—B—Si—Cr alloy, Fe—Si—Cr -Ni alloy, Fe-Si-Cr alloy, Fe-Si-Al-Ni-Cr alloy, Fe-Ni-Si-Co alloy, Fe-N alloy, Fe-C alloy, Fe-B alloy, Fe-P alloy , Ferrites (stainless ferrites, Mn-Mg-based ferrites, Mn-Zn-based ferrites, Ni-Zn-based ferrites, Ni-Zn-Cu-based ferrites, Cu-Zn-based ferrites, Cu-Mg-Zn-based ferrites, etc. (Including soft ferrite), permenzur (Fe—Co alloy), Fe—Co—V alloy, Fe-based amorphous alloy and the like.
 合金体の一例であるCo系合金としては、例えば、Co-Ta-Zr、コバルト(Co)基アモルファス合金などが挙げられる。 Examples of Co-based alloys that are examples of alloys include Co-Ta-Zr and cobalt (Co) -based amorphous alloys.
 合金体の一例であるNi系合金としては、例えば、Ni-Cr合金などが挙げられる。 Examples of Ni-based alloys, which are examples of alloys, include Ni—Cr alloys.
 これら軟磁性体の中でも、磁気特性の点から、好ましくは、合金体、より好ましくは、Fe系合金、さらに好ましくは、センダスト(Fe-Si-Al合金)が挙げられる。また、軟磁性体として、好ましくは、単一金属体、より好ましくは、鉄元素を純物質の状態で含む単一金属体、さらに好ましくは、鉄単体、あるいは、鉄粉(カルボニル鉄粉)が挙げられる。 Among these soft magnetic materials, an alloy body is preferable, an Fe-based alloy is more preferable, and Sendust (Fe—Si—Al alloy) is more preferable, from the viewpoint of magnetic properties. Further, as the soft magnetic material, preferably a single metal body, more preferably a single metal body containing an iron element in a pure substance state, still more preferably iron alone or iron powder (carbonyl iron powder). Can be mentioned.
 粒子8の形状としては、異方性の観点から、例えば、扁平状(板状)、針状などが挙げられ、好ましくは、面方向(二次元)に比透磁率が良好である観点から、扁平状が挙げられる。なお、磁性層3は、異方性磁性粒子8に加え、非異方性磁性粒子をさらに含有することもできる。非異方性磁性粒子は、例えば、球状、顆粒状、塊状、ペレット状などの形状を有していてもよい。非異方性磁性粒子の平均粒子径は、例えば、0.1μm以上、好ましくは、0.5μm以上であり、また、例えば、200μm以下、好ましくは、150μm以下である。 Examples of the shape of the particles 8 include a flat shape (plate shape) and a needle shape from the viewpoint of anisotropy, and preferably from the viewpoint of good relative magnetic permeability in the plane direction (two-dimensional). Flat shape is mentioned. The magnetic layer 3 may further contain non-anisotropic magnetic particles in addition to the anisotropic magnetic particles 8. The non-anisotropic magnetic particles may have a shape such as a spherical shape, a granular shape, a lump shape, or a pellet shape. The average particle size of the non-anisotropic magnetic particles is, for example, 0.1 μm or more, preferably 0.5 μm or more, and for example, 200 μm or less, preferably 150 μm or less.
 なお、扁平状の粒子8の扁平率(扁平度)は、例えば、8以上、好ましくは、15以上であり、また、例えば、500以下、好ましくは、450以下である。扁平率は、例えば、粒子8の平均粒子径(平均長さ)(後述)を粒子8の平均厚さで除したアスペクト比として算出される。 The flatness (flatness) of the flat particles 8 is, for example, 8 or more, preferably 15 or more, and for example, 500 or less, preferably 450 or less. The flatness is calculated as, for example, an aspect ratio obtained by dividing the average particle diameter (average length) (described later) of the particles 8 by the average thickness of the particles 8.
 粒子8(異方性磁性粒子)の平均粒子径(平均長さ)は、例えば、3.5μm以上、好ましくは、10μm以上であり、また、例えば、200μm以下、好ましくは、150μm以下である。粒子8が扁平状であれば、その平均厚みが、例えば、0.1μm以上、好ましくは、0.2μm以上であり、また、例えば、3.0μm以下、好ましくは、2.5μm以下である。 The average particle diameter (average length) of the particles 8 (anisotropic magnetic particles) is, for example, 3.5 μm or more, preferably 10 μm or more, and for example, 200 μm or less, preferably 150 μm or less. If the particles 8 are flat, their average thickness is, for example, 0.1 μm or more, preferably 0.2 μm or more, and for example, 3.0 μm or less, preferably 2.5 μm or less.
 バインダ9としては、例えば、熱硬化性樹脂、熱可塑性樹脂が挙げられる。 Examples of the binder 9 include a thermosetting resin and a thermoplastic resin.
 熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、熱硬化性ポリイミド樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂などが挙げられる。接着性、耐熱性などの観点から、好ましくは、エポキシ樹脂、フェノール樹脂が挙げられる。 Examples of the thermosetting resin include epoxy resin, phenol resin, melamine resin, thermosetting polyimide resin, unsaturated polyester resin, polyurethane resin, silicone resin and the like. From the viewpoint of adhesiveness, heat resistance and the like, epoxy resin and phenol resin are preferable.
 熱可塑性樹脂としては、例えば、アクリル樹脂、エチレン-酢酸ビニル共重合体、ポリカーボネート樹脂、ポリアミド樹脂(6-ナイロン、6,6-ナイロンなど)、熱可塑性ポリイミド樹脂、飽和ポリエステル樹脂(PET、PBTなど)などが挙げられる。好ましくは、アクリル樹脂が挙げられる。 Examples of the thermoplastic resin include acrylic resin, ethylene-vinyl acetate copolymer, polycarbonate resin, polyamide resin (6-nylon, 6,6-nylon, etc.), thermoplastic polyimide resin, saturated polyester resin (PET, PBT, etc.). ) And so on. Acrylic resin is preferable.
 好ましくは、バインダ9として、熱硬化性樹脂および熱可塑性樹脂の併用が挙げられる。より好ましくは、アクリル樹脂、エポキシ樹脂およびフェノール樹脂の併用が挙げられる。これにより、粒子8を所定の配向状態で、かつ、高充填で、配線2の周囲により確実に固定できる。 Preferably, the binder 9 includes a combination of a thermosetting resin and a thermoplastic resin. More preferably, the combined use of an acrylic resin, an epoxy resin and a phenol resin can be mentioned. As a result, the particles 8 can be more reliably fixed around the wiring 2 in a predetermined orientation state and with a high filling.
 また、磁性組成物は、必要に応じて、熱硬化触媒、無機粒子、有機粒子、架橋剤などの添加剤を含有することもできる。 Further, the magnetic composition can also contain additives such as a thermosetting catalyst, inorganic particles, organic particles, and a cross-linking agent, if necessary.
 磁性層3では、粒子8がバインダ9内に配向しながら均一に配置されている。 In the magnetic layer 3, the particles 8 are uniformly arranged while being oriented in the binder 9.
 磁性層3は、断面視において、周辺領域11と、外側領域12とを有する。 The magnetic layer 3 has a peripheral region 11 and an outer region 12 in a cross-sectional view.
 周辺領域11は、配線2の周辺領域であって、複数の配線2と接触するように複数の配線2の周囲に位置する。周辺領域11は、配線2と中心軸線を共有する断面視略円環状を有する。より具体的には、周辺領域11は、磁性層3のうち、配線2の半径(配線2の中心(重心)C1から外周面までの距離の平均;R1+R2)の1.5倍値(好ましくは、1.2倍値、より好ましくは、1倍値、さらに好ましくは、0.8倍値、とりわけ好ましくは、0.5倍値)、配線2の外周面から径方向外側に進んだ領域である。 The peripheral region 11 is a peripheral region of the wiring 2, and is located around the plurality of wirings 2 so as to come into contact with the plurality of wirings 2. The peripheral region 11 has a substantially annular shape in cross section that shares the central axis with the wiring 2. More specifically, the peripheral region 11 is 1.5 times the radius of the wiring 2 (the average distance from the center (centroid) C1 of the wiring 2 to the outer peripheral surface; R1 + R2) of the magnetic layer 3 (preferably). , 1.2 times value, more preferably 1 time value, further preferably 0.8 times value, particularly preferably 0.5 times value), in the region extending radially outward from the outer peripheral surface of the wiring 2. is there.
 周辺領域11は、複数の配線2のそれぞれの周囲、すなわち、第1配線4および第2配線5の周囲に配置されている。 The peripheral region 11 is arranged around each of the plurality of wirings 2, that is, around the first wiring 4 and the second wiring 5.
 周辺領域11は、それぞれ、複数(2つ)の第1領域13と、複数(2つ)の第2領域14とを備える。 The peripheral region 11 includes a plurality of (two) first regions 13 and a plurality of (two) second regions 14, respectively.
 複数の第1領域13は、円周方向配向領域である。すなわち、第1領域13では、粒子8が配線2(第1配線4または第2配線5)の円周方向(外周方向)に沿って配向する。 The plurality of first regions 13 are circumferential orientation regions. That is, in the first region 13, the particles 8 are oriented along the circumferential direction (outer peripheral direction) of the wiring 2 (first wiring 4 or second wiring 5).
 複数の第1領域13は、配線2の上側(第3方向一方側)および下側(第3方向他方側)に、配線2の中心C1を挟んで互いに対向配置されている。すなわち、複数の第1領域13は、配線2の上側に配置される上側第1領域15と、配線2の下側に配置される下側第1領域16とを備える。また、上側第1領域15と下側第1領域16との上下方向中央に、配線2の中心C1が位置する。 The plurality of first regions 13 are arranged on the upper side (one side in the third direction) and the lower side (the other side in the third direction) of the wiring 2 so as to face each other with the center C1 of the wiring 2 interposed therebetween. That is, the plurality of first regions 13 include an upper first region 15 arranged on the upper side of the wiring 2 and a lower first region 16 arranged on the lower side of the wiring 2. Further, the center C1 of the wiring 2 is located at the center in the vertical direction of the upper first region 15 and the lower first region 16.
 それぞれの第1領域13では、粒子8の比透磁率が高い方向(例えば、扁平状異方性磁性粒子では、粒子の面方向)が、配線2の中心C1を中心とした円の接線と略一致する。
より具体的には、粒子8の面方向と、その粒子8が位置する円の接線とがなす角度が、15°以下である場合を、粒子8が円周方向に配向していると定義する。
In each of the first regions 13, the direction in which the relative magnetic permeability of the particles 8 is high (for example, in the case of flat anisotropy magnetic particles, the plane direction of the particles) is abbreviated as the tangent of a circle centered on the center C1 of the wiring 2. Match.
More specifically, when the angle formed by the plane direction of the particle 8 and the tangent line of the circle in which the particle 8 is located is 15 ° or less, it is defined that the particle 8 is oriented in the circumferential direction. ..
 第1領域13に含まれる粒子8全体の数に対して、円周方向に配向している粒子8の数の割合は、例えば、50%を超過し、好ましくは、70%以上、より好ましくは、80%以上である。すなわち、第1領域13では、円周方向に配向していない粒子8を、例えば、50%未満、好ましくは、30%以下、より好ましくは、20%以下含んでいてもよい。複数の第1領域13の総面積割合は、周辺領域11全体に対して、例えば、40%以上、好ましくは、50%以上、より好ましくは、60%以上であり、また、例えば、90%以下、好ましくは、80%以下である。 The ratio of the number of particles 8 oriented in the circumferential direction to the total number of particles 8 contained in the first region 13 exceeds, for example, 50%, preferably 70% or more, and more preferably 70% or more. , 80% or more. That is, the first region 13 may contain particles 8 that are not oriented in the circumferential direction, for example, less than 50%, preferably 30% or less, and more preferably 20% or less. The total area ratio of the plurality of first regions 13 is, for example, 40% or more, preferably 50% or more, more preferably 60% or more, and for example, 90% or less with respect to the entire peripheral region 11. , Preferably 80% or less.
 第1領域13の円周方向の比透磁率は、例えば、5以上、好ましくは、10以上、より好ましくは、30以上であり、また、例えば、500以下である。径方向の比透磁率は、例えば、1以上、好ましくは、5以上であり、また、例えば、100以下、好ましくは、50以下、より好ましくは、25以下である。また、径方向に対する円周方向の比透磁率の比(円周方向/径方向)は、例えば、2以上、好ましくは、5以上であり、また、例えば、50以下である。比透磁率が上記範囲であれば、インダクタンスに優れる。 The circumferential relative permeability of the first region 13 is, for example, 5 or more, preferably 10 or more, more preferably 30 or more, and for example, 500 or less. The radial relative magnetic permeability is, for example, 1 or more, preferably 5 or more, and for example, 100 or less, preferably 50 or less, more preferably 25 or less. The ratio of the relative magnetic permeability in the circumferential direction to the radial direction (circumferential direction / radial direction) is, for example, 2 or more, preferably 5 or more, and for example, 50 or less. If the relative magnetic permeability is in the above range, the inductance is excellent.
 比透磁率は、例えば、磁性材料テストフィクスチャを使用したインピーダンスアナライザ(Agilent社製、「4291B」)によって測定することができる。 The specific magnetic permeability can be measured by, for example, an impedance analyzer (manufactured by Agilent, “4291B”) using a magnetic material test fixture.
 複数の第2領域14は、円周方向非配向領域である。すなわち、第2領域14では、粒子8が、配線2の円周方向(外周方向)に沿って配向していない。換言すると、第2領域14では、粒子8が、配線2の円周方向以外の方向(例えば、第1方向や径方向)に沿って配向するか、または、配向していない。 The plurality of second regions 14 are circumferential non-oriented regions. That is, in the second region 14, the particles 8 are not oriented along the circumferential direction (outer peripheral direction) of the wiring 2. In other words, in the second region 14, the particles 8 are oriented or not oriented along a direction other than the circumferential direction of the wiring 2 (for example, the first direction or the radial direction).
 複数の第2領域14は、配線2の第1方向一方側および他方側に、配線2を挟んで互いに対向配置されている。すなわち、複数の第2領域14は、配線2(第1配線4または第2配線5)の第1方向一方側に配置される一方側第2領域17と、配線2の第1方向他方側に配置される他方側第2領域18とを有する。一方側第2領域17と他方側第2領域18とは、第2仮想線L3を基準に略線対称である。 The plurality of second regions 14 are arranged on one side and the other side of the wiring 2 in the first direction so as to face each other with the wiring 2 interposed therebetween. That is, the plurality of second regions 14 are located on one side of the second region 17 of the wiring 2 (first wiring 4 or the second wiring 5) arranged on one side in the first direction and on the other side of the wiring 2 in the first direction. It has a second region 18 on the other side to be arranged. The second region 17 on one side and the second region 18 on the other side are substantially line-symmetrical with respect to the second virtual line L3.
 なお、第2仮想線L3は、第1配線4または第2配線の中心C1を通り、かつ、上下方向に延びる直線である。 The second virtual line L3 is a straight line that passes through the center C1 of the first wiring 4 or the second wiring and extends in the vertical direction.
 それぞれの第2領域14では、粒子8の比透磁率が高い方向(例えば、扁平状異方性磁性粒子では、粒子の面方向)が、配線2の中心C1を中心とした円の接線と一致しない。
より具体的には、粒子8の面方向と、その粒子8が位置する円の接線とがなす角度が、15°を超過する場合を、粒子8が円周方向に配向していないと定義する。
In each of the second regions 14, the direction in which the relative magnetic permeability of the particles 8 is high (for example, in the case of flat anisotropy magnetic particles, the plane direction of the particles) coincides with the tangent line of the circle centered on the center C1 of the wiring 2. do not do.
More specifically, when the angle formed by the plane direction of the particle 8 and the tangent line of the circle in which the particle 8 is located exceeds 15 °, it is defined that the particle 8 is not oriented in the circumferential direction. ..
 第2領域14に含まれる粒子8全体の数に対して、円周方向に配向していない粒子8の数の割合は、50%を超過し、好ましくは、70%以上であり、また、例えば、95%以下、好ましくは、90%以下である。 The ratio of the number of particles 8 that are not oriented in the circumferential direction to the total number of particles 8 included in the second region 14 exceeds 50%, preferably 70% or more, and for example. , 95% or less, preferably 90% or less.
 第2領域14では、例えば、円周方向に配向する粒子8を含んでいてもよい。第2領域14に含まれる粒子8全体の数に対して、円周方向に配向する粒子8の数の割合は、50%未満であり、好ましくは、30%以下であり、また、例えば、5%以上、好ましくは、10%以上である。 The second region 14 may include, for example, particles 8 oriented in the circumferential direction. The ratio of the number of particles 8 oriented in the circumferential direction to the total number of particles 8 included in the second region 14 is less than 50%, preferably 30% or less, and for example, 5 % Or more, preferably 10% or more.
 なお、円周方向に配向する粒子8を含む場合、好ましくは、その円周方向に配向する粒子8は、第2領域14の最内側、すなわち、配線2の表面に配置されている。 When the particles 8 oriented in the circumferential direction are included, the particles 8 oriented in the circumferential direction are preferably arranged on the innermost side of the second region 14, that is, on the surface of the wiring 2.
 複数の第2領域14の総面積割合は、周辺領域11全体に対して、例えば、10%以上、好ましくは、20%以上であり、また、例えば、60%以下、好ましくは、50%以下、より好ましくは、40%以下である。 The total area ratio of the plurality of second regions 14 is, for example, 10% or more, preferably 20% or more, and for example, 60% or less, preferably 50% or less, based on the entire peripheral region 11. More preferably, it is 40% or less.
 第2領域14の中心C2は、第1仮想線L2上に存在しない。すなわち、中心C2は、第1仮想線L2に対し、下側に位置し、好ましくは、第1仮想線L2に対し、半径Rの0.1倍の距離分、下方に位置し、より好ましくは、第1仮想線L2に対し、半径Rの0.3倍の距離分、下方に位置する。より具体的には、中心C2は、第1仮想線L2に対し、好ましくは、10μm下方、より好ましくは、30μm下方に位置する。 The center C2 of the second region 14 does not exist on the first virtual line L2. That is, the center C2 is located below the first virtual line L2, preferably below the first virtual line L2 by a distance of 0.1 times the radius R, and more preferably. , Is located below the first virtual line L2 by a distance of 0.3 times the radius R. More specifically, the center C2 is preferably located 10 μm below, more preferably 30 μm below the first virtual line L2.
 また、第2領域14の中心C2は、第1仮想線L2と第2仮想線L3との間に、位置する。すなわち、第2領域14の中心C2は、第1仮想線L2および第2仮想線L3のいずれの線上に存在しない。 Further, the center C2 of the second region 14 is located between the first virtual line L2 and the second virtual line L3. That is, the center C2 of the second region 14 does not exist on either the first virtual line L2 or the second virtual line L3.
 なお、第2領域14の中心C2は、第2領域14において、円周方向一端と円周方向他端とを結ぶ仮想円弧L1の中心である。より具体的には、第2領域14の中心C2は、第2領域14において、円周方向一端縁の径方向中心と、円周方向他端縁の径方向中心とを結ぶ仮想円弧L1の中心である。 The center C2 of the second region 14 is the center of the virtual arc L1 connecting one end in the circumferential direction and the other end in the circumferential direction in the second region 14. More specifically, the center C2 of the second region 14 is the center of the virtual arc L1 connecting the radial center of one end edge in the circumferential direction and the radial center of the other end edge in the circumferential direction in the second region 14. Is.
 第1仮想線L2は、互いに隣り合う複数の配線2の中心C1を通り、第1方向に延びる直線である。 The first virtual line L2 is a straight line extending in the first direction through the centers C1 of a plurality of wirings 2 adjacent to each other.
 第2領域14では、配向方向が異なる少なくとも2種類の粒子8により交差部(頂部)19が形成されている。すなわち、第2領域14内において相対的に上側に位置し、且つ配線2の円周方向において第2領域14の下端側に向かうに従って円周方向から第1方向に配向する粒子8(第1粒子)と、第2領域14内において相対的に下側(第1粒子よりも下側)に位置し、且つ円周方向において第2領域14の上端側に向かうに従って円周方向から第1方向に配向する粒子8(第2粒子)とが、略三角形状の少なくとも2辺を構成して、これによって、交差部19を形成する。具体的には、第1粒子と、第2粒子とは、第2領域14の内側において円周方向に配向する粒子8(第3粒子)とともに、略三角形状(好ましくは、鋭角三角形状)を形成する。 In the second region 14, the intersection (top) 19 is formed by at least two types of particles 8 having different orientation directions. That is, the particles 8 (first particles) that are located relatively upward in the second region 14 and are oriented in the first direction from the circumferential direction toward the lower end side of the second region 14 in the circumferential direction of the wiring 2. ) And relatively lower side (lower side than the first particle) in the second region 14, and from the circumferential direction to the first direction toward the upper end side of the second region 14 in the circumferential direction. The oriented particles 8 (second particles) form at least two sides in a substantially triangular shape, thereby forming the intersection 19. Specifically, the first particle and the second particle have a substantially triangular shape (preferably an acute-angled triangular shape) together with the particle 8 (third particle) oriented in the circumferential direction inside the second region 14. Form.
 交差部19は、第1配線4および第2配線5の間において、それらの中心を通る第1仮想線L2上に、存在しない。すなわち、交差部19は、第1仮想線L2の下側に、仮想円弧L1と間隔を隔てる位置に配置されている。より具体的には、交差部19の中心および配線2の中心C1を結ぶ直線と、第1仮想線L2とのなす角度θは、例えば、15°以上、好ましくは、45°以上であり、また、例えば、75°以下、好ましくは、60°以下である。 The intersection 19 does not exist between the first wiring 4 and the second wiring 5 on the first virtual line L2 passing through the center thereof. That is, the intersection 19 is arranged below the first virtual line L2 at a position separated from the virtual arc L1. More specifically, the angle θ formed by the straight line connecting the center of the intersection 19 and the center C1 of the wiring 2 and the first virtual line L2 is, for example, 15 ° or more, preferably 45 ° or more, and also. For example, it is 75 ° or less, preferably 60 ° or less.
 周辺領域11(特に、第1領域13および第2領域14のそれぞれ)において、粒子8の充填率は、例えば、40体積%以上、好ましくは、45体積%以上であり、また、例えば、90体積%以下、好ましくは、70体積%以下である。充填率が上記下限以上であれば、インダクタンスに優れる。 In the peripheral region 11 (particularly, each of the first region 13 and the second region 14), the filling rate of the particles 8 is, for example, 40% by volume or more, preferably 45% by volume or more, and for example, 90 volumes. % Or less, preferably 70% by volume or less. If the filling rate is at least the above lower limit, the inductance is excellent.
 充填率は、実比重の測定、SEM写真断面図の二値化などによって算出することができる。 The filling rate can be calculated by measuring the actual specific gravity, binarizing the cross-sectional view of the SEM photograph, and the like.
 周辺領域11において、複数の第1領域13と複数の第2領域14とは、円周方向に互いに隣接するように、配置されている。具体的には、上側第1領域15、一方側第2領域17、下側第1領域16および他方側第2領域18は、円周方向に、この順で連続する。
なお、第1領域13と第2領域14との円周方向における境界(一端縁または他端縁)は、配線2の中心から径方向外側に延びる仮想直線とする。
In the peripheral region 11, the plurality of first regions 13 and the plurality of second regions 14 are arranged so as to be adjacent to each other in the circumferential direction. Specifically, the upper first region 15, the one-sided second region 17, the lower first region 16, and the other-side second region 18 are continuous in this order in the circumferential direction.
The boundary (one end edge or the other end edge) in the circumferential direction between the first region 13 and the second region 14 is a virtual straight line extending radially outward from the center of the wiring 2.
 外側領域12は、磁性層3のうち、周辺領域11以外の領域である。外側領域12は、周辺領域11の外側において、周辺領域11と連続するように配置されている。 The outer region 12 is a region other than the peripheral region 11 in the magnetic layer 3. The outer region 12 is arranged outside the peripheral region 11 so as to be continuous with the peripheral region 11.
 外側領域12では、粒子8が面方向(特に第1方向)に沿って配向している。 In the outer region 12, the particles 8 are oriented along the plane direction (particularly the first direction).
 外側領域12では、粒子8の比透磁率が高い方向(例えば、扁平状異方性磁性粒子では、粒子の面方向)が、第1方向と略一致する。より具体的には、粒子8の面方向と、第1方向とがなす角度が、15°以下である場合を、粒子8が第1方向に配向していると定義する。 In the outer region 12, the direction in which the relative magnetic permeability of the particles 8 is high (for example, in the case of flat anisotropy magnetic particles, the plane direction of the particles) substantially coincides with the first direction. More specifically, the case where the angle formed by the plane direction of the particle 8 and the first direction is 15 ° or less is defined as the particle 8 being oriented in the first direction.
 外側領域12では、外側領域12に含まれる粒子8全体の数に対して、第1方向に配向している粒子8の数の割合が、50%を超過し、好ましくは、70%以上、より好ましくは、90%以上である。すなわち、外側領域12では、第1方向に配向していない粒子8を50%未満、好ましくは、30%以下、より好ましくは、10%以下含んでいてもよい。 In the outer region 12, the ratio of the number of particles 8 oriented in the first direction to the total number of particles 8 contained in the outer region 12 exceeds 50%, preferably 70% or more, and more. Preferably, it is 90% or more. That is, the outer region 12 may contain less than 50%, preferably 30% or less, more preferably 10% or less of the particles 8 that are not oriented in the first direction.
 外側領域12において、第1方向の比透磁率は、例えば、5以上、好ましくは、10以上、より好ましくは、30以上であり、また、例えば、500以下である。上下方向の比透磁率は、例えば、1以上、好ましくは、5以上であり、また、例えば、100以下、好ましくは、50以下、より好ましくは、25以下である。また、上下方向に対する第1方向の比透磁率の比(第1方向/上下方向)は、例えば、2以上、好ましくは、5以上であり、また、例えば、50以下である。比透磁率が上記範囲であれば、インダクタンスに優れる。 In the outer region 12, the specific magnetic permeability in the first direction is, for example, 5 or more, preferably 10 or more, more preferably 30 or more, and for example, 500 or less. The relative magnetic permeability in the vertical direction is, for example, 1 or more, preferably 5 or more, and for example, 100 or less, preferably 50 or less, more preferably 25 or less. The ratio of the relative magnetic permeability in the first direction to the vertical direction (first direction / vertical direction) is, for example, 2 or more, preferably 5 or more, and for example, 50 or less. If the relative magnetic permeability is in the above range, the inductance is excellent.
 外側領域12において、粒子8の充填率は、例えば、40体積%以上、好ましくは、45体積%以上であり、また、例えば、90体積%以下、好ましくは、70体積%以下である。充填率が上記下限以上であれば、インダクタンスに優れる。 In the outer region 12, the filling rate of the particles 8 is, for example, 40% by volume or more, preferably 45% by volume or more, and for example, 90% by volume or less, preferably 70% by volume or less. If the filling rate is at least the above lower limit, the inductance is excellent.
 また、周辺領域11および外側領域12を含む複数の配線2間において、第1仮想線L2を含む第1方向配向領域10が形成されている。すなわち、第1方向配向領域10は、インダクタ1を第1方向および上下方向に沿って切断した断面において、複数の配線2間に位置し、第1仮想線L2を含む。具体的には、第1方向配向領域10は、上下方向位置において第1仮想線L2を中心にしており、上下方向長さが導線6の半径R1の40%の長さ(好ましくは、50μm)である領域であって、かつ、粒子8が第1方向に沿って配向している領域とする。 Further, a first direction orientation region 10 including the first virtual line L2 is formed between the plurality of wirings 2 including the peripheral region 11 and the outer region 12. That is, the first direction orientation region 10 is located between the plurality of wirings 2 in the cross section of the inductor 1 cut along the first direction and the vertical direction, and includes the first virtual line L2. Specifically, the first orientation region 10 is centered on the first virtual line L2 at the vertical position, and the vertical length is 40% of the radius R1 of the lead wire 6 (preferably 50 μm). It is a region in which the particles 8 are oriented along the first direction.
 第1方向配向領域10に含まれる粒子8全体の数に対して、第1方向に配向している粒子8の数の割合は、例えば、85%以上、好ましくは、90%以上、より好ましくは、95%以上である。すなわち、第1方向配向領域10では、第1方向に配向していない粒子8を、例えば、15%以下、好ましくは、10%以下、より好ましくは、5%以下含んでいてもよい。 The ratio of the number of particles 8 oriented in the first direction to the total number of particles 8 included in the first direction oriented region 10 is, for example, 85% or more, preferably 90% or more, more preferably. , 95% or more. That is, the first-direction orientation region 10 may contain particles 8 that are not oriented in the first direction, for example, 15% or less, preferably 10% or less, and more preferably 5% or less.
 なお、第1方向配向領域10の第1方向一方側および他方側に隣接する領域では、粒子8は、第1方向に配向していない。 Note that the particles 8 are not oriented in the first direction in the region adjacent to one side and the other side in the first direction of the first direction orientation region 10.
 第1方向配向領域10の第1方向距離Nは、例えば、500μm以下、好ましくは、400μm以下、より好ましくは、300μm以下であり、また、例えば、10μm以上、好ましくは、40μm以上である。 The first direction distance N of the first direction orientation region 10 is, for example, 500 μm or less, preferably 400 μm or less, more preferably 300 μm or less, and for example, 10 μm or more, preferably 40 μm or more.
 第1方向配向領域10の第1方向距離Nは、配線間の間隔Sに対して、60%以下であり、好ましくは、50%以下であり、さらに好ましくは、30%以下であり、また、例えば、5%以上である。上記割合(N/S×100%)が上記上限以下であれば、配線2間のクロストークを抑制することができる。 The first direction distance N of the first direction orientation region 10 is 60% or less, preferably 50% or less, more preferably 30% or less, and more preferably 30% or less with respect to the distance S between the wirings. For example, 5% or more. When the above ratio (N / S × 100%) is equal to or less than the above upper limit, crosstalk between the wirings 2 can be suppressed.
 磁性層3の第1方向長さTは、例えば、5mm以上、好ましくは、10mm以上であり、また、例えば、5000mm以下、好ましくは、2000mm以下である。 The length T 1 of the magnetic layer 3 in the first direction is, for example, 5 mm or more, preferably 10 mm or more, and for example, 5000 mm or less, preferably 2000 mm or less.
 磁性層3の第2方向長さTは、例えば、5mm以上、好ましくは、10mm以上であり、また、例えば、5000mm以下、好ましくは、2000mm以下である。 The length T 2 in the second direction of the magnetic layer 3 is, for example, 5 mm or more, preferably 10 mm or more, and for example, 5000 mm or less, preferably 2000 mm or less.
 磁性層3の上下方向長さ(厚さ)Tは、例えば、100μm以上、好ましくは、200μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。 The vertical length (thickness) T 3 of the magnetic layer 3 is, for example, 100 μm or more, preferably 200 μm or more, and for example, 2000 μm or less, preferably 1000 μm or less.
 2.インダクタの製造方法
 図3A-Bを参照して、インダクタ1の製造方法の一実施形態について説明する。インダクタ1の製造方法は、例えば、用意工程、配置工程および積層工程を順に備える。
2. 2. Inductor Manufacturing Method An embodiment of the inductor 1 manufacturing method will be described with reference to FIGS. 3A and 3B. The method for manufacturing the inductor 1 includes, for example, a preparation step, a placement step, and a lamination step in order.
 用意工程では、複数の配線2、および、2つの異方性磁性シート20を用意する。 In the preparation process, a plurality of wirings 2 and two anisotropic magnetic sheets 20 are prepared.
 2つの異方性磁性シート20は、それぞれ、面方向に延びるシート状を有し、磁性組成物から形成されている。異方性磁性シート20では、粒子8が、面方向に配向されている。好ましくは、2つの半硬化状態(Bステージ)の異方性磁性シート20を用いる。 Each of the two anisotropic magnetic sheets 20 has a sheet shape extending in the plane direction and is formed of a magnetic composition. In the anisotropic magnetic sheet 20, the particles 8 are oriented in the plane direction. Preferably, two semi-cured (B stage) anisotropic magnetic sheets 20 are used.
 このような異方性磁性シート20としては、特開2014-165363号、特開2015-92544号などに記載の軟磁性熱硬化性接着フィルムや軟磁性フィルムなどが挙げられる。 Examples of such an anisotropic magnetic sheet 20 include soft magnetic thermosetting adhesive films and soft magnetic films described in JP-A-2014-165363 and JP-A-2015-92544.
 配置工程では、図3Aに示すように、一方の異方性磁性シート20の上面に複数の配線2を配置するとともに、複数の配線2の上方に、他方の異方性磁性シート20を対向配置する。 In the arrangement step, as shown in FIG. 3A, a plurality of wirings 2 are arranged on the upper surface of one anisotropic magnetic sheet 20, and the other anisotropic magnetic sheet 20 is arranged so as to face each other above the plurality of wirings 2. To do.
 具体的には、下側異方性磁性シート21を水平台に載置し、続いて、下側異方性磁性シート21の上面に複数の配線2を第1方向に所望の間隔を隔てて配置する。 Specifically, the lower anisotropic magnetic sheet 21 is placed on a horizontal table, and subsequently, a plurality of wirings 2 are placed on the upper surface of the lower anisotropic magnetic sheet 21 in the first direction at desired intervals. Deploy.
 次いで、上側異方性磁性シート22を、下側異方性磁性シート21および複数の配線2の上側に、間隔を隔てて対向配置する。 Next, the upper anisotropic magnetic sheet 22 is arranged on the lower anisotropic magnetic sheet 21 and the upper side of the plurality of wirings 2 at intervals.
 積層工程では、図3Bに示すように、複数の配線2を埋設するように、2つの異方性磁性シート20を、積層する。 In the laminating step, as shown in FIG. 3B, two anisotropic magnetic sheets 20 are laminated so as to embed a plurality of wirings 2.
 具体的には、上側異方性磁性シート22を下側に向かって押圧する。 Specifically, the upper anisotropic magnetic sheet 22 is pressed downward.
 この際、2つの異方性磁性シート20が半硬化状態である場合は、押圧によって、複数の配線2は、下側異方性磁性シート21内にわずかに沈み込み、沈み込み部分において、粒子8が複数の配線2に沿って配向する。すなわち、下側第1領域16が形成される。 At this time, when the two anisotropic magnetic sheets 20 are in a semi-cured state, the plurality of wirings 2 are slightly subducted into the lower anisotropic magnetic sheet 21 by pressing, and the particles are submerged in the subducted portion. 8 is oriented along the plurality of wires 2. That is, the lower first region 16 is formed.
 また、上側異方性磁性シート22は、複数の配線2に沿って被覆され、その粒子8が複数の配線2に沿って配向するとともに、下側異方性磁性シート21の上面に積層される。
すなわち、配線2の上側では、上側異方性磁性シート22によって、上側第1領域15が形成されるとともに、配線2の第1方向両側(側方)では、下側異方性磁性シート21と上側異方性磁性シート22との接触付近にて、これらに配向している粒子8が衝突し、その結果、第2領域14や交差部19が形成される。
Further, the upper anisotropic magnetic sheet 22 is coated along the plurality of wirings 2, and the particles 8 are oriented along the plurality of wirings 2 and laminated on the upper surface of the lower anisotropic magnetic sheet 21. ..
That is, on the upper side of the wiring 2, the upper first region 15 is formed by the upper anisotropic magnetic sheet 22, and on both sides (sides) of the first direction of the wiring 2, the lower anisotropic magnetic sheet 21 is formed. In the vicinity of the contact with the upper anisotropic magnetic sheet 22, the particles 8 oriented thereto collide with each other, and as a result, the second region 14 and the intersection 19 are formed.
 なお、異方性磁性シート20が半硬化状態である場合は、加熱する。これにより、異方性磁性シート20が硬化状態(Cステージ)となる。また、2つの異方性磁性シート20の接触界面25が消滅し、2つの異方性磁性シート20は、一の磁性層3を形成する。 If the anisotropic magnetic sheet 20 is in a semi-cured state, it is heated. As a result, the anisotropic magnetic sheet 20 is in a cured state (C stage). Further, the contact interface 25 of the two anisotropic magnetic sheets 20 disappears, and the two anisotropic magnetic sheets 20 form one magnetic layer 3.
 これにより、図2に示すように、断面視略円形状の配線2と、それを被覆する磁性層3とを備えるインダクタ1が得られる。すなわち、インダクタ1は、複数(2つ)の異方性磁性シート20を、配線2を挟むように、積層してなるものである。なお、実際のインダクタ1の一例の断面図(SEM写真)を図4に示す。 As a result, as shown in FIG. 2, an inductor 1 including a wiring 2 having a substantially circular cross section and a magnetic layer 3 covering the wiring 2 can be obtained. That is, the inductor 1 is formed by laminating a plurality of (two) anisotropic magnetic sheets 20 so as to sandwich the wiring 2. A cross-sectional view (SEM photograph) of an example of the actual inductor 1 is shown in FIG.
 3.用途
 インダクタ1は、電子機器の一部品、すなわち、電子機器を作製するための部品であり、電子素子(チップ、キャパシタなど)や、電子素子を実装する実装基板を含まず、部品単独で流通し、産業上利用可能なデバイスである。
3. 3. Application The inductor 1 is a component of an electronic device, that is, a component for manufacturing an electronic device, and is distributed as a single component without including an electronic element (chip, capacitor, etc.) or a mounting substrate on which the electronic element is mounted. , An industrially usable device.
 インダクタ1は、例えば、電子機器などに搭載される(組み込まれる)。図示しないが、電子機器は、実装基板と、実装基板に実装される電子素子(チップ、キャパシタなど)とを備える。そして、インダクタ1は、はんだなどの接続部材を介して実装基板に実装され、他の電子機器と電気的に接続され、コイルなどの受動素子として作用する。 The inductor 1 is mounted (embedded) in, for example, an electronic device. Although not shown, the electronic device includes a mounting board and electronic elements (chips, capacitors, etc.) mounted on the mounting board. Then, the inductor 1 is mounted on a mounting substrate via a connecting member such as solder, is electrically connected to other electronic devices, and acts as a passive element such as a coil.
 そして、インダクタ1によれば、複数の配線2と、複数の配線2を被覆する磁性層3とを備えるため、複数の配線2の周辺に、粒子8が円周方向に沿って容易に配向することができる。よって、粒子8の磁化容易軸が配線周囲に発生する磁力線の方向と同一となるため、インダクタンスを向上させることができる。 Further, according to the inductor 1, since the plurality of wirings 2 and the magnetic layer 3 covering the plurality of wirings 2 are provided, the particles 8 are easily oriented along the circumferential direction around the plurality of wirings 2. be able to. Therefore, since the easy axis of magnetization of the particles 8 is the same as the direction of the magnetic field lines generated around the wiring, the inductance can be improved.
 また、第1仮想線L2と重複するように、粒子8が第1方向に沿って配向する第1方向配向領域10が形成されており、第1方向配向領域10の第1方向の距離Nが、第1仮想線L2上の配線2間の間隔Sに対して50%以下である。すなわち、第1方向に沿って流れる磁束の通り道である配線2間のスペースにおいて、第1方向配向領域10の距離Nが、それ以外の距離(すなわち、第1方向配向領域10の両側に位置する、粒子8が第1方向に配向していない領域)よりも短くなっている。よって、一方の配線2(第1配線4または第2配線5)から他方の配線(第2配線5または第1配線4)への磁気に関する影響を低減でき、クロストークを抑制することができる。 Further, a first-direction orientation region 10 in which the particles 8 are oriented along the first direction is formed so as to overlap with the first virtual line L2, and the distance N in the first direction of the first-direction orientation region 10 is set. , 50% or less with respect to the distance S between the wirings 2 on the first virtual line L2. That is, in the space between the wirings 2 which are the paths of the magnetic flux flowing along the first direction, the distance N of the first direction orientation region 10 is located on both sides of the other distance (that is, the first direction orientation region 10). , The region where the particles 8 are not oriented in the first direction). Therefore, the influence of magnetism from one wiring 2 (first wiring 4 or second wiring 5) to the other wiring (second wiring 5 or first wiring 4) can be reduced, and crosstalk can be suppressed.
 また、インダクタ1では、複数の配線2の周辺領域11には、それぞれ、円周方向配向領域である第1領域13を有する。よって、インダクタンスを向上させることができる。 Further, in the inductor 1, each of the peripheral regions 11 of the plurality of wirings 2 has a first region 13 which is a circumferential orientation region. Therefore, the inductance can be improved.
 また、インダクタ1では、複数の配線2の周辺領域11には、それぞれ、円周方向非配向領域である第2領域14を有する。よって、粒子8の磁化困難軸が配線周囲に発生する磁力線の方向と同一となるため、直流重畳特性が良好である。 Further, in the inductor 1, each of the peripheral regions 11 of the plurality of wirings 2 has a second region 14 which is a non-oriented region in the circumferential direction. Therefore, since the magnetizing difficulty axis of the particles 8 is the same as the direction of the magnetic field lines generated around the wiring, the DC superimposition characteristic is good.
 また、第2領域14における中心C2が、第1仮想線L2上に、存在しない。したがって、磁束が第2領域14を経由して第1配線4から第2配線5に到達する距離を長くすることができる。すなわち、配線2間の磁束が通る距離を実質的に長くすることができる。
よって、第1配線4から第2配線5への磁気に関する影響を低減でき、クロストークをより一層抑制することができる。
Further, the center C2 in the second region 14 does not exist on the first virtual line L2. Therefore, the distance that the magnetic flux reaches from the first wiring 4 to the second wiring 5 via the second region 14 can be increased. That is, the distance through which the magnetic flux between the wirings 2 passes can be substantially increased.
Therefore, the influence of magnetism on the first wiring 4 to the second wiring 5 can be reduced, and crosstalk can be further suppressed.
 <変形例>
 以下に、図1A-図2に示す一実施形態の変形例について説明する。なお、変形例において、上記した一実施形態と同様の部材には、同様の符号を付し、その説明を省略する。
これら変形例についても、上記した一実施形態などと同様の作用効果を奏する。
<Modification example>
Hereinafter, a modified example of one embodiment shown in FIGS. 1A and 2 will be described. In the modified example, the same members as those in the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted.
These modifications also have the same effects as those of the above-described embodiment.
 図2に示す実施形態では、第2領域14における中心C2が、第1仮想線L2上に、存在しないが、例えば、図5に示すように、第2領域14における中心C2が、第1仮想線L2上に、存在してもよい。 In the embodiment shown in FIG. 2, the center C2 in the second region 14 does not exist on the first virtual line L2, but for example, as shown in FIG. 5, the center C2 in the second region 14 is the first virtual line. It may exist on the line L2.
 すなわち、図5に示す実施形態は、第1仮想線L2を基準に、略線対称である。 That is, the embodiment shown in FIG. 5 is substantially line symmetric with respect to the first virtual line L2.
 好ましくは、クロストークをより一層低減できる観点から、図1A-図2に示す実施形態が挙げられる。 Preferably, the embodiments shown in FIGS. 1A and 2 can be mentioned from the viewpoint of further reducing crosstalk.
 図2に示す実施形態では、配線2は、断面視略円形状を有するが、その断面視形状は、特に限定されず、例えば、図示しないが、略楕円形状、略矩形状(正方形および長方形状を含む)、略不定形状であってもよい。なお、配線2が略矩形状を含む態様として、少なくとも1つの辺が湾曲してもよく、また、少なくとも1つの角が湾曲してもよい。 In the embodiment shown in FIG. 2, the wiring 2 has a substantially circular shape in cross-sectional view, but the cross-sectional view shape is not particularly limited. For example, although not shown, a substantially elliptical shape and a substantially rectangular shape (square and rectangular shape) are formed. Including), may have a substantially indefinite shape. In addition, in a mode in which the wiring 2 includes a substantially rectangular shape, at least one side may be curved, or at least one corner may be curved.
 上記のいずれにおいても、周辺領域11は、断面視において、配線2の重心C1から配線2の外周面までの最長長さおよび最短長さの平均([最長長さ+最短長さ]/2)の1.5倍値、配線2の外周面から外側に進んだ領域である。 In any of the above, the peripheral region 11 is the average of the longest length and the shortest length from the center of gravity C1 of the wiring 2 to the outer peripheral surface of the wiring 2 ([longest length + shortest length] / 2). This is a region that is 1.5 times the value of the above and extends outward from the outer peripheral surface of the wiring 2.
 図1A-Bに示す実施形態では、2つの配線2を備えているが、その数は、限定されず、3つ以上とすることもできる。 In the embodiment shown in FIGS. 1A-B, two wirings 2 are provided, but the number thereof is not limited and may be three or more.
 図1A-Bに示す実施形態では、各配線2は、平面視略U字形状を有しているが、その形状は限定されず、適宜設定される。 In the embodiment shown in FIGS. 1A and 1B, each wiring 2 has a substantially U-shape in a plan view, but the shape is not limited and is appropriately set.
 図1A-Bに示す実施形態において、磁性層3がアライメントマークを有することもできる。 In the embodiment shown in FIGS. 1A-B, the magnetic layer 3 may also have an alignment mark.
 図1A-Bに示す実施形態において、磁性層3における異方性磁性粒子8の割合は、磁性層3において一様でもよく、また、各配線2から離れるに従って、高くなってもよく、あるいは、低くなってもよい。 In the embodiment shown in FIGS. 1A and 1B, the proportion of the anisotropic magnetic particles 8 in the magnetic layer 3 may be uniform in the magnetic layer 3 and may increase as the distance from each wiring 2 increases, or It may be lower.
 本発明のインダクタは、例えば、電圧変換部材などの受動素子として用いることができる。 The inductor of the present invention can be used as a passive element such as a voltage conversion member, for example.
1 インダクタ
2 配線
3 磁性層
6 導線
7 絶縁層
8 異方性磁性粒子
10 第1方向配向領域
13 第1領域
14 第2領域
C1 配線の中心
C2 仮想円弧の中心
L2 第1仮想線
1 Incubator 2 Wiring 3 Magnetic layer 6 Conductive wire 7 Insulating layer 8 Anisotropic magnetic particles 10 1st direction orientation region 13 1st region 14 2nd region C1 Wiring center C2 Virtual arc center L2 1st virtual line

Claims (3)

  1.  複数の配線と、前記複数の配線を被覆する磁性層とを備え、
     前記複数の配線は、第1方向において、互いに間隔を隔てて配置されており、
     前記複数の配線は、それぞれ、導線と、前記導線を被覆する絶縁層とを備え、
     前記磁性層は、異方性磁性粒子と、バインダとを含有し、
     互いに隣り合う前記複数の配線間において、それら配線の中心を通る仮想線を含むように、前記異方性磁性粒子が前記第1方向に沿って配向する第1方向配向領域が形成されており、
     前記第1方向配向領域の距離が、前記仮想線上の前記配線間の間隔に対して60%以下であることを特徴とする、インダクタ。
    A plurality of wirings and a magnetic layer covering the plurality of wirings are provided.
    The plurality of wires are arranged so as to be spaced apart from each other in the first direction.
    Each of the plurality of wires includes a conducting wire and an insulating layer covering the conducting wire.
    The magnetic layer contains anisotropic magnetic particles and a binder, and contains
    A first-direction orientation region in which the anisotropic magnetic particles are oriented along the first direction is formed between the plurality of wirings adjacent to each other so as to include a virtual line passing through the center of the wirings.
    An inductor characterized in that the distance of the first-direction orientation region is 60% or less with respect to the distance between the wirings on the virtual line.
  2.  前記複数の配線の周囲には、それぞれ、前記異方性磁性粒子が前記配線の外周方向に沿って配向する第1領域を有することを特徴とする、請求項1に記載のインダクタ。 The inductor according to claim 1, wherein each of the plurality of wirings has a first region in which the anisotropic magnetic particles are oriented along the outer peripheral direction of the wiring.
  3.  前記複数の配線の周囲には、それぞれ、前記異方性磁性粒子が前記外周方向に沿って配向しない第2領域をさらに有することを特徴とする、請求項2に記載のインダクタ。 The inductor according to claim 2, wherein each of the plurality of wirings has a second region in which the anisotropic magnetic particles are not oriented along the outer peripheral direction.
PCT/JP2020/004234 2019-03-12 2020-02-05 Inductor WO2020183995A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217028620A KR20210137029A (en) 2019-03-12 2020-02-05 inductor
CN202080019742.2A CN113544803A (en) 2019-03-12 2020-02-05 Inductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-044772 2019-03-12
JP2019044772A JP7249823B2 (en) 2019-03-12 2019-03-12 inductor

Publications (1)

Publication Number Publication Date
WO2020183995A1 true WO2020183995A1 (en) 2020-09-17

Family

ID=72426738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004234 WO2020183995A1 (en) 2019-03-12 2020-02-05 Inductor

Country Status (4)

Country Link
JP (1) JP7249823B2 (en)
KR (1) KR20210137029A (en)
CN (1) CN113544803A (en)
WO (1) WO2020183995A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022102712A1 (en) 2020-11-12 2022-05-19

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185421A (en) * 1998-12-28 2001-07-06 Matsushita Electric Ind Co Ltd Magnetic device and manufacuring method thereof
JP2009009985A (en) * 2007-06-26 2009-01-15 Sumida Corporation Coil component
WO2014132701A1 (en) * 2013-02-26 2014-09-04 日東電工株式会社 Soft magnetic thermosetting adhesive film, soft magnetic film-laminated circuit board, and position-detecting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144526A (en) 1996-11-05 1998-05-29 Murata Mfg Co Ltd Laminated chip inductor
JP3844270B2 (en) * 1997-07-22 2006-11-08 Necトーキン株式会社 Noise suppression parts
WO2012039736A1 (en) * 2010-09-23 2012-03-29 3M Innovative Properties Company Shielded electrical cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185421A (en) * 1998-12-28 2001-07-06 Matsushita Electric Ind Co Ltd Magnetic device and manufacuring method thereof
JP2009009985A (en) * 2007-06-26 2009-01-15 Sumida Corporation Coil component
WO2014132701A1 (en) * 2013-02-26 2014-09-04 日東電工株式会社 Soft magnetic thermosetting adhesive film, soft magnetic film-laminated circuit board, and position-detecting device

Also Published As

Publication number Publication date
CN113544803A (en) 2021-10-22
KR20210137029A (en) 2021-11-17
JP7249823B2 (en) 2023-03-31
JP2020150060A (en) 2020-09-17
TW202036611A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP7030022B2 (en) Inductor
WO2020183994A1 (en) Inductor
WO2020183992A1 (en) Inductor
WO2020183995A1 (en) Inductor
WO2020183997A1 (en) Inductor
WO2020183989A1 (en) Inductor
JP7362269B2 (en) inductor
TWI832971B (en) Inductor
CN113544806A (en) Method for manufacturing inductor
JP7294833B2 (en) inductor
WO2020184000A1 (en) Inductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769978

Country of ref document: EP

Kind code of ref document: A1