WO2020183941A1 - Method for detecting microrna processing activity, and application thereof - Google Patents

Method for detecting microrna processing activity, and application thereof Download PDF

Info

Publication number
WO2020183941A1
WO2020183941A1 PCT/JP2020/002568 JP2020002568W WO2020183941A1 WO 2020183941 A1 WO2020183941 A1 WO 2020183941A1 JP 2020002568 W JP2020002568 W JP 2020002568W WO 2020183941 A1 WO2020183941 A1 WO 2020183941A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirna
drosha
complex
detection method
sequence
Prior art date
Application number
PCT/JP2020/002568
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 辻村
紀夫 尾崎
阿部 洋
康明 木村
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Priority to JP2020547024A priority Critical patent/JP6869587B2/en
Publication of WO2020183941A1 publication Critical patent/WO2020183941A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means

Definitions

  • the present invention relates to a method for detecting the processing activity of microRNA. More specifically, the present invention relates to a simple method for detecting microRNA processing activity, various assays (test methods) using the same, and the like.
  • This application claims priority based on Japanese Patent Application No. 2019-046718 filed on March 14, 2019, and the entire contents of the patent application are incorporated by reference.
  • MicroRNA is a single-stranded RNA with a length of about 18 to 24 bases that exists in cells and becomes mature after processing in the nucleus and cytoplasm.
  • a primary precursor pri-miRNA
  • pre-miRNAs secondary precursors produced by this processing translocate to the cytoplasm and are further processed into mature-miRNAs by the Dicer complex.
  • Mature miRNAs regulate the expression of target genes by binding to the target gene mRNA and inhibiting the degradation and translation of the mRNA.
  • a single miRNA typically targets about 200 mRNAs because it binds and acts on the target binding site with incomplete sequence complementarity.
  • Non-Patent Document 1 the association between DGCR8 abnormalities constituting the Drosha complex and 22q11.2 deletion syndrome (Non-Patent Document 1), and the association between MeCP2 abnormalities that interact (associate) with the Drosha complex and Rett syndrome (Non-patent).
  • Non-Patent Document 3 Relationship between TDP43 abnormality interacting with Drosha complex and amyotrophic lateral sclerosis (ALS)
  • Non-Patent Document 4 p53 abnormality interacting with Drosha complex and cancer Relationships
  • Non-Patent Document 5 associations between abnormalities in Smads interacting with the Drosha complex and cardiovascular diseases have been reported.
  • Non-Patent Document 6 a method using a radiolabel (RI) was reported in 2004 (Non-Patent Document 6). Since then, research by the same method has been carried out by several research groups (see, for example, Non-Patent Document 7).
  • RI radiolabeling
  • the main object of the present invention is to provide a means for detecting the processing activity of miRNA easily and with high safety.
  • the present inventors considered that the site-specific use of fluorescence is advantageous not only for simplicity but also for high-sensitivity detection, and constructed a miRNA processing activity detection system using a site-specific fluorescent label.
  • the length of miRNA is a major problem in constructing this detection system. Normally, due to synthetic restrictions, the length of about 70-80 nt is the limit of synthesis by a synthesizer, and it is extremely difficult to synthesize primary-miRNA with a length of 80 nt or more even if it is short. Difficult and nearly impossible.
  • RNA of 100 nt or more can be prepared, and it is also possible to prepare chemically labeled RNA by causing a transcription reaction using chemically labeled nucleotides as a raw material.
  • a method for detecting microRNA processing activity which comprises the following steps (1) and (2): (1) In addition to the full-length sequence of pre-miRNA, in pri-miRNA, a sequence having a length of 10 to 80 bases continuous to the 5'end side of the pre-miRNA and 10 to 80 continuous to the 3'end side. A step of reacting a Drosha complex with a miRNA probe that contains a base-length sequence and has a fluorescent substance bound to its 5'-terminal region or 3'-terminal region.
  • Step (1) is performed in the coexistence of the test substance.
  • a reagent for detecting microRNA processing activity which comprises a miRNA probe having a base-length sequence and whose 5'-terminal region or 3'-terminal region is fluorescently labeled.
  • a kit for detecting microRNA processing activity which comprises the reagent according to [13].
  • the kit according to [14] further comprising a Drosha complex.
  • the kit according to [15], wherein the Drosha complex comprises Drosha and DGCR8.
  • the kit according to [15] or [16], wherein the Drosha complex is a mutant type.
  • a transcription factor or RNA-binding protein that interacts with the Drosha complex is associated with the Drosha complex.
  • MeCP2, TDP43, p53 or Smads are associated with the Drosha complex.
  • RNA is subjected to denatured polyacrylamide gel electrophoresis (dPAGE: 10% acrylamide, 7M urea, small gel (8 cm x 8 cm), 300 V constant voltage, 20 minutes electrophoresis) for fluorescence.
  • dPAGE 10% acrylamide, 7M urea, small gel (8 cm x 8 cm), 300 V constant voltage, 20 minutes electrophoresis
  • Lane 1 Drosha (-) 45 minutes reaction
  • Lane 2 Drosha (+) 45 minutes reaction
  • Lane 3 Drosha (-) 90 minutes reaction
  • Lane 4 Drosha (+) 90 minutes reaction
  • lane 5 Marker (XC and BPB)
  • Lane 6 PO-61mer-Fl (AM17-CS).
  • the processing activity was compared from the fluorescence intensity (right).
  • RNA is subjected to denatured polyacrylamide gel electrophoresis (dPAGE: 10% acrylamide, 7M urea, small gel (8 cm x 8 cm), 300 V constant voltage, 20 minutes electrophoresis) for fluorescence.
  • dPAGE 10% acrylamide, 7M urea, small gel (8 cm x 8 cm), 300 V constant voltage, 20 minutes electrophoresis
  • Lane 1 Control 30 minutes reaction
  • Lane 2 Control 60 minutes reaction
  • Lane 3 Drosha + DGCR8 30 minutes reaction
  • Lane 4 Drosha + DGCR8 60 minutes reaction.
  • the processing activity was compared from the fluorescence intensity (center). It was also evaluated with a Primary-miR-199a probe labeled with SYBR Green II (right).
  • RNA is subjected to denaturing polyacrylamide gel electrophoresis (dPAGE: 10% acrylamide, 7M urea, small gel (8 cm x 8 cm), 300 V constant voltage, 35 minutes electrophoresis) for fluorescence.
  • dPAGE 10% acrylamide, 7M urea, small gel (8 cm x 8 cm), 300 V constant voltage, 35 minutes electrophoresis
  • Lane 1 Control 30 minutes reaction
  • Lane 2 Control 60 minutes reaction
  • Lane 3 Drosha + DGCR8 30 minutes reaction
  • Lane 4 Drosha + DGCR8 60 minutes reaction.
  • the processing activity was compared from the fluorescence intensity (center). It was also evaluated with a Primary-miR-214 probe labeled with SYBR Green II (right). Evaluation of processing activity of MeCP2 complex.
  • RNA is subjected to denaturing polyacrylamide gel electrophoresis (dPAGE: 10% acrylamide, 7M urea, small gel (8 cm x 8 cm), 300 V constant voltage, 35 minutes electrophoresis) for fluorescence.
  • dPAGE 10% acrylamide, 7M urea, small gel (8 cm x 8 cm), 300 V constant voltage, 35 minutes electrophoresis
  • Lane 1 Control 30 minutes reaction
  • Lane 2 Control 60 minutes reaction
  • Lane 3 MeCP2 30 minutes reaction
  • Lane 4 MeCP2 60 minutes reaction.
  • the processing activity was compared from the fluorescence intensity (center). It was also evaluated with a Primary-miR-214 probe labeled with SYBR Green II (right).
  • microRNA processing activity assay 1-1 Method for Detecting MicroRNA Processing Activity
  • microRNAs (sometimes referred to as "miRNAs") become pre-miRNAs by processing with the Drosha complex and mature by further processing with the Dicer complex.
  • microRNA processing activity (miRNA processing activity)” refers to the ability or degree (level) of the former processing, that is, processing by the Drosha complex (conversion of pri-miRNA to pre-miRNA). ..
  • processing in the following description refers to Drosha complex-mediated processing, i.e., conversion of pri-miRNA to pre-miRNA.
  • the Drosha complex contains Drosha and DGCR8 as major components, and may further contain various RNA-binding proteins such as DEAD-box RNA helicase DDX5 / 17, hnRNP. It is also known that MeCP2, TDP43, p53, Smads and others associate with the Drosha complex to regulate specific miRNA processing.
  • the detection method of the present invention is performed in vitro. That is, it is an in vitro assay.
  • the Drosha complex is reacted with a miRNA probe containing a contiguous 10 to 80 base length (preferably 20 to 50 base length) sequence on the side and fluorescently labeled with its 5'end region or 3'end region.
  • Step (1) is a processing reaction using a miRNA probe characteristic of the present invention, in which the miRNA probe is reacted with the Drosha complex. That is, a reaction solution containing components necessary for processing, such as magnesium (Mg) and ATP, is prepared, and in the coexistence of the miRNA probe and the Drosha complex (in other words, in a state where interaction is possible), for example, 35 ° C. Incubate at ⁇ 39 ° C, preferably about 37 ° C. The incubation time is, for example, 10 minutes to 3 hours.
  • Mg magnesium
  • ATP a reaction solution containing components necessary for processing, such as magnesium (Mg) and ATP
  • a miRNA probe having a characteristic sequence is prepared.
  • the miRNA probe is a portion of the sequence of pre-miRNA (specific precursor miRNA), which is the post-processing form, as well as the sequence of pri-miRNA, which is the pre-processing form, specifically said.
  • a portion of pre-miRNA contiguous on the 5'end side referred to as "pri-miRNA 5'side contiguous region” for convenience of explanation
  • a portion contiguous on the 3'end side for convenience of explanation, "pri-miRNA 3" It consists of an array containing (called'side continuous region').
  • the miRNA probe has a sequence that is not present in pre-miRNA but is present in pri-miRNA.
  • the lengths of the pri-miRNA 5'side continuous region and the pri-miRNA 3'side continuous region are, for example, 10 to 80 bases long, preferably 20 to 50 bases.
  • the inclusion of the miRNA probe in the pri-miRNA 5'side continuous region and the pri-miRNA 3'side continuous region is important for the Drosha complex to exert processing activity in the reaction of step (1). If the length of these constituent regions is too short, it will be difficult or impossible to detect the processing activity by fluorescence. On the other hand, making the pri-miRNA 5'side continuous region and the pri-miRNA 3'side continuous region longer than necessary makes it difficult to prepare the miRNA probe and is also preferable from an economic point of view (that is, preparation cost). Absent.
  • the miRNA probe sequence is designed based on the specific miRNA sequence. Therefore, the length of the miRNA probe depends on the length of the underlying miRNA and is not uniform, but is, for example, 100 to 200 bases, preferably 130 to 160 bases.
  • a method that combines chemical synthesis (solid phase synthesis method, liquid phase synthesis method) and ligation reaction For the preparation of such a long miRNA probe, it is advisable to adopt a method that combines chemical synthesis (solid phase synthesis method, liquid phase synthesis method) and ligation reaction. Typically, the method divides the sequence of the miRNA probe of interest into two (may be divided into three or more sequences if desired), prepares each (RNA fragment) by chemical synthesis, and then RNA ligase. It is linked by a ligation reaction using.
  • the sequence of a miRNA probe can be designed based on the sequence information of various miRNAs whose existence is known. Typically, it is a sequence corresponding to the sequence of a natural miRNA, that is, a sequence consisting of a specific pre-miRNA sequence and a pri-miRNA 5'side continuous region and a pri-miRNA 3'side continuous region of the pre-miRNA.
  • the constructed miRNA probe is used.
  • a mutant miRNA probe in which a part of the sequence (for example, about 1 to 10 bases) is modified or mutated can also be used. The use of such mutant miRNA probes is useful in assessing the effect of specific mutations on specific miRNAs on processing activity.
  • miRNAs examples include hsa-miR-199a and hsa-miR-214.
  • hsa-miR-199a is a miRNA that has been reported to be associated with Rett syndrome. Therefore, when a miRNA probe corresponding to hsa-miR-199a is designed and applied to the detection method of the present invention, an assay system that can be used for research on Rett syndrome and development of a therapeutic method / drug for Rett syndrome is provided. You will be able to do it.
  • hsa-miR-16-1, hsa-miR-143, and hsa-miR-145 are associated with cancer
  • hsa-miR-21 is associated with cardiovascular disease
  • hsa-miR-574 is associated with muscle.
  • An association with atrophic lateral sclerosis (ALS) has been reported.
  • miRNA probes corresponding to such new miRNAs is naturally envisioned.
  • the miRNA probe is fluorescently labeled by binding a fluorescent substance to its 5'end region (typically 5'end) or 3'end region (typically 3'end). It does not prevent the fluorescent material from binding to both the 5'end region and the 3'end region, but usually binds the fluorescent material to one side.
  • the 5'end region and the 3'end region to be labeled sites consist of a part or all of the pri-miRNA 5'side continuous region and a part or all of the pri-miRNA 3'side continuous region, respectively, and are a Drosha complex. Included in the portion cut by processing by. Therefore, when the miRNA probe is properly processed by the Drosha complex, a fluorescently labeled fragment (a fragment containing a 5'end region or a 3'end region) will result.
  • the fluorescent substance used for the fluorescent label is not particularly limited.
  • fluorescent substances are 7-AAD, Alexa Fluor® 488, Alexa Fluor® 350, Alexa Fluor® 546, Alexa Fluor® 555, Alexa Fluor®. 568, Alexa Fluor® 594, Alexa Fluor® 633, Alexa Fluor® 647, Cy TM 2, DsRED, EGFP, EYFP, FITC, PerCP TM , R-Phycoerythrin, Propidium Iodide, AMCA, DAPI, ECFP, MethylCoumarin, Allophycocyanin, Cy TM 3, Cy TM 5, SYBR® Green, Rhodamine-123, Tetramethylrhodamine, Texas Red®, PE, PE-Cy TM 5, PE-Cy TM 5.5, PE-Cy TM 7, APC, APC-Cy TM 7, Oregon Green, Carboxyfluorescein, Carboxyfluorescein diacetate, Pyrene, HyLite
  • Fluorescent labeling can be performed by a conventional method, and for example, a method such as automatic nucleic acid synthesis using a phosphoramidite form of a fluorescent molecule (for example, 6-Fluorescein Phosphoramidite manufactured by Glen Research) may be adopted.
  • the miRNA probe may be labeled using a commercially available RNA fluorescent labeling kit (for example, EndTag Nucleic Acid Labeling System manufactured by Vector Laboratories).
  • Two or more types of miRNA probes that are fluorescently labeled so as to be distinguishable from each other may be prepared and subjected to the reaction of step (1).
  • This embodiment provides a detection system capable of simultaneously evaluating the processing activity of two or more types of miRNA probes.
  • fluorescence derived from each miRNA probe is detected in step (2) described later.
  • the Drosha complex used in step (1) contains Drosha (drosha ribonuclease III) as an essential component.
  • Drosha is a protein with a molecular weight of approximately 160 kDa and contains two RNase III domains. There are DGCR8 binding sites on each of these domains.
  • Drosha forms a complex (called the Drosha complex or Drosha-DGCR8 complex) with DGCR8 and processes pri-miRNA.
  • the Drosha complex containing Drosha and DGCR8 is preferably the present invention. Is used as a detection method for.
  • Drosha is widely preserved across species.
  • human Drosha is typically used, but Drosha of other species (for example, mouse, rat, Drosophila, etc.) may be adopted depending on the purpose.
  • other components for example, DGCR8
  • Human Drosha is registered in the NCBI (National Center for Biotechnology Information) database with Gene ID: 29102 (drosha ribonuclease III [Homo sapiens (human)]).
  • the amino acid sequence of human Drosha isoform 1 is set to SEQ ID NO: 1 (DEFINITION: ribonuclease 3 isoform 1 [Homo sapiens].
  • ACCESSION NP_037367
  • amino acid sequence of isoform 2 is set to SEQ ID NO: 2 (DEFINITION; ribonuclease 3 isoform 2 [Homo]. sapiens].
  • DGCR8 binds to Drosha to form a Drosha complex.
  • DGCR8 has an RNA-binding domain that assists Drosha in processing pri-miRNA by binding to pri-miRNA.
  • Human DGCR8 is registered in the NCBI (National Center for Biotechnology Information) database with Gene ID: 54487 (DGCR8, microprocessor complex subsystem [Homo sapiens (human)]).
  • the amino acid sequence of human DGCR8 (isoform 1) is shown in SEQ ID NO: 3 (DEFINITION: microprocessor complex subunit DGCR8 isoform 1 [Homo sapiens].
  • ACCESSION NP_073557 NP_073612).
  • the Drosha complex used in step (1) is obtained, for example, by recovering Drosha forcibly expressed in cultured cells (for example, HEK293 cells, CHO cells, COS cells) that can be used for expression / preparation of foreign proteins. Can be prepared (purified as needed). If it is a Drosha complex containing DGCR8 in addition to Drosha, the same method is used, that is, by recovery from cultured cells co-expressing Drosha and DGCR8, or after Drosha and DGCR8 are prepared separately, both are mixed and combined. It can be prepared by embodying. Instead of preparing the Drosha complex as a recombinant protein, the Drosha complex can also be prepared by separating and purifying the cells separated from the living body or its subculture cells.
  • cultured cells for example, HEK293 cells, CHO cells, COS cells
  • the Drosha complex used in the present invention may contain elements / factors other than Drosha and DGCR8.
  • elements / factors are various RNA-binding proteins such as DEAD-box RNA helicase DDX5 / 17, hnRNP, which are constituent factors of the Drosha complex in the living body.
  • the Drosha complex may be a mutant type. When the mutant Drosha complex is used, it becomes an assay system useful for research on diseases related to processing abnormalities and development of therapeutic agents (see the column 1-2. For details).
  • a mutant Drosha complex is a Drosha complex in which at least one of its constituents contains a mutation (which is not a normal structure).
  • Drosha complex containing Drosha and DGCR8 Drosha or DGCR8, or those containing mutations in both of them, correspond to the mutant Drosha complex. It may be either a naturally occurring mutation or an artificially occurring mutation.
  • the former mutation for example, a mutation found in the Drosha complex in a patient cell exhibiting a processing abnormality is assumed.
  • a mutant Drosha complex containing a mutation by an artificial operation can be obtained.
  • step (1) is performed in the presence of a molecule that interacts with the Drosha complex (hereinafter referred to as "interacting molecule").
  • a molecule that interacts with the Drosha complex (hereinafter referred to as "interacting molecule").
  • molecules that associate with the Drosha complex and are involved in the processing of specific miRNAs are interacting molecules.
  • the molecule may be added to the reaction system (specifically, added to the reaction solution) in step (1).
  • a Drosha complex in which the molecules are associated that is, a Drosha complex containing an interacting molecule may be prepared and subjected to the reaction.
  • the Drosha complex containing the interacting molecule is the same method as when preparing the Drosha complex containing Drosha and DGCR8, i.e., a culture in which the interacting molecule is forcibly expressed together with Drosha and other necessary molecules (eg, DGCR8). It can be prepared by collecting from cells or by using a method such as immunoprecipitation targeting an interacting molecule to separate and purify cells separated from cultured cells or living organisms or subcultured cells thereof.
  • Human MeCP2 is registered in the NCBI (National Center for Biotechnology Information) database with Gene ID: 4204 (methyl-CpG binding protein 2 [Homo sapiens (human)]).
  • the amino acid sequence of isoform 1 of human MeCP2 is set to SEQ ID NO: 4 (DEFINITION: methyl-CpG-binding protein 2 isoform 1 [Homo sapiens].
  • ACCESSION: NP_004983 the amino acid sequence of isoform 2 is set to SEQ ID NO: 5 (DEFINITION: methyl).
  • -CpG-binding protein 2 isoform 2 [Homo sapiens].
  • Mutants may also be used for the interacting molecule. As in the case of the above-mentioned mutant Drosha complex, mutations in interacting molecules are roughly classified into naturally occurring ones and artificially occurring ones. If a mutant interacting molecule is used, it becomes a useful assay system for research on diseases related to processing abnormalities caused by the interacting molecule and development of therapeutic agents (see the column 1-2. For details). ..
  • Step (2) After the reaction in step (1), fluorescence is detected (step (2)). Specifically, fluorescence from a fragment (fluorescent-labeled fragment) containing the 5'-terminal region or 3'-terminal region of the miRNA probe generated by processing by the Drosha complex is detected. Successful processing of miRNA probes results in fragments containing the binding site of the fluorescent material (5'end or 3'end region of the miRNA probe). Fluorescence derived from the fragment thus produced will be detected.
  • the reaction product is separated by electrophoresis or the like, and fluorescence is detected.
  • electrophoresis a fluorescently labeled fragment is observed as a band that emits fluorescence.
  • the portion cut by processing fragment having a small molecular weight
  • the portion cut by processing exhibits fluorescence and has high sensitivity (high S / N ratio).
  • the miRNA probe labeled specifically for the cleavage site cannot be used due to the characteristics of RI labeling, and signals from other than the portion cut by processing can be detected. As a result, the S / N ratio decreases.
  • fluorescence detectors / fluorescence measuring devices can be used to detect fluorescence.
  • fluorescence detectors / fluorescence measuring devices are Biorad's ChemiDoc TM XRS + system and Horiba's modular fluorescence spectrophotometer Fluorolog-3.
  • the detection result can be quantified using dedicated or general-purpose software (for example, Image Lab TM software of Biorad, FluoroEssence V3 of Horiba) or the like.
  • the detected value and the quantified data reflect the processing activity.
  • the processing activity can be evaluated by analyzing the data.
  • step (1) is performed in the coexistence of a test substance, and based on the detection result of step (2), the test substance for processing activity Evaluate the action of.
  • This aspect serves as an evaluation system for drug efficacy, toxicity, etc. targeting the mi-RNA processing mechanism.
  • the effect (effect) of the test substance on the mutant Drosha complex can be evaluated, and processing abnormalities caused by the mutant Drosha complex can cause onset or progression. It is useful for researching various diseases, developing therapeutic agents, and developing diagnostic methods.
  • mutant interaction molecule it becomes a useful evaluation system for research on diseases in which processing abnormalities caused by the interaction molecule cause the onset and progression, development of therapeutic agents, development of diagnostic methods, and the like. Since processing abnormalities caused by interacting molecules are highly disease-specific, the evaluation system is extremely useful as a research tool targeting a specific disease or disease group.
  • the mutant Drosha complex and the mutant interacting molecule may be used in combination.
  • the normal Drosha complex when used, it can be used and applied to, for example, toxicity evaluation of existing drugs or new drugs.
  • toxicity should be interpreted in a broad sense, and in addition to general toxicity (acute toxicity, subacute toxicity, chronic toxicity), side effects, carcinogenicity, mutagenicity, teratogenicity, etc. are also one of the toxicity. ..
  • the substance is a new drug (pharmaceutical) or its lead compound. It is promising as such.
  • the detection method of this embodiment is particularly useful as a drug efficacy evaluation system or a drug screening system.
  • An example of an embodiment in which the present invention is applied to the evaluation of the efficacy of a test substance will be described. First, from patient-derived cells, for example, extracts of affected site cells (for example, cancer cells) and iPS cells (disease iPS cells), less invasive skin-derived cells (fibroblasts, etc.), or these cells.
  • a sample consisting of the recovered Drosha complex (which may be an association of specific interacting molecules) is prepared and reacted with a specific miRNA probe that is relevant to the disease affecting the patient.
  • the test substance is added to the reaction solution.
  • the sample is treated with the test substance prior to the reaction.
  • fluorescence is detected and compared to the control (typically the detection result in the absence of the test substance). If the detected value is significantly higher than that of the control, it can be judged that the test substance has an effect of correcting or ameliorating the processing abnormality.
  • a test substance having such efficacy is promising as an active ingredient or a candidate for a therapeutic agent for a disease affecting a patient.
  • step (1) is performed in the presence or absence of the test substance, and the detection result of step (2) in the former case and the detection result of step (2) in the latter case are obtained. Compare. If the effect of the test substance on the processing activity is evaluated using the comparison with the control (control) in this way, highly objective and reliable evaluation results can be obtained.
  • the test substance is not particularly limited. Various substances that need to be evaluated for their efficacy or toxicity can be test substances. Organic compounds or inorganic compounds of various molecular sizes can be used as the test substance. Examples of organic compounds are nucleic acids, peptides, proteins, lipids (simple lipids, complex lipids (phosphoglycerides, sphingolipids, glycoglycerides, cerebrosides, etc.), prostaglandins, isoprenoids, terpenes, steroids, polyphenols, catechins, vitamins (B1,) B2, B3, B5, B6, B7, B9, B12, C, A, D, E, etc.) can be exemplified.
  • test substances such as pharmaceuticals, nutritional foods, food additives, pesticides, cosmetics (cosmetics), etc.
  • a plant extract, a cell extract, a culture supernatant, or the like may be used as a test substance.
  • the action, synergistic action, etc. may be investigated.
  • the test substance may be derived from a natural product or may be synthesized. In the latter case, for example, a method of combinatorial synthesis is used for efficiency. It is possible to construct a simple assay system.
  • reagents (reagents for detecting miRNA processing activity) and kits (kits for detecting miRNA processing activity) that enable the detection method of the present invention to be carried out more easily. )I will provide a.
  • the configurations, features, and the like of the reagents and kits of the present invention will be described, but matters not mentioned are as described in the first aspect, and the corresponding explanations are incorporated.
  • the reagent of the present invention consists of a miRNA probe, and in addition to the full-length sequence of a specific pre-miRNA, the pri-miRNA has a length of 10 to 80 bases (preferably 20 to 50) continuous to the 5'end side of the pre-miRNA. Base length) sequence (pri-miRNA 5'side continuous region) and 10 to 80 base length (preferably 20 to 50 base length) sequence (pri-miRNA 3'side continuous region) continuous to the 3'end side ), And its 5'end region or 3'end region is fluorescently labeled.
  • the reagent is contained as an essential component. If two or more reagents designed based on different miRNA sequences are used as components of the kit, the kit can detect the processing activity for the processing of two or more miRNAs.
  • the Drosha complex is also a component of the kit.
  • the processing activity can be detected without separately preparing the Drosha complex.
  • a Drosha complex containing Drosha and DGCR8 is adopted to obtain a kit with high processing efficiency.
  • other constituent factors for example, various RNA-binding proteins such as DEAD-box RNA helicase DDX5 / 17, hnRNP, etc.
  • Drosha complex may be included in the Drosha complex.
  • it will be a useful kit for, for example, research on diseases related to processing abnormalities and development of therapeutic agents.
  • the kit may be suitable for the development of a diagnostic method.
  • a mutant interaction molecule may be adopted as a kit particularly useful in research on diseases related to processing abnormalities caused by the interaction molecule, development of therapeutic agents, and the like.
  • the kit includes a miRNA probe designed based on a sequence of miRNA that generally has constitutive expression, and a miRNA probe designed based on a sequence of miRNA that has constitutive expression in a specific cell or tissue. It is good.
  • kits Other elements that can be included in the kit include solutions for processing reactions (including, for example, magnesium and ATP), buffers (for reaction, dilution, washing, etc.), and reaction vessels.
  • an instruction manual is usually attached to the kit of the present invention.
  • miRNA processing of miRNA is important for various biological phenomena, and its abnormalities are involved in the onset and progression of brain diseases, cardiovascular diseases, cancer, etc.
  • the following studies were conducted with the aim of creating a new means for safely and easily detecting miRNA processing activity, which is clinically important as well as a research subject.
  • the Primary-miR-199a probe is a 140 mer sequence (SEQ ID NO: 9) in which a sequence derived from pri-miR-199a is added to both ends of the precursor (pre-miR-199a) (SEQ ID NO: 8) of miR-199a. ), And its 3'end is labeled with fluorescein.
  • RNA oligonucleotides 2'-TOM (triisopropylsilyloxymethyl) protected ⁇ -cyanoethyl phosphoramidite (DMT-2'-O-TOM-rA (Ac), DMT-2'-O-TOM- rG (Ac), DMT-2'-O-TOM-rC (Ac), DMT-2'-O-TOM-rU) (Glen Research or ChemGenes) were used.
  • Each phosphoromidite monomer is prepared so as to be a 0.05 mol / L acetonitrile solution, and synthesized by a DNA / RNA solid phase synthesizer (NTS M-2-MX, Nippon Techno Service Co., Ltd.) using 0.8 ⁇ mol of a solid phase carrier. did. Universal UnyLinker Support 2000 ⁇ (ChemGenes) was used as the solid phase carrier, and the condensation time for the first base was 15 minutes, and the subsequent condensation time was 3 minutes each. Phosphorylation of the hydroxyl group at the 5'end was performed using 5'-Phosphate-ON Reagent (0.05 mol / L acetonitrile solution, ChemGenes). DMT-6-FAM phosphoramidite (ChemGenes) was used as the fluorescein label.
  • the reagents used in the solid phase synthesizer are as follows. To remove the dimethoxytrityl group of the hydroxyl group at the 5'end, a reaction was carried out for 10 seconds using a commercially available deblocking reagent (Deblocking Solution-1, 3 w / v% trichloroacetic acid / dichloromethane solution, Wako Pure Chemical Industries, Ltd.). It was. A commercially available activator solution (activator solution 3, Wako Junyaku Co., Ltd.) was used as an activator for phosphoramidite.
  • a commercially available capping solution (Cap A solution-2 and Cap B solution-2, Wako Pure Chemical Industries, Ltd.) was used for capping the unreacted 5'-terminal hydroxyl group, and the reaction was carried out for 10 seconds.
  • an oxidizing agent for producing a phosphoric acid ester a solution containing pyridine, THF, water and iodine (Oxidizer, 0.01 M iodine, 29.2% water, 6.3% pyridine, 64.5% acetonitrile, Honeywell) was used, and 10 Reacted for seconds.
  • RNA oligonucleotide After solid-phase synthesis, the dimethoxytrityl group of the hydroxyl group at the 5'end of the RNA oligonucleotide was deprotected on the solid-phase carrier.
  • the fluorescein-labeled RNA was treated with concentrated aqueous ammonia for 30 minutes at room temperature, an equal amount of 40% aqueous methylamine solution was added, and the RNA was treated at 65 ° C.
  • RNA oligonucleotides were concentrated by a centrifugal evaporator and then purified using a modified polyacrylamide gel (hereinafter, dPAGE).
  • RNA fragments were purified using dPAGE An aqueous solution of ammonium persulfate (hereinafter referred to as APS) and N, N, N', N'-in an acrylamide gel solution (including 7M urea as a denaturant) at each% concentration.
  • a gel was prepared by adding tetramethylenediamine (hereinafter, TEMED) as a polymerization agent and allowing it to solidify (room temperature, 6 to 12 hours).
  • RNA samples were mixed with gel loading buffer (80% formamide, TBE) and loaded onto gels. After electrophoresis, RNA bands were detected by UV irradiation (254 nm) and cut out of the gel using a razor blade.
  • TEMED tetramethylenediamine
  • RNA was extracted with ultrapure water (shaking at room temperature for 12 to 24 hours). The RNA extract was desalted and concentrated using Amicon Ultra 10K (Millipore), and ethanol precipitation (0.3M sodium acetate (pH 5.2) / 70% ethanol) was performed to obtain RNA pellets. RNA pellets were rinsed with 80% ethanol and then dried on a centrifugal evaporator. The obtained RNA pellet was dissolved in ultrapure water and diluted to an appropriate concentration.
  • the absorbance (260 nm) of each diluent was measured by ultraviolet-visible absorptiometry (NanoDrop, Thermo scientific), and the concentration of each RNA oligonucleotide was determined from the molar extinction coefficient of each RNA sequence (molar extinction coefficient of each RNA sequence).
  • concentration of each RNA oligonucleotide was determined from the molar extinction coefficient of each RNA sequence (molar extinction coefficient of each RNA sequence).
  • RNA oligonucleotide SEQ ID NO: 6
  • SEQ ID NO: 7 each final concentration 1 ⁇ M
  • T4 RNA ligase buffer solution final concentration 50 mM Tris-.
  • RNA pellets by alcohol precipitation (0.3 M aqueous sodium acetate solution (pH 5.2) / 70% ethanol). This RNA was separated by gel electrophoresis using a 6% denatured polyacrylamide gel. The target band was excised and gel extracted to obtain a Primary-miR-199a probe (the purification operation was the same as for the purification of the RNA oligonucleotide described above).
  • the Primary-miR-214 probe consists of a 160 mer sequence (SEQ ID NO: 11) with a sequence derived from pri- miR-214 added to both ends of the miR-214 precursor (pre-miR-214) (SEQ ID NO: 10). .. Its 3'end was labeled with fluorescein or SYBR Green II.
  • the adjustment method of the Primary-miR-214 probe is 1-1. It is the same as (1).
  • the processing assay and fluorescence detection were in accordance with the above experiment (2-1.). However, the reaction time of the processing assay was 30 minutes and 60 minutes.
  • Utilization and application of the present invention will lead to new discoveries and understanding of biological phenomena through miRNA processing. For example, there is a possibility that a new disease caused by an abnormality or disorder in miRNA processing may be found, and it can be expected to be applied to the diagnosis of a disease whose etiology is unknown.
  • SEQ ID NO: 6 Description of artificial sequence: RNA oligonucleotide
  • SEQ ID NO: 7 Description of artificial sequence: RNA oligonucleotide
  • SEQ ID NO: 8 Description of artificial sequence: pre-miR-199a
  • SEQ ID NO: 9 Description of artificial sequence: Primary-miR-199a probe
  • SEQ ID NO: 10 Description of artificial sequence: pre-miR-214
  • SEQ ID NO: 11 Description of artificial sequence: Primary-miR-214 probe

Abstract

The present invention addresses the problem of providing a means for conveniently and very safely detecting microRNA processing activity. MicroRNA processing activity is detected using (1) a step of reacting, with a Drosha complex, an miRNA probe containing, in addition to the full-length sequence of a pre-miRNA, a 10-80 base length sequence connected to the 5'-end side of the pre-miRNA in a pri-miRNA and a 10-80 base length sequence connected to the 3'-end side, and containing a fluorescent substance bonded to the 5'-end region or 3'-end region thereof; and (2) a step of detecting fluorescence from a fragment that is produced by processing by the Drosha complex and contains the 5'-end region or 3'-end region of the miRNA probe.

Description

マイクロRNAプロセシング活性の検出方法及びその応用Detection method of microRNA processing activity and its application
 本発明はマイクロRNAのプロセシング活性を検出する方法に関する。詳しくは、マイクロRNAプロセシング活性の簡便な検出方法、それを利用した各種アッセイ(試験方法)等に関する。本出願は、2019年3月14日に出願された日本国特許出願第2019-046718号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。 The present invention relates to a method for detecting the processing activity of microRNA. More specifically, the present invention relates to a simple method for detecting microRNA processing activity, various assays (test methods) using the same, and the like. This application claims priority based on Japanese Patent Application No. 2019-046718 filed on March 14, 2019, and the entire contents of the patent application are incorporated by reference.
 マイクロRNA(miRNA)は、細胞内に存在する長さ18~24塩基程度の1本鎖RNAであり、核内及び細胞質でのプロセシングを経て成熟型となる。まず、数百から数千塩基の一次前駆体(pri-miRNA)として転写され、核内でDrosha複合体によりプロセシングされる。このプロセシングで生じた二次前駆体(pre-miRNA)は細胞質へと移行し、Dicer複合体によって成熟型(mature-miRNA)へとさらにプロセシングされる。成熟型miRNAは標的遺伝子mRNAに結合し、mRNAの分解や翻訳を阻害することで標的遺伝子の発現を調節する。標的結合部位に対して不完全な配列相補性によって結合し作用することから、一つのmiRNAが通常、約200のmRNAを標的とする。 MicroRNA (miRNA) is a single-stranded RNA with a length of about 18 to 24 bases that exists in cells and becomes mature after processing in the nucleus and cytoplasm. First, it is transcribed as a primary precursor (pri-miRNA) of hundreds to thousands of bases and processed in the nucleus by the Drosha complex. The secondary precursors (pre-miRNAs) produced by this processing translocate to the cytoplasm and are further processed into mature-miRNAs by the Dicer complex. Mature miRNAs regulate the expression of target genes by binding to the target gene mRNA and inhibiting the degradation and translation of the mRNA. A single miRNA typically targets about 200 mRNAs because it binds and acts on the target binding site with incomplete sequence complementarity.
 これまでの研究によって、miRNAのプロセシング異常が様々な疾患の病態に寄与することが明らかとなっている。例えば、Drosha複合体を構成するDGCR8の異常と22q11.2欠失症候群との関連(非特許文献1)、Drosha複合体と相互作用(会合)するMeCP2の異常とレット症候群との関連(非特許文献2)、Drosha複合体と相互作用するTDP43の異常と筋萎縮性側索硬化症(ALS)との関連(非特許文献3)、Drosha複合体と相互作用するp53の異常とがんとの関連(非特許文献4)、Drosha複合体と相互作用するSmadsの異常と心血管疾患との関連(非特許文献5)等が報告されている。 Previous studies have revealed that abnormal miRNA processing contributes to the pathophysiology of various diseases. For example, the association between DGCR8 abnormalities constituting the Drosha complex and 22q11.2 deletion syndrome (Non-Patent Document 1), and the association between MeCP2 abnormalities that interact (associate) with the Drosha complex and Rett syndrome (Non-patent). Reference 2), Relationship between TDP43 abnormality interacting with Drosha complex and amyotrophic lateral sclerosis (ALS) (Non-Patent Document 3), p53 abnormality interacting with Drosha complex and cancer Relationships (Non-Patent Document 4), associations between abnormalities in Smads interacting with the Drosha complex and cardiovascular diseases have been reported (Non-Patent Document 5).
 miRNAのpri-miRNAからpre-miRNAへのプロセシング活性の検出については、放射性標識(RI)を利用した手法が2004年に報告された(非特許文献6)。その後も、同様の手法による研究がいくつかの研究グループによって行われている(例えば非特許文献7を参照)。 Regarding the detection of processing activity of miRNA from pri-miRNA to pre-miRNA, a method using a radiolabel (RI) was reported in 2004 (Non-Patent Document 6). Since then, research by the same method has been carried out by several research groups (see, for example, Non-Patent Document 7).
 上記の通り、miRNAのプロセシング異常は様々な疾患の発症や進展等に関与する。miRNAプロセシング活性を簡便に検出・評価できれば、当該活性を指標とした薬剤スクリーニング系を構築し、多種多様な疾患について効率的な治療薬開発が行える。また、遺伝的異常というエビデンスに基づく客観的な検査ないし診断も可能になる。これまでにも、miRNAプロセシング活性の検出に成功したという報告はある。しかしながら、過去に報告されたmiRNAプロセシング活性の検出には放射性標識(RI)が利用されており(非特許文献6)、現在においても検出感度の問題等の理由によりRIを用いた手法に依存せざるを得ない状況にある(例えば非特許文献7を参照)。RIにはそれ自体の危険性が高いこと、操作や手続きが煩雑であること、使用可能な施設や場所が限定されることなどの問題がある。 As mentioned above, abnormal processing of miRNA is involved in the onset and progression of various diseases. If the miRNA processing activity can be easily detected and evaluated, a drug screening system using the activity as an index can be constructed, and an efficient therapeutic drug can be developed for a wide variety of diseases. It also enables objective testing or diagnosis based on evidence of genetic abnormalities. There have been reports of successful detection of miRNA processing activity. However, radiolabeling (RI) has been used to detect miRNA processing activity reported in the past (Non-Patent Document 6), and even now, it depends on the method using RI for reasons such as the problem of detection sensitivity. There is no choice but to do so (see, for example, Non-Patent Document 7). RI has problems such as high risk of itself, complicated operations and procedures, and limited facilities and places that can be used.
 そこで本発明は、miRNAのプロセシング活性を簡便に且つ高い安全性で検出する手段を提供することを主たる課題とする。 Therefore, the main object of the present invention is to provide a means for detecting the processing activity of miRNA easily and with high safety.
 上記課題を解決すべく本発明者らは、蛍光の部位特異的な利用が簡便性はもとより高感度の検出に有利と考え、部位特異的な蛍光標識を用いたmiRNAプロセシング活性検出系の構築を目指した。まず本検出系の構築には、miRNA(miRNAプローブ)の長さが大きな問題となる。通常は、主に合成上の制約から、70-80nt程度の長さが合成機による合成の限界とされており、短いものでも80nt以上の長さのprimary-miRNAを合成により作製することは極めて困難であり不可能に近い。従来、primary-miRNAプローブの調製は、in vitro transcriptionの反応系が用いられている(例えば上掲の非特許文献6、7を参照)。この方法では100nt以上のRNAを調製可能であり、化学標識したヌクレオチドを原料に用いて転写反応を起こすことで化学標識したRNAの作製も可能である。しかしながら、このようなin vitro transcriptionの反応系によるprimary-miRNAの調製方法では部位特異的な修飾導入が困難である。そこで、ライゲーション反応を利用することにより、合成機により合成可能な70-80nt断片を合成し連結させることで、pri-miRNAの特徴的な構造を反映する、十分に長いpri-miRNAプローブを調製し、その有効性を検討することにした。一方で、アッセイに使用するDrosha複合体の構成にも注目した。 In order to solve the above problems, the present inventors considered that the site-specific use of fluorescence is advantageous not only for simplicity but also for high-sensitivity detection, and constructed a miRNA processing activity detection system using a site-specific fluorescent label. I aimed. First, the length of miRNA (miRNA probe) is a major problem in constructing this detection system. Normally, due to synthetic restrictions, the length of about 70-80 nt is the limit of synthesis by a synthesizer, and it is extremely difficult to synthesize primary-miRNA with a length of 80 nt or more even if it is short. Difficult and nearly impossible. Conventionally, an in vitro transcription reaction system has been used to prepare a primary-miRNA probe (see, for example, Non-Patent Documents 6 and 7 described above). With this method, RNA of 100 nt or more can be prepared, and it is also possible to prepare chemically labeled RNA by causing a transcription reaction using chemically labeled nucleotides as a raw material. However, it is difficult to introduce site-specific modifications by the method for preparing primary-miRNA by such an in vitro transcription reaction system. Therefore, by using the ligation reaction to synthesize and ligate 70-80nt fragments that can be synthesized by a synthesizer, a sufficiently long pri-miRNA probe that reflects the characteristic structure of pri-miRNA was prepared. , I decided to examine its effectiveness. On the other hand, we also focused on the composition of the Drosha complex used in the assay.
 詳細な検討の結果、合成RNAのライゲーションと蛍光検出を組み合わせたことで、非放射性標識によるpri-miRNAプロセシング活性の検出・評価に成功した。一方、DroshaとDGCR8の複合体を使用した場合、Drosha単独の場合に比べてプロセシング効率が格段に向上し、実用性に優れた検出系が構築された。また、標的特異的なプロセシングを制御する付加的因子の作用の評価も可能であることが示された。更なる検討によって、当該手法の一般性/汎用性(特定のmiRNAのプロセシング活性の検出に限定されるものではないこと)も確認された。 As a result of detailed examination, we succeeded in detecting and evaluating pri-miRNA processing activity by non-radioactive labeling by combining ligation of synthetic RNA and fluorescence detection. On the other hand, when the complex of Drosha and DGCR8 was used, the processing efficiency was significantly improved as compared with the case of Drosha alone, and a highly practical detection system was constructed. It was also shown that it is possible to evaluate the action of additional factors that control target-specific processing. Further studies have also confirmed the generality / versatility of the method (not limited to the detection of processing activity of a particular miRNA).
 一方、当該手法の応用を図るべく、レット症候群との関連が報告されているMeCP2複合体のプロセシング活性の検出を試みた。その結果、MeCP2のプロセシング促進作用の検出・評価が可能であった。この成果は、Drosha及びDGRC8を主要な構成要素とするDrosha複合体に相互作用する分子(MeCP2の他、TDP43、p53、Smads等)の活性評価にも当該手法が有用であることを示す。 On the other hand, in order to apply this method, we attempted to detect the processing activity of the MeCP2 complex, which has been reported to be associated with Rett syndrome. As a result, it was possible to detect and evaluate the processing promoting action of MeCP2. This result indicates that the method is also useful for evaluating the activity of molecules (MeCP2, TDP43, p53, Smads, etc.) that interact with the Drosha complex whose main components are Drosha and DGRC8.
 以上の通り、汎用性・実用性に優れた、画期的なmiRNAプロセシング活性検出系の創出に成功した。以下の発明は主として当該成果に基づく。
 [1]以下のステップ(1)及び(2)を含む、マイクロRNAプロセシング活性の検出方法:
 (1)pre-miRNAの全長配列に加え、pri-miRNAにおいて該pre-miRNAの5'末端側に連続している10~80塩基長の配列及び3'末端側に連続している10~80塩基長の配列を含み、その5’末端領域又は3'末端領域に蛍光物質が結合したmiRNAプローブと、Drosha複合体とを反応させるステップ、
 (2)前記Drosha複合体によるプロセシングによって生じる、前記miRNAプローブの5’末端領域又は3'末端領域を含む断片からの蛍光を検出するステップ。
 [2]前記miRNAプローブの蛍光標識の位置が5'末端又は3'末端である、[1]に記載の検出方法。
 [3]前記miRNAプローブの長さが100~200塩基長である、[1]又は[2]に記載の検出方法。
 [4]前記miRNAプローブがhsa-miR-199aの前駆体又はhsa-miR-214の前駆体の配列を含む、[1]~[3]のいずれか一項に記載の検出方法。
 [5]前記Drosha複合体がDroshaとDGCR8を含む、[1]~[4]のいずれか一項に記載の検出方法。
 [6]前記Droshaと前記DGCR8が培養細胞で共発現させたものである、[5]に記載の検出方法。
 [7]前記Drosha複合体が変異型である、[1]~[6]のいずれか一項に記載の検出方法。
 [8]前記Drosha複合体と相互作用する分子の存在下でステップ(1)の反応を行う、[1]~[7]のいずれか一項に記載の検出方法。
 [9]前記分子が転写因子又はRNA結合タンパク質である、[8]に記載の検出方法。
 [10]前記分子がMeCP2、TDP43、p53又はSmadsである、[8]に記載の検出方法。
 [11]前記分子が変異型である、[8]~[10]のいずれか一項に記載の検出方法。
 [12]ステップ(1)を被験物質の共存下で行い、
 ステップ(2)の検出結果に基づき、プロセシング活性への被験物質の作用を評価する、[1]~[11]のいずれか一項に記載の検出方法。
 [13]pre-miRNAの全長配列に加え、pri-miRNAにおいて該pre-miRNAの5'末端側に連続している10~80塩基長の配列及び3'末端側に連続している10~80塩基長の配列を備え、その5’末端領域又は3'末端領域が蛍光標識されたmiRNAプローブからなる、マイクロRNAプロセシング活性検出用試薬。
 [14][13]に記載の試薬を含む、マイクロRNAプロセシング活性検出用キット。
 [15]Drosha複合体を更に含む、[14]に記載のキット。
 [16]前記Drosha複合体がDroshaとDGCR8を含む、[15]に記載のキット。
 [17]前記Drosha複合体が変異型である、[15]又は[16]に記載のキット。
 [18]前記Drosha複合体に、それと相互作用する転写因子又はRNA結合タンパク質が会合している、[15]~[17]のいずれか一項に記載のキット。
 [19]前記Drosha複合体に、MeCP2、TDP43、p53又はSmadsが会合している、[15]~[17]のいずれか一項に記載のキット。
As described above, we have succeeded in creating an epoch-making miRNA processing activity detection system with excellent versatility and practicality. The following inventions are mainly based on the results.
[1] A method for detecting microRNA processing activity, which comprises the following steps (1) and (2):
(1) In addition to the full-length sequence of pre-miRNA, in pri-miRNA, a sequence having a length of 10 to 80 bases continuous to the 5'end side of the pre-miRNA and 10 to 80 continuous to the 3'end side. A step of reacting a Drosha complex with a miRNA probe that contains a base-length sequence and has a fluorescent substance bound to its 5'-terminal region or 3'-terminal region.
(2) A step of detecting fluorescence from a fragment containing the 5'end region or the 3'end region of the miRNA probe, which is generated by processing by the Drosha complex.
[2] The detection method according to [1], wherein the position of the fluorescent label of the miRNA probe is the 5'end or the 3'end.
[3] The detection method according to [1] or [2], wherein the length of the miRNA probe is 100 to 200 bases.
[4] The detection method according to any one of [1] to [3], wherein the miRNA probe contains a sequence of a precursor of hsa-miR-199a or a precursor of hsa-miR-214.
[5] The detection method according to any one of [1] to [4], wherein the Drosha complex contains Drosha and DGCR8.
[6] The detection method according to [5], wherein the Drosha and the DGCR8 are co-expressed in cultured cells.
[7] The detection method according to any one of [1] to [6], wherein the Drosha complex is a mutant type.
[8] The detection method according to any one of [1] to [7], wherein the reaction of step (1) is carried out in the presence of a molecule that interacts with the Drosha complex.
[9] The detection method according to [8], wherein the molecule is a transcription factor or RNA-binding protein.
[10] The detection method according to [8], wherein the molecule is MeCP2, TDP43, p53 or Smads.
[11] The detection method according to any one of [8] to [10], wherein the molecule is a mutant type.
[12] Step (1) is performed in the coexistence of the test substance.
The detection method according to any one of [1] to [11], which evaluates the action of the test substance on the processing activity based on the detection result of step (2).
[13] In addition to the full-length sequence of pre-miRNA, in pri-miRNA, a sequence having a length of 10 to 80 bases continuous on the 5'end side of the pre-miRNA and 10 to 80 continuous on the 3'end side. A reagent for detecting microRNA processing activity, which comprises a miRNA probe having a base-length sequence and whose 5'-terminal region or 3'-terminal region is fluorescently labeled.
[14] A kit for detecting microRNA processing activity, which comprises the reagent according to [13].
[15] The kit according to [14], further comprising a Drosha complex.
[16] The kit according to [15], wherein the Drosha complex comprises Drosha and DGCR8.
[17] The kit according to [15] or [16], wherein the Drosha complex is a mutant type.
[18] The kit according to any one of [15] to [17], wherein a transcription factor or RNA-binding protein that interacts with the Drosha complex is associated with the Drosha complex.
[19] The kit according to any one of [15] to [17], wherein MeCP2, TDP43, p53 or Smads are associated with the Drosha complex.
Drosha単独発現の場合のプロセシング活性の評価。プロセシング反応後、生成したRNAを変性ポリアクリルアミドゲル電気泳動(dPAGE:10% アクリルアミド、7M 尿素、スモールゲル (8 cm x 8 cm)を使用、300 V 定電圧、20分間の泳動)に供し、蛍光を検出した(左)。レーン1:Drosha (-) 45分間の反応、レーン2:Drosha (+) 45 分間の反応、レーン3:Drosha (-) 90分間の反応、レーン4:Drosha (+) 90 分間の反応、レーン5:Marker (XCとBPB)、レーン6:PO-61mer-Fl (AM17-CS)。蛍光強度からプロセシング活性を比較した(右)。Evaluation of processing activity when Drosha alone is expressed. After the processing reaction, the generated RNA is subjected to denatured polyacrylamide gel electrophoresis (dPAGE: 10% acrylamide, 7M urea, small gel (8 cm x 8 cm), 300 V constant voltage, 20 minutes electrophoresis) for fluorescence. Was detected (left). Lane 1: Drosha (-) 45 minutes reaction, Lane 2: Drosha (+) 45 minutes reaction, Lane 3: Drosha (-) 90 minutes reaction, Lane 4: Drosha (+) 90 minutes reaction, lane 5 : Marker (XC and BPB), Lane 6: PO-61mer-Fl (AM17-CS). The processing activity was compared from the fluorescence intensity (right). DroshaとDGCR8共発現の場合のプロセシング活性の評価。プロセシング反応後、生成したRNAを変性ポリアクリルアミドゲル電気泳動(dPAGE:10% アクリルアミド、7M 尿素、スモールゲル (8 cm x 8 cm)を使用、300 V 定電圧、20分間の泳動)に供し、蛍光を検出した(左)。レーン1:コントロール 30分間の反応、レーン2:コントロール 60分間の反応、レーン3:Drosha+DGCR8 30分間の反応、レーン4:Drosha+DGCR8 60分間の反応。蛍光強度からプロセシング活性を比較した(中央)。SYBR GreenIIで標識したPrimary-miR-199aプローブでも評価した(右)。Evaluation of processing activity in the case of co-expression of Drosha and DGCR8. After the processing reaction, the generated RNA is subjected to denatured polyacrylamide gel electrophoresis (dPAGE: 10% acrylamide, 7M urea, small gel (8 cm x 8 cm), 300 V constant voltage, 20 minutes electrophoresis) for fluorescence. Was detected (left). Lane 1: Control 30 minutes reaction, Lane 2: Control 60 minutes reaction, Lane 3: Drosha + DGCR8 30 minutes reaction, Lane 4: Drosha + DGCR8 60 minutes reaction. The processing activity was compared from the fluorescence intensity (center). It was also evaluated with a Primary-miR-199a probe labeled with SYBR Green II (right). 別のプローブ(Primary-miR-214プローブ)を用いた評価。プロセシング反応後、生成したRNAを変性ポリアクリルアミドゲル電気泳動(dPAGE:10% アクリルアミド、7M 尿素、スモールゲル (8 cm x 8 cm)を使用、300 V 定電圧、35分間の泳動)に供し、蛍光を検出した(左)。レーン1:コントロール 30分間の反応、レーン2::コントロール 60分間の反応、レーン3:Drosha+DGCR8 30分間の反応、レーン4:Drosha+DGCR8 60分間の反応。蛍光強度からプロセシング活性を比較した(中央)。SYBR GreenIIで標識したPrimary-miR-214プローブでも評価した(右)。Evaluation using another probe (Primary-miR-214 probe). After the processing reaction, the generated RNA is subjected to denaturing polyacrylamide gel electrophoresis (dPAGE: 10% acrylamide, 7M urea, small gel (8 cm x 8 cm), 300 V constant voltage, 35 minutes electrophoresis) for fluorescence. Was detected (left). Lane 1: Control 30 minutes reaction, Lane 2: Control 60 minutes reaction, Lane 3: Drosha + DGCR8 30 minutes reaction, Lane 4: Drosha + DGCR8 60 minutes reaction. The processing activity was compared from the fluorescence intensity (center). It was also evaluated with a Primary-miR-214 probe labeled with SYBR Green II (right). MeCP2複合体のプロセシング活性の評価。プロセシング反応後、生成したRNAを変性ポリアクリルアミドゲル電気泳動(dPAGE:10% アクリルアミド、7M 尿素、スモールゲル (8 cm x 8 cm)を使用、300 V 定電圧、35分間の泳動)に供し、蛍光を検出した(左)。レーン1:コントロール 30分間の反応、レーン2::コントロール 60分間の反応、レーン3:MeCP2 30分間の反応、レーン4:MeCP2 60分間の反応。蛍光強度からプロセシング活性を比較した(中央)。SYBR GreenIIで標識したPrimary-miR-214プローブでも評価した(右)。Evaluation of processing activity of MeCP2 complex. After the processing reaction, the generated RNA is subjected to denaturing polyacrylamide gel electrophoresis (dPAGE: 10% acrylamide, 7M urea, small gel (8 cm x 8 cm), 300 V constant voltage, 35 minutes electrophoresis) for fluorescence. Was detected (left). Lane 1: Control 30 minutes reaction, Lane 2: Control 60 minutes reaction, Lane 3: MeCP2 30 minutes reaction, Lane 4: MeCP2 60 minutes reaction. The processing activity was compared from the fluorescence intensity (center). It was also evaluated with a Primary-miR-214 probe labeled with SYBR Green II (right).
1.マイクロRNAプロセシング活性アッセイ
1-1.マイクロRNAプロセシング活性の検出方法
 本発明の第1の局面はマイクロRNAプロセシング活性の検出方法に関する。上記の通り、マイクロRNA(「miRNA」と呼称することがある)は、Drosha複合体によるプロセシングによってpre-miRNAとなり、Dicer複合体による更なるプロセシングによって成熟型となる。本明細書における「マイクロRNAプロセシング活性(miRNAプロセシング活性)」とは、前者のプロセシング、即ち、Drosha複合体によるプロセシング(pri-miRNAからpre-miRNAへの変換)の能力ないし程度(レベル)である。特に言及しない限り、以下の説明において「プロセシング」は、Drosha複合体が介在するプロセシング、即ち、pri-miRNAからpre-miRNAへの変換を指す。生体においてDrosha複合体は主要な構成要素としてDroshaとDGCR8を含み、更にDEAD-box RNA helicase DDX5/17、hnRNP等、種々のRNA結合タンパク質が含まれうる。また、MeCP2、TDP43、p53、Smads等がDrosha複合体と会合し、特定のmiRNAプロセシングを制御することが知られている。
1. 1. MicroRNA processing activity assay 1-1. Method for Detecting MicroRNA Processing Activity The first aspect of the present invention relates to a method for detecting microRNA processing activity. As mentioned above, microRNAs (sometimes referred to as "miRNAs") become pre-miRNAs by processing with the Drosha complex and mature by further processing with the Dicer complex. As used herein, the term "microRNA processing activity (miRNA processing activity)" refers to the ability or degree (level) of the former processing, that is, processing by the Drosha complex (conversion of pri-miRNA to pre-miRNA). .. Unless otherwise stated, "processing" in the following description refers to Drosha complex-mediated processing, i.e., conversion of pri-miRNA to pre-miRNA. In the living body, the Drosha complex contains Drosha and DGCR8 as major components, and may further contain various RNA-binding proteins such as DEAD-box RNA helicase DDX5 / 17, hnRNP. It is also known that MeCP2, TDP43, p53, Smads and others associate with the Drosha complex to regulate specific miRNA processing.
 本発明の検出方法では以下のステップ(1)及び(2)を行う。尚、その構成から明らかな通り、本発明の検出方法は生体外で行われるものである。即ち、in vitroアッセイである。
(1)pre-miRNAの全長配列に加え、pri-miRNAにおいて該pre-miRNAの5'末端側に連続している10~80塩基長(好ましくは20~50塩基長)の配列及び3'末端側に連続している10~80塩基長(好ましくは20~50塩基長)の配列を含み、その5’末端領域又は3'末端領域が蛍光標識されたmiRNAプローブと、Drosha複合体とを反応させるステップ
(2)前記Drosha複合体によるプロセシングによって生じる、前記miRNAプローブの5’末端領域又は3'末端領域を含む断片からの蛍光を検出するステップ
In the detection method of the present invention, the following steps (1) and (2) are performed. As is clear from the configuration, the detection method of the present invention is performed in vitro. That is, it is an in vitro assay.
(1) In addition to the full-length sequence of pre-miRNA, a sequence having a length of 10 to 80 bases (preferably 20 to 50 bases) continuous with the 5'end side of the pre-miRNA and a 3'end of the pre-miRNA. The Drosha complex is reacted with a miRNA probe containing a contiguous 10 to 80 base length (preferably 20 to 50 base length) sequence on the side and fluorescently labeled with its 5'end region or 3'end region. (2) Step of detecting fluorescence from a fragment containing the 5'-terminal region or 3'-terminal region of the miRNA probe caused by processing by the Drosha complex.
ステップ(1)
 ステップ(1)は、本発明に特徴的なmiRNAプローブを利用したプロセシング反応であり、miRNAプローブとDrosha複合体とを反応させる。即ち、プロセシングに必要な成分、例えばマグネシウム(Mg)やATPを含む反応溶液を用意し、miRNAプローブとDrosha複合体の共存下(換言すれば、相互作用が可能な状態とし)、例えば、35℃~39℃、好ましくは約37℃でインキュベートする。インキュベート時間は例えば10分~3時間とする。
Step (1)
Step (1) is a processing reaction using a miRNA probe characteristic of the present invention, in which the miRNA probe is reacted with the Drosha complex. That is, a reaction solution containing components necessary for processing, such as magnesium (Mg) and ATP, is prepared, and in the coexistence of the miRNA probe and the Drosha complex (in other words, in a state where interaction is possible), for example, 35 ° C. Incubate at ~ 39 ° C, preferably about 37 ° C. The incubation time is, for example, 10 minutes to 3 hours.
 本発明では、特徴的な配列を有するmiRNAプローブが用意される。詳細には、miRNAプローブは、プロセシング後の形態であるpre-miRNA(特定の前駆体miRNA)の配列に加え、プロセシング前の形態であるpri-miRNAの配列の一部、具体的には、当該pre-miRNAの5'末端側に連続する部分(説明の便宜上、「pri-miRNA 5'側連続領域」と呼ぶ)と同3'末端側に連続する部分(説明の便宜上、「pri-miRNA 3'側連続領域」と呼ぶ)、を含む配列からなる。このように、miRNAプローブはpre-miRNAには存在せず、pri-miRNAに存在する配列を備える。pri-miRNA 5'側連続領域とpri-miRNA 3'側連続領域の長さはいずれも、例えば10~80塩基長、好ましくは20~50塩基長である。miRNAプローブがpri-miRNA 5'側連続領域とpri-miRNA 3'側連続領域を含むことは、ステップ(1)の反応においてDrosha複合体がプロセシング活性を発揮する上で重要であり、miRNAプローブを構成するこれらの領域の長さが短すぎると蛍光によるプロセシング活性の検出は困難又は不可能となる。一方、pri-miRNA 5'側連続領域とpri-miRNA 3'側連続領域を必要以上に長くすることは、miRNAプローブの調製を困難にし、また、経済的観点(即ち、調製コスト)からも好ましくない。後述のように、miRNAプローブの配列は特定のmiRNAの配列を基に設計される。従って、miRNAプローブの長さは、基になるmiRNAの長さに依存し画一的ではないが、例えば、100~200塩基長、好ましくは130~160塩基長である。このように長いmiRNAプローブの調製には、化学合成(固相合成法、液相合成法)とライゲーション反応を組み合わせた方法を採用するとよい。典型的には、当該方法では目的のmiRNAプローブの配列を二分し(必要に応じて3個以上の配列に分割してもよい)、各々(RNA断片)を化学合成によって調製した後、RNAリガーゼを用いたライゲーション反応によって連結する。化学合成とライゲーション反応を組み合わせた方法の手順/操作及び条件の詳細は実施例の欄に示す。尚、ライゲーション反応ではなく、化学反応を利用してRNA断片を連結する場合には、連結部位に非天然構造を入れる必要が生じることと、蛍光色素の選択の幅が狭くなること(例えば、フルオレセインを用いれば化学反応の条件でフルオレセインが反応し蛍光性が消失するため、Cy3系等の蛍光色素を採用することが望まれる)を考慮した上でmiRNAプローブの構成を設計すればよい。 In the present invention, a miRNA probe having a characteristic sequence is prepared. Specifically, the miRNA probe is a portion of the sequence of pre-miRNA (specific precursor miRNA), which is the post-processing form, as well as the sequence of pri-miRNA, which is the pre-processing form, specifically said. A portion of pre-miRNA contiguous on the 5'end side (referred to as "pri-miRNA 5'side contiguous region" for convenience of explanation) and a portion contiguous on the 3'end side (for convenience of explanation, "pri-miRNA 3" It consists of an array containing (called'side continuous region'). Thus, the miRNA probe has a sequence that is not present in pre-miRNA but is present in pri-miRNA. The lengths of the pri-miRNA 5'side continuous region and the pri-miRNA 3'side continuous region are, for example, 10 to 80 bases long, preferably 20 to 50 bases. The inclusion of the miRNA probe in the pri-miRNA 5'side continuous region and the pri-miRNA 3'side continuous region is important for the Drosha complex to exert processing activity in the reaction of step (1). If the length of these constituent regions is too short, it will be difficult or impossible to detect the processing activity by fluorescence. On the other hand, making the pri-miRNA 5'side continuous region and the pri-miRNA 3'side continuous region longer than necessary makes it difficult to prepare the miRNA probe and is also preferable from an economic point of view (that is, preparation cost). Absent. As described below, the miRNA probe sequence is designed based on the specific miRNA sequence. Therefore, the length of the miRNA probe depends on the length of the underlying miRNA and is not uniform, but is, for example, 100 to 200 bases, preferably 130 to 160 bases. For the preparation of such a long miRNA probe, it is advisable to adopt a method that combines chemical synthesis (solid phase synthesis method, liquid phase synthesis method) and ligation reaction. Typically, the method divides the sequence of the miRNA probe of interest into two (may be divided into three or more sequences if desired), prepares each (RNA fragment) by chemical synthesis, and then RNA ligase. It is linked by a ligation reaction using. Details of the procedures / operations and conditions of the method combining chemical synthesis and ligation reaction are shown in the Examples column. When ligating RNA fragments using a chemical reaction instead of a ligation reaction, it is necessary to insert an unnatural structure at the ligation site, and the range of selection of fluorescent dyes is narrowed (for example, fluorescein). If fluorescein reacts under the conditions of a chemical reaction and the fluorescence disappears, it is desirable to use a fluorescent dye such as Cy3) when designing the configuration of the miRNA probe.
 例えば、その存在が知られている種々のmiRNAの配列情報を基にmiRNAプローブの配列を設計することができる。典型的には、天然のmiRNAの配列に対応する配列、即ち特定のpre-miRNAの配列と当該pre-miRNAのpri-miRNA 5'側連続領域及びpri-miRNA 3'側連続領域からなる配列で構成したmiRNAプローブが用いられる。但し、配列の一部(例えば1~10個程度の塩基)が改変ないし変異した変異型miRNAプローブを用いることもできる。このような変異型miRNAプローブの使用は、特定のmiRNAにおける特定の変異がプロセシング活性に与える影響の評価に有用である。 For example, the sequence of a miRNA probe can be designed based on the sequence information of various miRNAs whose existence is known. Typically, it is a sequence corresponding to the sequence of a natural miRNA, that is, a sequence consisting of a specific pre-miRNA sequence and a pri-miRNA 5'side continuous region and a pri-miRNA 3'side continuous region of the pre-miRNA. The constructed miRNA probe is used. However, a mutant miRNA probe in which a part of the sequence (for example, about 1 to 10 bases) is modified or mutated can also be used. The use of such mutant miRNA probes is useful in assessing the effect of specific mutations on specific miRNAs on processing activity.
 miRNAプローブの設計に利用可能な既知のmiRNAの例を示せば、hsa-miR-199a、hsa-miR-214である。hsa-miR-199aはレット症候群との関連が報告されているmiRNAである。従って、hsa-miR-199aに対応するmiRNAプローブを設計し、本発明の検出方法に適用した場合、レット症候群の研究やレット症候群に対する治療法/治療薬の開発等に利用可能なアッセイ系を提供できることになる。同様に、hsa-miR-16-1、hsa-miR-143、hsa-miR-145はガンとの関連が、hsa-miR-21は心血管疾患との関連が、hsa-miR-574は筋萎縮性側索硬化症(ALS)との関連が報告されている。 Examples of known miRNAs that can be used in the design of miRNA probes are hsa-miR-199a and hsa-miR-214. hsa-miR-199a is a miRNA that has been reported to be associated with Rett syndrome. Therefore, when a miRNA probe corresponding to hsa-miR-199a is designed and applied to the detection method of the present invention, an assay system that can be used for research on Rett syndrome and development of a therapeutic method / drug for Rett syndrome is provided. You will be able to do it. Similarly, hsa-miR-16-1, hsa-miR-143, and hsa-miR-145 are associated with cancer, hsa-miR-21 is associated with cardiovascular disease, and hsa-miR-574 is associated with muscle. An association with atrophic lateral sclerosis (ALS) has been reported.
 miRNAの研究は日進月歩であり、飛躍的な発展が予想される。miRNA研究の進展に伴い、未知のmiRNAが数多く見出されることは確実であり、そのような新たなmiRNAに対応するmiRNAプローブの設計も当然に想定される。 Research on miRNA is progressing day by day, and dramatic development is expected. With the progress of miRNA research, it is certain that many unknown miRNAs will be found, and the design of miRNA probes corresponding to such new miRNAs is naturally envisioned.
 miRNAプローブはその5'末端領域(典型的には5'末端)又は3'末端領域(典型的には3'末端)に蛍光物質が結合することで蛍光標識されている。5'末端領域と3'末端領域の両方に蛍光物質を結合することを妨げるものではないが、通常は、片方に蛍光物質を結合する。 The miRNA probe is fluorescently labeled by binding a fluorescent substance to its 5'end region (typically 5'end) or 3'end region (typically 3'end). It does not prevent the fluorescent material from binding to both the 5'end region and the 3'end region, but usually binds the fluorescent material to one side.
 標識部位となる5'末端領域及び3'末端領域はそれぞれ、pri-miRNA 5'側連続領域の一部又は全部、及びpri-miRNA 3'側連続領域の一部又は全部からなり、Drosha複合体によるプロセシングによって切断される部分に含まれる。従って、Drosha複合体によってmiRNAプローブが適切にプロセシングされると、蛍光標識断片(5’末端領域又は3'末端領域を含む断片)が生じることになる。 The 5'end region and the 3'end region to be labeled sites consist of a part or all of the pri-miRNA 5'side continuous region and a part or all of the pri-miRNA 3'side continuous region, respectively, and are a Drosha complex. Included in the portion cut by processing by. Therefore, when the miRNA probe is properly processed by the Drosha complex, a fluorescently labeled fragment (a fragment containing a 5'end region or a 3'end region) will result.
 蛍光標識に用いる蛍光物質は特に限定されない。蛍光物質の例を挙げれば、7-AAD、Alexa Fluor(登録商標)488、Alexa Fluor(登録商標)350、Alexa Fluor(登録商標)546、Alexa Fluor(登録商標)555、Alexa Fluor(登録商標)568、Alexa Fluor(登録商標)594、Alexa Fluor(登録商標)633、Alexa Fluor(登録商標)647、CyTM 2、DsRED、EGFP、EYFP、FITC、PerCPTM、R-Phycoerythrin、Propidium Iodide、AMCA、DAPI、ECFP、MethylCoumarin、Allophycocyanin、CyTM 3、CyTM 5、SYBR(登録商標) Green、 Rhodamine-123、Tetramethylrhodamine、Texas Red(登録商標)、PE、PE-CyTM5、PE-CyTM5.5、PE-CyTM7、APC、APC-CyTM7、オレゴングリーン、カルボキシフルオレセイン、カルボキシフルオレセインジアセテート、ピレン、HyLite、量子ドットである。蛍光標識は常法で行うことができ、例えば蛍光分子のホスホロアミダイト体(例えばGlen Research社の6-Fluorescein Phosphoramidite)を利用した核酸自動合成等の手法を採用すればよい。尚、市販のRNA蛍光標識用キット(例えばVector Laboratories社のEndTag Nucleic Acid Labeling System)を利用してmiRNAプローブの標識化を行うことにしてもよい。 The fluorescent substance used for the fluorescent label is not particularly limited. Examples of fluorescent substances are 7-AAD, Alexa Fluor® 488, Alexa Fluor® 350, Alexa Fluor® 546, Alexa Fluor® 555, Alexa Fluor®. 568, Alexa Fluor® 594, Alexa Fluor® 633, Alexa Fluor® 647, Cy TM 2, DsRED, EGFP, EYFP, FITC, PerCP TM , R-Phycoerythrin, Propidium Iodide, AMCA, DAPI, ECFP, MethylCoumarin, Allophycocyanin, Cy TM 3, Cy TM 5, SYBR® Green, Rhodamine-123, Tetramethylrhodamine, Texas Red®, PE, PE-Cy TM 5, PE-Cy TM 5.5, PE-Cy TM 7, APC, APC-Cy TM 7, Oregon Green, Carboxyfluorescein, Carboxyfluorescein diacetate, Pyrene, HyLite, Quantum Dot. Fluorescent labeling can be performed by a conventional method, and for example, a method such as automatic nucleic acid synthesis using a phosphoramidite form of a fluorescent molecule (for example, 6-Fluorescein Phosphoramidite manufactured by Glen Research) may be adopted. The miRNA probe may be labeled using a commercially available RNA fluorescent labeling kit (for example, EndTag Nucleic Acid Labeling System manufactured by Vector Laboratories).
 互いに区別可能に蛍光標識された2種類以上のmiRNAプローブを用意し、ステップ(1)の反応に供してもよい。この態様は、2種類以上のmiRNAプローブに関して同時にプロセシング活性を評価可能な検出系となる。尚、この態様の場合、後述のステップ(2)で各miRNAプローブ由来の蛍光が検出される。 Two or more types of miRNA probes that are fluorescently labeled so as to be distinguishable from each other may be prepared and subjected to the reaction of step (1). This embodiment provides a detection system capable of simultaneously evaluating the processing activity of two or more types of miRNA probes. In this embodiment, fluorescence derived from each miRNA probe is detected in step (2) described later.
 ステップ(1)に用いるDrosha複合体は必須の構成要素としてDrosha(drosha ribonuclease III)を含む。Droshaは分子量約160kDaのタンパク質であり、2つのRNaseIIIドメインを含む。これらのドメイン上には各々DGCR8結合サイトが存在する。DroshaはDGCR8とともに複合体(Drosha複合体やDrosha-DGCR8複合体と呼ばれる)を形成し、pri-miRNAのプロセシングを行う。生体におけるDrosha複合体の構造に加え、Drosha及びDGCR8を併用するとプロセシング効率が大幅に向上した事実(後述の実施例を参照)を考慮し、好ましくは、DroshaとDGCR8を含むDrosha複合体が本発明の検出方法に用いられる。 The Drosha complex used in step (1) contains Drosha (drosha ribonuclease III) as an essential component. Drosha is a protein with a molecular weight of approximately 160 kDa and contains two RNase III domains. There are DGCR8 binding sites on each of these domains. Drosha forms a complex (called the Drosha complex or Drosha-DGCR8 complex) with DGCR8 and processes pri-miRNA. In consideration of the fact that the processing efficiency was significantly improved when Drosha and DGCR8 were used in combination in addition to the structure of the Drosha complex in a living body (see Examples described later), the Drosha complex containing Drosha and DGCR8 is preferably the present invention. Is used as a detection method for.
 Droshaは種を超えて広く保存されている。本発明において、典型的にはヒトのDroshaが用いられるが、目的に応じて他の種(例えばマウス、ラット、ショウジョウバエ等)のDroshaを採用してもよい。その場合には、Drosha複合体を構成するその他の成分(例えばDGCR8)についても、原則、当該種のものが用いられる。ヒトDroshaはNCBI(National Center for Biotechnology Information)のデータベースにおいてGene ID: 29102(drosha ribonuclease III [Homo sapiens (human)])で登録されている。ヒトDroshaのアイソフォーム1のアミノ酸配列を配列番号1(DEFINITION: ribonuclease 3 isoform 1 [Homo sapiens]. ACCESSION: NP_037367)に、アイソフォーム2のアミノ酸配列を配列番号2(DEFINITION; ribonuclease 3 isoform 2 [Homo sapiens]. ACCESSION: NP_001093882)にそれぞれ示す。 Drosha is widely preserved across species. In the present invention, human Drosha is typically used, but Drosha of other species (for example, mouse, rat, Drosophila, etc.) may be adopted depending on the purpose. In that case, as for other components (for example, DGCR8) constituting the Drosha complex, those of the same kind are used in principle. Human Drosha is registered in the NCBI (National Center for Biotechnology Information) database with Gene ID: 29102 (drosha ribonuclease III [Homo sapiens (human)]). The amino acid sequence of human Drosha isoform 1 is set to SEQ ID NO: 1 (DEFINITION: ribonuclease 3 isoform 1 [Homo sapiens]. ACCESSION: NP_037367), and the amino acid sequence of isoform 2 is set to SEQ ID NO: 2 (DEFINITION; ribonuclease 3 isoform 2 [Homo]. sapiens]. ACCESSION: NP_001093882).
 DGCR8はDroshaに結合してDrosha複合体を構成する。DGCR8にはRNA結合ドメインがあり、pri-miRNAに結合することで、Droshaによるpri-miRNAのプロセシングを補助する。ヒトDGCR8はNCBI(National Center for Biotechnology Information)のデータベースにおいてGene ID: 54487(DGCR8, microprocessor complex subunit [Homo sapiens (human)])で登録されている。ヒトDGCR8(アイソフォーム1)のアミノ酸配列を配列番号3(DEFINITION: microprocessor complex subunit DGCR8 isoform 1 [Homo sapiens]. ACCESSION: NP_073557 NP_073612)に示す。 DGCR8 binds to Drosha to form a Drosha complex. DGCR8 has an RNA-binding domain that assists Drosha in processing pri-miRNA by binding to pri-miRNA. Human DGCR8 is registered in the NCBI (National Center for Biotechnology Information) database with Gene ID: 54487 (DGCR8, microprocessor complex subsystem [Homo sapiens (human)]). The amino acid sequence of human DGCR8 (isoform 1) is shown in SEQ ID NO: 3 (DEFINITION: microprocessor complex subunit DGCR8 isoform 1 [Homo sapiens]. ACCESSION: NP_073557 NP_073612).
 ステップ(1)に用いるDrosha複合体は、例えば、外来性タンパク質の発現/調製に利用可能な培養細胞(例えば、HEK293細胞、CHO細胞、COS細胞)内で強制発現させたDroshaを回収することにより(必要に応じて精製される)、用意することができる。Droshaに加えDGCR8を含むDrosha複合体であれば、同様の方法、即ちDroshaとDGCR8を共発現させた培養細胞からの回収により、或いはDroshaとDGCR8を別々に調製した後、両者を混合して複合体化することによって用意することができる。尚、組換えタンパク質としてDrosha複合体を調製するのではなく、生体から分離した細胞若しくはその継代細胞から分離、精製することによってDrosha複合体を調製することもできる。 The Drosha complex used in step (1) is obtained, for example, by recovering Drosha forcibly expressed in cultured cells (for example, HEK293 cells, CHO cells, COS cells) that can be used for expression / preparation of foreign proteins. Can be prepared (purified as needed). If it is a Drosha complex containing DGCR8 in addition to Drosha, the same method is used, that is, by recovery from cultured cells co-expressing Drosha and DGCR8, or after Drosha and DGCR8 are prepared separately, both are mixed and combined. It can be prepared by embodying. Instead of preparing the Drosha complex as a recombinant protein, the Drosha complex can also be prepared by separating and purifying the cells separated from the living body or its subculture cells.
 本発明に用いるDrosha複合体がDroshaとDGCR8以外の要素/因子を含んでいてもよい。ここでの要素/因子の例は、生体においてDrosha複合体の構成因子である、DEAD-box RNA helicase DDX5/17、hnRNP等、種々のRNA結合タンパク質である。 The Drosha complex used in the present invention may contain elements / factors other than Drosha and DGCR8. Examples of elements / factors here are various RNA-binding proteins such as DEAD-box RNA helicase DDX5 / 17, hnRNP, which are constituent factors of the Drosha complex in the living body.
 Drosha複合体は変異型であってもよい。変異型Drosha複合体を用いた場合、プロセシング異常に関連した疾患の研究や治療薬の開発等に有用なアッセイ系となる(詳細は後述の1-2.の欄を参照)。変異型Drosha複合体とは、構成成分の少なくとも一つが変異を含んでいる(正常な構造ではない)Drosha複合体をいう。例えば、Drosha及びDGCR8を含むDrosha複合体の場合、Drosha又はDGCR8、或いはこれらの両者が変異を含むものが、変異型Drosha複合体に該当する。天然に生じた変異、又は人為的操作で生じた変異のいずれであってもよい。前者の変異としては、例えば、プロセシング異常を呈する患者細胞中のDrosha複合体に認められる変異が想定される。一方、組換えタンパク質としてDrosha複合体を調製する際、意図した変異が含まれるように発現コストラクトを設計することにより、人為的操作による変異を含む変異型Drosha複合体を得ることができる。 The Drosha complex may be a mutant type. When the mutant Drosha complex is used, it becomes an assay system useful for research on diseases related to processing abnormalities and development of therapeutic agents (see the column 1-2. For details). A mutant Drosha complex is a Drosha complex in which at least one of its constituents contains a mutation (which is not a normal structure). For example, in the case of a Drosha complex containing Drosha and DGCR8, Drosha or DGCR8, or those containing mutations in both of them, correspond to the mutant Drosha complex. It may be either a naturally occurring mutation or an artificially occurring mutation. As the former mutation, for example, a mutation found in the Drosha complex in a patient cell exhibiting a processing abnormality is assumed. On the other hand, when preparing a Drosha complex as a recombinant protein, by designing the expression cost lacto so as to include the intended mutation, a mutant Drosha complex containing a mutation by an artificial operation can be obtained.
 一態様ではDrosha複合体と相互作用する分子(以下、「相互作用分子」と呼ぶ)の存在下でステップ(1)を行う。例えば、Drosha複合体と会合し、特定のmiRNAのプロセシングに関与する分子(具体例はMeCP2、TDP43、p53、Smads等、各種転写因子やRNA結合タンパク質)が相互作用分子に該当する。このような相互作用分子を用いるのであれば、例えば、ステップ(1)の際、反応系に当該分子を追加(具体的には反応液に添加)すればよい。或いは、当該分子が会合したDrosha複合体、即ち、相互作用分子を含むDrosha複合体を調製しておき、反応に供すればよい。相互作用分子を含むDrosha複合体は、DroshaとDGCR8を含むDrosha複合体を調製する場合と同様の方法、即ち、Drosha及びその他の必要な分子(例えばDGCR8)とともに相互作用分子を強制発現させた培養細胞からの回収により、或いは相互作用分子を標的とした免疫沈降等の方法を利用し、培養細胞や生体から分離した細胞若しくはその継代細胞から分離、精製することによって、調製することができる。尚、ヒトMeCP2はNCBI(National Center for Biotechnology Information)のデータベースにおいてGene ID: 4204(methyl-CpG binding protein 2 [Homo sapiens (human)])で登録されている。ヒトMeCP2のアイソフォーム1のアミノ酸配列を配列番号4(DEFINITION: methyl-CpG-binding protein 2 isoform 1 [Homo sapiens]. ACCESSION: NP_004983)に、アイソフォーム2のアミノ酸配列を配列番号5(DEFINITION: methyl-CpG-binding protein 2 isoform 2 [Homo sapiens]. ACCESSION: NP_001104262)にそれぞれ示す。 In one aspect, step (1) is performed in the presence of a molecule that interacts with the Drosha complex (hereinafter referred to as "interacting molecule"). For example, molecules that associate with the Drosha complex and are involved in the processing of specific miRNAs (specific examples are various transcription factors and RNA-binding proteins such as MeCP2, TDP43, p53, and Smads) are interacting molecules. If such an interacting molecule is used, for example, the molecule may be added to the reaction system (specifically, added to the reaction solution) in step (1). Alternatively, a Drosha complex in which the molecules are associated, that is, a Drosha complex containing an interacting molecule may be prepared and subjected to the reaction. The Drosha complex containing the interacting molecule is the same method as when preparing the Drosha complex containing Drosha and DGCR8, i.e., a culture in which the interacting molecule is forcibly expressed together with Drosha and other necessary molecules (eg, DGCR8). It can be prepared by collecting from cells or by using a method such as immunoprecipitation targeting an interacting molecule to separate and purify cells separated from cultured cells or living organisms or subcultured cells thereof. Human MeCP2 is registered in the NCBI (National Center for Biotechnology Information) database with Gene ID: 4204 (methyl-CpG binding protein 2 [Homo sapiens (human)]). The amino acid sequence of isoform 1 of human MeCP2 is set to SEQ ID NO: 4 (DEFINITION: methyl-CpG-binding protein 2 isoform 1 [Homo sapiens]. ACCESSION: NP_004983), and the amino acid sequence of isoform 2 is set to SEQ ID NO: 5 (DEFINITION: methyl). -CpG-binding protein 2 isoform 2 [Homo sapiens]. ACCESSION: NP_001104262), respectively.
 相互作用分子についても、変異型を用いることにしてもよい。上記の変異型Drosha複合体の場合と同様、相互作用分子における変異も、天然に生じたものと人為的操作で生じたものに大別される。変異型相互作用分子を用いれば、相互作用分子に起因するプロセシング異常に関連した疾患の研究や治療薬の開発等に有用なアッセイ系となる(詳細は後述の1-2.の欄を参照)。 Mutants may also be used for the interacting molecule. As in the case of the above-mentioned mutant Drosha complex, mutations in interacting molecules are roughly classified into naturally occurring ones and artificially occurring ones. If a mutant interacting molecule is used, it becomes a useful assay system for research on diseases related to processing abnormalities caused by the interacting molecule and development of therapeutic agents (see the column 1-2. For details). ..
ステップ(2)
 ステップ(1)の反応後、蛍光を検出する(ステップ(2))。具体的には、Drosha複合体によるプロセシングによって生じる、miRNAプローブの5’末端領域又は3'末端領域を含む断片(蛍光標識断片)からの蛍光を検出する。miRNAプローブに対するプロセシングが正常に行われると、蛍光物質の結合部位(miRNAプローブの5’末端領域又は3’末端領域)を含む断片が生じる。このようにして生成した断片に由来する蛍光が検出されることになる。
Step (2)
After the reaction in step (1), fluorescence is detected (step (2)). Specifically, fluorescence from a fragment (fluorescent-labeled fragment) containing the 5'-terminal region or 3'-terminal region of the miRNA probe generated by processing by the Drosha complex is detected. Successful processing of miRNA probes results in fragments containing the binding site of the fluorescent material (5'end or 3'end region of the miRNA probe). Fluorescence derived from the fragment thus produced will be detected.
 例えば、ステップ(1)の反応後、電気泳動等によって反応生成物を分離し、蛍光の検出を行う。電気泳動を利用した場合、蛍光を発するバンドとして蛍光標識断片が観察される。本発明によれば、プロセシングによる切断部位特異的に蛍光標識されたmiRNAプローブが用いられることから、プロセシングによって切り取られた部分(分子量の小さい断片)が蛍光を示し、高感度(高いS/N比)の検出が可能となる。対照的に、RI標識を利用する従来法では、RI標識の特性上、切断部位特異的に標識されたmiRNAプローブは使用できず、プロセシングによって切り取られた部分以外からのシグナルも検出されることになり、S/N比が低下する。 For example, after the reaction in step (1), the reaction product is separated by electrophoresis or the like, and fluorescence is detected. When electrophoresis is used, a fluorescently labeled fragment is observed as a band that emits fluorescence. According to the present invention, since a miRNA probe that is fluorescently labeled specifically at the cleavage site by processing is used, the portion cut by processing (fragment having a small molecular weight) exhibits fluorescence and has high sensitivity (high S / N ratio). ) Can be detected. In contrast, in the conventional method using RI labeling, the miRNA probe labeled specifically for the cleavage site cannot be used due to the characteristics of RI labeling, and signals from other than the portion cut by processing can be detected. As a result, the S / N ratio decreases.
 蛍光の検出には各種蛍光検出器/蛍光測定装置を用いることができる。蛍光検出器/蛍光測定装置の例を挙げるとBiorad社のChemiDocTM XRS+ システム、Horiba社のモジュール型蛍光分光光度計 Fluorolog-3である。検出結果は専用又は汎用のソフトウェア(例えばBiorad社のImage LabTM ソフトウェア、Horiba社のFluoroEssence V3)等を利用して数値化することができる。検出値、それを数値化したデータはプロセシング活性を反映する。当該データの解析によってプロセシング活性を評価できる。 Various fluorescence detectors / fluorescence measuring devices can be used to detect fluorescence. Examples of fluorescence detectors / fluorescence measuring devices are Biorad's ChemiDoc TM XRS + system and Horiba's modular fluorescence spectrophotometer Fluorolog-3. The detection result can be quantified using dedicated or general-purpose software (for example, Image Lab TM software of Biorad, FluoroEssence V3 of Horiba) or the like. The detected value and the quantified data reflect the processing activity. The processing activity can be evaluated by analyzing the data.
1-2.マイクロRNAプロセシング活性を利用した評価系
 本発明の検出方法の一態様では、ステップ(1)を被験物質の共存下で行うことにし、ステップ(2)の検出結果に基づき、プロセシング活性への被験物質の作用を評価する。この態様は、mi-RNAプロセシング機構を標的とした薬効や毒性等の評価系となる。例えば、プロセシング異常を引き起こす変異型Drosha複合体を用いれば、変異型Drosha複合体に対する被験物質の影響(効果)を評価でき、当該変異型Drosha複合体に起因するプロセシング異常が発症や進展の原因となる疾患の研究、治療薬の開発、診断法の開発等に有用である。また、変異型相互作用分子を用いれば、相互作用分子に起因するプロセシング異常が発症や進展の原因となる疾患の研究、治療薬の開発、診断法の開発等に有用な評価系となる。相互作用分子に起因するプロセシング異常は疾患特異性が高いことから、当該評価系は特定の疾患又は疾患群を標的とした研究ツールとして極めて有用である。尚、変異型Drosha複合体と変異型相互作用分子を併用することにしてもよい。
1-2. Evaluation system using microRNA processing activity In one aspect of the detection method of the present invention, step (1) is performed in the coexistence of a test substance, and based on the detection result of step (2), the test substance for processing activity Evaluate the action of. This aspect serves as an evaluation system for drug efficacy, toxicity, etc. targeting the mi-RNA processing mechanism. For example, by using a mutant Drosha complex that causes processing abnormalities, the effect (effect) of the test substance on the mutant Drosha complex can be evaluated, and processing abnormalities caused by the mutant Drosha complex can cause onset or progression. It is useful for researching various diseases, developing therapeutic agents, and developing diagnostic methods. In addition, if a mutant interaction molecule is used, it becomes a useful evaluation system for research on diseases in which processing abnormalities caused by the interaction molecule cause the onset and progression, development of therapeutic agents, development of diagnostic methods, and the like. Since processing abnormalities caused by interacting molecules are highly disease-specific, the evaluation system is extremely useful as a research tool targeting a specific disease or disease group. The mutant Drosha complex and the mutant interacting molecule may be used in combination.
 一方、正常型Drosha複合体を用いた場合、例えば、既存の薬剤又は新規薬剤の毒性評価等に利用・応用可能である。用語「毒性」は広義に解釈されるべきであり、一般毒性(急性毒性、亜急性毒性、慢性毒性)の他、副作用、発がん性、変異原性、催奇形性等も毒性の一つである。 On the other hand, when the normal Drosha complex is used, it can be used and applied to, for example, toxicity evaluation of existing drugs or new drugs. The term "toxicity" should be interpreted in a broad sense, and in addition to general toxicity (acute toxicity, subacute toxicity, chronic toxicity), side effects, carcinogenicity, mutagenicity, teratogenicity, etc. are also one of the toxicity. ..
 変異型Drosha複合体及び/又は変異型相互作用分子を用いた検出方法において、被験物質にプロセシング異常を補正ないし改善する作用が見出された場合、当該物質は新規薬剤(医薬)又はそのリード化合物等として有望である。このように、この態様の検出方法は薬効評価系ないし薬剤スクリーニング系として特に有用である。被験物質の薬効評価に本発明を適用する場合の実施態様の一例を説明する。まず、患者由来の細胞、例えば罹患部位の細胞(例えばがん細胞)やiPS細胞(疾患iPS細胞)、侵襲性の低い皮膚等由来細胞(線維芽細胞等)の抽出液、或いはこれらの細胞から回収したDrosha複合体(特定の相互作用分子が会合したものであってもよい)からなる試料を用意し、当該患者が罹患している疾患に関連性を示す特定のmiRNAプローブと反応させる。当該反応の際、被験物質を反応液中に添加しておく。または、当該反応に先立って、試料を被験物質で処理しておく。反応後、蛍光を検出し、コントロール(典型的には、被験物質の非存在下で反応させた場合の検出結果)と比較する。コントロールに比べて有意に検出値が高ければ、被験物質にプロセシング異常を補正ないし改善する作用があると判断できる。このような有効性を認めた被験物質は、患者が罹患する疾患の治療薬の有効成分またはその候補として有望である。 If the test substance is found to have an effect of correcting or ameliorating processing abnormalities in the detection method using the mutant Drosha complex and / or the mutant interacting molecule, the substance is a new drug (pharmaceutical) or its lead compound. It is promising as such. As described above, the detection method of this embodiment is particularly useful as a drug efficacy evaluation system or a drug screening system. An example of an embodiment in which the present invention is applied to the evaluation of the efficacy of a test substance will be described. First, from patient-derived cells, for example, extracts of affected site cells (for example, cancer cells) and iPS cells (disease iPS cells), less invasive skin-derived cells (fibroblasts, etc.), or these cells. A sample consisting of the recovered Drosha complex (which may be an association of specific interacting molecules) is prepared and reacted with a specific miRNA probe that is relevant to the disease affecting the patient. At the time of the reaction, the test substance is added to the reaction solution. Alternatively, the sample is treated with the test substance prior to the reaction. After the reaction, fluorescence is detected and compared to the control (typically the detection result in the absence of the test substance). If the detected value is significantly higher than that of the control, it can be judged that the test substance has an effect of correcting or ameliorating the processing abnormality. A test substance having such efficacy is promising as an active ingredient or a candidate for a therapeutic agent for a disease affecting a patient.
 典型的には、この態様ではステップ(1)を被験物質の共存下及び非存在下で行い、前者の場合のステップ(2)の検出結果と、後者の場合のステップ(2)の検出結果を比較する。このようにコントロール(対照)との比較を利用して被験物質のプロセシング活性への作用を評価すれば、客観性及び信頼性の高い評価結果が得られる。 Typically, in this embodiment, step (1) is performed in the presence or absence of the test substance, and the detection result of step (2) in the former case and the detection result of step (2) in the latter case are obtained. Compare. If the effect of the test substance on the processing activity is evaluated using the comparison with the control (control) in this way, highly objective and reliable evaluation results can be obtained.
 被験物質は特に限定されない。その薬効又は毒性の評価が必要とされる様々な物質が被験物質となり得る。被験物質には様々な分子サイズの有機化合物又は無機化合物を用いることができる。有機化合物の例として核酸、ペプチド、タンパク質、脂質(単純脂質、複合脂質(ホスホグリセリド、スフィンゴ脂質、グリコシルグリセリド、セレブロシド等)、プロスタグランジン、イソプレノイド、テルペン、ステロイド、ポリフェノール、カテキン、ビタミン(B1、B2、B3、B5、B6、B7、B9、B12、C、A、D、E等)を例示できる。医薬品、栄養食品、食品添加物、農薬、香粧品(化粧品)等の既存成分或いは候補成分も好ましい被験物質の一つである。植物抽出液、細胞抽出液、培養上清などを被検物質として用いてもよい。2種類以上の被験物質を同時に添加することにより、被験物質間の相互作用、相乗作用などを調べることにしてもよい。被験物質は天然物由来であっても、或いは合成によるものであってもよい。後者の場合には例えばコンビナトリアル合成の手法を利用して効率的なアッセイ系を構築することができる。 The test substance is not particularly limited. Various substances that need to be evaluated for their efficacy or toxicity can be test substances. Organic compounds or inorganic compounds of various molecular sizes can be used as the test substance. Examples of organic compounds are nucleic acids, peptides, proteins, lipids (simple lipids, complex lipids (phosphoglycerides, sphingolipids, glycoglycerides, cerebrosides, etc.), prostaglandins, isoprenoids, terpenes, steroids, polyphenols, catechins, vitamins (B1,) B2, B3, B5, B6, B7, B9, B12, C, A, D, E, etc.) can be exemplified. Existing or candidate ingredients such as pharmaceuticals, nutritional foods, food additives, pesticides, cosmetics (cosmetics), etc. Is also one of the preferred test substances. A plant extract, a cell extract, a culture supernatant, or the like may be used as a test substance. The action, synergistic action, etc. may be investigated. The test substance may be derived from a natural product or may be synthesized. In the latter case, for example, a method of combinatorial synthesis is used for efficiency. It is possible to construct a simple assay system.
2.プロセシング活性検出用試薬及びキット
 本発明は第2の局面として、本発明の検出方法をより簡便に実施することを可能にする試薬(miRNAプロセシング活性検出用試薬)及びキット(miRNAプロセシング活性検出用キット)を提供する。以下、本発明の試薬及びキットの構成、特徴等を説明するが、言及しない事項については第1の局面で説明した通りであり、対応する説明が援用される。
2. 2. Reagents and Kits for Detecting Processing Activity As a second aspect of the present invention, reagents (reagents for detecting miRNA processing activity) and kits (kits for detecting miRNA processing activity) that enable the detection method of the present invention to be carried out more easily. )I will provide a. Hereinafter, the configurations, features, and the like of the reagents and kits of the present invention will be described, but matters not mentioned are as described in the first aspect, and the corresponding explanations are incorporated.
 本発明の試薬はmiRNAプローブからなり、特定のpre-miRNAの全長配列に加え、pri-miRNAにおいて当該pre-miRNAの5'末端側に連続している10~80塩基長(好ましくは20~50塩基長)の配列(pri-miRNA 5'側連続領域)及び3'末端側に連続している10~80塩基長(好ましくは20~50塩基長)の配列(pri-miRNA 3'側連続領域)を備え、その5’末端領域又は3'末端領域が蛍光標識されている。本発明のキットでは、当該試薬が必須の構成要素として含有される。異なるmiRNAの配列を基に設計された2種類以上の試薬をキットの構成要素とすれば、2種類以上のmiRNAのプロセシングに関してプロセシング活性を検出可能なキットとなる。 The reagent of the present invention consists of a miRNA probe, and in addition to the full-length sequence of a specific pre-miRNA, the pri-miRNA has a length of 10 to 80 bases (preferably 20 to 50) continuous to the 5'end side of the pre-miRNA. Base length) sequence (pri-miRNA 5'side continuous region) and 10 to 80 base length (preferably 20 to 50 base length) sequence (pri-miRNA 3'side continuous region) continuous to the 3'end side ), And its 5'end region or 3'end region is fluorescently labeled. In the kit of the present invention, the reagent is contained as an essential component. If two or more reagents designed based on different miRNA sequences are used as components of the kit, the kit can detect the processing activity for the processing of two or more miRNAs.
 好ましい一態様では、Drosha複合体もキットの構成要素とする。この態様のキットの場合、Drosha複合体を別途用意することなくプロセシング活性を検出可能となる。好ましくは、DroshaとDGCR8を含むDrosha複合体を採用し、高いプロセシング効率のキットとする。DGCR8に加え、その他の構成因子(例えば、DEAD-box RNA helicase DDX5/17、hnRNP等、種々のRNA結合タンパク質)などをDrosha複合体に含ませることにしてもよい。また、変異型のDrosha複合体を採用すれば、例えば、プロセシング異常に関連した疾患の研究や治療薬の開発等に有用なキットとなる。 In a preferred embodiment, the Drosha complex is also a component of the kit. In the case of the kit of this embodiment, the processing activity can be detected without separately preparing the Drosha complex. Preferably, a Drosha complex containing Drosha and DGCR8 is adopted to obtain a kit with high processing efficiency. In addition to DGCR8, other constituent factors (for example, various RNA-binding proteins such as DEAD-box RNA helicase DDX5 / 17, hnRNP, etc.) may be included in the Drosha complex. In addition, if a mutant Drosha complex is adopted, it will be a useful kit for, for example, research on diseases related to processing abnormalities and development of therapeutic agents.
 Drosha複合体として、MeCP2、TDP43、p53、Smads等、相互作用分子が会合したものを採用し、相互作用分子に起因するプロセシング異常が発症や進展の原因となる疾患の研究、治療薬の開発、診断法の開発等に好適なキットにしてもよい。変異型相互作用分子を採用し、相互作用分子に起因するプロセシング異常に関連した疾患の研究や治療薬の開発等において特に有用なキットにしてもよい。 As the Drosha complex, we adopted a complex of interacting molecules such as MeCP2, TDP43, p53, and Smads, and researched diseases in which processing abnormalities caused by the interacting molecules cause the onset and progression, and development of therapeutic agents. The kit may be suitable for the development of a diagnostic method. A mutant interaction molecule may be adopted as a kit particularly useful in research on diseases related to processing abnormalities caused by the interaction molecule, development of therapeutic agents, and the like.
 コントロールとして、一般に恒常的な発現を認めるmiRNAの配列を基に設計されたmiRNAプローブや、特定の細胞や組織で恒常的な発現を認めるmiRNAの配列を基に設計されたmiRNAプローブをキットに含めるとよい。 As a control, the kit includes a miRNA probe designed based on a sequence of miRNA that generally has constitutive expression, and a miRNA probe designed based on a sequence of miRNA that has constitutive expression in a specific cell or tissue. It is good.
 キットに含めることが可能なその他の要素として、プロセシング反応用の溶液(例えばマグネシウムやATP等を含む)、バッファー(反応用、希釈用、洗浄用など)、反応容器が挙げられる。また、本発明のキットには通常、取扱い説明書が添付される。 Other elements that can be included in the kit include solutions for processing reactions (including, for example, magnesium and ATP), buffers (for reaction, dilution, washing, etc.), and reaction vessels. In addition, an instruction manual is usually attached to the kit of the present invention.
 miRNAのプロセシングは様々な生命現象に重要であり、その異常は脳疾患、心循環系疾患、がん等の発症や進展に関与する。研究対象としてだけでなく、臨床的にも重要なmiRNAプロセシング活性を安全かつ簡便に検出できる新たな手段の創出を目指し、以下の検討を行った。 Processing of miRNA is important for various biological phenomena, and its abnormalities are involved in the onset and progression of brain diseases, cardiovascular diseases, cancer, etc. The following studies were conducted with the aim of creating a new means for safely and easily detecting miRNA processing activity, which is clinically important as well as a research subject.
1.蛍光標識miRNAプローブによるプロセシング活性の評価(1)
1-1.方法
(1)Primary-miR-199aプローブの調製
(1-1)核酸断片の化学合成
 miR-199aに対応する蛍光標識miRNAプローブ「Primary-miR-199aプローブ」の作製に必要な2つのRNAオリゴヌクレオチド(配列番号6と配列番号7)を以下の方法で調製した。尚、Primary-miR-199aプローブは、miR-199aの前駆体(pre-miR-199a)(配列番号8)の両端にpri-miR-199a由来の配列が付加された140merの配列(配列番号9)からなり、その3'末端はフルオレセインで標識されている。
1. 1. Evaluation of processing activity by fluorescently labeled miRNA probe (1)
1-1. Method (1) Preparation of Primary-miR-199a probe (1-1) Chemosynthesis of nucleic acid fragment Two RNA oligonucleotides required for preparation of fluorescently labeled miRNA probe "Primary-miR-199a probe" corresponding to miR-199a (SEQ ID NO: 6 and SEQ ID NO: 7) were prepared by the following methods. The Primary-miR-199a probe is a 140 mer sequence (SEQ ID NO: 9) in which a sequence derived from pri-miR-199a is added to both ends of the precursor (pre-miR-199a) (SEQ ID NO: 8) of miR-199a. ), And its 3'end is labeled with fluorescein.
 RNAオリゴヌクレオチドの調製には、2’-TOM (トリイソプロピルシリルオキシメチル)保護β-シアノエチルホスホロアミダイト (DMT-2’-O-TOM-rA(Ac)、DMT-2’-O-TOM-rG(Ac)、DMT-2’-O-TOM-rC(Ac)、DMT-2’-O-TOM-rU)(Glen Research社もしくはChemGenes社)を用いた。それぞれのホスホロアミダイトモノマーは0.05 mol/Lアセトニトリル溶液となるように調製し、固相担体を0.8 μmol用いてDNA/RNA固相合成装置 (NTS M-2-MX, 日本テクノサービス社)により合成した。固相担体としてUniversal UnyLinker Support 2000Å (ChemGenes社)を用い、1塩基目の縮合時間は15分間、それ以降は各3分間とした。5’末端の水酸基のリン酸化は5'-Phosphate-ON Reagent (0.05 mol/Lアセトニトリル溶液、ChemGenes社)を用いて行った。フルオレセイン標識にはDMT-6-FAM phosphoramidite (ChemGenes社)を用いた。 For the preparation of RNA oligonucleotides, 2'-TOM (triisopropylsilyloxymethyl) protected β-cyanoethyl phosphoramidite (DMT-2'-O-TOM-rA (Ac), DMT-2'-O-TOM- rG (Ac), DMT-2'-O-TOM-rC (Ac), DMT-2'-O-TOM-rU) (Glen Research or ChemGenes) were used. Each phosphoromidite monomer is prepared so as to be a 0.05 mol / L acetonitrile solution, and synthesized by a DNA / RNA solid phase synthesizer (NTS M-2-MX, Nippon Techno Service Co., Ltd.) using 0.8 μmol of a solid phase carrier. did. Universal UnyLinker Support 2000Å (ChemGenes) was used as the solid phase carrier, and the condensation time for the first base was 15 minutes, and the subsequent condensation time was 3 minutes each. Phosphorylation of the hydroxyl group at the 5'end was performed using 5'-Phosphate-ON Reagent (0.05 mol / L acetonitrile solution, ChemGenes). DMT-6-FAM phosphoramidite (ChemGenes) was used as the fluorescein label.
 固相合成装置で使用した試薬は以下の通りである。5’末端の水酸基のジメトキシトリチル基の除去には市販のデブロッキング試薬 (Deblocking Solution-1, 3 w/v%トリクロロ酢酸/ジクロロメタン溶液、和光純薬株式会社)を用い、10秒間の反応を行った。ホスホロアミダイトのアクチベーターとして市販のアクチベーター溶液 (アクチベーター溶液3, 和光純薬株式会社)を用いた。未反応の5’末端の水酸基のキャッピングには市販のキャッピング溶液 (キャップA溶液-2及びキャップB溶液-2、和光純薬株式会社)を用い、10秒間の反応を行った。リン酸エステルを製造する際の酸化剤としては、ピリジン、THF、水及びヨウ素を含有する溶液 (Oxidizer, 0.01 Mヨウ素, 29.2%水, 6.3% ピリジン, 64.5% アセトニトリル、Honeywell社)を用い、10秒間反応させた。固相合成後、RNAオリゴヌクレオチドの5’末端の水酸基のジメトキシトリチル基は固相担体上にて脱保護した。合成したRNAオリゴヌクレオチドは基本的に以下の条件、即ち、「濃アンモニア水:40%メチルアミン水溶液=1:1(和光純薬株式会社)を用いた65℃、1時間の処理」で脱樹脂・脱保護を行った。フルオレセイン標識したRNAに関しては、濃アンモニア水で室温30分処理した後、等量の40%メチルアミン水溶液を加え、65℃で1時間処理した。脱樹脂過程で得られた溶液を遠心エバポレーターによる濃縮により完全に乾固した後、テトラブチルアンモニウムフルオリド (1Mテトラヒドロフラン溶液、東京化成工業株式会社、1 mL)を用いて2’水酸基のTOM保護基を除去した (50℃で10分間の処理の後、35℃で6時間の処理)。溶液にトリス塩酸緩衝液 (Tris-HCl, 1M, pH 7.4, 1 mL)を加えて混和した後、遠心エバポレーターによる濃縮によりテトラヒドロフランを除去した。超純水で平衡化したゲルろ過カラム (NAP-25, GE Healthcare社)に得られた溶液をアプライし、製品プロトコールによって処理した。RNAオリゴヌクレオチドを含む画分を遠心エバポレーターによって濃縮後、変性ポリアクリルアミドゲル (以下、dPAGE)を用いて精製した。 The reagents used in the solid phase synthesizer are as follows. To remove the dimethoxytrityl group of the hydroxyl group at the 5'end, a reaction was carried out for 10 seconds using a commercially available deblocking reagent (Deblocking Solution-1, 3 w / v% trichloroacetic acid / dichloromethane solution, Wako Pure Chemical Industries, Ltd.). It was. A commercially available activator solution (activator solution 3, Wako Junyaku Co., Ltd.) was used as an activator for phosphoramidite. A commercially available capping solution (Cap A solution-2 and Cap B solution-2, Wako Pure Chemical Industries, Ltd.) was used for capping the unreacted 5'-terminal hydroxyl group, and the reaction was carried out for 10 seconds. As an oxidizing agent for producing a phosphoric acid ester, a solution containing pyridine, THF, water and iodine (Oxidizer, 0.01 M iodine, 29.2% water, 6.3% pyridine, 64.5% acetonitrile, Honeywell) was used, and 10 Reacted for seconds. After solid-phase synthesis, the dimethoxytrityl group of the hydroxyl group at the 5'end of the RNA oligonucleotide was deprotected on the solid-phase carrier. The synthesized RNA oligonucleotide is basically deresinized under the following conditions, that is, "treatment with concentrated aqueous ammonia: 40% methylamine aqueous solution = 1: 1 (Wako Pure Chemical Industries, Ltd.) at 65 ° C. for 1 hour".・ Deprotected. The fluorescein-labeled RNA was treated with concentrated aqueous ammonia for 30 minutes at room temperature, an equal amount of 40% aqueous methylamine solution was added, and the RNA was treated at 65 ° C. for 1 hour. After completely drying the solution obtained in the resin removal process by concentration with a centrifugal evaporator, a 2'hydroxyl TOM protecting group was used using tetrabutylammonium fluoride (1M tetrahydrofuran solution, Tokyo Chemical Industry Co., Ltd., 1 mL). (Treatment at 50 ° C for 10 minutes followed by treatment at 35 ° C for 6 hours). Tris-HCl buffer (Tris-HCl, 1M, pH 7.4, 1 mL) was added to the solution and mixed, and then tetrahydrofuran was removed by concentration with a centrifugal evaporator. The obtained solution was applied to a gel filtration column (NAP-25, GE Healthcare) equilibrated with ultra-pure water and treated by a product protocol. Fractions containing RNA oligonucleotides were concentrated by a centrifugal evaporator and then purified using a modified polyacrylamide gel (hereinafter, dPAGE).
(1-2)dPAGEを用いたRNA断片の精製
 各%濃度のアクリルアミドゲル溶液 (変性剤として7M尿素を含む)に過硫酸アンモニウム (以下、APS)の水溶液とN,N,N’,N’-テトラメチレンジアミン (以下、TEMED)を重合剤として添加し、固形化 (室温、6~12時間)させることでゲルを作製した。RNAサンプルはゲルローディングバッファー (80%ホルムアミド、TBE)と混合し、ゲルにロードした。電気泳動後、RNAのバンドをUV光照射 (254 nm)によって検出し、カミソリの刃を用いてゲルから切り出した。切り出したゲル片を細かく破砕した後、超純水によるRNAの抽出を行った (室温にて12~24時間振とう)。RNAの抽出液はAmicon Ultra 10K (Millipore社)を用いて脱塩・濃縮し、エタノール沈殿 (0.3M酢酸ナトリウム(pH5.2)/70%エタノール)を行うことでRNAのペレットを得た。RNAペレットは80%エタノールでリンス後、遠心エバポレーターにて乾燥させた。得られたRNAペレットを超純水に溶解し、適切な濃度に希釈した。紫外可視吸光光度測定 (NanoDrop、Thermo scientific社)によって各希釈液の吸光度(260 nm)を測定し、各RNA配列のモル吸光係数から各RNAオリゴヌクレオチド濃度を決定した (各RNA配列のモル吸光係数はIntegrated DNA Technologies社のWebベースのプログラムを利用して算出した)。
(1-2) Purification of RNA fragments using dPAGE An aqueous solution of ammonium persulfate (hereinafter referred to as APS) and N, N, N', N'-in an acrylamide gel solution (including 7M urea as a denaturant) at each% concentration. A gel was prepared by adding tetramethylenediamine (hereinafter, TEMED) as a polymerization agent and allowing it to solidify (room temperature, 6 to 12 hours). RNA samples were mixed with gel loading buffer (80% formamide, TBE) and loaded onto gels. After electrophoresis, RNA bands were detected by UV irradiation (254 nm) and cut out of the gel using a razor blade. After finely crushing the cut gel pieces, RNA was extracted with ultrapure water (shaking at room temperature for 12 to 24 hours). The RNA extract was desalted and concentrated using Amicon Ultra 10K (Millipore), and ethanol precipitation (0.3M sodium acetate (pH 5.2) / 70% ethanol) was performed to obtain RNA pellets. RNA pellets were rinsed with 80% ethanol and then dried on a centrifugal evaporator. The obtained RNA pellet was dissolved in ultrapure water and diluted to an appropriate concentration. The absorbance (260 nm) of each diluent was measured by ultraviolet-visible absorptiometry (NanoDrop, Thermo scientific), and the concentration of each RNA oligonucleotide was determined from the molar extinction coefficient of each RNA sequence (molar extinction coefficient of each RNA sequence). Was calculated using a web-based program from Integrated DNA Technologies).
(1-3)酵素ライゲーション反応によるプローブの合成
 RNAオリゴヌクレオチド(配列番号6)とRNAオリゴヌクレオチド(配列番号7)(各々の終濃度1 μM)をT4 RNA ligaseバッファー溶液 (終濃度50 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 10 mM DTT, 1 mM ATP、タカラバイオ社)に溶解したサンプルを90℃で5分間加熱後、室温まで徐冷した。この溶液に60% PEG6000を加え(終濃度15%)、続いてT4 RNA ligase (タカラバイオ、終濃度0.2 unit/μL)を加えて混合した後、室温で16時間静置した。反応液に同体積のTE飽和フェノール溶液(ナカライテスク株式会社)を加えて遠心分離後、上層を別のチューブに分取した。この溶液にクロロホルムを加えてボルテックス・ミキサーにより混合、遠心分離後、上層を回収してアルコール沈殿 (0.3M 酢酸ナトリウム水溶液 (pH 5.2)/70%エタノール)によってRNAのペレットを得た。このRNAを6%変性ポリアクリルアミドゲルを用いたゲル電気泳動で分離した。目的バンドを切り出し、ゲル抽出を行うことでPrimary-miR-199aプローブを得た(精製操作は上記RNAオリゴヌクレオチドの精製時と同様)。
(1-3) Synthesis of probe by enzyme ligation reaction RNA oligonucleotide (SEQ ID NO: 6) and RNA oligonucleotide (SEQ ID NO: 7) (each final concentration 1 μM) are added to a T4 RNA ligase buffer solution (final concentration 50 mM Tris-). A sample dissolved in HCl (pH 7.5), 10 mM MgCl 2 , 10 mM DTT, 1 mM ATP, Takara Bio Co., Ltd.) was heated at 90 ° C. for 5 minutes and then slowly cooled to room temperature. 60% PEG6000 was added to this solution (final concentration 15%), followed by T4 RNA ligase (Takara Bio, final concentration 0.2 unit / μL), mixed, and then allowed to stand at room temperature for 16 hours. The same volume of TE saturated phenol solution (Nacalai Tesque, Inc.) was added to the reaction solution, and the mixture was centrifuged, and the upper layer was separated into another tube. Chloroform was added to this solution, mixed with a vortex mixer, centrifuged, and the upper layer was recovered to obtain RNA pellets by alcohol precipitation (0.3 M aqueous sodium acetate solution (pH 5.2) / 70% ethanol). This RNA was separated by gel electrophoresis using a 6% denatured polyacrylamide gel. The target band was excised and gel extracted to obtain a Primary-miR-199a probe (the purification operation was the same as for the purification of the RNA oligonucleotide described above).
(2)Primary-miRNAプロセシングアッセイ
 HEK293T細胞(Invitrogen社)を15cmディッシュに70~80%コンフルエントな状態で5枚準備した。OPTI-MEM(Invitrogen)3ml(15cmディッシュ1枚当たりの分量)にPEI(Polyethylenimine; polyscience)1mg/mlを60μl、プラスミドDNAを15μg(CSII-FLAG-Drosha 15μg)順に加え、15~20分インキュベートした後、細胞を培養しているディッシュへ加えた。翌日、培地を交換し、培養を継続した。1日後、細胞を氷冷PBSで一回洗浄し、氷冷Lysis buffer(0.5% NP40, 150mM NaCl, 10mM Tris-HCl[pH7.4])をディッシュに加えた。細胞抽出液を回収し、10分以上氷上でインキュベートした。その後、細胞抽出液に超音波処理(10秒)を3回氷上で行った。15,000rpm、4℃で15分遠心後、可溶性画分を回収し、抗FLAG抗体結合(conjugated)ビーズを加え、4℃で2~3時間振盪し反応させた。4,000rpm、4℃で5分遠心し、上清を除去した。Lysis bufferを加え、転倒混和した後、遠心処理した。この操作を繰り返し、4回ビーズを洗浄した。Processing buffer(20mM Tris-HCl[pH7.9], 0.1M KCl, 10% Glycerol, 5mM dithiothreitol[DTT], 0.2mM PMSF)を加え、同様に洗浄を1回行った。上清を除去し、Processing reaction solution (最終的に30μlになるように、Processing buffer 23μlにEnergy solution[64mM MgCl2, 10mM ATP, 200mM Creatine phosphate]を3 μl、RNase inhibitorを1.5μl、Creatine kinase 30μg/mlを0.5μl、Primary-miR-199aプローブ 10pmolを添加)を30μlビーズに加え、37℃でプロセシングアッセイを行った。45分後と90分後にTE-saturated phenol 100μlとWQ water 100μを加え、激しく混和することで反応を終了させた。14,000rpm、4℃で5分遠心し、上清の水層を回収した。回収した水層からRNAを精製した後、電気泳動(dPAGE)を行い、蛍光を検出した。
(2) Primary-miRNA processing assay Five HEK293T cells (Invitrogen) were prepared in a 15 cm dish in a 70-80% confluent state. To 3 ml of OPTI-MEM (Invitrogen) (amount per 15 cm dish), 60 μl of PEI (Polyethylenimine; polyscience) 1 mg / ml and 15 μg of plasmid DNA (CSII-FLAG-Drosha 15 μg) were added in this order and incubated for 15 to 20 minutes. Later, the cells were added to the culturing dish. The next day, the medium was changed and the culture was continued. After 1 day, cells were washed once with ice-cold PBS and ice-cold Lysis buffer (0.5% NP40, 150 mM NaCl, 10 mM Tris-HCl [pH 7.4]) was added to the dish. Cell extracts were collected and incubated on ice for at least 10 minutes. Then, the cell extract was sonicated (10 seconds) three times on ice. After centrifugation at 15,000 rpm at 4 ° C. for 15 minutes, the soluble fraction was collected, anti-FLAG antibody-conjugated beads were added, and the mixture was shaken at 4 ° C. for 2 to 3 hours for reaction. The supernatant was removed by centrifugation at 4,000 rpm and 4 ° C. for 5 minutes. Lysis buffer was added, mixed by inversion, and then centrifuged. This operation was repeated and the beads were washed 4 times. Processing buffer (20 mM Tris-HCl [pH 7.9], 0.1 M KCl, 10% Glycerol, 5 mM dithiothreitol [DTT], 0.2 mM PMSF) was added, and the same washing was performed once. Remove the supernatant and add 3 μl of Energy solution [64 mM MgCl 2 , 10 mM ATP, 200 mM Creatine phosphate] to 23 μl of Processing buffer, 1.5 μl of RNase inhibitor, and 30 μg of Creatine kinase to make the final 30 μl. 0.5 μl of / ml and 10 pmol of Primary-miR-199a probe) were added to 30 μl beads, and a processing assay was performed at 37 ° C. After 45 minutes and 90 minutes, 100 μl of TE-saturated phenol and 100 μl of WQ water were added, and the reaction was terminated by vigorous mixing. The supernatant was centrifuged at 14,000 rpm and 4 ° C. for 5 minutes, and the aqueous layer of the supernatant was collected. RNA was purified from the recovered aqueous layer and then electrophoresed (dPAGE) to detect fluorescence.
1-2.結果・考察
 Drosha単独発現でも、微弱ながら切断断片の経時的増加が確認できた(図1)。Drosha複合体によるプロセシング活性が検出できたが、非常に低い活性レベルであり、評価系に使用することは困難である。
1-2. Results / Discussion Even with Drosha alone expression, a slight increase in cleaved fragments over time was confirmed (Fig. 1). Processing activity by the Drosha complex could be detected, but the activity level was very low and it was difficult to use in the evaluation system.
2.蛍光標識miRNAプローブによるプロセシング活性の評価(2)
2-1.方法
 1-1.の方法で調製したPrimary-miR-199aプローブを用い、DroshaとDGCR8を共発現させた場合のプロセシング活性を評価した。プロセシングアッセイ及び蛍光の検出は上記実験(1-1.)に準じた。但し、DroshaとDGCR8を共発現させるため、HEK293T細胞のトランスフェクションにプラスミドDNA 30μg(CSII-FLAG-Drosha 15μg、GFP-DGCR8 15μg)を用いた。また、プロセシングアッセイの反応時間は30分間と90分間とした。
2. 2. Evaluation of processing activity by fluorescently labeled miRNA probe (2)
2-1. Method 1-1. Using the Primary-miR-199a probe prepared by the above method, the processing activity when Drosha and DGCR8 were co-expressed was evaluated. The processing assay and fluorescence detection were in accordance with the above experiment (1-1.). However, in order to co-express Drosha and DGCR8, 30 μg of plasmid DNA (CSII-FLAG-Drosha 15 μg, GFP-DGCR8 15 μg) was used for transfection of HEK293T cells. The reaction time of the processing assay was 30 minutes and 90 minutes.
2-2.結果・考察
 miRNAプロセシング効率が大幅に向上し、光度計を用いた蛍光評価も可能であった(図2)。DroshaとDGCR8の複合体を用いるとプロセシング効率が格段に向上し、実用性に優れた検出系になることが示された。本実験系を用いることにより、薬剤スクリーニング系や診断法への応用が可能となる。
2-2. Results / Discussion The miRNA processing efficiency was greatly improved, and fluorescence evaluation using a photometer was also possible (Fig. 2). It was shown that the use of the complex of Drosha and DGCR8 significantly improved the processing efficiency and made the detection system highly practical. By using this experimental system, it can be applied to drug screening systems and diagnostic methods.
3.蛍光標識miRNAプローブによるプロセシング活性の評価(3)
3-1.方法
 DroshaとDGCR8の複合体を用いた検出系の一般性/汎用性を検証するため、別のプローブ「Primary-miR-214プローブ」でプロセシング活性を評価した。Primary-miR-214プローブは、樹上突起の形成を促進し、神経機能に関与するmiR-214(Irie K., Tsujimura K. et al, J Biol Chem. 2016 Jun 24;291(26):13891-904)に対応する。Primary-miR-214プローブはmiR-214の前駆体(pre-miR-214)(配列番号10)の両端にpri- miR-214由来の配列が付加された160merの配列(配列番号11)からなる。その3'末端をフルオレセイン又はSYBR GreenIIで標識した。Primary-miR-214プローブの調整方法は1-1.(1)と同様である。また、プロセシングアッセイ及び蛍光の検出は上記実験(2-1.)に準じた。但し、プロセシングアッセイの反応時間は30分間と60分間とした。
3. 3. Evaluation of processing activity by fluorescently labeled miRNA probe (3)
3-1. Method In order to verify the generality / versatility of the detection system using the complex of Drosha and DGCR8, the processing activity was evaluated with another probe "Primary-miR-214 probe". The Primary-miR-214 probe promotes the formation of tree processes and is involved in neural function miR-214 (Irie K., Tsujimura K. et al, J Biol Chem. 2016 Jun 24; 291 (26): 13891 -904) corresponds to. The Primary-miR-214 probe consists of a 160 mer sequence (SEQ ID NO: 11) with a sequence derived from pri- miR-214 added to both ends of the miR-214 precursor (pre-miR-214) (SEQ ID NO: 10). .. Its 3'end was labeled with fluorescein or SYBR Green II. The adjustment method of the Primary-miR-214 probe is 1-1. It is the same as (1). The processing assay and fluorescence detection were in accordance with the above experiment (2-1.). However, the reaction time of the processing assay was 30 minutes and 60 minutes.
3-2.結果・考察
 蛍光によってPrimary-miR-214プローブの切断を高感度に検出できた(図3左、中央)。本手法がprimary-miRNAのプロセシング活性の検出に広く適用できること、即ち、本手法の一般性/汎用性が確認された。この結果より本手法がprimary-miRNA全般に適用可能であることが示唆された。また、キットとして販売することで多くの研究者がprimary-miRNAのプロセシングを評価することが可能となり、miRNAが関連する基礎生物学や医学の進歩に寄与することが期待できる。尚、本条件においてはフルオレセインに代えてSYBR GreenIIでプローブを蛍光標識した場合も、ある程度の感度でプロセシング活性が検出された(図3右)。
3-2. Results / Discussion Fluorescence was able to detect cleavage of the Primary-miR-214 probe with high sensitivity (Fig. 3, left, center). It was confirmed that this method can be widely applied to the detection of processing activity of primary-miRNA, that is, the generality / versatility of this method. This result suggests that this method can be applied to primary-miRNA in general. In addition, by selling it as a kit, many researchers will be able to evaluate the processing of primary-miRNA, and it is expected that miRNA will contribute to the related advances in basic biology and medicine. Under these conditions, even when the probe was fluorescently labeled with SYBR Green II instead of fluorescein, processing activity was detected with a certain degree of sensitivity (Fig. 3, right).
4.MeCP2複合体のプロセシング活性の評価
4-1.方法
 本手法の有用性を更に検証するとともにその応用を図るべく、MeCP2複合体のプロセシング活性を評価した。プローブにはフルオレセイン標識のPrimary-miR-199aプローブとSYBR GreenII標識のPrimary-miR-199aプローブを用いた。プロセシングアッセイ及び蛍光の検出は上記実験(2-1.)に準じた。但し、MeCP2複合体を発現させるため、HEK293細胞にはDroshaおよびDGCR8に加え、MeCP2とDDX5を共発現する条件とした。また、プロセシングアッセイの反応時間は30分間と60分間とした。
4. Evaluation of processing activity of MeCP2 complex 4-1. Method In order to further verify the usefulness of this method and to apply it, the processing activity of the MeCP2 complex was evaluated. Fluorescein-labeled Primary-miR-199a probe and SYBR Green II-labeled Primary-miR-199a probe were used as probes. The processing assay and fluorescence detection were in accordance with the above experiment (2-1.). However, in order to express the MeCP2 complex, HEK293 cells were conditioned to co-express MeCP2 and DDX5 in addition to Drosha and DGCR8. The reaction time of the processing assay was 30 minutes and 60 minutes.
4-2.結果・考察
 蛍光によってMeCP2免疫沈降物のmiRNAプロセシング活性を高感度に検出でき、MeCP2のprimary-miRNAプロセシング促進作用の再現に成功した(図4左、中央)。この結果により、相互作用分子のプロセシング活性を本手法により評価できることが明らかとなった。すなわち、MeCP2,p53やSmad等の相互作用分子の機能異常が起因する疾患の診断や治療薬開発に応用することが可能ということを示唆している。尚、フルオレセインに代えてSYBR GreenIIでプローブを蛍光標識した場合も、ある程度の感度でプロセシング活性が検出された(図4右)。
4-2. Results / Discussion The miRNA processing activity of the MeCP2 immunoprecipitate could be detected with high sensitivity by fluorescence, and the primary-miRNA processing promoting action of MeCP2 was successfully reproduced (Fig. 4, left, center). From this result, it was clarified that the processing activity of the interacting molecule can be evaluated by this method. In other words, it suggests that it can be applied to the diagnosis of diseases caused by dysfunction of interacting molecules such as MeCP2, p53 and Smad, and the development of therapeutic agents. When the probe was fluorescently labeled with SYBR Green II instead of fluorescein, processing activity was detected with a certain degree of sensitivity (Fig. 4, right).
 非放射性標識である蛍光によってmiRNAプロセシング活性を評価できる検出系の確立に成功した。本発明の検出系では放射性標識(RI)を使用しないため、安全かつ簡便にmiRNAプロセシング活性の検出が可能となり、難易度の高いmiRNA研究の進展、普及に貢献する。例えば、脳疾患(例えばレット症候群、22q11.2欠失症候群、ALS)、心循環系疾患、がんなどの病態研究又は基礎研究のツールとして、これらの疾患の治療薬開発に有効な評価系(例えば薬剤スクリーニング)として、更には、これらの疾患の検査・診断の手段として、本発明が利用されることを期待できる。 We have succeeded in establishing a detection system that can evaluate miRNA processing activity by fluorescence, which is a non-radioactive label. Since the detection system of the present invention does not use a radiolabel (RI), it is possible to safely and easily detect miRNA processing activity, which contributes to the progress and popularization of highly difficult miRNA research. For example, as a tool for pathological research or basic research on brain diseases (for example, Let syndrome, 22q11.2 deletion syndrome, ALS), cardiovascular diseases, cancer, etc., an evaluation system effective for developing therapeutic agents for these diseases (for example) For example, it can be expected that the present invention will be used as a means for testing / diagnosing these diseases as (for example, drug screening).
 本発明を利用・応用することは、miRNAプロセシングを介した生物学的現象の新たな発見、理解にもつながる。例えば、miRNAプロセシングの異常ないし障害が原因となる疾患が新たに見つかる可能性があり、病因のわかっていない疾患の診断への応用も期待できる。 Utilization and application of the present invention will lead to new discoveries and understanding of biological phenomena through miRNA processing. For example, there is a possibility that a new disease caused by an abnormality or disorder in miRNA processing may be found, and it can be expected to be applied to the diagnosis of a disease whose etiology is unknown.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。 The present invention is not limited to the description of the embodiments and examples of the above invention. Various modifications are also included in the invention without departing from the scope of the claims and within the scope that can be easily conceived by those skilled in the art. The contents of the papers, published patent gazettes, patent gazettes, etc. specified in this specification shall be cited by reference in their entirety.
 配列番号6:人工配列の説明:RNAオリゴヌクレオチド
 配列番号7:人工配列の説明:RNAオリゴヌクレオチド
 配列番号8:人工配列の説明:pre-miR-199a
 配列番号9:人工配列の説明:Primary-miR-199aプローブ
 配列番号10:人工配列の説明:pre-miR-214
 配列番号11:人工配列の説明:Primary-miR-214プローブ
SEQ ID NO: 6: Description of artificial sequence: RNA oligonucleotide SEQ ID NO: 7: Description of artificial sequence: RNA oligonucleotide SEQ ID NO: 8: Description of artificial sequence: pre-miR-199a
SEQ ID NO: 9: Description of artificial sequence: Primary-miR-199a probe SEQ ID NO: 10: Description of artificial sequence: pre-miR-214
SEQ ID NO: 11: Description of artificial sequence: Primary-miR-214 probe

Claims (19)

  1.  以下のステップ(1)及び(2)を含む、マイクロRNAプロセシング活性の検出方法:
     (1)pre-miRNAの全長配列に加え、pri-miRNAにおいて該pre-miRNAの5'末端側に連続している10~80塩基長の配列及び3'末端側に連続している10~80塩基長の配列を含み、その5’末端領域又は3'末端領域に蛍光物質が結合したmiRNAプローブと、Drosha複合体とを反応させるステップ、
     (2)前記Drosha複合体によるプロセシングによって生じる、前記miRNAプローブの5’末端領域又は3'末端領域を含む断片からの蛍光を検出するステップ。
    Methods for detecting microRNA processing activity, including the following steps (1) and (2):
    (1) In addition to the full-length sequence of pre-miRNA, in pri-miRNA, a sequence having a length of 10 to 80 bases continuous to the 5'end side of the pre-miRNA and 10 to 80 continuous to the 3'end side. A step of reacting a Drosha complex with a miRNA probe that contains a base-length sequence and has a fluorescent substance bound to its 5'-terminal region or 3'-terminal region.
    (2) A step of detecting fluorescence from a fragment containing the 5'end region or the 3'end region of the miRNA probe, which is generated by processing by the Drosha complex.
  2.  前記miRNAプローブの蛍光標識の位置が5'末端又は3'末端である、請求項1に記載の検出方法。 The detection method according to claim 1, wherein the position of the fluorescent label of the miRNA probe is at the 5'end or the 3'end.
  3.  前記miRNAプローブの長さが100~200塩基長である、請求項1又は2に記載の検出方法。 The detection method according to claim 1 or 2, wherein the length of the miRNA probe is 100 to 200 bases.
  4.  前記miRNAプローブがhsa-miR-199aの前駆体又はhsa-miR-214の前駆体の配列を含む、請求項1~3のいずれか一項に記載の検出方法。 The detection method according to any one of claims 1 to 3, wherein the miRNA probe contains a sequence of a precursor of hsa-miR-199a or a precursor of hsa-miR-214.
  5.  前記Drosha複合体がDroshaとDGCR8を含む、請求項1~4のいずれか一項に記載の検出方法。 The detection method according to any one of claims 1 to 4, wherein the Drosha complex contains Drosha and DGCR8.
  6.  前記Droshaと前記DGCR8が培養細胞で共発現させたものである、請求項5に記載の検出方法。 The detection method according to claim 5, wherein the Drosha and the DGCR8 are co-expressed in cultured cells.
  7.  前記Drosha複合体が変異型である、請求項1~6のいずれか一項に記載の検出方法。 The detection method according to any one of claims 1 to 6, wherein the Drosha complex is a mutant type.
  8.  前記Drosha複合体と相互作用する分子の存在下でステップ(1)の反応を行う、請求項1~7のいずれか一項に記載の検出方法。 The detection method according to any one of claims 1 to 7, wherein the reaction of step (1) is carried out in the presence of a molecule that interacts with the Drosha complex.
  9.  前記分子が転写因子又はRNA結合タンパク質である、請求項8に記載の検出方法。 The detection method according to claim 8, wherein the molecule is a transcription factor or an RNA-binding protein.
  10.  前記分子がMeCP2、TDP43、p53又はSmadsである、請求項8に記載の検出方法。 The detection method according to claim 8, wherein the molecule is MeCP2, TDP43, p53 or Smads.
  11.  前記分子が変異型である、請求項8~10のいずれか一項に記載の検出方法。 The detection method according to any one of claims 8 to 10, wherein the molecule is a mutant type.
  12.  ステップ(1)を被験物質の共存下で行い、
     ステップ(2)の検出結果に基づき、プロセシング活性への被験物質の作用を評価する、請求項1~11のいずれか一項に記載の検出方法。
    Step (1) is performed in the presence of the test substance.
    The detection method according to any one of claims 1 to 11, which evaluates the action of the test substance on the processing activity based on the detection result of step (2).
  13.  pre-miRNAの全長配列に加え、pri-miRNAにおいて該pre-miRNAの5'末端側に連続している10~80塩基長の配列及び3'末端側に連続している10~80塩基長の配列を備え、その5’末端領域又は3'末端領域が蛍光標識されたmiRNAプローブからなる、マイクロRNAプロセシング活性検出用試薬。 In addition to the full-length sequence of the pre-miRNA, the pri-miRNA has a sequence having a length of 10 to 80 bases continuous to the 5'end side of the pre-miRNA and a sequence having a length of 10 to 80 bases continuous to the 3'end side. A reagent for detecting microRNA processing activity, which comprises a miRNA probe having a sequence and whose 5'end region or 3'end region is fluorescently labeled.
  14.  請求項13に記載の試薬を含む、マイクロRNAプロセシング活性検出用キット。 A kit for detecting microRNA processing activity, which comprises the reagent according to claim 13.
  15.  Drosha複合体を更に含む、請求項14に記載のキット。 The kit according to claim 14, further comprising a Drosha complex.
  16.  前記Drosha複合体がDroshaとDGCR8を含む、請求項15に記載のキット。 The kit according to claim 15, wherein the Drosha complex comprises Drosha and DGCR8.
  17.  前記Drosha複合体が変異型である、請求項15又は16に記載のキット。 The kit according to claim 15 or 16, wherein the Drosha complex is a mutant type.
  18.  前記Drosha複合体に、それと相互作用する転写因子又はRNA結合タンパク質が会合している、請求項15~17のいずれか一項に記載のキット。 The kit according to any one of claims 15 to 17, wherein a transcription factor or RNA-binding protein that interacts with the Drosha complex is associated with the Drosha complex.
  19.  前記Drosha複合体に、MeCP2、TDP43、p53又はSmadsが会合している、請求項15~17のいずれか一項に記載のキット。 The kit according to any one of claims 15 to 17, wherein MeCP2, TDP43, p53 or Smads are associated with the Drosha complex.
PCT/JP2020/002568 2019-03-14 2020-01-24 Method for detecting microrna processing activity, and application thereof WO2020183941A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020547024A JP6869587B2 (en) 2019-03-14 2020-01-24 Detection method of microRNA processing activity and its application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019046718 2019-03-14
JP2019-046718 2019-03-14

Publications (1)

Publication Number Publication Date
WO2020183941A1 true WO2020183941A1 (en) 2020-09-17

Family

ID=72427862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002568 WO2020183941A1 (en) 2019-03-14 2020-01-24 Method for detecting microrna processing activity, and application thereof

Country Status (2)

Country Link
JP (1) JP6869587B2 (en)
WO (1) WO2020183941A1 (en)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHENG, TIAN-LIN ET AL.: "MeCP2 Suppresses Nuclear MicroRNA Processing and Dendritic Growth by Regulating the DGCR8/Drodha Complex", DEVELOPMENTAL CELL, vol. 28, 10 March 2014 (2014-03-10), pages 547 - 560, XP028628336, DOI: 10.1016/j.devcel.2014.01.032 *
HESSE, MARLEN ET AL.: "Assaying Dicer- Mediated miRNA Maturation by Means of Fluorescent Substrates, miRNA Maturation", METHODS AND PROTOCOALS , METHODS IN MOLECULAR BIOLOGY, vol. 1095, 2014, pages 95 - 102 *
PARTIN, ALEXANDER C. ET AL.: "Heme enables proper positioning of Drosha and DGCR8 on primary microRNAs", NATURE COMMUNICATIONS, vol. 8, 23 November 2017 (2017-11-23), pages 1737, XP055739436 *
PRADERE, UGO ET AL.: "Chemical synthesis of long RNAs with terminal 5'-phosphate groups", CHEM. EUR. J., vol. 23, 2017, pages 5210 - 5213, XP055387759, DOI: 10.1002/chem.201700514 *
STARK, MARTHA R. ET AL.: "An RNA ligase-mediated method for the efficient creation of large, synthetic RNAs", RNA, vol. 12, 2006, pages 2014 - 2019, XP055047162, DOI: 10.1261/rna.93506 *
ZEARFOSS, N. ET AL.: "End-Labeling Oligonucleotides with Chemical Tags After Synthesis", METHODS MOL. BIOL., vol. 941, 2012, pages 181 - 193, XP055739434 *

Also Published As

Publication number Publication date
JPWO2020183941A1 (en) 2021-03-18
JP6869587B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
US11293052B2 (en) Compositions and methods for analyte detection
US20230039899A1 (en) In situ rna analysis using probe pair ligation
CA2905432C (en) Compositions and methods of nucleic acid-targeting nucleic acids
Zhuang et al. Combined microRNA and mRNA detection in mammalian retinas by in situ hybridization chain reaction
JP2002520074A (en) Cis-acting nucleic acid elements and methods of use
KR20210096599A (en) Methods and compositions for selection of functional aptamers
KR20090052322A (en) Nucleic acid strand useful in detecting substance and method thereof
WO2023278629A1 (en) Crispr quantification
WO2017094733A1 (en) Dna aptamer binding to molecular targeting drug and method for detecting molecular targeting drug using same
US9085773B2 (en) Methods for identifying nucleic acid ligands
Kyriazi et al. An investigation into the resistance of spherical nucleic acids against DNA enzymatic degradation
WO2020183941A1 (en) Method for detecting microrna processing activity, and application thereof
KR20040035878A (en) Aptamers containing sequences of nucleic acids or nucleic acid analogues bound homologously, or in novel complexes
US20210310049A1 (en) Reagents and methods for blocking non-specific interactions with nucleic acids
JP2021193934A (en) Improved in situ hybridization reaction using short-chain hairpin DNA
Borghei et al. Building Polyvalent DNA‐Functionalized Anisotropic AuNPs using Poly‐Guanine‐Mediated In‐Situ Synthesis for LSPR‐Based Assays: Case Study on OncomiR‐155
Hai-Long et al. Quantitative detection of PremicroRNA-21 based on chimeric molecular beacon
CN114350751B (en) CHA-PHCR detection system based on cross-linked network structure and application thereof
JP7372941B2 (en) Detection assay for protein-polynucleotide conjugates
US20230417741A1 (en) Nanoparticle-enabled analysis of cell-free nucleic acid in complex biological fluids
WO2024005105A1 (en) Method for measuring human cells
JP2021171047A (en) Complex of lna probe and graphene oxide and nucleic acid detection method using the same
WO2020067120A1 (en) Method for evaluating quality of dephosphorylation reagent and method for detecting target nucleic acid
JP2020000157A (en) siRNA quantification method
CN117230070A (en) Nucleic acid aptamer for targeted binding of c-Myc protein and application thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020547024

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769990

Country of ref document: EP

Kind code of ref document: A1