WO2020183730A1 - Monitoring system, information processing device, and information processing method - Google Patents

Monitoring system, information processing device, and information processing method Download PDF

Info

Publication number
WO2020183730A1
WO2020183730A1 PCT/JP2019/010688 JP2019010688W WO2020183730A1 WO 2020183730 A1 WO2020183730 A1 WO 2020183730A1 JP 2019010688 W JP2019010688 W JP 2019010688W WO 2020183730 A1 WO2020183730 A1 WO 2020183730A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
information processing
abnormality
monitoring system
scoring
Prior art date
Application number
PCT/JP2019/010688
Other languages
French (fr)
Japanese (ja)
Inventor
勇祐 清田
古田 勝久
勝治 竹下
光晋 長尾
誠介 朝野
信行 飯田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to PCT/JP2019/010688 priority Critical patent/WO2020183730A1/en
Publication of WO2020183730A1 publication Critical patent/WO2020183730A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a monitoring system, an information processing device, and an information processing method.
  • Patent Document 1 a plurality of vacuum pumps are collectively monitored by using signals from an AE (Acoustic Emission) sensor, a current sensor, and a temperature sensor, and operated on a workstation connected by a LAN, which is peculiar to the vacuum pump.
  • AE Acoustic Emission
  • a failure prediction system for a mechanical booster type vacuum pump that uses a failure prediction standard has been proposed. According to the failure prediction system, clogging failure caused by products deposited in the casing of the mechanical booster type vacuum pump is predicted in advance, and replacement of the pump is urged to avoid product defects due to sudden failure of the pump. , Product yield can be improved and pump maintenance cost can be reduced.
  • Patent Document 2 data of a specific analysis frequency is extracted from the data output by an accelerometer that measures the vibration of a rotating machine, and the amount of time change of the extracted analysis frequency data is obtained.
  • a lifespan diagnosis system that determines the lifespan by comparing it with a threshold has been proposed. According to the life diagnosis system, it is possible to diagnose the life of a rotating machine with high sensitivity and stability by observing the amount of time change of acceleration due to distortion, damage, etc. of the rotating machine.
  • an object of the technique of the present disclosure is to provide a technique for presenting data that can quantitatively evaluate or judge an abnormality of the device or a sign of the abnormality.
  • the technology of the present disclosure adopts the following configuration in order to solve the above-mentioned problems.
  • the monitoring system receives each sensing data from one or a plurality of sensors provided in a device including a power source, and calculates one or a plurality of feature quantities from the respective sensing data.
  • the storage device that stores each feature amount received from the control device and the sensing data in association with each other, the feature amount is monitored, and the vibration waveform included in the sensing data is included.
  • the device includes an information processing device that generates sound data or scoring data representing an operating state of the device and outputs the sound data or the scoring data.
  • sound data or scoring data based on the vibration waveform is output as necessary while monitoring each feature amount based on each sensing data of each sensor provided in the device including the power source. Therefore, it is possible to provide a technique for presenting data capable of quantitatively evaluating or determining an abnormality of an apparatus or a sign of an abnormality. By presenting objective and easily determinable data such as sound data or scoring data, even non-skilled technicians can determine whether or not a failure has actually occurred or whether or not the product has reached the end of its useful life. It becomes possible to make a more appropriate judgment.
  • the power source is, for example, a rotating machine, and includes a motor, a vacuum pump, a compressor, a turbine, and the like.
  • the one or more sensors include at least one from various sensors such as vibration sensors, current sensors, temperature sensors, pressure sensors, flow meters, and heat flow sensors.
  • the sensing data is a vibration waveform
  • the feature quantity includes, for example, a peak amplitude value, an impact degree, a power spectrum after a fast Fourier transform, and the like.
  • the impact degree can be obtained by integrating, for example, frequency waveform data frequency-converted from vibration waveform data over the entire frequency domain or a predetermined frequency domain.
  • the sensing data is a current value, temperature, or the like
  • the feature amount is, for example, an average value or a peak interval.
  • the device is, for example, a CVD (Chemical Vapor Deposition) device, a labeling device (labeler device), a cutting device, or other devices or devices installed at a production site such as a factory.
  • the control device is, for example, a PLC (programmable logic controller) or a sequencer, and is a device that sequentially controls according to programs such as logical operations, sequence operations, and arithmetic operations.
  • the storage device is, for example, a database capable of storing data and information, and may be configured separately from the information processing device or may be configured inside the information processing device.
  • the information processing device may be, for example, a computer and may have any information processing function.
  • the information processing device in the monitoring system detects an abnormality of the device based on each feature amount
  • the sound data of the vibration waveform within a predetermined time based on the time when the abnormality is detected is obtained. May be converted to.
  • the information processing device in the monitoring system may convert the vibration waveform of the section specified by the user among the vibration waveforms stored in the storage device into the sound data. According to this configuration, by making it possible to compare the past sound data at the time of normal with the sound data at the time of abnormality, it is possible to present data that can more appropriately and more easily determine the abnormality of the device. can do.
  • the information processing device in the monitoring system is a comparison target with each of the feature quantities, and each threshold value used for abnormality determination may be adjusted based on the normality or abnormality determination result of the user. According to this configuration, when an abnormality is determined by the system, the threshold value used for the abnormality determination can be adjusted to a more appropriate value by feeding back the normality or abnormality determination result by the user. As a result, more appropriate abnormality determination can be performed.
  • the control device in the monitoring system according to the above example may be capable of adding the calculation of the feature amount according to the abnormality content of the device. According to this configuration, by analyzing the feature amount at the time of abnormality, a new feature amount calculation program can be added to the control device so that a new feature amount according to the abnormality content is calculated. ..
  • the information processing device in the monitoring system may display the scoring data and an appropriate range for the scoring data on the display device. According to this configuration, by displaying the scoring data indicating the abnormality of the device and the appropriate range thereof, even an unskilled user can easily visually determine whether the device is normal or abnormal.
  • the information processing device in the monitoring system may display the comparison result between the scoring data and the appropriate range on the display device. According to this configuration, by displaying the comparison result between the scoring data and the appropriate range thereof, even an unskilled user can more appropriately judge whether the device is normal or abnormal.
  • the information processing device includes a monitoring unit that monitors each feature amount calculated based on each sensing data from one or a plurality of sensors provided in the device including a power source. It includes a generation unit that generates sound data or scoring data indicating an operating state of the device based on the vibration waveform included in each of the sensing data, and an output unit that outputs the sound data or the scoring data. According to this configuration, it is possible to provide a technique for presenting data capable of more appropriately determining an abnormality or a sign of an apparatus.
  • the information processing method includes a monitoring step of monitoring each feature amount calculated based on each sensing data from one or a plurality of sensors provided in a device including a power source.
  • Information processing includes a generation step of generating sound data or scoring data indicating an operating state of the device based on the vibration waveform included in each of the sensing data, and an output step of outputting the sound data or the scoring data.
  • the device runs. According to this method, it is possible to provide a technique for presenting data capable of more appropriately determining an abnormality of an apparatus.
  • FIG. 1 schematically illustrates an example of an application scene of the monitoring system according to the present embodiment.
  • FIG. 2 schematically illustrates an example of the hardware configuration of the control device according to the present embodiment.
  • FIG. 3 schematically illustrates an example of the hardware configuration of the information processing device according to the present embodiment.
  • FIG. 4 schematically illustrates an example of the functional configuration of the control device according to the present embodiment.
  • FIG. 5 schematically illustrates an example of the functional configuration of the information processing apparatus according to the present embodiment.
  • FIG. 6 is a flowchart illustrating an example of the processing procedure of the monitoring system according to the present embodiment.
  • FIG. 7 is a flowchart showing an example of the correction process of the provisional standard according to the present embodiment.
  • FIG. 8 is a schematic view showing an example of the monitoring stem according to the first embodiment.
  • FIG. 9 is a diagram showing an example of a screen including an overview according to the first embodiment.
  • FIG. 10 is a diagram showing time-series changes in the feature amount of the sensing data according to the first embodiment.
  • FIG. 11 is a diagram showing an example of sound reproduction according to the first embodiment.
  • FIG. 12 is a diagram showing an example of a screen for vibration waveform analysis according to the first embodiment.
  • FIG. 13 is a diagram showing an example of a screen displaying monitoring data (feature amount) of the servo motor according to the first embodiment.
  • FIG. 14 is a schematic diagram showing an example of the monitoring system according to the second embodiment.
  • FIG. 15 is a diagram showing an example of a vibration waveform and a feature amount according to the second embodiment.
  • FIG. 16A is a diagram showing an example of a monitor screen during blade contact adjustment according to the second embodiment.
  • FIG. 16B is a diagram showing an example of a monitor screen in which the labeler device according to the second embodiment is in operation.
  • FIG. 17 is a schematic diagram showing an example of the monitoring system according to the third embodiment.
  • FIG. 18 is a diagram showing the relationship between the maximum amplitude of the vibration waveform according to the third embodiment and the processing resistance.
  • the present embodiment relates to one aspect of the disclosed technology (hereinafter, also referred to as “the present embodiment”) will be described with reference to the drawings.
  • the present embodiment described below is merely an example of the disclosed technology in all respects. Needless to say, various improvements and modifications can be made without departing from the scope of the disclosed technology. That is, in implementing the disclosed technology, a specific configuration according to the embodiment may be appropriately adopted.
  • the data appearing in the present embodiment are described in natural language, but more specifically, the data is specified in a pseudo language, commands, parameters, machine language, etc. that can be recognized by a computer.
  • FIG. 1 schematically illustrates an example of an application scene of the monitoring system 1 according to the present embodiment.
  • the monitoring system 1 according to the present embodiment is a system that monitors the state of the device 10 based on the sensing data acquired from the sensors 20A to C provided in the device 10 installed at the production site such as a factory.
  • the number of sensors is not particularly limited, and at least one is sufficient.
  • the monitoring system 1 is obtained by a device 10 including a power source such as a rotary machine installed in a factory or the like, sensors 20A to C provided in the device 10, and sensors 20A to C.
  • a control device 100 that performs a predetermined calculation on the received sensing data to calculate each feature amount, a storage device 200 that stores each feature amount and each sensing data output from the control device 100 in association with each other, and each feature. It includes an information processing device 300 that monitors the amount or each sensing data.
  • the Area 1 in which the device 10 to be monitored and the control device 100 are installed is, for example, a production site such as a factory or a facility, and the Area 2 in which the storage device 200 and the information processing device 300 are installed can, for example, allow a user to appropriately monitor data. Office etc.
  • the example shown in FIG. 1 is an example, and even if the information processing device 300 is provided in Area 1, the storage device 200 is provided in Area 1, or the control device 100 is provided in Area 2. Good.
  • the information processing device 300 monitors each feature amount or each sensing data, and generates sound data or scoring data indicating the operating state of the device 10 by using at least the vibration waveform included in the sensing data.
  • the sound data indicates the vibration sound of the device 10, and is generated in order to grasp the abnormal sound of the device 10.
  • the scoring data represents the degree of abnormality based on the vibration of the device 10 as scoring data, and is generated so that anyone can grasp the abnormality of the device using an objective index.
  • the sound data is sound data based on the displayed vibration waveform when the user presses a predetermined button (for example, a sound reproduction button) from the screen D10 displaying a graph showing the vibration waveform which is one of the sensing data. A10 is reproduced.
  • a predetermined button for example, a sound reproduction button
  • the user can visually grasp the vibration waveform, and can also aurally grasp the vibration sound that has been conventionally used for determining the abnormality of the device 10.
  • the vibration sound is generated by sound conversion from the vibration waveform.
  • the scoring data is displayed in real time on the monitor screen D12, and the user can determine whether or not the current scoring data value is appropriate by looking at the monitor screen D12. Further, on the monitor screen D12, the judgment criteria of the scoring data, for example, 50 or more is appropriate, 40 or more and less than 50 is a forecast, and less than 40 is an abnormality, so that the user can change the value of the current scoring data. Based on this, the state of the device 10 can be easily grasped. Real-time means that the display ends within a predetermined time after the sensing data is acquired. In addition, the forecast indicates a state that is not a failure but requires attention.
  • the control device 100 is configured to calculate each feature amount that appropriately indicates the state of the device 10 based on each sensing data so that an abnormality of the device 10 can be predicted.
  • the information processing device 300 can predict the abnormality of the device 10 by monitoring each feature amount and each sensing data.
  • the information processing device 300 is configured to generate and output confirmation data including sound data or scoring data for confirming an abnormality of the device 10.
  • confirmation data capable of appropriately determining the abnormality of the device 10, so that unnecessary stoppage of the device 10 can be reduced and stable operation can be realized.
  • the user can confirm the sound data or the scoring data based on the vibration waveform indicating the state of the device 10 and appropriately determine the state of the device 10.
  • the user does not have to bother to go to the installation position of the device 10, which can reduce the time and effort of the user.
  • FIG. 2 schematically illustrates an example of the hardware configuration of the control device 100 according to the present embodiment.
  • the control device 100 includes a processor 102 such as a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit), a chipset 104, a main storage device 106, a secondary storage device 108, and the like. It includes a network controller 110, a memory card interface 114, an internal bus controller 122, and an I / O unit 124.
  • a processor 102 such as a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit)
  • chipset 104 such as a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit)
  • main storage device 106 main storage device 106
  • secondary storage device 108 main storage device
  • the secondary storage device 108 is composed of, for example, a non-volatile storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive).
  • the main storage device 106 is composed of a volatile storage device such as a DRAM (Dynamic Random Access Memory) or a SRAM (Static Random Access Memory).
  • the processor 102 reads various programs stored in the secondary storage device 108, expands them in the main storage device 106, and executes them to perform control according to the target of the device 10 and various processes as described later.
  • the receiving unit 152, the processing unit 154, the transmitting unit 156, and the like which will be described later, can be realized as a program that is temporarily stored in the main storage device 106 and then operates mainly on the processor 102. That is, when the processor 102 interprets and executes the program temporarily stored in the main storage device 106, the functions of the receiving unit 152, the processing unit 154, and the transmitting unit 156 are realized.
  • the chipset 104 realizes the processing of the control device 100 as a whole by controlling the processor 102 and each component.
  • the secondary storage device 108 stores various programs such as user programs executed by the processor 102 and an internal database.
  • the network controller 110 controls the exchange of data with other devices via the network.
  • the network controller 110 is typically realized by using a dedicated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the memory card interface 114 is configured so that the memory card can be attached and detached, and it is possible to write data to the memory card and read various data (user program, trace data, etc.) from the memory card.
  • the control device 100 may have a USB (Universal Serial Bus) controller, and the USB controller controls the exchange of data with the control device 100 via a USB connection.
  • the USB controller is typically realized using a dedicated circuit such as an ASIC or FPGA.
  • the internal bus controller 122 is an interface for exchanging data with the I / O unit 124 mounted on the control device 100.
  • the internal bus controller 122 is typically implemented using a dedicated circuit such as an ASIC or FPGA.
  • the various programs executed by the control device 100 of FIG. 2 may be installed via a recording medium such as a computer-readable memory card, but the secondary storage device 108 is downloaded from a server device or the like on the network. You may install it in. Further, the function provided by the control device 100 according to the present embodiment may be realized by using a part of the module provided by the OS (Operating System).
  • OS Operating System
  • FIG. 2 a configuration example in which the necessary functions are provided by the processor 102 executing the above program is shown, but some or all of these provided functions are provided by a dedicated hardware circuit (for example, it may be implemented using ASIC or FPGA).
  • the main part of the control device 100 may be realized by using hardware that follows a general-purpose architecture (for example, an industrial personal computer based on a general-purpose personal computer).
  • virtualization technology may be used to execute a plurality of OSs having different uses in parallel, and to execute necessary applications on each OS.
  • FIG. 3 schematically illustrates an example of the hardware configuration of the information processing apparatus 300 according to the present embodiment.
  • the information processing device 300 includes a processor 302, a memory 304, a storage device 306, an input I / F unit 308, a data I / F unit 310, a communication I / F unit 312, and a display device 314. ..
  • the processor 302 controls various processes in the information processing device 300 by executing a program stored in the memory 304.
  • the receiving unit 352, the monitoring unit 354, the generating unit 356, the output unit 358, and the like which will be described later, can be realized as a program that is temporarily stored in the memory 304 and mainly operates on the processor 302. That is, when the processor 302 interprets and executes the program temporarily stored in the memory 304, the functions of the receiving unit 352, the monitoring unit 354, the generating unit 356, and the output unit 358 are realized.
  • the memory 304 is a storage medium such as a RAM (Random Access Memory).
  • the memory 304 temporarily stores the program code of the program executed by the processor 302 and the data required when the program is executed.
  • the storage device 306 is a non-volatile storage medium such as a hard disk drive (HDD) or a flash memory.
  • the storage device 306 stores an operating system and various programs for realizing each of the above configurations.
  • the storage device 306 can also store data used for determining the state of the device 10. Such programs and data are referred to by the processor 302 by being loaded into the memory 304 as needed.
  • the input I / F unit 308 is a device for receiving input from the user. Specific examples of the input I / F unit 308 include a keyboard, a mouse, a touch panel, various sensors, a wearable device, and the like. The input I / F unit 308 may be connected to the information processing device 300 via an interface such as USB.
  • the data I / F unit 310 is a device for inputting data from the outside of the information processing device 300.
  • Specific examples of the data I / F unit 310 include a drive device for reading data stored in various storage media. It is also conceivable that the data I / F unit 310 is provided outside the information processing apparatus 300. In that case, the data I / F unit 310 is connected to the information processing device 300 via an interface such as USB.
  • the communication I / F unit 312 is a device for performing data communication via the Internet with an external device of the information processing device 300 by wire or wirelessly. It is also conceivable that the communication I / F unit 312 is provided outside the information processing device 300. In that case, the communication I / F unit 312 is connected to the information processing device 300 via an interface such as USB.
  • the display device 314 is a device for displaying various information. Specific examples of the display device 314 include a liquid crystal display, an organic EL (Electro-Luminescence) display, a display of a wearable device, and the like. It may be provided outside the display device 314 and the information processing device 300. In that case, the display device 314 is connected to the information processing device 300 via, for example, a display cable or the like.
  • a display cable or the like.
  • the storage medium may be a semiconductor memory such as a flash memory in addition to a disc-type storage medium such as a CD or DVD.
  • control device 100 and the information processing device 300 may include a plurality of processors.
  • the information processing device 300 may be composed of a plurality of information processing devices.
  • a general-purpose desktop PC Personal Computer
  • a tablet PC or the like may be used in addition to the information processing device designed exclusively for the provided service.
  • FIG. 4 schematically illustrates an example of the functional configuration of the control device 100 according to the present embodiment.
  • the control device 100 shown in FIG. 4 includes a receiving unit 152 that receives each sensing data provided in the device 10, a processing unit 154 that calculates a predetermined feature amount based on the sensing data, each sensing data, and each feature amount.
  • 156 is a transmission unit that transmits the data to the storage device 200.
  • the function of the receiving unit 152 is realized by, for example, the processor 102, and various data are acquired from the network controller 110, the internal bus controller 122, and the like.
  • the receiving unit 152 acquires the sensing data measured by the sensors 20A to C.
  • the sensing data is, for example, data showing a vibration waveform, a current, a temperature, a pressure, a heat flow, and the like.
  • the processing unit 154 realizes the function by, for example, the processor 102, and processes so as to convert it into a predetermined feature amount based on each sensing data received by the receiving unit 152.
  • the processing unit 154 calculates a peak amplitude value, an impact degree, a power spectrum after a fast Fourier transform (FFT), and the like as feature quantities. Further, when the sensing data is a current value or temperature, the processing unit 154 calculates an average value, a peak interval, or the like as a feature amount.
  • FFT fast Fourier transform
  • each sensing data and / or each feature amount is analyzed, and a new feature amount that makes it easy to detect the abnormality is found.
  • the frequency band of the calculated feature amount is changed.
  • the processing unit 154 can add a program for calculating a new feature amount, and by executing the added program, the new feature amount is calculated from the predetermined sensing data.
  • a new feature amount calculation program can be added to the control device as a function block.
  • a new feature amount calculation program can be added to the control device 100 so that a new feature amount corresponding to the abnormality content is calculated by analyzing the feature amount at the time of abnormality.
  • a new feature amount suitable for detecting an abnormality is used, so that the abnormality determination can be made more appropriate.
  • the function of the transmission unit 156 is realized by, for example, the processor 102, and each sensing data acquired from the processing unit 154 and each feature amount are transmitted to the storage device 200 or the information processing device 300 via the network controller 110.
  • the transmission unit 156 may transmit each sensing data used for calculating each feature amount in association with each feature amount. For example, it is possible to associate both data by associating the measurement time with each of the feature amount and the sensing data and transmitting them in a time series.
  • FIG. 5 schematically illustrates an example of the functional configuration of the information processing device 300 according to the present embodiment.
  • the information processing device 300 shown in FIG. 5 includes a receiving unit 352 that receives sensing data or a feature amount from the storage device 200, a monitoring unit 354 that monitors the state of the device 10 based on the feature amount and / or the sensing data, and the device 10. It has a generation unit 356 that generates confirmation data that can objectively confirm the state of the above, and an output unit 358 that outputs confirmation data.
  • the confirmation data includes at least one of sound data converted from the vibration waveform and scoring data calculated based on the feature amount.
  • the function of the receiving unit 352 is realized by, for example, the processor 302, and the feature amount and / or sensing data is acquired from the storage device 200 via the communication I / F unit 312 or the like.
  • the feature quantity and / or sensing data may be acquired in real time or at regular timings regardless of the timing of acquisition.
  • the monitoring unit 354 monitors the feature amount and / or the sensing data acquired by the receiving unit 352, for example, the function is realized by the processor 302. For example, when a provisional reference threshold value is set for each feature amount, the monitoring unit 354 determines whether or not an abnormality has occurred in the device 10 based on the relationship between the feature amount and the threshold value. When the monitoring unit 354 determines that an abnormality has occurred, the monitoring unit 354 outputs an abnormality alarm to the user.
  • the abnormality alarm is, for example, a voice indicating that it is abnormal, or is highlighted and output on a monitor.
  • the output method may be any method, for example, it is possible to send to the registered user's e-mail address, output voice from the speaker, or emit a predetermined light.
  • the generation unit 356 realizes its function by, for example, the processor 302, and generates confirmation data including sound data or scoring data indicating the operating state of the device 10 based on the vibration waveform included in the sensing data.
  • the sound data indicates the vibration sound of the device 10
  • the scoring data is data that can be calculated by the vibration of the device 10 based on the vibration waveform.
  • the scoring data may be calculated from each feature amount (amplitude, power spectrum, inter-peak distance, etc.) of the vibration waveform by using a predetermined calculation algorithm, for example. Further, the scoring data may be calculated by using the feature amounts of other sensing data (current, temperature, etc.) according to the characteristics of the device 10 instead of the vibration waveform.
  • the output unit 358 outputs sound data from a speaker provided in the information processing device 300, or outputs scoring data to the display device 314.
  • the user can determine the abnormality of the device 10 by listening to the sound data and viewing the scoring data.
  • by outputting objective confirmation data it is possible to prevent unnecessary device stoppages and realize stable device operation.
  • the monitoring unit 354 may convert the vibration waveform within a predetermined time based on the time when the abnormality is detected into sound data. For example, the monitoring unit 354 may convert the vibration waveform within a predetermined time including the time when the abnormality is detected, or within the predetermined time immediately before or after the time when the abnormality is detected, into sound data.
  • the user can check the sound data and scoring data of the vibration waveform based on the time when the abnormality is detected without going to the site. Further, since the sound data is not generated but the vibration waveform in the required section is converted into the sound data as needed, the processing load of the processor 302 can be reduced.
  • the monitoring unit 354 may convert the vibration waveform of the section designated by the user among the vibration waveforms stored in the storage device 200 into sound data.
  • the monitoring unit 354 may display the past vibration waveform on the display device 314 and convert the vibration waveform in the section designated by the user into sound data.
  • the monitoring unit 354 is a comparison target with each feature amount, and each threshold value used for the abnormality determination may be adjusted based on the normality or abnormality determination result of the user. For example, the monitoring unit 354 adjusts the current threshold value so that it is difficult to determine an abnormality when the user gives feedback (input) that the abnormality is not abnormal when the abnormality determination is made based on the feature amount. .. Further, the monitoring unit 354 may or may not adjust the current threshold value so that it can be easily determined as abnormal when the user gives feedback that the abnormality has occurred. Regarding the adjustment, the monitoring unit 354 adds or subtracts a predetermined value from the threshold value based on the feedback result.
  • the threshold value used for the abnormality determination can be adjusted to a more appropriate value by feeding back the normal or abnormal determination result by the user to the system.
  • the monitoring system 1 can make an abnormality determination more appropriately.
  • the output unit 358 may display the generated scoring data and an appropriate range for the scoring data on the display device 314. For example, when the scoring data is normalized to a value of 0 to 100 and calculated, the output unit 358 is analyzed together with the output of the scoring data if the appropriate range of the values of the scoring data is analyzed.
  • the appropriate range (for example, 50 or more shown in D12 of FIG. 1) may be output.
  • the output unit 358 may output an appropriate range that differs depending on whether the device is operating or the device is being set up. During setup includes, for example, stopping the device for maintenance and manually operating certain parts. As a result, an appropriate range can be displayed in each operation.
  • FIG. 6 is a flowchart illustrating an example of the processing procedure of the monitoring system 1 according to the present embodiment.
  • the processing procedure described below is only an example, and each processing may be changed as much as possible. Further, with respect to the processing procedure described below, steps can be omitted, replaced, and added as appropriate according to the embodiment.
  • Step S102 the user activates the target device 10 installed at the production site and operates the device 10.
  • Each feature amount is calculated from each sensing data during a period (for example, several days) in which the device 10 normally operates.
  • the user sets a threshold value for each feature amount and sets a tentative reference by statistically analyzing the variation of the feature amount data.
  • a threshold value calculation algorithm in the monitoring unit 354, the standard deviation and variance of the data of each feature amount are obtained, and the threshold value determined to be abnormal is automatically set from these statistical data. You may.
  • Step S104 the monitoring unit 354 generates time-series data of the feature amount (hereinafter, also referred to as “trend data”), and the generation unit 356 generates sound data and scoring data.
  • the user analyzes whether the provisional standard is appropriate by viewing trend data, playing sound data, and checking scoring data, and gives feedback to the monitoring system 1.
  • the information processing apparatus 300 is made to input the data determined to be abnormal and the confirmation result of the user for the threshold value.
  • the monitoring unit 354 corrects each temporarily set threshold value based on the input confirmation result. An appropriate threshold value is set by repeating the correction of the threshold value.
  • the specific processing content in step S104 will be described later with reference to FIG. 7.
  • Step S106 when a failure occurs in the device 10 or when the device 10 has reached the end of its life, the user identifies the failure location and the failure content of the device 10 by overhaul or the like. The user analyzes each sensing data and each feature amount around the time when a failure or the like occurs, extracts an abnormal waveform, a feature component, and the like, and analyzes the time when the sign occurs.
  • Step S108 the user reflects the analysis result on the monitoring unit 354, so that the monitoring system 1 can appropriately detect this abnormality from the next time onward.
  • the user specifies a frequency to be monitored, adds a calculation program to the control device 100 so as to calculate this frequency as a feature amount, or corrects a threshold value in the monitoring unit 354.
  • the monitoring system 1 can detect this abnormality at an appropriate time. It is preferable that feedback is appropriately provided by executing the process of step S104 after the process of step S108.
  • the monitoring system 1 since the data at the time of abnormality of the device 10 is stored in the storage device 200, the data can be analyzed. Further, based on the analysis result, feedback is given to the monitoring system 1 to specify the data to be monitored and the feature amount, and to change the threshold value. As a result, it is possible to construct an appropriate predictive monitoring system 1 by appropriately feeding back the analysis result at the time of abnormality.
  • FIG. 7 is a flowchart showing an example of the correction process of the provisional standard according to the present embodiment.
  • the feature amount based on the sensing data is monitored according to the provisional standard, and the confirmation data is output as appropriate. By grasping this confirmation data, the user can modify the provisional standard as necessary.
  • step S202 the receiving unit 352 acquires each sensing data and each feature amount calculated by the control device 100 and stored in the storage device 200.
  • the receiving unit 352 may acquire both data from the control device 100 and then store the data in the storage device 200.
  • Step S204 the monitoring unit 354 monitors the acquired feature amount and sensing data.
  • the monitoring unit 354 may display the acquired feature amount and sensing data on the display device 314 as trend data. This enables the user to monitor sensing data and features in real time.
  • Step S206 the monitoring unit 354 determines whether or not the feature amount and the sensing data are abnormal based on the threshold value included in the set provisional reference. For example, the monitoring unit 354 determines that an abnormality occurs when the feature amount or the sensing data exceeds the threshold value or falls below the threshold value.
  • step S208 the generation unit 356 confirms that among the acquired sensing data, the generation unit 356 includes sound data or scoring data indicating the operating state of the device 10 based on the vibration waveform indicating the sensing data measured by the vibration sensor. Generate data.
  • Step S210 the output unit 358 outputs the generated confirmation data.
  • the output unit 358 outputs the sound data from the speaker when the confirmation data includes the sound data.
  • the output unit 358 displays the scoring data on the display device 314.
  • the output unit 358 may switch between the output of sound data and the output of scoring data based on the user's operation. As a result, the user can determine whether or not the abnormality of the device 10 has actually occurred by checking the confirmation data, and can correct the provisional reference based on the determination result.
  • FIG. 8 is a schematic diagram showing an example of the monitoring system 2 according to the first embodiment.
  • the monitoring system 2 shown in FIG. 8 includes devices 10A to E including a CVD device, vibration sensors (vibrometers) 20A-1 to 5, clamp ammeters 20C-1 to 5, IO slave 50, and a waveform measurement unit. It includes 60, a control device 100, a storage device 200, and an information processing device 300.
  • the sensors 20A-1 to 5 indicate a vibration sensor (vibrometer), and the sensors 20C-1 to 5 indicate a clamp ammeter.
  • a temperature sensor, a heat flow sensor, and the like may be provided in the devices 10A to E. Each sensor may be provided at an appropriate position on the device 10.
  • the IO slave 50 acquires data from, for example, an analog sensor provided in the device 10, for example, an ammeter 20C-1 to 5, a thermometer, a heat flow meter, and a pressure gauge, converts the analog data into digital data, and controls the device. Send to 100. Further, the waveform measurement unit 60 transmits each data acquired from the vibration sensors 20A-1 to 20 to the control device 100.
  • Other devices have the same functions as the devices with the same reference numerals as described above.
  • the monitoring system 2 detects the sensing data and the amount of change in the feature amount, and seeks the judgment of a skilled user (expert), so that the expert determines whether or not the vacuum pump has reached the end of its life.
  • an expert diagnoses a failure or the like of a target device 10 by using an auscultation rod at the site, but in the monitoring system 2, the vibration sound of the device 10 can be heard as in the conventional case.
  • the vibration sound of the device 10 has a function of converting a vibration waveform into sound data and reproducing it.
  • the user can listen to the sound of the device 10 at that time by moving the cursor to a predetermined position of the vibration waveform included in the trend data displayed by the output unit 358 and pressing the sound reproduction button.
  • the inventors provided vibrometers on the booster pump and the main pump in the device 10 and analyzed the sensing data measured from each vibrometer. As a result, it was confirmed that the abnormalities of the pumps of the main pump and booster pump can be grasped by vibration, the characteristics of waveform and frequency can be grasped, and the features can be quantified. In addition, the inventors specify an appropriate measurement position from a plurality of sensor position candidates selected in advance.
  • the monitoring system 2 not only measures and judges the pump alone, but also provides a mechanism for grasping the entire system and comprehensively judging the abnormality from each sensing data.
  • the algorithm for determining an abnormality is reviewed based on the analysis result after an actual failure or overhaul so that an abnormality can be detected for each abnormality element.
  • the monitoring unit 354 of the information processing device 300 obtains data indicating whether the calculated feature amount is abnormal or normal, and the output unit 358 determines a plurality of abnormalities so that the state of the device 10 can be grasped at a glance.
  • An overview summarizing the results may be displayed on the display device 314.
  • FIG. 9 is a diagram showing an example of the screen D20 including the overview according to the first embodiment.
  • the screen D20 shown in FIG. 9 whether or not it is normal is displayed for each measurement point of each sensor.
  • the abnormality is detected at the measurement point # 1
  • the forecast indicating that the abnormality is likely to occur is shown at the measurement point # 2.
  • the user can easily grasp where and based on which data the abnormality is detected.
  • the user can confirm the time-series change of the data by pressing the area showing the determination result by the monitoring system 2. For example, when the user presses the area of the measurement point # 1 of the vibration sensor, the user can confirm the feature amount calculated from the sensing data measured at the measurement point # 1. For example, from the vibration sensor, a total of 35 types of feature quantities may be calculated from the time domain and the frequency domain (FFT). Further, the servo driver may calculate the feature amount calculated from the torque waveform and the speed waveform, the encoder temperature, and the motor load factor.
  • FFT frequency domain
  • FIG. 10 is a diagram showing time-series changes in the feature amount of the sensing data according to the first embodiment.
  • a feature amount calculated from the vibration waveform of the vibration sensor is displayed, and a threshold value set for the feature amount is also displayed.
  • a threshold value set for the feature amount is also displayed.
  • a plurality of threshold values for example, an alarm upper limit value, a forecast upper limit value, a forecast lower limit value, and an alarm lower limit value may be set for one feature amount.
  • these threshold values may be modified based on the feedback result after the user's actual abnormality judgment.
  • the screen D22 shown in FIG. 10 includes a button B10 for displaying waveform analysis, a button for displaying an image, a button B12 for reproducing sound, and a button for rearranging graphs.
  • FIG. 11 is a diagram showing an example of sound reproduction according to the first embodiment.
  • the generation unit 356 converts the vibration waveform into sound data
  • the output unit 358 outputs the sound data from the speaker.
  • the user can easily confirm the sound of the portion determined to be abnormal.
  • FIG. 12 is a diagram showing an example of the screen D24 of the vibration waveform analysis according to the first embodiment.
  • the monitoring unit 354 acquires a vibration waveform (eg, sensing data), and the output unit 358 displays the vibration waveform on the display device 314.
  • a vibration waveform eg, sensing data
  • the output unit 358 displays the vibration waveform on the display device 314.
  • Each calculated feature amount for example, a power spectrum or the like is displayed.
  • FIG. 13 is a diagram showing an example of the screen D26 for displaying the monitoring data (feature amount) of the servo motor according to the first embodiment.
  • peak torque, motor temperature, and motor load factor are calculated as feature quantities as monitoring data.
  • a plurality of threshold values are set for each feature amount as described above. Based on the analysis shown above, the inventors analyzed the following problems.
  • Booster pump Regarding the detection of abnormal products in the booster pump, the pump that has reached half the life of the booster pump immediately after overhaul has a higher feature value due to the vibration waveform, and the pump that has reached the end of its life has a higher result. Has been confirmed. In particular, the pump that has reached the end of its life has a discontinuous shock damping waveform in the high frequency region, and can be clearly detected as an abnormality.
  • the effective measurement position of each sensor when the measurement result of each sensor is analyzed, a better result can be obtained by providing the vibration sensor on the motor side.
  • the value of the feature amount due to the vibration waveform is the highest in 1/2 life compared to the main pump, and it can be generally measured as an abnormal state.
  • the vibration waveform, FFT, and feature value are small immediately after the overhaul, and it is difficult to distinguish by the magnitude of the vibration waveform.
  • the life-long pump has a waveform in which normal rotational vibration is not generated even when compared with that immediately after the overhaul. For example, it is a vibration waveform in which the original vibration energy is lost. Therefore, it is possible to discriminate by the rule that the feature amount is small immediately after the overhaul.
  • the overhaul timing can be determined at an appropriate timing by appropriately grasping the deteriorated state of the vacuum pump.
  • the deterioration state of the pump by generating confirmation data and outputting it to the user, it is possible to visualize the deterioration state of the pump.
  • maintenance costs can be reduced, pump replacement intervals can be lengthened, equipment can be prevented from sudden downfall, and at least one attempt is made to eliminate scrap generation. be able to.
  • FIG. 14 is a schematic diagram showing an example of the monitoring system 3 according to the second embodiment.
  • the monitoring system 3 shown in FIG. 14 includes a device 10F including a rotary cutter 12A and a cutter die 12B, a vibration sensor (vibrometer) 20A-1, a waveform measurement unit 60, a hub 70, a control device 100, and a storage device 200.
  • an information processing device 300 (not shown).
  • various sensors such as a temperature sensor and a servomotor may be provided as in the first embodiment.
  • the information processing device 300 may display the overview screen D30.
  • the conventional system has the following problems. -The degree of blade contact is adjusted by a skilled worker. ⁇ Because the work relies on the operator's feeling, it takes time to adjust the degree of wing contact. ⁇ It takes time for newcomers to adjust this blade contact. ⁇ Adjustments are frequent due to blade wear and cutting board dents.
  • the production line is frequently stopped due to the change in the degree of blade contact of the rotary cutter 12A, and the stop time is long.
  • the following specific problems can be mentioned. ⁇ Due to wear of the blade and dent of the cutting board, the label L cannot be cut and the line often stops. ⁇ The line stop time for adjusting the blade contact is long. ⁇ To adjust the blade contact, it is necessary to lift and lower the cutter unit and replace it in advance. ⁇ Even if the unit is replaced, it will stop immediately if the blade contact adjustment is not appropriate.
  • the impact (vibration) generated when the label L is cut is monitored by the vibration sensor 20A-1 to capture the change in the degree of blade contact of the cutter 12A. ..
  • FIG. 15 is a diagram showing an example of the vibration waveform and the feature amount according to the second embodiment.
  • the data shown in FIG. 15 is the data measured by the vibration sensor 20A-1 provided near the cutter die 12B.
  • FIG. 15A shows the data when the blade contact is insufficient
  • FIG. 15B shows the data when the blade contact is appropriate
  • FIG. 15C shows the data when the blade rise is excessive.
  • the vibration waveforms shown in FIGS. 15A to 15C show the data of the sensed vibration waveform
  • the vibration waveform enlargement (80 msec) shows the data in which the vibration waveform is enlarged so that the characteristics can be easily shown
  • the FFT (1Flame) is.
  • the feature quantity after the fast Fourier transform is shown.
  • the degree of blade contact can be obtained by using the amplitude of the vibration waveform or the magnitude of the spectrum.
  • the processing unit 154 of the control device 100 acquires the sensing data acquired from the vibration sensor 20A-1, FFT processing is executed and the spectrum data is calculated as a feature amount.
  • the transmission unit 156 of the control device 100 stores the spectrum data and the vibration waveform in the storage device 200 or transmits them to the information processing device 300.
  • the degree of blade contact can be obtained by comparing the plurality of set threshold values with the spectrum data.
  • the generation unit 356 of the information processing device 300 generates scoring data as a value of 0 to 100, for example, by normalizing the degree of blade contact, and the output unit 358 outputs the scoring data to the display device 314.
  • the degree of blade contact may be determined using the amplitude of the vibration waveform.
  • the generation unit 356 may generate sound data from the vibration waveform data, and the output unit 358 reproduces the sound data when the user accepts the sound reproduction operation. As a result, the user can confirm the vibration sound of the labeler device 10F.
  • FIG. 16A shows an example of the monitor screen D32 during blade contact adjustment according to the second embodiment
  • FIG. 16B shows an example of the monitor screen D34 in which the labeler device 10F is operating.
  • the screen D32 shown in FIG. 16A is a screen displayed while the labeler device 10F is stopped and the blade contact is being adjusted by the user.
  • the scoring data is calculated using the sensing data from the vibration sensor 20A-1 being adjusted.
  • the appropriate range is 40 to 60
  • the current scoring data is 75, so the monitoring system 3 determines that it is an over-hit.
  • scoring data is 40 or more and less than 60, it is judged to be appropriate, and if the scoring data is less than 40, it is judged to be insufficient. Since the user can adjust the blade contact while looking at the monitor screen D32, skill is not necessarily required, and the blade contact can be easily adjusted to an appropriate place.
  • the screen D34 shown in FIG. 16B is a screen in which the labeler device 10F is in operation and scoring data indicating the degree of blade contact during operation is displayed.
  • the scoring data is calculated using the sensing data from the vibration sensor 20A-1 in which the labeler device 10F is in operation.
  • the monitoring system 3 determines that the forecast level is the stage before the abnormality.
  • the scoring data is less than 40, it is determined that the blade contact is insufficient, and the user stops the labeler device 10F and adjusts the blade contact. As a result, the user can grasp at what timing the labeler device 10F should be stopped and the blade contact should be adjusted by checking the scoring data during operation. Moreover, since the appropriate range is displayed on the monitor screen, anyone can objectively judge the degree of blade contact.
  • the appropriate range for the scoring data may be changed depending on whether or not the labeler device 10F is in operation. This is because the degree of vibration when manually adjusting the blade contact while the labeler device 10F is stopped is different from the degree of vibration due to the blade contact during operation of the labeler device 10F.
  • FIG. 17 is a schematic diagram showing an example of the monitoring system 4 according to the third embodiment.
  • the monitoring system 4 shown in FIG. 17 includes a device 10G for cutting metal, a vibration sensor (not shown), a waveform measurement unit 60, a control device 100, an information processing device 300 including a storage device 200, and a display device 400. And.
  • various sensors such as a temperature sensor and a servomotor may be provided as in the first embodiment.
  • the display device 400 is a monitor that monitors the state of the device 10G, and displays parameters and the like calculated by the control device 100.
  • Example 3 the machining center is used as an example of the device 10G.
  • Machining sensors manufacture copper electrodes for electric discharge machining used in the manufacture of electronic components such as relays and switches. High-precision machining is required, and machining is performed using a small end mill with a ⁇ of 0.2 to 6 mm. The problem with this process is that the end mill may break depending on the machining conditions, and if the end mill is prevented from breaking, the machining time will increase.
  • the feed rate of the machining sensor can be adjusted while checking the machining resistance during cutting of the end mill. You can save time.
  • a vibration sensor is provided at a place considered to be the source of the sound, and vibration waveform data is acquired.
  • the inventors calculated various features from the vibration waveform data and analyzed the features having a high affinity for processing resistance. As a result, the inventors have found that the maximum amplitude of the vibration waveform data is proportional to the machining resistance.
  • FIG. 18 is a diagram showing the relationship between the maximum amplitude of the vibration waveform and the machining resistance according to the third embodiment. As shown in FIG. 18, it can be seen that the maximum amplitude of the vibration waveform data is proportional to the machining resistance measured by using the dynamometer.
  • the processing unit 154 of the control device 100 in the monitoring system 4 obtains the maximum amplitude of the vibration data, and the transmitting unit 156 transmits the data of the maximum amplitude to the information processing device 300.
  • the monitoring unit 354 of the information processing apparatus 300 monitors the maximum amplitude proportional to the machining resistance.
  • the generation unit 356 may generate sound data from the vibration waveform, and the output unit 358 may output the sound data from the speaker. Further, the generation unit 356 may calculate the scoring data from the maximum amplitude using a predetermined calculation algorithm, and the output unit 358 may display the scoring data on the monitor screen.
  • the feed rate is controlled according to the machining resistance proportional to the maximum amplitude of the vibration waveform, so that the machining sensor can be operated at an appropriate feed rate while preventing the end mill from breaking, and the machining time can be reduced.
  • the monitoring system 4 in the third embodiment can apply to the grinding process.
  • the processing unit 154 of the control device 100 can visualize the machining state as described above by quantifying the start of the high frequency region.
  • the device 10 is not limited to the above-mentioned example, and can be applied as long as it is accompanied by vibration during operation of the device.
  • the device 10 can be applied to a omelet manufacturing device, a device including a pump other than a vacuum pump, a molding machine, a press machine, a device including a bearing cylinder, and the like.
  • the programs described in the embodiments and the respective examples of the present disclosure may be provided in a state of being stored in a computer-readable storage medium.
  • the storage medium can store the program in a “non-temporary tangible medium”.
  • Programs include, but are not limited to, software programs and computer programs as examples.
  • the scoring data is not limited to the vibration waveform, and may be calculated using other sensing data.
  • a control device (100) that receives each sensing data from one or a plurality of sensors provided in a device including a power source and calculates one or a plurality of feature quantities from the respective sensing data.
  • a storage device (200) that stores each feature amount received from the control device in association with each of the sensing data, and Information processing that monitors each of the feature quantities, generates sound data or scoring data indicating the operating state of the device based on the vibration waveform included in the sensing data, and outputs the sound data or the scoring data.
  • Device 300) and Surveillance system (1-4).
  • the information processing device (300) converts the vibration waveform within a predetermined time based on the time when the abnormality is detected into the sound data.
  • the monitoring system (1-4) according to claim 1.
  • the information processing device (300) is a comparison target with each of the feature quantities, and any of claims 1 to 3 which adjusts each threshold value used for abnormality determination based on the normality or abnormality determination result of the user.
  • the monitoring system (1-4) according to item 1.
  • (Appendix 5) The monitoring system (1 to 2) according to any one of claims 1 to 4, wherein the control device (100) can additionally calculate a feature amount according to an abnormality content of the device.
  • (Appendix 6) The monitoring system (1, 3) according to claim 1, wherein the information processing device (300) displays the scoring data and an appropriate range for the scoring data on a display device.
  • (Appendix 7) The monitoring system (1, 3) according to claim 6, wherein the information processing device (300) displays a comparison result between the scoring data and the appropriate range on the display device.
  • a monitoring unit (354) that monitors each feature calculated based on each sensing data from one or more sensors provided in the device including the power source, and A generation unit (356) that generates sound data or scoring data indicating the operating state of the device based on the vibration waveform included in each of the sensing data.
  • An output unit (358) that outputs the sound data or the scoring data, and (100).

Abstract

The present invention provides a monitoring system comprising: a control device that receives sensing data from one or a plurality of sensors provided to a device including a power source, and that calculates one or a plurality of feature amounts from the sensing data; a storage device that associates the feature amounts and the sensing data received from the control device; and an information processing device that monitors the feature amounts, generates audio data or scoring data indicating the operation state of the device on the basis of a vibration waveform included in the sensing data, and outputs the audio data or the scoring data.

Description

監視システム、情報処理装置、及び情報処理方法Monitoring system, information processing device, and information processing method
 本発明は、監視システム、情報処理装置、及び情報処理方法に関する。 The present invention relates to a monitoring system, an information processing device, and an information processing method.
 特許文献1には、AE(Acoustic Emission)センサ、電流センサ、及び温度センサからの信号を用いて複数の真空ポンプを一括監視し、LANにて接続したワークステーションで動作し、真空ポンプに特有な故障予知基準を用いるメカニカルブースター型真空ポンプの故障予知システムが提案されている。当該故障予知システムによれば、メカニカルブースター型真空ポンプのケーシング内に析出する生成物によって発生する詰まり故障を事前に予知し、ポンプの交換を喚起することによって、ポンプの突発故障による製品不良の回避、製品の歩留り向上、ポンプのメンテナンスコスト削減を図ることができる。 In Patent Document 1, a plurality of vacuum pumps are collectively monitored by using signals from an AE (Acoustic Emission) sensor, a current sensor, and a temperature sensor, and operated on a workstation connected by a LAN, which is peculiar to the vacuum pump. A failure prediction system for a mechanical booster type vacuum pump that uses a failure prediction standard has been proposed. According to the failure prediction system, clogging failure caused by products deposited in the casing of the mechanical booster type vacuum pump is predicted in advance, and replacement of the pump is urged to avoid product defects due to sudden failure of the pump. , Product yield can be improved and pump maintenance cost can be reduced.
 また、特許文献2には、回転機の振動を測定する加速度計が出力するデータから、特定の解析周波数のデータを抽出し、抽出した解析周波数のデータの時間変化量を求め、時間変化量と閾値とを比較することにより寿命を判断する寿命診断システムが提案されている。当該寿命診断システムによれば、回転機の歪み、損傷等に起因する加速度の時間変化量を観察することにより、高感度で安定した回転機の寿命診断が可能となる。 Further, in Patent Document 2, data of a specific analysis frequency is extracted from the data output by an accelerometer that measures the vibration of a rotating machine, and the amount of time change of the extracted analysis frequency data is obtained. A lifespan diagnosis system that determines the lifespan by comparing it with a threshold has been proposed. According to the life diagnosis system, it is possible to diagnose the life of a rotating machine with high sensitivity and stability by observing the amount of time change of acceleration due to distortion, damage, etc. of the rotating machine.
特開2000-64964号公報Japanese Unexamined Patent Publication No. 2000-64964 特開2003-232705号公報Japanese Unexamined Patent Publication No. 2003-232705
 特許文献1及び2のように各センサにより計測されたセンシングデータを用いて故障を事前に予知したり、回転機の寿命を判断したりする場合であっても、実際に故障が発生したか否か、又は寿命がきたか否かは、オーバーホールによる分解調査をしてみないと分からないのが実態である。熟練技術者は、オーバーホール結果を確認し、寿命に対して部品等の交換時期にどれくらい余裕があったのかを認識している。したがって、熟練技術者でも装置を外部から検査しただけは故障等を判断するのは困難である。また、熟練技術者の減少や、熟練技術者の経験等が伝承できていないという現状の課題があり、実際に故障が発生したか否か、又は寿命がきたか否かは、誰でも判断を下せるものではない。 Whether or not a failure has actually occurred even when a failure is predicted in advance or the life of the rotating machine is determined using the sensing data measured by each sensor as in Patent Documents 1 and 2. In reality, it is not possible to know whether or not the product has reached the end of its useful life without conducting an overhaul disassembly survey. The skilled technician confirms the overhaul result and recognizes how much time there is for the replacement of parts and the like for the life. Therefore, it is difficult for even a skilled technician to judge a failure or the like only by inspecting the device from the outside. In addition, there is a current problem that the number of skilled technicians has decreased and the experience of skilled technicians has not been handed down, so anyone can judge whether or not a failure actually occurred or whether or not the life has expired. I can't give it down.
 そこで、本開示の技術では、装置の異常、又は異常の予兆を定量的に評価又は判断可能なデータを提示する技術を提供することを目的とする。 Therefore, an object of the technique of the present disclosure is to provide a technique for presenting data that can quantitatively evaluate or judge an abnormality of the device or a sign of the abnormality.
 本開示の技術は、上述した課題を解決するために、以下の構成を採用する。 The technology of the present disclosure adopts the following configuration in order to solve the above-mentioned problems.
 すなわち、本開示の技術の一例に係る監視システムは、動力源を含む装置に設けられた1又は複数のセンサから各センシングデータを受信し、前記各センシングデータから1又は複数の特徴量を算出する制御装置と、前記制御装置から受信された各特徴量と前記各センシングデータとを対応付けて保存する保存装置と、前記各特徴量を監視し、前記各センシングデータに含まれる振動波形に基づいて前記装置の動作状態を表す音データ又はスコアリングデータを生成し、前記音データ又は前記スコアリングデータを出力する情報処理装置と、を備える。 That is, the monitoring system according to an example of the technique of the present disclosure receives each sensing data from one or a plurality of sensors provided in a device including a power source, and calculates one or a plurality of feature quantities from the respective sensing data. Based on the control device, the storage device that stores each feature amount received from the control device and the sensing data in association with each other, the feature amount is monitored, and the vibration waveform included in the sensing data is included. The device includes an information processing device that generates sound data or scoring data representing an operating state of the device and outputs the sound data or the scoring data.
 上記構成によれば、動力源を含む装置に設けられた各センサの各センシングデータに基づく各特徴量を監視しつつ、必要に応じて、振動波形に基づく音データ又はスコアリングデータを出力することで、装置の異常、又は異常の予兆を定量的に評価又は判断可能なデータを提示する技術を提供することができる。音データ又はスコアリングデータという客観的でかつ容易に判断可能なデータが提示されることで、熟練技術者でなくても、実際に故障が発生したか否か、又は寿命がきたか否かをより適切に判断することが可能になる。 According to the above configuration, sound data or scoring data based on the vibration waveform is output as necessary while monitoring each feature amount based on each sensing data of each sensor provided in the device including the power source. Therefore, it is possible to provide a technique for presenting data capable of quantitatively evaluating or determining an abnormality of an apparatus or a sign of an abnormality. By presenting objective and easily determinable data such as sound data or scoring data, even non-skilled technicians can determine whether or not a failure has actually occurred or whether or not the product has reached the end of its useful life. It becomes possible to make a more appropriate judgment.
 なお、動力源は、例えば回転機であり、モータ、真空ポンプ、コンプレッサ、タービン等を含む。また、1又は複数のセンサは、例えば振動センサ、電流センサ、温度センサ、圧力センサ、流量計、及び熱流センサなどの各種センサから少なくとも1つを含む。センシングデータが振動波形の場合、特徴量は、例えばピーク振幅値や衝撃度、高速フーリエ変換後のパワースペクトルなどを含む。衝撃度は、例えば、振動波形データから周波数変換された周波数波形データを、全周波数領域または所定の周波数領域にわたり積分して求めることが可能である。また、センシングデータが電流値や温度等の場合、特徴量は、例えば平均値やピーク間隔などである。 The power source is, for example, a rotating machine, and includes a motor, a vacuum pump, a compressor, a turbine, and the like. Also, the one or more sensors include at least one from various sensors such as vibration sensors, current sensors, temperature sensors, pressure sensors, flow meters, and heat flow sensors. When the sensing data is a vibration waveform, the feature quantity includes, for example, a peak amplitude value, an impact degree, a power spectrum after a fast Fourier transform, and the like. The impact degree can be obtained by integrating, for example, frequency waveform data frequency-converted from vibration waveform data over the entire frequency domain or a predetermined frequency domain. When the sensing data is a current value, temperature, or the like, the feature amount is, for example, an average value or a peak interval.
 また、装置は、例えばCVD(Chemical Vapor Deposition)装置、ラベリング装置(ラベラ装置)、又は切削加工装置、その他工場等の生産現場に設置される機器や装置などである。制御装置は、例えばPLC(programmable logic controller)やシーケンサであり、論理演算や順序操作、算術演算などのプログラムに従って、逐次制御を行っていく装置である。保存装置は、例えばデータや情報を保存可能なデータベースであり、情報処理装置とは別で構成されてもよいし、情報処理装置内部に構成されてもよい。情報処理装置は、例えばコンピュータであり、情報処理機能を有するものであればいずれでもよい。 Further, the device is, for example, a CVD (Chemical Vapor Deposition) device, a labeling device (labeler device), a cutting device, or other devices or devices installed at a production site such as a factory. The control device is, for example, a PLC (programmable logic controller) or a sequencer, and is a device that sequentially controls according to programs such as logical operations, sequence operations, and arithmetic operations. The storage device is, for example, a database capable of storing data and information, and may be configured separately from the information processing device or may be configured inside the information processing device. The information processing device may be, for example, a computer and may have any information processing function.
 上記一例に係る監視システムにおける前記情報処理装置は、前記各特徴量に基づいて前記装置の異常が検知された場合、前記異常が検知された時点に基づく所定時間内の前記振動波形を前記音データに変換してもよい。当該構成によれば、特徴量に基づき装置の異常が検知された場合に、異常時点の振動に基づく音データを再生することが可能であり、装置の異常をより適切、かつ、より容易に判断可能なデータを提示することができる。その結果、ユーザ(例えば技術者)は、実際に装置の設置場所まで行き、装置の振動音を確認する必要がなくなる。 When the information processing device in the monitoring system according to the above example detects an abnormality of the device based on each feature amount, the sound data of the vibration waveform within a predetermined time based on the time when the abnormality is detected is obtained. May be converted to. According to this configuration, when an abnormality of the device is detected based on the feature amount, it is possible to reproduce sound data based on the vibration at the time of the abnormality, and it is possible to determine the abnormality of the device more appropriately and more easily. Possible data can be presented. As a result, the user (for example, a technician) does not have to actually go to the installation location of the device and check the vibration sound of the device.
 上記一例に係る監視システムにおける前記情報処理装置は、前記保存装置に保存される振動波形のうち、ユーザにより指定された区間の振動波形を前記音データに変換してもよい。当該構成によれば、正常時の過去の音データと、異常時の音データとを比較することが可能になることで、装置の異常をより適切、かつ、より容易に判断可能なデータを提示することができる。 The information processing device in the monitoring system according to the above example may convert the vibration waveform of the section specified by the user among the vibration waveforms stored in the storage device into the sound data. According to this configuration, by making it possible to compare the past sound data at the time of normal with the sound data at the time of abnormality, it is possible to present data that can more appropriately and more easily determine the abnormality of the device. can do.
 上記一例に係る監視システムにおける前記情報処理装置は、前記各特徴量との比較対象であり、異常判定に用いられる各閾値を、ユーザの正常又は異常の判定結果に基づいて調整してもよい。当該構成によれば、システムによって異常と判定された場合に、ユーザによる正常又は異常の判定結果をフィードバックすることで、異常判定に用いる閾値をより適切な値に調整することが可能になる。その結果、より適切な異常判定が行われるようになる。 The information processing device in the monitoring system according to the above example is a comparison target with each of the feature quantities, and each threshold value used for abnormality determination may be adjusted based on the normality or abnormality determination result of the user. According to this configuration, when an abnormality is determined by the system, the threshold value used for the abnormality determination can be adjusted to a more appropriate value by feeding back the normality or abnormality determination result by the user. As a result, more appropriate abnormality determination can be performed.
 上記一例に係る監視システムにおける前記制御装置は、前記装置の異常内容に応じた特徴量の算出を追加可能にしてもよい。当該構成によれば、異常時の特徴量を分析することで、その異常内容に合わせた新たな特徴量が算出されるように、新たな特徴量の算出プログラムを制御装置に追加することができる。 The control device in the monitoring system according to the above example may be capable of adding the calculation of the feature amount according to the abnormality content of the device. According to this configuration, by analyzing the feature amount at the time of abnormality, a new feature amount calculation program can be added to the control device so that a new feature amount according to the abnormality content is calculated. ..
 上記一例に係る監視システムにおける前記情報処理装置は、前記スコアリングデータと、前記スコアリングデータに対する適正範囲とを表示装置に表示してもよい。当該構成によれば、装置の異常を表すスコアリングデータと、その適正範囲とを表示することにより、熟練ではないユーザでも装置が正常か異常かを視覚的に容易に判断することができる。 The information processing device in the monitoring system according to the above example may display the scoring data and an appropriate range for the scoring data on the display device. According to this configuration, by displaying the scoring data indicating the abnormality of the device and the appropriate range thereof, even an unskilled user can easily visually determine whether the device is normal or abnormal.
 上記一例に係る監視システムにおける前記情報処理装置は、前記スコアリングデータと前記適正範囲との比較結果を前記表示装置に表示してもよい。当該構成によれば、スコアリングデータとその適切範囲との比較結果が表示されることにより、熟練ではないユーザでも装置が正常か異常かをより適切に判断することができる。 The information processing device in the monitoring system according to the above example may display the comparison result between the scoring data and the appropriate range on the display device. According to this configuration, by displaying the comparison result between the scoring data and the appropriate range thereof, even an unskilled user can more appropriately judge whether the device is normal or abnormal.
 また、本開示の技術の一例に係る情報処理装置は、動力源を含む装置に設けられた1又は複数のセンサからの各センシングデータに基づいて算出された各特徴量を監視する監視部と、前記各センシングデータに含まれる振動波形に基づいて前記装置の動作状態を示す音データ又はスコアリングデータを生成する生成部と、前記音データ又は前記スコアリングデータを出力する出力部と、を備える。当該構成によれば、装置の異常や予兆をより適切に判断可能なデータを提示する技術を提供することができる。 Further, the information processing device according to an example of the technique of the present disclosure includes a monitoring unit that monitors each feature amount calculated based on each sensing data from one or a plurality of sensors provided in the device including a power source. It includes a generation unit that generates sound data or scoring data indicating an operating state of the device based on the vibration waveform included in each of the sensing data, and an output unit that outputs the sound data or the scoring data. According to this configuration, it is possible to provide a technique for presenting data capable of more appropriately determining an abnormality or a sign of an apparatus.
 また、本開示の技術の一例に係る情報処理方法は、動力源を含む装置に設けられた1又は複数のセンサからの各センシングデータに基づいて算出された各特徴量を監視する監視ステップと、前記各センシングデータに含まれる振動波形に基づいて前記装置の動作状態を示す音データ又はスコアリングデータを生成する生成ステップと、前記音データ又は前記スコアリングデータを出力する出力ステップと、を情報処理装置が実行する。当該方法によれば、装置の異常をより適切に判断可能なデータを提示する技術を提供することができる。 Further, the information processing method according to an example of the technique of the present disclosure includes a monitoring step of monitoring each feature amount calculated based on each sensing data from one or a plurality of sensors provided in a device including a power source. Information processing includes a generation step of generating sound data or scoring data indicating an operating state of the device based on the vibration waveform included in each of the sensing data, and an output step of outputting the sound data or the scoring data. The device runs. According to this method, it is possible to provide a technique for presenting data capable of more appropriately determining an abnormality of an apparatus.
 本開示の技術によれば、装置の異常をより適切に判断可能なデータを提示する技術を提供することができる。 According to the technology of the present disclosure, it is possible to provide a technology for presenting data capable of more appropriately determining an abnormality of an apparatus.
図1は、本実施形態に係る監視システムの適用場面の一例を模式的に例示する。FIG. 1 schematically illustrates an example of an application scene of the monitoring system according to the present embodiment. 図2は、本実施形態に係る制御装置のハードウェア構成の一例を模式的に例示する。FIG. 2 schematically illustrates an example of the hardware configuration of the control device according to the present embodiment. 図3は、本実施形態に係る情報処理装置のハードウェア構成の一例を模式的に例示する。FIG. 3 schematically illustrates an example of the hardware configuration of the information processing device according to the present embodiment. 図4は、本実施形態に係る制御装置の機能構成の一例を模式的に例示する。FIG. 4 schematically illustrates an example of the functional configuration of the control device according to the present embodiment. 図5は、本実施形態に係る情報処理装置の機能構成の一例を模式的に例示する。FIG. 5 schematically illustrates an example of the functional configuration of the information processing apparatus according to the present embodiment. 図6は、本実施形態に係る監視システムの処理手順の一例を例示するフローチャートである。FIG. 6 is a flowchart illustrating an example of the processing procedure of the monitoring system according to the present embodiment. 図7は、本実施形態に係る仮基準の修正処理の一例を示すフローチャートである。FIG. 7 is a flowchart showing an example of the correction process of the provisional standard according to the present embodiment. 図8は、実施例1に係る監視ステムの一例を示す模式図である。FIG. 8 is a schematic view showing an example of the monitoring stem according to the first embodiment. 図9は、実施例1に係るオーバービューを含む画面の一例を示す図である。FIG. 9 is a diagram showing an example of a screen including an overview according to the first embodiment. 図10は、実施例1に係るセンシングデータの特徴量の時系列変化を示す図である。FIG. 10 is a diagram showing time-series changes in the feature amount of the sensing data according to the first embodiment. 図11は、実施例1に係る音再生の一例を示す図である。FIG. 11 is a diagram showing an example of sound reproduction according to the first embodiment. 図12は、実施例1に係る振動波形分析の画面の一例を示す図である。FIG. 12 is a diagram showing an example of a screen for vibration waveform analysis according to the first embodiment. 図13は、実施例1に係るサーボモータの監視データ(特徴量)を表示する画面の一例を示す図である。FIG. 13 is a diagram showing an example of a screen displaying monitoring data (feature amount) of the servo motor according to the first embodiment. 図14は、実施例2に係る監視システムの一例を示す模式図である。FIG. 14 is a schematic diagram showing an example of the monitoring system according to the second embodiment. 図15は、実施例2に係る振動波形及び特徴量の一例を示す図である。FIG. 15 is a diagram showing an example of a vibration waveform and a feature amount according to the second embodiment. 図16Aは、実施例2に係る刃当たり調整中のモニタ画面の一例を示す図である。FIG. 16A is a diagram showing an example of a monitor screen during blade contact adjustment according to the second embodiment. 図16Bは、実施例2に係るラベラ装置が稼働中のモニタ画面の一例を示す図である。FIG. 16B is a diagram showing an example of a monitor screen in which the labeler device according to the second embodiment is in operation. 図17は、実施例3に係る監視システムの一例を示す模式図である。FIG. 17 is a schematic diagram showing an example of the monitoring system according to the third embodiment. 図18は、実施例3に係る振動波形の最大振幅と加工抵抗との関係を示す図である。FIG. 18 is a diagram showing the relationship between the maximum amplitude of the vibration waveform according to the third embodiment and the processing resistance.
 以下、本開示技術の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。ただし、以下で説明する本実施形態は、あらゆる点において本開示技術の例示に過ぎない。本開示技術の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。つまり、本開示技術の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。なお、本実施形態において登場するデータを自然言語により説明しているが、より具体的には、コンピュータが認識可能な疑似言語、コマンド、パラメータ、マシン語等で指定される。 Hereinafter, embodiments relating to one aspect of the disclosed technology (hereinafter, also referred to as “the present embodiment”) will be described with reference to the drawings. However, the present embodiment described below is merely an example of the disclosed technology in all respects. Needless to say, various improvements and modifications can be made without departing from the scope of the disclosed technology. That is, in implementing the disclosed technology, a specific configuration according to the embodiment may be appropriately adopted. The data appearing in the present embodiment are described in natural language, but more specifically, the data is specified in a pseudo language, commands, parameters, machine language, etc. that can be recognized by a computer.
 §1 適用例
 まず、図1を用いて、本開示技術が適用される場面の一例について説明する。図1は、本実施形態に係る監視システム1の適用場面の一例を模式的に例示する。本実施形態に係る監視システム1は、工場等の生産現場に設置される装置10に設けられた各センサ20A~Cから取得したセンシングデータに基づいて、装置10の状態を監視するシステムである。センサの数は特に問わず、少なくとも1つあればよい。
§1 Application example First, an example of a situation in which the disclosed technology is applied will be described with reference to FIG. FIG. 1 schematically illustrates an example of an application scene of the monitoring system 1 according to the present embodiment. The monitoring system 1 according to the present embodiment is a system that monitors the state of the device 10 based on the sensing data acquired from the sensors 20A to C provided in the device 10 installed at the production site such as a factory. The number of sensors is not particularly limited, and at least one is sufficient.
 図1に示されるとおり、監視システム1は、工場等に設置される、回転機などの動力源を含む装置10と、装置10に設けられる各センサ20A~Cと、各センサ20A~Cにより得られたセンシングデータに対し所定の演算を行って各特徴量を算出する制御装置100と、制御装置100から出力される各特徴量及び各センシングデータを対応付けて保存する保存装置200と、各特徴量又は各センシングデータを監視する情報処理装置300と、を備える。監視対象の装置10や制御装置100が設置されるArea1は、例えば工場や施設などの生産現場であり、保存装置200や情報処理装置300が設置されるArea2は、例えばユーザがデータを適宜監視可能な事務所などである。 As shown in FIG. 1, the monitoring system 1 is obtained by a device 10 including a power source such as a rotary machine installed in a factory or the like, sensors 20A to C provided in the device 10, and sensors 20A to C. A control device 100 that performs a predetermined calculation on the received sensing data to calculate each feature amount, a storage device 200 that stores each feature amount and each sensing data output from the control device 100 in association with each other, and each feature. It includes an information processing device 300 that monitors the amount or each sensing data. The Area 1 in which the device 10 to be monitored and the control device 100 are installed is, for example, a production site such as a factory or a facility, and the Area 2 in which the storage device 200 and the information processing device 300 are installed can, for example, allow a user to appropriately monitor data. Office etc.
 なお、Areaについては、図1に示す例は一例であって、情報処理装置300がArea1に設けられたり、保存装置200がArea1に設けられたり、制御装置100がArea2に設けられたりしてもよい。 Regarding Area, the example shown in FIG. 1 is an example, and even if the information processing device 300 is provided in Area 1, the storage device 200 is provided in Area 1, or the control device 100 is provided in Area 2. Good.
 情報処理装置300は、各特徴量又は各センシングデータを監視し、センシングデータに含まれる振動波形を少なくとも用いて、装置10の動作状態を示す音データやスコアリングデータを生成する。音データは、装置10の振動音を示すものであり、装置10の異常音を把握するために生成される。スコアリングデータは、装置10の振動に基づく異常の度合をスコアリングデータとして表し、誰でも装置の異常を客観的な指標を用いて把握できるように生成される。 The information processing device 300 monitors each feature amount or each sensing data, and generates sound data or scoring data indicating the operating state of the device 10 by using at least the vibration waveform included in the sensing data. The sound data indicates the vibration sound of the device 10, and is generated in order to grasp the abnormal sound of the device 10. The scoring data represents the degree of abnormality based on the vibration of the device 10 as scoring data, and is generated so that anyone can grasp the abnormality of the device using an objective index.
 例えば、音データは、センシングデータの一つである振動波形を示すグラフを表示する画面D10から、所定のボタン(例えば音再生ボタン)をユーザが押下すると、表示されている振動波形に基づく音データA10が再生される。これにより、ユーザは、振動波形を視覚的に把握することが可能であり、従来から装置10の異常判定に用いられていた振動音を聴覚的に把握することも可能になる。振動音は、振動波形から音変換することにより生成される。 For example, the sound data is sound data based on the displayed vibration waveform when the user presses a predetermined button (for example, a sound reproduction button) from the screen D10 displaying a graph showing the vibration waveform which is one of the sensing data. A10 is reproduced. As a result, the user can visually grasp the vibration waveform, and can also aurally grasp the vibration sound that has been conventionally used for determining the abnormality of the device 10. The vibration sound is generated by sound conversion from the vibration waveform.
 例えば、スコアリングデータは、モニタ画面D12にリアルタイムに表示され、ユーザは、このモニタ画面D12を見ることで、現在のスコアリングデータの値が適正か否かを判断することができる。また、モニタ画面D12には、スコアリングデータの判定基準、例えば50以上は適正、40以上50未満は予報、40未満は異常が表示されることで、ユーザは、現在のスコアリングデータの値に基づいて装置10の状態を容易に把握することができる。リアルタイムとは、センシングデータが取得されてから、予め定められた時間内に表示が終了することを示す。また、予報とは、故障ではないが注意が必要な状態を示す。 For example, the scoring data is displayed in real time on the monitor screen D12, and the user can determine whether or not the current scoring data value is appropriate by looking at the monitor screen D12. Further, on the monitor screen D12, the judgment criteria of the scoring data, for example, 50 or more is appropriate, 40 or more and less than 50 is a forecast, and less than 40 is an abnormality, so that the user can change the value of the current scoring data. Based on this, the state of the device 10 can be easily grasped. Real-time means that the display ends within a predetermined time after the sensing data is acquired. In addition, the forecast indicates a state that is not a failure but requires attention.
 制御装置100は、装置10の異常を予見できるように、各センシングデータに基づいて、装置10の状態を適切に示す各特徴量を算出するように構成されている。これにより、情報処理装置300は、各特徴量や各センシングデータを監視することで、装置10の異常を予見することが可能になる。また、情報処理装置300は、装置10の異常を確認するための音データ又はスコアリングデータを含む確認データを生成して出力するように構成される。当該構成により、装置10の異常判定を適切に行うことが可能な確認データを提示することができるため、装置10の不要な停止を減らし、安定的な稼働を実現することができる。また、ユーザは装置10の状態を示す振動波形に基づく音データ又はスコアリングデータを確認し、装置10の状態を適切に判断することができる。また、ユーザは、特徴量等に基づき装置10の異常が検知された場合に、わざわざ装置10の設置位置まで行く必要がなくなり、ユーザの手間と時間とを減らすことができる。 The control device 100 is configured to calculate each feature amount that appropriately indicates the state of the device 10 based on each sensing data so that an abnormality of the device 10 can be predicted. As a result, the information processing device 300 can predict the abnormality of the device 10 by monitoring each feature amount and each sensing data. Further, the information processing device 300 is configured to generate and output confirmation data including sound data or scoring data for confirming an abnormality of the device 10. With this configuration, it is possible to present confirmation data capable of appropriately determining the abnormality of the device 10, so that unnecessary stoppage of the device 10 can be reduced and stable operation can be realized. Further, the user can confirm the sound data or the scoring data based on the vibration waveform indicating the state of the device 10 and appropriately determine the state of the device 10. Further, when an abnormality of the device 10 is detected based on a feature amount or the like, the user does not have to bother to go to the installation position of the device 10, which can reduce the time and effort of the user.
 §2 構成例
 [ハードウェア構成]
 <制御装置>
 次に、図2及び図3を用いて、本実施形態に係る制御装置100及び情報処理装置300のハードウェア構成の一例について説明する。図2は、本実施形態に係る制御装置100のハードウェア構成の一例を模式的に例示する。
§2 Configuration example [Hardware configuration]
<Control device>
Next, an example of the hardware configuration of the control device 100 and the information processing device 300 according to the present embodiment will be described with reference to FIGS. 2 and 3. FIG. 2 schematically illustrates an example of the hardware configuration of the control device 100 according to the present embodiment.
 図2を参照して、制御装置100は、CPU(Central Processing Unit)またはMPU(Micro-Processing Unit)などのプロセッサ102と、チップセット104と、主記憶装置106と、二次記憶装置108と、ネットワークコントローラ110と、メモリカードインターフェース114と、内部バスコントローラ122と、I/Oユニット124とを含む。 With reference to FIG. 2, the control device 100 includes a processor 102 such as a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit), a chipset 104, a main storage device 106, a secondary storage device 108, and the like. It includes a network controller 110, a memory card interface 114, an internal bus controller 122, and an I / O unit 124.
 二次記憶装置108は、例えば、HDD(Hard Disk Drive)やSSD(Solid State Drive)などの不揮発性記憶装置などで構成される。主記憶装置106は、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)などの揮発性記憶装置などで構成される。 The secondary storage device 108 is composed of, for example, a non-volatile storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive). The main storage device 106 is composed of a volatile storage device such as a DRAM (Dynamic Random Access Memory) or a SRAM (Static Random Access Memory).
 プロセッサ102は、二次記憶装置108に格納された各種プログラムを読み出して、主記憶装置106に展開して実行することで、装置10の対象に応じた制御、および、後述するような各種処理を実現する。例えば、後述する受信部152、処理部154、送信部156などは、主記憶装置106に一時記憶された上で、主にプロセッサ102上で動作するプログラムとして実現可能である。すなわち、プロセッサ102が主記憶装置106に一時記憶されたプログラムを解釈実行することにより、受信部152、処理部154、及び送信部156の働きが実現される。 The processor 102 reads various programs stored in the secondary storage device 108, expands them in the main storage device 106, and executes them to perform control according to the target of the device 10 and various processes as described later. Realize. For example, the receiving unit 152, the processing unit 154, the transmitting unit 156, and the like, which will be described later, can be realized as a program that is temporarily stored in the main storage device 106 and then operates mainly on the processor 102. That is, when the processor 102 interprets and executes the program temporarily stored in the main storage device 106, the functions of the receiving unit 152, the processing unit 154, and the transmitting unit 156 are realized.
 チップセット104は、プロセッサ102と各コンポーネントを制御することで、制御装置100全体としての処理を実現する。 The chipset 104 realizes the processing of the control device 100 as a whole by controlling the processor 102 and each component.
 二次記憶装置108には、プロセッサ102により実行されるユーザプログラム等の各種のプログラムおよび内部DBが格納される。 The secondary storage device 108 stores various programs such as user programs executed by the processor 102 and an internal database.
 ネットワークコントローラ110は、ネットワークを介した他の装置との間のデータのやり取りを制御する。ネットワークコントローラ110は、典型的には、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)といった専用回路を用いて実現される。 The network controller 110 controls the exchange of data with other devices via the network. The network controller 110 is typically realized by using a dedicated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array).
 メモリカードインターフェース114は、メモリカードを着脱可能に構成されており、メモリカードに対してデータを書込み、メモリカードから各種データ(ユーザプログラムまたはトレースデータなど)を読出すことが可能になっている。なお、制御装置100は、USB(Universal Serial Bus)コントローラを有してもよく、USBコントローラは、USB接続を介して制御装置100との間のデータのやり取りを制御する。USBコントローラは、典型的には、ASICやFPGAといった専用回路を用いて実現される。 The memory card interface 114 is configured so that the memory card can be attached and detached, and it is possible to write data to the memory card and read various data (user program, trace data, etc.) from the memory card. The control device 100 may have a USB (Universal Serial Bus) controller, and the USB controller controls the exchange of data with the control device 100 via a USB connection. The USB controller is typically realized using a dedicated circuit such as an ASIC or FPGA.
 内部バスコントローラ122は、制御装置100に搭載されるI/Oユニット124との間でデータをやり取りするインターフェースである。内部バスコントローラ122は、典型的には、ASICやFPGAといった専用回路を用いて実現される。 The internal bus controller 122 is an interface for exchanging data with the I / O unit 124 mounted on the control device 100. The internal bus controller 122 is typically implemented using a dedicated circuit such as an ASIC or FPGA.
 図2の制御装置100で実行される各種プログラムは、コンピュータ読取可能なメモリカードなどの記録媒体を介してインストールされてもよいが、ネットワーク上のサーバ装置などからダウンロードする形で二次記憶装置108にインストールするようにしてもよい。また、本実施の形態に係る制御装置100が提供する機能は、OS(Operating System)が提供するモジュールの一部を利用する形で実現される場合もある。 The various programs executed by the control device 100 of FIG. 2 may be installed via a recording medium such as a computer-readable memory card, but the secondary storage device 108 is downloaded from a server device or the like on the network. You may install it in. Further, the function provided by the control device 100 according to the present embodiment may be realized by using a part of the module provided by the OS (Operating System).
 また、図2では、プロセッサ102が上記のプログラムを実行することで必要な機能が提供される構成例を示したが、これらの提供される機能の一部または全部を、専用のハードウェア回路(例えば、ASICまたはFPGAなど)を用いて実装してもよい。あるいは、制御装置100の主要部を、汎用的なアーキテクチャに従うハードウェア(例えば、汎用パソコンをベースとした産業用パソコン)を用いて実現してもよい。この場合には、仮想化技術を用いて、用途の異なる複数のOSを並列的に実行させるとともに、各OS上で必要なアプリケーションを実行させるようにしてもよい。 Further, in FIG. 2, a configuration example in which the necessary functions are provided by the processor 102 executing the above program is shown, but some or all of these provided functions are provided by a dedicated hardware circuit ( For example, it may be implemented using ASIC or FPGA). Alternatively, the main part of the control device 100 may be realized by using hardware that follows a general-purpose architecture (for example, an industrial personal computer based on a general-purpose personal computer). In this case, virtualization technology may be used to execute a plurality of OSs having different uses in parallel, and to execute necessary applications on each OS.
 <情報処理装置>
 図3は、本実施形態に係る情報処理装置300のハードウェア構成の一例を模式的に例示する。図3に示すように、情報処理装置300は、プロセッサ302、メモリ304、記憶装置306、入力I/F部308、データI/F部310、通信I/F部312、及び表示装置314を含む。
<Information processing device>
FIG. 3 schematically illustrates an example of the hardware configuration of the information processing apparatus 300 according to the present embodiment. As shown in FIG. 3, the information processing device 300 includes a processor 302, a memory 304, a storage device 306, an input I / F unit 308, a data I / F unit 310, a communication I / F unit 312, and a display device 314. ..
 プロセッサ302は、メモリ304に記憶されているプログラムを実行することにより情報処理装置300における様々な処理を制御する。例えば、後述する受信部352、監視部354、生成部356、及び出力部358などは、メモリ304に一時記憶された上で、主にプロセッサ302上で動作するプログラムとして実現可能である。すなわち、プロセッサ302がメモリ304に一時記憶されたプログラムを解釈実行することにより、受信部352、監視部354、生成部356、及び出力部358の働きが実現される。 The processor 302 controls various processes in the information processing device 300 by executing a program stored in the memory 304. For example, the receiving unit 352, the monitoring unit 354, the generating unit 356, the output unit 358, and the like, which will be described later, can be realized as a program that is temporarily stored in the memory 304 and mainly operates on the processor 302. That is, when the processor 302 interprets and executes the program temporarily stored in the memory 304, the functions of the receiving unit 352, the monitoring unit 354, the generating unit 356, and the output unit 358 are realized.
 メモリ304は、例えばRAM(Random Access Memory)等の記憶媒体である。メモリ304は、プロセッサ302によって実行されるプログラムのプログラムコードや、プログラムの実行時に必要となるデータを一時的に記憶する。 The memory 304 is a storage medium such as a RAM (Random Access Memory). The memory 304 temporarily stores the program code of the program executed by the processor 302 and the data required when the program is executed.
 記憶装置306は、例えばハードディスクドライブ(HDD)やフラッシュメモリ等の不揮発性の記憶媒体である。記憶装置306は、オペレーティングシステムや、上記各構成を実現するための各種プログラムを記憶する。この他、記憶装置306は、装置10の状態判定に用いられるデータを記憶することも可能である。このようなプログラムやデータは、必要に応じてメモリ304にロードされることにより、プロセッサ302から参照される。 The storage device 306 is a non-volatile storage medium such as a hard disk drive (HDD) or a flash memory. The storage device 306 stores an operating system and various programs for realizing each of the above configurations. In addition, the storage device 306 can also store data used for determining the state of the device 10. Such programs and data are referred to by the processor 302 by being loaded into the memory 304 as needed.
 入力I/F部308は、ユーザからの入力を受け付けるためのデバイスである。入力I/F部308の具体例としては、キーボードやマウス、タッチパネル、各種センサ、ウェアラブル・デバイス等が挙げられる。入力I/F部308は、例えばUSB等のインターフェースを介して情報処理装置300に接続されてもよい。 The input I / F unit 308 is a device for receiving input from the user. Specific examples of the input I / F unit 308 include a keyboard, a mouse, a touch panel, various sensors, a wearable device, and the like. The input I / F unit 308 may be connected to the information processing device 300 via an interface such as USB.
 データI/F部310は、情報処理装置300の外部からデータを入力するためのデバイスである。データI/F部310の具体例としては、各種記憶媒体に記憶されているデータを読み取るためのドライブ装置等がある。データI/F部310は、情報処理装置300の外部に設けられることも考えられる。その場合、データI/F部310は、例えばUSB等のインターフェースを介して情報処理装置300へと接続される。 The data I / F unit 310 is a device for inputting data from the outside of the information processing device 300. Specific examples of the data I / F unit 310 include a drive device for reading data stored in various storage media. It is also conceivable that the data I / F unit 310 is provided outside the information processing apparatus 300. In that case, the data I / F unit 310 is connected to the information processing device 300 via an interface such as USB.
 通信I/F部312は、情報処理装置300の外部の装置と有線又は無線により、インターネットを介したデータ通信を行うためのデバイスである。通信I/F部312は、情報処理装置300の外部に設けられることも考えられる。その場合、通信I/F部312は、例えばUSB等のインターフェースを介して情報処理装置300に接続される。 The communication I / F unit 312 is a device for performing data communication via the Internet with an external device of the information processing device 300 by wire or wirelessly. It is also conceivable that the communication I / F unit 312 is provided outside the information processing device 300. In that case, the communication I / F unit 312 is connected to the information processing device 300 via an interface such as USB.
 表示装置314は、各種情報を表示するためのデバイスである。表示装置314の具体例としては、例えば液晶ディスプレイや有機EL(Electro-Luminescence)ディスプレイ、ウェアラブル・デバイスのディスプレイ等が挙げられる。表示装置314、情報処理装置300の外部に設けられてもよい。その場合、表示装置314は、例えばディスプレイケーブル等を介して情報処理装置300に接続される。 The display device 314 is a device for displaying various information. Specific examples of the display device 314 include a liquid crystal display, an organic EL (Electro-Luminescence) display, a display of a wearable device, and the like. It may be provided outside the display device 314 and the information processing device 300. In that case, the display device 314 is connected to the information processing device 300 via, for example, a display cable or the like.
 ここで、記憶媒体は、CD、DVD等のディスク型の記憶媒体のほかに、フラッシュメモリ等の半導体メモリなどでもよい。 Here, the storage medium may be a semiconductor memory such as a flash memory in addition to a disc-type storage medium such as a CD or DVD.
 なお、制御装置100や情報処理装置300の具体的なハードウェア構成に関して、実施形態に応じて、適宜、構成要素の省略、置換及び追加が可能である。例えば、制御装置100や情報処理装置300は、複数のプロセッサを含んでもよい。また、情報処理装置300は、複数台の情報処理装置で構成されてもよい。また、情報処理装置300は、提供されるサービス専用に設計された情報処理装置の他、汎用のデスクトップPC(Personal Computer)、タブレットPC等が用いられてもよい。 Regarding the specific hardware configuration of the control device 100 and the information processing device 300, it is possible to omit, replace, or add components as appropriate according to the embodiment. For example, the control device 100 and the information processing device 300 may include a plurality of processors. Further, the information processing device 300 may be composed of a plurality of information processing devices. Further, as the information processing device 300, a general-purpose desktop PC (Personal Computer), a tablet PC, or the like may be used in addition to the information processing device designed exclusively for the provided service.
 [機能構成]
 <制御装置>
 次に、図4及び図5を用いて、本実施形態に係る制御装置100及び情報処理装置300の機能構成の一例を説明する。図4は、本実施形態に係る制御装置100の機能構成の一例を模式的に例示する。
[Functional configuration]
<Control device>
Next, an example of the functional configuration of the control device 100 and the information processing device 300 according to the present embodiment will be described with reference to FIGS. 4 and 5. FIG. 4 schematically illustrates an example of the functional configuration of the control device 100 according to the present embodiment.
 図4に示す制御装置100は、装置10に設けられた各センシングデータを受信する受信部152と、センシングデータに基づき所定の特徴量を算出する処理部154と、各センシングデータと各特徴量とを保存装置200に送信する送信部156と、を有する。 The control device 100 shown in FIG. 4 includes a receiving unit 152 that receives each sensing data provided in the device 10, a processing unit 154 that calculates a predetermined feature amount based on the sensing data, each sensing data, and each feature amount. 156 is a transmission unit that transmits the data to the storage device 200.
 受信部152は、例えばプロセッサ102によりその機能が実現され、ネットワークコントローラ110、内部バスコントローラ122などから各種データを取得する。例えば、受信部152は、各センサ20A~Cにより計測されたセンシングデータを取得する。センシングデータとは、例えば、振動波形、電流、温度、圧力、熱流などをそれぞれ示すデータである。 The function of the receiving unit 152 is realized by, for example, the processor 102, and various data are acquired from the network controller 110, the internal bus controller 122, and the like. For example, the receiving unit 152 acquires the sensing data measured by the sensors 20A to C. The sensing data is, for example, data showing a vibration waveform, a current, a temperature, a pressure, a heat flow, and the like.
 処理部154は、例えばプロセッサ102によりその機能が実現され、受信部152により受信された各センシングデータに基づいて、所定の特徴量に変換するよう処理する。処理部154は、センシングデータが振動波形の場合、特徴量として、ピーク振幅値や衝撃度、高速フーリエ変換(FFT)後のパワースペクトルなどを算出する。また、処理部154は、センシングデータが電流値や温度の場合、特徴量として、平均値やピーク間隔などを算出する。 The processing unit 154 realizes the function by, for example, the processor 102, and processes so as to convert it into a predetermined feature amount based on each sensing data received by the receiving unit 152. When the sensing data is a vibration waveform, the processing unit 154 calculates a peak amplitude value, an impact degree, a power spectrum after a fast Fourier transform (FFT), and the like as feature quantities. Further, when the sensing data is a current value or temperature, the processing unit 154 calculates an average value, a peak interval, or the like as a feature amount.
 また、装置10の異常検出時に、各センシングデータ及び/又は各特徴量が分析され、異常を検知しやすいような新たな特徴量が判明したとする。例えば算出する特徴量の周波数帯域を変更したりする。この場合、処理部154は、新たな特徴量を算出するプログラムを追加可能であり、追加されたプログラムを実行することで、所定のセンシングデータから新たな特徴量が算出される。例えば、制御装置100がPLCの場合、新たな特徴量の算出プログラムは、ファンクションブロックとして制御装置に追加可能である。 Further, it is assumed that when an abnormality is detected in the device 10, each sensing data and / or each feature amount is analyzed, and a new feature amount that makes it easy to detect the abnormality is found. For example, the frequency band of the calculated feature amount is changed. In this case, the processing unit 154 can add a program for calculating a new feature amount, and by executing the added program, the new feature amount is calculated from the predetermined sensing data. For example, when the control device 100 is a PLC, a new feature amount calculation program can be added to the control device as a function block.
 これにより、異常時の特徴量を分析することで、その異常内容に合わせた新たな特徴量が算出されるように、新たな特徴量の算出プログラムを制御装置100に追加することができる。その結果、異常の検出に適した新たな特徴量が用いられるため、異常判定をより適切なものにすることができる。 As a result, a new feature amount calculation program can be added to the control device 100 so that a new feature amount corresponding to the abnormality content is calculated by analyzing the feature amount at the time of abnormality. As a result, a new feature amount suitable for detecting an abnormality is used, so that the abnormality determination can be made more appropriate.
 送信部156は、例えばプロセッサ102によりその機能が実現され、処理部154から取得した各センシングデータと各特徴量とを、ネットワークコントローラ110を介して保存装置200又は情報処理装置300に送信する。送信部156は、各特徴量の算出に用いられた各センシングデータを、各特徴量に対応付けて送信してもよい。例えば、特徴量及びセンシングデータそれぞれに計測時間を関連付けて時系列に送信することで、両データを対応付けすることが可能である。 The function of the transmission unit 156 is realized by, for example, the processor 102, and each sensing data acquired from the processing unit 154 and each feature amount are transmitted to the storage device 200 or the information processing device 300 via the network controller 110. The transmission unit 156 may transmit each sensing data used for calculating each feature amount in association with each feature amount. For example, it is possible to associate both data by associating the measurement time with each of the feature amount and the sensing data and transmitting them in a time series.
 図5は、本実施形態に係る情報処理装置300の機能構成の一例を模式的に例示する。図5に示す情報処理装置300は、保存装置200からセンシングデータ又は特徴量を受信する受信部352と、特徴量及び/又はセンシングデータに基づき装置10の状態を監視する監視部354と、装置10の状態を客観的に確認可能な確認データを生成する生成部356と、確認データを出力する出力部358と、を有する。確認データは、振動波形から変換された音データ、及び特徴量に基づいて算出されたスコアリングデータの少なくとも1つを含む。 FIG. 5 schematically illustrates an example of the functional configuration of the information processing device 300 according to the present embodiment. The information processing device 300 shown in FIG. 5 includes a receiving unit 352 that receives sensing data or a feature amount from the storage device 200, a monitoring unit 354 that monitors the state of the device 10 based on the feature amount and / or the sensing data, and the device 10. It has a generation unit 356 that generates confirmation data that can objectively confirm the state of the above, and an output unit 358 that outputs confirmation data. The confirmation data includes at least one of sound data converted from the vibration waveform and scoring data calculated based on the feature amount.
 受信部352は、例えばプロセッサ302によりその機能が実現され、通信I/F部312などを介して保存装置200から特徴量及び/又はセンシングデータを取得する。取得するタイミングは問わず、特徴量及び/又はセンシングデータは、リアルタイムに取得されてもよいし、定期的なタイミングで取得されてもよい。 The function of the receiving unit 352 is realized by, for example, the processor 302, and the feature amount and / or sensing data is acquired from the storage device 200 via the communication I / F unit 312 or the like. The feature quantity and / or sensing data may be acquired in real time or at regular timings regardless of the timing of acquisition.
 監視部354は、例えばプロセッサ302によりその機能が実現され、受信部352により取得される特徴量及び/又はセンシングデータを監視する。例えば、監視部354は、各特徴量に対して仮基準の閾値が設定される場合、特徴量と閾値との関係に基づいて、装置10に異常が発生したか否かを判定する。監視部354は、異常が発生したと判定した場合、ユーザに対して異常警報を出力する。異常警報は、例えば、異常であることを示す音声であったり、モニタに強調表示して出力したりする。出力の仕方は、いずれの方法でもよく、例えば登録されたユーザのメールアドレスに送信したり、スピーカから音声を出力したり、所定の光を発光させたりすることが可能である。 The monitoring unit 354 monitors the feature amount and / or the sensing data acquired by the receiving unit 352, for example, the function is realized by the processor 302. For example, when a provisional reference threshold value is set for each feature amount, the monitoring unit 354 determines whether or not an abnormality has occurred in the device 10 based on the relationship between the feature amount and the threshold value. When the monitoring unit 354 determines that an abnormality has occurred, the monitoring unit 354 outputs an abnormality alarm to the user. The abnormality alarm is, for example, a voice indicating that it is abnormal, or is highlighted and output on a monitor. The output method may be any method, for example, it is possible to send to the registered user's e-mail address, output voice from the speaker, or emit a predetermined light.
 生成部356は、例えばプロセッサ302によりその機能が実現され、センシングデータに含まれる振動波形に基づいて装置10の動作状態を示す音データ又はスコアリングデータを含む確認データを生成する。音データは、装置10の振動音を示し、スコアリングデータは、振動波形に基づく装置10の振動により算出可能なデータである。また、スコアリングデータは、例えば振動波形の各特徴量(振幅、パワースペクトル、ピーク間距離など)から所定の算出アルゴリズムを用いて算出されてもよい。また、スコアリングデータは、振動波形ではなく、装置10の特性に合わせて他のセンシングデータ(電流、温度等)の特徴量を用いて算出されてもよい。 The generation unit 356 realizes its function by, for example, the processor 302, and generates confirmation data including sound data or scoring data indicating the operating state of the device 10 based on the vibration waveform included in the sensing data. The sound data indicates the vibration sound of the device 10, and the scoring data is data that can be calculated by the vibration of the device 10 based on the vibration waveform. Further, the scoring data may be calculated from each feature amount (amplitude, power spectrum, inter-peak distance, etc.) of the vibration waveform by using a predetermined calculation algorithm, for example. Further, the scoring data may be calculated by using the feature amounts of other sensing data (current, temperature, etc.) according to the characteristics of the device 10 instead of the vibration waveform.
 例えば、出力部358は、情報処理装置300に設けられるスピーカから音データを出力し、又は表示装置314にスコアリングデータを出力する。これにより、ユーザは、音データを聞いたり、スコアリングデータを見たりすることで、装置10の異常性を判断することが可能になる。また、客観的な確認データの出力により、不要な装置停止を防止し、安定的な装置の稼働を実現することができる。 For example, the output unit 358 outputs sound data from a speaker provided in the information processing device 300, or outputs scoring data to the display device 314. As a result, the user can determine the abnormality of the device 10 by listening to the sound data and viewing the scoring data. In addition, by outputting objective confirmation data, it is possible to prevent unnecessary device stoppages and realize stable device operation.
 また、監視部354は、各特徴量に基づいて装置10の異常が検知された場合、異常が検知された時点に基づく所定時間内の振動波形を音データに変換してもよい。例えば、監視部354は、異常が検知された時点を含む所定時間内や、異常が検知された時点の直前又は直後の所定時間内の振動波形を音データに変換してもよい。 Further, when an abnormality of the device 10 is detected based on each feature amount, the monitoring unit 354 may convert the vibration waveform within a predetermined time based on the time when the abnormality is detected into sound data. For example, the monitoring unit 354 may convert the vibration waveform within a predetermined time including the time when the abnormality is detected, or within the predetermined time immediately before or after the time when the abnormality is detected, into sound data.
 これにより、監視システム1において異常が検知された場合に、ユーザは現場に向かわなくても、異常検知時点に基づく振動波形の音データやスコアリングデータを確認することができる。また、上記音データが生成されるのではなく、必要に応じて必要な区間の振動波形が音データに変換されるので、プロセッサ302の処理負荷を減らすことができる。 As a result, when an abnormality is detected in the monitoring system 1, the user can check the sound data and scoring data of the vibration waveform based on the time when the abnormality is detected without going to the site. Further, since the sound data is not generated but the vibration waveform in the required section is converted into the sound data as needed, the processing load of the processor 302 can be reduced.
 また、監視部354は、保存装置200に保存される振動波形のうち、ユーザにより指定された区間の振動波形を音データに変換してもよい。例えば、監視部354は、過去の振動波形を表示装置314に表示させ、ユーザが指定した区間の振動波形を音データに変換してもよい。 Further, the monitoring unit 354 may convert the vibration waveform of the section designated by the user among the vibration waveforms stored in the storage device 200 into sound data. For example, the monitoring unit 354 may display the past vibration waveform on the display device 314 and convert the vibration waveform in the section designated by the user into sound data.
 これにより、正常時の過去の音データと、異常時の音データとを比較することが可能になることで、監視システム1は、装置の異常をより適切、かつ、より容易に判断可能なデータを提示することができる。その結果、ユーザは、装置10の異常性の判定が容易になる。 This makes it possible to compare the past sound data at the time of normal with the sound data at the time of abnormality, so that the monitoring system 1 can more appropriately and more easily determine the abnormality of the device. Can be presented. As a result, the user can easily determine the abnormality of the device 10.
 また、監視部354は、各特徴量との比較対象であり、異常判定に用いられる各閾値を、ユーザの正常又は異常の判定結果に基づいて調整してもよい。例えば、監視部354は、特徴量に基づく異常判定をした場合に、ユーザから異常ではなかったことがフィードバックされる(入力される)と、現在の閾値を、異常と判定されにくいように調整する。また、監視部354は、ユーザから異常であったことがフィードバックされると、現在の閾値を、異常と判定されやすいように調整してもよいし、調整しなくてもよい。調整については、監視部354は、フィードバック結果に基づいて、閾値から所定値を加算したり、減算したりする。 Further, the monitoring unit 354 is a comparison target with each feature amount, and each threshold value used for the abnormality determination may be adjusted based on the normality or abnormality determination result of the user. For example, the monitoring unit 354 adjusts the current threshold value so that it is difficult to determine an abnormality when the user gives feedback (input) that the abnormality is not abnormal when the abnormality determination is made based on the feature amount. .. Further, the monitoring unit 354 may or may not adjust the current threshold value so that it can be easily determined as abnormal when the user gives feedback that the abnormality has occurred. Regarding the adjustment, the monitoring unit 354 adds or subtracts a predetermined value from the threshold value based on the feedback result.
 これにより、システムによって異常と判定された場合に、ユーザによる正常又は異常の判定結果をシステムにフィードバックすることで、異常判定に用いる閾値をより適切な値に調整することが可能になる。その結果、監視システム1は、より適切に異常判定を行うことができようになる。 As a result, when an abnormality is determined by the system, the threshold value used for the abnormality determination can be adjusted to a more appropriate value by feeding back the normal or abnormal determination result by the user to the system. As a result, the monitoring system 1 can make an abnormality determination more appropriately.
 また、出力部358は、生成されたスコアリングデータと、スコアリングデータに対する適正範囲とを表示装置314に表示してもよい。例えば、出力部358は、スコアリングデータが0~100の値に正規化されて算出される場合、このスコアリングデータの値の適正範囲が分析されれば、スコアリングデータの出力とともに、分析された適正範囲(例えば図1のD12に示す50以上)を出力してもよい。 Further, the output unit 358 may display the generated scoring data and an appropriate range for the scoring data on the display device 314. For example, when the scoring data is normalized to a value of 0 to 100 and calculated, the output unit 358 is analyzed together with the output of the scoring data if the appropriate range of the values of the scoring data is analyzed. The appropriate range (for example, 50 or more shown in D12 of FIG. 1) may be output.
 これにより、装置の異常を表すスコアリングデータと、その適正範囲とを同じ画面、又は所定操作で切り替え可能な画面に表示することにより、熟練ではないユーザでも装置が正常か異常かを、視覚的に容易に判断することができる。 As a result, by displaying the scoring data indicating the abnormality of the device and the appropriate range on the same screen or a screen that can be switched by a predetermined operation, even an unskilled user can visually check whether the device is normal or abnormal. Can be easily determined.
 なお、出力部358は、適正範囲について、装置が稼働中の場合と、装置がセットアップ中の場合とで異なる適正範囲を出力するようにしてもよい。セットアップ中とは、例えばメンテナンスのために装置を停止し、所定の部品を手動で動作させることを含む。これにより、それぞれの動作において適切な範囲を表示させることができる。 Note that the output unit 358 may output an appropriate range that differs depending on whether the device is operating or the device is being set up. During setup includes, for example, stopping the device for maintenance and manually operating certain parts. As a result, an appropriate range can be displayed in each operation.
 §3 動作例
 [監視システム1]
 次に、図6を用いて、監視システム1の動作例を説明する。図6は、本実施形態に係る監視システム1の処理手順の一例を例示するフローチャートである。なお、以下で説明する処理手順は一例に過ぎず、各処理は可能な限り変更されてよい。また、以下で説明する処理手順について、実施の形態に応じて、適宜、ステップの省略、置換、及び追加が可能である。
§3 Operation example [Monitoring system 1]
Next, an operation example of the monitoring system 1 will be described with reference to FIG. FIG. 6 is a flowchart illustrating an example of the processing procedure of the monitoring system 1 according to the present embodiment. The processing procedure described below is only an example, and each processing may be changed as much as possible. Further, with respect to the processing procedure described below, steps can be omitted, replaced, and added as appropriate according to the embodiment.
 (ステップS102)
 ステップS102で、ユーザは、生産現場に設置された対象の装置10を起動し、装置10を稼働させる。装置10が正常に稼働する期間(例えば数日)に、各センシングデータから各特徴量が算出される。ユーザは、この特徴量のデータのばらつきを統計的に分析することで、特徴量それぞれに閾値を設定して仮基準を設定する。なお、監視部354に、閾値算出アルゴリズムを設定しておくことで、各特徴量のデータの標準偏差や分散を求め、これらの統計的データから異常と判定される閾値を自動で設定するようにしてもよい。
(Step S102)
In step S102, the user activates the target device 10 installed at the production site and operates the device 10. Each feature amount is calculated from each sensing data during a period (for example, several days) in which the device 10 normally operates. The user sets a threshold value for each feature amount and sets a tentative reference by statistically analyzing the variation of the feature amount data. By setting a threshold value calculation algorithm in the monitoring unit 354, the standard deviation and variance of the data of each feature amount are obtained, and the threshold value determined to be abnormal is automatically set from these statistical data. You may.
 (ステップS104)
 ステップS104で、監視部354は、特徴量の時系列データ(以下、「トレンドデータ」とも称す。) を生成したり、生成部356は、音データやスコアリングデータを生成したりする。ユーザは、トレンドデータを見たり、音データを再生したり、スコアリングデータを確認したりして仮基準が適切か否かを分析し、フィードバックを監視システム1に与える。例えば、監視システム1が異常と判定した場合に、その異常と判断されたデータ及び閾値に対するユーザの確認結果を情報処理装置300に入力させる。監視部354は、入力された確認結果に基づいて、仮設定された各閾値を修正する。閾値の修正が繰り返されることで、適切な閾値が設定される。ステップS104における具体的な処理内容は、図7を用いて後述する。
(Step S104)
In step S104, the monitoring unit 354 generates time-series data of the feature amount (hereinafter, also referred to as “trend data”), and the generation unit 356 generates sound data and scoring data. The user analyzes whether the provisional standard is appropriate by viewing trend data, playing sound data, and checking scoring data, and gives feedback to the monitoring system 1. For example, when the monitoring system 1 determines that the abnormality is present, the information processing apparatus 300 is made to input the data determined to be abnormal and the confirmation result of the user for the threshold value. The monitoring unit 354 corrects each temporarily set threshold value based on the input confirmation result. An appropriate threshold value is set by repeating the correction of the threshold value. The specific processing content in step S104 will be described later with reference to FIG. 7.
 (ステップS106)
 ステップS106で、装置10に故障が発生した場合や寿命が来た場合に、ユーザは、オーバーホール等により、装置10の故障個所や故障内容を特定する。ユーザは、故障等が発生した時点周辺における各センシングデータや各特徴量を分析し、異常波形や特徴成分などを抽出し、その兆候発生時期を分析する。
(Step S106)
In step S106, when a failure occurs in the device 10 or when the device 10 has reached the end of its life, the user identifies the failure location and the failure content of the device 10 by overhaul or the like. The user analyzes each sensing data and each feature amount around the time when a failure or the like occurs, extracts an abnormal waveform, a feature component, and the like, and analyzes the time when the sign occurs.
 (ステップS108)
 ステップS108で、ユーザは、この分析結果を監視部354に反映させることで、監視システム1は、次回以降に、この異常を適切に検知できるようになる。例えば、ユーザは、監視対象の周波数を特定し、この周波数を特徴量として算出するように制御装置100に算出プログラムを追加したり、監視部354における閾値を修正したりする。これにより、装置10において将来的に同様の異常が発生した場合に、監視システム1は適切な時期にこの異常を検出できるようになる。なお、ステップS108の処理後にステップS104の処理が実行されることで、適宜フィードバックが行われるようにするとよい。
(Step S108)
In step S108, the user reflects the analysis result on the monitoring unit 354, so that the monitoring system 1 can appropriately detect this abnormality from the next time onward. For example, the user specifies a frequency to be monitored, adds a calculation program to the control device 100 so as to calculate this frequency as a feature amount, or corrects a threshold value in the monitoring unit 354. As a result, when a similar abnormality occurs in the device 10 in the future, the monitoring system 1 can detect this abnormality at an appropriate time. It is preferable that feedback is appropriately provided by executing the process of step S104 after the process of step S108.
 監視システム1によれば、装置10の異常時のデータが保存装置200に蓄積されているため、データの分析が可能になる。また、分析結果に基づいて、監視システム1に対して、監視対象のデータや特徴量を特定したり、閾値を変更したりするフィードバックが行われる。これにより、異常時の分析結果を適宜フィードバックすることで、適切な予兆監視システム1を構築することが可能になる。 According to the monitoring system 1, since the data at the time of abnormality of the device 10 is stored in the storage device 200, the data can be analyzed. Further, based on the analysis result, feedback is given to the monitoring system 1 to specify the data to be monitored and the feature amount, and to change the threshold value. As a result, it is possible to construct an appropriate predictive monitoring system 1 by appropriately feeding back the analysis result at the time of abnormality.
 図7は、本実施形態に係る仮基準の修正処理の一例を示すフローチャートである。図7に示す例では、センシングデータに基づく特徴量が仮基準に従ってモニタリングされ、確認データが適宜出力される。ユーザは、この確認データを把握することで必要に応じて仮基準を修正することが可能になる。 FIG. 7 is a flowchart showing an example of the correction process of the provisional standard according to the present embodiment. In the example shown in FIG. 7, the feature amount based on the sensing data is monitored according to the provisional standard, and the confirmation data is output as appropriate. By grasping this confirmation data, the user can modify the provisional standard as necessary.
 (ステップS202)
 ステップS202で、受信部352は、制御装置100により算出され、保存装置200に保存された各センシングデータ及び各特徴量を取得する。受信部352は、制御装置100から両データを取得し、その後、保存装置200に保存するようにしてもよい。
(Step S202)
In step S202, the receiving unit 352 acquires each sensing data and each feature amount calculated by the control device 100 and stored in the storage device 200. The receiving unit 352 may acquire both data from the control device 100 and then store the data in the storage device 200.
 (ステップS204)
 ステップS204で、監視部354は、取得された特徴量やセンシングデータを監視する。例えば、監視部354は、取得された特徴量やセンシングデータをトレンドデータとして表示装置314に表示するようにしてもよい。これにより、ユーザは、センシングデータや特徴量をリアルタイムに監視できるようになる。
(Step S204)
In step S204, the monitoring unit 354 monitors the acquired feature amount and sensing data. For example, the monitoring unit 354 may display the acquired feature amount and sensing data on the display device 314 as trend data. This enables the user to monitor sensing data and features in real time.
 (ステップS206)
 ステップS206で、監視部354は、設定されている仮基準に含まれる閾値に基づいて、特徴量やセンシングデータが異常であるか否かを判定する。例えば、監視部354は、特徴量やセンシングデータが閾値以上となったり、閾値以下となったりした場合に、異常と判定する。
(Step S206)
In step S206, the monitoring unit 354 determines whether or not the feature amount and the sensing data are abnormal based on the threshold value included in the set provisional reference. For example, the monitoring unit 354 determines that an abnormality occurs when the feature amount or the sensing data exceeds the threshold value or falls below the threshold value.
 (ステップS208)
 ステップS208で、生成部356は、取得された各センシングデータのうち、振動センサにより計測されたセンシングデータを示す振動波形に基づいて、装置10の動作状態を示す音データ又はスコアリングデータを含む確認データを生成する。
(Step S208)
In step S208, the generation unit 356 confirms that among the acquired sensing data, the generation unit 356 includes sound data or scoring data indicating the operating state of the device 10 based on the vibration waveform indicating the sensing data measured by the vibration sensor. Generate data.
 (ステップS210)
 ステップS210で、出力部358は、生成された確認データを出力する。例えば、出力部358は、確認データが音データを含む場合、スピーカから音データを出力する。また、出力部358は、確認データがスコアリングデータを含む場合、スコアリングデータを表示装置314に表示する。なお、出力部358は、ユーザの操作に基づいて、音データの出力と、スコアリングデータの出力とを切り替えてもよい。これにより、ユーザは、確認データをチェックすることで、装置10の異常が実際に発生しているか否かを判定することができ、判定結果に基づいて仮基準を修正することができる。
(Step S210)
In step S210, the output unit 358 outputs the generated confirmation data. For example, the output unit 358 outputs the sound data from the speaker when the confirmation data includes the sound data. Further, when the confirmation data includes the scoring data, the output unit 358 displays the scoring data on the display device 314. The output unit 358 may switch between the output of sound data and the output of scoring data based on the user's operation. As a result, the user can determine whether or not the abnormality of the device 10 has actually occurred by checking the confirmation data, and can correct the provisional reference based on the determination result.
 §4 実施例
 次に、本実施形態における実施例を説明する。以下では、対象の装置10としてCVD装置、ラベラ装置、切削加工装置を適用した場合の監視システムについて説明する。
§4 Example Next, an embodiment of the present embodiment will be described. Hereinafter, a monitoring system when a CVD device, a labeler device, and a cutting device are applied as the target device 10 will be described.
 [実施例1]
 図8は、実施例1に係る監視システム2の一例を示す模式図である。図8に示す監視システム2は、CVD装置を含む装置10A~Eと、振動センサ(振動計)20A-1~5と、クランプ電流計20C-1~5と、IOスレーブ50と、波形計測ユニット60と、制御装置100と、保存装置200と、情報処理装置300と、を備える。
[Example 1]
FIG. 8 is a schematic diagram showing an example of the monitoring system 2 according to the first embodiment. The monitoring system 2 shown in FIG. 8 includes devices 10A to E including a CVD device, vibration sensors (vibrometers) 20A-1 to 5, clamp ammeters 20C-1 to 5, IO slave 50, and a waveform measurement unit. It includes 60, a control device 100, a storage device 200, and an information processing device 300.
 また、センサ20A-1~5は、振動センサ(振動計)を示し、センサ20C-1~5は、クランプ電流計を示す。なお、温度センサや熱流をセンサ等が装置10A~Eに設けれられてもよい。各センサは、装置10の適切な位置に設けられればよい。 Further, the sensors 20A-1 to 5 indicate a vibration sensor (vibrometer), and the sensors 20C-1 to 5 indicate a clamp ammeter. In addition, a temperature sensor, a heat flow sensor, and the like may be provided in the devices 10A to E. Each sensor may be provided at an appropriate position on the device 10.
 IOスレーブ50は、例えば装置10に設けられたアナログセンサ、例えば電流計20C-1~5、温度計、熱流計、圧力計からのデータを取得し、アナログデータをデジタルデータに変換して制御装置100に送信する。また、波形計測ユニット60は、振動センサ20A-1~5から取得される各データを制御装置100に送信する。その他の装置については、上述した同じ符号が付与された装置と同様の機能を有する。 The IO slave 50 acquires data from, for example, an analog sensor provided in the device 10, for example, an ammeter 20C-1 to 5, a thermometer, a heat flow meter, and a pressure gauge, converts the analog data into digital data, and controls the device. Send to 100. Further, the waveform measurement unit 60 transmits each data acquired from the vibration sensors 20A-1 to 20 to the control device 100. Other devices have the same functions as the devices with the same reference numerals as described above.
 実施例1のように、CVD装置に含まれる真空ポンプ内などに生成物が徐々に蓄積していくケースでは、真空ポンプの寿命に遠い状態でも、センシングデータに変化が発生する。よって、監視システム2は、センシングデータやこの特徴量の変化量を検知し、熟練したユーザ(エキスパート)の判断を求めることにより、エキスパートは、真空ポンプが寿命であるか否かを判定する。 In the case where the product gradually accumulates in the vacuum pump included in the CVD device as in the first embodiment, the sensing data changes even when the life of the vacuum pump is long. Therefore, the monitoring system 2 detects the sensing data and the amount of change in the feature amount, and seeks the judgment of a skilled user (expert), so that the expert determines whether or not the vacuum pump has reached the end of its life.
 従来、エキスパートは、現場で対象装置10に対して聴診棒を使って故障等の診断をしていたが、監視システム2では、従来と同じように、装置10の振動音を聴くことができるように、振動波形を音データに変換し、再生する機能を有する。 Conventionally, an expert diagnoses a failure or the like of a target device 10 by using an auscultation rod at the site, but in the monitoring system 2, the vibration sound of the device 10 can be heard as in the conventional case. In addition, it has a function of converting a vibration waveform into sound data and reproducing it.
 例えば、ユーザは、出力部358により表示されるトレンドデータに含まれる振動波形の所定位置にカーソルを合わせ、音再生ボタンを押すことでその時点の装置10の音を聴くことができる。 For example, the user can listen to the sound of the device 10 at that time by moving the cursor to a predetermined position of the vibration waveform included in the trend data displayed by the output unit 358 and pressing the sound reproduction button.
 また、発明者らは、装置10内のブースターポンプとメインポンプとに振動計を設け、各振動計から計測されたセンシングデータを分析した。その結果、メインポンプ、ブースターポンプについてポンプの異常を振動で捉え、波形や周波数の特徴を捉え、特徴量で数値化できることを確認した。また、発明者らは、予め選定した複数のセンサ位置候補から、適切な測定位置を特定する。 In addition, the inventors provided vibrometers on the booster pump and the main pump in the device 10 and analyzed the sensing data measured from each vibrometer. As a result, it was confirmed that the abnormalities of the pumps of the main pump and booster pump can be grasped by vibration, the characteristics of waveform and frequency can be grasped, and the features can be quantified. In addition, the inventors specify an appropriate measurement position from a plurality of sensor position candidates selected in advance.
 また、監視システム2では、ポンプ単体で計測・判断するだけでなく、システム全体をとらえ、各センシングデータから、総合的に異常を判断する仕組みを提供する。例えば、監視システム2では、実際の故障やオーバーホール後の分析結果に基づいて、異常判定のアルゴリズムを見直し、異常要素別に異常を検出できるようにする。情報処理装置300の監視部354は、算出される各特徴量に対して異常か正常かを示すデータを求め、出力部358は、装置10の状態が一目で把握できるように、複数の異常判定結果をまとめたオーバービューを表示装置314に表示してもよい。 In addition, the monitoring system 2 not only measures and judges the pump alone, but also provides a mechanism for grasping the entire system and comprehensively judging the abnormality from each sensing data. For example, in the monitoring system 2, the algorithm for determining an abnormality is reviewed based on the analysis result after an actual failure or overhaul so that an abnormality can be detected for each abnormality element. The monitoring unit 354 of the information processing device 300 obtains data indicating whether the calculated feature amount is abnormal or normal, and the output unit 358 determines a plurality of abnormalities so that the state of the device 10 can be grasped at a glance. An overview summarizing the results may be displayed on the display device 314.
 図9は、実施例1に係るオーバービューを含む画面D20の一例を示す図である。図9に示す画面D20には、各センサの測定箇所ごとに、正常か否かが表示される。例えば、振動センサにおいて、測定箇所#1で異常が検出され、測定箇所#2で、異常が起こりそうであることを示す予報が示される。ユーザは、このオーバービュー画面を見ることで、容易にどの場所で、どのデータに基づいて異常が検出されているかを把握することができる。 FIG. 9 is a diagram showing an example of the screen D20 including the overview according to the first embodiment. On the screen D20 shown in FIG. 9, whether or not it is normal is displayed for each measurement point of each sensor. For example, in the vibration sensor, the abnormality is detected at the measurement point # 1, and the forecast indicating that the abnormality is likely to occur is shown at the measurement point # 2. By looking at this overview screen, the user can easily grasp where and based on which data the abnormality is detected.
 また、ユーザは、監視システム2による判定結果を示す領域を押下することで、そのデータの時系列の変化を確認することができる。例えば、ユーザは、振動センサの測定箇所#1の領域を押下すると、この測定箇所#1で計測されたセンシングデータから算出された特徴量を確認することができる。例えば、振動センサからは、時間領域と周波数領域(FFT)から合計35種類の特徴量が算出されてもよい。また、サーボドライバからは、トルク波形、速度波形から演算した特徴量、エンコーダ温度、モータ負荷率が演算されてもよい。 In addition, the user can confirm the time-series change of the data by pressing the area showing the determination result by the monitoring system 2. For example, when the user presses the area of the measurement point # 1 of the vibration sensor, the user can confirm the feature amount calculated from the sensing data measured at the measurement point # 1. For example, from the vibration sensor, a total of 35 types of feature quantities may be calculated from the time domain and the frequency domain (FFT). Further, the servo driver may calculate the feature amount calculated from the torque waveform and the speed waveform, the encoder temperature, and the motor load factor.
 図10は、実施例1に係るセンシングデータの特徴量の時系列変化を示す図である。図10に示す画面D22は、振動センサの振動波形から算出される特徴量が表示され、その特徴量に設定された閾値も表示される。図10に示すように、1つの特徴量に対し、複数の閾値、例えば警報上限値、予報上限値、予報下限値、及び警報下限値が設定されてもよい。また、これらの閾値は、ユーザの実際の異常判断の後で、フィードバック結果に基づき修正されてもよい。 FIG. 10 is a diagram showing time-series changes in the feature amount of the sensing data according to the first embodiment. On the screen D22 shown in FIG. 10, a feature amount calculated from the vibration waveform of the vibration sensor is displayed, and a threshold value set for the feature amount is also displayed. As shown in FIG. 10, a plurality of threshold values, for example, an alarm upper limit value, a forecast upper limit value, a forecast lower limit value, and an alarm lower limit value may be set for one feature amount. In addition, these threshold values may be modified based on the feedback result after the user's actual abnormality judgment.
 また、図10に示す画面D22には、波形分析を表示するためのボタンB10、画像を表示するためのボタン、音再生するためのボタンB12、グラフを並べかえるためのボタンが含まれる。 Further, the screen D22 shown in FIG. 10 includes a button B10 for displaying waveform analysis, a button for displaying an image, a button B12 for reproducing sound, and a button for rearranging graphs.
 図11は、実施例1に係る音再生の一例を示す図である。図11は、画面D22に示すボタンB12がユーザにより押下されると、生成部356は、振動波形を音データに変換し、出力部358は、その音データをスピーカから出力する。これにより、ユーザは、異常と判定された箇所の音を容易に確認することができる。 FIG. 11 is a diagram showing an example of sound reproduction according to the first embodiment. In FIG. 11, when the button B12 shown on the screen D22 is pressed by the user, the generation unit 356 converts the vibration waveform into sound data, and the output unit 358 outputs the sound data from the speaker. As a result, the user can easily confirm the sound of the portion determined to be abnormal.
 図12は、実施例1に係る振動波形分析の画面D24の一例を示す図である。図12は、画面D22に示すボタンB10がユーザにより押下されると、監視部354は、振動波形(例、センシングデータ)を取得し、出力部358は、表示装置314に振動波形を表示するとともに、算出された各特徴量、例えば、パワースペクトル等が表示される。 FIG. 12 is a diagram showing an example of the screen D24 of the vibration waveform analysis according to the first embodiment. In FIG. 12, when the button B10 shown on the screen D22 is pressed by the user, the monitoring unit 354 acquires a vibration waveform (eg, sensing data), and the output unit 358 displays the vibration waveform on the display device 314. , Each calculated feature amount, for example, a power spectrum or the like is displayed.
 図13は、実施例1に係るサーボモータの監視データ(特徴量)を表示する画面D26の一例を示す図である。図13に示す例では、監視データとして、ピークトルク、モータ温度、モータ負荷率が特徴量として算出されている。また、それぞれの特徴量に対して、上述したように複数の閾値が設定されている。以上に示した分析により、発明者らは以下の問題点を分析した。 FIG. 13 is a diagram showing an example of the screen D26 for displaying the monitoring data (feature amount) of the servo motor according to the first embodiment. In the example shown in FIG. 13, peak torque, motor temperature, and motor load factor are calculated as feature quantities as monitoring data. In addition, a plurality of threshold values are set for each feature amount as described above. Based on the analysis shown above, the inventors analyzed the following problems.
 (ブースターポンプ)
ブースターポンプにおける異常品の検出について、オーバーホール直後のブースターポンプに対し、1/2の寿命が来たポンプが、振動波形による特徴量の値が高く、寿命が来たポンプはさらに高い結果となることが確認されている。特に、寿命が来たポンプは、高周波領域において不連続な衝撃減衰波形が発生しており、明確に異常として検出することが可能である。各センサの有効測定位置については、各センサの測定結果を分析すると、モータ側に振動センサを設けることで、よりよい結果を得ることができる。
(Booster pump)
Regarding the detection of abnormal products in the booster pump, the pump that has reached half the life of the booster pump immediately after overhaul has a higher feature value due to the vibration waveform, and the pump that has reached the end of its life has a higher result. Has been confirmed. In particular, the pump that has reached the end of its life has a discontinuous shock damping waveform in the high frequency region, and can be clearly detected as an abnormality. Regarding the effective measurement position of each sensor, when the measurement result of each sensor is analyzed, a better result can be obtained by providing the vibration sensor on the motor side.
 (メインポンプ)
 メインポンプにおける異常品の検出について、メインポンプに対し、1/2寿命が最も振動波形による特徴量の値が最も高く、一般的に異常な状態として計測できる。しかし、寿命が来たポンプは、オーバーホール直後より振動波形、FFT、特徴量値とも小さな値となっており、振動波形の大きさで判別することは難しい。しかし、寿命のポンプは、オーバーホール直後と比較しても、正常な回転振動が発生していない波形となる。例えば、本来の振動エネルギーをロスしている振動波形となっている。そのため、オーバーホール直後に対し、特徴量が小さいというルールにより判別することが可能である。
(Main pump)
Regarding the detection of abnormal products in the main pump, the value of the feature amount due to the vibration waveform is the highest in 1/2 life compared to the main pump, and it can be generally measured as an abnormal state. However, in a pump that has reached the end of its life, the vibration waveform, FFT, and feature value are small immediately after the overhaul, and it is difficult to distinguish by the magnitude of the vibration waveform. However, the life-long pump has a waveform in which normal rotational vibration is not generated even when compared with that immediately after the overhaul. For example, it is a vibration waveform in which the original vibration energy is lost. Therefore, it is possible to discriminate by the rule that the feature amount is small immediately after the overhaul.
 以上、実施例1によれば、真空ポンプの劣化状態を適切に把握することで、適切なタイミングでオーバーホールの時期を決定することができる。また、確認データを生成し、ユーザに向けて出力することで、ポンプの劣化状態を可視化することができる。その結果、保全コストを削減することができ、ポンプの交換間隔を長期化させることができ、設備の突発的ダウンを防止することができ、及びスクラップの発生を撲滅させることの少なくとも1つを図ることができる。 As described above, according to the first embodiment, the overhaul timing can be determined at an appropriate timing by appropriately grasping the deteriorated state of the vacuum pump. In addition, by generating confirmation data and outputting it to the user, it is possible to visualize the deterioration state of the pump. As a result, maintenance costs can be reduced, pump replacement intervals can be lengthened, equipment can be prevented from sudden downfall, and at least one attempt is made to eliminate scrap generation. be able to.
 [実施例2]
 図14は、実施例2に係る監視システム3の一例を示す模式図である。図14に示す監視システム3は、ロータリーカッタ12Aとカッタダイ12Bを含む装置10Fと、振動センサ(振動計)20A-1と、波形計測ユニット60と、ハブ70と、制御装置100と、保存装置200と、情報処理装置300(不図示)と、を備える。その他、図示していないが、実施例1同様、温度センサやサーボモータ等の各種センサを設けてもよい。また、情報処理装置300は、オーバービュー画面D30を表示してもよい。
[Example 2]
FIG. 14 is a schematic diagram showing an example of the monitoring system 3 according to the second embodiment. The monitoring system 3 shown in FIG. 14 includes a device 10F including a rotary cutter 12A and a cutter die 12B, a vibration sensor (vibrometer) 20A-1, a waveform measurement unit 60, a hub 70, a control device 100, and a storage device 200. And an information processing device 300 (not shown). In addition, although not shown, various sensors such as a temperature sensor and a servomotor may be provided as in the first embodiment. Further, the information processing device 300 may display the overview screen D30.
 図14に示す例において、従来、ペットボトルなどのラベラ装置10において、ロータリーカッタ12Aの刃当たり度合を測る明確な指標がなかった。また、従来のシステムでは、以下の問題点が挙げられる。
・熟練作業者により刃当たり度合の調整が行われている。
・作業者の手感に頼った作業のため、羽当たり度合の調整に時間がかかる。
・新人がこの刃当たりの調整を行うのに時間がかかる。
・刃の摩耗やまな板の凹みにより、調整の頻度が多い。
In the example shown in FIG. 14, conventionally, in the labeler device 10 such as a PET bottle, there was no clear index for measuring the degree of blade contact of the rotary cutter 12A. In addition, the conventional system has the following problems.
-The degree of blade contact is adjusted by a skilled worker.
・ Because the work relies on the operator's feeling, it takes time to adjust the degree of wing contact.
・ It takes time for newcomers to adjust this blade contact.
・ Adjustments are frequent due to blade wear and cutting board dents.
 また、ロータリーカッタ12Aの刃当たり度合の変化により、製造ラインが頻繁に停止し、また、その停止時間が長いという問題点もある。例えば、以下の具体的な問題点が挙げられる。
・刃の摩耗・まな板の凹みで、ラベルLを切れずライン停止が多い。
・刃当たり調整のためのライン停止時間が長い。
・刃当たり調整のため、カッターユニットの揚げ降ろし、予備交換が必要である。
・ユニットを交換しても刃当たり調整が適切でないとすぐに停止する。
Further, there is a problem that the production line is frequently stopped due to the change in the degree of blade contact of the rotary cutter 12A, and the stop time is long. For example, the following specific problems can be mentioned.
・ Due to wear of the blade and dent of the cutting board, the label L cannot be cut and the line often stops.
・ The line stop time for adjusting the blade contact is long.
・ To adjust the blade contact, it is necessary to lift and lower the cutter unit and replace it in advance.
・ Even if the unit is replaced, it will stop immediately if the blade contact adjustment is not appropriate.
 上記問題点に対し、実施例2における監視システム3では、ラベルLの切断時に発生する衝撃(振動)を、振動センサ20A-1で上記監視することで、カッタ12Aの刃当たり度合の変化を捉える。 In response to the above problem, in the monitoring system 3 in the second embodiment, the impact (vibration) generated when the label L is cut is monitored by the vibration sensor 20A-1 to capture the change in the degree of blade contact of the cutter 12A. ..
 図15は、実施例2に係る振動波形及び特徴量の一例を示す図である。図15に示すデータは、カッタダイ12B付近に設けられた振動センサ20A-1により計測されたデータである。図15Aは、刃当たりが不足している場合のデータを示し、図15Bは、刃当たりが適切な場合のデータを示し、図15Cは、刃上りが当たり過ぎの場合のデータを示す。 FIG. 15 is a diagram showing an example of the vibration waveform and the feature amount according to the second embodiment. The data shown in FIG. 15 is the data measured by the vibration sensor 20A-1 provided near the cutter die 12B. FIG. 15A shows the data when the blade contact is insufficient, FIG. 15B shows the data when the blade contact is appropriate, and FIG. 15C shows the data when the blade rise is excessive.
 図15A~Cに示す振動波形は、センシングされた振動波形のデータを示し、振動波形拡大(80msec)は、特徴が表れやすいように振動波形が拡大されたデータを示し、FFT(1Frame)は、高速フーリエ変換された後の特徴量を示す。 The vibration waveforms shown in FIGS. 15A to 15C show the data of the sensed vibration waveform, the vibration waveform enlargement (80 msec) shows the data in which the vibration waveform is enlarged so that the characteristics can be easily shown, and the FFT (1Flame) is. The feature quantity after the fast Fourier transform is shown.
 図15Aに示すように、刃の当たりが不足している場合は、振動波形の振幅が比較的小さく、FFT後のスペクトルも小さい。他方、図15Cに示すように、刃が当たり過ぎている場合は、振動波形の振幅が比較的大きく、FFT後のスペクトルも大きい。これらに対し、図15Bに示すように、刃当たりが適切である場合は、振動波形の振幅が中程度であり、スペクトルも中程度である。従って、実施例2では、振動波形の振幅又はスペクトルの大きさを用いて刃当たり度合を求めることができる。 As shown in FIG. 15A, when the blade contact is insufficient, the amplitude of the vibration waveform is relatively small, and the spectrum after FFT is also small. On the other hand, as shown in FIG. 15C, when the blade hits too much, the amplitude of the vibration waveform is relatively large, and the spectrum after FFT is also large. On the other hand, as shown in FIG. 15B, when the blade contact is appropriate, the amplitude of the vibration waveform is medium and the spectrum is also medium. Therefore, in Example 2, the degree of blade contact can be obtained by using the amplitude of the vibration waveform or the magnitude of the spectrum.
 例えば、制御装置100の処理部154は、振動センサ20A-1から取得されたセンシングデータを取得すると、FFT処理を実行し、スペクトルデータを特徴量として算出する。制御装置100の送信部156は、スペクトルデータと振動波形とを保存装置200に保存したり、情報処理装置300に送信したりする。 For example, when the processing unit 154 of the control device 100 acquires the sensing data acquired from the vibration sensor 20A-1, FFT processing is executed and the spectrum data is calculated as a feature amount. The transmission unit 156 of the control device 100 stores the spectrum data and the vibration waveform in the storage device 200 or transmits them to the information processing device 300.
 情報処理装置300の監視部354は、スペクトルデータを取得すると、設定されている複数の閾値とスペクトルデータとを比較することで、刃当たり度合を求めることができる。情報処理装置300の生成部356は、例えば刃当たり度合を正規化することで、0~100の値としてスコアリングデータを生成し、出力部358は、スコアリングデータを表示装置314に出力する。刃当たり度合は、振動波形の振幅を用いて求められてもよい。 When the monitoring unit 354 of the information processing device 300 acquires the spectrum data, the degree of blade contact can be obtained by comparing the plurality of set threshold values with the spectrum data. The generation unit 356 of the information processing device 300 generates scoring data as a value of 0 to 100, for example, by normalizing the degree of blade contact, and the output unit 358 outputs the scoring data to the display device 314. The degree of blade contact may be determined using the amplitude of the vibration waveform.
 なお、生成部356は、振動波形のデータから音データを生成してもよく、出力部358は、ユーザから音再生の操作が受付られた場合に、音データを再生する。これにより、ユーザは、ラベラ装置10Fの振動音を確認することができる。 Note that the generation unit 356 may generate sound data from the vibration waveform data, and the output unit 358 reproduces the sound data when the user accepts the sound reproduction operation. As a result, the user can confirm the vibration sound of the labeler device 10F.
 図16Aは、実施例2に係る刃当たり調整中のモニタ画面D32の一例を示し、図16Bは、ラベラ装置10Fが稼働中のモニタ画面D34の一例を示す。図16Aに示す画面D32は、ラベラ装置10Fを停止中で、ユーザにより刃当たりを調整中に表示される画面である。ここで、調整中の振動センサ20A-1からのセンシングデータを用いてスコアリングデータが算出される。図16Aに示す例では、適正範囲は、40~60であり、現在のスコアリングデータが75であるため、監視システム3は、過当たりと判定する。 FIG. 16A shows an example of the monitor screen D32 during blade contact adjustment according to the second embodiment, and FIG. 16B shows an example of the monitor screen D34 in which the labeler device 10F is operating. The screen D32 shown in FIG. 16A is a screen displayed while the labeler device 10F is stopped and the blade contact is being adjusted by the user. Here, the scoring data is calculated using the sensing data from the vibration sensor 20A-1 being adjusted. In the example shown in FIG. 16A, the appropriate range is 40 to 60, and the current scoring data is 75, so the monitoring system 3 determines that it is an over-hit.
 また、スコアリングデータが40以上60未満の値であれば、適正と判定され、スコアリングデータが40未満であれば、不足と判定される。ユーザは、このモニタ画面D32を見ながら刃当たりの調整を行うことができるため、熟練さは必ずしも必要とされず、容易に刃当たりを適切なところに調整することが可能になる。 If the scoring data is 40 or more and less than 60, it is judged to be appropriate, and if the scoring data is less than 40, it is judged to be insufficient. Since the user can adjust the blade contact while looking at the monitor screen D32, skill is not necessarily required, and the blade contact can be easily adjusted to an appropriate place.
 図16Bに示す画面D34は、ラベラ装置10Fが稼働中であり、稼働中の刃当たりの度合を示すスコアリングデータが表示される画面である。ここでは、ラベラ装置10Fが稼働中の振動センサ20A-1からのセンシングデータを用いてスコアリングデータが算出される。図16Bに示す例では、適正範囲は、50以上であり、現在のスコアリングデータが48であるため、監視システム3は、異常の前段階の予報レベルと判定する。 The screen D34 shown in FIG. 16B is a screen in which the labeler device 10F is in operation and scoring data indicating the degree of blade contact during operation is displayed. Here, the scoring data is calculated using the sensing data from the vibration sensor 20A-1 in which the labeler device 10F is in operation. In the example shown in FIG. 16B, since the appropriate range is 50 or more and the current scoring data is 48, the monitoring system 3 determines that the forecast level is the stage before the abnormality.
 また、スコアリングデータが40未満の値であれば、刃当たり不足と判定され、ユーザは、ラベラ装置10Fを停止して、刃当たりの調整を行う。これにより、ユーザは、稼働中のスコアリングデータを確認することで、どのタイミングでラベラ装置10Fを停止して刃当たりを調整すればよいかを把握することができる。また、適正範囲がモニタ画面に表示されるので、誰でも刃当たりの度合を客観的に判断することができる。 If the scoring data is less than 40, it is determined that the blade contact is insufficient, and the user stops the labeler device 10F and adjusts the blade contact. As a result, the user can grasp at what timing the labeler device 10F should be stopped and the blade contact should be adjusted by checking the scoring data during operation. Moreover, since the appropriate range is displayed on the monitor screen, anyone can objectively judge the degree of blade contact.
 なお、図16A及びBにおいて、ラベラ装置10Fが稼働中か否かに応じて、スコアリングデータに対する適性範囲が変更されてもよい。これは、ラベラ装置10Fの停止中に手動で刃当たりを調整する際の振動の程度と、ラベラ装置10Fの稼働中の刃当たりによる振動の程度とが異なるからである。 Note that, in FIGS. 16A and 16B, the appropriate range for the scoring data may be changed depending on whether or not the labeler device 10F is in operation. This is because the degree of vibration when manually adjusting the blade contact while the labeler device 10F is stopped is different from the degree of vibration due to the blade contact during operation of the labeler device 10F.
 [実施例3]
 図17は、実施例3に係る監視システム4の一例を示す模式図である。図17に示す監視システム4は、金属切削を行う装置10Gと、振動センサ(不図示)と、波形計測ユニット60と、制御装置100と、保存装置200を含む情報処理装置300と、表示装置400と、を備える。その他、図示していないが、実施例1同様、温度センサやサーボモータ等の各種センサを設けてもよい。表示装置400は、装置10Gの状態を監視するモニタであり、制御装置100で演算されるパラメータ等が表示される。
[Example 3]
FIG. 17 is a schematic diagram showing an example of the monitoring system 4 according to the third embodiment. The monitoring system 4 shown in FIG. 17 includes a device 10G for cutting metal, a vibration sensor (not shown), a waveform measurement unit 60, a control device 100, an information processing device 300 including a storage device 200, and a display device 400. And. In addition, although not shown, various sensors such as a temperature sensor and a servomotor may be provided as in the first embodiment. The display device 400 is a monitor that monitors the state of the device 10G, and displays parameters and the like calculated by the control device 100.
 実施例3では、マシニングセンタを装置10Gの例とする。マシニングセンサは、リレーやスイッチなどの電子部品製造に使用する放電加工用の銅電極を製造する。高精度な加工が必要であり、φが0.2~6mmの小さなエンドミルを用いて加工が行われる。この工程の課題は、加工条件によってはエンドミルが折れてしまい、また、エンドミルが折れないようにすると加工時間が伸びてしまうということである。 In Example 3, the machining center is used as an example of the device 10G. Machining sensors manufacture copper electrodes for electric discharge machining used in the manufacture of electronic components such as relays and switches. High-precision machining is required, and machining is performed using a small end mill with a φ of 0.2 to 6 mm. The problem with this process is that the end mill may break depending on the machining conditions, and if the end mill is prevented from breaking, the machining time will increase.
 これに対し、エンドミルの切削加工時の加工抵抗を計測し、数値化することができれば、エンドミルの切削加工時の加工抵抗を確認しながら、マシニングセンサの送り速度を調整することができるため、加工時間を短縮することができる。 On the other hand, if the machining resistance during cutting of the end mill can be measured and quantified, the feed rate of the machining sensor can be adjusted while checking the machining resistance during cutting of the end mill. You can save time.
 そこで、監視システム4では、金属を削る際の音に着目し、音の発生源と思われる箇所に振動センサを設け、振動波形のデータを取得する。発明者らは、振動波形のデータから様々な特徴量を算出し、加工抵抗に親和性の高い特徴量を分析した。その結果、発明者らは、振動波形のデータの最大振幅が加工抵抗に比例することを発見した。 Therefore, in the monitoring system 4, attention is paid to the sound when scraping metal, a vibration sensor is provided at a place considered to be the source of the sound, and vibration waveform data is acquired. The inventors calculated various features from the vibration waveform data and analyzed the features having a high affinity for processing resistance. As a result, the inventors have found that the maximum amplitude of the vibration waveform data is proportional to the machining resistance.
 図18は、実施例3に係る振動波形の最大振幅と加工抵抗との関係を示す図である。図18に示すように、振動波形データの最大振幅と、動力計を用いて計測された加工抵抗とが比例することが分かる。 FIG. 18 is a diagram showing the relationship between the maximum amplitude of the vibration waveform and the machining resistance according to the third embodiment. As shown in FIG. 18, it can be seen that the maximum amplitude of the vibration waveform data is proportional to the machining resistance measured by using the dynamometer.
 よって、監視システム4における制御装置100の処理部154は、振動データの最大振幅を求め、送信部156は、最大振幅のデータを情報処理装置300に送信する。情報処理装置300の監視部354は、加工抵抗に比例する最大振幅を監視する。生成部356は、振動波形から音データを生成し、出力部358は、スピーカから音データを出力してもよい。また、生成部356は、最大振幅から所定の算出アルゴリズムを用いてスコアリングデータを算出し、出力部358は、モニタ画面にスコアリングデータを表示するようにしてもよい。 Therefore, the processing unit 154 of the control device 100 in the monitoring system 4 obtains the maximum amplitude of the vibration data, and the transmitting unit 156 transmits the data of the maximum amplitude to the information processing device 300. The monitoring unit 354 of the information processing apparatus 300 monitors the maximum amplitude proportional to the machining resistance. The generation unit 356 may generate sound data from the vibration waveform, and the output unit 358 may output the sound data from the speaker. Further, the generation unit 356 may calculate the scoring data from the maximum amplitude using a predetermined calculation algorithm, and the output unit 358 may display the scoring data on the monitor screen.
 これにより、振動波形の最大振幅に比例する加工抵抗に応じて送り速度を制御するため、エンドミルの折損を防ぎつつ、適切な送り速度でマシニングセンサを稼働させて加工時間を削減することができる。 As a result, the feed rate is controlled according to the machining resistance proportional to the maximum amplitude of the vibration waveform, so that the machining sensor can be operated at an appropriate feed rate while preventing the end mill from breaking, and the machining time can be reduced.
 また、研削加工においても、実施例3における監視システム4を適用することが可能である。例えば、研削加工は、研粒で対象物を削るので、高周波領域の振動が広い範囲で現れる特徴がある。この特徴を用いて、制御装置100の処理部154は、高周波領域の始動を特徴量化することで、上述したように加工状態を見える化することが可能である。 It is also possible to apply the monitoring system 4 in the third embodiment to the grinding process. For example, in the grinding process, since the object is ground by grinding, vibration in a high frequency region appears in a wide range. Using this feature, the processing unit 154 of the control device 100 can visualize the machining state as described above by quantifying the start of the high frequency region.
 §4 変形例
 以上、本発明の実施の形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。例えば、装置10においては、上述した例に限られず、装置の稼働時に振動を伴うものであれば適用可能である。
§4 Modifications Although the embodiments of the present invention have been described in detail above, the above description is merely an example of the present invention in all respects. Needless to say, various improvements and modifications can be made without departing from the scope of the present invention. For example, the device 10 is not limited to the above-mentioned example, and can be applied as long as it is accompanied by vibration during operation of the device.
 例えば、装置10は、オムツ製造装置や、真空ポンプ以外のポンプを含む装置、成形機、プレス機、ベアリング・シリンダを含む装置などにも適用可能である。本開示の実施形態や各実施例に記載されたプログラムは、コンピュータに読み取り可能な記憶媒体に記憶された状態で提供されてもよい。 記憶媒体は、「一時的でない有形の媒体」に、プログラムを記憶可能である。プログラムは、限定でなく例として、ソフトウェアプログラムやコンピュータプログラムを含む。また、スコアリングデータは、振動波形に限らず、他のセンシングデータを用いて算出されてもよい。 For example, the device 10 can be applied to a omelet manufacturing device, a device including a pump other than a vacuum pump, a molding machine, a press machine, a device including a bearing cylinder, and the like. The programs described in the embodiments and the respective examples of the present disclosure may be provided in a state of being stored in a computer-readable storage medium. The storage medium can store the program in a “non-temporary tangible medium”. Programs include, but are not limited to, software programs and computer programs as examples. Further, the scoring data is not limited to the vibration waveform, and may be calculated using other sensing data.
(付記1)
 動力源を含む装置に設けられた1又は複数のセンサから各センシングデータを受信し、前記各センシングデータから1又は複数の特徴量を算出する制御装置(100)と、
 前記制御装置から受信された各特徴量と前記各センシングデータとを対応付けて保存する保存装置(200)と、
 前記各特徴量を監視し、前記各センシングデータに含まれる振動波形に基づいて前記装置の動作状態を示す音データ又はスコアリングデータを生成し、前記音データ又は前記スコアリングデータを出力する情報処理装置(300)と、
 を備える、監視システム(1~4)。
(付記2)
 前記情報処理装置(300)は、前記各特徴量に基づいて前記装置の異常が検知された場合、前記異常が検知された時点に基づく所定時間内の前記振動波形を前記音データに変換する、請求項1に記載の監視システム(1~4)。
(付記3)
 前記情報処理装置(300)は、前記保存装置に保存される振動波形のうち、ユーザにより指定された区間の振動波形を前記音データに変換する、請求項1又は2に記載の監視システム(1~4)。
(付記4)
 前記情報処理装置(300)は、前記各特徴量との比較対象であり、異常判定に用いられる各閾値を、ユーザの正常又は異常の判定結果に基づいて調整する、請求項1から3のいずれか一項に記載の監視システム(1~4)。
(付記5)
 前記制御装置(100)は、前記装置の異常内容に応じた特徴量の算出を追加可能である、請求項1から4のいずれか一項に記載の監視システム(1~2)。
(付記6)
 前記情報処理装置(300)は、前記スコアリングデータと、前記スコアリングデータに対する適正範囲とを表示装置に表示する、請求項1に記載の監視システム(1,3)。
(付記7)
 前記情報処理装置(300)は、前記スコアリングデータと前記適正範囲内との比較結果を前記表示装置に表示する、請求項6に記載の監視システム(1,3)。
(付記8)
 動力源を含む装置に設けられた1又は複数のセンサからの各センシングデータに基づいて算出された各特徴量を監視する監視部(354)と、
 前記各センシングデータに含まれる振動波形に基づいて前記装置の動作状態を示す音データ又はスコアリングデータを生成する生成部(356)と、
 前記音データ又は前記スコアリングデータを出力する出力部(358)と、
を備える情報処理装置(100)。
(付記9)
 動力源を含む装置に設けられた1又は複数のセンサからの各センシングデータに基づいて算出された各特徴量を監視する監視ステップと、
 前記各センシングデータに含まれる振動波形に基づいて前記装置の動作状態を示す音データ又はスコアリングデータを生成する生成ステップと、
 前記音データ又は前記スコアリングデータを出力する出力ステップと、
を情報処理装置(300)が実行する情報処理方法。
(付記10)
 動力源を含む装置に設けられた1又は複数のセンサからの各センシングデータに基づいて算出された各特徴量を監視する監視ステップと、
 前記各センシングデータに含まれる振動波形に基づいて前記装置の動作状態を示す音データ又はスコアリングデータを生成する生成ステップと、
 前記音データ又は前記スコアリングデータを出力する出力ステップと、
を情報処理装置(300)に実行させるプログラム。
(Appendix 1)
A control device (100) that receives each sensing data from one or a plurality of sensors provided in a device including a power source and calculates one or a plurality of feature quantities from the respective sensing data.
A storage device (200) that stores each feature amount received from the control device in association with each of the sensing data, and
Information processing that monitors each of the feature quantities, generates sound data or scoring data indicating the operating state of the device based on the vibration waveform included in the sensing data, and outputs the sound data or the scoring data. Device (300) and
Surveillance system (1-4).
(Appendix 2)
When an abnormality of the device is detected based on the respective feature amounts, the information processing device (300) converts the vibration waveform within a predetermined time based on the time when the abnormality is detected into the sound data. The monitoring system (1-4) according to claim 1.
(Appendix 3)
The monitoring system (1) according to claim 1 or 2, wherein the information processing device (300) converts the vibration waveform of a section designated by the user among the vibration waveforms stored in the storage device into the sound data. ~ 4).
(Appendix 4)
The information processing device (300) is a comparison target with each of the feature quantities, and any of claims 1 to 3 which adjusts each threshold value used for abnormality determination based on the normality or abnormality determination result of the user. The monitoring system (1-4) according to item 1.
(Appendix 5)
The monitoring system (1 to 2) according to any one of claims 1 to 4, wherein the control device (100) can additionally calculate a feature amount according to an abnormality content of the device.
(Appendix 6)
The monitoring system (1, 3) according to claim 1, wherein the information processing device (300) displays the scoring data and an appropriate range for the scoring data on a display device.
(Appendix 7)
The monitoring system (1, 3) according to claim 6, wherein the information processing device (300) displays a comparison result between the scoring data and the appropriate range on the display device.
(Appendix 8)
A monitoring unit (354) that monitors each feature calculated based on each sensing data from one or more sensors provided in the device including the power source, and
A generation unit (356) that generates sound data or scoring data indicating the operating state of the device based on the vibration waveform included in each of the sensing data.
An output unit (358) that outputs the sound data or the scoring data, and
(100).
(Appendix 9)
A monitoring step for monitoring each feature calculated based on each sensing data from one or more sensors provided in a device including a power source.
A generation step of generating sound data or scoring data indicating the operating state of the device based on the vibration waveform included in each of the sensing data.
An output step that outputs the sound data or the scoring data, and
Is an information processing method executed by the information processing apparatus (300).
(Appendix 10)
A monitoring step for monitoring each feature calculated based on each sensing data from one or more sensors provided in a device including a power source.
A generation step of generating sound data or scoring data indicating the operating state of the device based on the vibration waveform included in each of the sensing data.
An output step that outputs the sound data or the scoring data, and
Is executed by the information processing apparatus (300).
1、2、3、4…監視システム、
20、30、40…センサ、
50…IOスレーブ、
60…波形計測ユニット、
100…制御装置、
102…プロセッサ、104…チップセット、106…主記憶装置、108…二次記憶装置、110…ネットワークコントローラ、114…メモリカードインターフェース、122…内部バスコントローラ、124…I/Oユニット、
152…受信部、154…処理部、156…送信部
200…保存装置、
300…情報処理装置、
302…プロセッサ、304…メモリ、306…記憶装置、308…入力I/F部、310…データI/F部、312…通信I/F部、314…表示装置、
352…受信部、354…監視部、356…生成部、358…出力部
 
 
 
1, 2, 3, 4 ... Monitoring system,
20, 30, 40 ... Sensor,
50 ... IO slave,
60 ... Waveform measurement unit,
100 ... Control device,
102 ... Processor, 104 ... Chipset, 106 ... Main storage, 108 ... Secondary storage, 110 ... Network controller, 114 ... Memory card interface, 122 ... Internal bus controller, 124 ... I / O unit,
152 ... Receiver unit, 154 ... Processing unit, 156 ... Transmitter unit 200 ... Storage device,
300 ... Information processing device,
302 ... Processor, 304 ... Memory, 306 ... Storage device, 308 ... Input I / F section, 310 ... Data I / F section, 312 ... Communication I / F section, 314 ... Display device,
352 ... Receiver unit, 354 ... Monitoring unit, 356 ... Generation unit, 358 ... Output unit

Claims (9)

  1.  動力源を含む装置に設けられた1又は複数のセンサから各センシングデータを受信し、前記各センシングデータから1又は複数の特徴量を算出する制御装置と、
     前記制御装置から受信された各特徴量と前記各センシングデータとを対応付けて保存する保存装置と、
     前記各特徴量を監視し、前記各センシングデータに含まれる振動波形に基づいて前記装置の動作状態を示す音データ又はスコアリングデータを生成し、前記音データ又は前記スコアリングデータを出力する情報処理装置と、
     を備える、監視システム。
    A control device that receives each sensing data from one or more sensors provided in a device including a power source and calculates one or more features from each of the sensing data.
    A storage device that stores each feature amount received from the control device in association with each of the sensing data,
    Information processing that monitors each of the feature quantities, generates sound data or scoring data indicating the operating state of the device based on the vibration waveform included in each of the sensing data, and outputs the sound data or the scoring data. With the device
    A monitoring system equipped with.
  2.  前記情報処理装置は、前記各特徴量に基づいて前記装置の異常が検知された場合、前記異常が検知された時点に基づく所定時間内の前記振動波形を前記音データに変換する、請求項1に記載の監視システム。 The information processing device, when an abnormality of the device is detected based on each of the feature quantities, converts the vibration waveform within a predetermined time based on the time when the abnormality is detected into the sound data. The monitoring system described in.
  3.  前記情報処理装置は、前記保存装置に保存される振動波形のうち、ユーザにより指定された区間の振動波形を前記音データに変換する、請求項1又は2に記載の監視システム。 The monitoring system according to claim 1 or 2, wherein the information processing device converts the vibration waveform of a section designated by the user among the vibration waveforms stored in the storage device into the sound data.
  4.  前記情報処理装置は、前記各特徴量との比較対象であり、異常判定に用いられる各閾値を、ユーザの正常又は異常の判定結果に基づいて調整する、請求項1から3のいずれか一項に記載の監視システム。 The information processing device is a comparison target with each of the feature quantities, and any one of claims 1 to 3 adjusts each threshold value used for abnormality determination based on the normality or abnormality determination result of the user. The monitoring system described in.
  5.  前記制御装置は、前記装置の異常内容に応じた特徴量の算出を追加可能である、請求項1から4のいずれか一項に記載の監視システム。 The monitoring system according to any one of claims 1 to 4, wherein the control device can additionally calculate a feature amount according to an abnormality content of the device.
  6.  前記情報処理装置は、前記スコアリングデータと、前記スコアリングデータに対する適正範囲とを表示装置に表示する、請求項1に記載の監視システム。 The monitoring system according to claim 1, wherein the information processing device displays the scoring data and an appropriate range for the scoring data on a display device.
  7.  前記情報処理装置は、前記スコアリングデータと前記適正範囲内との比較結果を前記表示装置に表示する、請求項6に記載の監視システム。 The monitoring system according to claim 6, wherein the information processing device displays a comparison result between the scoring data and the appropriate range on the display device.
  8.  動力源を含む装置に設けられた1又は複数のセンサからの各センシングデータに基づいて算出された各特徴量を監視する監視部と、
     前記各センシングデータに含まれる振動波形に基づいて前記装置の動作状態を示す音データ又はスコアリングデータを生成する生成部と、
     前記音データ又は前記スコアリングデータを出力する出力部と、
    を備える情報処理装置。
    A monitoring unit that monitors each feature calculated based on each sensing data from one or more sensors provided in the device including the power source.
    A generation unit that generates sound data or scoring data indicating the operating state of the device based on the vibration waveform included in each of the sensing data.
    An output unit that outputs the sound data or the scoring data,
    Information processing device equipped with.
  9.  動力源を含む装置に設けられた1又は複数のセンサからの各センシングデータに基づいて算出された各特徴量を監視する監視ステップと、
     前記各センシングデータに含まれる振動波形に基づいて前記装置の動作状態を示す音データ又はスコアリングデータを生成する生成ステップと、
     前記音データ又は前記スコアリングデータを出力する出力ステップと、
    を情報処理装置が実行する情報処理方法。
     
     
     
    A monitoring step for monitoring each feature calculated based on each sensing data from one or more sensors provided in a device including a power source.
    A generation step of generating sound data or scoring data indicating the operating state of the device based on the vibration waveform included in each of the sensing data.
    An output step that outputs the sound data or the scoring data, and
    Information processing method that the information processing device executes.


PCT/JP2019/010688 2019-03-14 2019-03-14 Monitoring system, information processing device, and information processing method WO2020183730A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010688 WO2020183730A1 (en) 2019-03-14 2019-03-14 Monitoring system, information processing device, and information processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010688 WO2020183730A1 (en) 2019-03-14 2019-03-14 Monitoring system, information processing device, and information processing method

Publications (1)

Publication Number Publication Date
WO2020183730A1 true WO2020183730A1 (en) 2020-09-17

Family

ID=72427043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010688 WO2020183730A1 (en) 2019-03-14 2019-03-14 Monitoring system, information processing device, and information processing method

Country Status (1)

Country Link
WO (1) WO2020183730A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279211A (en) * 2003-03-14 2004-10-07 Omron Corp Knowledge formation support system, parameter retrieval method and program product
US20070093987A1 (en) * 2005-10-07 2007-04-26 Omron Corporation Knowledge generation support system, parameter search method and program product
JP2009025015A (en) * 2007-07-17 2009-02-05 Omron Corp Knowledge-creation support system and program
JP2009128034A (en) * 2007-11-20 2009-06-11 Sekisui House Ltd System for examining abnormal noise of building
WO2017104401A1 (en) * 2015-12-15 2017-06-22 オムロン株式会社 Control device, monitoring system, control program, and recording medium
JP2018147419A (en) * 2017-03-09 2018-09-20 オムロン株式会社 Management device and management program
JP2018207650A (en) * 2017-06-02 2018-12-27 三菱日立パワーシステムズ株式会社 Feature quantity evaluation system for rotary electric machine and feature quantity evaluation method for rotary electric machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279211A (en) * 2003-03-14 2004-10-07 Omron Corp Knowledge formation support system, parameter retrieval method and program product
US20070093987A1 (en) * 2005-10-07 2007-04-26 Omron Corporation Knowledge generation support system, parameter search method and program product
JP2009025015A (en) * 2007-07-17 2009-02-05 Omron Corp Knowledge-creation support system and program
JP2009128034A (en) * 2007-11-20 2009-06-11 Sekisui House Ltd System for examining abnormal noise of building
WO2017104401A1 (en) * 2015-12-15 2017-06-22 オムロン株式会社 Control device, monitoring system, control program, and recording medium
JP2018147419A (en) * 2017-03-09 2018-09-20 オムロン株式会社 Management device and management program
JP2018207650A (en) * 2017-06-02 2018-12-27 三菱日立パワーシステムズ株式会社 Feature quantity evaluation system for rotary electric machine and feature quantity evaluation method for rotary electric machine

Similar Documents

Publication Publication Date Title
US10948103B2 (en) Methods and apparatus to monitor health information of a valve
RU2756731C2 (en) Methods and devices for monitoring the structure condition
US11428248B2 (en) Monitoring device and method for determining operating health of pressure medium operated device
WO2020039565A1 (en) Abnormality diagnosis method for bearings used in rotating machinery
US20190137360A1 (en) Vibration analyzer and machine component diagnosis system
KR20060100248A (en) Inspection apparatus, aid device for creating judgment model therefor, abnormality detection device for endurance test apparatus and endurance test method
JP2019067197A (en) Method for detecting trouble sign
JP2021022311A (en) Abnormality detecting device, abnormality detecting system, and program
US20140058615A1 (en) Fleet anomaly detection system and method
KR102433483B1 (en) System for Predicting Flaw of Facility Using Vibration Sensor
JP2016200451A (en) Signal processing method, signal processing device, and cutting work abnormality detection device
WO2015011791A1 (en) Abnormality detection evaluation system
JP2010276339A (en) Method and device for diagnosis sensor
WO2020183730A1 (en) Monitoring system, information processing device, and information processing method
JP5476413B2 (en) Diagnostic method for soundness of rotating machinery
US20220221375A1 (en) A Method and a Condition Monitoring Device for Monitoring a Rotating Equipment
JP6497919B2 (en) Diagnosis method and diagnosis system for equipment including rotating body and its bearing
US20220088802A1 (en) Information processing method, information processing apparatus, display method, display apparatus, recording medium, method of manufacturing products, and method of acquiring learning data
TWM575133U (en) Robotic arm dynamic monitoring system
TWI453389B (en) Surveillance method of rotary machine apparatus and surveillance system using the same
Takahashi Anomaly Detection using Vibration Analysis with Machine Learning Technology for Industrial IoT System
WO2018176212A1 (en) Method, apparatus and system for monitoring industrial robot
WO2023089773A9 (en) Abnormality diagnostic device, abnormality diagnostic system, and storage medium
JP7349971B2 (en) Predictive maintenance judgment device, predictive maintenance judgment method and program
WO2017212645A1 (en) Bearing diagnosing device and bearing diagnosing method, and rotating machine and maintenance method for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP