WO2020182323A1 - Hybrid-getriebeeinrichtung sowie kraftfahrzeug - Google Patents
Hybrid-getriebeeinrichtung sowie kraftfahrzeug Download PDFInfo
- Publication number
- WO2020182323A1 WO2020182323A1 PCT/EP2019/077878 EP2019077878W WO2020182323A1 WO 2020182323 A1 WO2020182323 A1 WO 2020182323A1 EP 2019077878 W EP2019077878 W EP 2019077878W WO 2020182323 A1 WO2020182323 A1 WO 2020182323A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- input shaft
- transmission
- transmission input
- transmission device
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/547—Transmission for changing ratio the transmission being a stepped gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
- B60K6/442—Series-parallel switching type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/36—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/38—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
- B60K6/387—Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/08—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
- F16H3/087—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
- F16H3/089—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears all of the meshing gears being supported by a pair of parallel shafts, one being the input shaft and the other the output shaft, there being no countershaft involved
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/08—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
- F16H3/087—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
- F16H3/091—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K2006/4816—Electric machine connected or connectable to gearbox internal shaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K2006/4833—Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/90—Vehicles comprising electric prime movers
- B60Y2200/92—Hybrid vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/08—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
- F16H2003/0803—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with countershafts coaxial with input or output shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/08—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
- F16H2003/0811—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts using unsynchronised clutches
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/003—Transmissions for multiple ratios characterised by the number of forward speeds
- F16H2200/0039—Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising three forward speeds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/003—Transmissions for multiple ratios characterised by the number of forward speeds
- F16H2200/0052—Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds
Definitions
- the invention relates to a hybrid transmission device with at least one drive device, a transmission with a first transmission input shaft and a second transmission input shaft mounted on the first transmission input shaft, at least two gear wheels being arranged on the second transmission input shaft.
- a hybrid transmission device is understood to mean a transmission device to which an internal combustion engine and at least one further drive device can be coupled. It is known to hybridize any automatized transmission, such as automatic transmissions and double clutch transmission.
- a transmission is known from DE10 201 1 005 451 A1 which has two electric motors and manages with 5 forward gears and one reverse gear.
- the gear wheel of the largest gear stage be arranged on the second transmission input shaft in the axial direction towards the outside.
- the connection of the drive device can be changed and a space-efficient arrangement can be achieved.
- the gear change transmission can advantageously have at least two, in particular exactly two, partial transmissions. This enables increased functionality and, for example, traction support both when changing gears, in particular when changing gears using the internal combustion engine and when changing gears electrically.
- At least one of the sub-transmissions can preferably be configured as a gear change transmission.
- exactly one sub-transmission can be formed as a gear change transmission.
- a partial transmission then has at least two gear steps, the other or the others exactly one gear step.
- a sub-transmission can advantageously have exactly two gear stages. Furthermore, a second partial transmission can have exactly one gear stage.
- the gear change transmission advantageously has gears and shift elements.
- the gears are preferably designed as spur gears.
- the transmission of the hybrid transmission device is preferably designed as a stationary transmission.
- stationary gearboxes the axes of all gears in the gearbox are stationary relative to the gearbox housing.
- the gear change transmission is formed out as a transmission in countershaft design.
- the gear change gear is preferably designed as a spur gear.
- the gears are then designed as spur gears.
- the transmission can be designed as a dual clutch transmission. It then has two transmission input shafts.
- the transmission can preferably have at least two shafts. If the transmission is designed as a stationary transmission, these are necessary to form the Gangstu.
- the hybrid transmission device can preferably have at least one, in particular precisely one, countershaft.
- at least one, in particular precisely one, countershaft When using a single countershaft, it is the case that there is only one connection point to the differential. As a result, installation space can be saved, which is the case both in the radial and in the axial direction.
- the transmission has exactly three shafts, namely two transmission input shafts and a countershaft, which is then also the output shaft.
- a gear stage is a mechanically implemented translation between two shafts.
- the overall ratio between the internal combustion engine or drive device and wheel has further ratios, where the ratios before a gear stage, the so-called pretranslations, can depend on the drive used.
- the subsequent translations are usually the same.
- the speed and the torque of a drive device are translated several times, namely by at least one gear pair between the output shaft of the drive device and a transmission input shaft. This is a pre-translation.
- a gear pair of a gear stage with a gear ratio dependent on the gear stage.
- a gear then has an overall gear ratio that depends on the drive and the gear stage.
- a gear then refers to the gear step that is set.
- the increasing numbers of the gear steps refer to a decreasing gear ratio as usual.
- a first gear stage G1 has a larger gear ratio than a second gear stage G2, etc. However, they do not indicate a specific gear ratio.
- the translation of the first gear stage G1 can, for example, correspond to that of a fourth gear stage in a transmission with six gear stages.
- the transmission of the hybrid transmission device preferably has at least three gear stages or transmission stages.
- the gears of a gear stage can be arranged in one gear plane if the gear stage has two gear wheels.
- the transmission advantageously has exactly three gear steps.
- the transmission of the hybrid transmission device preferably has one more gear plane than forward gear steps. With three gears, that's four wheel levels.
- the gear plane for connecting the output, e.g. a differential, is also counted.
- gear steps can be used with the internal combustion engine and electrically or fluidically. As a result, a maximum number of gears is obtained with a small number of gear steps.
- gear stage is reserved solely for the internal combustion engine of the hybrid drive train, that is to say a gear stage that is harmful to combustion.
- At least one other gear can be used in this embodiment for torque transmission of both the internal combustion engine and a drive device. All further gear steps are preferred for Torque transmission of both the internal combustion engine and a drive device can be used.
- the hybrid transmission device or the transmission can advantageously be designed free of a reversing gear for reversing direction. Accordingly, the reverse gear is not generated by the internal combustion engine, but by the or at least one of the electric motors.
- the first or second gear can be used.
- Gear gears for all even gear stages can preferably be arranged on the first transmission input shaft. Furthermore, gear wheels of all uneven gear stages can preferably be arranged on the second transmission input shaft. Gear wheels, also called gear gears, can be designed as fixed or loose gears. They are called gear wheels because they are assigned to a gear step.
- the largest odd gear stage or one of the gear wheels assigned to it is preferably located at the axial end of that transmission input shaft that carries one of the gear wheels of the largest uneven gear stage.
- the largest uneven gear stage is preferably the third gear stage and / or the transmission input shaft is the second transmission input shaft.
- the gear wheels of the largest gear stage can be located on the axial outer sides of the shafts, in particular the transmission input shafts. If the transmission has three gear stages, the third gear stage, that is to say its gears, is arranged axially on the outside.
- the gear wheels of the third gear stage and the first gear stage can preferably be arranged on the second transmission input shaft from the outside of the hybrid transmission device to the inside.
- the hybrid transmission device can have exactly one drive device.
- the hybrid transmission device can preferably have at least two, in particular exactly two, drive devices. What counts as a drive device is an arrangement of one or more drive devices that attack a certain point on the hybrid transmission device. I.e. that, for example, when the drive devices are designed as electric motors, several small electric motors are also regarded as one electric motor if they add up their torque at a single starting point on the transmission.
- both the first transmission input shaft and the second transmission input shaft can each be assigned at least one drive device.
- the gears implemented via the first transmission input shaft and the second transmission input shaft each form a partial transmission. It can therefore also be said that at least one drive device is assigned to each partial transmission.
- the hybrid transmission device preferably has at least two, in particular exactly two, partial transmissions.
- At least one of the drive devices is preferably designed as a generator.
- the first drive device and / or the second drive device are preferably designed both as a motor and as a generator.
- the drive device is preferably tied to the largest gear ratio of the transmission.
- two drive devices it is advantageously provided that in a first embodiment they are connected to the two largest gear steps.
- one drive device is connected to the largest gear step and the other to a connecting gear.
- a connection gear is a gear that is used exclusively to connect the drive device on a shaft, in particular transmission input shaft, is used and accordingly does not belong to a gear stage.
- the drive device is preferably connected to an axially outer gear stage, more precisely to one of the gear wheels of the gear stage, of the transmission.
- both are connected to an axially outer gear stage of the transmission.
- both drive devices are connected to an axially outer gear of the transmission. This allows the distance between the connection points to be maximized.
- the axial outer position here refers to the axis of the shaft or shafts to which the drive devices are connected, i.e. the transmission input shafts.
- connection or operative connection denotes any connection in terms of force flow, including across other components of the transmission.
- a connection denotes the first connection point for the transmission of drive torque between the drive device and the transmission.
- a connection to a gear stage that is to say one of its gear wheels, can take place via a gear wheel. If necessary, an additional intermediate gear is required to bridge the center distance between the output shaft of the drive device and the transmission input shaft. By connecting the drive device to a gear wheel, a further gear plane, which would only be available for connecting the drive device, can be avoided.
- At least one of the axially outer gear wheels which are arranged on the axis of the transmission input shafts, can advantageously be designed as a fixed wheel. Both axially outer gear wheels can preferably be designed as fixed wheels. Then the drive devices are connected to a fixed gear on the first transmission input shaft and / or a fixed gear on the second transmission input shaft. A connection gearwheel instead of one of the gearwheels can also be provided axially on the outside, as already described. This can also be designed as a fixed gear be. The drive devices can therefore preferably be arranged in a so-called P3 arrangement, that is to say on the gear set.
- a drive device can be connected to a connection gearwheel.
- the first drive device can preferably be connected to the internal combustion engine in a rotationally fixed manner in all internal combustion engine forward gears and / or during internal combustion engine gear changes. Then there is a constant connection between the internal combustion engine and the first drive device during an internal combustion engine drive.
- the first drive device can preferably be used at least temporarily as a generator in all forward gears.
- the second drive device can preferably be used for electrical or fluid forward starting.
- the second drive device can advantageously be coupled to the gear wheels of the first gear. Then the start-up is always taken over by the second drive device.
- the second drive device can preferably be used as the only drive source for starting ver.
- the second drive device can also be used for electric or fluid reversing. Here, too, it can preferably be provided that the second drive device is the only drive source when reversing. Then there are neither internal combustion engine nor hybrid reverse gears.
- the drive device or the drive devices can preferably be arranged axially parallel to the first transmission input shaft. They are then preferably also axially parallel to the second transmission input shaft and to the countershaft.
- an axially parallel arrangement is understood to mean not only completely parallel arrangements, there can also be an inclination or an angle between the longitudinal axis of the transmission input shafts and the longitudinal axis of the electric motor.
- there is an angle between the Longitudinal axis of an electric motor and the longitudinal axis of the transmission input shafts less than or equal to 10 °, more preferably less than 5 ° and in particular 0 ° provided. Slight inclinations of the drive devices compared to the gearbox can result for reasons of installation space.
- the drive devices can preferably be arranged in opposite directions. This means that the output shafts of the drive devices point to different, opposite sides. If the first drive device has its output side on the left, it has the second drive device on the right or, when changing the direction of view, one at the front and the other at the back. As a result, the point of application of the drive devices on the hybrid transmission device is axially spaced and an improved overlap is achieved in the axial direction.
- the axes of the drive devices can preferably lie above the axis of the transmission input shaft.
- the installation position is always referenced; the hybrid gear unit can also be upside down during assembly. Such positions are irrelevant for the following description.
- the axially parallel arrangement also enables one of the drive devices to be located below the axis of the transmission input shaft, it is advantageously provided that the drive devices and thus their axes are positioned above the transmission input shaft. With this arrangement, the packing density can be maximized.
- the axes of the drive devices can be arranged in the installed position on both sides of the axis of the transmission input shaft. Accordingly, one of the drive devices or their axis is to the left of the axis of the transmission input shaft and the other to the right of the axis.
- one of the drive devices or their axis is to the left of the axis of the transmission input shaft and the other to the right of the axis.
- the axes of the drive devices are arranged symmetrically to the axis of the transmission input shaft in a construction position.
- the axes of the drive devices should be arranged symmetrically with respect to the distance and the angular position, the angle being related to the Refers to perpendicular.
- the drive devices can be arranged in opposite directions without destroying the symmetrical arrangement, since it only depends on the position of the axes.
- the axes of the drive devices can preferably lie above the axes of one or more countershafts and / or one or more output shafts.
- the drive devices are therefore above the components of the spur gear assembly mentioned.
- the axes of the drive devices are the top axes of the hybrid transmission device in the installation position.
- the drive devices can be arranged offset in the circumferential direction.
- the circumferential direction is set in relation to the longitudinal axis of the transmission input shaft, which is viewed by definition in the present invention as the longitudinal axis of the hybrid transmission device.
- the drive devices are arranged at least partially overlapping in the axial direction.
- the overlap in the axial direction can preferably be more than 75 percent. If the drive devices are of unequal length, the calculation of the overlap is based on the shorter drive device. The overlap is determined on the basis of the housing of the drive devices, the output shaft of the drive devices is not taken into account.
- the drive devices can preferably be arranged in the axial direction at the same height as the gear change transmission.
- the overlap in the axial direction can preferably be more than 75%, advantageously it is 100%.
- the overlap is determined on the basis of the housing of the drive devices, and in particular the housing of the longer drive device.
- the output shaft of the drive devices is not taken into account.
- the first drive device and / or the second drive device can preferably be designed as an electric motor. Electric motors are common in hybrid transmission devices.
- the first drive device and / or the second drive device can be designed as a fluid power machine.
- a fluid power machine there are other prime movers whose use in hybrid transmission devices is conceivable. These can also be operated as a motor, i.e. with energy consumption, or as a generator, i.e. energy-converting.
- the energy store is, for example, a pressure store. The energy conversion then consists in converting the energy from the internal combustion engine into a pressure build-up.
- the first drive device and the second drive device can be switched under load.
- a power shift is understood here, as usual, to mean that no interruption of tractive force occurs at the output of the hybrid transmission device during a gear change, for example of the first drive device.
- a reduction of the torque present at the output is possible, but not a complete interruption.
- the motor vehicle can consistently be driven in large speed ranges, for example, exclusively electrically, the gear ratio, that is to say the gear, being selected to be optimized with regard to the speed and torque of the drive device.
- the second drive device can transmit torque to the output while the first drive device is switched.
- the gear stage via which the first drive device transmits torque to the output is changed.
- the first drive device can be torque to the output while the second drive device is switched.
- the gear step is changed via which the second drive device applies torque to the output drive transmits. It can therefore also be said that the drive devices can be switched under power.
- the combustion engine does not have to be started to change gears during an electric drive.
- At least one of the drive devices can preferably be connected to the transmission via a P3 connection. Both drive devices are advantageously connected to the transmission via this connection. With a P3 connection, the drive devices act on the transmission between the input shaft and the output shaft.
- both drive devices can be operatively connected to a differential via a maximum of four Zahnein handles. This achieves a good level of efficiency.
- the first transmission input shaft can advantageously be connected or connected directly to an internal combustion engine. Directly connected refers to a coupling-free connection; a damping device can be present, for example, between the crankshaft and the first transmission input shaft.
- a connection coupling can preferably be provided for connecting the first transmission input shaft and the second transmission input shaft. This is used to couple the partial transmissions. However, it is also a coupling for connecting the second transmission input shaft to the internal combustion engine, the connection running via the first transmission input shaft.
- the connecting coupling can preferably be arranged at the end of the second transmission input shaft pointing into the transmission. This allows a particularly compact design of the transmission.
- connection coupling can advantageously be designed as part of a two-sided switching device. Due to its positioning, the connecting coupling can be integrated into a two-sided switching device.
- a switching device is understood to mean an arrangement with one or two switching elements. The switching device is then formed on one side or on both sides.
- a shift element can be a clutch or a clutch.
- a coupling is used for the non-rotatable connection of two shafts and a clutch is used for the non-rotatable connection of a shaft with a hub rotatably mounted on it, for example a loose wheel.
- the connecting clutch is designed accordingly like a clutch and preferably also as part of a clutch and is called a clutch solely because it connects two shafts with one another.
- the clutches for connecting the transmission input shafts to the internal combustion engine connect the respective transmission input shaft to a crankshaft of the internal combustion engine.
- At least some of the clutches and / or shift clutches can preferably be designed as claw clutches.
- all clutches and shift clutches can be designed as claw clutches.
- At least one shifting device can advantageously be arranged on the first transmission input shaft.
- exactly one switching device can be arranged on the first transmission input shaft. This can advantageously be designed as a two-sided switching device.
- the shifting device on the first transmission input shaft preferably comprises a shifting clutch and a clutch.
- the second transmission input shaft can advantageously be designed to be free of shifting devices and / or to be free of idler gears.
- At least one fixed gear can preferably be arranged on the second transmission input shaft.
- at least two, in particular exactly two, Festrä can be arranged on the second transmission input shaft.
- At least one, in particular precisely one, idler gear can preferably be arranged on the first transmission input shaft.
- at least two, in particular exactly two, fixed gears can be arranged on the first transmission input shaft.
- One of the fixed wheels can be arranged as a gear wheel and the second fixed wheel as a connection gear.
- a fixed gear and a loose gear can be assigned to each gear stage, namely a single fixed gear and a single loose gear.
- each of the fixed gear and idler gear can always be clearly assigned to a single gear, that is, there are no winding turns using one gear for several gears.
- the internal combustion engine gears one and three can be viewed as winding or coupling gears, as described below, since the first transmission input shaft is interposed when the gears are formed.
- the hybrid transmission device or the transmission can have exactly two two-sided switching devices for generating three internal combustion engine gear stages.
- the connecting coupling forms part of one of the two-sided switching devices before geous.
- a differential can preferably be arranged in the axial direction at the engine-side end of the first transmission input shaft.
- a gear wheel for connecting the differential can advantageously be arranged axially on the outside on a countershaft. This results in a particularly compact construction of the hybrid transmission device.
- the hybrid transmission device can preferably have at least one, in particular precisely one, countershaft.
- at least one, in particular precisely one, countershaft When using a single countershaft, it is the case that there is only one connection point to the differential. As a result, installation space can be saved, which is the case both in the radial and in the axial direction.
- precisely one switching device can be arranged on the countershaft.
- exactly two idler gears can advantageously be arranged on the countershaft.
- the switching device on the countershaft can advantageously be designed on two sides.
- the shifting device arranged on the countershaft can be arranged offset in the axial direction with respect to the or more shifting devices on one of the, in particular the first, transmission input shaft.
- the shifting device can preferably be arranged on the countershaft in the axial direction closer to the internal combustion engine than the shifting device on the first transmission input shaft. A particularly compact arrangement of the hybrid transmission device can thereby be achieved.
- all switching elements of the switching devices on the pre-gel shaft can be designed as clutches.
- At least one, in particular exactly one, fixed gear for forming a forward gear stage can preferably be located on the countershaft.
- a single fixed gear for forming a forward gear stage can be arranged on the countershaft, which is arranged at one axial end of the countershaft.
- a fixed gear is preferably located at both axial ends of the countershaft and two idler gears in between.
- the hybrid transmission device can have a control device. This is designed to control the transmission as described.
- the invention relates to a hybrid drive train with a hybrid transmission device and at least one electric axle, in particular a rear axle.
- the hybrid drive train is characterized in that the hybrid transmission device is designed as described.
- This structure is preferably arranged with a single drive device in the hybrid transmission device.
- Ei ne electrical axis is an axis with one of these associated electric motor.
- the output of drive torque by the electric motor of the electric axle takes place in the power flow only after the hybrid transmission device.
- Is preferred electrical axis an assembly unit.
- the assembly unit can also have its own gearbox for stepping up the drive torque of the electric motor of the electric axle. This is preferably designed as a gear change transmission.
- this can support the drive torque.
- the invention also relates to a motor vehicle with an internal combustion engine and a hybrid transmission device or a hybrid drive train.
- the motor vehicle is characterized in that the hybrid transmission device or the hybrid drive train is designed as described.
- the hybrid transmission device is advantageously arranged as a front-transverse transmission device in the motor vehicle.
- the motor vehicle preferably has a control device for controlling the hybrid transmission device.
- the control device can therefore be part of the hybrid transmission device, but does not have to be.
- a battery is preferably arranged in the motor vehicle which enables the motor vehicle to be operated electrically for at least 15 minutes.
- the internal combustion engine can use one of the electric motors as a generator to generate electricity that goes directly to the other electric motor.
- the motor vehicle can have a pressure accumulator. This can be used to operate a fluid power machine.
- Figure 1 a motor vehicle
- Figure 2 is a wheel set scheme in a first embodiment
- Figure 3 shows a wheel set scheme in a second embodiment
- FIG. 4 shows a hybrid transmission device in a side view.
- FIG. 1 shows a motor vehicle 1 with an internal combustion engine 2 and a hybrid transmission device 3.
- the hybrid transmission device 3 also includes at least one electric motor and switching elements so that it can be installed as an assembly unit. However, this is not mandatory, in principle the wheel set can also form an assembly unit without electric motors already connected.
- a control device 4 is provided to control the hybrid transmission device 3. This can be part of the hybrid transmission device 3 or of the motor vehicle 1.
- FIG. 2 shows the hybrid transmission device 3 and in particular its Gang Callge drives 8 in the form of a gear set diagram.
- the hybrid transmission device 3 is described below, starting with the internal combustion engine 2.
- the crankshaft 9 is connected to the first transmission shaft 12 via a damping device 10.
- the damping device 10 can comprise a torsion damper and / or a damper, in particular a speed-adaptive damper, and / or a slip clutch.
- a second transmission input shaft 14 is mounted on the first transmission input shaft 12.
- Two fixed gears 16 and 18 are arranged on the second transmission input shaft 14.
- the fixed gear 16 is the fixed gear of the third gear stage G3 and the fixed gear 18 is the fixed gear of the first gear stage G1.
- the second transmission input shaft 14 has two ends, namely one to the outside of the hybrid transmission device 3 facing end 20 and one to the inside of the Hybrid transmission device 3 facing end 22.
- the first transmission input shaft 12 has an engine-side end 21 and an end 23 facing away from the engine, reference being made here to the position compared to the internal combustion engine 2.
- a shifting device S1 follows with a clutch K3 and a shifting clutch B.
- a loose wheel 24 can be connected to the first transmission input shaft 14 in a rotationally fixed manner.
- the idler gear 24 is the idler gear of the second gear stage G2.
- the clutch K3 can connect the partial transmissions 26 and 28.
- the partial transmission 26 has a single straight gear stage, the gear stage G2.
- the sub-transmission 28 has the odd gear steps G1 and G3.
- connection gear 30 follows on the first transmission input shaft 7. The task of this is to connect the electric motor EM1 to the first transmission input shaft 12 and thus to the transmission 8. The connection gear 30 is therefore not a gear wheel.
- the second transmission input shaft 14 is thus formed from switching element-free and free wheel.
- a single shifting device S1 is arranged on the first transmission input shaft 12.
- the switching device S1 comprises the clutch K3 and the switching clutch B and is accordingly designed on two sides.
- the axis of rotation of the first transmission input shaft 7 and the second transmission input shaft 9 is denoted by A1.
- a fixed gear and a loose gear are assigned to each gear stage, namely a single fixed gear and a single loose gear.
- Each fixed gear and idler gear is always clearly assigned to a single gear stage, i.e. there are no spiral gears using one gear wheel for several gear stages. Nevertheless, the gears G1 and G3 can be viewed as coupling gears, since the first transmission input shaft 12 is interposed when the gears G1 and G3 are formed.
- the electric motors EM1 and EM2 are connected as shown, specifically to the axially outer gears 16 and 30.
- an axi al extremely short hybrid transmission device 3 can be created become.
- the electric motors EM1 and EM2 are arranged parallel to the transmission input shaft 12 and the electric motors EM1 and EM2 have their output on opposite sides. That is, as shown in Figure 2, the output or the output shaft 44 of the electric motor EM1 points to the engine-facing end 46 of the gear change transmission 8 and the output shaft 48 of the electric motor EM2 to the motor-facing end 50 of the gear change transmission 8. In Figure 2 is one end points to the left and one to the right.
- the electric motors EM1 and EM2 are arranged partially overlapping in the axial direction. Due to the arrangement of the switching elements S1 and S2 already described above and the formation of the reverse gear without a reversing gear, a length of the hybrid transmission device 3 of little more than 30 cm is made possible.
- FIG. 3 shows a modification of the structure according to FIG. 2.
- the only difference is the electric motor EM1 in the transmission.
- An electrical load switchability can then be achieved between the electric motor EM2 in the hybrid transmission device 3 and the electric axle 6.
- FIG. 4 shows a side view of the transmission according to FIG. 2.
- the axes A4 and A5 of the electric motors EM1 and EM2 are arranged above and to the side of the axis A1 of the first transmission input shaft 12 and also of the second transmission input shaft 14.
- the axis A2 of the countershaft 34 and the axis A3 of the differential 32 are advantageously below the axis A1 of the first transmission input shaft 12.
- the axes A4 and A5 are arranged symmetrically to the axis A1 in such a way that the distance between the axes A4 and A5 and the axis A1 is the same and the angle compared to the perpendicular 52 is also the same.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- General Engineering & Computer Science (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
Die Erfindung betrifft eine Hybrid-Getriebeeinrichtung (3) mit wenigstens einer Antriebseinrichtung (EM2), einem Getriebe (4) mit einer ersten Getriebeeingangswelle (12) und einer auf der ersten Getriebeeingangswelle (12) gelagerten zweiten Getriebeeingangswelle (14), wobei auf der zweiten Getriebeeingangswelle (14) wenigstens zwei Gangräder (16, 18) angeordnet sind, dadurch gekennzeichnet, dass das Gangrad (16) der größten Gangstufe (G3) auf der zweiten Getriebeeingangswelle (14) in axialer Richtung zur Außenseite (46, 50) hin angeordnet ist. Daneben betrifft die Erfindung ein Kraftfahrzeug.
Description
Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug
Die Erfindung betrifft eine Hybrid-Getriebeeinrichtung mit wenigstens einer Antriebs einrichtung, einem Getriebe mit einer ersten Getriebeeingangswelle und einer auf der ersten Getriebeeingangswelle gelagerten zweiten Getriebeeingangswelle, wobei auf der zweiten Getriebeeingangswelle wenigstens zwei Gangräder angeordnet sind.
Es ist bekannt, Hybrid-Getriebeeinrichtungen zur Senkung des C02-Ausstoßes von Kraftfahrzeugen zu verwenden. Unter einer Hybrid-Getriebeeinrichtung wird dabei eine Getriebeeinrichtung verstanden, an die ein Verbrennungsmotor und wenigstens eine weitere Antriebseinrichtung ankoppelbar sind. Es ist bekannt, jegliche automati sierten Getriebe zu hybridisieren, beispielsweise Automatgetriebe und Doppelkupp lungsgetriebe. Aus der DE10 201 1 005 451 A1 ist ein Getriebe bekannt, das zwei Elektromotoren aufweist und mit 5 Vorwärtsgängen sowie einem Rückwärtsgang auskommt.
Ausgehend hiervon ist es Aufgabe der vorliegenden Erfindung, eine Hybrid- Getriebeeinrichtung anzugeben, das für Front-Quer-Anwendungen kompaktbauend ausgestaltet ist.
Zur Lösung dieses Problems wird vorgeschlagen, dass das Gangrad der größten Gangstufe auf der zweiten Getriebeeingangswelle in axialer Richtung zur Außenseite hin angeordnet ist. Dadurch kann die Anbindung der Antriebseinrichtung verändert werden und dadurch eine bauraumeffiziente Anordnung erzielt werden.
Das Getriebe der Hybrid-Getriebeeinrichtung ist vorteilhafterweise als Gangwechsel getriebe ausgebildet. Es hat dann wenigstens zwei diskrete Gangstufen.
Vorteilhafterweise kann das Gangwechselgetriebe wenigstens zwei, insbesondere genau zwei, Teilgetriebe aufweisen. Dies ermöglicht eine erhöhte Funktionalität und bspw. Zugkraftunterstützung sowohl beim Gangwechsel, insbesondere einem ver brennungsmotorischen als auch einem elektrischen Gangwechsel.
Bevorzugt kann wenigstens eines der Teilgetriebe als Gangwechselgetriebe ausge bildet sein. Insbesondere kann genau ein Teilgetriebe als Gangwechselgetriebe aus gebildet sein. Ein Teilgetriebe hat dann wenigstens zwei Gangstufen, das andere oder die anderen genau eine Gangstufe.
Vorteilhafterweise kann ein Teilgetriebe genau zwei Gangstufen aufweisen. Weiter hin kann ein zweites Teilgetriebe genau eine Gangstufe aufweisen.
Vorteilhafterweise weist das Gangwechselgetriebe Zahnräder und Schaltelemente auf. Die Zahnräder sind bevorzugt als Stirnräder ausgebildet.
Vorzugsweise ist das Getriebe der Hybrid-Getriebeeinrichtung als Standgetriebe ausgebildet. Bei Standgetrieben sind die Achsen aller Zahnräder im Getriebe relativ zum Getriebegehäuse ortsfest.
Bevorzugt ist das Gangwechselgetriebe als Getriebe in Vorgelegebauweise ausge bildet. Vorzugsweise ist das Gangwechselgetriebe als Stirnradgetriebe ausgebildet. Die Zahnräder sind dann als Stirnräder ausgebildet.
Weiterhin kann das Getriebe als Doppelkupplungsgetriebe ausgestaltet sein. Es weist dann zwei Getriebeeingangswellen auf.
Bevorzugt kann das Getriebe wenigstens zwei Wellen aufweisen. Diese sind bei Ausgestaltung des Getriebes als Standgetriebe notwendig zur Bildung der Gangstu fen.
Weiterhin weist das Getriebe vorzugsweise wenigstens eine, insbesondere wenigs tens zwei, Getriebeeingangswellen auf. Bevorzugt weist das Getriebe genau zwei Getriebeeingangswellen auf. Mit drei oder mehr Getriebeeingangswellen kann zwar eine größere Anzahl an Teilgetrieben erzeugt werden, es hat sich aber herausge stellt, dass die beschriebene Funktionalität mit bereits zwei Getriebeeingangswellen erreicht werden kann.
Vorzugsweise ist die erste Getriebeeingangswelle als Vollwelle ausgebildet. Unab hängig von der Ausgestaltung der ersten Getriebeeingangswelle ist die zweite Ein gangswelle bevorzugt auf der ersten Getriebeeingangswelle gelagert, d.h. sie ist ko axial zu dieser angeordnet und umgreift sie. Sie ist dann eine Hohlwelle.
Bevorzugt kann die Hybrid-Getriebeeinrichtung wenigstens eine, insbesondere ge nau eine, Vorgelegewelle aufweisen. Bei der Verwendung einer einzigen Vorgelege welle ist es dann so, dass eine einzige Anbindungsstelle an das Differential vorhan den ist. Dadurch kann Bauraum eingespart werden, was sowohl in radialer als auch in axialer Richtung der Fall ist.
Somit weist das Getriebe in einer bevorzugten Ausführungsform genau drei Wellen auf, nämlich zwei Getriebeeingangswellen und eine Vorgelegewelle, die dann auch die Abtriebswelle ist.
Bei einer Allradvariante des Getriebes kommt immer eine Welle hinzu, die als Ne benabtrieb die zweite Kraftfahrzeugachse antreibt.
Eine Gangstufe ist wie eingangs bereits beschrieben eine mechanisch realisierte Übersetzung zwischen zwei Wellen. Die Gesamtübersetzung zwischen Verbren nungsmotor oder Antriebseinrichtung und Rad weist weitere Übersetzungen auf, wo bei die Übersetzungen vor einer Gangstufe, die sogenannten Vorübersetzungen, vom verwendeten Antrieb abhängen können. Die Nachübersetzungen sind üblicher weise gleich. In einer weiter unten gezeigten Ausführungsform wird die Drehzahl und das Drehmoment einer Antriebseinrichtung mehrmals übersetzt, nämlich durch we nigstens ein Zahnradpaar zwischen der Ausgangswelle der Antriebseinrichtung und einer Getriebeeingangswelle. Dies ist eine Vorübersetzung. Dann folgt ein Zahnrad paar einer Gangstufe mit einer von der Gangstufe abhängigen Übersetzung. Schließ lich folgt ein Zahnradpaar zwischen Vorgelegewelle und Differenzial als Nachüber setzung. Ein Gang weist dann eine Gesamtübersetzung auf, die vom Antrieb und der Gangstufe abhängt. Ohne weitere Angaben bezieht sich ein Gang dann auf die ein gesetzte Gangstufe.
Lediglich der Vollständigkeit halber sei darauf hingewiesen, dass die aufsteigenden Ziffern der Gangstufen wie üblich auf eine sinkende Übersetzung verweisen. Eine erste Gangstufe G1 hat eine größere Übersetzung als eine zweite Gangstufe G2, etc. Sie zeigen aber keine konkrete Übersetzung an. Die Übersetzung der ersten Gang stufe G1 kann bspw. der eines vierten Gangstufe in einem Getriebe mit sechs Gang stufen entsprechen.
Wird Drehmoment vom Verbrennungsmotor über die erste Gangstufe G1 übertragen, so wird dies als verbrennungsmotorischer Gang V1 bezeichnet. Übertragen die zwei te Antriebseinrichtung und der Verbrennungsmotor gleichzeitig über die erste Gang stufe G1 Drehmoment, wird dies als hybridischer Gang H 11 bezeichnet. Überträgt nur die zweite Antriebseinrichtung Drehmoment über die erste Gangstufe G1 wird von einem elektrischen Gang E1 gesprochen.
Bevorzugt weist das Getriebe der Hybrid-Getriebeeinrichtung wenigstens drei Gang stufen oder Übersetzungsstufen auf. Die Zahnräder einer Gangstufe können in einer Radebene angeordnet sein, wenn die Gangstufe zwei Gangräder aufweist. Vorteil hafterweise weist das Getriebe genau drei Gangstufen auf.
Bevorzugt weist das Getriebe der Hybrid-Getriebeeinrichtung eine Radebene mehr als Vorwärts-Gangstufen auf. Bei drei Gangstufen sind das vier Radebenen. Dabei wird die Radebene zur Anbindung des Abtriebs, bspw. eines Differenzials, mitge zählt.
In einer ersten Alternative können alle Gangstufen verbrennungsmotorisch und elektrisch oder fluidisch genutzt werden. Dadurch wird eine maximale Anzahl an Gängen bei einer geringen Anzahl von Gangstufen erhalten. In einer zweiten Alterna tive ist wenigstens eine, insbesondere genau eine, Gangstufe alleine dem Verbren nungsmotor des Hybrid -Antriebsstrangs Vorbehalten, also eine verbrennungsmooto- rische Gangstufe. Wenigstens eine andere Gangstufe kann bei dieser Ausgestaltung zur Drehmomentübertragung sowohl des Verbrennungsmotors als auch einer An triebseinrichtung verwendbar sein. Bevorzugt sind alle weiteren Gangstufen zur
Drehmomentübertragung sowohl des Verbrennungsmotors als auch einer Antriebs einrichtung verwenbar.
Vorteilhafterweise kann die Hybrid -Getriebeeinrichtung bzw. das Getriebe frei von einem Umkehr-Zahnrad zur Richtungsumkehr ausgebildet sein. Dementsprechend wird der Rückwärtsgang nicht über den Verbrennungsmotor erzeugt, sondern über den oder wenigstens einen der Elektromotoren. Dabei kann beispielsweise erste o- der zweite Gangstufe verwendet werden.
Vorzugsweise können auf der ersten Getriebeeingangswelle Gangzahnräder für alle geraden Gangstufen angeordnet sein. Weiterhin können bevorzugt an der zweiten Getriebeeingangswelle Gangräder aller ungeraden Gangstufen angeordnet sein. Gangräder, auch Gangzahnräder genannt, können als Festräder oder Losräder aus gebildet sein. Sie werden Gangräder genannt, weil sie einer Gangstufe zugeordnet sind.
Bevorzugt befindet sich die größte ungerade Gangstufe bzw. eines der ihr zugeord neten Gangräder am axialen Ende derjenigen Getriebeeingangswelle, die eines der Gangzahnräder der größten ungeraden Gangstufe trägt. Bevorzugt ist die größte u n gerade Gangstufe die dritte Gangstufe und/oder die Getriebeeingangswelle ist die zweite Getriebeeingangswelle.
In einer ersten Ausgestaltung können sich zusammenfassend gesprochen die Gang zahnräder der größten Gangstufe an der axialen Außenseiten der Wellen, insbeson dere der Getriebeeingangswellen, befinden. Weist das Getriebe drei Gangstufen auf, so ist die dritte Gangstufe, also deren Zahnräder, axial außen angeordnet.
Vorzugsweise können auf der zweiten Getriebeeingangswelle von der Außenseite der Hybrid-Getriebeeinrichtung zur Innenseite hin die Gangräder der dritten Gangstu fe und der ersten Gangstufe angeordnet sein.
Vorzugsweise können auf der ersten Getriebeeingangswelle von der Außenseite der Hybrid-Getriebeeinrichtung zur Innenseite hin das Anbindungszahnrad einer An-
triebseinrichtung und ein Gangrad der zweiten Gangstufe angeordnet sein. Alternativ kann auf der ersten Getriebeeingangswelle auch ausschließlich ein Gangrad der zweiten Gangstufe angeordnet sein.
In einer ersten Ausgestaltung kann die Hybrid-Getriebeeinrichtung genau eine An triebseinrichtung aufweisen.
Vorzugsweise kann die Hybrid-Getriebeeinrichtung wenigstens zwei, insbesondere genau zwei, Antriebseinrichtungen aufweisen. Als eine Antriebseinrichtung zählt da bei eine Anordnung einer oder mehrerer Antriebseinrichtungen, die an einer be stimmten Stelle der Hybrid-Getriebeeinrichtung angreifen. D.h. dass bspw. bei Aus bildung der Antriebseinrichtungen als Elektromotoren auch mehrere kleine Elektro motoren als ein Elektromotor angesehen werden, wenn sie ihr Drehmoment an ei nem einzigen Ausgangspunkt am Getriebe summieren.
Vorteilhafterweise kann sowohl der ersten Getriebeeingangswelle als auch der zwei ten Getriebeeingangswelle jeweils wenigstens eine Antriebseinrichtung zugeordnet sein. Die über die erste Getriebeeingangswelle und die über die zweite Getriebeein gangswelle realisierten Gänge bilden jeweils ein Teilgetriebe. Man kann also auch sagen, dass jedem Teilgetriebe wenigstens eine Antriebseinrichtung zugeordnet ist. Bevorzugt weist die Hybrid-Getriebeeinrichtung wenigstens zwei, insbesondere ge nau zwei, Teilgetriebe auf.
Bevorzugt ist wenigstens eine der Antriebseinrichtungen als Generator ausgebildet. Vorzugsweise sind die erste Antriebseinrichtung und/oder die zweite Antriebseinrich tung sowohl als Motor als auch als Generator ausgebildet.
Vorzugsweise ist die Antriebseinrichtung an die größte Gangstufe des Getriebes an gebunden. Bei zwei Antriebseinrichtungen ist vorteilhafterweise vorgesehen, dass sie in einer ersten Ausgestaltung an die beiden größten Gangstufen angebunden sind. In einer weiteren Ausgestaltung ist vorgesehen, dass eine Antriebseinrichtung an die größte Gangstufe angebunden ist und die andere an ein Anbindungszahnrad. Ein Anbindungszahnrad ist ein Zahnrad, das ausschließlich der Anbindung der Antriebs-
einrichtung an eine Welle, insbesondere Getriebeeingangswelle, dient und dement sprechend nicht zu einer Gangstufe gehört.
Vorzugsweise ist die Antriebseinrichtung an eine axial außen gelegene Gangstufe, genauer gesagt an eines der Zahnräder der Gangstufe, des Getriebes angebunden. Bei zwei Antriebseinrichtungen ist vorteilhafterweise vorgesehen, dass beide an eine axial außen gelegene Gangstufe des Getriebes angebunden sind. Alternativ kann vorgesehen sein, dass beide Antriebseinrichtungen an ein axial außen gelegenes Zahnrad des Getriebes angebunden sind. Dadurch kann der Abstand der Anbin dungsstellen maximiert werden. Die axiale Außenlage bezieht sich hier auf die Achse der Welle oder Wellen, an denen die Antriebseinrichtungen angebunden sind, also die Getriebeeingangswellen.
An dieser Stelle sei festgestellt, dass in der vorliegenden Erfindung eine Verbindung oder Wirkverbindung jegliche kraftflussmäßige Verbindung auch über andere Bautei le des Getriebes hinweg bezeichnet. Eine Anbindung bezeichnet dagegen den ersten Verbindungspunkt zur Antriebsmomentübertragung zwischen Antriebseinrichtung und Getriebe.
Eine Anbindung an eine Gangstufe, also eines ihrer Gangzahnräder, kann dabei über ein Zahnrad erfolgen. Gegebenenfalls ist ein zusätzliches Zwischenrad erforder lich, um den Achsabstand zwischen der Ausgangswelle der Antriebseinrichtung und der Getriebeeingangswelle zu überbrücken. Durch die Anbindung der Antriebsein richtung an ein Gangzahnrad kann eine weitere Radebene, die nur zur Anbindung der Antriebseinrichtung vorhanden wäre, vermieden werden.
Vorteilhafterweise kann wenigstens eines der axial äußeren Gangräder, die auf der Achse der Getriebeeingangswellen angeordnet sind, als Festrad ausgebildet sein. Bevorzugt können beide axial äußeren Gangräder als Festräder ausgebildet sein. Dann werden die Antriebseinrichtungen an ein Festrad auf der ersten Getriebeein gangswelle und/oder ein Festrad auf der zweiten Getriebeeingangswelle angebun den. Auch ein Anbindungszahnrad statt eines der Gangzahnräder kann axial außen vorgesehen sein wie bereits beschrieben. Auch dieses kann als Festrad ausgebildet
sein. Die Antriebseinrichtungen können also bevorzugt in einer sogenannten P3- Anordnung, also am Getrieberadsatz, angeordnet sein.
Bevorzugt kann eine Antriebseinrichtung an die dritte Gangstufe angebunden sein.
Alternativ oder zusätzlich kann eine Antriebseinrichtung an ein Anbindungszahnrad angebunden sein.
Vorzugsweise kann die erste Antriebseinrichtung in allen verbrennungsmotorischen Vorwärtsgängen und/oder während verbrennungsmotorischer Gangwechsel mit dem Verbrennungsmotor drehfest verbunden sein. Dann besteht während einer verbren nungsmotorischen Fahrt eine konstante Verbindung zwischen Verbrennungsmotor und der ersten Antriebseinrichtung. Vorzugsweise kann die erste Antriebseinrichtung in allen Vorwärtsgängen zumindest zeitweise als Generator verwendet werden.
Vorzugsweise kann die zweite Antriebseinrichtung zum elektrischen oder fluiden Vorwärts-Anfahren verwendet werden. Dabei kann die zweite Antriebseinrichtung vorteilhafterweise mit den Gangrädern des ersten Ganges gekoppelt sein. Dann wird das Anfahren immer von der zweiten Antriebseinrichtung übernommen. Die zweite Antriebseinrichtung kann bevorzugt als einzige Antriebsquelle zum Anfahren ver wendet werden. Ebenso kann die zweite Antriebseinrichtung zum elektrischen oder fluiden Rückwärtsfahren verwendet werden. Bevorzugt kann auch hier vorgesehen sein, dass die zweite Antriebseinrichtung die einzige Antriebsquelle beim Rückwärts fahren ist. Dann gibt es weder verbrennungsmotorische noch hybridische Rück wärtsgänge.
Vorzugsweise können die Antriebseinrichtung oder die Antriebseinrichtungen achs- parallel zur ersten Getriebeeingangswelle angeordnet sein. Sie sind dann vorzugs weise auch achsparallel zur zweiten Getriebeeingangswelle und zur Vorgelegewelle. Unter einer achsparallelen Anordnung werden in der vorliegenden Erfindung nicht nur vollständig parallele Anordnungen verstanden, es kann auch eine Neigung bzw. ein Winkel zwischen der Längsachse der Getriebeeingangswellen und der Längs achse des Elektromotors vorliegen. Vorzugsweise ist ein Winkel zwischen der
Längsachse eines Elektromotors und der Längsachse der Getriebeeingangswellen kleiner gleich 10°, weiter vorzugsweise kleiner als 5° und insbesondere 0° vorgese hen. Leichte Schrägstellungen der Antriebseinrichtungen im Vergleich zum Getriebe können sich aus Bauraumgründen ergeben.
Vorzugsweise können die Antriebseinrichtungen gegenläufig angeordnet sein. Das heißt, dass die Ausgangswellen der Antriebseinrichtungen zu unterschiedlichen, ent gegengesetzten Seiten hinweisen. Hat die erste Antriebseinrichtung ihre Ausgangs seite links, hat sie die zweite Antriebseinrichtung rechts oder bei Wechsel der Blick richtung die eine vorne und die andere hinten. Dadurch wird der Angriffspunkt der Antriebseinrichtungen an der Hybrid-Getriebeeinrichtung axial beabstandet und eine verbesserte Überdeckung in axialer Richtung erreicht.
Vorzugsweise können die Achsen der Antriebseinrichtungen in Einbauposition ober halb der Achse der Getriebeeingangswelle liegen. Im Folgenden wird immer auf die Einbauposition referenziert, während der Montage kann die Hybrid- Getriebeeinrichtung auch auf dem Kopf stehen. Derartige Positionen sind aber für die folgende Beschreibung irrelevant. Während die achsparallele Anordnung es auch ermöglicht, dass sich eine der Antriebseinrichtungen unterhalb der Achse der Getrie beeingangswelle befindet ist vorteilhafterweise vorgesehen, dass die Antriebseinrich tungen und damit ihre Achsen oberhalb der Getriebeeingangswelle positioniert sind. Bei dieser Anordnung kann die Packungsdichte maximiert werden.
Weiterhin können die Achsen der Antriebseinrichtungen in Einbauposition beidseitig der Achse der Getriebeeingangswelle angeordnet sein. Dementsprechend ist eine der Antriebseinrichtungen bzw. deren Achse links der Achse der Getriebeeingangs welle und die andere rechts der Achse. Hier wird auf die Betrachtung der Achsen im Querschnitt referenziert.
Bevorzugt kann vorgesehen sein, dass die Achsen der Antriebseinrichtungen in Ein bauposition symmetrisch zur Achse der Getriebeeingangswelle angeordnet sind. Ins besondere sollen die Achsen der Antriebseinrichtungen in Bezug auf den Abstand und die Winkelposition symmetrisch angeordnet sein, wobei sich der Winkel auf die
Lotrechte bezieht. Dabei können die Antriebseinrichtungen gegenläufig angeordnet sein, ohne die symmetrische Anordnung zu zerstören, da es hierbei lediglich auf die Lage der Achsen ankommt.
Vorzugsweise können die Achsen der Antriebseinrichtungen in Einbauposition ober halb der Achsen einer oder mehrerer Vorgelegewellen und/oder einer oder mehrerer Abtriebswellen liegen. Die Antriebseinrichtungen liegen also oberhalb der genannten Komponenten der Stirnradgetriebeanordnung. Alternativ kann man dementspre chend sagen, dass die Achsen der Antriebseinrichtungen in Einbauposition die obersten Achsen der Hybrid-Getriebeeinrichtung sind.
Vorzugsweise können die Antriebseinrichtungen in Umfangsrichtung versetzt ange ordnet sein. Die Umfangsrichtung ist dabei in Bezug auf die Längsachse der Getrie beeingangswelle festgelegt, die per Definition in der vorliegenden Erfindung als Längsachse der Hybrid-Getriebeeinrichtung angesehen wird.
Dann ist bevorzugt, dass die Antriebseinrichtungen in axialer Richtung zumindest teilweise überlappend angeordnet sind. Bevorzugt kann der Überlapp in axialer Rich tung mehr als 75 Prozent betragen. Sollten die Antriebseinrichtungen ungleich lang sein wird dabei bei der Berechnung des Überlapps von der kürzeren Antriebseinrich tung ausgegangen. Der Überlapp ermittelt sich dabei anhand des Gehäuses der An triebseinrichtungen, die Ausgangswelle der Antriebseinrichtungen ist nicht berück sichtigt.
Die Antriebseinrichtungen können in axialer Richtung bevorzugt auf gleicher Höhe wie das Gangwechselgetriebe angeordnet sein. Bevorzugt kann der Überlapp in axialer Richtung mehr als 75% betragen, vorteilhafterweise ist er 100%. Hier ermittelt sich der Überlapp anhand des Gehäuses der Antriebseinrichtungen, und insbeson dere des Gehäuses der längeren Antriebseinrichtung. Die Ausgangswelle der An triebseinrichtungen ist nicht berücksichtigt.
Vorzugsweise können die erste Antriebseinrichtung und/oder die zweite Antriebsein richtung als Elektromotor ausgebildet sein. Elektromotoren sind verbreitet in Hybrid- Getriebeeinrichtungen.
Alternativ oder zusätzlich können die erste Antriebseinrichtung und/oder die zweite Antriebseinrichtung als Fluidkraftmaschine ausgebildet sein. Es gibt neben Elektro motoren andere Kraftmaschinen, deren Einsatz in Hybrid-Getriebeeinrichtungen denkbar ist. Diese können ebenfalls motorisch, also unter Energieverbrauch, oder generatorisch, also energieumwandelnd, betrieben werden. Im Fall einer Fluidkraft maschine ist der Energiespeicher bspw. ein Druckspeicher. Die Energieumwandlung besteht dann im Wandeln der Energie aus dem Verbrennungsmotor in einen Druck aufbau.
Vorteilhafterweise können die erste Antriebseinrichtung und die zweite Antriebsein richtung unter Last geschaltet werden. Unter einer Lastschaltung wird hier wie üblich verstanden, dass am Abtrieb der Hybrid-Getriebeeinrichtung während eines Gang wechsels bspw. der ersten Antriebseinrichtung keine Zugkraftunterbrechung auftritt. Eine Verringerung des am Abtrieb vorhandenen Drehmomentes ist möglich, aber keine vollständige Unterbrechung.
Dadurch kann das Kraftfahrzeug durchgehend in großen Geschwindigkeitsbereichen bspw. ausschließlich elektrisch gefahren werden, wobei die Übersetzung, also der Gang, jeweils im Hinblick auf Drehzahl und Drehmoment der Antriebseinrichtung op timiert gewählt sind.
Bevorzugt kann die zweite Antriebseinrichtung Drehmoment auf den Abtrieb abge ben, während die erste Antriebseinrichtung geschaltet wird. Mit anderen Worten wird die Gangstufe gewechselt, über die die erste Antriebseinrichtung Drehmoment auf den Abtrieb überträgt.
Vorzugsweise kann die erste Antriebseinrichtung Drehmoment auf den Abtrieb abge ben, während die zweite Antriebseinrichtung geschaltet wird. D.h. dass die Gangstu fe gewechselt wird, über die die zweite Antriebseinrichtung Drehmoment auf den Ab-
trieb überträgt. Man kann also auch sagen, dass die Antriebseinrichtungen unterei nander lastschaltbar sind. Der Verbrennungsmotor muss also nicht gestartet werden für Gangwechsel während einer elektrischen Fahrt.
Bevorzugt kann wenigstens eine der Antriebseinrichtungen über eine P3-Anbindung an das Getriebe angebunden sein. Vorteilhafterweise sind beide Antriebseinrichtun gen über diese Anbindung an das Getriebe angebunden. Bei einer P3-Anbindung greifen die Antriebseinrichtungen zwischen der Eingangswelle und der Ausgangswel le am Getriebe an.
Vorteilhafterweise können beide Antriebseinrichtungen über maximal vier Zahnein griffe mit einem Differential wirkverbunden sein. Dadurch wird ein guter Wirkungs grad erreicht.
Vorteilhafterweise kann die erste Getriebeeingangswelle mit einem Verbrennungs motor direkt verbindbar oder verbunden sein. Direkt verbunden bezeichnet eine kupplungsfreie Verbindung, eine Dämpfeinrichtung kann bspw. zwischen Kurbelwelle und erster Getriebeeingangswelle vorhanden sein .
Vorzugsweise kann eine Verbindungskupplung zur Verbindung der ersten Getriebe eingangswelle und der zweiten Getriebeeingangswelle vorgesehen sein. Diese dient zur Kopplung der Teilgetriebe. Sie ist aber auch eine Kupplung zur Verbindung der zweiten Getriebeeingangswelle mit dem Verbrennungsmotor, wobei die Verbindung über die erste Getriebeeingangswelle verläuft.
Vorzugsweise kann die Verbindungskupplung am in das Getriebe weisenden Ende der zweiten Getriebeeingangswelle angeordnet sein. Dies erlaubt einen besonders kompakten Aufbau des Getriebes.
Vorteilhafterweise kann die Verbindungskupplung als Teil einer zweiseitigen Schalt einrichtung ausgebildet sein. Die Verbindungskupplung ist aufgrund ihrer Positionie rung in eine zweiseitige Schalteinrichtung integrierbar.
In der vorliegenden Erfindung wird unter einer Schalteinrichtung eine Anordnung mit einem oder zwei Schaltelementen verstanden. Die Schalteinrichtung ist dann einsei tig oder zweiseitig ausgebildet. Ein Schaltelement kann eine Kupplung oder eine Schaltkupplung sein. Eine Kupplung dient der drehfesten Verbindung zweier Wellen und eine Schaltkupplung der drehfesten Verbindung einer Welle mit einer auf ihr drehbar gelagerten Nabe, bspw. einem Losrad. Die Verbindungskupplung ist dem entsprechend wie eine Schaltkupplung und bevorzugt auch als Teil einer Schaltkupp lung ausgebildet und wird alleine deswegen Kupplung genannt, weil sie zwei Wellen miteinander verbindet. Die Kupplungen zur Verbindung der Getriebeeingangswellen mit dem Verbrennungsmotor verbinden die jeweilige Getriebeeingangswelle mit einer Kurbelwelle des Verbrennungsmotors.
Vorzugsweise kann zumindest ein Teil der Kupplungen und/oder Schaltkupplungen als Klauenkupplungen ausgebildet sein. Insbesondere können alle Kupplungen und Schaltkupplungen als Klauenkupplungen ausgebildet sein.
Vorteilhafterweise kann auf der ersten Getriebeeingangswelle wenigstens eine Schalteinrichtung angeordnet sein. Bevorzugt kann auf der ersten Getriebeein gangswelle genau eine Schalteinrichtung angeordnet sein. Diese kann vorteilhafter weise als zweiseitige Schalteinrichtung ausgebildet sein.
Die Schalteinrichtung auf der ersten Getriebeeingangswelle umfasst vorzugsweise eine Schaltkupplung und eine Kupplung.
Vorteilhafterweise kann die zweite Getriebeeingangswelle schalteinrichtungsfrei und/oder losradfrei ausgebildet sein. Bevorzugt kann auf der zweiten Getriebeein gangswelle wenigstens ein Festrad angeordnet sind. Insbesondere können auf der zweiten Getriebeeingangswelle wenigstens zwei, insbesondere genau zwei, Festrä der angeordnet sein.
Bevorzugt kann auf der ersten Getriebeeingangswelle wenigstens ein, insbesondere genau ein, Losrad angeordnet sein.
Bevorzugt kann auf der ersten Getriebeeingangswelle wenigstens zwei, insbesonde re genau zwei, Festräder angeordnet sein. Eines der Festräder kann als Gangrad und das zweite Festrad als Anbindungszahnrad angeordnet sein.
Vorteilhafterweise kann jeder Gangstufe ein Festrad und ein Losrad zugeordnet sein und zwar jeweils ein einziges Festrad und ein einziges Losrad. Weiterhin können je des Festrad und Losrad immer eindeutig einer einzigen Gangstufe zugeordnet sein, das heißt es gibt keine Windungsgänge unter Verwendung eines Zahnrades für meh rere Gänge. Gleichwohl können die verbrennungsmotorischen Gänge eins und drei wie unten beschrieben als Windungs- oder Koppelgänge angesehen werden, da die erste Getriebeeingangswelle bei der Bildung der Gänge zwischengeschaltet ist.
In einer bevorzugten Ausgestaltung kann die Hybrid-Getriebeeinrichtung bzw. das Getriebe genau zwei zweiseitige Schalteinrichtungen zur Erzeugung drei verbren nungsmotorischer Gangstufen aufweisen. Dabei bildet die Verbindungskupplung vor teilhafterweise einen Teil einer der zweiseitigen Schalteinrichtungen.
Vorzugsweise kann ein Differenzial in axialer Richtung am motorseitigen Ende der ersten Getriebeeingangswelle angeordnet sein. Vorteilhafterweise kann ein Zahnrad zur Anbindung des Differenzials axial außen auf einer Vorgelegewelle angeordnet sein. Dadurch ergibt sich eine besonders kompakte Bauweise der Hybrid- Getriebeeinrichtung.
Bevorzugt kann die Hybrid-Getriebeeinrichtung wenigstens eine, insbesondere ge nau eine, Vorgelegewelle aufweisen. Bei der Verwendung einer einzigen Vorgelege welle ist es dann so, dass eine einzige Anbindungsstelle an das Differential vorhan den ist. Dadurch kann Bauraum eingespart werden, was sowohl in radialer als auch in axialer Richtung der Fall ist.
Bevorzugt kann auf der Vorgelegewelle genau eine Schalteinrichtung angeordnet sein. Weiterhin können vorteilhafterweise genau zwei Losräder auf der Vorgelege welle angeordnet sein. Die Schalteinrichtung auf der Vorgelegewelle kann vorteilhaf terweise zweiseitig ausgebildet sein.
Die auf der Vorgelegewelle angeordneten Schalteinrichtung kann in axialer Richtung gegenüber der oder mehreren Schalteinrichtungen auf einer der, insbesondere der ersten, Getriebeeingangswelle versetzt angeordnet sein. Bevorzugt kann die Schalt einrichtung auf der Vorgelegewelle in axialer Richtung näher am Verbrennungsmotor angeordnet sein als die Schalteinrichtung auf der ersten Getriebeeingangswelle. Dadurch kann eine besonders kompakte Anordnung der Hybrid -Getriebeeinrichtung erzielt werden.
Vorzugsweise können alle Schaltelemente der Schalteinrichtungen auf der Vorgele gewelle als Schaltkupplungen ausgestaltet sein.
Bevorzugt kann sich auf der Vorgelegewelle wenigstens ein, insbesondere genau ein, Festrad zur Bildung einer Vorwärtsgangstufe befinden. Daneben kann sich auf der Vorgelegewelle ein Festrad zur Herstellung einer Verbindung mit dem Differential befinden, dieses ist aber kein Festrad zur Bildung einer Vorwärtsgangstufe.
Vorteilhafterweise kann ein einziges Festrad zur Bildung einer Vorwärtsgangstufe auf der Vorgelegewelle angeordnet sein, das an einem axialen Ende der Vorgelegewelle angeordnet ist. Bevorzugt befinden sich an beiden axialen Enden der Vorgelegewelle jeweils ein Festrad und dazwischen zwei Losräder.
Weiterhin kann die Hybrid-Getriebeeinrichtung eine Steuerungseinrichtung aufwei sen. Diese ist dazu ausgebildet, das Getriebe wie beschrieben zu steuern.
Daneben betrifft die Erfindung einen Hybrid -Antriebsstrang mit einer Hybrid- Getriebeeinrichtung und wenigstens einer elektrischen Achse, insbesondere Hinter achse. Der Hybrid-Antriebsstrang zeichnet sich dadurch aus, dass die Hybrid- Getriebeeinrichtung wie beschrieben ausgebildet ist. Dieser Aufbau ist bevorzugt mit einer einzigen Antriebseinrichtung in der Hybrid-Getriebeeinrichtung angeordnet. Ei ne elektrische Achse ist dabei eine Achse mit einem dieser zugeordneten Elektromo tor. Die Abgabe von Antriebsmoment durch den Elektromotor der elektrischen Achse erfolgt also im Kraftfluss erst hinter der Hybrid-Getriebeeinrichtung. Bevorzugt ist die
elektrische Achse eine Montageeinheit. Die Montageeinheit kann auch ein eigenes Getriebe zur Übersetzung des Antriebsmomentes des Elektromotors der elektrischen Achse aufweisen. Dieses ist vorzugsweise als Gangwechselgetriebe ausgestaltet.
Bei der Verwendung einer elektrischen Achse kann diese das Antriebsmoment ab stützen.
Daneben betrifft die Erfindung ein Kraftfahrzeug mit einem Verbrennungsmotor und einer Hybrid-Getriebeeinrichtung oder einem Hybrid -Antriebsstrang. Das Kraftfahr zeug zeichnet sich dadurch aus, dass die Hybrid-Getriebeeinrichtung oder der Hyb- rid-Antriebsstrang wie beschrieben ausgebildet ist.
Vorteilhafterweise ist die Hybrid-Getriebeeinrichtung als Front-Quer- Getriebeeinrichtung im Kraftfahrzeug anordnet.
Vorzugsweise weist das Kraftfahrzeug eine Steuerungseinrichtung zur Steuerung der Hybrid-Getriebeeinrichtung auf. Die Steuerungseinrichtung kann also Teil der Hybrid- Getriebeeinrichtung sein, muss es aber nicht.
Vorzugsweise ist im Kraftfahrzeug eine Batterie angeordnet, die einen elektrischen Betrieb des Kraftfahrzeugs für wenigstens 15 Minuten ermöglicht. Alternativ kann für einen rein elektrischen Betrieb der Verbrennungsmotor mit einem der Elektromotoren als Generator Strom erzeugen, der direkt an den anderen Elektromotor geht.
Weiterhin kann das Kraftfahrzeug einen Druckspeicher aufweisen. Dieser kann zum Betrieb einer Fluidkraftmaschine verwendet werden.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der fol genden Beschreibung von Ausführungsbeispielen und Figuren. Dabei zeigen:
Figur 1 ein Kraftfahrzeug,
Figur 2 ein Radsatzschema in einer ersten Ausgestaltung,
Figur 3 ein Radsatzschema in einer zweiten Ausgestaltung, und
Figur 4 eine Hybrid-Getriebeeinrichtung in einer Seitenansicht.
Figur 1 zeigt ein Kraftfahrzeug 1 mit einem Verbrennungsmotor 2 und einer Hybrid- Getriebeeinrichtung 3. Die Hybrid-Getriebeeinrichtung 3 umfasst wie weiter unten detaillierter beschrieben wird auch wenigstens einen Elektromotor und Schaltelemen te, sodass sie als Montageeinheit verbaut werden kann. Dies ist aber nicht zwingend, grundsätzlich kann der Radsatz auch ohne bereits angeschlossene Elektromotoren eine Montageeinheit bilden. Zur Steuerung der Hybrid-Getriebeeinrichtung 3 ist eine Steuerungseinrichtung 4 vorhanden. Diese kann Teil der Hybrid-Getriebeeinrichtung 3 oder des Kraftfahrzeugs 1 sein.
Der Hybrid-Antriebsstrang 5 kann neben dem Verbrennungsmotor 2 und der Hybrid- Getriebeeinrichtung 3 auch wenigstens eine elektrische Achse 6 aufweisen. Die elektrische Achse 6 ist bevorzugt die Hinterachse, wenn die Hybrid- Getriebeeinrichtung 3 als Front-Quer-Getriebe angeordnet ist und die Vorderachse 7 antreibt und umgekehrt.
Figur 2 zeigt die Hybrid-Getriebeeinrichtung 3 und insbesondere ihr Gangwechselge triebe 8 in Form eines Radsatzschemas. Im Folgenden wird die Hybrid- Getriebeeinrichtung 3 beginnend von dem Verbrennungsmotor 2 beschrieben. Die Kurbelwelle 9 ist über eine Dämpfungseinrichtung 10 mit der ersten Getriebeein gangswelle 12 verbunden. Die Dämpfungseinrichtung 10 kann einen Torsionsdämp fer und/oder einen Tilger, insbesondere drehzahladaptiven Tilger, und/oder eine Rutschkupplung umfassen. Eine zweite Getriebeeingangswelle 14 ist auf der ersten Getriebeeingangswelle 12 gelagert. Auf der zweiten Getriebeeingangswelle 14 sind zwei Festräder 16 und 18 angeordnet. Dabei ist das Festrad 16 das Festrad der drit ten Gangstufe G3 und das Festrad 18 das Festrad der ersten Gangstufe G1 .
Die zweite Getriebeeingangswelle 14 weist zwei Enden auf, nämlich ein zur Außen seite der Hybrid-Getriebeeinrichtung 3 weisendes Ende 20 und ein zur Innenseite der
Hybrid-Getriebeeinrichtung 3 weisendes Ende 22. Die erste Getriebeeingangswelle 12 weist ein motorseitiges Ende 21 und ein motorabgewandtes Ende 23 auf, wobei hier auf die Position im Vergleich zum Verbrennungsmotor 2 referenziert ist.
Auf der ersten Getriebeeingangswelle 12 gelagert folgt eine Schalteinrichtung S1 mit einer Kupplung K3 und einer Schaltkupplung B. Mittels der Schaltkupplung B kann ein Losrad 24 drehfest mit der ersten Getriebeeingangswelle 14 verbunden werden. Das Losrad 24 ist dabei das Losrad der zweiten Gangstufe G2.
Die Kupplung K3 kann die Teilgetriebe 26 und 28 verbinden. Das Teilgetriebe 26 weist eine einzige gerade Gangstufe, die Gangstufe G2, auf. Das Teilgetriebe 28 weist die ungeraden Gangstufen G1 und G3 auf.
Auf der ersten Getriebeeingangswelle 7 folgt noch das Anbindungszahnrad 30. Des sen Aufgabe ist die Anbindung des Elektromotors EM1 an die erste Getriebeein gangswelle 12 und damit an das Getriebe 8. Das Anbindungszahnrad 30 ist damit kein Gangzahnrad.
Die zweite Getriebeeingangswelle 14 ist somit schaltelementfrei und losradfrei aus gebildet. Auf der ersten Getriebeeingangswelle 12 ist eine einzige Schalteinrichtung S1 angeordnet. Die Schalteinrichtung S1 umfasst die die Kupplung K3 und die Schaltkupplung B und ist dementsprechend zweiseitig ausgebildet.
Die Drehachse der ersten Getriebeeingangswelle 7 und der zweiten Getriebeein gangswelle 9 ist dabei mit A1 bezeichnet.
Zur Verbindung mit einem Differential 32 und zur Bildung der Übersetzungs- oder Gangstufen weist die Hybrid-Getriebeeinrichtung 3 eine einzige Vorgelegewelle 34 auf. Auf der Vorgelegewelle 34 ist eine einzige Schalteinrichtung S2 mit den Schalt kupplungen A und C zur Verbindung der Losräder 36 und 38 mit der Vorgelegwelle 34 angeordnet. Als einziges gangbildendes Festrad ist das Festrad 40 auf der Vorge legewelle 34 platziert. Die Zuordnung zu den Gangstufen ergibt sich anhand der Gangstufenzahlen G1 bis G3 unterhalb der auf der Vorgelegewelle 34 angeordneten
Zahnräder. Das Festrad 42 ist kein gangbildendes Festrad, es verbindet die Vorgele gewelle 34 mit dem Differential 32 als sogenannte Abtriebskonstante. Anhand dieses Schemas kann man folgendes zu den Gangstufen feststellen:
Jeder Gangstufe ist ein Festrad und ein Losrad zugeordnet und zwar jeweils ein ein ziges Festrad und ein einziges Losrad. Jedes Festrad und Losrad ist immer eindeutig einer einzigen Gangstufe zugeordnet, das heißt es gibt keine Windungsgänge unter Verwendung eines Zahnrades für mehrere Gangstufen. Gleichwohl können die Gangstufen G1 und G3 als Koppelgänge angesehen werden, da die erste Getriebe eingangswelle 12 bei der Bildung der Gangstufen G1 und G3 zwischengeschaltet ist.
Die Elektromotoren EM1 und EM2 sind wie gezeigt angebunden, und zwar an den axial äußeren Zahnrädern 16 und 30. Insbesondere kann durch die Anbindung der Elektromotoren EM1 und EM2 an den axial äußersten Zahnräder 16 und 30 eine axi al extrem kurz bauende Hybrid-Getriebeeinrichtung 3 geschaffen werden.
Die Elektromotoren EM1 und EM2 sind parallel zur Getriebeeingangswelle 12 ange ordnet und die Elektromotoren EM1 und EM2 haben ihren Ausgang an entgegenge setzten Seiten. Das heißt, wie in Figur 2 gezeigt, der Ausgang bzw. die Ausgangs welle 44 des Elektromotors EM1 weist zum motorabgewandten Ende 46 des Gang wechselgetriebes 8 und die Ausgangswelle 48 des Elektromotors EM2 zum motorzu- gewandten Ende 50 des Gangwechselgetriebes 8. In Figur 2 ist weist ein Ende also nach links und eines nach rechts. Die Elektromotoren EM1 und EM2 sind in axialer Richtung teilweise überlappend angeordnet. Durch die weiter oben bereits beschrie bene Anordnung der Schaltelemente S1 und S2 und die Ausbildung des Rückwärts gangs ohne Umkehrzahnrad wird so eine Länge der Hybrid-Getriebeeinrichtung 3 mit wenig mehr als 30 cm ermöglicht.
Figur 3 zeigt eine Abwandlung des Aufbaus nach Figur 2. Dabei ist als einziger Un terschied der Elektromotor EM1 im Getriebe entfallen. Eine elektrische Lastschalt barkeit kann dann zwischen dem Elektromotor EM2 in der Hybrid- Getriebeeinrichtung 3 und der elektrischen Achse 6 erzielt werden.
Figur 4 zeigt eine Seitenansicht des Getriebes nach Figur 2. Dabei sind die Achsen A4 und A5 der Elektromotoren EM1 und EM2 oberhalb und seitlich der Achse A1 der ersten Getriebeeingangswelle 12 und auch der zweiten Getriebeeingangswelle 14 angeordnet. Die Achse A2 der Vorgelegewelle 34 und die Achse A3 des Differenzials 32 liegen vorteilhafterweise unterhalb der Achse A1 der ersten Getriebeeingangswel le 12. Die Achsen A4 und A5 sind dabei symmetrisch zur Achse A1 dahingehend angeordnet, dass der Abstand der Achsen A4 und A5 zur Achse A1 gleich ist und auch der Winkel im Vergleich zur Lotrechten 52 gleich ist.
Bezuaszeichen Kraftfahrzeug
Verbrennungsmotor
Hybrid-Getriebeeinrichtung
Steuerungseinrichtung
Hybrid-Antriebsstrang
elektrische Achse
Vorderachse
Gangwechselgetriebe
Kurbelwelle
Dämpfungseinrichtung
erste Getriebeeingangswelle
zweite Getriebeeingangswelle
Festrad
Festrad
Ende
Ende
Ende
Ende
Losrad
Teilgetriebe
Teilgetriebe
Differenzial
Vorgelegewelle
Losrad
Losrad
Festrad
Zahnrad
Ausgangswelle
motorabgewandtes Ende
Ausgangswelle
motorzugewandtes Ende
52 Lotrechte
K3 Kupplung
51 Schalteinrichtung
52 Schalteinrichtung
A Schaltkupplung
B Schaltkupplung
C Schaltkupplung
EM1 Elektromotor
EM2 Elektromotor
A1 Achse
A2 Achse
A3 Achse
A4 Achse
A5 Achse
Claims
1 . Hybrid-Getriebeeinrichtung (3) mit wenigstens einer Antriebseinrichtung (EM2), einem Getriebe (4) mit einer ersten Getriebeeingangswelle (12) und einer auf der ersten Getriebeeingangswelle (12) gelagerten zweiten Getriebeeingangswelle (14), wobei auf der zweiten Getriebeeingangswelle (14) wenigstens zwei Gangräder (16, 18) angeordnet sind, dadurch gekennzeichnet, dass das Gangrad (16) der größten Gangstufe (G3) auf der zweiten Getriebeeingangswelle (14) in axialer Richtung zur Außenseite (46, 50) hin angeordnet ist.
2. Hybrid-Getriebeeinrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die wenigstens zwei Gangräder (16, 18) Gangräder ungerader Gänge (G1 , G3) sind.
3. Hybrid-Getriebeeinrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Hybrid-Getriebeeinrichtung (3) eine Verbindungskupplung (K3) zur Verbindung der ersten Getriebeeingangswelle (12) und der zweiten Getriebeeingangswelle (14) auf weist.
4. Hybrid-Getriebeeinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die erste Getriebeeingangswelle (12), bevorzugt über eine Dämpfungseinrichtung (10), kupplungsfrei mit einer Kurbelwelle (9) verbunden oder verbindbar ist.
5. Hybrid-Getriebeeinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Getriebeeingangswelle (14) antriebsseitig aus schließlich mit der ersten Getriebeeingangswelle (12) verbindbar ist.
6. Hybrid-Getriebeeinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der ersten Getriebeeingangswelle (12) und/oder der zweiten Getriebeeingangswelle (14) wenigstens eine Antriebseinrichtung (EM1 , EM2) zuge ordnet ist.
7. Hybrid-Getriebeeinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Hybrid-Getriebeeinrichtung (3) genau zwei zweiseitige
Schalteinrichtungen (S1 , S2) zur Erzeugung drei verbrennungsmotorischer und/oder elektrischer Gangstufen (V1 , V2, V3, E1 , E2, E3) aufweist.
8. Hybrid-Getriebeeinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Hybrid-Getriebeeinrichtung (3) eine Differenzialanordnung (32) aufweist, die in axialer Richtung am motorseitigen Ende (21 ) der ersten Getrie beeingangswelle (12) angeordnet ist.
9. Hybrid-Getriebeeinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die erste Antriebseinrichtung (EM1 ) und/oder die zweite An triebseinrichtung (EM2) achsparallel angeordnet sind.
10. Hybrid-Getriebeeinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Hybrid-Getriebeeinrichtung (3) wenigstens eine, insbeson dere genau eine, Vorgelegewelle (34) aufweist.
11. Hybrid-Getriebeeinrichtung nach Anspruch 10, dadurch gekennzeichnet, dass auf der Vorgelegewelle (34) und/oder der ersten Getriebeeingangswelle (12) wenigstens eine, insbesondere genau eine, Schalteinrichtung (S1 , S2) angeordnet ist.
12. Hybrid-Getriebeeinrichtung nach Anspruch 10 oder 11 , dadurch gekennzeichnet, dass auf der Vorgelegewelle (34) genau ein Festrad zur Bildung einer Vorwärts- Gangstufe (G2) angeordnet sind.
13. Hybrid-Getriebeeinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die wenigstens eine Antriebseinrichtung (EM2) an ein Gang zahnrad (16), insbesondere ein Gang-Festrad, angebunden ist.
14. Hybrid-Getriebeeinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Hybrid-Getriebeeinrichtung (3) zwei Teilgetriebe (26, 28) aufweist, wobei eines der Teilgetriebe (26) eine einzige Gangstufe (G2), insbesonde re die zweite Gangstufe (G2), umfasst.
15. Kraftfahrzeug (1 ) mit einer Hybrid-Getriebeeinrichtung, dadurch gekennzeichnet, dass die Hybrid-Getriebeanordnung (3) nach einem der vorangehenden Ansprüche ausgebildet ist.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/438,115 US20220258594A1 (en) | 2019-03-14 | 2019-10-15 | Hybrid Transmission Device and Motor Vehicle |
CN201980093961.2A CN113557155A (zh) | 2019-03-14 | 2019-10-15 | 混合动力变速箱及机动车辆 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019203485.3 | 2019-03-14 | ||
DE102019203485.3A DE102019203485A1 (de) | 2019-03-14 | 2019-03-14 | Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020182323A1 true WO2020182323A1 (de) | 2020-09-17 |
Family
ID=68382384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/077878 WO2020182323A1 (de) | 2019-03-14 | 2019-10-15 | Hybrid-getriebeeinrichtung sowie kraftfahrzeug |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220258594A1 (de) |
CN (1) | CN113557155A (de) |
DE (1) | DE102019203485A1 (de) |
WO (1) | WO2020182323A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4242032A1 (de) * | 2022-03-10 | 2023-09-13 | Suzuki Motor Corporation | Hybridfahrzeug |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019203488A1 (de) * | 2019-03-14 | 2020-09-17 | Zf Friedrichshafen Ag | Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug |
DE102019203766B4 (de) | 2019-03-20 | 2024-08-22 | Zf Friedrichshafen Ag | Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug |
DE102019205324B4 (de) * | 2019-04-12 | 2024-03-28 | Zf Friedrichshafen Ag | Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug |
DE102022201800A1 (de) | 2022-02-22 | 2023-06-07 | Zf Friedrichshafen Ag | Hybridgetriebe für zwei elektrische Antriebsmaschinen |
DE102022203696A1 (de) | 2022-04-12 | 2023-10-12 | Zf Friedrichshafen Ag | Getriebe für einen Antriebsstrang eines Fahrzeugs |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006036758A1 (de) * | 2006-08-05 | 2008-02-28 | Zf Friedrichshafen Ag | Automatisiertes Doppelkupplungsgetriebe eines Kraftfahrzeuges |
DE102010030573A1 (de) * | 2010-06-28 | 2011-12-29 | Zf Friedrichshafen Ag | Hybridantrieb mit einem automatisierten Schaltgetriebe |
DE102011005451A1 (de) | 2011-03-11 | 2012-09-13 | Zf Friedrichshafen Ag | Hybridantrieb eines Kraftfahrzeugs und Verfahren zur Steuerung eines Hybridantriebs |
CN106696674A (zh) * | 2017-01-23 | 2017-05-24 | 重庆蓝黛动力传动机械股份有限公司 | 一种混合动力车辆变速机构 |
US20180126839A1 (en) * | 2016-11-10 | 2018-05-10 | Hyundai Motor Company | Transmission structure for vehicle |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011102267A1 (de) * | 2011-05-23 | 2012-11-29 | Getrag Ford Transmissions Gmbh | Antriebsstrang für ein Kraftfahrzeug |
ITMI20121463A1 (it) * | 2012-08-31 | 2014-03-01 | Automobili Lamborghini Spa | Dispositivo di trazione per un autoveicolo a trazione ibrida |
KR101703764B1 (ko) * | 2012-12-12 | 2017-02-07 | 도요타 지도샤(주) | 하이브리드 차량의 제어 장치 |
DE102013221461A1 (de) * | 2013-10-23 | 2015-04-23 | Zf Friedrichshafen Ag | Hybridantrieb eines Kraftfahrzeugs |
-
2019
- 2019-03-14 DE DE102019203485.3A patent/DE102019203485A1/de active Pending
- 2019-10-15 WO PCT/EP2019/077878 patent/WO2020182323A1/de active Application Filing
- 2019-10-15 CN CN201980093961.2A patent/CN113557155A/zh active Pending
- 2019-10-15 US US17/438,115 patent/US20220258594A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006036758A1 (de) * | 2006-08-05 | 2008-02-28 | Zf Friedrichshafen Ag | Automatisiertes Doppelkupplungsgetriebe eines Kraftfahrzeuges |
DE102010030573A1 (de) * | 2010-06-28 | 2011-12-29 | Zf Friedrichshafen Ag | Hybridantrieb mit einem automatisierten Schaltgetriebe |
DE102011005451A1 (de) | 2011-03-11 | 2012-09-13 | Zf Friedrichshafen Ag | Hybridantrieb eines Kraftfahrzeugs und Verfahren zur Steuerung eines Hybridantriebs |
US20180126839A1 (en) * | 2016-11-10 | 2018-05-10 | Hyundai Motor Company | Transmission structure for vehicle |
CN106696674A (zh) * | 2017-01-23 | 2017-05-24 | 重庆蓝黛动力传动机械股份有限公司 | 一种混合动力车辆变速机构 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4242032A1 (de) * | 2022-03-10 | 2023-09-13 | Suzuki Motor Corporation | Hybridfahrzeug |
Also Published As
Publication number | Publication date |
---|---|
CN113557155A (zh) | 2021-10-26 |
US20220258594A1 (en) | 2022-08-18 |
DE102019203485A1 (de) | 2020-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020182323A1 (de) | Hybrid-getriebeeinrichtung sowie kraftfahrzeug | |
DE102019202956B4 (de) | Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug | |
DE102019202944B4 (de) | Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug | |
WO2020177904A1 (de) | Hybrid-getriebeeinrichtung sowie kraftfahrzeug | |
WO2020177902A1 (de) | Hybrid-getriebeeinrichtung sowie kraftfahrzeug | |
WO2020177901A1 (de) | Hybrid-getriebeeinrichtung sowie kraftfahrzeug | |
WO2020182324A1 (de) | Hybrid-getriebeeinrichtung sowie kraftfahrzeug | |
WO2020182325A1 (de) | Hybrid-getriebeeinrichtung sowie kraftfahrzeug | |
DE102019202945B4 (de) | Verfahren zum Betrieb eines Kraftfahrzeuges, Steuerungseinrichtung sowie Kraftfahrzeug | |
DE102019205328B4 (de) | Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug | |
DE102019202958B4 (de) | Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug | |
WO2020212386A1 (de) | Hybrid-getriebeeinrichtung, motor-getriebeanordnung, hybrid-antriebsstrang sowie kraftfahrzeug | |
DE102019203766B4 (de) | Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug | |
WO2020177886A1 (de) | Hybrid-getriebeeinrichtung sowie kraftfahrzeug | |
WO2020177903A1 (de) | Hybrid-getriebeeinrichtung sowie kraftfahrzeug | |
DE102015221780A1 (de) | Getriebeanordnung | |
DE102019205324B4 (de) | Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug | |
WO2020177898A1 (de) | Hybrid-getriebeeinrichtung sowie kraftfahrzeug | |
WO2020212385A1 (de) | Hybrid-getriebeeinrichtung, motor-getriebeanordnung, hybrid-antriebsstrang sowie kraftfahrzeug | |
DE102019202948A1 (de) | Verfahren zum Betrieb eines Kraftfahrzeuges, Steuerungseinrichtung sowie Kraftfahrzeug | |
DE102019202947A1 (de) | Verfahren zum Betrieb eines Kraftfahrzeuges, Steuerungseinrichtung sowie Kraftfahrzeug | |
DE102019202952A1 (de) | Verfahren zum Betrieb eines Kraftfahrzeuges, Steuerungseinrichtung sowie Kraftfahrzeug | |
DE102021200140A1 (de) | Hybrid-Getriebeanordnung sowie Kraftfahrzeug |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19794906 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19794906 Country of ref document: EP Kind code of ref document: A1 |