WO2020181929A1 - Preparation method for heptamethylbenzylindole cyanine dye and application thereof - Google Patents

Preparation method for heptamethylbenzylindole cyanine dye and application thereof Download PDF

Info

Publication number
WO2020181929A1
WO2020181929A1 PCT/CN2020/073489 CN2020073489W WO2020181929A1 WO 2020181929 A1 WO2020181929 A1 WO 2020181929A1 CN 2020073489 W CN2020073489 W CN 2020073489W WO 2020181929 A1 WO2020181929 A1 WO 2020181929A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
iii
hours
heptamethine
compound
Prior art date
Application number
PCT/CN2020/073489
Other languages
French (fr)
Chinese (zh)
Inventor
吴爱国
李娟�
蒋振奇
袁博
Original Assignee
中国科学院宁波工业技术研究院慈溪生物医学工程研究所
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波工业技术研究院慈溪生物医学工程研究所, 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波工业技术研究院慈溪生物医学工程研究所
Publication of WO2020181929A1 publication Critical patent/WO2020181929A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0066Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of a carbocyclic ring,(e.g. benzene, naphtalene, cyclohexene, cyclobutenene-quadratic acid)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/58[b]- or [c]-condensed
    • C07D209/60Naphtho [b] pyrroles; Hydrogenated naphtho [b] pyrroles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/08Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom

Definitions

  • the application relates to a preparation method and application of heptamethine benzoindocyanine dye, belonging to the field of polymethine benzoindole cyanine dye and preparation thereof.
  • Indocyanine green in heptamethine cyanine dyes is the only near-infrared dye approved by the US Food and Drug Administration for clinical imaging photothermal therapy. Its derivative, new indocyanine green, belongs to heptamethine indocyanine dyes Kind of. This type of dye has a strong absorption effect in the near-infrared light region near 808nm, which can be used as a complement to other medical diagnosis and treatment methods (such as MRI, PET, SPECT, ultrasonic echo scanning technology, radiography and tomography) Imaging technology, which is also used as a photosensitizer for photothermal therapy, has important research value and application value in life science and biomedical research.
  • medical diagnosis and treatment methods such as MRI, PET, SPECT, ultrasonic echo scanning technology, radiography and tomography
  • Heptamethine indocyanine dyes have multiple modifiable sites, which can greatly expand the combined use of such dyes and small molecule drugs.
  • heptamethine indocyanine on the market is only the new indocyanine green (IR-820), with low purity (80%) and high selling price (1324 yuan/g).
  • IR-820 new indocyanine green
  • high selling price 1324 yuan/g
  • the production and purification process of its different derivatives requires a lot of screening conditions and consumes a lot of organic solvents, and most of the selected solvents are highly toxic solvents, such as o-dichlorobenzene, toluene, benzene, etc.
  • the field needs to develop a new method for the preparation and purification of industrialized, low-toxic, green heptamethine benzoindole cyanine dyes, so as to realize the efficient, low-cost, and low-toxic preparation of such dyes.
  • a method for preparing heptamethine benzoindole cyanine dye is provided.
  • the method has the advantages of short synthetic route, friendly solvent environment, simple process, avoiding noble metal catalysis, high yield and large single reaction volume, and can greatly improve the preparation efficiency of such dyes and realize low-cost mass production.
  • the method has strong applicability and can be used to prepare heptamethine benzindocyanine dyes of various structural types.
  • the nucleophilic substitution compound is selected from at least one compound having a structural formula such as formula (III-2), formula (III-3) or formula (III-4):
  • R 1 is selected from hydrogen, methyl, methoxy, hydroxyl, carboxyl, amide, sulfonic acid, ester, alkynyl, or amino, and a is selected from those greater than 0 and less than or equal to 14.
  • X is selected from fluorine, chlorine, bromine, iodine or perchlorate; in formula (III-3), R 2 is selected from c is selected from an integer from 1 to 13; in formula (III-4), R 3 is selected from hydrogen, methyl, methoxy, hydroxy, carboxy, amide, sulfonic acid, ester, alkynyl or amino, b An integer selected from 0 to 7, and X is selected from fluorine, chlorine, bromine, iodine or perchlorate;
  • step 2) Reacting the solution containing the organic ammonium salt and cycloalkene derivative obtained in step 1) at 50-80° C. for 8 to 48 hours under closed conditions to obtain the heptamethine benzoindole cyanine dye;
  • A is selected from ethylene, linear propylene, or linear butylene.
  • step 1) the molar ratio of the 2,3,3-trimethyl-4,5-benzindole derivative to the nucleophilic substitution compound is 1:1 to 1:12.
  • step 1) the upper limit of the molar ratio of the 2,3,3-trimethyl-4,5-benzindole derivative to the nucleophilic substitution compound is selected from 1:12, 1. :11, 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, the lower limit is selected from 1:1, 1:1.5, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 1:11.
  • the molar ratio of the 2,3,3-trimethyl-4,5-benzindole derivative to the nucleophilic substitution compound is 1:1 to 1:2.
  • step 1) the molar ratio of the 2,3,3-trimethyl-4,5-benzindole derivative to the nucleophilic substitution compound is 1:1.5.
  • the upper limit of the reaction temperature of the raw materials is selected from 130°C, 125°C, 120°C, 115°C, 110°C, 105°C, 100°C, 95°C, 90°C, and the lower limit is selected from 80°C, 85°C, 90°C, 95°C, 100°C, 105°C, 110°C;
  • the upper limit of the reaction time of the raw material is selected from 24 hours, 23 hours, 22 hours, 20 hours, 18 hours, 16 hours, 15 hours, 14 hours, 12 hours, 10 hours, 5 hours
  • the lower limit is selected from 4 hours, 5 hours, 8 hours, 10 hours, 12 hours, 14 hours, 15 hours, 16 hours, 18 hours, 20 hours, 22 hours , 23 hours.
  • step 1) the raw material is reacted at 100-120°C for 8-16 hours.
  • step 1) the raw materials are reacted at 110 to 120°C for 10 to 14 hours.
  • step 1) the raw material is reacted at 120°C for 12 hours.
  • step 1) the raw materials are reacted under closed conditions.
  • step 1) the raw materials are reacted under a pressure of 2 to 200 Pa.
  • the upper limit of the pressure of the raw material reaction is selected from 200Pa, 175Pa, 150Pa, 125Pa, 100Pa, 75Pa, 50Pa, 40Pa, 30Pa, 20Pa, 10Pa, 9Pa, 8Pa, 7Pa, 6Pa, 5Pa, 4Pa, 3Pa
  • the lower limit is selected from 2Pa, 3Pa, 4Pa, 5Pa, 6Pa, 7Pa, 8Pa, 9Pa, 10Pa, 20Pa, 30Pa, 40Pa, 50Pa, 75Pa, 100Pa, 125Pa, 150Pa, 175Pa.
  • step 1) the raw materials are reacted under a pressure of 5-50Pa.
  • step 1) the raw materials are reacted under a pressure of 10 Pa.
  • step 1) there is no particular restriction on whether a reaction medium is used in addition to the reactants in step 1), as long as the reactants can complete the reaction of step 1). That is, under the reaction conditions of step 1) as described above, when a liquid phase exists in the reaction system (for example, when at least part of the reactants are liquid), no reaction medium is required, or the reaction medium can still be used.
  • the reaction medium is an alcohol-based reaction medium.
  • the reaction medium is selected from at least one of methanol, ethanol, propanol, ethylene glycol, glycerol, butanol and butanediol.
  • step 2) the molar ratio of the cycloalkene derivative to the organic ammonium salt is 1:2 to 1:6.
  • the upper limit of the molar ratio of the cycloalkene derivative to the organic ammonium salt is selected from 1:6, 1:5.5, 1:5, 1:4.5, 1:4, 1: 3.8, 1:3.5, 1:3.4, 1:3.2, 1:3, 1:2.8, 1:2.5, 1:2.4, 1:2.2, 1:2.1, the lower limit is selected from 1:2, 1:2.1, 1 :2.2, 1:2.4, 1:2.5, 1:2.8, 1:3, 1:3.2, 1:3.4, 1:3.5, 1:3.8, 1:4, 1:4.5, 1:5, 1:5.5 .
  • the molar ratio of the cycloalkene derivative to the organic ammonium salt is 1:2 to 1:3.
  • step 2 the molar ratio of the cycloalkene derivative to the organic ammonium salt is 1:2.5.
  • the upper limit of the reaction temperature of the solution is selected from 80°C, 75°C, 70°C, 65°C, 60°C, and 55°C
  • the lower limit is selected from 50°C, 55°C, 60°C, 65°C, 70°C, 75°C
  • the upper limit of the reaction time of the solution is selected from 48 hours, 38 hours, 35 hours, 32 hours, 30 hours, 28 hours, 24 hours, 20 hours, 18 hours, 15 hours, 10 hours
  • the lower limit is selected from 8 hours, 10 hours, 15 hours, 18 hours, 20 hours, 24 hours, 28 hours, 30 hours, 32 hours, 35 hours, and 38 hours.
  • step 2) the solution is reacted at 60-80°C for 10-30 hours.
  • step 2 the solution is reacted at 70-80°C for 10-30 hours.
  • step 2 the solution is reacted at 70-80°C for 15-28 hours.
  • step 2 the solution is reacted at 75°C for 24 hours.
  • step 2) a precipitating agent is added after the reaction, maintained at 1 to 10° C. for 12 to 48 hours, and then filtered with suction to obtain the heptamethine benzoindole cyanine dye.
  • the upper limit of the temperature maintained after adding the precipitant is selected from 10°C, 9°C, 8°C, 7°C, 6°C, 5°C, 4°C, 3°C, 2°C, and the lower limit is selected from 1°C, 2°C, 3°C, 4°C, 5°C, 6°C, 7°C, 8°C, 9°C;
  • the upper limit of the holding time is selected from 48 hours, 44 hours, 40 hours, 36 hours, 32 hours, 28 Hour, 24 hour, 20 hour, 16 hour
  • the lower limit is selected from 12 hour, 16 hour, 20 hour, 24 hour, 28 hour, 32 hour, 36 hour, 40 hour, 44 hour.
  • step 2) a precipitating agent is added after the reaction, maintained at 4° C. for 24 hours and then filtered with suction to obtain the heptamethine benzoindole cyanine dye.
  • the precipitating agent is selected from at least one of petroleum ether, ethyl ether, methyl ether, propyl ether, and methyl ethyl ether.
  • the precipitating agent includes petroleum ether.
  • the solvent in the solution is selected from at least one of water, methanol, ethanol, propanol, ethylene glycol, glycerol, butanol and butanediol.
  • the solvent in the solution is selected from at least one of methanol, ethanol and propanol.
  • step 1) of the method according to the present application depending on the state of the reactants, a solvent may not be used, or a solvent may be used and selected from alcohols; in step 2), a solvent selected from Water and alcohol solvents.
  • solvents such as ortho-dichlorobenzene and acetic anhydride used in conventional methods, the solvents that can be used in this application are more environmentally friendly and safer, and have less damage to health.
  • a heptamethine benzoindole cyanine dye prepared by the method is provided, and the dye has the properties of near-infrared light absorption and fluorescence development.
  • R is selected from one of R 1 and R 2 ;
  • R is R 1
  • R' is selected from hydrogen, methyl, methoxy, hydroxyl, carboxyl, amide, sulfonic acid, ester, alkynyl or amino
  • a is selected from an integer greater than 0 and less than or equal to 14.
  • R is R 2
  • R " is selected from hydrogen, methyl, methoxy, hydroxy, a carboxyl group, an amide group, a sulfonic acid group, an ester group, an alkynyl group or an amino group
  • b is an integer selected from 0 to 7
  • A is selected from ethylene, linear propylene or linear butylene; or
  • R" is selected from carboxylate or sulfonate
  • b is selected from an integer from 0 to 7
  • Y is selected from hydrogen, sodium or potassium
  • A is selected from ethylene, linear propylene or straight Butylene.
  • the structural formula of the heptamethine benzoindole cyanine dye is as shown in formula (I-1), formula (I-2) or formula (I-3):
  • R in formula (I) is selected from one of R 1 and R 2 ; wherein,
  • R is when R 2
  • b is selected from 0,1,3 or 5
  • X is selected from bromine or iodine
  • A is selected from ethylene Or linear propylene; or
  • R" is selected from carboxylate or sulfonate
  • b is selected from 0, 1, 3 or 5
  • Y is selected from sodium
  • A is selected from ethylene or linear propylene.
  • the heptamethine benzoindole cyanine dye in the present application is selected from compounds having the structural formula shown below:
  • A is a linear propylene group
  • R is selected from R 1
  • R' is selected from a hydrogen atom
  • a 2, 3, 4, 6, 12
  • the heptamethine benzoindole cyanine dyes are respectively Is a compound having structural formulas 1 to 5;
  • A is an ethylene group
  • R is selected from R 1
  • R ' is selected from a hydroxyl group
  • a 2,3,4,6, said benzo heptamethine cyanine dyes are indole having the formula 64 ⁇ 67 compounds;
  • This application relates to a kind of N-aliphatic acid, N-aliphatic ester, N-aliphatic amide, N-aliphatic chain hydrocarbon, N-aromatic acid, N-aromatic ester, N-aromatic amide or N -Synthesis and purification methods of heptamethine benzoindole cyanine dyes with side chains such as aromatic chain hydrocarbons.
  • the heptamethine benzoindole cyanine dye has or alone has the properties of near-infrared light absorption and fluorescence development.
  • the method has the advantages of short synthetic route, environmentally friendly solvent, simple process, avoiding precious metal catalysis, high yield, and simple purification method (no need for chromatography column separation and less solvent consumption), which can greatly improve the preparation of such dyes Efficiency and low-cost mass production are of great significance in the production and application research of heptamethine benzoindole cyanine.
  • the purity of the heptamethine benzoindole cyanine dye prepared by the method described in this application is greater than 90%.
  • the purity of the heptamethine benzoindole cyanine dye prepared by the method described in this application is 85-99.5 percent.
  • the purity of the heptamethine benzoindole cyanine dye prepared by the method described in this application is 90-99.5 percent.
  • the yield of heptamethine benzoindole cyanine dye prepared by the method described in this application is not less than 83.5%.
  • the yield of heptamethine benzoindole cyanine dye prepared by the method described in this application is 83.5-93.7 %.
  • the method for preparing the heptamethine benzoindole cyanine dye is carried out according to the following route:
  • X is selected from one of halogens, preferably bromine;
  • R is a group composed of a linear alkylene group having 1 to 14 carbon atoms and a terminal group, the terminal group is selected from hydrogen, methyl, and methoxy Group, hydroxyl group, carboxyl group, amide group, sulfonic acid group, ester group, alkynyl group or amino group;
  • the molar ratio of 2,3,3-trimethyl-4,5-benzindole to the bromine substituent as the nucleophilic substitution compound is 1:1 to 1:12, preferably 1:1.5; heating temperature 80 to 130°C, preferably 120°C; the molar ratio of 2-chloro-1-formyl-3-hydroxymethylene cyclohexene as a cycloalkene derivative to the N-substituent as an organic ammonium salt is 1 : 2 to 1:4, preferably 1:2.5; heating temperature is 50 to 80°C, preferably 75°C.
  • the method for preparing the heptamethine benzoindole cyanine dye includes the following steps:
  • the reaction is heated under vacuum, where 2,3,3 -The molar ratio of trimethyl-4,5-benzindole to bromine substitution is 1:1 to 1:12, the heating temperature is 80 to 130°C, and the reaction time is 4 to 24 hours; preferably, 2, The molar ratio of 3,3-trimethyl-4,5-benzindole to the bromine substitution is 1:1.5, the heating temperature is 120°C, and the reaction time is 12 hours.
  • step 2) Add 2-chloro-1-formyl-3-hydroxymethylene cyclohexene as a cycloalkene derivative to the solution after step 1), and heat the reaction under closed conditions. After the reaction, the reaction solution Placed in a refrigerator overnight at 4°C, and then precipitated with a precipitation agent.
  • the molar ratio of 2-chloro-1-formyl-3-hydroxymethylenecyclohexene to the N-substitute as an organic ammonium salt is 1: 2 ⁇ 1:4, the heating temperature is 50 ⁇ 80°C, and the reaction time is 8 ⁇ 48 hours; preferably, the molar ratio of 2-chloro-1-formyl-3-hydroxymethylene cyclohexene and N-substitute The ratio is 1:2.5, the heating temperature is 75°C, and the reaction time is 24 hours.
  • an application of the heptamethine benzoindole cyanine dye is provided.
  • the heptamethine benzoindole cyanine dye is used for preparing a probe assistant, and the probe assistant comprises at least one of heptamethine benzoindole cyanine dyes prepared by the above method.
  • the heptamethine benzoindole cyanine dye is used to prepare near-infrared fluorescent probes.
  • the near-infrared fluorescent probes include small molecule probes and nano probes.
  • the heptamethine benzoindole cyanine dye is used in trademark anti-counterfeiting, biomedicine, environmental monitoring, national defense detection and related fields.
  • alkyl means a group formed by the loss of any hydrogen atom on the molecule of an alkane compound; the alkane compound includes cycloalkanes, straight-chain alkanes, and branched-chain alkanes.
  • ethylene means a group with the structural formula -CH 2 -CH 2 -
  • linear propylene means a group with the structural formula -CH 2 -CH 2 -CH 2 -
  • String-chain butylene means a group having the structural formula -CH 2 -CH 2 -CH 2 -CH 2 -.
  • the heptamethine benzoindole cyanine dye provided by this application has the properties of near-infrared light absorption and fluorescence development.
  • the method for preparing heptamethine benzoindole cyanine dye provided by this application has the advantages of short synthetic route, environmentally friendly solvent, simple process, avoiding noble metal catalysis, high yield, and large single reaction volume. Greatly improve the preparation efficiency of such dyes, and realize low-cost mass production.
  • the heptamethine benzoindole cyanine dye obtained by the preparation method provided in this application has high purity, which can be higher than 90%.
  • the method for preparing heptamethine benzoindole cyanine dye provided by this application has strong applicability and can be used to realize the synthesis of products of various structural types.
  • Figure 1 is an infrared absorption spectrum of compound C1 prepared according to Example 4 of the present application.
  • Fig. 2 is a diagram showing the in vivo imaging effect of compound C1 prepared according to Example 4 of the present application after intravenous injection of mice 48 hours.
  • this application relates to a method for preparing heptamethine benzindole cyanine dye, which includes the following steps: the 2,3,3-trimethyl-4,5-benzindole derivative
  • the nucleus substitution compound reacts to obtain an organic ammonium salt; the organic ammonium salt and cycloalkene derivatives are mixed in an environmentally friendly organic solvent to react, and after the reaction, an organic precipitant is added to the product to cool and stand overnight to obtain the heptamethylchuan benzin Indocyanine dyes.
  • the method has the advantages of short synthetic route, simple process, no catalyst, high yield, simple purification method, high atom utilization rate and low consumption of organic solvents, which can greatly improve the preparation efficiency of such dyes and realize low-cost mass production , It is of great significance in the production and application research of heptamethine benzoindole cyanine dyes.
  • the method for preparing heptamethine benzoindole cyanine dye according to the present application has wider applicability. This method can realize the synthesis of more structural types of products under the condition of adopting more environmentally friendly solvents and milder reaction conditions.
  • ThermoNciolet 6700 infrared spectrometer for infrared absorption spectrum analysis.
  • PerkinElmer Lanbda ultraviolet spectrophotometer was used for ultraviolet absorption spectrum analysis.
  • PerkinElmer IVIS Lumina LT small animal imager was used for in vitro fluorescence detection and analysis.
  • Compound 53 was synthesized according to the following route:
  • step 1 Add the 2,3,3-trimethyl-1-(butane)-4,5-benzindole obtained in step 1) to the reactor with a molar ratio of 1:2.5 2-chloro-1- Formyl-3-hydroxymethylenecyclopentene. After being completely dissolved in methanol, the reaction system was heated to 75°C for 24 hours under closed conditions, then cooled to room temperature, and placed in a 4°C refrigerator to stand for 24 hours. Petroleum ether was added, then stood still and filtered with suction. The obtained solid was vacuum dried to obtain the product compound 53, with a yield of 89.2%.
  • the purity of compound 53 obtained in this embodiment is greater than 94%.
  • Compound 26 was synthesized according to the following route:
  • the purity of compound 26 obtained in this example was greater than 92%.
  • step 1 Add the 2,3,3-trimethyl-1-(butyric acid)-4,5-benzoindole obtained in step 1) to the reactor in a molar ratio of 1:2.5 2-chloro-1- Formyl-3-hydroxymethylene cyclohexene. After being completely dissolved in methanol, the reaction system was heated to 75°C for 24 hours under closed conditions, then cooled to room temperature, and placed in a 4°C refrigerator to stand for 24 hours. Petroleum ether was added, then stood still and filtered with suction. The obtained solid was vacuum dried to obtain the product compound 8 with a yield of 91.3%.
  • the purity of compound 8 obtained in this example is greater than 94%.
  • the purity of compound C1 obtained in this example is greater than 92%.
  • Compound 12 was synthesized according to the following route:
  • the purity of compound 12 obtained in this example was greater than 94%.
  • Compound 36 was synthesized according to the following route:
  • step 1 Add the 2,3,3-trimethyl-1-(methyl p-toluate)-4,5-benzoindole obtained in step 1) to the reactor in a molar ratio of 1:2.5. -Chloro-1-formyl-3-hydroxymethylenecyclohexene. After being completely dissolved in methanol, the reaction system was heated to 75°C for 24 hours under closed conditions, then cooled to room temperature, and placed in a 4°C refrigerator to stand for 24 hours. Petroleum ether was added, then stood still and filtered with suction. The obtained solid was vacuum dried to obtain the product compound 36 with a yield of 87.2%.
  • the purity of compound 36 obtained in this example was greater than 92%.
  • Compound 25 was synthesized according to the following route:
  • the purity of compound 25 obtained in this example is greater than 94%.
  • Compound 55 was synthesized according to the following route:
  • the purity of compound 55 obtained in this example was greater than 94%.
  • Compound 40 was synthesized according to the following route:
  • step 1 Add the 2,3,3-trimethyl-1-(methylanisole)-4,5-benzindole obtained in step 1) to the reactor with a molar ratio of 1:2.5 2-chloro -1-formyl-3 hydroxymethylene cyclohexene. After being completely dissolved in methanol, the reaction system was heated to 75°C for 24 hours under closed conditions, then cooled to room temperature, and placed in a 4°C refrigerator to stand for 24 hours. Petroleum ether was added, then stood still and filtered with suction. The obtained solid was vacuum dried to obtain the product compound 40 with a yield of 89.7%.
  • the purity of compound 40 obtained in this embodiment is greater than 92%.
  • step 1) add 2,3,3-trimethyl-4,5-benzindole and p-bromomethylbenzoic acid in a molar ratio of 1:1 Ester; in step 2), water is used instead of methanol as the solvent; in step 2), ethyl ether is used instead of petroleum ether as the precipitant to obtain the product compound 36.
  • step 1) add 2,3,3-trimethyl-4,5-benzindole and p-bromomethylbenzoic acid in a molar ratio of 1:12 Ester; in step 2), ethanol is used instead of methanol as the solvent; in step 2), methyl ether is used instead of petroleum ether as the precipitant to obtain the product compound 36.
  • step 1) the reaction system is heated to 80°C and stirred for 24 hours; in step 2), propanol is used instead of methanol as the solvent; in step 2), propyl ether is used instead Petroleum ether was used as a precipitant to obtain the product compound 36.
  • step 1) the reaction system is heated to 130°C and stirred for 4 hours; in step 2), ethylene glycol is used instead of methanol as the solvent; in step 2), methyl ethyl ether is used Instead of petroleum ether as the precipitant, the product compound 36 was obtained.
  • step 2) 2-chloro-1-formyl-3-hydroxymethylene cyclohexene and 2,3,3-trimethyl-1-(butyric acid
  • step 2) 2-chloro-1-formyl-3-hydroxymethylene cyclohexene and 2,3,3-trimethyl-1-(butyric acid
  • the molar ratio of ethyl ester)-4,5-benzindole is 1:2; in step 2), glycerol is used instead of methanol as the solvent to obtain the product compound 12.
  • step 2) 2-chloro-1-formyl-3-hydroxymethylene cyclohexene and 2,3,3-trimethyl-1-(butyric acid
  • step 2) butanol is used instead of methanol as the solvent to obtain the product compound 12.
  • step 2) the reaction system is heated to 50°C under closed conditions for 48 hours, then cooled to room temperature, and placed in a 10°C refrigerator to stand for 48 hours; 2) Using butanediol instead of methanol as the solvent to obtain the product compound 12.
  • step 2) the reaction system is heated to 80°C under closed conditions for 8 hours, then cooled to room temperature, and placed in a 1°C refrigerator to stand for 12 hours;
  • step 2) a methanol/ethanol mixture is used instead of methanol as the solvent to obtain the product compound 12.
  • Example 5 The preparation process of Example 5 was repeated, with the difference that: in step 1), the reactor was closed and evacuated to 2 Pa to obtain the product compound 12.
  • Example 5 The preparation process of Example 5 was repeated, with the difference that: in step 1), the reactor was closed and evacuated to 200 Pa to obtain the product compound 12.
  • Example 4 The compound C1 prepared in Example 4 was analyzed by infrared spectroscopy, and the results are shown in Figure 1, wherein 1397 cm -1 , 1167 cm -1 and 1044 cm -1 (-SO 3 H) are the corresponding absorption peaks of the corresponding functional groups.
  • the test results of the other examples are similar to those of Example 4, and corresponding products are obtained.
  • the compound C1 prepared in Example 4 was subjected to ultraviolet spectroscopy analysis.
  • the compound C1 prepared in Example 4 had the highest absorption peak at 820 nm, which was a near-infrared absorption peak.
  • the test results of the remaining examples are similar to those of Example 4, and the maximum absorption wavelength of the obtained product is in the range of 760-850 nm.
  • the compound C1 prepared in Example 4 was dissolved in PBS solution, and the concentration was diluted with PBS solution to obtain 0.2 mg/mL near-infrared targeting probe preparation.
  • the above-mentioned near-infrared targeting probe preparation at a concentration of 0.2 mg/mL was injected into nude mice with breast cancer, and fluorescence imaging was performed 48 hours later.
  • the results are shown in Figure 2.
  • the near-infrared fluorescence signal peak of the near-infrared fluorescent probe is well separated from the background signal peak of the nude mouse itself, and the contrast between the tumor area and the normal tissue around the tumor is greater than 10. In this way, the background interference is small, which can provide the surgeon with a clear tumor location and precise tumor boundary, thereby improving the detection rate and resection rate of the tumor.
  • the products in other embodiments of the present application also have a fluorescent development effect similar to the above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Analytical Chemistry (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Indole Compounds (AREA)

Abstract

The present application relates to the fields of polymethylbenzylindole cyanine dyes and the preparation thereof, and disclosed thereby are a preparation method for a heptamethylbenzylindole cyanine dye and an application thereof. The method comprises the following steps: 1) reacting raw materials comprising a 2,3,3-trimethyl-4,5-benzoindole derivative and a nucleophilic substitution compound under vacuum conditions at an increased temperature to obtain an organic ammonium salt; 2) reacting the organic ammonium salt obtained in step 1) with a solution of a cycloolefin derivative at an increased temperature under closed conditions. The structural formula of the heptamethylbenzindole cyanine dye is as shown in formula (I). The dye has near-infrared light absorption and fluorographic properties, and can be used as a probe auxiliary. The method has the advantages of having a short synthesis route, having a friendly solvent environment, having a simple process, preventing noble metal catalysis, having high yield, having high purity, and so on, has high applicability, and can be used to synthesize products of various structure types.

Description

一种七甲川苯并吲哚花菁染料的制备方法及其应用Preparation method and application of heptamethine benzoindole cyanine dye 技术领域Technical field
本申请涉及一种七甲川苯并吲哚花菁染料的制备方法及其应用,属于多甲川吲哚花菁染料及其制备领域。The application relates to a preparation method and application of heptamethine benzoindocyanine dye, belonging to the field of polymethine benzoindole cyanine dye and preparation thereof.
背景技术Background technique
七甲川花菁染料中的吲哚菁绿是唯一被美国食品药品监督管理局批准可用于临床显影光热治疗的近红外染料,其衍生物新吲哚菁绿属于七甲川吲哚花菁染料中的一种。这一类染料在808nm附近的近红外光区具有较强的吸收效果,其可作为其他医学诊疗方法(例如MRI、PET、SPECT、超声回波扫描技术、放射摄影术和断层摄影术)的互补成像技术,同时也用做光热治疗的光敏剂,在生命科学和生物医学研究中具有重要的研究价值和应用价值。Indocyanine green in heptamethine cyanine dyes is the only near-infrared dye approved by the US Food and Drug Administration for clinical imaging photothermal therapy. Its derivative, new indocyanine green, belongs to heptamethine indocyanine dyes Kind of. This type of dye has a strong absorption effect in the near-infrared light region near 808nm, which can be used as a complement to other medical diagnosis and treatment methods (such as MRI, PET, SPECT, ultrasonic echo scanning technology, radiography and tomography) Imaging technology, which is also used as a photosensitizer for photothermal therapy, has important research value and application value in life science and biomedical research.
七甲川吲哚花菁染料具有多个可改性位点,可大大拓展此类染料与小分子药物等的联合使用。目前,市面所售的七甲川吲哚花菁仅新吲哚菁绿(IR-820)一种,且纯度低(80%)、售价高(1324元/g)。同时,其不同衍生物的生产纯化过程需要进行大量条件筛选且耗费大量有机溶剂,并且所选用的溶剂大多为高毒性溶剂,如邻二氯苯、甲苯、苯等。因此,本领域需要开发一种新的适用于工业化、低毒、绿色的七甲川苯并吲哚花菁染料的制备纯化方法,从而实现此类染料的高效、低成本、低毒性的制备。Heptamethine indocyanine dyes have multiple modifiable sites, which can greatly expand the combined use of such dyes and small molecule drugs. At present, heptamethine indocyanine on the market is only the new indocyanine green (IR-820), with low purity (80%) and high selling price (1324 yuan/g). At the same time, the production and purification process of its different derivatives requires a lot of screening conditions and consumes a lot of organic solvents, and most of the selected solvents are highly toxic solvents, such as o-dichlorobenzene, toluene, benzene, etc. Therefore, the field needs to develop a new method for the preparation and purification of industrialized, low-toxic, green heptamethine benzoindole cyanine dyes, so as to realize the efficient, low-cost, and low-toxic preparation of such dyes.
发明内容Summary of the invention
根据本申请的一个方面,提供了一种七甲川苯并吲哚花菁染料的制备方法。该方法具有合成路线短、溶剂环境友好、工艺简单、避免贵金属催化、产率高以及单次反应量大的优点,可极大地提高此类染料的制备效率,实现低成本批量生产。并且,该方法的适用性强,可用于制备多种结构类型的七甲川苯并吲哚花菁染料。According to one aspect of the present application, a method for preparing heptamethine benzoindole cyanine dye is provided. The method has the advantages of short synthetic route, friendly solvent environment, simple process, avoiding noble metal catalysis, high yield and large single reaction volume, and can greatly improve the preparation efficiency of such dyes and realize low-cost mass production. In addition, the method has strong applicability and can be used to prepare heptamethine benzindocyanine dyes of various structural types.
所述七甲川苯并吲哚花菁染料的制备方法,其特征在于,包括以下步骤:The preparation method of the heptamethine benzoindole cyanine dye is characterized in that it comprises the following steps:
1)将含有2,3,3-三甲基-4,5-苯并吲哚衍生物和亲核取代化合物的原料在真空条件下,在80~130℃下反应4~24小时,得到有机铵盐;1) The raw materials containing 2,3,3-trimethyl-4,5-benzindole derivatives and nucleophilic substituted compounds are reacted at 80-130°C for 4-24 hours under vacuum conditions to obtain organic ammonium salt;
其中,所述2,3,3-三甲基-4,5-苯并吲哚衍生物的结构式如式(III-1)所示:Wherein, the structural formula of the 2,3,3-trimethyl-4,5-benzindole derivative is as shown in formula (III-1):
Figure PCTCN2020073489-appb-000001
Figure PCTCN2020073489-appb-000001
所述亲核取代化合物选自具有结构式如式(III-2)、式(III-3)或式(III-4)所示的化合物中的至少一种:The nucleophilic substitution compound is selected from at least one compound having a structural formula such as formula (III-2), formula (III-3) or formula (III-4):
Figure PCTCN2020073489-appb-000002
Figure PCTCN2020073489-appb-000002
Figure PCTCN2020073489-appb-000003
Figure PCTCN2020073489-appb-000003
式(III-2)中,R 1选自氢、甲基、甲氧基、羟基、羧基、酰胺基、磺酸基、酯基、炔基或氨基,a选自大于0且小于等于14的整数,X选自氟、氯、溴、碘或高氯酸根;式(III-3)中,R 2选自
Figure PCTCN2020073489-appb-000004
Figure PCTCN2020073489-appb-000005
c选自1至13的整数;式(III-4)中,R 3选自氢、甲基、甲氧基、羟基、羧基、酰胺基、磺酸基、酯基、炔基或氨基,b选自0至7的整数,X选自氟、氯、溴、碘或高氯酸根;
In formula (III-2), R 1 is selected from hydrogen, methyl, methoxy, hydroxyl, carboxyl, amide, sulfonic acid, ester, alkynyl, or amino, and a is selected from those greater than 0 and less than or equal to 14. Integer, X is selected from fluorine, chlorine, bromine, iodine or perchlorate; in formula (III-3), R 2 is selected from
Figure PCTCN2020073489-appb-000004
Figure PCTCN2020073489-appb-000005
c is selected from an integer from 1 to 13; in formula (III-4), R 3 is selected from hydrogen, methyl, methoxy, hydroxy, carboxy, amide, sulfonic acid, ester, alkynyl or amino, b An integer selected from 0 to 7, and X is selected from fluorine, chlorine, bromine, iodine or perchlorate;
所述有机铵盐的结构式如式(III-5)、式(III-6)或式(III-7)所示:The structural formula of the organic ammonium salt is as shown in formula (III-5), formula (III-6) or formula (III-7):
Figure PCTCN2020073489-appb-000006
Figure PCTCN2020073489-appb-000006
Figure PCTCN2020073489-appb-000007
Figure PCTCN2020073489-appb-000007
式(III-5)中,R 1、a和X的定义与式(III-2)中所述相同,m=1;式(III-6)中,R 2'选自羧酸根或磺酸根,c的定义与式(III-3)中所述相同;式(III-7)中,R 3、b和X的定义与式(III-4)中所述相同,m=1; In formula (III-5), the definitions of R 1 , a and X are the same as those described in formula (III-2), m=1; in formula (III-6), R 2 'is selected from carboxylate or sulfonate , The definition of c is the same as that described in formula (III-3); in formula (III-7), the definitions of R 3 , b and X are the same as those described in formula (III-4), m=1;
2)将含有步骤1)中得到的有机铵盐和环烯衍生物的溶液在封闭条件下,在50~80℃下反应8~48小时,得到所述七甲川苯并吲哚花菁染料;2) Reacting the solution containing the organic ammonium salt and cycloalkene derivative obtained in step 1) at 50-80° C. for 8 to 48 hours under closed conditions to obtain the heptamethine benzoindole cyanine dye;
其中,所述环烯衍生物的结构式如式(III-8)所示:Wherein, the structural formula of the cycloalkene derivative is shown in formula (III-8):
Figure PCTCN2020073489-appb-000008
Figure PCTCN2020073489-appb-000008
式(III-8)中,A选自亚乙基、直链亚丙基或直链亚丁基。In formula (III-8), A is selected from ethylene, linear propylene, or linear butylene.
可选地,所述环烯衍生物的结构式如式(III-8-1)、式(III-8-2)或式(III-8-3)所示:Optionally, the structural formula of the cycloalkene derivative is as shown in formula (III-8-1), formula (III-8-2) or formula (III-8-3):
Figure PCTCN2020073489-appb-000009
Figure PCTCN2020073489-appb-000009
可选地,步骤1)中,所述2,3,3-三甲基-4,5-苯并吲哚衍生物与所述亲核取代化合物的摩尔比为1:1~1:12。Optionally, in step 1), the molar ratio of the 2,3,3-trimethyl-4,5-benzindole derivative to the nucleophilic substitution compound is 1:1 to 1:12.
可选地,步骤1)中,所述2,3,3-三甲基-4,5-苯并吲哚衍生物与所述亲核取代化合物的摩尔比的上限选自1:12、1:11、1:10、1:9、1:8、1:7、1:6、1:5、1:4、1:3、1:2,下限选自1:1、1:1.5、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9、1:10、1:11。Optionally, in step 1), the upper limit of the molar ratio of the 2,3,3-trimethyl-4,5-benzindole derivative to the nucleophilic substitution compound is selected from 1:12, 1. :11, 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, the lower limit is selected from 1:1, 1:1.5, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 1:11.
优选地,步骤1)中,所述2,3,3-三甲基-4,5-苯并吲哚衍生物与所述亲核取代化合物的摩尔比为1:1~1:2。Preferably, in step 1), the molar ratio of the 2,3,3-trimethyl-4,5-benzindole derivative to the nucleophilic substitution compound is 1:1 to 1:2.
更优选地,步骤1)中,所述2,3,3-三甲基-4,5-苯并吲哚衍生物与所述亲核取代化合物的摩尔比为1:1.5。More preferably, in step 1), the molar ratio of the 2,3,3-trimethyl-4,5-benzindole derivative to the nucleophilic substitution compound is 1:1.5.
可选地,步骤1)中,将所述原料反应的温度的上限选自130℃、125℃、120℃、115℃、110℃、105℃、100℃、95℃、90℃,下限选自80℃、85℃、90℃、95℃、100℃、105℃、110℃;将所述原料反应的时间的上限选自24小时、23小时、22小时、20小时、18小时、16小时、15小时、14小时、12小时、10小时、5小时,下限选自4小时、5小时、8小时、10小时、12小时、14小时、15小时、16小时、18小时、20小时、22小时、23小时。Optionally, in step 1), the upper limit of the reaction temperature of the raw materials is selected from 130°C, 125°C, 120°C, 115°C, 110°C, 105°C, 100°C, 95°C, 90°C, and the lower limit is selected from 80°C, 85°C, 90°C, 95°C, 100°C, 105°C, 110°C; the upper limit of the reaction time of the raw material is selected from 24 hours, 23 hours, 22 hours, 20 hours, 18 hours, 16 hours, 15 hours, 14 hours, 12 hours, 10 hours, 5 hours, the lower limit is selected from 4 hours, 5 hours, 8 hours, 10 hours, 12 hours, 14 hours, 15 hours, 16 hours, 18 hours, 20 hours, 22 hours , 23 hours.
优选地,步骤1)中,将所述原料在100~120℃下反应8~16小时。Preferably, in step 1), the raw material is reacted at 100-120°C for 8-16 hours.
更优选地,步骤1)中,将所述原料在110~120℃下反应10~14小时。More preferably, in step 1), the raw materials are reacted at 110 to 120°C for 10 to 14 hours.
特别优选地,步骤1)中,将所述原料在120℃下反应12小时。Particularly preferably, in step 1), the raw material is reacted at 120°C for 12 hours.
可选地,步骤1)中,将所述原料在封闭条件下反应。Optionally, in step 1), the raw materials are reacted under closed conditions.
可选地,步骤1)中,将所述原料在2~200Pa的压力下反应。Optionally, in step 1), the raw materials are reacted under a pressure of 2 to 200 Pa.
可选地,步骤1)中,将所述原料反应的压力的上限选自200Pa、175Pa、150Pa、125Pa、100Pa、75Pa、50Pa、40Pa、30Pa、20Pa、10Pa、9Pa、8Pa、7Pa、6Pa、5Pa、4Pa、3Pa,下限选自2Pa、3Pa、4Pa、5Pa、6Pa、7Pa、8Pa、9Pa、10Pa、20Pa、30Pa、40Pa、50Pa、75Pa、100Pa、125Pa、150Pa、175Pa。Optionally, in step 1), the upper limit of the pressure of the raw material reaction is selected from 200Pa, 175Pa, 150Pa, 125Pa, 100Pa, 75Pa, 50Pa, 40Pa, 30Pa, 20Pa, 10Pa, 9Pa, 8Pa, 7Pa, 6Pa, 5Pa, 4Pa, 3Pa, the lower limit is selected from 2Pa, 3Pa, 4Pa, 5Pa, 6Pa, 7Pa, 8Pa, 9Pa, 10Pa, 20Pa, 30Pa, 40Pa, 50Pa, 75Pa, 100Pa, 125Pa, 150Pa, 175Pa.
优选地,步骤1)中,将所述原料在5~50Pa的压力下反应。Preferably, in step 1), the raw materials are reacted under a pressure of 5-50Pa.
更优选地,步骤1)中,将所述原料在10Pa的压力下反应。More preferably, in step 1), the raw materials are reacted under a pressure of 10 Pa.
在根据本申请的方法中,对于步骤1)中除反应物外是否还使用反应介质没有特别限制,只要所述反应物能够完成步骤1)的反应即可。即,在如上所述的步骤1)的反应条件下,当反应体系中存在液相时(例如,在至少部分反应物为液态的情况下),无需使用反应介质,或者仍可使用反应介质。In the method according to the present application, there is no particular restriction on whether a reaction medium is used in addition to the reactants in step 1), as long as the reactants can complete the reaction of step 1). That is, under the reaction conditions of step 1) as described above, when a liquid phase exists in the reaction system (for example, when at least part of the reactants are liquid), no reaction medium is required, or the reaction medium can still be used.
可选地,出于例如环保和安全的目的,所述反应介质为基于醇的反应介质。Optionally, for the purpose of, for example, environmental protection and safety, the reaction medium is an alcohol-based reaction medium.
优选地,所述反应介质选自甲醇、乙醇、丙醇、乙二醇、丙三醇、丁醇和丁二醇中的至少一种。Preferably, the reaction medium is selected from at least one of methanol, ethanol, propanol, ethylene glycol, glycerol, butanol and butanediol.
可选地,步骤2)中,所述环烯衍生物与所述有机铵盐的摩尔比为1:2~1:6。Optionally, in step 2), the molar ratio of the cycloalkene derivative to the organic ammonium salt is 1:2 to 1:6.
可选地,步骤2)中,所述环烯衍生物与所述有机铵盐的摩尔比的上限选自1:6、1:5.5、1:5、1:4.5、1:4、1:3.8、1:3.5、1:3.4、1:3.2、1:3、1:2.8、1:2.5、1:2.4、1:2.2、1:2.1,下限选自1:2、1:2.1、1:2.2、1:2.4、1:2.5、1:2.8、1:3、1:3.2、1:3.4、1:3.5、1:3.8、1:4、1:4.5、1:5、1:5.5。Optionally, in step 2), the upper limit of the molar ratio of the cycloalkene derivative to the organic ammonium salt is selected from 1:6, 1:5.5, 1:5, 1:4.5, 1:4, 1: 3.8, 1:3.5, 1:3.4, 1:3.2, 1:3, 1:2.8, 1:2.5, 1:2.4, 1:2.2, 1:2.1, the lower limit is selected from 1:2, 1:2.1, 1 :2.2, 1:2.4, 1:2.5, 1:2.8, 1:3, 1:3.2, 1:3.4, 1:3.5, 1:3.8, 1:4, 1:4.5, 1:5, 1:5.5 .
优选地,步骤2)中,所述环烯衍生物与所述有机铵盐的摩尔比为1:2~1:3。Preferably, in step 2), the molar ratio of the cycloalkene derivative to the organic ammonium salt is 1:2 to 1:3.
更优选地,步骤2)中,所述环烯衍生物与所述有机铵盐的摩尔比为1:2.5。More preferably, in step 2), the molar ratio of the cycloalkene derivative to the organic ammonium salt is 1:2.5.
可选地,步骤2)中,将所述溶液反应的温度的上限选自80℃、75℃、70℃、65℃、60℃、55℃,下限选自50℃、55℃、60℃、65℃、70℃、75℃;将所述溶液反应的时间的上限选自48小时、38小时、35小时、32小时、30小时、28小时、24小时、20小时、18小时、15小时、10小时,下限选自8小时、10小时、15小时、18小时、20小时、24小时、28小时、30小时、32小时、35小时、38小时。Optionally, in step 2), the upper limit of the reaction temperature of the solution is selected from 80°C, 75°C, 70°C, 65°C, 60°C, and 55°C, and the lower limit is selected from 50°C, 55°C, 60°C, 65°C, 70°C, 75°C; the upper limit of the reaction time of the solution is selected from 48 hours, 38 hours, 35 hours, 32 hours, 30 hours, 28 hours, 24 hours, 20 hours, 18 hours, 15 hours, 10 hours, the lower limit is selected from 8 hours, 10 hours, 15 hours, 18 hours, 20 hours, 24 hours, 28 hours, 30 hours, 32 hours, 35 hours, and 38 hours.
优选地,步骤2)中,将所述溶液在60~80℃下反应10~30小时。Preferably, in step 2), the solution is reacted at 60-80°C for 10-30 hours.
更优选地,步骤2)中,将所述溶液在70~80℃下反应10~30小时。More preferably, in step 2), the solution is reacted at 70-80°C for 10-30 hours.
更优选地,步骤2)中,将所述溶液在70~80℃下反应15~28小时。More preferably, in step 2), the solution is reacted at 70-80°C for 15-28 hours.
特别优选地,步骤2)中,将所述溶液在75℃下反应24小时。Particularly preferably, in step 2), the solution is reacted at 75°C for 24 hours.
可选地,步骤2)中,在反应后加入沉淀剂,在1~10℃下保持12~48小时后抽滤,得到所述七甲川苯并吲哚花菁染料。Optionally, in step 2), a precipitating agent is added after the reaction, maintained at 1 to 10° C. for 12 to 48 hours, and then filtered with suction to obtain the heptamethine benzoindole cyanine dye.
可选地,步骤2)中,加入沉淀剂后保持的温度的上限选自10℃、9℃、8℃、7℃、6℃、5℃、4℃、 3℃、2℃,下限选自1℃、2℃、3℃、4℃、5℃、6℃、7℃、8℃、9℃;保持的时间的上限选自48小时、44小时、40小时、36小时、32小时、28小时、24小时、20小时、16小时,下限选自12小时、16小时、20小时、24小时、28小时、32小时、36小时、40小时、44小时。Optionally, in step 2), the upper limit of the temperature maintained after adding the precipitant is selected from 10°C, 9°C, 8°C, 7°C, 6°C, 5°C, 4°C, 3°C, 2°C, and the lower limit is selected from 1℃, 2℃, 3℃, 4℃, 5℃, 6℃, 7℃, 8℃, 9℃; the upper limit of the holding time is selected from 48 hours, 44 hours, 40 hours, 36 hours, 32 hours, 28 Hour, 24 hour, 20 hour, 16 hour, the lower limit is selected from 12 hour, 16 hour, 20 hour, 24 hour, 28 hour, 32 hour, 36 hour, 40 hour, 44 hour.
优选地,步骤2)中,在反应后加入沉淀剂,在4℃下保持24小时后抽滤,得到所述七甲川苯并吲哚花菁染料。Preferably, in step 2), a precipitating agent is added after the reaction, maintained at 4° C. for 24 hours and then filtered with suction to obtain the heptamethine benzoindole cyanine dye.
可选地,所述沉淀剂选自石油醚、乙醚、甲醚、丙醚和甲乙醚中的至少一种。Optionally, the precipitating agent is selected from at least one of petroleum ether, ethyl ether, methyl ether, propyl ether, and methyl ethyl ether.
优选地,所述沉淀剂包括石油醚。Preferably, the precipitating agent includes petroleum ether.
可选地,步骤2)中,所述溶液中的溶剂选自水、甲醇、乙醇、丙醇、乙二醇、丙三醇、丁醇和丁二醇中的至少一种。Optionally, in step 2), the solvent in the solution is selected from at least one of water, methanol, ethanol, propanol, ethylene glycol, glycerol, butanol and butanediol.
优选地,步骤2)中,所述溶液中的溶剂选自甲醇、乙醇和丙醇中的至少一种。Preferably, in step 2), the solvent in the solution is selected from at least one of methanol, ethanol and propanol.
因此,就溶剂而言,在根据本申请的方法的步骤1)中,取决于反应物的状态,可不使用溶剂,或者可使用溶剂并且选自醇类;在步骤2)中,可使用选自水和醇类的溶剂。与常规方法中使用的诸如邻二氯苯、乙酸酐的溶剂相比,本申请中可使用的溶剂更加环境友好和安全,并且对健康的损害更小。Therefore, in terms of solvent, in step 1) of the method according to the present application, depending on the state of the reactants, a solvent may not be used, or a solvent may be used and selected from alcohols; in step 2), a solvent selected from Water and alcohol solvents. Compared with solvents such as ortho-dichlorobenzene and acetic anhydride used in conventional methods, the solvents that can be used in this application are more environmentally friendly and safer, and have less damage to health.
根据本申请的另一个方面,提供了通过所述方法制备的七甲川苯并吲哚花菁染料,该染料具有近红外光吸收、荧光显影的性能。According to another aspect of the present application, a heptamethine benzoindole cyanine dye prepared by the method is provided, and the dye has the properties of near-infrared light absorption and fluorescence development.
所述七甲川苯并吲哚花菁染料的结构式如式(I)所示:The structural formula of the heptamethine benzoindole cyanine dye is shown in formula (I):
Figure PCTCN2020073489-appb-000010
Figure PCTCN2020073489-appb-000010
其中,R选自R 1和R 2中的一种; Wherein, R is selected from one of R 1 and R 2 ;
Figure PCTCN2020073489-appb-000011
Figure PCTCN2020073489-appb-000011
当R为R 1时,R'选自氢、甲基、甲氧基、羟基、羧基、酰胺基、磺酸基、酯基、炔基或氨基,a选自大于0且小于等于14的整数,X选自氟、氯、溴、碘或高氯酸根,m=1,p=0,A选自亚乙基、直链亚丙基或直链亚丁基;或 When R is R 1 , R'is selected from hydrogen, methyl, methoxy, hydroxyl, carboxyl, amide, sulfonic acid, ester, alkynyl or amino, and a is selected from an integer greater than 0 and less than or equal to 14. , X is selected from fluorine, chlorine, bromine, iodine or perchlorate, m=1, p=0, A is selected from ethylene, linear propylene or linear butylene; or
R'选自羧酸根或磺酸根,a选自大于0且小于等于14的整数,Y选自氢、钠或钾,m=0,p=1,A选自亚乙基、直链亚丙基或直链亚丁基;R'is selected from carboxylate or sulfonate, a is selected from an integer greater than 0 and less than or equal to 14, Y is selected from hydrogen, sodium or potassium, m=0, p=1, A is selected from ethylene and linear propylene Radical or linear butylene;
当R为R 2时,R"选自氢、甲基、甲氧基、羟基、羧基、酰胺基、磺酸基、酯基、炔基或氨基,b选自0至7的整数,X选自氟、氯、溴、碘或高氯酸根,m=1,p=0,A选自亚乙基、直链亚丙基或直链亚丁基;或 When R is R 2, R "is selected from hydrogen, methyl, methoxy, hydroxy, a carboxyl group, an amide group, a sulfonic acid group, an ester group, an alkynyl group or an amino group, b is an integer selected from 0 to 7, X is selected from From fluorine, chlorine, bromine, iodine or perchlorate, m=1, p=0, A is selected from ethylene, linear propylene or linear butylene; or
R"选自羧酸根或磺酸根,b选自0至7的整数,Y选自氢、钠或钾,m=0,p=1,A选自亚乙基、直链亚丙基或直链亚丁基。R" is selected from carboxylate or sulfonate, b is selected from an integer from 0 to 7, Y is selected from hydrogen, sodium or potassium, m=0, p=1, A is selected from ethylene, linear propylene or straight Butylene.
可选地,所述七甲川苯并吲哚花菁染料的结构式如式(I-1)、式(I-2)或式(I-3)所示:Optionally, the structural formula of the heptamethine benzoindole cyanine dye is as shown in formula (I-1), formula (I-2) or formula (I-3):
Figure PCTCN2020073489-appb-000012
Figure PCTCN2020073489-appb-000012
可选地,式(I)中的R选自R 1和R 2中的一种;其中, Optionally, R in formula (I) is selected from one of R 1 and R 2 ; wherein,
当R为R 1时,R'选自氢、羧基或酯基,a选自2、4、6或8,X选自溴或碘,m=1,p=0,A选自亚乙基或直链亚丙基;或 When R is a. 1 when R, R 'is selected from hydrogen, a carboxyl group or an ester group, A is selected from 4, 6 or 8, X is selected from bromine or iodine, m = 1, p = 0 , A is selected from ethylene Or linear propylene; or
R'选自羧酸根或磺酸根,a选自3、5、7或9,Y选自钠,m=0,p=1,A选自亚乙基或直链亚丙基;R'is selected from carboxylate or sulfonate, a is selected from 3, 5, 7 or 9, Y is selected from sodium, m=0, p=1, and A is selected from ethylene or linear propylene;
当R为R 2时,R"选自氢、羧基或酯基,b选自0、1、3或5,X选自溴或碘,m=1,p=0,A选自亚乙基或直链亚丙基;或 When R is when R 2, R "is selected from hydrogen, a carboxyl group or an ester group, b is selected from 0,1,3 or 5, X is selected from bromine or iodine, m = 1, p = 0 , A is selected from ethylene Or linear propylene; or
R"选自羧酸根或磺酸根,b选自0、1、3或5,Y选自钠,m=0,p=1,A选自亚乙基或直链亚丙基。R" is selected from carboxylate or sulfonate, b is selected from 0, 1, 3 or 5, Y is selected from sodium, m=0, p=1, and A is selected from ethylene or linear propylene.
作为具体的实施方式,本申请中的七甲川苯并吲哚花菁染料选自具有如下所示的结构式的化合物:As a specific embodiment, the heptamethine benzoindole cyanine dye in the present application is selected from compounds having the structural formula shown below:
(1)当A为直链亚丙基,R选自R 1,R'选自氢原子,a=2,3,4,6,12时,所述七甲川苯并吲哚花菁染料分别为具有结构式1~5的化合物; (1) When A is a linear propylene group, R is selected from R 1 , R'is selected from a hydrogen atom, and a=2, 3, 4, 6, 12, the heptamethine benzoindole cyanine dyes are respectively Is a compound having structural formulas 1 to 5;
(2)当A为直链亚丙基,R选自R 1,R'选自羧酸根,a=1,2,3,5时,所述七甲川苯并吲哚花菁染料分别为具有结构式6~9的化合物; (2) When A is a linear propylene group, R is selected from R 1 , R'is selected from carboxylate, and a = 1, 2, 3, 5, the heptamethyl benzoindole cyanine dye has Compounds of structural formulas 6-9;
(3)当A为直链亚丙基,R选自R 1,R'选自乙酯基,a=1,2,3,5时,所述七甲川苯并吲哚花菁染料分别为具有结构式10~13的化合物; (3) When A is a linear propylene group, R is selected from R 1 , R'is selected from carboethyl, and a = 1, 2, 3, 5, the heptamethine benzoindole cyanine dyes are respectively Compounds having structural formulas 10-13;
(4)当A为直链亚丙基,R选自R 1,R'选自羟基,a=2,3,4,6时,所述七甲川苯并吲哚花菁染料分别为具有结构式14~17的化合物; (4) When A is linear propylene, R is selected from R 1 , R'is selected from hydroxyl, and a=2,3,4,6, the heptamethine benzoindole cyanine dyes have the structural formula respectively Compounds of 14-17;
(5)当A为直链亚丙基,R选自R 1,R'选自甲氧基,a=2,4,6时,所述七甲川苯并吲哚花菁染料分别为具有结构式18~20的化合物; (5) When A is a linear propylene group, R is selected from R 1 , R'is selected from methoxy, and a=2,4,6, the heptamethine benzoindole cyanine dyes respectively have the structural formula 18-20 compounds;
(6)当A为直链亚丙基,R选自R 1,R'选自酰胺基,a=1,2,3,5时,所述七甲川苯并吲哚花菁染料分别为具有结构式21~24的化合物; (6) When A is a linear propylene group, R is selected from R 1 , R'is selected from an amide group, and a = 1, 2, 3, 5, the heptamethyl benzoindole cyanine dye has Compounds of structural formulas 21-24;
(7)当A为直链亚丙基,R选自R 2,R"选自氢原子,b=0时,所述七甲川苯并吲哚花菁染料为具有结构式25的化合物; (7) When A is a linear propylene group, R is selected from R 2 , R" is selected from a hydrogen atom, and b=0, the heptamethine benzoindole cyanine dye is a compound of structural formula 25;
(8)当A为直链亚丙基,R选自R 2,R"选自羧基,b=0,1,3时,所述七甲川苯并吲哚花菁染 料分别为具有结构式26~28的化合物; (8) When A is a linear propylene group, R is selected from R 2 , R" is selected from a carboxyl group, and b = 0, 1, 3, the heptamethine benzoindole cyanine dye has the structural formula 26 to 28 compounds;
(9)当A为直链亚丙基,R选自R 2,R"选自磺酸基,b=0,1,4时,所述七甲川苯并吲哚花菁染料分别为具有结构式29~31的化合物; (9) When A is a linear propylene group, R is selected from R 2 , R" is selected from a sulfonic acid group, and b=0, 1, 4, the heptamethine benzoindole cyanine dye has the structural formula Compounds from 29 to 31;
(10)当A为直链亚丙基,R选自R 2,R"选自甲基,b=0,1,3,5时,所述七甲川苯并吲哚花菁染料分别为具有结构式32~35的化合物; (10) When A is a linear propylene group, R is selected from R 2 , R" is selected from methyl, and b = 0, 1, 3, 5, the heptamethine benzoindole cyanine dye has Compounds of structural formulas 32-35;
(11)当A为直链亚丙基,R选自R 2,R"选自甲酯基,b=0,1,3,5时,所述七甲川苯并吲哚花菁染料分别为具有结构式36~39的化合物; (11) When A is a linear propylene group, R is selected from R 2 , R" is selected from a methyl ester group, and b = 0, 1, 3, 5, the heptamethine benzoindole cyanine dyes are respectively Compounds with structural formulas 36-39;
(12)当A为直链亚丙基,R选自R 2,R"选自甲氧基,b=0,1,3,4时,所述七甲川苯并吲哚花菁染料分别为具有结构式40~43的化合物; (12) When A is a linear propylene group, R is selected from R 2 , R" is selected from methoxy, and b=0, 1, 3, 4, the heptamethine benzoindole cyanine dyes are respectively Compounds having structural formulas 40 to 43;
(13)当A为直链亚丙基,R选自R 2,R"选自酰胺基,b=0,1,2,3时,所述七甲川苯并吲哚花菁染料分别为具有结构式44~47的化合物; (13) When A is a linear propylene group, R is selected from R 2 , R" is selected from an amide group, and b = 0, 1, 2, 3, the heptamethine benzoindole cyanine dye has Compounds of structural formulas 44-47;
(14)当A为直链亚丙基,R选自R 1,R'选自乙炔基,a=3时,所述七甲川苯并吲哚花菁染料为具有结构式48的化合物; (14) When A is a linear propylene group, R is selected from R 1 , R'is selected from ethynyl, and a=3, the heptamethine benzoindole cyanine dye is a compound of structural formula 48;
(15)当A为直链亚丙基,R选自R 2,R"选自氨基,b=0时,所述七甲川苯并吲哚花菁染料为具有结构式49的化合物; (15) When A is a linear propylene group, R is selected from R 2 , R" is selected from amino, and b=0, the heptamethine benzoindole cyanine dye is a compound of structural formula 49;
(16)当A为直链亚丙基,R选自R 2,R"选自羟基,b=0时,所述七甲川苯并吲哚花菁染料为具有结构式50的化合物; (16) When A is a linear propylene group, R is selected from R 2 , R" is selected from hydroxyl, and b=0, the heptamethine benzoindole cyanine dye is a compound of structural formula 50;
(17)当A为亚乙基,R选自R 1,R'选自氢原子,a=2,3,4,6,12时,所述七甲川苯并吲哚花菁染料分别为具有结构式51~55的化合物; (17) When A is ethylene, R is selected from R 1 , R'is selected from hydrogen atom, and a=2, 3, 4, 6, 12, the heptamethine benzoindole cyanine dye has Compounds of structural formula 51-55;
(18)当A为亚乙基,R选自R 1,R'选自羧酸根,a=1,2,3,5时,所述七甲川苯并吲哚花菁染料分别为具有结构式56~59的化合物; (18) When A is ethylene, R is selected from R 1 , R'is selected from carboxylate, and a=1, 2, 3, 5, the heptamethine benzoindole cyanine dye has the structural formula 56. ~59 compounds;
(19)当A为亚乙基,R选自R 1,R'选自乙酯基,a=1,2,3,5时,所述七甲川苯并吲哚花菁染料分别为具有结构式60~63的化合物; (19) When A is ethylene, R is selected from R 1 , R'is selected from carboethyl, and a=1, 2, 3, 5, the heptamethine benzoindole cyanine dye has the structural formula 60~63 compounds;
(20)当A为亚乙基,R选自R 1,R'选自羟基,a=2,3,4,6时,所述七甲川苯并吲哚花菁染料分别为具有结构式64~67的化合物; (20) where A is an ethylene group, R is selected from R 1, R 'is selected from a hydroxyl group, a = 2,3,4,6, said benzo heptamethine cyanine dyes are indole having the formula 64 ~ 67 compounds;
(21)当A为亚乙基,R选自R 1,R'选自甲氧基,a=2,4,6时,所述七甲川苯并吲哚花菁染料分别为具有结构式68~70的化合物; (21) When A is ethylene, R is selected from R 1 , R'is selected from methoxy, and a=2, 4, 6, the heptamethine benzoindole cyanine dye has the structural formula 68 to 70 compounds;
(22)当A为亚乙基,R选自R 1,R'选自酰胺基,a=1,2,3,5时,所述七甲川苯并吲哚花菁染料分别为具有结构式71~74的化合物; (22) When A is ethylene, R is selected from R 1 , R'is selected from amide group, and a=1, 2, 3, 5, the heptamethine benzoindole cyanine dye has the structural formula 71, respectively. ~74 compounds;
(23)当A为亚乙基,R选自R 2,R"选自氢原子,b=0时,所述七甲川苯并吲哚花菁染料为具有结构式75的化合物; (23) When A is ethylene, R is selected from R 2 , R" is selected from hydrogen atom, and b=0, the heptamethine benzoindole cyanine dye is a compound of structural formula 75;
(24)当A为亚乙基,R选自R 2,R"选自羧基,b=0,1,3时,所述七甲川苯并吲哚花菁染料分别为具有结构式76~78的化合物; (24) When A is ethylene, R is selected from R 2 , R" is selected from carboxyl group, and b=0, 1, 3, the heptamethine benzoindole cyanine dyes have structural formulas 76-78. Compound
(25)当A为亚乙基,R选自R 2,R"选自磺酸基,b=0,1,4时,所述七甲川苯并吲哚花菁染料分别为具有结构式79~81的化合物; (25) When A is ethylene, R is selected from R 2 , R" is selected from sulfonic acid group, and b=0,1,4, the heptamethine benzoindole cyanine dye has the structural formula 79~ 81 compounds;
(26)当A为亚乙基,R选自R 2,R"选自甲基,b=0,1,3,5时,所述七甲川苯并吲哚花菁染料分别为具有结构式82~85的化合物; (26) where A is an ethylene group, R is selected from R 2, R "is selected from methyl, b = 0,1,3,5, said benzo heptamethine cyanine dyes are indole having the formula 82 ~85 compounds;
(27)当A为亚乙基,R选自R 2,R"选自甲酯基,b=0,1,3,5时,所述七甲川苯并吲哚花菁染料分别为具有结构式86~89的化合物; (27) When A is ethylene, R is selected from R 2 , R" is selected from methyl ester group, b = 0, 1, 3, 5, the heptamethine benzoindole cyanine dye has the structural formula 86~89 compounds;
(28)当A为亚乙基,R选自R 2,R"选自甲氧基,b=0,1,3,4时,所述七甲川苯并吲哚花菁染料分别为具有结构式90~93的化合物; (28) When A is ethylene, R is selected from R 2 , R" is selected from methoxy, b=0, 1, 3, 4, the heptamethine benzoindole cyanine dye has the structural formula 90-93 compounds;
(29)当A为亚乙基,R选自R 2,R"选自酰胺基,b=0,1,2,3时,所述七甲川苯并吲哚花菁染料分别为具有结构式94~97的化合物; (29) When A is ethylene, R is selected from R 2 , R" is selected from amide group, and b=0,1,2,3, the heptamethine benzoindole cyanine dye has the structural formula 94. ~97 compounds;
(30)当A为亚乙基,R选自R 1,R'选自乙炔基,a=3时,所述七甲川苯并吲哚花菁染料为具有结构式98的化合物; (30) When A is ethylene, R is selected from R 1 , R'is selected from ethynyl, and a=3, the heptamethine benzoindole cyanine dye is a compound of structural formula 98;
(31)当A为亚乙基,R选自R 2,R"选自氨基,b=0时,所述七甲川苯并吲哚花菁染料为具有 结构式99的化合物; (31) When A is ethylene, R is selected from R 2 , R" is selected from amino, and b=0, the heptamethine benzoindole cyanine dye is a compound of structural formula 99;
(32)当A为亚乙基,R选自R 2,R"选自羟基,b=0时,所述七甲川苯并吲哚花菁染料为具有结构式100的化合物。 (32) When A is ethylene, R is selected from R 2 , R" is selected from hydroxyl, and b=0, the heptamethine benzoindole cyanine dye is a compound having structural formula 100.
Figure PCTCN2020073489-appb-000013
Figure PCTCN2020073489-appb-000013
Figure PCTCN2020073489-appb-000014
Figure PCTCN2020073489-appb-000014
Figure PCTCN2020073489-appb-000015
Figure PCTCN2020073489-appb-000015
Figure PCTCN2020073489-appb-000016
Figure PCTCN2020073489-appb-000016
本申请涉及一种含N-脂族酸、N-脂族酯、N-脂族酰胺、N-脂族链烃、N-芳族酸、N-芳族酯、N-芳族酰胺或N-芳族链烃等侧链的七甲川苯并吲哚花菁染料的合成和纯化方法。所述七甲川苯并吲哚花菁染料具有或单独具有近红外光吸收、荧光显影的性能。所述方法具有合成路线短、溶剂环境友好、工艺简单、避免贵金属催化、产率高以及提纯方法简单(无需层析柱分离且所耗溶剂少)的优点,可极大地提高此类染料的制备效率,实现低成本批量生产,在七甲川苯并吲哚花菁的生产及应用研究方面均具有重大意义。This application relates to a kind of N-aliphatic acid, N-aliphatic ester, N-aliphatic amide, N-aliphatic chain hydrocarbon, N-aromatic acid, N-aromatic ester, N-aromatic amide or N -Synthesis and purification methods of heptamethine benzoindole cyanine dyes with side chains such as aromatic chain hydrocarbons. The heptamethine benzoindole cyanine dye has or alone has the properties of near-infrared light absorption and fluorescence development. The method has the advantages of short synthetic route, environmentally friendly solvent, simple process, avoiding precious metal catalysis, high yield, and simple purification method (no need for chromatography column separation and less solvent consumption), which can greatly improve the preparation of such dyes Efficiency and low-cost mass production are of great significance in the production and application research of heptamethine benzoindole cyanine.
可选地,通过本申请所述方法制备的七甲川苯并吲哚花菁染料的纯度大于90%。Optionally, the purity of the heptamethine benzoindole cyanine dye prepared by the method described in this application is greater than 90%.
可选地,通过本申请所述方法制备的七甲川苯并吲哚花菁染料的纯度为85~99.5%。Optionally, the purity of the heptamethine benzoindole cyanine dye prepared by the method described in this application is 85-99.5 percent.
可选地,通过本申请所述方法制备的七甲川苯并吲哚花菁染料的纯度为90~99.5%。Optionally, the purity of the heptamethine benzoindole cyanine dye prepared by the method described in this application is 90-99.5 percent.
可选地,通过本申请所述方法制备的七甲川苯并吲哚花菁染料的产率不小于83.5%。Optionally, the yield of heptamethine benzoindole cyanine dye prepared by the method described in this application is not less than 83.5%.
可选地,通过本申请所述方法制备的七甲川苯并吲哚花菁染料的产率为83.5~93.7%。Optionally, the yield of heptamethine benzoindole cyanine dye prepared by the method described in this application is 83.5-93.7 %.
作为一种具体的实施方式,所述七甲川苯并吲哚花菁染料的制备方法按照如下路线进行:As a specific embodiment, the method for preparing the heptamethine benzoindole cyanine dye is carried out according to the following route:
Figure PCTCN2020073489-appb-000017
Figure PCTCN2020073489-appb-000017
X选自卤素中的一种,优选为溴;R为由具有1至14个碳原子的直链亚烷基和端基组成的基团,所述端基选自氢、甲基、甲氧基、羟基、羧基、酰胺基、磺酸基、酯基、炔基或氨基;X is selected from one of halogens, preferably bromine; R is a group composed of a linear alkylene group having 1 to 14 carbon atoms and a terminal group, the terminal group is selected from hydrogen, methyl, and methoxy Group, hydroxyl group, carboxyl group, amide group, sulfonic acid group, ester group, alkynyl group or amino group;
其中,2,3,3-三甲基-4,5-苯并吲哚与作为亲核取代化合物的溴取代物的摩尔比为1:1~1:12,优选为1:1.5;加热温度为80~130℃,优选为120℃;作为环烯衍生物的2-氯-1-甲酰-3-羟基亚甲基环己烯与作为有机铵盐的N-取代物的摩尔比为1:2~1:4,优选为1:2.5;加热温度为50~80℃,优选为75℃。Among them, the molar ratio of 2,3,3-trimethyl-4,5-benzindole to the bromine substituent as the nucleophilic substitution compound is 1:1 to 1:12, preferably 1:1.5; heating temperature 80 to 130°C, preferably 120°C; the molar ratio of 2-chloro-1-formyl-3-hydroxymethylene cyclohexene as a cycloalkene derivative to the N-substituent as an organic ammonium salt is 1 : 2 to 1:4, preferably 1:2.5; heating temperature is 50 to 80°C, preferably 75°C.
作为一种具体的实施方式,所述七甲川苯并吲哚花菁染料的制备方法包括以下步骤:As a specific embodiment, the method for preparing the heptamethine benzoindole cyanine dye includes the following steps:
1)将2,3,3-三甲基-4,5-苯并吲哚和作为亲核取代化合物的溴取代物充分混合后,在抽真空条件下加热反应,其中,2,3,3-三甲基-4,5-苯并吲哚与溴取代物的摩尔比为1:1~1:12,加热温度为80~130℃,反应时间为4~24小时;优选地,2,3,3-三甲基-4,5-苯并吲哚与溴取代物的摩尔比为1:1.5,加热温度为120℃,反应时间为12小时。1) After the 2,3,3-trimethyl-4,5-benzindole and the bromine substituent as the nucleophilic substitution compound are thoroughly mixed, the reaction is heated under vacuum, where 2,3,3 -The molar ratio of trimethyl-4,5-benzindole to bromine substitution is 1:1 to 1:12, the heating temperature is 80 to 130°C, and the reaction time is 4 to 24 hours; preferably, 2, The molar ratio of 3,3-trimethyl-4,5-benzindole to the bromine substitution is 1:1.5, the heating temperature is 120°C, and the reaction time is 12 hours.
2)将作为环烯衍生物的2-氯-1-甲酰-3-羟基亚甲基环己烯加入到步骤1)反应完的溶液中,在封闭条件下加热反应,反应后将反应液置于4℃冰箱中过夜后用沉淀剂进行沉淀,其中,2-氯-1-甲酰-3-羟基亚甲基环己烯与作为有机铵盐的N-取代物的摩尔比为1:2~1:4,加热温度为50~80℃,反应时间为8~48小时;优选地,2-氯-1-甲酰-3-羟基亚甲基环己烯与N-取代物的摩尔比为1:2.5,加热温度为75℃,反应时间为24小时。2) Add 2-chloro-1-formyl-3-hydroxymethylene cyclohexene as a cycloalkene derivative to the solution after step 1), and heat the reaction under closed conditions. After the reaction, the reaction solution Placed in a refrigerator overnight at 4°C, and then precipitated with a precipitation agent. The molar ratio of 2-chloro-1-formyl-3-hydroxymethylenecyclohexene to the N-substitute as an organic ammonium salt is 1: 2~1:4, the heating temperature is 50~80℃, and the reaction time is 8~48 hours; preferably, the molar ratio of 2-chloro-1-formyl-3-hydroxymethylene cyclohexene and N-substitute The ratio is 1:2.5, the heating temperature is 75°C, and the reaction time is 24 hours.
根据本申请的又一个方面,提供了所述七甲川苯并吲哚花菁染料的应用。According to another aspect of the present application, an application of the heptamethine benzoindole cyanine dye is provided.
可选地,所述七甲川苯并吲哚花菁染料应用于制备探针助剂,所述探针助剂包含通过上述方法制备的七甲川苯并吲哚花菁染料中的至少一种。Optionally, the heptamethine benzoindole cyanine dye is used for preparing a probe assistant, and the probe assistant comprises at least one of heptamethine benzoindole cyanine dyes prepared by the above method.
可选地,所述七甲川苯并吲哚花菁染料应用于制备近红外荧光探针。Optionally, the heptamethine benzoindole cyanine dye is used to prepare near-infrared fluorescent probes.
可选地,所述近红外荧光探针包括小分子探针、纳米探针。Optionally, the near-infrared fluorescent probes include small molecule probes and nano probes.
可选地,所述七甲川苯并吲哚花菁染料应用于商标防伪、生物医学、环境监测、国防探测及其相关领域。Optionally, the heptamethine benzoindole cyanine dye is used in trademark anti-counterfeiting, biomedicine, environmental monitoring, national defense detection and related fields.
除非另行定义,本申请中使用的所有专业与科学用语与本领域技术人员所熟悉的含义相同。Unless otherwise defined, all professional and scientific terms used in this application have the same meaning as those familiar to those skilled in the art.
本申请中,术语“烷基”意指烷烃化合物分子上失去任意一个氢原子而形成的基团;所述烷烃化合物包括环烷烃、直链烷烃、支链烷烃。In this application, the term "alkyl" means a group formed by the loss of any hydrogen atom on the molecule of an alkane compound; the alkane compound includes cycloalkanes, straight-chain alkanes, and branched-chain alkanes.
本申请中,术语“亚乙基”意指结构式为-CH 2-CH 2-的基团,“直链亚丙基”意指结构式为-CH 2-CH 2-CH 2-的基团,“直链亚丁基”意指结构式为-CH 2-CH 2-CH 2-CH 2-的基团。 In this application, the term "ethylene" means a group with the structural formula -CH 2 -CH 2 -, and "linear propylene" means a group with the structural formula -CH 2 -CH 2 -CH 2 -, "Straight-chain butylene" means a group having the structural formula -CH 2 -CH 2 -CH 2 -CH 2 -.
本申请中所有涉及数值范围的条件均可独立地选自所述数值范围内的任意点值。All conditions related to the numerical range in this application can be independently selected from any point value within the numerical range.
本申请具有以下有益效果,其包括但不限于:This application has the following beneficial effects, which include but are not limited to:
1)本申请所提供的七甲川苯并吲哚花菁染料,其具有近红外光吸收、荧光显影的性能。1) The heptamethine benzoindole cyanine dye provided by this application has the properties of near-infrared light absorption and fluorescence development.
2)本申请所提供的七甲川苯并吲哚花菁染料的制备方法,其具有合成路线短、溶剂环境友好、工艺简单、避免贵金属催化、产率高以及单次反应量大的优点,可极大地提高此类染料的制备效率,实现低成本批量生产。2) The method for preparing heptamethine benzoindole cyanine dye provided by this application has the advantages of short synthetic route, environmentally friendly solvent, simple process, avoiding noble metal catalysis, high yield, and large single reaction volume. Greatly improve the preparation efficiency of such dyes, and realize low-cost mass production.
3)通过本申请所提供的制备方法得到的七甲川苯并吲哚花菁染料的纯度高,纯度可高于90%。3) The heptamethine benzoindole cyanine dye obtained by the preparation method provided in this application has high purity, which can be higher than 90%.
4)本申请所提供的七甲川苯并吲哚花菁染料的制备方法,其适用性强,可用于实现多种结构类型的产物的合成。4) The method for preparing heptamethine benzoindole cyanine dye provided by this application has strong applicability and can be used to realize the synthesis of products of various structural types.
附图说明Description of the drawings
图1为根据本申请实施例4制备的化合物C1的红外吸收谱图。Figure 1 is an infrared absorption spectrum of compound C1 prepared according to Example 4 of the present application.
图2为根据本申请实施例4制备的化合物C1对小鼠静脉注射48小时后的体内成像效果图。Fig. 2 is a diagram showing the in vivo imaging effect of compound C1 prepared according to Example 4 of the present application after intravenous injection of mice 48 hours.
具体实施方式detailed description
如前所述,本申请涉及一种七甲川苯并吲哚花菁染料的制备方法,包括以下步骤:将2,3,3-三甲基-4,5-苯并吲哚衍生物与亲核取代化合物反应得到有机铵盐;将有机铵盐、环烯衍生物混合于环境友好有机溶剂中反应,反应后在产物中加入有机沉淀剂冷却静置过夜,即得所述七甲川苯并吲哚花菁染料。所述方法具有合成路线短、工艺简单、无催化剂、产率高、提纯方法简单、原子利用率高以及消耗有机溶剂少的优点,可极大地提高此类染料的制备效率,实现低成本批量生产,在七甲川苯并吲哚花菁染料的生产及应用研究方面均具有重大意义。As mentioned above, this application relates to a method for preparing heptamethine benzindole cyanine dye, which includes the following steps: the 2,3,3-trimethyl-4,5-benzindole derivative The nucleus substitution compound reacts to obtain an organic ammonium salt; the organic ammonium salt and cycloalkene derivatives are mixed in an environmentally friendly organic solvent to react, and after the reaction, an organic precipitant is added to the product to cool and stand overnight to obtain the heptamethylchuan benzin Indocyanine dyes. The method has the advantages of short synthetic route, simple process, no catalyst, high yield, simple purification method, high atom utilization rate and low consumption of organic solvents, which can greatly improve the preparation efficiency of such dyes and realize low-cost mass production , It is of great significance in the production and application research of heptamethine benzoindole cyanine dyes.
另外,根据本申请的七甲川苯并吲哚花菁染料的制备方法具有更广泛的适用性。该方法在采用更环境友好的溶剂和更温和的反应条件的情况下,可实现对更多结构类型的产物的合成。In addition, the method for preparing heptamethine benzoindole cyanine dye according to the present application has wider applicability. This method can realize the synthesis of more structural types of products under the condition of adopting more environmentally friendly solvents and milder reaction conditions.
下面结合实施例详述本申请,但本申请并不局限于这些实施例。The application will be described in detail below with reference to the embodiments, but the application is not limited to these embodiments.
如无特别说明,本申请的实施例中的原料和试剂均通过商业途径购买。Unless otherwise specified, the raw materials and reagents in the examples of this application are purchased through commercial channels.
本申请的实施例中的分析方法如下:The analysis method in the embodiment of this application is as follows:
利用Thermo Nciolet 6700型红外光谱仪进行红外吸收光谱分析。Use ThermoNciolet 6700 infrared spectrometer for infrared absorption spectrum analysis.
利用PerkinElmer Lanbda型紫外分光光度计进行紫外吸收光谱分析。PerkinElmer Lanbda ultraviolet spectrophotometer was used for ultraviolet absorption spectrum analysis.
利用PerkinElmer IVIS Lumina LT型小动物成像仪进行体外荧光检测分析。PerkinElmer IVIS Lumina LT small animal imager was used for in vitro fluorescence detection and analysis.
实施例1合成化合物53Example 1 Synthesis of Compound 53
按照如下路线合成化合物53:Compound 53 was synthesized according to the following route:
Figure PCTCN2020073489-appb-000018
Figure PCTCN2020073489-appb-000018
1)2,3,3-三甲基-1-(丁烷)-4,5-苯并吲哚的合成1) Synthesis of 2,3,3-trimethyl-1-(butane)-4,5-benzindole
在反应器中加入摩尔比为1:1.5的2,3,3-三甲基-4,5-苯并吲哚和4-溴丁烷,并将反应器封闭后抽真空至10Pa。将反应体系加热至110℃并搅拌8小时,然后冷却至室温。抽滤所得产物,直接用于下一步反应。Add 2,3,3-trimethyl-4,5-benzindole and 4-bromobutane in a molar ratio of 1:1.5 into the reactor, and then evacuate the reactor to 10Pa after the reactor is closed. The reaction system was heated to 110°C and stirred for 8 hours, and then cooled to room temperature. The product obtained was filtered with suction and used directly in the next reaction.
2)化合物53的合成与提纯2) Synthesis and purification of compound 53
在反应器中加入与步骤1)中得到的2,3,3-三甲基-1-(丁烷)-4,5-苯并吲哚摩尔比为1:2.5的2-氯-1-甲酰-3-羟基亚甲基环戊烯。用甲醇完全溶解后,将反应体系在封闭条件下加热至75℃反应24小时,然后降温至室温,并放入4℃冰箱中静置24小时。加入石油醚,其后静置并抽滤。将所得固体真空干燥,得到产物化合物53,产率为89.2%。Add the 2,3,3-trimethyl-1-(butane)-4,5-benzindole obtained in step 1) to the reactor with a molar ratio of 1:2.5 2-chloro-1- Formyl-3-hydroxymethylenecyclopentene. After being completely dissolved in methanol, the reaction system was heated to 75°C for 24 hours under closed conditions, then cooled to room temperature, and placed in a 4°C refrigerator to stand for 24 hours. Petroleum ether was added, then stood still and filtered with suction. The obtained solid was vacuum dried to obtain the product compound 53, with a yield of 89.2%.
本实施例中得到的化合物53的纯度大于94%。The purity of compound 53 obtained in this embodiment is greater than 94%.
实施例2合成化合物26Example 2 Synthesis of compound 26
按照如下路线合成化合物26:Compound 26 was synthesized according to the following route:
Figure PCTCN2020073489-appb-000019
Figure PCTCN2020073489-appb-000019
1)2,3,3-三甲基-1-(对甲基苯甲酸)-4,5-苯并吲哚的合成1) Synthesis of 2,3,3-trimethyl-1-(p-toluic acid)-4,5-benzindole
在反应器中加入摩尔比为1:1.5的2,3,3-三甲基-4,5-苯并吲哚和对溴甲基苯甲酸,并将反应器封闭后抽真空至15Pa。将反应体系加热至110℃并搅拌12小时,然后冷却至室温。抽滤所得产物,直接用于下一步反应。Add 2,3,3-trimethyl-4,5-benzindole and p-bromomethylbenzoic acid in a molar ratio of 1:1.5 into the reactor, and then evacuate the reactor to 15Pa after the reactor is closed. The reaction system was heated to 110°C and stirred for 12 hours, and then cooled to room temperature. The product obtained was filtered with suction and used directly in the next reaction.
2)化合物26的合成与提纯2) Synthesis and purification of compound 26
在反应器中加入与步骤1)中所得2,3,3-三甲基-1-(对甲基苯甲酸)-4,5-苯并吲哚摩尔比为1:2.5的2-氯-1-甲酰-3-羟基亚甲基环己烯。用甲醇完全溶解后,将反应体系在封闭条件下加热至75℃反应24小时,然后降温至室温,并放入4℃冰箱中静置24小时。加入石油醚,其后静置并抽滤。将所得固体真空干燥,得到产物化合物26,产率为89.1%。Add 2,3,3-trimethyl-1-(p-toluic acid)-4,5-benzindole with a molar ratio of 1:2.5 to the 2,3,3-trimethyl-1-(p-toluic acid)-4,5-benzoindole obtained in step 1) in the reactor. 1-Formyl-3-hydroxymethylene cyclohexene. After being completely dissolved in methanol, the reaction system was heated to 75°C for 24 hours under closed conditions, then cooled to room temperature, and placed in a 4°C refrigerator to stand for 24 hours. Petroleum ether was added, then stood still and filtered with suction. The obtained solid was vacuum dried to obtain the product compound 26 with a yield of 89.1%.
本实施例中得到的化合物26的纯度大于92%。The purity of compound 26 obtained in this example was greater than 92%.
实施例3合成化合物8Example 3 Synthesis of Compound 8
按照如下路线合成化合物8:Compound 8 was synthesized according to the following route:
Figure PCTCN2020073489-appb-000020
Figure PCTCN2020073489-appb-000020
1)2,3,3-三甲基-1-(丁酸)-4,5-苯并吲哚的合成1) Synthesis of 2,3,3-trimethyl-1-(butyric acid)-4,5-benzindole
在反应器中加入摩尔比为1:1.5的2,3,3-三甲基-4,5-苯并吲哚和4-溴丁酸,并将反应器封闭后抽真空至15Pa。将反应体系加热至110℃并搅拌12小时,然后冷却至室温。抽滤所得产物,直接用于下一步反应。Add 2,3,3-trimethyl-4,5-benzindole and 4-bromobutyric acid in a molar ratio of 1:1.5 into the reactor, and then evacuate the reactor to 15Pa after the reactor is closed. The reaction system was heated to 110°C and stirred for 12 hours, and then cooled to room temperature. The product obtained was filtered with suction and used directly in the next reaction.
2)化合物8的合成与提纯2) Synthesis and purification of compound 8
在反应器中加入与步骤1)中得到的2,3,3-三甲基-1-(丁酸)-4,5-苯并吲哚摩尔比为1:2.5的2-氯-1-甲酰-3-羟基亚甲基环己烯。用甲醇完全溶解后,将反应体系在封闭条件下加热至75℃反应24小时,然后降温至室温,并放入4℃冰箱中静置24小时。加入石油醚,其后静置并抽滤。将所得固体真空干燥,得到产物化合物8,产率为91.3%。Add the 2,3,3-trimethyl-1-(butyric acid)-4,5-benzoindole obtained in step 1) to the reactor in a molar ratio of 1:2.5 2-chloro-1- Formyl-3-hydroxymethylene cyclohexene. After being completely dissolved in methanol, the reaction system was heated to 75°C for 24 hours under closed conditions, then cooled to room temperature, and placed in a 4°C refrigerator to stand for 24 hours. Petroleum ether was added, then stood still and filtered with suction. The obtained solid was vacuum dried to obtain the product compound 8 with a yield of 91.3%.
本实施例中得到的化合物8的纯度大于94%。The purity of compound 8 obtained in this example is greater than 94%.
实施例4合成化合物C1Example 4 Synthesis of Compound C1
按照如下路线合成化合物C1:Compound C1 was synthesized according to the following route:
Figure PCTCN2020073489-appb-000021
Figure PCTCN2020073489-appb-000021
1)2,3,3-三甲基-1-(丁磺酸)-4,5-苯并吲哚的合成1) Synthesis of 2,3,3-trimethyl-1-(butanesulfonic acid)-4,5-benzindole
在反应器中加入摩尔比为1:1.5的2,3,3-三甲基-4,5-苯并吲哚和1,4-丁磺酸内酯,并将反应器封闭后抽真空至15Pa。将反应体系加热至110℃并搅拌12小时,然后冷却至室温。抽滤所得产物,直接用于下一步反应。Add 2,3,3-trimethyl-4,5-benzindole and 1,4-butane sultone in a molar ratio of 1:1.5 into the reactor, and then evacuate the reactor to 15Pa. The reaction system was heated to 110°C and stirred for 12 hours, and then cooled to room temperature. The product obtained was filtered with suction and used directly in the next reaction.
2)化合物C1的合成与提纯2) Synthesis and purification of compound C1
在反应器中加入与步骤1)中得到的2,3,3-三甲基-1-(丁磺酸)-4,5-苯并吲哚摩尔比为1:2.5的2-氯-1-甲酰-3-羟基亚甲基环己烯。用甲醇完全溶解后,将反应体系在封闭条件下加热至75℃反应24小时,然后降温至室温,并放入4℃冰箱中静置24小时。加入石油醚,其后静置并抽滤。将所得固体真空干燥,得到产物化合物C1,产率为87.1%。Add 2-chloro-1 with a molar ratio of 1:2.5 to the 2,3,3-trimethyl-1-(butanesulfonic acid)-4,5-benzindole obtained in step 1) in the reactor. -Formyl-3-hydroxymethylene cyclohexene. After being completely dissolved in methanol, the reaction system was heated to 75°C for 24 hours under closed conditions, then cooled to room temperature, and placed in a 4°C refrigerator to stand for 24 hours. Petroleum ether was added, then stood still and filtered with suction. The obtained solid was vacuum dried to obtain the product compound C1 with a yield of 87.1%.
本实施例中得到的化合物C1的纯度大于92%。The purity of compound C1 obtained in this example is greater than 92%.
实施例5合成化合物12Example 5 Synthesis of compound 12
按照如下路线合成化合物12:Compound 12 was synthesized according to the following route:
Figure PCTCN2020073489-appb-000022
Figure PCTCN2020073489-appb-000022
1)2,3,3-三甲基-1-(丁酸乙酯)-4,5-苯并吲哚的合成1) Synthesis of 2,3,3-trimethyl-1-(ethyl butyrate)-4,5-benzindole
在反应器中加入摩尔比为1:1.5的2,3,3-三甲基-4,5-苯并吲哚和4-溴丁酸乙酯,并将反应器封闭后抽真空至20Pa。将反应体系加热至110℃并搅拌12小时,然后冷却至室温。抽滤所得产物,直接用于下一步反应。Add 2,3,3-trimethyl-4,5-benzindole and ethyl 4-bromobutyrate in a molar ratio of 1:1.5 into the reactor, and then evacuate the reactor to 20 Pa after being closed. The reaction system was heated to 110°C and stirred for 12 hours, and then cooled to room temperature. The product obtained was filtered with suction and used directly in the next reaction.
2)化合物12的合成与提纯2) Synthesis and purification of compound 12
在反应器中加入与步骤1)中所得2,3,3-三甲基-1-(丁酸乙酯)-4,5-苯并吲哚摩尔比为1:2.5的2-氯-1-甲酰-3-羟基亚甲基环己烯。用甲醇完全溶解后,将反应体系在封闭条件下加热至75℃反应24小时,然后降温至室温,并放入4℃冰箱中静置24小时。加入石油醚,其后静置并抽滤。将所得固体真空干燥,得到产物化合物12,产率为87.2%。Add 2,3,3-trimethyl-1-(ethyl butyrate)-4,5-benzoindole with a molar ratio of 1:2.5 to the 2,3,3-trimethyl-1-(ethyl butyrate)-4,5-benzoindole obtained in step 1) in the reactor -Formyl-3-hydroxymethylene cyclohexene. After being completely dissolved in methanol, the reaction system was heated to 75°C for 24 hours under closed conditions, then cooled to room temperature, and placed in a 4°C refrigerator to stand for 24 hours. Petroleum ether was added, then stood still and filtered with suction. The obtained solid was vacuum dried to obtain the product compound 12 with a yield of 87.2%.
本实施例中得到的化合物12的纯度大于94%。The purity of compound 12 obtained in this example was greater than 94%.
实施例6合成化合物36Example 6 Synthesis of compound 36
按照如下路线合成化合物36:Compound 36 was synthesized according to the following route:
Figure PCTCN2020073489-appb-000023
Figure PCTCN2020073489-appb-000023
1)2,3,3-三甲基-1-(对甲基苯甲酸甲酯)-4,5-苯并吲哚的合成1) Synthesis of 2,3,3-trimethyl-1-(methyl p-toluate)-4,5-benzindole
在反应器中加入摩尔比为1:1.5的2,3,3-三甲基-4,5-苯并吲哚和对溴甲基苯甲酸甲酯,并将反应器封闭后抽真空至15Pa。将反应体系加热至110℃并搅拌12小时,然后冷却至室温。抽滤所得产物,直接用于下一步反应。Add 2,3,3-trimethyl-4,5-benzindole and methyl p-bromomethyl benzoate with a molar ratio of 1:1.5 to the reactor, and then vacuumize the reactor to 15Pa after closing the reactor . The reaction system was heated to 110°C and stirred for 12 hours, and then cooled to room temperature. The product obtained was filtered with suction and used directly in the next reaction.
2)化合物36的合成与提纯2) Synthesis and purification of compound 36
在反应器中加入与步骤1)中得到的2,3,3-三甲基-1-(对甲基苯甲酸甲酯)-4,5-苯并吲哚摩尔比为1:2.5的2-氯-1-甲酰-3-羟基亚甲基环己烯。用甲醇完全溶解后,将反应体系在封闭条件下加热至75℃反应24小时,然后降温至室温,并放入4℃冰箱中静置24小时。加入石油醚,其后静置并抽滤。将所得固体真空干燥,得到产物化合物36,产率为87.2%。Add the 2,3,3-trimethyl-1-(methyl p-toluate)-4,5-benzoindole obtained in step 1) to the reactor in a molar ratio of 1:2.5. -Chloro-1-formyl-3-hydroxymethylenecyclohexene. After being completely dissolved in methanol, the reaction system was heated to 75°C for 24 hours under closed conditions, then cooled to room temperature, and placed in a 4°C refrigerator to stand for 24 hours. Petroleum ether was added, then stood still and filtered with suction. The obtained solid was vacuum dried to obtain the product compound 36 with a yield of 87.2%.
本实施例中得到的化合物36的纯度大于92%。The purity of compound 36 obtained in this example was greater than 92%.
实施例7合成化合物25Example 7 Synthesis of Compound 25
按照如下路线合成化合物25:Compound 25 was synthesized according to the following route:
Figure PCTCN2020073489-appb-000024
Figure PCTCN2020073489-appb-000024
1)2,3,3-三甲基-1-(甲基苯)-4,5-苯并吲哚的合成1) Synthesis of 2,3,3-trimethyl-1-(methylbenzene)-4,5-benzindole
在反应器中加入摩尔比为1:1.5的2,3,3-三甲基-4,5-苯并吲哚和溴甲基苯,并将反应器封闭后抽真 空至15Pa。将反应体系加热至110℃并搅拌12小时,然后冷却至室温。抽滤所得产物,直接用于下一步反应。Add 2,3,3-trimethyl-4,5-benzindole and bromomethylbenzene in a molar ratio of 1:1.5 into the reactor, and then evacuate the reactor to 15Pa after closing the reactor. The reaction system was heated to 110°C and stirred for 12 hours, and then cooled to room temperature. The product obtained was filtered with suction and used directly in the next reaction.
2)化合物25的合成与提纯2) Synthesis and purification of compound 25
在反应器中加入与步骤1)中得到的2,3,3-三甲基-1-(甲基苯)-4,5-苯并吲哚摩尔比为1:2.5的2-氯-1-甲酰-3羟基亚甲基环己烯。用甲醇完全溶解后,将反应体系在封闭条件下加热至75℃反应24小时,然后降温至室温,并放入4℃冰箱中静置24小时。加入石油醚,其后静置并抽滤。将所得固体真空干燥,得到产物化合物25,产率为91.3%。Add 2-chloro-1 with a molar ratio of 1:2.5 to the 2,3,3-trimethyl-1-(methylbenzene)-4,5-benzindole obtained in step 1) in the reactor. -Formyl-3 hydroxymethylene cyclohexene. After being completely dissolved in methanol, the reaction system was heated to 75°C for 24 hours under closed conditions, then cooled to room temperature, and placed in a 4°C refrigerator to stand for 24 hours. Petroleum ether was added, then stood still and filtered with suction. The obtained solid was vacuum dried to obtain the product compound 25 with a yield of 91.3%.
本实施例中得到的化合物25的纯度大于94%。The purity of compound 25 obtained in this example is greater than 94%.
实施例8合成化合物55Example 8 Synthesis of Compound 55
按照如下路线合成化合物55:Compound 55 was synthesized according to the following route:
Figure PCTCN2020073489-appb-000025
Figure PCTCN2020073489-appb-000025
1)2,3,3-三甲基-1-(十二烷)-4,5-苯并吲哚的合成1) Synthesis of 2,3,3-trimethyl-1-(dodecane)-4,5-benzindole
在反应器中加入摩尔比为1:1.5的2,3,3-三甲基-4,5-苯并吲哚和1-碘十二烷,并将反应器封闭后抽真空至15Pa。将反应体系加热至110℃后搅拌12小时,然后冷却至室温。抽滤所得产物,直接用于下一步反应。Add 2,3,3-trimethyl-4,5-benzindole and 1-iodododecane in a molar ratio of 1:1.5 to the reactor, and then evacuate the reactor to 15Pa after the reactor is closed. The reaction system was heated to 110°C, stirred for 12 hours, and then cooled to room temperature. The product obtained was filtered with suction and used directly in the next reaction.
2)化合物55的合成与提纯2) Synthesis and purification of compound 55
在反应器中加入与步骤1)中得到的2,3,3-三甲基-1-(十二烷)-4,5-苯并吲哚摩尔比为1:2.5的2-氯-1-甲酰-3羟基亚甲基环戊烯。用甲醇完全溶解后,将反应体系在封闭条件下加热至75℃反应24小时,然后降温至室温,并放入4℃冰箱中静置24小时。加入石油醚,其后静置并抽滤。将所得固体真空干燥,得到产物化合物55,产率为92.7%。Add 2-chloro-1 with a molar ratio of 1:2.5 to the 2,3,3-trimethyl-1-(dodecane)-4,5-benzindole obtained in step 1) in the reactor. -Formyl-3 hydroxymethylene cyclopentene. After being completely dissolved in methanol, the reaction system was heated to 75°C for 24 hours under closed conditions, then cooled to room temperature, and placed in a 4°C refrigerator to stand for 24 hours. Petroleum ether was added, then stood still and filtered with suction. The obtained solid was vacuum dried to obtain the product compound 55 with a yield of 92.7%.
本实施例中得到的化合物55的纯度大于94%。The purity of compound 55 obtained in this example was greater than 94%.
实施例9合成化合物40Example 9 Synthesis of Compound 40
按照如下路线合成化合物40:Compound 40 was synthesized according to the following route:
Figure PCTCN2020073489-appb-000026
Figure PCTCN2020073489-appb-000026
1)2,3,3-三甲基-1-(甲基苯甲醚)-4,5-苯并吲哚的合成1) Synthesis of 2,3,3-trimethyl-1-(methylanisole)-4,5-benzindole
在反应器中加入摩尔比为1:1.5的2,3,3-三甲基-4,5-苯并吲哚和对碘甲基苯甲醚,并将反应器封闭后抽真空至15Pa。将反应体系加热至110℃后搅拌12小时,然后冷却至室温。抽滤所得产物,直接用于下一步反应。Add 2,3,3-trimethyl-4,5-benzindole and p-iodomethyl anisole in a molar ratio of 1:1.5 into the reactor, and then evacuate the reactor to 15Pa after the reactor is closed. The reaction system was heated to 110°C, stirred for 12 hours, and then cooled to room temperature. The product obtained was filtered with suction and used directly in the next reaction.
2)化合物40的合成与提纯2) Synthesis and purification of compound 40
在反应器中加入与步骤1)中得到的2,3,3-三甲基-1-(甲基苯甲醚)-4,5-苯并吲哚摩尔比为1:2.5的2-氯-1-甲酰-3羟基亚甲基环己烯。用甲醇完全溶解后,将反应体系在封闭条件下加热至75℃反应24小时,然后降温至室温,并放入4℃冰箱中静置24小时。加入石油醚,其后静置并抽滤。将所得固体真空干燥,得到产物化合物40,产率为89.7%。Add the 2,3,3-trimethyl-1-(methylanisole)-4,5-benzindole obtained in step 1) to the reactor with a molar ratio of 1:2.5 2-chloro -1-formyl-3 hydroxymethylene cyclohexene. After being completely dissolved in methanol, the reaction system was heated to 75°C for 24 hours under closed conditions, then cooled to room temperature, and placed in a 4°C refrigerator to stand for 24 hours. Petroleum ether was added, then stood still and filtered with suction. The obtained solid was vacuum dried to obtain the product compound 40 with a yield of 89.7%.
本实施例中得到的化合物40的纯度大于92%。The purity of compound 40 obtained in this embodiment is greater than 92%.
实施例10合成化合物36Example 10 Synthesis of Compound 36
重复实施例6的制备过程,区别在于:在步骤1)中加入摩尔比为1:1的2,3,3-三甲基-4,5-苯并吲哚和对溴甲基苯甲酸甲酯;在步骤2)中使用水替代甲醇作为溶剂;在步骤2)中使用乙醚替代石油 醚作为沉淀剂,得到产物化合物36。Repeat the preparation process of Example 6, the difference is: in step 1) add 2,3,3-trimethyl-4,5-benzindole and p-bromomethylbenzoic acid in a molar ratio of 1:1 Ester; in step 2), water is used instead of methanol as the solvent; in step 2), ethyl ether is used instead of petroleum ether as the precipitant to obtain the product compound 36.
实施例11合成化合物36Example 11 Synthesis of Compound 36
重复实施例6的制备过程,区别在于:在步骤1)中加入摩尔比为1:12的2,3,3-三甲基-4,5-苯并吲哚和对溴甲基苯甲酸甲酯;在步骤2)中使用乙醇替代甲醇作为溶剂;在步骤2)中使用甲醚替代石油醚作为沉淀剂,得到产物化合物36。Repeat the preparation process of Example 6, the difference is: in step 1), add 2,3,3-trimethyl-4,5-benzindole and p-bromomethylbenzoic acid in a molar ratio of 1:12 Ester; in step 2), ethanol is used instead of methanol as the solvent; in step 2), methyl ether is used instead of petroleum ether as the precipitant to obtain the product compound 36.
实施例12合成化合物36Example 12 Synthesis of Compound 36
重复实施例6的制备过程,区别在于:在步骤1)中将反应体系加热至80℃并搅拌24小时;在步骤2)中使用丙醇替代甲醇作为溶剂;在步骤2)中使用丙醚替代石油醚作为沉淀剂,得到产物化合物36。Repeat the preparation process of Example 6, the difference is: in step 1), the reaction system is heated to 80°C and stirred for 24 hours; in step 2), propanol is used instead of methanol as the solvent; in step 2), propyl ether is used instead Petroleum ether was used as a precipitant to obtain the product compound 36.
实施例13合成化合物36Example 13 Synthesis of Compound 36
重复实施例6的制备过程,区别在于:在步骤1)中将反应体系加热至130℃并搅拌4小时;在步骤2)中使用乙二醇替代甲醇作为溶剂;在步骤2)中使用甲乙醚替代石油醚作为沉淀剂,得到产物化合物36。Repeat the preparation process of Example 6, the difference is: in step 1) the reaction system is heated to 130°C and stirred for 4 hours; in step 2), ethylene glycol is used instead of methanol as the solvent; in step 2), methyl ethyl ether is used Instead of petroleum ether as the precipitant, the product compound 36 was obtained.
实施例14合成化合物12Example 14 Synthesis of Compound 12
重复实施例5的制备过程,区别在于:在步骤2)中2-氯-1-甲酰-3-羟基亚甲基环己烯与2,3,3-三甲基-1-(丁酸乙酯)-4,5-苯并吲哚的摩尔比为1:2;在步骤2)中使用丙三醇替代甲醇作为溶剂,得到产物化合物12。Repeat the preparation process of Example 5, the difference is: in step 2), 2-chloro-1-formyl-3-hydroxymethylene cyclohexene and 2,3,3-trimethyl-1-(butyric acid The molar ratio of ethyl ester)-4,5-benzindole is 1:2; in step 2), glycerol is used instead of methanol as the solvent to obtain the product compound 12.
实施例15合成化合物12Example 15 Synthesis of Compound 12
重复实施例5的制备过程,区别在于:在步骤2)中2-氯-1-甲酰-3-羟基亚甲基环己烯与2,3,3-三甲基-1-(丁酸乙酯)-4,5-苯并吲哚的摩尔比为1:6;在步骤2)中使用丁醇替代甲醇作为溶剂,得到产物化合物12。Repeat the preparation process of Example 5, the difference is: in step 2), 2-chloro-1-formyl-3-hydroxymethylene cyclohexene and 2,3,3-trimethyl-1-(butyric acid The molar ratio of ethyl ester)-4,5-benzindole is 1:6; in step 2), butanol is used instead of methanol as the solvent to obtain the product compound 12.
实施例16合成化合物12Example 16 Synthesis of compound 12
重复实施例5的制备过程,区别在于:在步骤2)中将反应体系在封闭条件下加热至50℃反应48小时,然后降温至室温,并放入10℃冰箱中静置48小时;在步骤2)中使用丁二醇替代甲醇作为溶剂,得到产物化合物12。Repeat the preparation process of Example 5, the difference is: in step 2), the reaction system is heated to 50°C under closed conditions for 48 hours, then cooled to room temperature, and placed in a 10°C refrigerator to stand for 48 hours; 2) Using butanediol instead of methanol as the solvent to obtain the product compound 12.
实施例17合成化合物12Example 17 Synthesis of compound 12
重复实施例5的制备过程,区别在于:在步骤2)中将反应体系在封闭条件下加热至80℃反应8小时,然后降温至室温,并放入1℃冰箱中静置12小时;在步骤2)中使用甲醇/乙醇混合物替代甲醇作为溶剂,得到产物化合物12。Repeat the preparation process of Example 5, the difference is: in step 2), the reaction system is heated to 80°C under closed conditions for 8 hours, then cooled to room temperature, and placed in a 1°C refrigerator to stand for 12 hours; In 2), a methanol/ethanol mixture is used instead of methanol as the solvent to obtain the product compound 12.
实施例18合成化合物12Example 18 Synthesis of compound 12
重复实施例5的制备过程,区别在于:在步骤1)中将反应器封闭后抽真空至2Pa,得到产物化合物12。The preparation process of Example 5 was repeated, with the difference that: in step 1), the reactor was closed and evacuated to 2 Pa to obtain the product compound 12.
实施例19合成化合物12Example 19 Synthesis of compound 12
重复实施例5的制备过程,区别在于:在步骤1)中将反应器封闭后抽真空至200Pa,得到产物化合物12。The preparation process of Example 5 was repeated, with the difference that: in step 1), the reactor was closed and evacuated to 200 Pa to obtain the product compound 12.
实施例20红外光谱分析Example 20 Infrared Spectroscopy Analysis
对实施例4制备得到的化合物C1进行红外光谱分析,其结果如图1所示,其中1397cm -1、1167cm -1和1044cm -1(-SO 3H)为所对应的相应官能团的吸收峰。其余实施例的测试结果与实施例4类似,均得到了对应的产物。 The compound C1 prepared in Example 4 was analyzed by infrared spectroscopy, and the results are shown in Figure 1, wherein 1397 cm -1 , 1167 cm -1 and 1044 cm -1 (-SO 3 H) are the corresponding absorption peaks of the corresponding functional groups. The test results of the other examples are similar to those of Example 4, and corresponding products are obtained.
实施例21紫外光谱分析Example 21 Ultraviolet Spectroscopy Analysis
对实施例4制备得到的化合物C1进行紫外光谱分析,典型的如实施例4制备得到的化合物C1其最高吸收峰位于820nm,属于近红外吸收峰。其余实施例的测试结果与实施例4类似,所得产物的最大吸收波长在760~850nm范围内。The compound C1 prepared in Example 4 was subjected to ultraviolet spectroscopy analysis. The compound C1 prepared in Example 4 had the highest absorption peak at 820 nm, which was a near-infrared absorption peak. The test results of the remaining examples are similar to those of Example 4, and the maximum absorption wavelength of the obtained product is in the range of 760-850 nm.
实施例22荧光显影分析Example 22 Fluorescence development analysis
将实施例4制备得到的化合物C1溶解于PBS液中,并用PBS溶液将浓度稀释,得到0.2mg/mL的近红外靶向探针制剂。The compound C1 prepared in Example 4 was dissolved in PBS solution, and the concentration was diluted with PBS solution to obtain 0.2 mg/mL near-infrared targeting probe preparation.
将浓度为0.2mg/mL的上述近红外靶向探针制剂注射入患有乳腺癌的裸鼠体内,48小时后进行荧光成像,结果如图2所示。该近红外荧光探针的近红外荧光信号峰与裸鼠自身的背景信号峰分离良好,肿瘤区域与肿瘤周围正常组织的对比度大于10。这样背景干扰小,可以为术者提供清晰的肿瘤位置和精确的肿瘤边界,从而提高肿瘤的检测率和切除率。The above-mentioned near-infrared targeting probe preparation at a concentration of 0.2 mg/mL was injected into nude mice with breast cancer, and fluorescence imaging was performed 48 hours later. The results are shown in Figure 2. The near-infrared fluorescence signal peak of the near-infrared fluorescent probe is well separated from the background signal peak of the nude mouse itself, and the contrast between the tumor area and the normal tissue around the tumor is greater than 10. In this way, the background interference is small, which can provide the surgeon with a clear tumor location and precise tumor boundary, thereby improving the detection rate and resection rate of the tumor.
同时,本申请的其他实施例中的产物也具有与上述类似的荧光显影效果。At the same time, the products in other embodiments of the present application also have a fluorescent development effect similar to the above.
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。The above are only a few embodiments of the application, and do not limit the application in any form. Although the application is disclosed as above with preferred embodiments, it is not intended to limit the application. Anyone familiar with the profession, Without departing from the scope of the technical solution of the present application, making some changes or modifications using the technical content disclosed above is equivalent to an equivalent implementation case and falls within the scope of the technical solution.

Claims (24)

  1. 一种七甲川苯并吲哚花菁染料的制备方法,其特征在于,包括以下步骤:A preparation method of heptamethine benzoindole cyanine dye is characterized in that it comprises the following steps:
    1)将含有2,3,3-三甲基-4,5-苯并吲哚衍生物和亲核取代化合物的原料在真空条件下,在80~130℃下反应4~24小时,得到有机铵盐;1) The raw materials containing 2,3,3-trimethyl-4,5-benzindole derivatives and nucleophilic substituted compounds are reacted at 80-130°C for 4-24 hours under vacuum conditions to obtain organic ammonium salt;
    其中,所述2,3,3-三甲基-4,5-苯并吲哚衍生物的结构式如式(III-1)所示:Wherein, the structural formula of the 2,3,3-trimethyl-4,5-benzindole derivative is as shown in formula (III-1):
    Figure PCTCN2020073489-appb-100001
    Figure PCTCN2020073489-appb-100001
    所述亲核取代化合物选自具有结构式如式(III-2)、式(III-3)或式(III-4)所示的化合物中的至少一种:The nucleophilic substitution compound is selected from at least one compound having a structural formula such as formula (III-2), formula (III-3) or formula (III-4):
    Figure PCTCN2020073489-appb-100002
    Figure PCTCN2020073489-appb-100002
    式(III-2)中,R 1选自氢、甲基、甲氧基、羟基、羧基、酰胺基、磺酸基、酯基、炔基或氨基,a选自大于0且小于等于14的整数,X选自氟、氯、溴、碘或高氯酸根;式(III-3)中,R 2选自
    Figure PCTCN2020073489-appb-100003
    Figure PCTCN2020073489-appb-100004
    c选自1至13的整数;式(III-4)中,R 3选自氢、甲基、甲氧基、羟基、羧基、酰胺基、磺酸基、酯基、炔基或氨基,b选自0至7的整数,X选自氟、氯、溴、碘或高氯酸根;
    In formula (III-2), R 1 is selected from hydrogen, methyl, methoxy, hydroxyl, carboxyl, amide, sulfonic acid, ester, alkynyl, or amino, and a is selected from those greater than 0 and less than or equal to 14. Integer, X is selected from fluorine, chlorine, bromine, iodine or perchlorate; in formula (III-3), R 2 is selected from
    Figure PCTCN2020073489-appb-100003
    Figure PCTCN2020073489-appb-100004
    c is selected from an integer from 1 to 13; in formula (III-4), R 3 is selected from hydrogen, methyl, methoxy, hydroxy, carboxy, amide, sulfonic acid, ester, alkynyl or amino, b An integer selected from 0 to 7, and X is selected from fluorine, chlorine, bromine, iodine or perchlorate;
    所述有机铵盐的结构式如式(III-5)、式(III-6)或式(III-7)所示:The structural formula of the organic ammonium salt is as shown in formula (III-5), formula (III-6) or formula (III-7):
    Figure PCTCN2020073489-appb-100005
    Figure PCTCN2020073489-appb-100005
    Figure PCTCN2020073489-appb-100006
    Figure PCTCN2020073489-appb-100006
    式(III-5)中,R 1、a和X的定义与式(III-2)中所述相同,m=1;式(III-6)中,R 2'选自羧酸根或磺酸根,c的定义与式(III-3)中所述相同;式(III-7)中,R 3、b和X的定义与式(III-4)中所述相同,m=1; In formula (III-5), the definitions of R 1 , a and X are the same as those described in formula (III-2), m=1; in formula (III-6), R 2'is selected from carboxylate or sulfonate , The definition of c is the same as that described in formula (III-3); in formula (III-7), the definitions of R 3 , b and X are the same as those described in formula (III-4), m=1;
    2)将含有步骤1)中得到的有机铵盐和环烯衍生物的溶液在封闭条件下,在50~80℃下反应8~48小时,得到所述七甲川苯并吲哚花菁染料;2) Reacting the solution containing the organic ammonium salt and cycloalkene derivative obtained in step 1) at 50-80° C. for 8 to 48 hours under closed conditions to obtain the heptamethine benzoindole cyanine dye;
    其中,所述环烯衍生物的结构式如式(III-8)所示:Wherein, the structural formula of the cycloalkene derivative is shown in formula (III-8):
    Figure PCTCN2020073489-appb-100007
    Figure PCTCN2020073489-appb-100007
    式(III-8)中,A选自亚乙基、直链亚丙基或直链亚丁基。In formula (III-8), A is selected from ethylene, linear propylene, or linear butylene.
  2. 根据权利要求1所述的方法,其特征在于,所述环烯衍生物的结构式如式(III-8-1)、式(III-8-2)或式(III-8-3)所示:The method according to claim 1, wherein the structural formula of the cycloalkene derivative is as shown in formula (III-8-1), formula (III-8-2) or formula (III-8-3) :
    Figure PCTCN2020073489-appb-100008
    Figure PCTCN2020073489-appb-100008
  3. 根据权利要求1所述的方法,其特征在于,步骤1)中,所述2,3,3-三甲基-4,5-苯并吲哚衍生物与所述亲核取代化合物的摩尔比为1:1~1:12。The method according to claim 1, wherein in step 1), the molar ratio of the 2,3,3-trimethyl-4,5-benzindole derivative to the nucleophilic substituted compound It is 1:1~1:12.
  4. 根据权利要求3所述的方法,其特征在于,步骤1)中,所述2,3,3-三甲基-4,5-苯并吲哚衍生物与所述亲核取代化合物的摩尔比为1:1~1:2。The method of claim 3, wherein, in step 1), the molar ratio of the 2,3,3-trimethyl-4,5-benzindole derivative to the nucleophilic substituted compound It is 1:1~1:2.
  5. 根据权利要求4所述的方法,其特征在于,步骤1)中,所述2,3,3-三甲基-4,5-苯并吲哚衍生物与所述亲核取代化合物的摩尔比为1:1.5。The method according to claim 4, wherein, in step 1), the molar ratio of the 2,3,3-trimethyl-4,5-benzindole derivative to the nucleophilic substituted compound It is 1:1.5.
  6. 根据权利要求1所述的方法,其特征在于,步骤1)中,将所述原料在100~120℃下反应8~16小时。The method according to claim 1, wherein in step 1), the raw material is reacted at 100-120°C for 8-16 hours.
  7. 根据权利要求6所述的方法,其特征在于,步骤1)中,将所述原料在110~120℃下反应10~14小时。The method according to claim 6, wherein in step 1), the raw material is reacted at 110-120°C for 10-14 hours.
  8. 根据权利要求1所述的方法,其特征在于,步骤1)中,将所述原料在2~200Pa的压力下反应。The method according to claim 1, wherein in step 1), the raw material is reacted under a pressure of 2 to 200 Pa.
  9. 根据权利要求1所述的方法,其特征在于,步骤2)中,所述环烯衍生物与所述有机铵盐的摩尔比为1:2~1:6。The method according to claim 1, wherein in step 2), the molar ratio of the cycloalkene derivative to the organic ammonium salt is 1:2 to 1:6.
  10. 根据权利要求9所述的方法,其特征在于,步骤2)中,所述环烯衍生物与所述有机铵盐的摩尔比为1:2~1:3。The method according to claim 9, wherein in step 2), the molar ratio of the cycloalkene derivative to the organic ammonium salt is 1:2 to 1:3.
  11. 根据权利要求10所述的方法,其特征在于,步骤2)中,所述环烯衍生物与所述有机铵盐的摩尔比为1:2.5。The method according to claim 10, wherein in step 2), the molar ratio of the cycloalkene derivative to the organic ammonium salt is 1:2.5.
  12. 根据权利要求1所述的方法,其特征在于,步骤2)中,将所述溶液在60~80℃下反应10~30小时。The method of claim 1, wherein in step 2), the solution is reacted at 60-80°C for 10-30 hours.
  13. 根据权利要求12所述的方法,其特征在于,步骤2)中,将所述溶液在70~80℃下反应15~28小时。The method according to claim 12, wherein in step 2), the solution is reacted at 70-80°C for 15-28 hours.
  14. 根据权利要求1所述的方法,其特征在于,步骤2)中,在反应后加入沉淀剂,在1~10℃下保持12~48小时后抽滤,得到所述七甲川苯并吲哚花菁染料。The method according to claim 1, characterized in that, in step 2), a precipitant is added after the reaction, and the temperature is maintained at 1 to 10°C for 12 to 48 hours and then suction filtered to obtain the seven methyl chuan benzidole flower Cyanine dyes.
  15. 根据权利要求14所述的方法,其特征在于,步骤2)中,在反应后加入沉淀剂,在4℃下保持24小时后抽滤,得到所述七甲川苯并吲哚花菁染料。The method according to claim 14, characterized in that, in step 2), a precipitant is added after the reaction, kept at 4°C for 24 hours, and then filtered with suction to obtain the heptamethine benzoindole cyanine dye.
  16. 根据权利要求14所述的方法,其特征在于,所述沉淀剂选自石油醚、乙醚、甲醚、丙醚和甲乙醚中的至少一种。The method according to claim 14, wherein the precipitating agent is selected from at least one of petroleum ether, ethyl ether, methyl ether, propyl ether and methyl ethyl ether.
  17. 根据权利要求1所述的方法,其特征在于,步骤2)中,所述溶液中的溶剂选自水、甲醇、乙醇、丙醇、乙二醇、丙三醇、丁醇和丁二醇中的至少一种。The method according to claim 1, wherein in step 2), the solvent in the solution is selected from the group consisting of water, methanol, ethanol, propanol, ethylene glycol, glycerol, butanol and butanediol At least one.
  18. 根据权利要求17所述的方法,其特征在于,步骤2)中,所述溶液中的溶剂选自甲醇、乙醇和丙醇中的至少一种。The method according to claim 17, wherein in step 2), the solvent in the solution is selected from at least one of methanol, ethanol and propanol.
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,所述七甲川苯并吲哚花菁染料的结构式如式(I)所示:The method according to any one of claims 1 to 18, wherein the structural formula of the heptamethine benzindocyanine dye is shown in formula (I):
    Figure PCTCN2020073489-appb-100009
    Figure PCTCN2020073489-appb-100009
    其中,R选自R 1和R 2中的一种; Wherein, R is selected from one of R 1 and R 2 ;
    Figure PCTCN2020073489-appb-100010
    Figure PCTCN2020073489-appb-100010
    当R为R 1时,R'选自氢、甲基、甲氧基、羟基、羧基、酰胺基、磺酸基、酯基、炔基或氨基,a选自大于0且小于等于14的整数,X选自氟、氯、溴、碘或高氯酸根,m=1,p=0,A选自亚乙基、直链亚丙基或直链亚丁基;或 When R is R 1 , R'is selected from hydrogen, methyl, methoxy, hydroxyl, carboxyl, amide, sulfonic acid, ester, alkynyl or amino, and a is selected from an integer greater than 0 and less than or equal to 14. , X is selected from fluorine, chlorine, bromine, iodine or perchlorate, m=1, p=0, A is selected from ethylene, linear propylene or linear butylene; or
    R'选自羧酸根或磺酸根,a选自大于0且小于等于14的整数,Y选自氢、钠或钾,m=0,p=1,A选自亚乙基、直链亚丙基或直链亚丁基;R'is selected from carboxylate or sulfonate, a is selected from an integer greater than 0 and less than or equal to 14, Y is selected from hydrogen, sodium or potassium, m=0, p=1, A is selected from ethylene and linear propylene Radical or linear butylene;
    当R为R 2时,R"选自氢、甲基、甲氧基、羟基、羧基、酰胺基、磺酸基、酯基、炔基或氨基,b选自0至7的整数,X选自氟、氯、溴、碘或高氯酸根,m=1,p=0,A选自亚乙基、直链亚丙基或直链亚丁基;或 When R is R 2, R "is selected from hydrogen, methyl, methoxy, hydroxy, a carboxyl group, an amide group, a sulfonic acid group, an ester group, an alkynyl group or an amino group, b is an integer selected from 0 to 7, X is selected from From fluorine, chlorine, bromine, iodine or perchlorate, m=1, p=0, A is selected from ethylene, linear propylene or linear butylene; or
    R"选自羧酸根或磺酸根,b选自0至7的整数,Y选自氢、钠或钾,m=0,p=1,A选自亚乙基、直链亚丙基或直链亚丁基。R" is selected from carboxylate or sulfonate, b is selected from an integer from 0 to 7, Y is selected from hydrogen, sodium or potassium, m=0, p=1, A is selected from ethylene, linear propylene or straight Butylene.
  20. 根据权利要求19所述的方法,其特征在于,所述七甲川苯并吲哚花菁染料的结构式如式(I-1)、式(I-2)或式(I-3)所示:The method of claim 19, wherein the structural formula of the heptamethine benzoindole cyanine dye is as shown in formula (I-1), formula (I-2) or formula (I-3):
    Figure PCTCN2020073489-appb-100011
    Figure PCTCN2020073489-appb-100011
    Figure PCTCN2020073489-appb-100012
    Figure PCTCN2020073489-appb-100012
  21. 根据权利要求19所述的方法,其特征在于,式(I)中的R选自R 1和R 2中的一种;其中, The method according to claim 19, wherein R in formula (I) is selected from one of R 1 and R 2 ; wherein,
    当R为R 1时,R'选自氢、羧基或酯基,a选自2、4、6或8,X选自溴或碘,m=1,p=0,A选自亚乙基或直链亚丙基;或 When R is a. 1 when R, R 'is selected from hydrogen, a carboxyl group or an ester group, A is selected from 4, 6 or 8, X is selected from bromine or iodine, m = 1, p = 0 , A is selected from ethylene Or linear propylene; or
    R'选自羧酸根或磺酸根,a选自3、5、7或9,Y选自钠,m=0,p=1,A选自亚乙基或直链亚丙基;R'is selected from carboxylate or sulfonate, a is selected from 3, 5, 7 or 9, Y is selected from sodium, m=0, p=1, and A is selected from ethylene or linear propylene;
    当R为R 2时,R"选自氢、羧基或酯基,b选自0、1、3或5,X选自溴或碘,m=1,p=0,A选自亚乙基或直链亚丙基;或 When R is when R 2, R "is selected from hydrogen, a carboxyl group or an ester group, b is selected from 0,1,3 or 5, X is selected from bromine or iodine, m = 1, p = 0 , A is selected from ethylene Or linear propylene; or
    R"选自羧酸根或磺酸根,b选自0、1、3或5,Y选自钠,m=0,p=1,A选自亚乙基或直链亚丙基。R" is selected from carboxylate or sulfonate, b is selected from 0, 1, 3 or 5, Y is selected from sodium, m=0, p=1, and A is selected from ethylene or linear propylene.
  22. 一种探针助剂,其特征在于,包含通过权利要求1至21中任一项所述方法制备的七甲川苯并吲哚花菁染料中的至少一种。A probe auxiliary agent, characterized in that it contains at least one of heptamethine benzoindole cyanine dyes prepared by the method of any one of claims 1-21.
  23. 根据权利要求22所述的探针助剂,其特征在于,所述七甲川苯并吲哚花菁染料应用于制备近红外荧光探针。The probe assistant according to claim 22, wherein the heptamethine benzoindole cyanine dye is used to prepare near-infrared fluorescent probes.
  24. 根据权利要求23所述的探针助剂,其特征在于,所述近红外荧光探针包括小分子探针、纳米探针。The probe assistant of claim 23, wherein the near-infrared fluorescent probe comprises a small molecule probe and a nano probe.
PCT/CN2020/073489 2019-03-08 2020-01-21 Preparation method for heptamethylbenzylindole cyanine dye and application thereof WO2020181929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910175640.9A CN111662563A (en) 2019-03-08 2019-03-08 Preparation method and application of heptamethine benzindole cyanine dye
CN201910175640.9 2019-03-08

Publications (1)

Publication Number Publication Date
WO2020181929A1 true WO2020181929A1 (en) 2020-09-17

Family

ID=72382170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073489 WO2020181929A1 (en) 2019-03-08 2020-01-21 Preparation method for heptamethylbenzylindole cyanine dye and application thereof

Country Status (2)

Country Link
CN (1) CN111662563A (en)
WO (1) WO2020181929A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113248940B (en) * 2021-05-12 2023-02-17 上海戎科特种装备有限公司 Heptamethine cyanine dye with high-selectivity red light absorption, and synthesis method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040182268A1 (en) * 2003-01-27 2004-09-23 Agfa-Gevaert Heat-sensitive lithographic printing plate precursor
CN104685003A (en) * 2012-10-11 2015-06-03 爱克发-格法特公司 Infrared dyes for laser marking
CN107418557A (en) * 2017-06-05 2017-12-01 东南大学 A kind of application of seven methines indoles cyanines class organic dyestuff as mitochondria fluorescence probe
CN107430225A (en) * 2015-12-01 2017-12-01 旭硝子株式会社 Optical filter and camera device
KR20180119988A (en) * 2017-04-26 2018-11-05 한국신발피혁연구원 Cyanine compounds excellent in near infrared ray blocking performance and Manufacture method of the same
CN109796780A (en) * 2017-11-17 2019-05-24 中国科学院宁波材料技术与工程研究所 Seven methine benzindole cyanine dyes of one kind and its preparation method and application
CN109796779A (en) * 2017-11-17 2019-05-24 中国科学院宁波材料技术与工程研究所 A kind of preparation method of seven methines benzindole cyanine dye

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808044A (en) * 1993-01-22 1998-09-15 Pharmacia Biotech Inc. Indocarbocyanine and benzindocarbocyanine phosphoramidites
CN102532933A (en) * 2010-12-10 2012-07-04 江南大学 Synthetic and purifying method of near-infrared indole hepatmethine cyanine dye

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040182268A1 (en) * 2003-01-27 2004-09-23 Agfa-Gevaert Heat-sensitive lithographic printing plate precursor
CN104685003A (en) * 2012-10-11 2015-06-03 爱克发-格法特公司 Infrared dyes for laser marking
CN107430225A (en) * 2015-12-01 2017-12-01 旭硝子株式会社 Optical filter and camera device
KR20180119988A (en) * 2017-04-26 2018-11-05 한국신발피혁연구원 Cyanine compounds excellent in near infrared ray blocking performance and Manufacture method of the same
CN107418557A (en) * 2017-06-05 2017-12-01 东南大学 A kind of application of seven methines indoles cyanines class organic dyestuff as mitochondria fluorescence probe
CN109796780A (en) * 2017-11-17 2019-05-24 中国科学院宁波材料技术与工程研究所 Seven methine benzindole cyanine dyes of one kind and its preparation method and application
CN109796779A (en) * 2017-11-17 2019-05-24 中国科学院宁波材料技术与工程研究所 A kind of preparation method of seven methines benzindole cyanine dye

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, YIHUI ET AL.: "A Novel Approach to a Bifunctional Photosensitizer for Tumor Imaging and Phototherapy", BIOCONJUGATE CHEMISTRY, vol. 16, no. 5, 3 September 2005 (2005-09-03), XP001234118, ISSN: 1043-1802, DOI: 20200313105316X *
NARASIMHACHARI, N. ET AL.: "A New Method for The Synthesis of Heptamethine Cyanine Dyes:Synthesis of New Near-Infrared Fluorescent Labels", JOURNAL OF ORGANIC CHEMISTRY, vol. 60, no. 8, 21 April 1994 (1994-04-21), XP008061504, ISSN: 0022-3263, DOI: 20200309182452X *

Also Published As

Publication number Publication date
CN111662563A (en) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2020181931A1 (en) Heptamethine carboxylindole cyanine dye and preparation method and application therefor
CN109796779B (en) Preparation method of heptamethine benzindole cyanine dye
CN112409384B (en) Double thiophene thiadiazole receptor near-infrared two-region fluorescent molecule and preparation method and application thereof
JP7308366B2 (en) Active targeting folate receptor near-infrared fluorescent molecule and preparation method thereof
Zeng et al. A novel near-infrared fluorescent light-up probe for tumor imaging and drug-induced liver injury detection
CN106479216B (en) A kind of pyrylium dyes of near-infrared aza fluorine boron two and its microwave method synthetic method
Liu et al. Halogenated cyanine dyes for synergistic photodynamic and photothermal therapy
CN108997771B (en) Dye with strong absorption and photo-thermal effect in near infrared region and preparation method and application thereof
Shao et al. Facile synthesis of monofunctional pentamethine carbocyanine fluorophores
CN114790215B (en) Quinoxaline-based D-A-D near infrared two-region fluorescent molecule, and preparation method and application thereof
WO2020181929A1 (en) Preparation method for heptamethylbenzylindole cyanine dye and application thereof
CN111662568B (en) Preparation method of heptamethine indole cyanine dye and application of dye
CN109504363B (en) Preparation method and application of near-infrared two-region imaging contrast agent
Fang et al. One-step condensation synthesis and characterizations of indocyanine green
CN114105982B (en) Near infrared dye based on naphthalimide, preparation and application thereof
Chen et al. Photostability investigation of a near-infrared-II heptamethine cyanine dye
CN113444089A (en) Near-infrared two-region aggregation-induced emission molecule based on perylene diimide derivative, and preparation method and application thereof
Li et al. Triphenylamine flanked boron difluoride formazanate for NIR-II fluorescence imaging-guided photothermal therapy
Shao et al. Photostable, hydrophilic and functional near infrared quaterrylenediimide-cored dendrimers for biomedical imaging
CN111662565B (en) Heptamethine nitroindole cyanine dye and preparation method and application thereof
CN109796780A (en) Seven methine benzindole cyanine dyes of one kind and its preparation method and application
CN111039853B (en) Iron complex for photoacoustic imaging and photothermal therapy and preparation method and application thereof
CN111662566A (en) Heptamethine hydroxyindole cyanine dye, and synthesis method and application thereof
CN114685348B (en) Near-infrared cyanine photosensitizer with AIE (AIE) property and preparation method and application thereof
CN111662564A (en) Heptamethine sulfonic group indocyanine dye, preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769475

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20769475

Country of ref document: EP

Kind code of ref document: A1