WO2020181669A1 - 高增益射频前端装置 - Google Patents

高增益射频前端装置 Download PDF

Info

Publication number
WO2020181669A1
WO2020181669A1 PCT/CN2019/089997 CN2019089997W WO2020181669A1 WO 2020181669 A1 WO2020181669 A1 WO 2020181669A1 CN 2019089997 W CN2019089997 W CN 2019089997W WO 2020181669 A1 WO2020181669 A1 WO 2020181669A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
antenna array
end device
gain
antenna
Prior art date
Application number
PCT/CN2019/089997
Other languages
English (en)
French (fr)
Inventor
张少林
崔立成
Original Assignee
深圳市威富通讯技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市威富通讯技术有限公司 filed Critical 深圳市威富通讯技术有限公司
Priority to US16/647,317 priority Critical patent/US20200343926A1/en
Priority to BR212020016041U priority patent/BR212020016041U2/pt
Priority to EP19872238.1A priority patent/EP3940883A1/en
Priority to KR2020207000038U priority patent/KR20200002097U/ko
Priority to GB2004968.0A priority patent/GB2585433A/en
Publication of WO2020181669A1 publication Critical patent/WO2020181669A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/709Correlator structure
    • H04B1/7093Matched filter type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/13Monitoring; Testing of transmitters for calibration of power amplifiers, e.g. gain or non-linearity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • This application relates to the field of communication technology, and in particular to a high-gain radio frequency front-end device.
  • the antenna is an indispensable and important part of any radio communication system. Although the tasks to be performed by various radio equipment are different, the role of the antenna in the equipment is basically the same. Any radio equipment transmits information through radio waves, so there must be a device that can radiate or receive electromagnetic waves.
  • the radio frequency front end of the traditional antenna system is dominated by single-polarized antennas, and there are also array antennas, but mainly vertical arrays. These antenna structures are all two-dimensionally arranged, and it is difficult to achieve high gain.
  • the traditional antenna system has the disadvantage of low communication reliability.
  • a high-gain radio frequency front-end device is provided.
  • a high-gain radio frequency front-end device includes an antenna device and a radio frequency transceiving device.
  • the antenna device includes two or more stacked antenna array layers.
  • the radio frequency transceiving device includes a filter, a circulator, and a receiver.
  • a transmitter, the antenna array layer is connected to the filter, the filter is connected to the circulator through an optical fiber, and the circulator is connected to the receiver and the transmitter through an optical fiber;
  • the number of the radio frequency transceiver is Two or more than two, and each of the radio frequency transceiver devices is respectively connected to the corresponding antenna array layer.
  • FIG. 1 is a structural block diagram of a high-gain radio frequency front-end device in an embodiment
  • FIG. 2 is a structural diagram of an antenna device in an embodiment
  • Fig. 3 is a schematic structural diagram of a high-gain radio frequency front-end device in an embodiment.
  • a high-gain RF front-end device includes an antenna device 100 and a RF transceiver device 200.
  • the antenna device 100 includes two or more stacked antenna arrays.
  • the radio frequency transceiver 200 includes a filter 210, a circulator 220, a transmitter 230 and a receiver 240.
  • the antenna array layer is connected to the filter 210.
  • the filter 210 is connected to the circulator 220 through optical fibers, and the circulator 220 is connected to the receivers through optical fibers. 240 and transmitter 230.
  • the number of radio frequency transceiving devices 200 is two or more, and each radio frequency transceiving device 200 is connected to the corresponding antenna array layer.
  • the number of antenna array layers in the antenna device 100 is not unique, and can be two layers, three layers, etc., which can be adjusted according to actual needs.
  • the distance L between each antenna array layer is at least 0.5 ⁇ , and ⁇ is the wavelength of the center frequency of the antenna system. It can ensure that the signals between adjacent antenna array layers will not affect each other, and the system performance can be improved when the antenna is configured.
  • the connection between the antenna array layer and the filter 210 is not unique. In this embodiment, the antenna array layer is connected to the filter 210 through a radio frequency jumper.
  • the number of antenna array layers connected to each radio frequency transceiving device 200 may be completely the same, partly the same, or completely different.
  • Each radio frequency transceiving device 200 is connected to the corresponding antenna array layer to form a signal transceiving channel, forming multiple RF front-end structure with multiple inputs and outputs.
  • the number of antenna array layers connected to each radio frequency transceiving device 200 is different from each other.
  • the number of antenna array layers connected to each radio frequency transceiving device 200 may increase sequentially, and the corresponding signal can be selected according to actual needs.
  • the transceiver channel works, which improves the operating convenience of the antenna system.
  • the antenna array layer includes a substrate and an antenna array, and the antenna array is disposed on the substrate and connected to the filter 210.
  • the antenna array is arranged by the substrate, which is simple and quick to operate and has high fixing reliability.
  • the material of the substrate is not unique, and it can be a metal plate or a plastic plate.
  • the substrate is a metal substrate to further improve the reliability of antenna fixing.
  • the size of the substrate in each antenna array layer can be the same or different, and can be set according to actual needs.
  • the high-gain radio frequency front-end device further includes a fixed base, and the substrate is clamped and fixed to the fixed base.
  • the base plate of each antenna array layer is clamped and fixed by the fixed base, which is convenient for disassembly and installation, and has high fixing reliability.
  • the antenna array is a dual-polarized planar array.
  • the dual-polarized planar array includes a plurality of dual-polarized vibrators, and the dual-polarized vibrators are orthogonally arranged with positive and negative 45 degree polarization.
  • the dual-polarized elements of the antenna are laid out along the X-axis, Y-axis and Z-axis to form a three-dimensional array antenna structure.
  • Each antenna array layer 110 is composed of XOY planar array antenna elements 112, and all antenna array layers 110 are stacked in reverse along the Z axis to form a 3D stereo antenna array.
  • the antenna array layer 110 further includes a combiner, and each dual-polarized element in the antenna array is connected to the filter 210 in the corresponding radio frequency transceiver 200 through the combiner.
  • the signals received by the dual-polarized elements in the same antenna array are combined by the combiner and then sent to the filter 210 for subsequent signal processing.
  • the radio frequency transceiver 200 further includes a power amplifier 250 and a low noise amplifier 260.
  • the circulator 220 is connected to the low noise amplifier 260 through an optical fiber, and the low noise amplifier is connected to the receiver 240 through an optical fiber; 220 is connected to the power amplifier 250 through an optical fiber, and the power amplifier 250 is connected to the transmitter 230 through an optical fiber.
  • a single antenna array layer 110 in a virtual box in FIG. 2 is represented.
  • the number of radio frequency transceiving devices 200 is N
  • the first radio frequency transceiving device 200 is connected to two antenna array layers 110
  • the second radio frequency transceiving device 200 is connected to three antenna array layers 110
  • the Nth radio frequency transceiving device 200 Then N+1 antenna array layers 110 are connected.
  • the filter 210 is connected to the power amplifier 250 and the low noise amplifier 260 through the circulator 220
  • the power amplifier 250 is connected to the transmitter 230.
  • the noise amplifier 260 is connected to the receiver 240 to form a signal transmitting channel and a signal receiving channel respectively.
  • a power amplifier 250 and a low-noise amplifier 260 are added to the signal transmission channel and the signal reception channel, respectively, to power amplify the signal to be transmitted to increase the transmission power, and to amplify the received signal for subsequent signal processing , Improve the communication reliability of the high-gain RF front-end device.
  • Each device in the radio frequency transceiver 200 transmits signals through optical fibers, with fast signal transmission speed, low loss and strong anti-interference ability, which can further improve the communication reliability of the system.
  • each radio frequency transceiver 200 by independently configuring each radio frequency transceiver 200 with a set of filters, circulators, low noise amplifiers, receivers, power amplifiers, and transmitters to form multiple signal transmission channels and signal reception channels, multi-beam configuration can be realized , And further expand the application range of high-gain RF front-end devices. Since the number of antenna array layers 110 connected to each radio frequency transceiving device 200 is different, the gain effect of each radio frequency transceiving device 200 is also different. Specifically, the greater the number of antenna array layers 110, the higher the gain. When used in the radar field, the multi-beam configuration of the high-gain RF front-end device in this embodiment can increase the number of targets simultaneously tracked by the radar, effectively improve the function of a single radar, and effectively solve the signal coverage problem of high-rise buildings.
  • the high-gain radio frequency front-end device further includes a control device, and the control device is connected to the receiver 240 and the transmitter 230.
  • the control device may include a controller, a signal distributor, and a signal receiver.
  • the signal distributor is connected to the transmitter in each radio frequency transceiver 200
  • the signal receiver is connected to the receiver in each radio frequency transceiver 200
  • the controller is connected to the signal.
  • the controller can specifically adopt MCU (Micro Control Unit, Micro Control Unit).
  • the controller controls the signal distributor and the signal receiver to distribute and receive signals, realize the control of different transceiver channels, and improve the communication reliability of the antenna system.
  • the antenna device 100 includes two or more stacked antenna array layers, the number of the radio frequency transceiver 200 is two or more, and each radio frequency transceiver device is connected to the corresponding antenna array. Layer to form multiple signal transceiver channels.
  • the antenna device By designing the antenna device as a three-dimensional array structure, the high-gain radio frequency front-end device can form a vertical beam, thereby increasing the overall gain of the antenna, and improving the communication reliability compared with the traditional antenna system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请涉及一种高增益射频前端装置,包括天线装置和射频收发装置,天线装置包括两个或两个以上的层叠设置的天线阵列层,射频收发装置包括滤波器、环形器、接收器和发射器,天线阵列层连接滤波器,滤波器通过光纤连接环形器,环形器通过光纤分别连接接收器和发射器;射频收发装置的数量为两个或两个以上,且各射频收发装置分别连接对应的天线阵列层。

Description

高增益射频前端装置
本申请要求于2019年3月12日提交中国专利局,申请号为201920315159.0,申请名称为“高增益射频前端装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别是涉及一种高增益射频前端装置。
背景技术
天线是任何一个无线电通信系统都不可缺少的重要组成部分。各类无线电设备所要执行的任务虽然不同,但天线在设备中的作用却是基本相同的。任何无线电设备都是通过无线电波来传递信息,因此就必须有能辐射或接收电磁波的装置。
传统的天线系统射频前端以单极化天线为主,也有阵列天线,但主要是垂直方向的阵列。这些天线结构均是二维设置,很难实现高增益,传统的天线系统存在通信可靠性低的缺点。
发明内容
根据本申请的各种实施例,提供一种高增益射频前端装置。
一种高增益射频前端装置,包括天线装置和射频收发装置,所述天线装置包括两个或两个以上的层叠设置的天线阵列层,所述射频收发装置包括滤波器、环形器、接收器和发射器,所述天线阵列层连接所述滤波器,所述滤 波器通过光纤连接所述环形器,所述环形器通过光纤分别连接所述接收器和发射器;所述射频收发装置的数量为两个或两个以上,且各所述射频收发装置分别连接对应的天线阵列层。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为一实施例中高增益射频前端装置的结构框图;
图2为一实施例中天线装置的结构图;
图3为一实施例中高增益射频前端装置的结构原理图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在一个实施例中,提供了一种高增益射频前端装置,如图1所示,该装置包括天线装置100和射频收发装置200,天线装置100包括两个或两个以上的层叠设置的天线阵列层,射频收发装置200包括滤波器210、环形器220、 发射器230和接收器240,天线阵列层连接滤波器210,滤波器210通过光纤连接环形器220,环形器220通过光纤分别连接接收器240和发射器230。射频收发装置200的数量为两个或两个以上,且各射频收发装置200分别连接对应的天线阵列层。
具体地,天线装置100中的天线阵列层的数量并不唯一,可以是两层、三层等等,具体可根据实际需求调整。其中,各个天线阵列层之间的间距L至少为0.5λ,λ为天线系统中心频率的波长。可确保相邻天线阵列层之间信号不会相互影响,进而在配置天线时能够提系统性能。天线阵列层与滤波器210的连接方式并不唯一,本实施例中,天线阵列层通过射频跳线连接滤波器210。
进一步地,各射频收发装置200分别连接的天线阵列层的数量可完全相同,可部分相同,也可完全不同,每一个射频收发装置200与对应的天线阵列层连接构成一个信号收发通道,形成多输入多输出的射频前端结构。在一个实施例中,各射频收发装置200分别连接的天线阵列层的数量互不相同,例如,各射频收发装置200连接的天线阵列层的数量可以是依次递增,可根据实际需求选择对应的信号收发通道工作,提高了天线系统的操作便利性。
在一个实施例中,天线阵列层包括基板和天线阵列,天线阵列设置于基板并连接滤波器210。利用基板来布设天线阵列,操作简便快捷,且固定可靠性高。基板的材质并不唯一,可以是金属板或塑料板等,本实施例中,基板为金属基板,进一步提高天线固定可靠性。各天线阵列层中基板的尺寸可相同也可不同,具体可根据实际需求进行设置。
此外,在一个实施例中,高增益射频前端装置还包括固定底座,基板卡合固定于固定底座。通过固定底座将各天线阵列层的基板卡合固定,便于拆 卸和安装,且固定可靠性高。
天线阵列层中天线阵列的具体类型也不是唯一的,在一个实施例中,天线阵列为双极化平面阵列。具体地,双极化平面阵列包括多个双极化振子,双极化振子为正负45度极化正交设置。如图2所示,在XYZ坐标轴中,将天线的双极化振子沿着X轴、Y轴和Z轴三个方向上进行布局,形成一个三维的立体阵列天线结构,每一个天线阵列层110由XOY平面阵列天线振子112构成,所有天线阵列层110沿Z轴反向层叠设置构成3D立体天线阵列。通过将多输入多输出天线射频前端设置为立体结构,使得高增益射频前端装置可形成垂直面波束,进而提高天线整体增益。
进一步地,在一个实施例中,天线阵列层110还包括合路器,天线阵列中各双极化振子均通过合路器连接对应射频收发装置200中的滤波器210。通过合路器对同一个天线阵列中的双极化振子接收的信号进行合路处理后输送至滤波器210,以便进行后续的信号处理。
在一个实施例中,如图3所示,射频收发装置200还包括功率放大器250和低噪声放大器260,环形器220通过光纤连接低噪声放大器260,低噪声放大器通过光纤连接接收器240;环形器220通过光纤连接功率放大器250,功率放大器250通过光纤连接发射器230。
具体地,为便于解释说明,用单个代表图2中一个虚框内的天线阵列层110。射频收发装置200的数量为N个,第一个射频收发装置200连接两个天线阵列层110,第二个射频收发装置200连接三个天线阵列层110,依次类推,第N个射频收发装置200则连接N+1个天线阵列层110。以第一个射频收发装置200为例,两个天线阵列层110与滤波器210连接,滤波器210通过环形器220分别连接功率放大器250和低噪声放大器260,功率放大器250连 接发射器230,低噪声放大器260连接接收器240,分别形成信号发射通道和信号接收通道。
本实施例中,分别在信号发射通道和信号接收通道中增加功率放大器250和低噪声放大器260,对需要发送的信号进行功率放大以提高发射功率,并对接收的信号进行放大以便后续的信号处理,提高了高增益射频前端装置的通信可靠性。射频收发装置200中各器件通过光纤传输信号,信号传输速度快、损耗小且抗干扰能力强,还可进一步提高系统的通信可靠性。
此外,通过将每个射频收发装置200均独立配置一套滤波器、环形器、低噪声放大器、接收器、功率放大器和发射器,形成多路信号发射通道和信号接收通道,可实现多波束配置,进而可拓展高增益射频前端装置的应用范围。由于每个射频收发装置200连接的天线阵列层110的数量不同,使得每一个射频收发装置200的增益效果也并不相同,具体为天线阵列层110的数量越多,增益越高。当用于雷达领域时,本实施例中的高增益射频前端装置的多波束配置,可增加雷达同时跟踪的目标数,有效提升单个雷达的功能,也可有效解决高层楼宇信号覆盖问题。
此外,在一个实施例中,高增益射频前端装置还包括控制装置,控制装置连接接收器240和发射器230。具体地,控制装置可包括控制器、信号分配器和信号接收器,信号分配器连接各射频收发装置200中的发射器,信号接收器连接各射频收发装置200中的接收器,控制器连接信号分配器和信号接收器。控制器具体可采用MCU(Micro Control Unit,微控制单元)。通过控制器控制信号分配器和信号接收器进行信号的分配和接收,实现对不同收发通道的控制,提高了天线系统的通信可靠性。
上述高增益射频前端装置,天线装置100包括两个或两个以上的层叠设置的天线阵列层,射频收发装置200的数量为两个或两个以上,且各射频收发装置分别连接对应的天线阵列层,形成多路信号收发通道。通过将天线装置设计为立体组阵结构,使得高增益射频前端装置可形成垂直面波束,进而提高天线整体增益,与传统的天线系统相比,提高了通信可靠性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种高增益射频前端装置,其特征在于,包括天线装置和射频收发装置,所述天线装置包括两个或两个以上的层叠设置的天线阵列层,所述射频收发装置包括滤波器、环形器、接收器和发射器,所述天线阵列层连接所述滤波器,所述滤波器通过光纤连接所述环形器,所述环形器通过光纤分别连接所述接收器和发射器;所述射频收发装置的数量为两个或两个以上,且各所述射频收发装置分别连接对应的天线阵列层。
  2. 根据权利要求1所述的高增益射频前端装置,其特征在于,所述天线阵列层包括基板和天线阵列,所述天线阵列设置于所述基板,并连接所述滤波器。
  3. 根据权利要求2所述的高增益射频前端装置,其特征在于,所述天线阵列为双极化平面阵列。
  4. 根据权利要求3所述的高增益射频前端装置,其特征在于,所述双极化平面阵列包括多个双极化振子,所述双极化振子为正负45度极化正交设置。
  5. 根据权利要求4所述的高增益射频前端装置,其特征在于,所述天线阵列层还包括合路器,所述天线阵列中各双极化振子均通过所述合路器连接对应射频收发装置中的滤波器。
  6. 根据权利要求2所述的高增益射频前端装置,其特征在于,还包括固定底座,所述基板卡合固定于所述固定底座。
  7. 根据权利要求1所述的高增益射频前端装置,其特征在于,所述射频收发装置还包括低噪声放大器和功率放大器,所述环形器通过光纤连接所述低噪声放大器,所述低噪声放大器通过光纤连接所述接收器;所述环形器通 过光纤连接功率放大器,所述功率放大器通过光纤连接所述发射器。
  8. 根据权利要求1所述的高增益射频前端装置,其特征在于,还包括控制装置,所述控制装置连接各射频收发装置中的接收器和发射器。
  9. 根据权利要求8所述的高增益射频前端装置,其特征在于,所述控制装置包括控制器、信号分配器和信号接收器,所述信号分配器连接各射频收发装置中的发射器,所述信号接收器连接各射频收发装置中的接收器,所述控制器连接所述信号分配器和所述信号接收器。
  10. 根据权利要求1-9任意一项所述的高增益射频前端装置,其特征在于,所述天线阵列层通过射频跳线连接所述滤波器。
PCT/CN2019/089997 2019-03-12 2019-06-04 高增益射频前端装置 WO2020181669A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/647,317 US20200343926A1 (en) 2019-03-12 2019-06-04 High gain rf front end apparatus
BR212020016041U BR212020016041U2 (pt) 2019-03-12 2019-06-04 Aparelho de extremidade frontal de rf de alto ganho
EP19872238.1A EP3940883A1 (en) 2019-03-12 2019-06-04 High-gain radio frequency front-end device
KR2020207000038U KR20200002097U (ko) 2019-03-12 2019-06-04 고 이득 rf 프론트 엔드 장치
GB2004968.0A GB2585433A (en) 2019-06-04 2019-06-04 High-gain radio frequency front end-device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920315159.0U CN209283238U (zh) 2019-03-12 2019-03-12 高增益射频前端装置
CN201920315159.0 2019-03-12

Publications (1)

Publication Number Publication Date
WO2020181669A1 true WO2020181669A1 (zh) 2020-09-17

Family

ID=67606389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089997 WO2020181669A1 (zh) 2019-03-12 2019-06-04 高增益射频前端装置

Country Status (5)

Country Link
US (1) US20200343926A1 (zh)
KR (1) KR20200002097U (zh)
CN (1) CN209283238U (zh)
TW (1) TWM598570U (zh)
WO (1) WO2020181669A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113497329A (zh) * 2020-04-03 2021-10-12 深圳市威富通讯技术有限公司 立体式新型天线射频前端装置
CN113555662A (zh) * 2020-04-03 2021-10-26 深圳市威富通讯技术有限公司 立体式天线射频前端装置
CN113517536A (zh) * 2020-04-10 2021-10-19 深圳市威富通讯技术有限公司 立体式加强型射频前端装置
CN113517539A (zh) * 2020-04-10 2021-10-19 深圳市威富通讯技术有限公司 立体式高增益射频前端装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361173A (zh) * 2011-09-19 2012-02-22 广东通宇通讯股份有限公司 一种双系统共天馈基站天线
CN106207467A (zh) * 2016-08-31 2016-12-07 航天恒星科技有限公司 一种有源多波束相控阵天线系统
US20170169261A1 (en) * 2008-01-30 2017-06-15 Mark H. Smith Array antenna system and algorithm applicable to rfid readers
CN107403987A (zh) * 2016-05-20 2017-11-28 日本电产艾莱希斯株式会社 发射元件、天线阵列以及雷达
CN108333691A (zh) * 2017-01-20 2018-07-27 山东华云光电技术有限公司 一种波长可调单纤双向光发射接收组件
CN207869103U (zh) * 2018-03-05 2018-09-14 西安彼睿电子科技有限公司 一种全双工通信系统
CN108767463A (zh) * 2018-05-25 2018-11-06 西安荷文信息科技有限公司 一种低剖面移相卫星通信天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170169261A1 (en) * 2008-01-30 2017-06-15 Mark H. Smith Array antenna system and algorithm applicable to rfid readers
CN102361173A (zh) * 2011-09-19 2012-02-22 广东通宇通讯股份有限公司 一种双系统共天馈基站天线
CN107403987A (zh) * 2016-05-20 2017-11-28 日本电产艾莱希斯株式会社 发射元件、天线阵列以及雷达
CN106207467A (zh) * 2016-08-31 2016-12-07 航天恒星科技有限公司 一种有源多波束相控阵天线系统
CN108333691A (zh) * 2017-01-20 2018-07-27 山东华云光电技术有限公司 一种波长可调单纤双向光发射接收组件
CN207869103U (zh) * 2018-03-05 2018-09-14 西安彼睿电子科技有限公司 一种全双工通信系统
CN108767463A (zh) * 2018-05-25 2018-11-06 西安荷文信息科技有限公司 一种低剖面移相卫星通信天线

Also Published As

Publication number Publication date
TWM598570U (zh) 2020-07-11
CN209283238U (zh) 2019-08-20
US20200343926A1 (en) 2020-10-29
KR20200002097U (ko) 2020-09-24

Similar Documents

Publication Publication Date Title
WO2020181669A1 (zh) 高增益射频前端装置
US20220271442A1 (en) Wireless Transceiver Having Receive Antennas and Transmit Antennas with Orthogonal Polarizations in a Phased Array Antenna Panel
CN100464508C (zh) 一种利用基站天线收发信号的方法和基站天线
US20150188660A1 (en) Apparatus and method for simultaneously transmitting and receiving orbital angular momentum (oam) modes
CN105161852B (zh) 带有极化调整的平板天线
CN210120557U (zh) 立体结构的多通道无线信号收发设备
CN203225337U (zh) 一种Ku/Ka四频段多极化馈源
US11095044B2 (en) Combined omnidirectional and directional antennas
CN109755767A (zh) 八频段双极化单脉冲双反射面天线
CN106229637A (zh) 平板天线阵列及带极化调整的平板天线
CN114430119A (zh) 多波束相控阵天线及通信设备
US11664882B2 (en) Radio wave repeater and communication system
CN205039254U (zh) 带有极化调整的平板天线
WO2020181668A1 (zh) 立体式布局高增益射频前端装置
TWM598537U (zh) 多輸入多輸出天線及系統
EP3940883A1 (en) High-gain radio frequency front-end device
GB2585433A (en) High-gain radio frequency front end-device
GB2589391A (en) Three-dimensional layout high gain Radio Frequency front end device
EP3549277B1 (en) Mimo system and method utilizing interferometric pattern
TWI609529B (zh) 使用於碟盤天線的多元接收器設備與系統
CN210404059U (zh) 立体式布局的高增益天线设备
CN210404058U (zh) 高增益天线设备
CN106229696A (zh) 一种多波束指向的平板天线阵列
RU108892U1 (ru) Телекоммуникационный терминал
Hirokawa et al. Two-dimensional Polarity Orthogonal Multiplexing Antenna System for Non-far Region Communication

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202004968

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190604

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872238

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 212020016041

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 212020016041

Country of ref document: BR

Free format text: APRESENTE A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE CN 201920315159.0 OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NA PRIORIDADE REIVINDICADA, CONTENDO TODOS OS DADOS IDENTIFICADORES DESTA (TITULARES,NUMERO DE REGISTRO, DATA E TITULO), CONFORME ART. 16, 2O DA LPI E ART. 25 DA RESOLUCAO NO 77/2013. CABE SALIENTAR QUE NAO FOI POSSIVEL IDENTIFICAR OS TITULARES DO PEDIDO NOS DOCUMENTOS APRESENTADOS NA OMPI E NEM NOS DOCUMENTOS JUNTADOS NO PEDIDO POR ESTAREM EMCHINES.

ENP Entry into the national phase

Ref document number: 2019872238

Country of ref document: EP

Effective date: 20211012

ENP Entry into the national phase

Ref document number: 212020016041

Country of ref document: BR

Effective date: 20200806