WO2020181576A1 - 一种基于瞬时外部短路的动力电池低温自加热系统及方法 - Google Patents
一种基于瞬时外部短路的动力电池低温自加热系统及方法 Download PDFInfo
- Publication number
- WO2020181576A1 WO2020181576A1 PCT/CN2019/079152 CN2019079152W WO2020181576A1 WO 2020181576 A1 WO2020181576 A1 WO 2020181576A1 CN 2019079152 W CN2019079152 W CN 2019079152W WO 2020181576 A1 WO2020181576 A1 WO 2020181576A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- power battery
- heated
- external short
- battery pack
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/615—Heating or keeping warm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/63—Control systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/63—Control systems
- H01M10/635—Control systems based on ambient temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/657—Means for temperature control structurally associated with the cells by electric or electromagnetic means
- H01M10/6571—Resistive heaters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention belongs to the technical field of electric vehicle power batteries, and specifically relates to a power battery low-temperature self-heating system and method based on instantaneous external short circuit.
- New energy vehicles represented by electric vehicles have become the main development trend in the automotive field.
- the performance of lithium-ion power batteries has the most direct impact on the performance of electric vehicles.
- lithium-ion power batteries The performance of the battery is greatly affected by temperature, especially at low temperatures, the battery charge and discharge performance drops sharply, the capacity decline is very obvious, and the charge and discharge cannot even be performed when the temperature is too low.
- the temperature in winter can often reach below -20°C.
- the battery In order to enable the full-climate application of electric vehicles, the battery must be heated at low temperatures through the thermal management system. At present, how to quickly and efficiently heat the power battery at low temperature is a technical problem.
- Traditional heating methods generally have the problems of low efficiency and slow heating speed.
- the present invention proposes a power battery low-temperature self-heating system and method based on instantaneous external short circuit, which can quickly heat the power battery of an electric vehicle in a low-temperature environment.
- the basic principle of this method is to detect the battery temperature before the vehicle is started. If the battery temperature is found to be lower than the minimum temperature threshold, the battery will be triggered to generate a large current by actively triggering an instantaneous external short circuit before starting. The Joule heat generated during the internal resistance heats the battery, so that the power battery quickly rises to the ideal temperature.
- a power battery low-temperature self-heating system based on instantaneous external short circuit including: relay and battery management system;
- the two ends of the relay are respectively connected to the positive and negative poles of the power battery pack to be heated, the power battery pack to be heated is connected to the battery management system, and the battery management system is connected to the relay;
- Relay a remote control relay, controlled by the battery management system, provides an external short-circuit environment for the power battery pack to be heated. It is in an open state under normal conditions. When the power battery pack to be heated requires an external short-circuit environment, the relay is closed;
- the battery management system controls the power battery pack to be heated to start or stop heating
- the battery management system includes: a signal acquisition circuit, a power supply, a controller, and a host computer display screen;
- the signal acquisition circuit includes: a temperature acquisition circuit, a voltage acquisition circuit, and a current acquisition circuit;
- the power battery pack to be heated is connected to the temperature acquisition circuit, voltage acquisition circuit, and current acquisition circuit.
- the temperature acquisition circuit, voltage acquisition circuit, and current acquisition circuit are respectively connected to the controller, the controller is connected to the relay, and the controller is connected through CAN
- the bus is connected with the upper computer display screen, and the power supply is connected with the acquisition circuit and the controller respectively;
- Temperature acquisition circuit Collect the temperature signal of the power battery pack to be heated and transmit it to the controller;
- Voltage acquisition circuit Collect the voltage signal of the power battery pack to be heated and transmit it to the controller;
- Power supply provide power for signal acquisition circuit and controller
- the control signal Based on the transferred temperature signal, voltage signal, and current signal of the power battery pack to be heated, combined with the predetermined minimum temperature threshold and external short-circuit duration, the control signal is calculated by the preset control logic, and the control signal Pass it to the relay to make the relay close or open according to the control signal given by the controller; and pass the temperature signal, voltage signal, current signal, minimum temperature threshold, external short-circuit duration and control signal of the power battery pack to be heated through the CAN bus Pass it to the upper computer display;
- Host computer display screen Receive the temperature signal, voltage signal, and current signal of the power battery pack to be heated from the controller to display on the display in the form of a curve, and receive the minimum temperature threshold, external short-circuit duration and external short-circuit duration from the controller.
- the control signal is displayed on the display in digital form;
- a low-temperature self-heating method of power battery based on instantaneous external short circuit is realized by adopting a low-temperature self-heating system of power battery based on instantaneous external short circuit. The specific steps are as follows:
- Step 1 Start the power battery low-temperature self-heating system based on instantaneous external short circuit.
- the controller preset the minimum temperature threshold and external short circuit duration;
- Step 2 The temperature acquisition circuit in the battery management system monitors the temperature signal of the power battery pack to be heated online in real time;
- Step 3 Compare whether the temperature of the power battery pack to be heated is lower than the minimum temperature threshold; if it is not lower than the minimum temperature threshold, the power battery pack to be heated does not need to be heated; if it is lower than the minimum temperature threshold, cut off the direction of the power battery pack to be heated
- the main circuit of the external power supply sends a closing control signal to the relay to close the relay, and an external short circuit occurs in the power battery pack to be heated.
- the short-circuit current caused by the external short circuit generates heat to heat the power battery pack to be heated to make the temperature of the power battery pack to be heated Ascend, go to step 4;
- Step 4 The controller in the battery management system starts to record the external short-circuit time. If the external short-circuit time is less than the preset external short-circuit duration, continue to record the external short-circuit time until the external short-circuit time is greater than or equal to the preset external short-circuit duration When, send a disconnect control signal, when the relay is disconnected, stop the heating process, stand still for t time, re-measure the temperature of the power battery pack to be heated, and go to step 5;
- Step 5 Re-judge whether the temperature of the power battery pack to be heated is lower than the minimum temperature threshold. If the temperature signal of the power battery pack to be heated is still lower than the minimum temperature threshold, go to step 3 and restart the heating process. If the signal is greater than or equal to the minimum temperature threshold, the low-temperature self-heating system of the power battery based on the instantaneous external short circuit ends the heating process, and the main circuit for external power supply of the power battery pack to be heated is connected.
- the short-circuit duration at this time is the critical duration X E_Limit , and a rate coefficient ⁇ is set.
- the value of the rate coefficient ⁇ can be arbitrarily selected between 0 and 1, and the external short-circuit duration X E is obtained as:
- z represents the state of charge of the battery
- Q E is the heat of side reaction
- U oc is the battery open circuit voltage
- U t is the battery terminal voltage
- I Batt is the battery current
- T air is the ambient temperature.
- the temperature of the power battery pack to be heated rises, and the rising temperature ⁇ T can be estimated by the following formula:
- the present invention proposes a new method for low-temperature heating of power batteries.
- the method can quickly heat the power batteries of electric vehicles in a low-temperature environment.
- the basic principle of the method is to generate large currents by actively triggering transient external short circuits of the batteries.
- the Joule heat generated when flowing through the internal resistance heats the battery.
- the present invention first obtains the safety threshold of the external short-circuit duration through an experimental method, and further proposes a control relationship for controlling the corresponding external short-circuit duration according to the battery state of charge, and controls the short-circuit duration within a reasonable threshold range to ensure safety and speed Heat the battery to a suitable temperature.
- this method can heat the power battery from -18°C to 10°C within 45 seconds, which is much higher than the low-temperature heating rate of the existing battery thermal management system, and the method is simple and easy to implement, and can effectively solve: under severe cold environment The problem of reduced capacity of electric vehicle power battery and deterioration of working performance.
- FIG. 1 is a flow chart of a low-temperature self-heating method of a power battery based on an instantaneous external short circuit according to an embodiment of the present invention
- FIG. 2 is a block diagram of a low-temperature self-heating system of power battery based on instantaneous external short circuit according to an embodiment of the present invention
- Fig. 3 is a circuit diagram of the controller according to an embodiment of the present invention; among them, Fig. 3(a) is the pin diagram of the controller chip, Fig. 3(b) is the connection circuit diagram of the 57-84 pins of the controller chip, and Fig. 3(c) is the control The 29 ⁇ 56 pin connection circuit diagram of the device chip is shown in Fig. 3(d) for the 1 ⁇ 28 pin connection circuit diagram of the controller chip;
- Figure 4 is a temperature collection circuit of an embodiment of the present invention.
- Figure 5 is a voltage acquisition circuit of an embodiment of the present invention.
- Figure 6 is a current collection circuit according to an embodiment of the present invention.
- FIG. 7 is a low-temperature heating effect diagram of a lithium ion battery in an environment of -20° C. according to an embodiment of the present invention, wherein FIG. 7(a) is a temperature change curve, and FIG. 7(b) is a current change curve.
- a low-temperature self-heating system for power batteries based on instantaneous external short circuits includes: relays and battery management systems;
- the two ends of the relay are respectively connected to the positive and negative poles of the power battery pack to be heated, the power battery pack to be heated is connected to the battery management system, and the battery management system is connected to the relay;
- Relay a remote control relay, controlled by the battery management system, provides an external short-circuit environment for the power battery pack to be heated. It is in an open state under normal conditions. When the power battery pack to be heated requires an external short-circuit environment, the relay is closed;
- the battery management system controls the power battery pack to be heated to start or stop heating
- the battery management system includes: a signal acquisition circuit, a power supply, a controller, and a host computer display screen;
- the signal acquisition circuit includes: a temperature acquisition circuit, a voltage acquisition circuit, and a current acquisition circuit;
- the power battery pack to be heated is connected to the temperature acquisition circuit, voltage acquisition circuit, and current acquisition circuit.
- the temperature acquisition circuit, voltage acquisition circuit, and current acquisition circuit are respectively connected to the controller, the controller is connected to the relay, and the controller is connected through CAN
- the bus is connected with the upper computer display screen, and the power supply is connected with the acquisition circuit and the controller respectively;
- Temperature collection circuit collects the temperature signal of the power battery pack to be heated and transmits it to the controller; as shown in Figure 4, it is the temperature collection circuit of the embodiment of the present invention
- Voltage acquisition circuit acquires the voltage signal of the power battery pack to be heated and transmits it to the controller; as shown in Figure 5, it is the voltage acquisition circuit of the embodiment of the present invention.
- Current collection circuit collects the current signal of the power battery pack to be heated and transmits it to the controller; as shown in Figure 6, it is the current collection circuit of the embodiment of the present invention
- Power supply provide power for signal acquisition circuit and controller
- the control signal is calculated by the preset control logic, and the control signal Pass it to the relay to make the relay close or open according to the control signal given by the controller; and pass the temperature signal, voltage signal, current signal, minimum temperature threshold, external short-circuit duration and control signal of the power battery pack to be heated through the CAN bus Transfer to the upper computer display screen; the actual circuit of the controller in this embodiment is shown in Figure 3;
- Host computer display screen Receive the temperature signal, voltage signal, and current signal of the power battery pack to be heated from the controller to display on the display in the form of a curve, and receive the minimum temperature threshold, external short-circuit duration and external short-circuit duration from the controller.
- the control signal is displayed on the display in digital form;
- the battery pack is placed at an ambient temperature of -20°C for low-temperature heating.
- Six 18650 type NMC lithium-ion power batteries are used to form the battery pack.
- the battery data parameters provided by the battery manufacturer are shown in Table 1.
- a remotely controllable short-circuit relay is provided at the near end of the power battery pack.
- the relay connects the positive and negative electrodes of the battery pack and is controlled by the battery management system. Under normal conditions, the relay is in the off state, and the battery management system passes the temperature
- the acquisition circuit, voltage acquisition circuit and current acquisition circuit monitor the status of the power battery pack in real time.
- the main control chip of the battery management system uses Freescale MC9S12DP512 single-chip microcomputer, equipped with CAN bus communication and upper display interface to record experimental data.
- FIG. 3 The circuit schematic diagram of the controller As shown in Figure 3, Figure 3 (a) is the controller chip pin diagram, Figure 3 (b) is the controller chip 57 ⁇ 84 pin connection circuit diagram, Figure 3 (c) the controller chip 29 ⁇ 56 pins
- the connection circuit diagram is shown in Figure 3(d) for the connection circuit diagram of the 1-28 pins of the controller chip;
- the external short-circuit duration X E is obtained from experiments.
- the battery short-circuit is safe within a certain period of time, but once the duration reaches a certain length, the battery will be damaged.
- the state of charge is 20 Under the conditions of %, 50%, and 80%, perform instantaneous external short-circuit tests on the batteries.
- the three batteries are numbered battery 1, battery 2, and battery 3.
- the short-circuit duration is set to 10s, before and after the short circuit, The battery capacity was tested and compared. However, the short-circuit duration was increased step by step at 10s intervals. The test results are shown in Table 2.
- the value of the rate coefficient ⁇ can be arbitrarily selected between 0 and 1. When ⁇ is closer to 0, the system is safer, but the low temperature heating speed is slower, and when ⁇ is closer to 1, the low temperature heating speed is faster , But the battery has safety risks.
- a low-temperature self-heating method of power battery based on instantaneous external short circuit is realized by a low-temperature self-heating system of power battery based on instantaneous external short circuit, as shown in Figure 1.
- the specific steps are as follows:
- Step 1 Start the power battery low-temperature self-heating system based on instantaneous external short circuit.
- the short-circuit current caused by the external short circuit is used to generate Heat the power battery pack to be heated to increase the temperature of the power battery pack to be heated, and go to step 4;
- Step 4 The controller in the battery management system starts to record the external short-circuit time. If the external short-circuit time is less than the preset external short-circuit duration of 30s, continue to record the external short-circuit time until the external short-circuit time is greater than or equal to the preset external short-circuit duration When the time is 30s, send the disconnection control signal, the relay will be disconnected, stop the heating process, stand still for 20 seconds, re-measure the temperature of the power battery pack to be heated, and go to step 5;
- Step 5 Re-judge whether the temperature signal of the power battery pack to be heated is lower than the minimum temperature threshold. If the temperature signal of the power battery pack to be heated is still lower than the minimum temperature threshold, go to step 3 and restart the heating process. The temperature signal is greater than or equal to the minimum temperature threshold, and the low-temperature self-heating system of the power battery based on the instantaneous external short circuit ends the heating process, and the main circuit for external power supply of the power battery pack to be heated is connected.
- FIG. 7 is the low-temperature heating effect diagram of the lithium-ion battery in the embodiment of the present invention at -20°C.
- Figure 7(a) is the temperature change curve
- Figure 7(b) is the current change curve.
- the short-circuit duration X E in step 1 is characterized by: the method for determining this value is: an instantaneous external short-circuit test is performed on the power battery under different states of charge, and the test is started from the short-circuit time of 10s. Perform capacity tests on the battery before and after to verify whether the instantaneous external short-circuit damages the battery, and gradually extend the short-circuit duration at 10s intervals. When the external short-circuit lasts for a long time, it will cause irreversible damage to the battery until the battery , That is, the capacity has significantly declined, and the short-circuit duration at this time is recorded as the critical duration X E_Limit .
- the threshold is not a fixed value, but a curve that changes with the state of charge of the battery.
- a rate coefficient ⁇ can be set. The value of the rate coefficient ⁇ can be arbitrarily selected between 0 and 1. , When ⁇ is closer to 0, the low-temperature heating speed is slower, when ⁇ is closer to 1, the low-temperature heating speed is faster, so the external short-circuit duration X E is:
- z represents the state of charge of the battery
- the short-circuit relay described in step 3 is characterized by: an electromagnetic relay for triggering an external short circuit, and the relay is arranged at the proximal end of the power battery pack. As shown in FIG. 2, the two ends of the relay are respectively Connect the positive and negative poles of the power battery pack. The closing and opening of the relay is controlled by the battery management system. When the electromagnetic relay is closed, an external short circuit is triggered in the battery pack.
- the internal heat generation Q of the battery is:
- Q E is the heat of side reaction
- U oc is the battery open circuit voltage
- U t is the battery terminal voltage
- I Batt is the battery current
- T air is the ambient temperature.
- the temperature of the power battery pack to be heated rises, and the rising temperature ⁇ T can be estimated by the following formula:
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Automation & Control Theory (AREA)
- Secondary Cells (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本发明提出一种基于瞬时外部短路的动力电池低温自加热系统及方法,包括:继电器、电池管理系统;继电器,受控于电池管理系统,为待加热动力电池组提供外部短路环境,正常状态下处于断开状态,待加热动力电池组需要外部短路环境时,继电器为闭合状态;电池管理系统控制待加热动力电池组启动加热或者停止加热;本发明首先通过实验的方法获取外部短路持续时间,将短路持续时间控制在合理阈值范围内确保安全,利用外部短路引起的短路电流产生热量给电池加热。实验表明,此方法远高于现有电池热管理系统的低温加热速率,且方法简单、易于实现,有效解决了严寒环境下电动汽车动力电池容量降低、工作性能恶化的问题。
Description
本发明属于电动汽车动力电池技术领域,具体涉及一种基于瞬时外部短路的动力电池低温自加热系统及方法。
以电动汽车为代表的新能源汽车目前已成为汽车领域的主要发展趋势,作为车载电能存储单元,锂离子动力电池的性能对电动汽车的整车性能有着最为直接的影响,然而,锂离子动力电池的性能受温度影响很大,尤其在低温情况下,电池充放电性能急剧下降,容量衰退非常明显,温度过低时甚至无法进行充放电。在我国东北地区冬天气温往往能够达到-20℃以下,为了能够使电动汽车全气候应用,就必须通过热管理系统对电池进行低温加热。目前,如何对动力电池快速高效地进行低温加热是一个技术难题,传统加热方法普遍存在效率低、加热速度慢的问题。
发明内容
针对上述问题,本发明提出了一种基于瞬时外部短路的动力电池低温自加热系统及方法,该方法可以在低温环境下对电动汽车动力电池进行快速加热。
该方法的基本原理是在车辆启动之前先对电池温度进行检测,如果发现电池温度低于最低温度阈值,则在启动之前先通过主动触发电池发生瞬时外部短路来产生大电流,利用大电流流过内阻时产生的焦耳热对电池进行加热,使动力电池快速升温至理想温度。
一种基于瞬时外部短路的动力电池低温自加热系统,包括:继电器、电池管理系统;
继电器两端分别与待加热动力电池组正负极相连接,待加热动力电池组与电池管理系统相连接,电池管理系统与继电器相连接;
继电器,为远程控制继电器,受控于电池管理系统,为待加热动力电池组提供外部短路环境,正常状态下处于断开状态,待加热动力电池组需要外部短路环境时,继电器为闭合状态;
电池管理系统,控制待加热动力电池组启动加热或者停止加热;
所述电池管理系统包括:信号采集电路、供电电源、控制器、上位机显示屏;
所述信号采集电路包括:温度采集电路、电压采集电路和电流采集电路;
待加热动力电池组分别与温度采集电路、电压采集电路、电流采集电路相连接,温度采集电路、电压采集电路、电流采集电路分别与控制器相连接,控制器与继电器相连接,控制器通过CAN总线与上位机显示屏相连接,供电电源分别与采集电路和控制器相连接;
温度采集电路:采集待加热动力电池组温度信号,并传递给控制器;
电压采集电路:采集待加热动力电池组电压信号,并传递给控制器;
电流采集电路:采集待加热动力电池组电流信号,并传递给控制器;
供电电源:为信号采集电路及控制器提供电源;
控制器:基于传递过来的待加热动力电池组温度信号、电压信号、电流信号,结合预确定的最低温度阈值和外部短路持续时间,经过预设定的控制逻辑计算出控制信号,将该控制信号传递给继电器,使继电器按照控制器给的控制信号进行闭合或者断开;并将待加热动力电池组温度信号、电压信号、电流信号、最低温度阈值、外部短路持续时间和控制信号,通过CAN总线传递给上位机显示屏;
上位机显示屏:接收控制器传递过来的待加热动力电池组温度信号、电压信号、电流信号以曲线的形式以显示在显示屏上,接收控制器传递过来的最低温度阈值、外部短路持续时间和控制信号,以数字的方式显示在显示屏上;
一种基于瞬时外部短路的动力电池低温自加热方法,采用一种基于瞬时外部短路的动力电池低温自加热系统实现,具体步骤如下:
步骤1:启动基于瞬时外部短路的动力电池低温自加热系统,在控制器中,预设定最低温度阈值和外部短路持续时间;
步骤2:电池管理系统中温度采集电路在线实时监测待加热动力电池组温度信号;
步骤3:对比待加热动力电池组温度是否低于最低温度阈值;如果不低于最低温度阈值,则待加热动力电池组不需要加热;如果低于最低温度阈值,则切断待加热动力电池组向外供电的主回路,发送闭合控制信号给继电器,使继电器闭合,待加热动力电池组发生外部短路,利用外部短路引起的短路电流产生热量对待加热动力电池组进行加热,使待加热动力电池组温度上升,转到步骤4;
步骤4:电池管理系统中控制器开始记录外部短路时间,如果外部短路时间小于预设定的外部短路持续时间时,继续记录外部短路时间,直到外部短路时间大于等于预设定的外部短路持续时间时,发送断开控制信号,时继电器断开,停止加热过程,静止t时间,重新测量待加热动力电池组温度,转到步骤5;
步骤5:重新判断待加热动力电池组温度是否低于最低温度阈值,如果待加热动力电池组温度信号仍然低于最低温度阈值,转到步骤3,重新进行加热过程,如果待加热动力电池组温度信号大于等于最低温度阈值,基于瞬时外部短路的动力电池低温自加热系统结束加热过程,接通待加热动力电池组向外供电的主回路。
所述外部短路持续时间获取过程如下:
对待加热动力电池组在不同荷电状态情况下进行离线瞬时外部短路试验,从短路时间为Δt开始实验,并按Δt为间隔逐步延长短路持续时间,检测待加热动力电池组容量,当容量发生衰退时,记录此时的短路持续时间为临界持续时间X
E_Limit,设置一个速率系数ρ,速率系数ρ的取值可在0~1之间任意选取,得到外部短路持续时间X
E为:
X
E=ρmin{X
E_limit(z)}
其中,z表示电池荷电状态;
所述待加热动力电池组发生外部短路,利用外部短路引起的短路电流产生热量Q,计算公式为:
其中,Q
E为副反应放热量,U
oc为电池开路电压,U
t为电池端电压,I
Batt为电池电流,T
air为环境温度。
所述待加热动力电池组温度上升,上升的温度△T可用下式进行估算:
有益技术效果:
本发明提出了一种动力电池低温加热的新方法,该方法可以在低温环境下对电动汽车动力电池进行快速加热,该方法的基本原理是通过主动触发电池瞬时外部短路来产生大电流,通过电流流过内阻时产生的焦耳热对电池进行自加热。本发明首先通过实验的方法获取外部短路持续时间的安全阈值,进一步提出了根据电池荷电状态来控制相应的外部短路持续时间的控制关系,将短路持续时间控制在合理阈值范围内确保安全、快速将电池加热至适合温度。实验表明,此方法可以在45秒内将动力电池从-18℃加热到10℃,远高于现有电池热管理系统的低温加热速率,且方法简单、易于实现,可以有效解决:严寒环境下电动汽车动力电池容量降低、工作性能恶化的问题。
图1为本发明实施例的一种基于瞬时外部短路的动力电池低温自加热方法流程图;
图2为本发明实施例的一种基于瞬时外部短路的动力电池低温自加热系统框图;
图3为本发明实施例的控制器电路图;其中,图3(a)为控制器芯片引脚图,图3(b)为控制器芯片57~84引脚连接电路图,图3(c)控制器芯片29~56引脚连接电路图,为图3(d)为控制器芯片1~28引脚连接电路图;
图4为本发明实施例的温度采集电路;
图5为本发明实施例的电压采集电路;
图6为本发明实施例的电流采集电路;
图7为本发明实施例的锂离子电池在-20℃环境下的低温加热效果图,其中,图7(a)为温度变化曲线,图7(b)为电流变化曲线。
下面结合附图和具体实施实例对发明做进一步说明,一种基于瞬时外部短路的动力电池低温自加热系统,如图2所示,包括:继电器、电池管理系统;
继电器两端分别与待加热动力电池组正负极相连接,待加热动力电池组与电池管理系统相连接,电池管理系统与继电器相连接;
继电器,为远程控制继电器,受控于电池管理系统,为待加热动力电池组提供外部短路环境,正常状态下处于断开状态,待加热动力电池组需要外部短路环境时,继电器为闭合状态;
电池管理系统,控制待加热动力电池组启动加热或者停止加热;
所述电池管理系统包括:信号采集电路、供电电源、控制器、上位机显示屏;
所述信号采集电路包括:温度采集电路、电压采集电路和电流采集电路;
待加热动力电池组分别与温度采集电路、电压采集电路、电流采集电路相连接,温度采集电路、电压采集电路、电流采集电路分别与控制器相连接,控制器与继电器相连接,控制器通过CAN总线与上位机显示屏相连接,供电电源分别与采集电路和控制器相连接;
温度采集电路:采集待加热动力电池组温度信号,并传递给控制器;如图4所示,为本发明实施例的温度采集电路;
电压采集电路:采集待加热动力电池组电压信号,并传递给控制器;如图5所示,为本发明实施例的电压采集电路;
电流采集电路:采集待加热动力电池组电流信号,并传递给控制器;如图6所示,为本发明实施例的电流采集电路;
供电电源:为信号采集电路及控制器提供电源;
控制器:基于传递过来的待加热动力电池组温度信号、电压信号、电流信号,结合预确定的最低温度阈值和外部短路持续时间,经过预设定的控制逻辑计算出控制信号,将该控制信号传递给继电器,使继电器按照控制器给的控制信号进行闭合或者断开;并将待加热动力电池组温度信号、电压信号、电流信号、最低温度阈值、外部短路持续时间和控制信号,通过CAN总线传递给上位机显示屏;本实施例控制器实际电路如图3所示;
上位机显示屏:接收控制器传递过来的待加热动力电池组温度信号、电压信号、电流信号以曲线的形式以显示在显示屏上,接收控制器传递过来的最低温度阈值、外部短路持续时间和控制信号,以数字的方式显示在显示屏上;
本实施例中,电池组放置于-20℃环境温度下进行低温加热,采用6块18650型NMC锂离子动力电池组成电池组,电池厂商提供的电池数据参数如表1所示。在动力电池组的近端,设置有一个可远程控制的短路继电器,继电器连接电池组的正极与负极,且受控于电池管理系统,在正常状态下继电器处于断开状态,电池管理系统通过温度采集电路、电压采集电路和电流采集电路实时监测动力电池组状态,电池管理系统主控芯片采用飞思卡尔MC9S12DP512单片机,配有CAN总线通讯与上位显示界面来记录实验数据,控制器的电路原理图如附图3所示,图3(a)为控制器芯片引脚图,图3(b)为控制器芯片57~84引脚连接电路图,图3(c)控制器芯片29~56引脚连接电路图,为图3(d)为控制器芯片1~28引脚连接电路图;
表1电池手册中的部分关键参数
首先确定最低温度阈值T
σ和外部短路持续时间X
E;
(a)所采用的锂离子电池工作温度范围为0℃~45℃,当电池低于0℃时,电池性能和容量会明显衰退,因此将最低温度阈值设置为:T
σ=0℃
(b)外部短路持续时间X
E则是根据实验获取,电池短路在一定时间内是安全的,但是持续时间一旦达到某一长度,就会损坏电池在实验室环境下,在荷电状态为20%,50%,和80%三种情况下分别对电池进行瞬时外部短路实验,三块电池编号为电池1,电池2,和电池3;短路持续时间设置为10s,在短路之前与短路之后,分别测试电池的容量并进行对比,然而按10s间隔逐级增加短路持续时间,测试结果如表2所示;从结果中可以看出,分别在X
E_limit(20%)=130秒,X
E_limit(50%)=90秒,和X
E_limit(80%)=60秒之后,电池容量急剧衰退至几乎无法充电,因此设置短路持续时间阈值为所有实验结果中的最小值,在本实施例中取速率系数ρ为0.5,因此持续时间设置为:
X
E=ρmin{X
E_limit(20%),X
E_limit(50%),X
E_limit(80%)}=0.5×60=30(秒)
表2瞬时短路后的容量测试结果
注:速率系数ρ的取值可在0~1之间任意选取,当ρ越接近于0时,系统越安全,但是低温加热速度越慢,当ρ越接近于1时,低温加热速度越快,但是电池存在安全隐患。
一种基于瞬时外部短路的动力电池低温自加热方法,采用一种基于瞬时外部短路的动力电池低温自加热系统实现,如图1所示,具体步骤如下:
步骤1:启动基于瞬时外部短路的动力电池低温自加热系统,在控制器中,预设定最低温度阈值T
σ=0℃和外部短路持续时间30秒;
步骤2:电池管理系统中温度采集电路在线实时监测待加热动力电池组温度信号,此时环境温度为-20℃,但是由于电池箱存在一定的保温效果,电池温度略高于环境温度,测得电池温度T
Batt=-18℃;
步骤3:对比待加热动力电池组温度信号是否低于最低温度阈值T
σ=0℃;如果不低于最低温度阈值T
σ=0℃,则待加热动力电池组不需要加热;如果低于最低温度阈值T
σ=0℃,则切断待加热动力电池组向外供电的主回路,发送闭合控制信号给继电器,使继电器闭合,待加热动力电池组发生外部短路,利用外部短路引起的短路电流产生热量对待加热动力电池组进行加热,使待加热动力电池组温度上升,转到步骤4;
步骤4:电池管理系统中控制器开始记录外部短路时间,如果外部短路时间小于预设定的外部短路持续时间30s时,继续记录外部短路时间,直到外部短路时间大于等于预设定的 外部短路持续时间30s时,发送断开控制信号,时继电器断开,停止加热过程,静止20秒时间,重新测量待加热动力电池组温度,转到步骤5;
步骤5:重新判断待加热动力电池组温度信号是否低于最低温度阈值,如果待加热动力电池组温度信号仍然低于最低温度阈值,转到步骤3,重新进行加热过程,如果待加热动力电池组温度信号大于等于最低温度阈值,基于瞬时外部短路的动力电池低温自加热系统结束加热过程,接通待加热动力电池组向外供电的主回路。
监测电池温度变化结果,在短路后的45秒时电池温度已由原来的-18℃上升到了10℃,此时电池温度已高于最低温度阈值,电池处于正常温度范围,短路继电器保持断开状态,低温加热过程结束,如图7为本发明实施例的锂离子电池在-20℃环境下的低温加热效果图,其中,图7(a)为温度变化曲线,图7(b)为电流变化曲线。
所述外部短路持续时间获取过程如下:
进一步地,步骤1中的短路持续时间X
E,其特征包括:该值的确定方法为:对动力电池在不同荷电状态情况下进行瞬时外部短路试验,从短路时间为10s开始实验,在实验前后对电池进行容量测试,验证瞬时外部短路对电池是否带来了损伤,并按10s为间隔逐步延长短路持续时间,当外部短路持续时间较长时,会对电池带来不可逆的损伤,直至电池,即容量发生明显衰退,记录此时的短路持续时间为临界持续时间X
E_Limit,只要外部短路持续时间短于此长度,电池在外部短路过程中就是安全的。该阈值并非一个固定值,而是一个与电池荷电状态变化的曲线,在得到了临界时间阈值X
E_Limit之后,设置一个速率系数ρ,速率系数ρ的取值可在0~1之间任意选取,当ρ越接近于0时,低温加热速度越慢,当ρ越接近于1时,低温加热速度越快,于是得到外部短路持续时间X
E为:
X
E=ρmin{X
E_limit(z)}
其中,z表示电池荷电状态;
进一步地,步骤3中所述的短路继电器,其特征包括:为一个电磁继电器,用来触发外部短路,该继电器布置在动力电池组的近端,如附图2所示,继电器的两端分别连接动力电池组的正极与负极,继电器的闭合与断开受控于电池管理系统,当电磁继电器闭合时,触发电池组发生外部短路。
在电池发生短路的瞬时过程中,电池内部产热量Q为:
其中,Q
E为副反应放热量,U
oc为电池开路电压,U
t为电池端电压,I
Batt为电池电流,T
air为环境温度。
所述待加热动力电池组温度上升,上升的温度△T可用下式进行估算:
Claims (5)
- 一种基于瞬时外部短路的动力电池低温自加热系统,其特征在于,包括:继电器、电池管理系统;继电器两端分别与待加热动力电池组正负极相连接,待加热动力电池组与电池管理系统相连接,电池管理系统与继电器相连接;继电器,为远程控制继电器,受控于电池管理系统,为待加热动力电池组提供外部短路环境,正常状态下处于断开状态,待加热动力电池组需要外部短路环境时,继电器为闭合状态;电池管理系统,控制待加热动力电池组启动加热或者停止加热。
- 根据权利要求1所述一种基于瞬时外部短路的动力电池低温自加热系统,其特征在于,所述电池管理系统包括:信号采集电路、供电电源、控制器、上位机显示屏;所述信号采集电路包括:温度采集电路、电压采集电路和电流采集电路;待加热动力电池组分别与温度采集电路、电压采集电路、电流采集电路相连接,温度采集电路、电压采集电路、电流采集电路分别与控制器相连接,控制器与继电器相连接,控制器通过CAN总线与上位机显示屏相连接,供电电源分别与采集电路和控制器相连接;温度采集电路:采集待加热动力电池组温度信号,并传递给控制器;电压采集电路:采集待加热动力电池组电压信号,并传递给控制器;电流采集电路:采集待加热动力电池组电流信号,并传递给控制器;供电电源:为信号采集电路及控制器提供电源;控制器:基于传递过来的待加热动力电池组温度信号、电压信号、电流信号,结合预确定的最低温度阈值和外部短路持续时间,经过预设定的控制逻辑计算出控制信号,将该控制信号传递给继电器,使继电器按照控制器给的控制信号进行闭合或者断开;并将待加热动力电池组温度信号、电压信号、电流信号、最低温度阈值、外部短路持续时间和控制信号,通过CAN总线传递给上位机显示屏;上位机显示屏:接收控制器传递过来的待加热动力电池组温度信号、电压信号、电流信号以曲线的形式以显示在显示屏上,接收控制器传递过来的最低温度阈值、外部短路持续时间和控制信号,以数字的方式显示在显示屏上。
- 一种基于瞬时外部短路的动力电池低温自加热方法,采用权利要求1所述的基于瞬时外部短路的动力电池低温自加热系统实现,其特征在于,具体步骤如下:步骤1:启动基于瞬时外部短路的动力电池低温自加热系统,在控制器中,预设定最低温度阈值和外部短路持续时间;步骤2:电池管理系统中温度采集电路在线实时监测待加热动力电池组温度信号;步骤3:对比待加热动力电池组温度是否低于最低温度阈值;如果不低于最低温度阈值,则待加热动力电池组不需要加热;如果低于最低温度阈值,则切断待加热动力电池组向外供电的主回路,发送闭合控制信号给继电器,使继电器闭合,待加热动力电池组发生外部短路,利用外部短路引起的短路电流产生热量对待加热动力电池组进行加热,使待加热动力电池组温度上升,转到步骤4;步骤4:电池管理系统中控制器开始记录外部短路时间,如果外部短路时间小于预设定的外部短路持续时间时,继续记录外部短路时间,直到外部短路时间大于等于预设定的外部短路持续时间时,发送断开控制信号,时继电器断开,停止加热过程,静止t时间,重新测量待加热动力电池组温度,转到步骤5;步骤5:重新判断待加热动力电池组温度是否低于最低温度阈值,如果待加热动力电池组温度信号仍然低于最低温度阈值,转到步骤3,重新进行加热过程,如果待加热动力电池组温度信号大于等于最低温度阈值,基于瞬时外部短路的动力电池低温自加热系统结束加热过程,接通待加热动力电池组向外供电的主回路。
- 根据权利要求3所述基于瞬时外部短路的动力电池低温自加热方法,其特征在于,所述外部短路持续时间获取过程如下:对待加热动力电池组在不同荷电状态情况下进行离线瞬时外部短路试验,从短路时间为Δt开始实验,并按Δt为间隔逐步延长短路持续时间,检测待加热动力电池组容量,当容量发生衰退时,记录此时的短路持续时间为临界持续时间X E_Limit,设置一个速率系数ρ,速率系数ρ的取值可在0~1之间任意选取,得到外部短路持续时间X E为:X E=ρmin{X E_limit(z)}其中,z表示电池荷电状态。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910176353.X | 2019-03-08 | ||
CN201910176353.XA CN109921146B (zh) | 2019-03-08 | 2019-03-08 | 一种基于瞬时外部短路的动力电池低温自加热系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020181576A1 true WO2020181576A1 (zh) | 2020-09-17 |
Family
ID=66963952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/079152 WO2020181576A1 (zh) | 2019-03-08 | 2019-03-22 | 一种基于瞬时外部短路的动力电池低温自加热系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109921146B (zh) |
WO (1) | WO2020181576A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112636308A (zh) * | 2020-12-10 | 2021-04-09 | 广州极飞科技有限公司 | 电池短路保护方法、装置、系统、电池和存储介质 |
CN112848863A (zh) * | 2021-03-08 | 2021-05-28 | 西南石油大学 | 一种可控震源电驱动力系统总成 |
CN112946491A (zh) * | 2021-01-22 | 2021-06-11 | 合肥国轩高科动力能源有限公司 | 一种三元锂离子电池安全性的测试装置及其方法 |
CN114335864A (zh) * | 2020-09-30 | 2022-04-12 | 比亚迪股份有限公司 | 电池包结构、电池包主动加热方法及汽车 |
CN114388938A (zh) * | 2020-10-21 | 2022-04-22 | 航天科工惯性技术有限公司 | 一种储能电池温度控制系统 |
CN114954138A (zh) * | 2021-08-16 | 2022-08-30 | 长城汽车股份有限公司 | 一种电池包主动保温的远程控制方法、装置及车辆 |
CN115377552A (zh) * | 2022-04-24 | 2022-11-22 | 宁德时代新能源科技股份有限公司 | 一种动力电池自加热控制方法、系统、存储介质及电子设备 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111048856B (zh) * | 2019-12-17 | 2021-06-01 | 北京理工大学 | 一种动力电池极速自加热方法和装置 |
CN112731984B (zh) * | 2020-12-23 | 2022-02-22 | 恒大新能源汽车投资控股集团有限公司 | 动力电池温度调节方法、存储介质和系统 |
CN113225850A (zh) * | 2021-05-06 | 2021-08-06 | 阳光电源股份有限公司 | 一种加热控制电路及光伏系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013013170A1 (de) * | 2013-08-08 | 2014-07-24 | Daimler Ag | Batterie mit Temperiereinrichtung und Verfahren zum Temperieren einer Batterie |
CN104638318A (zh) * | 2014-11-28 | 2015-05-20 | 富奥汽车零部件股份有限公司 | 一种电动车动力电池组低温快速加热方法及系统 |
CN105977580A (zh) * | 2016-07-05 | 2016-09-28 | 河南森源重工有限公司 | 一种锂离子电池短路加热系统 |
CN205960162U (zh) * | 2016-07-05 | 2017-02-15 | 河南森源重工有限公司 | 一种锂离子电池短路加热系统 |
CN207069028U (zh) * | 2017-07-14 | 2018-03-02 | 武汉纽赛儿科技股份有限公司 | 一种适用于低温工况下的锂电池系统 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101931112B (zh) * | 2009-06-18 | 2013-12-04 | 比亚迪股份有限公司 | 用于控制电池加热的方法和装置 |
CN102055042B (zh) * | 2009-10-29 | 2013-10-02 | 比亚迪股份有限公司 | 一种车辆用电池加热控制系统及其控制方法 |
CN103419614B (zh) * | 2012-05-22 | 2016-09-07 | 比亚迪股份有限公司 | 混合动力汽车、混合动力汽车的动力系统及电池加热方法 |
KR20140011445A (ko) * | 2012-07-16 | 2014-01-28 | 현대모비스 주식회사 | 자동차 시동용 배터리의 온도 제어 시스템 및 방법 |
CN105514527B (zh) * | 2016-02-03 | 2018-10-30 | 重庆新御成科技有限公司 | 一种磷酸铁锂电池加热装置、蓄电池及车辆 |
CN105954685A (zh) * | 2016-05-30 | 2016-09-21 | 东北大学 | 带有远程控制功能的电动汽车电池短路试验台及方法 |
JP6673056B2 (ja) * | 2016-06-29 | 2020-03-25 | トヨタ自動車株式会社 | 硫化物固体電池 |
CN106785233B (zh) * | 2016-12-27 | 2019-04-02 | 宁德时代新能源科技股份有限公司 | 电池结构的加热控制方法、加热控制装置以及电池系统 |
CN106960990A (zh) * | 2017-04-26 | 2017-07-18 | 北京新能源汽车股份有限公司 | 电池单体、电池包及具有其的车辆 |
CN207967253U (zh) * | 2017-11-27 | 2018-10-12 | 河南森源重工有限公司 | 电池组低温加热装置、电池模块及车辆 |
CN108336454A (zh) * | 2018-03-27 | 2018-07-27 | 江苏塔菲尔新能源科技股份有限公司 | 具备自加热功能的固态电池 |
-
2019
- 2019-03-08 CN CN201910176353.XA patent/CN109921146B/zh not_active Expired - Fee Related
- 2019-03-22 WO PCT/CN2019/079152 patent/WO2020181576A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013013170A1 (de) * | 2013-08-08 | 2014-07-24 | Daimler Ag | Batterie mit Temperiereinrichtung und Verfahren zum Temperieren einer Batterie |
CN104638318A (zh) * | 2014-11-28 | 2015-05-20 | 富奥汽车零部件股份有限公司 | 一种电动车动力电池组低温快速加热方法及系统 |
CN105977580A (zh) * | 2016-07-05 | 2016-09-28 | 河南森源重工有限公司 | 一种锂离子电池短路加热系统 |
CN205960162U (zh) * | 2016-07-05 | 2017-02-15 | 河南森源重工有限公司 | 一种锂离子电池短路加热系统 |
CN207069028U (zh) * | 2017-07-14 | 2018-03-02 | 武汉纽赛儿科技股份有限公司 | 一种适用于低温工况下的锂电池系统 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114335864A (zh) * | 2020-09-30 | 2022-04-12 | 比亚迪股份有限公司 | 电池包结构、电池包主动加热方法及汽车 |
CN114388938A (zh) * | 2020-10-21 | 2022-04-22 | 航天科工惯性技术有限公司 | 一种储能电池温度控制系统 |
CN114388938B (zh) * | 2020-10-21 | 2023-10-17 | 航天科工惯性技术有限公司 | 一种储能电池温度控制系统 |
CN112636308A (zh) * | 2020-12-10 | 2021-04-09 | 广州极飞科技有限公司 | 电池短路保护方法、装置、系统、电池和存储介质 |
CN112946491A (zh) * | 2021-01-22 | 2021-06-11 | 合肥国轩高科动力能源有限公司 | 一种三元锂离子电池安全性的测试装置及其方法 |
CN112848863A (zh) * | 2021-03-08 | 2021-05-28 | 西南石油大学 | 一种可控震源电驱动力系统总成 |
CN114954138A (zh) * | 2021-08-16 | 2022-08-30 | 长城汽车股份有限公司 | 一种电池包主动保温的远程控制方法、装置及车辆 |
CN115377552A (zh) * | 2022-04-24 | 2022-11-22 | 宁德时代新能源科技股份有限公司 | 一种动力电池自加热控制方法、系统、存储介质及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN109921146B (zh) | 2021-10-15 |
CN109921146A (zh) | 2019-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020181576A1 (zh) | 一种基于瞬时外部短路的动力电池低温自加热系统及方法 | |
CN109841926B (zh) | 一种动力电池低温快速自加热方法和装置 | |
CN109755987B (zh) | 电池充电方法、电池充电器以及充电组合 | |
CN204857867U (zh) | 一种在低温环境下使用的锂离子电池 | |
CN108777339B (zh) | 一种锂离子电池脉冲放电自加热方法及装置 | |
JP5552532B2 (ja) | 電池加熱を制御する方法および装置 | |
CN105514527B (zh) | 一种磷酸铁锂电池加热装置、蓄电池及车辆 | |
CN105870542A (zh) | 一种动力电池低温充电加热系统 | |
TW201121189A (en) | Safety and performance optimized controls for large scale electric vehicle battery systems | |
CN211700508U (zh) | 电池加热电路及电动汽车 | |
CN103682525A (zh) | 一种在充电模式下对电池加热控制的方法 | |
CN110212261A (zh) | 一种电池充电加热系统及电池充电加热方法 | |
CN115020874A (zh) | 一种动力电池热管理控制方法 | |
CN111063949A (zh) | 一种锂离子电池长寿命充电方法 | |
CN111200174B (zh) | 一种车辆及其锂离子电池启动电源系统 | |
CN201112465Y (zh) | 带温度和电压保护的铅酸蓄电池 | |
CN205407294U (zh) | 一种电池充放电保护系统、电池模组和汽车 | |
WO2021051317A1 (zh) | 一种电池及可移动平台 | |
CN208127359U (zh) | 电池加热回路防粘连检测保护电路和系统 | |
CN110635183A (zh) | 一种动力电池系统及低温充电优化加热策略的充电方法 | |
CN201877852U (zh) | 新能源汽车动力电池的充电加热管理系统 | |
CN107331906B (zh) | 一种锂电池高温防护结构及锂电池 | |
CN108429331A (zh) | 备用电源装置及变桨控制装置 | |
CN210576303U (zh) | 锂电池低温充放电保护装置 | |
CN113067043A (zh) | 一种适用于电池在低温休眠时的远程唤醒方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19918815 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19918815 Country of ref document: EP Kind code of ref document: A1 |