WO2020181556A1 - 一种平板液晶天线及其制作方法 - Google Patents
一种平板液晶天线及其制作方法 Download PDFInfo
- Publication number
- WO2020181556A1 WO2020181556A1 PCT/CN2019/078172 CN2019078172W WO2020181556A1 WO 2020181556 A1 WO2020181556 A1 WO 2020181556A1 CN 2019078172 W CN2019078172 W CN 2019078172W WO 2020181556 A1 WO2020181556 A1 WO 2020181556A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal film
- film layer
- substrate
- liquid crystal
- patterned
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/34—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
- H01Q3/36—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/18—Phase-shifters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P11/00—Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/06—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
- H05K3/061—Etching masks
- H05K3/064—Photoresists
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0237—High frequency adaptations
- H05K1/024—Dielectric details, e.g. changing the dielectric material around a transmission line
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0237—High frequency adaptations
- H05K1/0248—Skew reduction or using delay lines
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0141—Liquid crystal polymer [LCP]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0183—Dielectric layers
- H05K2201/0195—Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10098—Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/15—Position of the PCB during processing
- H05K2203/1572—Processing both sides of a PCB by the same process; Providing a similar arrangement of components on both sides; Making interlayer connections from two sides
Definitions
- the present invention relates to the technical field of wireless communication, in particular to a flat panel liquid crystal antenna and a manufacturing method thereof.
- Antennas as the core equipment for sending and receiving communication information, have become a key factor affecting the performance indicators of information networks and user application effects.
- phased array antenna has this performance index, but it is based on the application background of the national defense field and the chip manufacturing process. Its expensive production cost and high power consumption make it impossible for consumers in the consumer market to afford it, thus creating an obstacle to the popularization of consumer products. .
- the traditional mechanical rotating parabolic antenna has the problems of large volume, heavy weight, easy damage to mechanical rotation, and high cost, and it is difficult to meet the needs of new applications such as vehicle/aircraft.
- the demand for small, low-profile, electrically adjustable, and low-cost flat antennas in the market is imminent.
- the present invention provides a method for manufacturing a flat panel liquid crystal antenna.
- the manufacturing method includes the following steps:
- first substrate with a double-sided metal film layer, the first substrate having a first metal film layer with a planar structure and a third metal film layer with a planar structure on both sides of the first substrate;
- one side of the second substrate has a second metal film layer with a planar structure; patterning the second metal film layer with a planar structure to obtain a patterned second metal film layer;
- the first substrate and the second substrate are aligned to form a liquid crystal cell, and a liquid crystal layer is prepared.
- the method for simultaneously patterning the double-sided metal of the first substrate includes the following steps:
- Glue coating coating photoresist on the metal film layer on the first surface and the second surface of the first substrate;
- Exposure Use a pre-made electrode pattern mask to selectively expose the photoresist on the first surface and the second surface of the first substrate;
- the photoresist on the first surface and the second surface of the first substrate are developed at the same time, so that the photoresist in the exposed part is chemically dissolved in the developing solution, and the photoresist in the unexposed part is retained;
- Etching etch the metal film on the first surface and the second surface of the first substrate at the same time, use an etching solution to etch away the metal film that is not covered by photoresist to obtain the pattern of the first metal film And the pattern of the third metal film layer.
- the method for simultaneously patterning the double-sided metal further includes the following steps:
- Stripping Rinse the remaining photoresist on the first surface and the second surface of the first substrate to obtain a patterned first metal film layer and a patterned third metal film layer.
- the glue coating is to coat photoresist on the metal film layers on the first surface and the second surface of the first substrate respectively.
- the exposure is to simultaneously selectively expose the photoresist on the first surface and the second surface of the first substrate.
- the exposure is to separately expose the photoresist on the first surface and the second surface of the first substrate.
- the method for manufacturing the flat panel liquid crystal antenna further includes:
- a first alignment layer is prepared on the patterned first metal film layer, and a second alignment layer is prepared on the patterned second metal film layer.
- the present invention also provides a flat panel liquid crystal antenna.
- the flat panel liquid crystal antenna includes a first substrate and a second substrate disposed oppositely, and a liquid crystal layer located between the first substrate and the second substrate;
- a patterned first metal film layer is provided on the first surface of the first substrate facing the second substrate; a patterned third metal film is provided on the second surface of the first substrate facing away from the second substrate Layer; on the second substrate facing the first substrate is provided with a patterned second metal film layer;
- the flat panel liquid crystal antenna is manufactured by the above-mentioned manufacturing method.
- the patterned first metal film layer includes a first electrode
- the patterned third metal film layer includes an antenna radiation unit
- the patterned second metal film layer includes a second electrode
- the materials of the first metal film layer and the third metal film layer are the same.
- the first substrate is a glass substrate
- the material of the first metal film layer and the third metal film layer is copper
- the thickness of the first metal film layer is not less than 2.0 ⁇ m.
- the ratio of the thickness of the first metal film layer to the thickness of the third metal film layer is between 0.8 and 1.2.
- the present invention has the following beneficial effects:
- this application makes it possible to pattern double-sided metals at the same time, eliminating most of the low-efficiency yellowing process steps in the process, and saving time for busy waiting, switching models and adjusting machines.
- the flat liquid crystal antenna can not only be manufactured on a large scale, but also improve the manufacturing efficiency and reduce the manufacturing cost.
- FIG. 1 is a schematic structural diagram of a flat panel liquid crystal antenna provided by Embodiment 1 of the present invention.
- FIG. 2 is a flowchart of a method for manufacturing a flat panel liquid crystal antenna according to Embodiment 2 of the present invention
- FIG. 3 is a flowchart of a manufacturing method for simultaneously patterning the double-sided metal of the first substrate according to the second embodiment of the present invention.
- the flat panel liquid crystal antenna includes a first substrate 11 and a second substrate 12 opposite to each other, and also includes a liquid crystal layer 30 between the first substrate 11 and the second substrate 12.
- the first substrate 11 and the second substrate 12 are made of materials with better stability and insulation effect and extremely low dielectric loss.
- the first substrate 11 and the second substrate 12 are rigid substrates, which may be glass-based Materials, fused silica, ceramic substrates and ceramic thermoset polymer composites.
- a first metal film layer 21 is provided on the first surface of the first substrate 11 facing the second substrate 12.
- the first metal film layer 21 is a patterned first metal film layer.
- the patterned first metal film layer 21 includes a first electrode.
- a patterned third metal film layer 23 is provided on the second surface of the first substrate 11 away from the second substrate 12. Specifically, the third metal film layer 23 is a patterned third metal film layer.
- the third metal film layer 23 includes an antenna radiation unit.
- the antenna radiation unit is used to radiate microwave signals to realize the feeding and feeding of microwave signals.
- a patterned second metal film layer 22 is provided on the second substrate 12 toward the first substrate 11 side.
- the second metal film layer 22 is a patterned second metal film layer.
- the second metal film layer 22 includes a second electrode.
- the metal pattern of the patterned metal film layer is obtained by first fabricating the metal film layer on the corresponding substrate, and then patterning the metal film layer.
- the metal film layer is produced on the corresponding substrate, and the metal film can be coated on the substrate by plating, and a metal film layer with a planar structure is formed on the surface of the substrate. Because the coating makes the entire surface of the substrate covered with a metal film, its structure is similar to a plane, so it is called a metal film with a planar structure here.
- the patterning process generally includes etching. During etching, an etching solution is used to etch away the metal that is not covered by photoresist, so as to obtain a metal electrode pattern.
- the patterned first metal film layer and the patterned third metal film layer are obtained by simultaneously patterning the first metal film layer and the third metal film layer of the first substrate.
- one of the first metal film layer 21 and the third metal film layer 23 is etched first, and then the other one is etched, which will easily cause damage to the completed layer during subsequent etching. Etched metal pattern. If in the subsequent etching, the protection of the metal pattern that has been previously etched is increased, but this obviously leads to a drop in efficiency.
- this application makes it possible to pattern the double-sided metal at the same time, and can produce two-sided patterns at one time, so that the flat panel liquid crystal antenna can not only be manufactured on a large scale, but also improve the manufacturing efficiency and reduce the manufacturing cost. It saves most of the low-efficiency yellow light process steps, and saves time for busy waiting, switching models and adjusting machines.
- the materials of the first metal film layer 21 and the third metal film layer 23 may be different, but in this embodiment, the first metal film layer 21 and the third metal film layer 23 are set to the same material .
- the etching process needs to etch away the metal film layer that is not covered by photoresist.
- the etching liquid is generally set according to different metal materials and the thickness of the metal film layer. And the specific parameters of the etching process.
- the materials of the first metal film layer 21 and the third metal film layer 23 are not the same, this will result in different etching solutions and different specific parameters of the etching process, which makes it difficult to perform simultaneous etching.
- first metal film layer 21 and the third metal film layer 23 By arranging the first metal film layer 21 and the third metal film layer 23 to be the same material, it is beneficial to pattern the first metal film layer 21 and the third metal film layer 23 of the planar structure at the same time. More specifically, it is beneficial for simultaneous etching in the later process.
- the thickness of the first metal film layer 21 and the thickness of the third metal film layer 23 is approximately equal.
- the ratio of the thickness of the first metal film layer 21 to the thickness of the third metal film layer 23 is between 0.8 and 1.2.
- a more preferred solution is that the thickness of the first metal film layer 21 and the thickness of the third metal film layer 23 are the same.
- the patterning process generally includes etching. During etching, an etching solution is used to etch away the metal that is not covered by photoresist, so as to obtain a metal electrode pattern.
- the process of simultaneously patterning the first metal film layer 21 and the third metal film layer 23 with a planar structure can be made even better. It is simple to prevent one of the first metal film layer 21 and the third metal film layer 23 from being over-etched or under-etched.
- the first substrate 11 is preferably a glass substrate.
- the first metal film layer 21 and the second metal film layer 22 are selected from metal materials with high electrical conductivity and magnetic permeability, and aluminum can be used. , Copper, silver, gold, cadmium, chromium, molybdenum, niobium, nickel, iron and other metals, preferably silver, copper, gold, aluminum and alloys thereof.
- the metal material of the third metal film layer 23 is silver, copper, gold, aluminum, or an alloy thereof.
- the material of the first metal film layer 21 and the third metal film layer 23 is copper. It can be understood that the material of the second metal film layer 22 is also preferably copper.
- alternating current has a skin effect
- the skin effect indirectly increases the resistance of the conductor, and its energy and heat loss also increase.
- the high frequency band such as microwave
- the skin effect is very obvious. Different metal materials have different skin depths.
- Skin effect When there is an alternating current or alternating electromagnetic field in a conductor, the current distribution inside the conductor is uneven, and the current is concentrated on the outer skin part of the conductor. The closer to the surface of the conductor, the greater the current density, and the current inside the conductor is actually very small. As a result, the resistance of the conductor increases and its power loss also increases. This phenomenon is the skin effect (skin effect).
- the skin depth ⁇ is given by:
- ⁇ represents the permeability of the metal material
- ⁇ is the conductivity of the conductor
- f represents the frequency of the signal carried by the flat panel liquid crystal antenna.
- the metal material of the first metal film layer 21 is preferably a copper material. According to the skin effect, the thickness of the metal film layer is ⁇ m, which can better ensure the performance of the flat panel liquid crystal antenna. Preferably, the thickness of the metal film layer is not less than 2.0 ⁇ m. Therefore, the thickness of the first metal film layer 21 is not less than 2.0 ⁇ m.
- sealant 40 between the first substrate 11 and the second substrate 12.
- the sealant 40 is located at the edges of the first substrate 11 and the second substrate 12 and is used to seal the liquid crystal layer 30.
- supports are distributed in the liquid crystal layer 30.
- the flat panel liquid crystal antenna further includes a first alignment layer and a second alignment layer respectively arranged on both sides of the liquid crystal layer 30.
- a first alignment layer is prepared on the patterned first metal film layer 21 of the first substrate 11, and a second alignment layer is prepared on the patterned second metal film layer 22 of the second substrate 12.
- the alignment layer is used to define the initial deflection angle of the crystal molecules of the liquid crystal layer 30.
- the first substrate 11, the second substrate 12, the liquid crystal layer 30, the first conductive layer, and the second conductive layer constitute a liquid crystal phase shifter.
- the antenna radiation unit is arranged on a side of the first substrate 11 away from the second substrate 12.
- the antenna radiating unit may be rectangular, circular, or square in shape.
- the antenna radiating unit attaches the patch to the liquid crystal phase shifter through a patch process.
- a more preferable solution is that the antenna radiation unit is obtained by patterning the third metal film layer 23 provided on the side of the first substrate 11 away from the second substrate 12.
- the second electrode includes a microstrip line.
- the shape of the microstrip line may be serpentine or spiral, and the shape of the microstrip line is not limited, as long as it can realize the transmission of microwave signals.
- the first electrode is a ground electrode. By applying a voltage between the microstrip line and the ground electrode, the dielectric constant of the liquid crystal can be changed.
- the liquid crystal molecules are arranged in a preset direction under the action of the first alignment layer and the second alignment layer.
- the electric field drives the deflection of the direction of the liquid crystal molecules in the liquid crystal layer 30.
- the microwave signal is transmitted between the microstrip line and the ground electrode.
- the phase will be changed due to the deflection of the liquid crystal molecules, thereby realizing the phase shift function of the microwave signal.
- the deflection angle of the liquid crystal in the liquid crystal layer 30 can be controlled, and the phase adjusted during the phase shifting process can be controlled.
- the present invention has the following beneficial effects:
- this application makes it possible to pattern the double-sided metal at the same time, and can produce two-sided patterns at one time, so that the flat panel liquid crystal antenna can not only be manufactured on a large scale, but also improve the manufacturing efficiency and reduce the manufacturing cost. It saves most of the low-efficiency yellow light process steps, and saves time for busy waiting, switching models and adjusting machines.
- the patterning process is made simpler, and it is avoided that one of the first metal film layer and the third metal film layer is over-etched or under-etched.
- This specific embodiment provides a method for manufacturing a flat panel liquid crystal antenna, which is used to manufacture the flat panel liquid crystal antenna described in Example 1.
- the manufacturing method includes the following steps:
- S1 Provide a first substrate 11 with a double-sided metal film layer, and both sides of the first substrate 11 have a first metal film layer 21 with a planar structure and a third metal film layer 23 with a planar structure respectively;
- S3 Provide a second substrate 12, and one side of the second substrate 12 has a second metal film layer 22 with a planar structure;
- S4 Perform a patterning process on the second metal film layer 22 with a planar structure to obtain a patterned second metal film layer 22.
- step S2 and step S4 can be adjusted.
- step S2 includes the following steps:
- one of the first metal film layer 21 and the third metal film layer 23 is etched first, and then the other one is etched, which will easily cause damage to the front when etching later.
- the metal pattern that has been etched If in the subsequent etching, the protection of the metal pattern that has been previously etched is increased, but this obviously leads to a drop in efficiency.
- the materials of the first metal film layer 21 and the third metal film layer 23 may be different, but in this embodiment, the materials of the first metal film layer 21 and the third metal film layer 23 are the same, preferably For copper. In addition, the thickness of the first metal film layer 21 and the thickness of the third metal film layer 23 are approximately the same.
- step S2 when the metal film layer is patterned, the etching process needs to etch away the metal film layer that is not covered by photoresist.
- the specific etching process it is generally based on different metal materials and the thickness of the metal film layer. To set the specific parameters of the etching process.
- the materials of the first metal film layer 21 and the third metal film layer 23 are not the same when the etching is performed at the same time, or the material is the same but the thickness of the film layer is different, this will cause the first metal film layer 21 and the third One of the metal film layers 23 has been etched, and the other one has not been etched yet.
- the first metal film layer 21 and the third metal film layer 23 are made of the same material, and the thickness is approximately the same, which is beneficial to the later stage of the planar structure of the first metal film layer 21 and the third metal film layer 23.
- the patterning process is performed, and more specifically, it is beneficial to simultaneously perform etching in the later process.
- the thicknesses are roughly equivalent. Specifically, the ratio of the thickness of the first metal film layer 21 to the thickness of the third metal film layer 23 is between 0.8 and 1.2. A more preferred solution is that the thickness of the first metal film layer 21 and the thickness of the third metal film layer 23 are the same.
- the patterning process is simpler and avoids any of the first metal film layer 21 and the third metal film layer 23 One is over-etched or under-etched.
- photoresist may be coated on the entire surface of the metal film layer on the first surface or the metal film layer on the second surface.
- Photoresist is an exposure medium for etching patterns in subsequent processes. After coating the photoresist, it is pre-cured. Then apply photoresist on the entire surface of another metal film layer, and then pre-curing. Pre-curing is generally to bake the substrate coated with photoresist, so that the solvent of the photoresist is volatilized and the adhesion between the photoresist and the surface of the substrate is increased.
- the above exposure steps can simultaneously expose the photoresist on the first surface and the second surface of the first substrate 11, or expose the photoresist on the first surface and the second surface of the first substrate 11 in order.
- a mask is used to expose the photoresist, so that the photoresist forms a photoresist unreserved area and a photoresist reserved area.
- the photoresist reserved area on the first metal film layer 21 corresponds to the pattern of the first electrode
- the area where the photoresist is not reserved corresponds to the area outside the above pattern.
- ultraviolet light UV
- UV ultraviolet light
- the developed substrate is then baked at a high temperature to make the photoresist stronger.
- the metal film layer not covered by the photoresist is etched away, and the metal film layer covered by the photoresist pattern is protected by the photoresist, forming a metal pattern structure.
- the pattern of the first conductive layer is formed on the first metal film layer 21, and the pattern of the antenna radiation unit is formed on the third metal film layer 23.
- step S2 the method of simultaneously patterning the double-sided metal, after etching, further includes the following steps:
- first surface and the second surface of the first substrate 11 may be stripped off separately.
- first surface and the second surface of the first substrate 11 may be released simultaneously.
- the specific method for patterning the second metal film layer 22 can be performed with reference to the patterning process method for the first metal film layer 21 above.
- the manufacturing method of the flat panel liquid crystal antenna also includes:
- the orientation layer can be made by the PI rubbing process in the prior art to form orientation grooves on the surface, which will not be repeated here.
- the first substrate 11 and the second substrate 12 may be joined together to form a liquid crystal cell, and then the liquid crystal layer 30 may be filled in the liquid crystal cell.
- a sealant 40 is also made on one of the substrates. The sealant 40 forms an accommodation space between the first substrate 11 and the second substrate 12 for accommodating liquid crystal. After the liquid crystal layer 30 is filled in the liquid crystal cell, the liquid crystal cell is sealed, and the sealant 40 is cured.
- the sequence of joining to form a liquid crystal cell and preparing the liquid crystal layer 30 is not limited to the above. It can also be: after coating the sealant 40 on one of the substrates, dripping liquid crystal on the substrate to form The liquid crystal layer 30 is combined with the first substrate 11 and the second substrate 12 to form a liquid crystal cell, and the sealant 40 is cured.
- the present invention has the following beneficial effects:
- the flat liquid crystal antenna can not only be manufactured on a large scale, but also improve the manufacturing efficiency and reduce the manufacturing cost.
- the first metal film layer and the third metal film layer are etched separately, which may easily cause damage to the metal pattern that has been etched before the previous etching during the post-etching; and to avoid damage to the previous etching Etching the completed metal pattern obviously causes a drop in efficiency.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Nonlinear Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Liquid Crystal (AREA)
- Details Of Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
一种平板液晶天线的制作方法,方法如下:提供第一基板(11),第一基板(11)的两侧分别为第一金属膜层(21)和第三金属膜层(23);对双面金属膜层同时进行图案化处理,得到图案化第一金属膜层(21)和图案化第三金属膜层(23);提供第二基板(12),第二基板(12)一侧具有第二金属膜层(22);对第二金属膜层(22)进行图案化处理,得到图案化第二金属膜层(22);将第一基板(11)和第二基板(12)对合形成液晶盒,并制备液晶层(30)。通过以上方法制作的平板液晶天线,通过结构上的改善,使双面金属同时图案化成为可能,在工艺上省去大部分效率低下的黄光制程工序,节省了占线等待、切换型号调机时间。使平板液晶天线能够规模化制造,提高了制造的效率,降低了制造成本。
Description
本发明涉及无线通信技术领域,具体地,涉及一种平板液晶天线及其制作方法。
信息网络的发展日新月异,在各个领域都正在或将会产生重大变革,其中热点技术就有5G和卫星移动互联网通信技术。
天线作为通信信息发送和接收的核心设备,已经成为影响信息网络性能指标和用户应用效果的关键因素。
已知现有的相控阵天线具备此性能指标,但是它基于国防领域应用背景和芯片制造工艺,其昂贵的生产成本和高功耗使消费级市场用户无法承担,从而造成了消费品普及的障碍。
传统的机械转动式抛物面天线具有体积大、笨重、机械转动容易损坏、成本高的问题也难以满足如车载/飞机等新应用的需求。目前市场上对于体积小、低轮廓、电调控、低成本的平板型天线的需求迫在眉睫。
发明概述
问题的解决方案
为了解决上述问题,提供一种低成本、能够大规模制造平板液晶天线的解决方案。
本发明提供了一种平板液晶天线的制作方法,所述制作方法包括以下步骤:
提供具有双面金属膜层的第一基板,所述第一基板的两侧分别具有平面状结构的第一金属膜层和平面状结构的第三金属膜层;
对第一基板的双面金属同时进行图案化处理:同时对平面状结构的第一金属膜层和第三金属膜层进行图案化处理,得到图案化第一金属膜层和图案化第三金 属膜层;
提供第二基板,所述第二基板的一侧具有平面状结构的第二金属膜层;对平面状结构的第二金属膜层进行图案化处理,得到图案化第二金属膜层;
将所述第一基板和第二基板进行对合以形成液晶盒,并制备液晶层。
优选的,所述对第一基板的双面金属同时进行图案化处理的方法包括以下步骤:
涂胶:在第一基板的第一表面和第二表面的金属膜层上涂布光刻胶;
曝光:使用预先做好的电极图形掩模板,对第一基板第一表面和第二表面的光刻胶进行选择性曝光;
显影:第一基板的第一表面和第二表面的光刻胶同时进行显影,使被曝光部分的光刻胶以化学方式溶解于显影液中,保留未曝光部分的光刻胶;
刻蚀:对第一基板的第一表面和第二表面的金属膜层同时进行刻蚀,使用刻蚀液将没有光刻胶覆盖的金属膜层刻蚀掉,得到第一金属膜层的图案和第三金属膜层的图案。
优选的,在蚀刻之后,所述对双面金属同时进行图案化处理的方法还包括以下步骤:
脱膜:将第一基板的第一表面和第二表面上剩余的光刻胶冲洗去掉,得到图案化第一金属膜层和图案化第三金属膜层。
优选的,所述涂胶是分别在第一基板的第一表面和第二表面的金属膜层上涂布光刻胶。
优选的,所述曝光是同时对第一基板第一表面和第二表面的光刻胶进行选择性曝光。
优选的,所述曝光是分别对第一基板第一表面和第二表面的光刻胶进行选择性曝光。
优选的,所述平板液晶天线的制作方法还包括:
在图案化第一金属膜层上制备第一取向层,在图案化第二金属膜层上制备第二取向层。
本发明还提供了一种平板液晶天线,所述平板液晶天线包括相对设置的第一基 板和第二基板以及位于所述第一基板和第二基板之间的液晶层;
在所述第一基板朝向所述第二基板的第一表面设置有图案化第一金属膜层;在所述第一基板背离所述第二基板的第二表面设置有图案化第三金属膜层;在所述第二基板上朝向所述第一基板一侧设置有图案化第二金属膜层;
所述平板液晶天线为通过如上所述的制作方法制成。
优选的,所述图案化第一金属膜层包括第一电极,所述图案化第三金属膜层包括天线辐射单元;所述图案化第二金属膜层包括第二电极。
优选的,所述第一金属膜层和第三金属膜层的材料相同。
优选的,所述第一基板为玻璃基板,所述第一金属膜层和第三金属膜层的材料为铜,所述第一金属膜层的厚度不小于2.0μm。
优选的,所述第一金属膜层的厚度和第三金属膜层的厚度的比值在0.8~1.2之间。
发明的有益效果
与现有技术相比,本发明具有如下有益效果:
本申请通过结构上的改善,使双面金属同时图案化成为可能,在工艺上省去大部分效率低下的黄光制程工序,节省了占线等待、切换型号调机等时间。使平板液晶天线不仅能够规模化制造,而且还提高了制造的效率,降低了制造成本。
对附图的简要说明
图1为本发明实施例一所提供的一种平板液晶天线结构示意图;
图2为本发明实施例二所提供的一种平板液晶天线的制作方法的流程图;
图3为本发明实施例二所提供的一种对第一基板的双面金属同时进行图案化处理的制作方法的流程图。
附图标记:
11-第一基板、12-第二基板、21-第一金属膜层、22-第二金属膜层、23-第三金属膜层、30-液晶层、40-框胶。
发明实施例
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
下面结合附图和实施例,对本发明的一种平板液晶天线及其制作方法作进一步说明:
实施例一:
如图1所示,为本发明实施例一,本具体实施例提供了一种平板液晶天线。平板液晶天线包括相对设置的第一基板11和第二基板12,还包括位于第一基板11和第二基板12之间的液晶层30。
第一基板11和第二基板12,选用稳定性和绝缘效果较佳同时介电损耗极低的材料,在本实施例中,第一基板11和第二基板12是刚性基板,可以是玻璃基材、熔融石英、陶瓷基材和陶瓷热固聚合物复合材料。
在第一基板11朝向所述第二基板12的第一表面设置有第一金属膜层21。第一金属膜层21为图案化第一金属膜层。图案化第一金属膜层21包括第一电极。
在第一基板11背离所述第二基板12的第二表面设置有图案化第三金属膜层23。具体的,第三金属膜层23为图案化第三金属膜层。
第三金属膜层23包括天线辐射单元。天线辐射单元用于辐射微波信号,实现微波信号的馈入和馈出。
在第二基板12上朝向所述第一基板11一侧设置有图案化第二金属膜层22,具体的,第二金属膜层22为图案化第二金属膜层。第二金属膜层22包括第二电极。
图案化金属膜层的金属图案,是先在相应的基板上制作金属膜层,之后通过对金属膜层进行图案化处理而得到。
在相应的基板上制作金属膜层,可以通过镀膜的方式,使金属在基板上覆膜,并在基板的表面形成呈平面状结构的金属膜层。因为镀膜使基板的整个表面均覆上了金属膜层,其结构类似平面,因此这里称之平面状结构的金属膜层。
图案化处理工艺一般包括刻蚀。在刻蚀时需要用刻蚀液将没有光刻胶覆盖的金属刻蚀掉,以便得到金属电极图形。
优选的,图案化第一金属膜层和图案化第三金属膜层是通过对第一基板的第一金属膜层和第三金属膜层进行同步图案化处理而获得。
如果按照传统工艺,先对第一金属膜层21和第三金属膜层23中的其中一个先进行刻蚀,然后再对另外一个进行刻蚀,容易导致在后面刻蚀时,会破坏已经完成刻蚀的金属图案。如果在后面的刻蚀时,增加对之前已经完成刻蚀的金属图案的保护,但这明显地导致效率的下降。
本申请通过结构上的改善,使对双面金属同时进行图案化处理成为可能,可以一次性制作出两面图形,使平板液晶天线不仅能够规模化制造,而且还提高了制造的效率,降低了制造成本。省去大部分效率低下的黄光制程工序,节省了占线等待、切换型号调机等时间。
现有技术中,第一金属膜层21和第三金属膜层23的材料可以有所不同,但在本实施例中,第一金属膜层21和第三金属膜层23设置为相同的材料。
在对金属膜层进行图案化处理时,蚀刻工艺需要将没有光刻胶覆盖的金属膜层刻蚀掉,在具体蚀刻工艺时,一般根据不同的金属材料以及金属膜层的厚度来设置蚀刻液体以及蚀刻工艺的具体参数。
如果第一金属膜层21和第三金属膜层23的材料不相同,这将导致选用的蚀刻液不同,以及蚀刻工艺具体参数的不同,这使同时进行刻蚀难以进行。
通过将第一金属膜层21和第三金属膜层23设置为相同的材料,有利于后期对平面状结构的第一金属膜层21和第三金属膜层23同时进行图案化处理。更具体的,有利于后期工艺中同时进行蚀刻。
另外,优选的,使第一金属膜层21的厚度和第三金属膜层23的厚度大致相当。具体的,第一金属膜层21的厚度和第三金属膜层23的厚度的比值在0.8~1.2之间。更加优选的方案是,第一金属膜层21的厚度和第三金属膜层23的厚度相同。图案化处理工艺一般包括刻蚀。在刻蚀时需要用刻蚀液将没有光刻胶覆盖的金属刻蚀掉,以便得到金属电极图形。通过使第一金属膜层21的厚度和第三金属膜层23的厚度大致相当,可以使得对平面状结构的第一金属膜层21和第三金 属膜层23同时进行图案化处理的工艺更加简单,避免第一金属膜层21和第三金属膜层23中的其中一个被过度蚀刻或者未被充分蚀刻。
第一基板11优选为玻璃基板。
由于平板液晶天线所需要的金属材料要求高的电导率和磁导率,因此,第一金属膜层21和第二金属膜层22选用具有高导电性和磁导率的金属材料,可以采用铝、铜、银、金、镉、铬、钼、铌、镍、铁等金属,优选为银、铜、金、铝及其合金。
因为第一金属膜层21和第三金属膜层23优选设置为相同的材料,因此第三金属膜层23的金属材料为银、铜、金、铝、或者其合金。
在金属材料银、铜、金、铝及其合金中,银导电率最好的,但是成本贵,一般适用于真空磁控溅射工艺。金的成本更贵,且难以用减法刻蚀出图形和走线。铝一般更适用于真空磁控溅射工艺。因此,第一金属膜层21和第三金属膜层23的材料为铜。可以理解的,第二金属膜层22的材料也优选为铜。
无线通信的损耗越低其性能就越好,即插入损耗(含导体损耗)也是越低性能越好,已知金属材料及金属膜层厚度与导体损耗都有关系,趋肤效应就是导体损耗的体现。
由于交流电具有趋肤效应,趋肤效应间接使导体的电阻增大,其能量热损耗也随之增大。在微波等高频段的波段中,趋肤效应非常明显。不同的金属材料具有不同的趋肤深度。
趋肤效应:当导体中有交流电或交变电磁场时,导体内部的电流分布不均匀,电流集中在导体的外表皮肤部分,越靠近导体表面,电流密度越大,导线内部实际上电流很小。结果使导体的电阻增加,使它的损耗功率也增加。这一现象就是趋肤效应(skin effect)。
趋肤深度δ由下式给出:
δ=(1/πfμσ)
1/2,
其中,μ表示金属材料的磁导率,σ是导体的电导率,f表示平板液晶天线所承载信号的频率。
由于第一金属膜层21的金属材料优选为铜材料。根据趋肤效应,金属膜层的厚 度为μm级,可以较好的保证平板液晶天线的性能,优选的,金属膜层厚度均不小于2.0μm。因此第一金属膜层21的厚度不小于2.0μm。
第一基板11和第二基板12之间还具有框胶40,框胶40位于第一基板11和第二基板12的边缘,其用于密封液晶层30。优选的,液晶层30中分布有支撑物。
平板液晶天线还包括分别设置在所述液晶层30两侧的第一取向层和第二取向层。
在第一基板11的图案化第一金属膜层21上制备第一取向层,在第二基板12的图案化第二金属膜层22上制备第二取向层。取向层用于对液晶层30的晶分子的初始偏转角度进行限定。
第一基板11、第二基板12、液晶层30、第一导电层、第二导电层构成了液晶移相器。
天线辐射单元设置在第一基板11远离所述第二基板12的一侧。天线辐射单元可以是矩形、圆形、或方形的形状。在现有的平板液晶天线中,天线辐射单元通过贴片工艺将贴片贴附在液晶移相器。在本实施例中,更优选的方案为,天线辐射单元通过对设置在第一基板11远离所述第二基板12的一侧的第三金属膜层23进行图案化处理而得到。
在本实施例中,第二电极上上包括微带线。微带线的形状可以为蛇形或者螺旋形,对于微带线的形状不作限定,能够实现微波信号的传输即可。
第一电极为接地电极。通过在微带线和接地电极之间施加电压,可以改变液晶的介电常数。
当微带线和接地电极之间不施加电场时,液晶分子在第一配向层和第二配向层的作用下沿预设方向排布。
当微带线和接地电极之间施加电场时,电场驱动液晶层30中的液晶分子方向的偏转。
微波信号在微带线和接地电极之间传输,在微波信号的传输过程中,会由于液晶分子的偏转而改变相位,从而实现微波信号的移相功能。通过控制微带线和接地电极上的电压,可以控制液晶层30中液晶的偏转角度,进而可以对移相过程中所调整的相位进行控制。
与现有技术相比,本发明具有如下有益效果:
本申请通过结构上的改善,使对双面金属同时进行图案化处理成为可能,可以一次性制作出两面图形,使平板液晶天线不仅能够规模化制造,而且还提高了制造的效率,降低了制造成本。省去大部分效率低下的黄光制程工序,节省了占线等待、切换型号调机等时间。
更进一步地,使图案化处理的工艺更加简单,避免第一金属膜层和第三金属膜层中的其中一个被过度蚀刻或者未被充分蚀刻。
实施例二:
本具体实施例提供了一种平板液晶天线的制作方法,用于制作实施例一中所述的平板液晶天线,制作方法包括以下步骤:
S1:提供具有双面金属膜层的第一基板11,所述第一基板11的两侧分别具有平面状结构的第一金属膜层21和平面状结构的第三金属膜层23;
S2:对双面金属同时进行图案化处理:同时对平面状结构的第一金属膜层21和第三金属膜层23进行图案化处理,得到图案化第一金属膜层21和图案化第三金属膜层23;
S3:提供第二基板12,所述第二基板12的一侧具有平面状结构的第二金属膜层22;
S4:对平面状结构的第二金属膜层22进行图案化处理,得到图案化第二金属膜层22。
需要说明的是,步骤S2和步骤S4的先后顺序可以进行调整。
以上,步骤S2对双面金属同时进行图案化处理的方法包括以下步骤:
S21:涂胶,在第一基板11的第一表面和第二表面的金属膜层上涂布光刻胶;
S22:曝光,使用预先做好的电极图形掩模板,对第一基板11第一表面和第二表面的光刻胶进行选择性曝光;
S23:显影,第一基板11的第一表面和第二表面的光刻胶同时进行显影,使被曝光部分的光刻胶以化学方式溶解于显影液中,保留未曝光部分的光刻胶;
S24:刻蚀,对第一基板11的第一表面和第二表面的金属膜层同时进行刻蚀,使用刻蚀液将没有光刻胶覆盖的金属膜层刻蚀掉,得到第一金属膜层21的图案和第三金属膜层23的图案。
如果按照传统工艺,先对第一金属膜层21和第三金属膜层23中的其中一个先进行刻蚀,然后再对另外一个进行刻蚀,容易导致在后面刻蚀时,会破坏在前已经完成刻蚀的金属图案。如果在后面的刻蚀时,增加对之前已经完成刻蚀的金属图案的保护,但这明显地导致效率的下降。
现有技术中,第一金属膜层21和第三金属膜层23的材料可以有所不同,但在本实施例中,第一金属膜层21和第三金属膜层23的材料相同,优选为铜。且第一金属膜层21的厚度和第三金属膜层23的厚度大致相当。
在进行步骤S2,对金属膜层进行图案化处理时,蚀刻工艺需要将没有光刻胶覆盖的金属膜层刻蚀掉,在具体蚀刻工艺时,一般根据不同的金属材料以及金属膜层的厚度来设置蚀刻工艺的具体参数。
如果在同时进行刻蚀时,第一金属膜层21和第三金属膜层23的材料不相同,或者材料相同但膜层的厚度相差较大,这将导致第一金属膜层21和第三金属膜层23中的一个已经蚀刻完成,而另外一个仍未完成蚀刻。
本实施例通过将第一金属膜层21和第三金属膜层23设置为相同的材料,且厚度大致相当,有利于后期对平面状结构的第一金属膜层21和第三金属膜层23同时进行图案化处理,更具体的,有利于后期工艺中同时进行蚀刻。
厚度大致相当,具体的,指第一金属膜层21的厚度和第三金属膜层23的厚度的比值在0.8~1.2之间。更加优选的方案是,第一金属膜层21的厚度和第三金属膜层23的厚度相同。
通过同时对平面状结构的第一金属膜层21和第三金属膜层23进行刻蚀,使图案化处理的工艺更加简单,避免第一金属膜层21和第三金属膜层23中的其中一个被过度蚀刻或者未被充分蚀刻。
在以上的涂胶过程中,可以先在第一表面的金属膜层或者第二表面的金属膜层上整面涂布光刻胶。光刻胶是为之后工序中的刻蚀图形而做的曝光介质。在涂布光刻胶后,进行预固化。然后在另外一个金属膜层上整面涂布光刻胶,再 进行预固化。预固化一般是将涂有光刻胶的基板进行烘烤,使得光刻胶的溶剂挥发,增加光刻胶与基板表面的粘附性。
以上的曝光步骤,可以同时对第一基板11第一表面和第二表面的光刻胶进行曝光,也可以对第一基板11第一表面和第二表面的光刻胶按先后顺序逐面曝光。采用掩膜板对光刻胶进行曝光,使光刻胶形成光刻胶未保留区域和光刻胶保留区域,例如,第一金属膜层21上光刻胶保留区域对应于第一电极的图形所在区域,光刻胶未保留区域对应于上述图形以外的区域。具体曝光时,使紫外光(UV)通过预先做好的电极图形掩模板照射光刻胶表面,使被光刻胶未保留区域的光刻胶发生反应而选择性曝光。
以上的显影步骤,仅使被曝光经过UV光照的光刻胶以溶解于显影液中,而未曝光部分的光刻胶层不被溶解于显影液中,使需要的光刻胶图形留下来。
显影后的基板再经过高温坚膜烘烤,可以使得光刻胶更牢固。
在以上的刻蚀步骤中,没有光刻胶覆盖的金属膜层则被刻蚀掉,被光刻胶图形所覆盖的金属膜层被光刻胶保护,形成了金属图案结构。在第一金属膜层21形成第一导电层的图案,在第三金属膜层23形成了天线辐射单元的图案。
步骤S2对双面金属同时进行图案化处理的方法,在蚀刻之后,还包括以下步骤:
S25:脱膜,被刻蚀后的金属膜层,在金属图案之上还覆盖有光刻胶,脱膜利用碱液将第一表面和第二表面上剩余的光刻胶冲洗去掉,最终得到了图案化第一金属膜层21和图案化第三金属膜层23。
可以选择分别对第一基板11的第一表面和第二表面进行脱膜处理。也可以选择同时对第一基板11的第一表面和第二表面进行脱膜处理。
对第二金属膜层22进行图案化处理的具体方法,可以参照以上对第一金属膜层21的图案化处理工艺方法进行。
平板液晶天线的制作方法还包括:
S5:在图案化第一金属膜层21上制备第一取向层,在图案化第二金属膜层22上制备第二取向层;
S6:将所述第一基板11和第二基板12进行对合以形成液晶盒,并制备液晶层30 。
取向层可采用现有技术中的PI摩擦工艺制成,以便在表面上形成定向凹槽,在此不再赘述。
具体的,在一个实施例中,可先将所述第一基板11和第二基板12对合以形成液晶盒,然后在所述液晶盒内填充液晶层30。已知的,第一基板11和第二基板12对合之前,还在其中一个基板上制作框胶40,框胶40在第一基板11和第二基板12之间形成容纳空间,用于容纳液晶。在所述液晶盒内填充液晶层30后,对液晶盒进行封口,并使框胶40进行固化。
在其它的实施例中,对合以形成液晶盒,并制备液晶层30的顺序并不限于以上,还可以是:在其中一个基板上涂布制作框胶40后,在基板上滴注液晶形成液晶层30,再将第一基板11和第二基板12对合以形成液晶盒,并固化封框胶40。
与现有技术相比,本发明具有如下有益效果:
本实施例,通过对第一基板的双面金属同时进行图案化处理,可以一次性制作出两面图形,省去大部分效率低下的黄光制程工序,节省了占线等待、切换型号调机等时间。使平板液晶天线不仅能够规模化制造,而且还提高了制造的效率,降低了制造成本。
避免了传统工艺,在对第一金属膜层和第三金属膜层中进行分别刻蚀,而容易导致在后刻蚀时破坏在前刻蚀已经完成的金属图案;以及为了避免破坏在前刻蚀已经完成的金属图案而明显导致的效率的下降。
最后需要说明的是,以上实施例仅用以说明本发明实施例的技术方案而非对其进行限制,尽管参照较佳实施例对本发明实施例进行了详细的说明,本领域的普通技术人员应当理解依然可以对本发明实施例的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明实施例技术方案的范围。
Claims (12)
- 一种平板液晶天线的制作方法,其特征在于,所述制作方法包括以下步骤:提供具有双面金属膜层的第一基板,所述第一基板的两侧分别具有平面状结构的第一金属膜层和平面状结构的第三金属膜层;对第一基板的双面金属同时进行图案化处理:同时对平面状结构的第一金属膜层和第三金属膜层进行图案化处理,得到图案化第一金属膜层和图案化第三金属膜层;提供第二基板,所述第二基板的一侧具有平面状结构的第二金属膜层;对平面状结构的第二金属膜层进行图案化处理,得到图案化第二金属膜层;将所述第一基板和第二基板进行对合以形成液晶盒,并制备液晶层。
- 根据权利要求1所述的平板液晶天线的制作方法,其特征在于,所述对第一基板的双面金属同时进行图案化处理的方法包括以下步骤:涂胶:在第一基板的第一表面和第二表面的金属膜层上涂布光刻胶;曝光:使用预先做好的电极图形掩模板,对第一基板第一表面和第二表面的光刻胶进行选择性曝光;显影:第一基板的第一表面和第二表面的光刻胶同时进行显影,使被曝光部分的光刻胶以化学方式溶解于显影液中,保留未曝光部分的光刻胶;刻蚀:对第一基板的第一表面和第二表面的金属膜层同时进行刻蚀,使用刻蚀液将没有光刻胶覆盖的金属膜层刻蚀掉,得到第一金属膜层的图案和第三金属膜层的图案。
- 根据权利要求2所述的平板液晶天线的制作方法,其特征在于,在蚀刻之后,所述对双面金属同时进行图案化处理的方法还包括以 下步骤:脱膜:将第一基板的第一表面和第二表面上剩余的光刻胶冲洗去掉,得到图案化第一金属膜层和图案化第三金属膜层。
- 根据权利要求2所述的平板液晶天线的制作方法,其特征在于,所述涂胶是分别在第一基板的第一表面和第二表面的金属膜层上涂布光刻胶。
- 根据权利要求2所述的平板液晶天线的制作方法,其特征在于,所述曝光是同时对第一基板第一表面和第二表面的光刻胶进行选择性曝光。
- 根据权利要求2所述的平板液晶天线的制作方法,其特征在于,所述曝光是分别对第一基板第一表面和第二表面的光刻胶进行选择性曝光。
- 根据权利要求1所述的平板液晶天线的制作方法,其特征在于,所述平板液晶天线的制作方法还包括:在图案化第一金属膜层上制备第一取向层,在图案化第二金属膜层上制备第二取向层。
- 一种平板液晶天线,所述平板液晶天线包括相对设置的第一基板和第二基板以及位于所述第一基板和第二基板之间的液晶层;其特征在于,在所述第一基板朝向所述第二基板的第一表面设置有图案化第一金属膜层;在所述第一基板背离所述第二基板的第二表面设置有图案化第三金属膜层;在所述第二基板上朝向所述第一基板一侧设置有图案化第二金属膜层;所述平板液晶天线为通过权利要求1-8任一项所述的制作方法制成。
- 如权利要求8所述的平板液晶天线,其特征在于,所述图案化第一金属膜层包括第一电极,所述图案化第三金属膜层包括天线辐射单元;所述图案化第二金属膜层包括第二电极。
- 如权利要求8所述的平板液晶天线,其特征在于,所述第一金属膜 层和第三金属膜层的材料相同。
- 如权利要求10所述的平板液晶天线,其特征在于,所述第一基板为玻璃基板,所述第一金属膜层和第三金属膜层的材料为铜,所述第一金属膜层的厚度不小于2.0μm。
- 如权利要求8所述的平板液晶天线,其特征在于,所述第一金属膜层的厚度和第三金属膜层的厚度的比值在0.8~1.2之间。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020531664A JP7042342B2 (ja) | 2019-03-12 | 2019-03-14 | 平板液晶アンテナ及びその製造方法 |
EP19863988.2A EP3736618A4 (en) | 2019-03-12 | 2019-03-14 | FLAT LIQUID CRYSTAL ANTENNA AND ITS MANUFACTURING PROCESS |
KR1020207016582A KR102326747B1 (ko) | 2019-03-12 | 2019-03-14 | 플래트 액정 안테나 및 그 제조방법 |
US16/770,078 US11557837B2 (en) | 2019-03-12 | 2019-03-14 | Flat panel liquid crystal antenna and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910185143.7 | 2019-03-12 | ||
CN201910185143.7A CN109830806A (zh) | 2019-03-12 | 2019-03-12 | 一种平板液晶天线及其制作方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020181556A1 true WO2020181556A1 (zh) | 2020-09-17 |
Family
ID=66869147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/078172 WO2020181556A1 (zh) | 2019-03-12 | 2019-03-14 | 一种平板液晶天线及其制作方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11557837B2 (zh) |
EP (1) | EP3736618A4 (zh) |
JP (1) | JP7042342B2 (zh) |
KR (1) | KR102326747B1 (zh) |
CN (1) | CN109830806A (zh) |
TW (1) | TWI742561B (zh) |
WO (1) | WO2020181556A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114284714A (zh) * | 2021-12-31 | 2022-04-05 | 成都天马微电子有限公司 | 液晶天线及其制备方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112394609A (zh) * | 2019-08-16 | 2021-02-23 | 合肥晶合集成电路股份有限公司 | 掩模板及曝光方法 |
CN111525264B (zh) * | 2020-05-21 | 2022-01-18 | 信利(仁寿)高端显示科技有限公司 | 一种液晶天线 |
CN114447586A (zh) * | 2020-10-30 | 2022-05-06 | 京东方科技集团股份有限公司 | 可重构天线及其制备方法 |
US11990680B2 (en) * | 2021-03-18 | 2024-05-21 | Seoul National University R&Db Foundation | Array antenna system capable of beam steering and impedance control using active radiation layer |
CN116514406A (zh) * | 2023-04-26 | 2023-08-01 | 深圳市志凌伟业技术股份有限公司 | 一种玻璃基透明导电片的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102541368A (zh) * | 2011-03-14 | 2012-07-04 | 烟台正海电子网板股份有限公司 | 一种电容式触控面板及其制造方法 |
CN106932933A (zh) * | 2017-05-09 | 2017-07-07 | 京东方科技集团股份有限公司 | 一种液晶天线及其制作方法 |
CN108490706A (zh) * | 2018-04-13 | 2018-09-04 | 京东方科技集团股份有限公司 | 液晶移相器及其制造方法、液晶天线及电子装置 |
CN108963402A (zh) * | 2018-08-16 | 2018-12-07 | 北京华镁钛科技有限公司 | 一种用于制作射频微波器件及天线的传输结构及制作方法 |
CN109314316A (zh) * | 2016-05-30 | 2019-02-05 | 夏普株式会社 | 扫描天线 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02162804A (ja) * | 1988-12-16 | 1990-06-22 | Nissan Motor Co Ltd | 平板型アンテナ |
CN102339402B (zh) * | 2011-09-15 | 2014-02-05 | 哈尔滨大东方新材料科技股份有限公司 | 利用热、冷烫印技术制作射频标签的方法 |
EP2575211B1 (en) | 2011-09-27 | 2014-11-05 | Technische Universität Darmstadt | Electronically steerable planar phased array antenna |
CN102751584B (zh) * | 2012-06-12 | 2014-08-06 | 西安电子科技大学 | 基于两层基板的小型化人工电磁材料及制备方法 |
CN102931199A (zh) * | 2012-11-02 | 2013-02-13 | 京东方科技集团股份有限公司 | 一种显示面板及制作方法、显示装置 |
EP2784181B1 (en) | 2013-03-27 | 2015-12-09 | ATOTECH Deutschland GmbH | Electroless copper plating solution |
JP6070675B2 (ja) | 2014-10-27 | 2017-02-01 | 大日本印刷株式会社 | 透明導電基材の製造方法およびタッチパネルセンサ |
JP2017106984A (ja) * | 2015-12-07 | 2017-06-15 | 大日本印刷株式会社 | 調光パネル及び調光パネルを備えた窓 |
US10720708B2 (en) * | 2016-07-25 | 2020-07-21 | Innolux Corporation | Antenna device |
CN108321503B (zh) * | 2017-01-16 | 2020-05-15 | 群创光电股份有限公司 | 液晶天线装置 |
CN108321504B (zh) * | 2017-01-16 | 2020-11-10 | 群创光电股份有限公司 | 可调制微波装置 |
CN206602182U (zh) * | 2017-04-06 | 2017-10-31 | 京东方科技集团股份有限公司 | 一种天线结构及通讯设备 |
DE102017212887A1 (de) * | 2017-07-26 | 2019-01-31 | Gebr. Schmid Gmbh | Verfahren, Vorrichtung und Anlage zur Leiterplattenherstellung |
CN208589535U (zh) * | 2018-04-02 | 2019-03-08 | 武汉光谷创元电子有限公司 | Lcp单层或多层板天线 |
CN108615966B (zh) * | 2018-05-28 | 2020-06-30 | 京东方科技集团股份有限公司 | 一种天线及其制作方法 |
-
2019
- 2019-03-12 CN CN201910185143.7A patent/CN109830806A/zh active Pending
- 2019-03-14 US US16/770,078 patent/US11557837B2/en active Active
- 2019-03-14 WO PCT/CN2019/078172 patent/WO2020181556A1/zh unknown
- 2019-03-14 EP EP19863988.2A patent/EP3736618A4/en active Pending
- 2019-03-14 KR KR1020207016582A patent/KR102326747B1/ko active IP Right Grant
- 2019-03-14 JP JP2020531664A patent/JP7042342B2/ja active Active
-
2020
- 2020-03-12 TW TW109108211A patent/TWI742561B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102541368A (zh) * | 2011-03-14 | 2012-07-04 | 烟台正海电子网板股份有限公司 | 一种电容式触控面板及其制造方法 |
CN109314316A (zh) * | 2016-05-30 | 2019-02-05 | 夏普株式会社 | 扫描天线 |
CN106932933A (zh) * | 2017-05-09 | 2017-07-07 | 京东方科技集团股份有限公司 | 一种液晶天线及其制作方法 |
CN108490706A (zh) * | 2018-04-13 | 2018-09-04 | 京东方科技集团股份有限公司 | 液晶移相器及其制造方法、液晶天线及电子装置 |
CN108963402A (zh) * | 2018-08-16 | 2018-12-07 | 北京华镁钛科技有限公司 | 一种用于制作射频微波器件及天线的传输结构及制作方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3736618A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114284714A (zh) * | 2021-12-31 | 2022-04-05 | 成都天马微电子有限公司 | 液晶天线及其制备方法 |
CN114284714B (zh) * | 2021-12-31 | 2023-12-15 | 成都天马微电子有限公司 | 液晶天线及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3736618A4 (en) | 2021-03-24 |
TWI742561B (zh) | 2021-10-11 |
JP2021517746A (ja) | 2021-07-26 |
US11557837B2 (en) | 2023-01-17 |
KR102326747B1 (ko) | 2021-11-15 |
KR20200110307A (ko) | 2020-09-23 |
US20210210852A1 (en) | 2021-07-08 |
JP7042342B2 (ja) | 2022-03-25 |
CN109830806A (zh) | 2019-05-31 |
EP3736618A1 (en) | 2020-11-11 |
TW202103375A (zh) | 2021-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI742561B (zh) | 一種平板液晶天線及其製作方法 | |
TWI721822B (zh) | 一種液晶天線及其製作方法 | |
EP3745527B1 (en) | Liquid crystal phase shifter, liquid crystal antenna and manufacturing method for liquid crystal phase shifter | |
TWI730665B (zh) | 一種液晶移相器及其製作方法 | |
CN209544568U (zh) | 一种液晶移相器和液晶天线 | |
CN209544616U (zh) | 一种平板液晶天线 | |
US11768393B2 (en) | Liquid crystal antenna substrate and manufacturing method thereof, and liquid crystal antenna and manufacturing method thereof | |
US11646488B2 (en) | Liquid crystal phase shifter having a delay line with line spacing and/or line width that provides a specified cell thickness and an antenna formed therefrom | |
US11646489B2 (en) | Liquid crystal phase shifter having a delay line with a plurality of bias lines on two sides thereof and an antenna formed therefrom | |
US11916297B2 (en) | Liquid crystal antena and fabrication thereof | |
CN209786195U (zh) | 一种液晶天线 | |
CN108428973B (zh) | 移相器及其制作方法、工作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020531664 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019863988 Country of ref document: EP Effective date: 20200529 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19863988 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |