WO2020181508A1 - Digital surface model construction method, and processing device and system - Google Patents

Digital surface model construction method, and processing device and system Download PDF

Info

Publication number
WO2020181508A1
WO2020181508A1 PCT/CN2019/077896 CN2019077896W WO2020181508A1 WO 2020181508 A1 WO2020181508 A1 WO 2020181508A1 CN 2019077896 W CN2019077896 W CN 2019077896W WO 2020181508 A1 WO2020181508 A1 WO 2020181508A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
image
target environment
type
environment image
Prior art date
Application number
PCT/CN2019/077896
Other languages
French (fr)
Chinese (zh)
Inventor
黄文杰
张明磊
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/077896 priority Critical patent/WO2020181508A1/en
Priority to CN201980005040.6A priority patent/CN111247564A/en
Publication of WO2020181508A1 publication Critical patent/WO2020181508A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/187Segmentation; Edge detection involving region growing; involving region merging; involving connected component labelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume

Abstract

A digital surface model (DSM) construction method, and a processing device and system. Said method comprises: generating an initial DSM according to an acquired image set (S101); determining a hole region in the initial DSM (S102); if the type of an environmental region corresponding to the hole region is a preset type, determining elevation values of various grid cells in adjacent regions of the hole region in the initial DSM (S103); and according to the elevation values of various grid cells in the adjacent regions, updating elevation values of grid cells in the hole region, so as to obtain a DSM (S104). The embodiments of the present invention can acquire a relatively complete DSM.

Description

一种数字地表模型的构建方法及处理设备、系统Method for constructing digital surface model, processing equipment and system 技术领域Technical field
本发明涉及图像处理技术领域,尤其涉及一种数字地表模型的构建方法及处理设备、系统。The present invention relates to the technical field of image processing, in particular to a method for constructing a digital surface model, processing equipment and a system.
背景技术Background technique
真正射影像(True Orthophoto)具有信息量大、形象直观、易于判读等诸多优点,因而常被应用到地理信息系统(GIS)中,应用于城市规划、环境监测、应急响应等方面。真正射影像制作中,涉及的关键技术有(1)数字地表模型(Digital Surface Model,DSM)的生成;(2)数字纠正;(3)正射影像的镶嵌融合等。其中,DSM是指包含了地表建筑物、桥梁和树木等高度的地面高程模型,DSM对制作真正射影像至关重要。True Orthophoto has many advantages such as large amount of information, intuitive image, and easy interpretation, so it is often applied to geographic information systems (GIS) for urban planning, environmental monitoring, emergency response, etc. In the production of real radio images, the key technologies involved are (1) digital surface model (DSM) generation; (2) digital correction; (3) mosaic fusion of orthophotos, etc. Among them, DSM refers to a ground elevation model that includes the height of buildings, bridges, and trees on the ground. DSM is essential for making real radio images.
目前,生成DSM的方式包括:基于多视影像密集匹配的方式生成稠密点云,然后直接构建规则格网或不规则三角格网(Triangulated Irregular Network,TIN),进而得到DSM。当然,还存在一些其他技术,例如直接利用雷达扫描获取稠密点云,然后构建规则格网或TIN模型以得到DSM等。At present, the methods of generating DSM include: generating dense point clouds based on dense matching of multi-view images, and then directly constructing regular grids or irregular triangular grids (Triangulated Irregular Network, TIN) to obtain DSM. Of course, there are some other technologies, such as directly using radar scanning to obtain dense point clouds, and then constructing a regular grid or TIN model to obtain DSM.
在多影像中匹配确定稠密点云的过程中,匹配精度取决于像素所在位置的纹理丰富性、可区分性,因此,在纹理稀少或者说没有纹理、区分性差、存在镜面反射、且有一定的流动性等特征的区域中,例如大面积的水面区域,会导致基于多视影像生成的DSM出现空洞,从而影响后续的真正射影像的生成。In the process of matching and determining dense point clouds in multiple images, the matching accuracy depends on the richness and distinguishability of the texture of the pixel location. Therefore, the texture is scarce or there is no texture, the discrimination is poor, there is specular reflection, and there is a certain degree of Areas with characteristics such as fluidity, such as large water surface areas, will cause holes in the DSM generated based on multi-view images, which will affect the subsequent generation of real radio images.
发明内容Summary of the invention
本发明实施例提供了一种数字地表模型的构建方法及处理设备、系统,可处理得到较为完整的数字地表模型。The embodiment of the present invention provides a method for constructing a digital surface model, processing equipment, and system, which can be processed to obtain a relatively complete digital surface model.
一方面,本发明实施例提供了一种数字地表模型的构建方法,包括:On the one hand, an embodiment of the present invention provides a method for constructing a digital surface model, including:
根据采集到的图像集合生成初始数字地表模型;Generate an initial digital surface model based on the collected image collection;
确定所述初始数字地表模型中的空洞区域,其中,在所述空洞区域内包括高程值异常的格网单元;Determining a hollow area in the initial digital surface model, wherein the hollow area includes grid cells with abnormal elevation values;
若所述空洞区域所对应的环境区域的类型为预设类型,则确定所述初始数 字地表模型上所述空洞区域的邻接区域中各格网单元的高程值;If the type of the environmental area corresponding to the cavity area is a preset type, determining the elevation value of each grid cell in the adjacent area of the cavity area on the initial digital surface model;
根据邻接区域中各格网单元的高程值,更新所述空洞区域中的格网单元的高程值,得到数字地表模型。According to the elevation value of each grid unit in the adjacent area, the elevation value of the grid unit in the hollow area is updated to obtain a digital surface model.
另一方面,本发明实施例还提供了一种图像处理设备,所述图像处理设备包括:通信接口单元和处理单元,其中:On the other hand, an embodiment of the present invention also provides an image processing device, the image processing device includes: a communication interface unit and a processing unit, wherein:
所述通信接口单元,用于接收环境图像;The communication interface unit is used to receive environmental images;
所述处理单元,用于根据采集到的图像集合生成初始数字地表模型;确定所述初始数字地表模型中的空洞区域,其中,在所述空洞区域内包括高程值异常的格网单元;若所述空洞区域所对应的环境区域的类型为预设类型,则确定所述初始数字地表模型上所述空洞区域的邻接区域中各格网单元的高程值;根据邻接区域中各格网单元的高程值,更新所述空洞区域中的格网单元的高程值,得到数字地表模型。The processing unit is configured to generate an initial digital surface model according to the collected image set; determine the cavity area in the initial digital surface model, wherein the cavity area includes grid units with abnormal elevation values; If the type of the environmental area corresponding to the cavity area is a preset type, the elevation value of each grid cell in the adjacent area of the cavity area on the initial digital surface model is determined; according to the elevation value of each grid cell in the adjacent area Value, update the elevation value of the grid unit in the hollow area to obtain a digital surface model.
再一方面,本发明实施例还提供了一种图像处理系统,所述图像处理系统包括:移动平台和图像处理设备,所述移动平台上设置有图像采集设备;In another aspect, an embodiment of the present invention also provides an image processing system, the image processing system includes: a mobile platform and an image processing device, the mobile platform is provided with an image acquisition device;
所述移动平台,用于通过所述图像采集设备在所述移动平台移动的过程中采集多个环境图像,并将采集到的所述多个环境图像发送给所述图像处理设备;The mobile platform is configured to collect multiple environmental images during the movement of the mobile platform through the image acquisition device, and send the multiple collected environmental images to the image processing device;
所述图像处理设备,用于根据采集到的图像集合生成初始数字地表模型;确定所述初始数字地表模型中的空洞区域,其中,在所述空洞区域内包括高程值异常的格网单元;若所述空洞区域所对应的环境区域的类型为预设类型,则确定所述初始数字地表模型上所述空洞区域的邻接区域中各格网单元的高程值;根据邻接区域中各格网单元的高程值,更新所述空洞区域中的格网单元的高程值,得到数字地表模型。The image processing device is configured to generate an initial digital surface model according to the collected image set; determine the cavity area in the initial digital surface model, wherein the cavity area includes grid cells with abnormal elevation values; if If the type of the environmental area corresponding to the cavity area is a preset type, the elevation value of each grid unit in the adjacent area of the cavity area on the initial digital surface model is determined; according to the value of each grid unit in the adjacent area The elevation value is to update the elevation value of the grid unit in the hollow area to obtain a digital surface model.
本发明实施例中,在根据环境图像生成初始的数字地表模型后,如果初始的数字地表模型存在空洞区域,且所述空洞区域所对应的环境区域的类型为预设类型,则采用相邻的邻接区域来对空洞区域的高程值进行更新得到最终的DSM。一方面,可以得到较为完整的DSM,另一方面,水面区域等相对地势较平的区域基于邻接区域的高程值作为参考进行更新,也使得最终得到的DSM更准确。In the embodiment of the present invention, after the initial digital surface model is generated according to the environmental image, if the initial digital surface model has a hole area, and the type of the environmental area corresponding to the hole area is a preset type, then the adjacent Adjacent areas to update the elevation value of the void area to obtain the final DSM. On the one hand, a relatively complete DSM can be obtained. On the other hand, relatively flat areas such as water surface areas are updated based on the elevation values of adjacent areas as a reference, which also makes the final DSM more accurate.
附图说明Description of the drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following will briefly introduce the drawings needed in the embodiments. Obviously, the drawings in the following description are only some of the present invention. Embodiments, for those of ordinary skill in the art, without creative work, other drawings can be obtained from these drawings.
图1a是本发明实施例的一种应用场景示意图;Figure 1a is a schematic diagram of an application scenario of an embodiment of the present invention;
图1b是本发明实施例的一种数字地表模型的构建方法的流程示意图;FIG. 1b is a schematic flowchart of a method for constructing a digital surface model according to an embodiment of the present invention;
图2是本发明实施例的确定空洞区域所对应的环境区域的类型的流程示意图;FIG. 2 is a schematic flowchart of determining the type of environmental area corresponding to a cavity area according to an embodiment of the present invention;
图3是本发明实施例的数字地表模型构建的其中一种具体实施方式的示意图;FIG. 3 is a schematic diagram of one specific implementation of the construction of the digital surface model of the embodiment of the present invention;
[根据细则91更正 18.07.2019] 
图4是本发明实施例的一种数字地表模型的示例性说明示意图;
图5是本发明实施例的一种图像处理设备的结构示意图。
[Corrected according to Rule 91 18.07.2019]
Fig. 4 is an exemplary explanatory diagram of a digital surface model according to an embodiment of the present invention;
Fig. 5 is a schematic structural diagram of an image processing device according to an embodiment of the present invention.
具体实施方式detailed description
在本发明实施例中,为了得到相对完整的数字地表模型,需要对生成的初始数字地表模型中空洞区域进行填充,即将空洞区域内的高程值异常的格网单元的高程值进行更新。在对空洞区域进行填充的过程中,通过参考初始数字地表模型中的空洞区域所处环境区域的类型,来为空洞区域选择不同的填充方式。在本发明实施例中,会预先设定一些环境类型,例如水面区域类型或者其他一些镜面环境区域的类型,如果判断出空洞区域对应的环境区域为这些预设的类型,则可以基于初始数字地表模型上所述空洞区域的邻接区域中各格网单元的高程值,来更新空洞区域中的格网单元的高程值。如图1a所示,搭载摄像设备的无人机在飞行过程中,基于拍摄得到的环境图像,可以生成包括图示环境的关于高山和湖泊的初始DSM,此时,初始DSM上与湖泊处对应的区域容易产生空洞区域,经过本发明实施例相关步骤的处理后,可以基于湖泊边沿区域在初始DSM中的高程值来更新湖泊在初始DSM中的高程值,能够构建得到该场景下相对完整的DSM。In the embodiment of the present invention, in order to obtain a relatively complete digital surface model, it is necessary to fill the void areas in the generated initial digital surface model, that is, to update the elevation values of grid cells with abnormal elevation values in the void areas. In the process of filling the cavity area, different filling methods are selected for the cavity area by referring to the type of environment area where the cavity area in the initial digital surface model is located. In the embodiment of the present invention, some environmental types are preset, such as the type of water surface area or other types of mirrored environmental areas. If it is determined that the environmental area corresponding to the cavity area is of these preset types, it can be based on the initial digital surface. The elevation value of each grid cell in the adjacent area of the cavity area on the model is used to update the elevation value of the grid cell in the cavity area. As shown in Figure 1a, during the flight of a drone equipped with camera equipment, based on the captured environment images, it can generate an initial DSM about mountains and lakes including the illustrated environment. At this time, the initial DSM corresponds to the lake. The area is prone to produce a void area. After processing the relevant steps of the embodiment of the present invention, the elevation value of the lake in the initial DSM can be updated based on the elevation value of the lake edge area in the initial DSM, and a relatively complete scene can be constructed. DSM.
空洞区域内的高程值异常的格网单元主要是指不具有高程值的格网单元,由于在初始DSM计算的过程中,存在从对应的图像中并未计算得到高程值的情况,因此,在计算并构建初始DSM后,大量的不存在高程值的格网单元构 成了初始DSM中的空洞区域。例如,如图1a的场景下,在对高山湖泊进行监测构建这一区域的DSM时,湖泊所在的区域由于纹理等特征不够,就会形成初始DSM上的空洞区域。Grid cells with abnormal elevation values in the cavity area mainly refer to grid cells that do not have elevation values. Because in the initial DSM calculation process, there are situations where the elevation values are not calculated from the corresponding images. Therefore, in After calculating and constructing the initial DSM, a large number of grid cells without elevation values constitute the void area in the initial DSM. For example, in the scenario shown in Figure 1a, when a mountain lake is monitored to construct a DSM for this area, the area where the lake is located due to insufficient texture and other features will form a void area on the initial DSM.
空洞区域的邻接区域主要是指与空洞区域相邻的区域,空洞区域存在边界格网单元,每一个边界格网单元都存在一个或者多个距离该边界格网最近的正常格网单元,该正常格网单元中记录有对应的高程值。在本发明实施例中,这些正常格网单元被称之为邻接格网单元,所有的这些邻接格网单元构成了空洞区域的邻接区域。在对空洞区域的格网单元的高程值进行更新时,可以基于邻接区域中,所有邻接格网单元的高程值的最小值,或者从所有邻接格网单元的高程值中确定的中间值集合中的任意一个值,或者根据所有邻接格网单元的高程值的平均值,来作为空洞区域的格网单元的高程更新值,再基于高程更新值来更新空洞区域中的格网单元的高程值以完成对空洞区域的高程值填充,例如,直接将高程更新值作为空洞区域中格网单元的高程值。The adjacent area of the cavity area mainly refers to the area adjacent to the cavity area. There are boundary grid units in the cavity area. Each boundary grid unit has one or more normal grid units closest to the boundary grid. The corresponding elevation value is recorded in the grid cell. In the embodiment of the present invention, these normal grid cells are called adjacent grid cells, and all these adjacent grid cells constitute an adjacent region of the cavity region. When updating the elevation value of the grid cell in the void area, it can be based on the minimum value of the elevation value of all adjacent grid cells in the adjacent area, or from a set of intermediate values determined from the elevation values of all adjacent grid cells Any one of the values of, or the average of the elevation values of all adjacent grid cells, is used as the elevation update value of the grid cell in the cavity area, and then based on the elevation update value, the elevation value of the grid cell in the cavity area is updated to Complete the elevation value filling of the cavity area, for example, directly use the updated elevation value as the elevation value of the grid cell in the cavity area.
请参见图1b,是本发明实施例的一种数字地表模型的构建方法的流程示意图,本发明实施例的所述方法可以由一个图像处理设备来实现,该图像处理设备以图像采集设备拍摄的环境图像为基础,进行后续的数字地表模型的相关处理,甚至于还可以进一步地基于数字地表模型构建真正射影像。Please refer to Figure 1b, which is a schematic flow chart of a method for constructing a digital surface model according to an embodiment of the present invention. The method according to an embodiment of the present invention may be implemented by an image processing device, which is captured by an image capture device. Based on the environmental image, the subsequent processing of the digital surface model is carried out, and the real radio image can even be further constructed based on the digital surface model.
在本发明实施例中,图像处理设备可与移动平台分离设置,或者图像处理设备可设置在移动平台中作为移动平台的一部分,或者图像采集设备作为一个外设搭载在移动平台上,在一种实施方式中,如图1a所示,可移动平台为无人机,例如旋翼无人机或是固定翼无人机,图像处理设备为与无人机或无人机上搭载的图像采集设备进行通信的地面图像处理设备。无人机可通过无线传输的方式将图像采集设备采集到的环境图像发送给图像处理设备。由此,图像处理设备可基于接收到的环境图像进行处理,先生成初始DSM,并进一步基于初始DSM上的空洞区域对环境图像进行分析,实现对初始DSM中部分或者全部的空洞区域进行高程值更新,得到较为准确完整的DSM,以供后续完成制作真正射影像等处理。In the embodiment of the present invention, the image processing device can be installed separately from the mobile platform, or the image processing device can be installed in the mobile platform as a part of the mobile platform, or the image acquisition device can be mounted on the mobile platform as a peripheral device. In an embodiment, as shown in Fig. 1a, the movable platform is a drone, such as a rotary-wing drone or a fixed-wing drone, and the image processing device communicates with the drone or the image acquisition device mounted on the drone Ground image processing equipment. The drone can send the environmental images collected by the image acquisition device to the image processing device through wireless transmission. As a result, the image processing device can process based on the received environmental image, first generate the initial DSM, and further analyze the environmental image based on the cavity area on the initial DSM, so as to realize the elevation value of part or all of the cavity area in the initial DSM Update to get a more accurate and complete DSM for subsequent processing such as making real shot images.
图像采集设备能够在移动过程中,拍摄得到一定环境区域(本发明实施例称之为目标环境区域)的环境图像,构成目标环境区域的图像集合,图像处理设备在S101中会根据采集到的图像集合生成初始数字地表模型。在一个实施 例中,可以基于通过运动恢复结构(Structure from Motion,SfM)技术来估计图像对应的相机内外参数,根据估计的相机内参和相机外参,对图像集合进行多视影像密集匹配得到目标环境区域的稠密点云,然后划分格网单元得到该目标环境区域的初始DSM。可选的,对于得到的初始DSM后,还可进行噪声过滤以对初始DSM进行初步的优化处理。The image acquisition device can shoot and obtain environmental images of a certain environmental area (referred to as the target environmental area in the embodiment of the present invention) during the movement process to form an image collection of the target environmental area. The image processing device will base on the acquired image in S101 Assemble to generate an initial digital surface model. In one embodiment, the internal and external parameters of the camera corresponding to the image can be estimated based on the Structure from Motion (SfM) technology, and the multi-view image dense matching is performed on the image collection to obtain the target according to the estimated internal and external camera parameters. The dense point cloud of the environmental area is then divided into grid cells to obtain the initial DSM of the target environmental area. Optionally, after the obtained initial DSM, noise filtering may be performed to perform preliminary optimization processing on the initial DSM.
在基于图像集合计算目标环境区域的稠密点云的过程中,多视影像密集匹配依赖于拍摄对应的环境图像时的相机内参和相机外参,相机内参和相机外参可通过SfM来估计得到。SfM基本流程为:首先利用特征提取算法提取图像特征;然后根据两两图像特征点之间的欧式距离进行特征点匹配;对于每一个图像匹配对,根据匹配的特征点计算对极几何,估计F矩阵(相当于图像之间的相对姿态),同时匹配的特征点构成同名点(对应同一个三维点);那么,所有的图像根据两两之间的相对姿态构成一个全局的图,他们之间通过同名点连接在一起,构成了一个全局的能量函数,该能量函数通过光束法平差(Bundle adjustment,BA)来优化,使得所有同名点投影到对应图像上的重投影误差之和最小,最终优化得到所有图像的相机内参和相机外参。In the process of calculating the dense point cloud of the target environment area based on the image set, the dense matching of multi-view images depends on the camera internal parameters and camera external parameters when the corresponding environmental image is taken. The camera internal parameters and camera external parameters can be estimated by SfM. The basic process of SfM is: first extract image features using feature extraction algorithms; then perform feature point matching based on the Euclidean distance between two image feature points; for each image matching pair, calculate the epipolar geometry according to the matched feature points, and estimate F Matrix (equivalent to the relative posture between the images), and the matched feature points at the same time constitute the points with the same name (corresponding to the same three-dimensional point); then, all the images form a global graph according to the relative posture between the two. The points with the same name are connected together to form a global energy function. The energy function is optimized by the beam adjustment (Bundle Adjustment, BA), so that the sum of the reprojection errors of all points with the same name projected onto the corresponding image is minimized, and finally Optimize the internal camera parameters and external camera parameters of all images.
在得到相应环境图像的相机内参和相机外参后,多视影像密集匹配的经典方法可以分为深度图提取和深度图融合步骤,其中深度图提取流程包括:对每张影像独立进行以下处理:将当前影像作为参考影像,根据SfM中稀疏特征点匹配数量等作为相似性度量来选取若干幅邻居影像;然后在邻居影像中为参考影像的每个像素找匹配像素,而匹配精度取决于像素所在位置的纹理丰富性、可区分性;找到匹配像素之后就可以交汇得到对应的三维点,也就得到了每个像素对应的深度信息。深度图融合就是将所有图像的深度图投影到三维空间中,并将相邻图像重叠区域对应的三维点进行融合,最终得到目标环境区域整体的稠密点云。After obtaining the camera internal parameters and camera external parameters of the corresponding environment images, the classic method of dense matching of multi-view images can be divided into depth map extraction and depth map fusion steps. The depth map extraction process includes the following processing for each image independently: Use the current image as a reference image, and select several neighbor images according to the number of sparse feature points matching in SfM as a similarity measure; then find matching pixels for each pixel of the reference image in the neighbor image, and the matching accuracy depends on where the pixel is located The texture richness and distinguishability of the position; after finding the matching pixels, the corresponding three-dimensional points can be crossed, and the depth information corresponding to each pixel can be obtained. Depth map fusion is to project the depth maps of all images into three-dimensional space, and fuse the three-dimensional points corresponding to the overlapping areas of adjacent images, and finally obtain the entire dense point cloud of the target environment area.
得到场景的稠密点云之后,根据地面采样距离(Ground sample distance,GSD)将目标环境区域所在场景划分为规则格网单元,根据格网单元包含的稠密三维点内插得到初始的DSM。其中,上述涉及的SfM算法的关键在于特征点的提取和匹配精度,要想保证这两点需要拍摄的目标环境有较为丰富的纹理,且在拍摄期间是刚性静止的。而水面区域等目标环境区域的环境图像中没有纹理(或者纹理过少)、存在镜面反射、且有一定的流动性,基本违反了上 述要求,因此如果图像大部分区域都被水域或者类似区域覆盖,那么该图像很可能提取不到特征点或者特征点匹配失败,也就无法恢复出来相应的相机参数,进而无法得到相关位置处的三维点及其高程值,因此,在构建初始DSM时存在所述空洞区域。After the dense point cloud of the scene is obtained, the scene where the target environment area is located is divided into regular grid cells according to the ground sampling distance (Ground sample distance, GSD), and the initial DSM is obtained by interpolation according to the dense three-dimensional points contained in the grid cells. Among them, the key to the above-mentioned SfM algorithm is the accuracy of feature point extraction and matching. To ensure that the two points need to be photographed in the target environment to have richer textures, and to be rigid and stationary during shooting. However, the environment image of the target environment area such as the water surface area has no texture (or too few textures), specular reflection, and certain fluidity, which basically violates the above requirements. Therefore, if most of the image area is covered by water or similar areas , Then the image may not be able to extract the feature points or the feature point matching fails, and the corresponding camera parameters cannot be recovered, and the 3D points and their elevation values at the relevant positions cannot be obtained. Therefore, there are some problems when constructing the initial DSM. The empty area.
在构建得到初始DSM后,可以在S102中确定所述初始数字地表模型中的空洞区域,其中,在所述空洞区域内包括高程值异常的格网单元;在异常格网单元内没有记录高程值。在一个实施例中,可以通过连通区域搜索检测规则从所述初始DSM中确定出空洞区域,在通过连通区域检测确定了一个或者多个空洞区域后,可以将其中的面积较大的区域作为需要进行处理的空洞区域,也就是说,确定的空洞区域在初始数字地表模型上的空洞面积大于预设的空洞面积阈值,在确定出一个或者多个空洞区域后,可以标记空洞边界,以便于后续可以基于该空洞边界来确定该空洞区域是否为预设类型。After the initial DSM is constructed, the hole area in the initial digital surface model can be determined in S102, wherein the hole area includes grid cells with abnormal elevation values; no elevation value is recorded in the abnormal grid cells . In one embodiment, a hole area can be determined from the initial DSM through a connected area search and detection rule. After one or more hole areas are determined through the connected area detection, the area with a larger area can be used as the required area. The void area to be processed, that is, the void area of the determined void area on the initial digital surface model is greater than the preset void area threshold. After one or more void regions are determined, the boundary of the void can be marked for subsequent follow-up It can be determined whether the cavity area is a preset type based on the cavity boundary.
在确定出空洞区域后,所述图像处理设备在S103中在确定所述空洞区域所对应的环境区域的类型为预设类型时,确定所述初始数字地表模型上所述空洞区域的邻接区域中各格网单元的高程值。并且在S104中根据邻接区域中各格网单元的高程值,更新所述空洞区域中的格网单元的高程值,得到数字地表模型。After determining the cavity area, the image processing device determines in S103 that the type of the environment area corresponding to the cavity area is a preset type, and then determines that the area adjacent to the cavity area on the initial digital surface model The elevation value of each grid cell. And in S104, according to the elevation value of each grid unit in the adjacent area, the elevation value of the grid unit in the hollow area is updated to obtain a digital surface model.
在一个实施例中,所述S104具体可以包括:根据邻接区域中各格网单元的高程值按照第一确认规则,确定得到的高程更新值;将所述高程更新值作为所述空洞区域中的格网单元的高程值。在一个实施例中,所述的第一确认规则可以是指上述提及的:将所有邻接格网单元的高程值的最小值,或者将从所有邻接格网单元的高程值中确定的中间值集合中的任意一个值,或者将根据所有邻接格网单元的高程值的平均值,来作为所述空洞区域中的格网单元的高程更新值。In an embodiment, the S104 may specifically include: determining the obtained elevation update value according to the elevation value of each grid cell in the adjacent area according to the first confirmation rule; and using the elevation update value as the elevation value in the hollow area The elevation value of the grid cell. In an embodiment, the first confirmation rule may refer to the above-mentioned: the minimum value of the elevation values of all adjacent grid cells, or the intermediate value determined from the elevation values of all adjacent grid cells Any one value in the set, or the average value of the elevation values of all adjacent grid cells, will be used as the updated elevation value of the grid cells in the hollow area.
在一个实施例中,在得到一个或者多个空洞区域后,针对每一个空洞区域,图像处理设备可以检测各个确定出的空洞区域所对应的环境区域是否为预设类型。预设类型主要是指上述提及的没有纹理(或者纹理过少)、存在镜面反射、且有一定的流动性等特征的区域类型,预设类型主要包括水面区域的类型。也就是说,在一个实施例中,若分析得到空洞区域所对应环境区域为水面区域,则可以认为所述空洞区域所对应的环境区域的类型为预设类型。In one embodiment, after obtaining one or more cavity areas, for each cavity area, the image processing device may detect whether the environmental area corresponding to each determined cavity area is a preset type. The preset type mainly refers to the above-mentioned area type without texture (or too little texture), specular reflection, and certain fluidity. The preset type mainly includes the type of water surface area. That is to say, in one embodiment, if the environmental area corresponding to the cavity area is analyzed to be a water surface area, it can be considered that the type of the environmental area corresponding to the cavity area is a preset type.
检测空洞区域所对应的环境区域是否为预设类型的方式有多种,在一个简单的实施例中,可以基于飞行器等移动平台在拍摄得到图像集合时的GPS位置坐标,结合区域地图来判断飞行器的下方是否存在较大面积的水域,若是,则认为所述空洞区域所对应的环境区域的类型为预设类型。There are many ways to detect whether the environmental area corresponding to the cavity area is of the preset type. In a simple embodiment, the aircraft can be judged based on the GPS position coordinates of the mobile platform such as the aircraft when the image collection is captured and combined with the area map. Whether there is a larger area of water area below, if so, it is considered that the type of the environmental area corresponding to the cavity area is a preset type.
在一个实施例中,为了保证检测的准确性,可以通过图像分析识别来确定空洞区域所对应的环境区域是否为预设类型。在一个实施例中,确定所述初始数字地表模型中的空洞区域之后,如图2所示,图像处理设备分别检测各个确定出的空洞区域所对应的环境区域是否为预设类型时可以包括:S201在所述图像集合的目标环境图像中确定映射区域,所述映射区域是所述空洞区域在所述目标环境图像上的投影;S202对所述目标环境图像中的映射区域进行图像分析,并根据分析结果确定所述空洞区域所对应的环境区域的类型是否为预设类型。也就是说,将空洞区域投影到图像集合中的某一个或者多个环境图像上,进而基于成熟的图像分析技术来确定空洞区域所对应的环境区域是否为预设区域,提高是否为预设类型的检测准确性,并提高了效率。而如果预设类型包括水面区域的类型,则在所述图像分析的分析结果为所述映射区域为水面区域时,所述空洞区域所对应的环境区域的类型为预设类型。In one embodiment, in order to ensure the accuracy of detection, it can be determined by image analysis and recognition whether the environmental area corresponding to the cavity area is a preset type. In one embodiment, after determining the cavity area in the initial digital surface model, as shown in FIG. 2, the image processing device separately detecting whether the environmental area corresponding to each determined cavity area is a preset type may include: S201 determines a mapping area in the target environment image of the image set, where the mapping area is the projection of the cavity area on the target environment image; S202 performs image analysis on the mapping area in the target environment image, and According to the analysis result, it is determined whether the type of the environmental area corresponding to the cavity area is a preset type. That is to say, the cavity area is projected onto one or more environmental images in the image collection, and then based on mature image analysis technology, it is determined whether the environmental area corresponding to the cavity area is a preset area, and whether it is a preset type. The detection accuracy and efficiency are improved. If the preset type includes the type of the water surface area, when the analysis result of the image analysis is that the mapping area is a water surface area, the type of the environmental area corresponding to the cavity area is the preset type.
在检测空洞区域在目标环境区域中对应的环境区域是否为预设区域时,在本发明实施例中对目标环境区域的图像集合中的环境图像进行了分类,不同类别的环境图像,作为目标环境图像进行图像分析时,采用不同的分析逻辑来确认空洞区域对应的环境区域是否为预设区域。在进行空洞区域到目标环境图像的投影时,也根据不同类型的环境图像进行不同的投影处理。When detecting whether the environment area corresponding to the cavity area in the target environment area is a preset area, in the embodiment of the present invention, the environment images in the image collection of the target environment area are classified, and different types of environment images are used as the target environment During image analysis, different analysis logics are used to confirm whether the environmental area corresponding to the cavity area is a preset area. When projecting the cavity area to the target environment image, different projection processing is also performed according to different types of environment images.
在一个实施例中,所述S202包括:确定所述目标环境图像的图像类型;若所述目标环境图像的图像类型为第一类型,则分析所述目标环境图像中的映射区域的面积;当分析结果为所述映射区域的面积大于预设的面积阈值时,确定所述空洞区域所对应的环境区域的类型为预设类型。In an embodiment, the S202 includes: determining the image type of the target environment image; if the image type of the target environment image is the first type, analyzing the area of the mapping area in the target environment image; when When the analysis result is that the area of the mapping area is greater than the preset area threshold, it is determined that the type of the environmental area corresponding to the cavity area is the preset type.
在一个实施例中,所述确定所述目标环境图像的图像类型主要可以基于是否能够计算得到相机内参和相机外参作为依据,当在根据采集到的图像集合生成初始数字地表模型的过程中,不能够确定所述图像集合中的所述目标环境图像的相机内参和相机外参时,则所述目标环境图像的图像类型为第一类型。而当在根据采集到的图像集合生成初始数字地表模型的过程中,能够确定所述图 像集合中的所述目标环境图像的相机内参和相机外参时,则所述目标环境图像的图像类型为第二类型。在一个实施例中,基于上述的SFM无法得到图像集合中某一个环境图像即目标环境图像的相机内参和相机外参,则该目标环境图像为第一类型,若能够得到该目标环境图像的相机内参和相机外参,则该目标环境图像为第二类型。In one embodiment, the determination of the image type of the target environment image may be based mainly on whether the camera internal parameters and the camera external parameters can be calculated as a basis. In the process of generating the initial digital surface model based on the collected image set, When the internal camera parameters and external camera parameters of the target environment image in the image collection cannot be determined, the image type of the target environment image is the first type. And when in the process of generating the initial digital surface model based on the collected image collection, the camera internal parameters and camera external parameters of the target environment image in the image collection can be determined, then the image type of the target environment image is The second type. In one embodiment, based on the above-mentioned SFM, the camera internal parameters and camera external parameters of a certain environment image in the image set, namely the target environment image, cannot be obtained, then the target environment image is the first type. If the camera of the target environment image can be obtained Internal parameters and external camera parameters, the target environment image is of the second type.
进一步地,若所述目标环境图像的图像类型为第一类型,则所述在所述图像集合的目标环境图像中确定映射区域,包括:根据拍摄所述目标环境图像时的拍摄参数,设置所述目标环境图像的相机内参和相机外参;根据为所述目标环境图像设置的相机内参和相机外参,确定所述空洞区域在所述目标环境图像上的映射区域。Further, if the image type of the target environment image is the first type, the determining the mapping area in the target environment image of the image set includes: setting the target environment image according to the shooting parameters when shooting the target environment image. The camera internal parameters and camera external parameters of the target environment image; and the mapping area of the cavity area on the target environment image is determined according to the camera internal parameters and the camera external parameters set for the target environment image.
也就是说,对SfM中没有恢复出来相机内外参的图像直接用图像自带的参数信息来设置相机内外参数,然后基于相应的相机内参和相机外外将空洞边界投影到这些目标环境图像上,根据空洞边界投影到目标环境图像后,在这些目标环境图像上圈出的一个映射区域的面积来判别该映射区域是否属于水面区域等预设类型。That is to say, for the image that has not recovered the internal and external parameters of the camera in SfM, directly use the parameter information that comes with the image to set the internal and external parameters of the camera, and then project the void boundary on these target environment images based on the corresponding internal and external camera parameters. According to the area of a mapping area circled on the target environment images after the boundary of the cavity is projected onto the target environment image, it is judged whether the mapping area belongs to a preset type such as a water surface area.
在一个实施例中,所述根据拍摄所述目标环境图像时的拍摄参数,设置所述目标环境图像的相机内参和相机外参,包括:根据拍摄所述目标环境图像时的相机焦距信息和像主点信息设置所述目标环境图像的相机内参;根据拍摄所述目标环境图像时的相机定位信息来设置相机的平移向量,并根据拍摄所述目标环境图像时的云台角信息来设置相机的旋转矩阵;根据所述平移向量和所述旋转矩阵设置所述目标环境图像的相机外参。In one embodiment, the setting the camera internal parameters and camera external parameters of the target environment image according to the shooting parameters when the target environment image is taken includes: according to the camera focal length information and the image when the target environment image is taken. The main point information sets the camera internal parameters of the target environment image; the camera's translation vector is set according to the camera positioning information when the target environment image is taken, and the camera's translation vector is set according to the pan/tilt angle information when the target environment image is taken. Rotation matrix; set the camera external parameters of the target environment image according to the translation vector and the rotation matrix.
对于上述提及的将空洞区域投影到目标环境图像上,确定目标环境图像上的映射区域,实际是基于图像采集设备的相机内参和相机外参,对空洞区域的空洞边界上的点在坐标系之间进行转换来确定的。初始DSM上的点可以是大地坐标系下的点,根据大地坐标系和世界坐标系的对应关系,可将大地坐标系下的点投影到世界坐标系,确定空洞区域的映射区域主要是将世界坐标系下的三维点,经过坐标系转换,映射到图像坐标系下。在某些场景下,也可以不需要将初始DSM上的点转换到世界坐标系下,在确定空洞区域的映射区域时,直接将大地坐标系下DSM的空洞区域上的点,从大地坐标系转换到图像坐标系下,即可在相应的目标环境图像上确定出映射区域。For the above-mentioned projection of the cavity area on the target environment image, the determination of the mapping area on the target environment image is actually based on the camera internal parameters and camera external parameters of the image acquisition device, and the points on the cavity boundary of the cavity area are in the coordinate system To determine the conversion between. The points on the initial DSM can be points in the geodetic coordinate system. According to the corresponding relationship between the geodetic coordinate system and the world coordinate system, the points in the geodetic coordinate system can be projected to the world coordinate system, and the mapping area of the cavity area is mainly determined by the world The three-dimensional points in the coordinate system are transformed into the image coordinate system after coordinate system conversion. In some scenarios, it is not necessary to convert the points on the initial DSM to the world coordinate system. When determining the mapping area of the cavity area, directly convert the points on the cavity area of the DSM under the geodetic coordinate system from the geodetic coordinate system. Converted to the image coordinate system, the mapping area can be determined on the corresponding target environment image.
图像坐标系上的任意像点(u,v)(也就是目标环境图像上的某个像素点)在像空间坐标系下的坐标为(u,v,f)。世界坐标系以北方向为x轴,东方向y轴,重力反方向为z轴,利用RTK(经度、纬度、海拔高程)定位信息可获得直角坐标系下的坐标(x,y,z)和云台角(俯仰α、横滚β、平移γ),通过以下公式可以转换为从世界坐标系到像空间坐标系的旋转矩阵R和平移变换矩阵T,而从像空间坐标系到世界坐标系的旋转矩阵为r=R -1,平移矩阵t=(x,y,z) T。旋转矩阵和平移矩阵即为相机外参。像空间坐标系下的点转换到世界坐标系X=r.(u,v,f)+t。反之,世界坐标系中的三维点转换到相机所在的像空间坐标系中的转换公式即为:(u,v,f)=R.X+T,进而可以转换投影得到图像坐标系上的点(u,v),确定空洞边界的格网单元在目标环境图像上的像素位置。 The coordinates of any image point (u, v) on the image coordinate system (that is, a certain pixel on the target environment image) in the image space coordinate system are (u, v, f). The world coordinate system uses the x-axis in the north direction, the y-axis in the east direction, and the z-axis in the opposite direction of gravity. Using RTK (longitude, latitude, altitude) positioning information, the coordinates (x, y, z) and PTZ angle (pitch α, roll β, translation γ) can be converted into a rotation matrix R and a translation transformation matrix T from the world coordinate system to the image space coordinate system by the following formula, and from the image space coordinate system to the world coordinate system The rotation matrix of r=R -1 , and the translation matrix t=(x,y,z) T. The rotation matrix and translation matrix are the external camera parameters. The point in the image space coordinate system is converted to the world coordinate system X=r.(u,v,f)+t. Conversely, the conversion formula for converting a three-dimensional point in the world coordinate system to the image space coordinate system where the camera is located is: (u, v, f) = R.X+T, and then the point on the image coordinate system can be converted and projected (u, v), determine the pixel position of the grid unit at the boundary of the hole on the target environment image.
Figure PCTCN2019077896-appb-000001
Figure PCTCN2019077896-appb-000001
T=-R(α,β,γ)*(x,y,z) T T=-R(α, β, γ)*(x, y, z) T
在一个实施例中,所述S202还可以包括:确定所述目标环境图像的图像类型;若所述图像类型为第二类型,则调用预设的类型识别模型对所述目标环境图像进行分析识别;根据所述类型识别模型输出的分析结果确定所述空洞区域所对应的环境区域的类型是否为预设类型。In an embodiment, the S202 may further include: determining the image type of the target environment image; if the image type is the second type, calling a preset type recognition model to analyze and recognize the target environment image ; Determine whether the type of the environmental area corresponding to the cavity area is a preset type according to the analysis result output by the type recognition model.
进一步地,在一个实施例中,若所述目标环境图像的图像类型为第二类型,则所述在所述图像集合的目标环境图像中确定映射区域,包括:将在根据采集到的图像集合生成初始数字地表模型的过程中所确定的所述目标环境图像的相机内参和相机外参,设置为所述目标环境图像的相机内参和相机外参;根据为所述目标环境图像设置的相机内参和相机外参,确定所述空洞区域在所述目标环境图像上的映射区域。在此情况下,相机内参和相机外参例如可以是基于上述提及的SfM算法计算得到的。针对第二类型的目标环境图像,图像处理设备是将空洞边界投影到这些能够基于SfM算法等正常恢复相机内参和相机外参的目标环境图像上,结合第二类型的目标环境图像的纹理信息和空洞区域的结构信息,通过由机器学习方法生成的类型识别模型来判别空洞边界在图像上圈出的区域是否属于水域。Further, in one embodiment, if the image type of the target environment image is the second type, the determining the mapping area in the target environment image of the image collection includes: The internal camera parameters and external camera parameters of the target environment image determined in the process of generating the initial digital surface model are set as the camera internal parameters and camera external parameters of the target environment image; according to the camera internal parameters set for the target environment image And external camera parameters to determine the mapping area of the cavity area on the target environment image. In this case, the camera internal parameters and the camera external parameters may be calculated based on the aforementioned SfM algorithm, for example. For the second type of target environment image, the image processing equipment projects the boundary of the hole on the target environment image that can restore the camera internal and external camera parameters normally based on the SfM algorithm, etc., and combines the texture information and texture information of the second type of target environment image. The structural information of the cavity area is determined by the type recognition model generated by the machine learning method to determine whether the area circled by the cavity boundary on the image belongs to the water area.
在一个实施例中,所述类型识别模型是根据所述目标环境图像的纹理特征信息和所述空洞区域的结构信息,分析得到所述空洞区域所对应的环境区域的类型。其中,在一个实施例中,所述目标环境图像的纹理特征信息包括:所述目标环境图像中映射区域的像素颜色特征;所述空洞区域的结构信息包括:所述空洞区域的邻接区域的高程值特征、和/或所述空洞区域的面积特征。所述类型识别模型可以是一个二分类模型,基于存在水面区域等预设类型的环境图像及其DSM的空洞区域的结构信息的正样本训练数据库、和不存在水面区域等预设类型的环境图像及其DSM的空洞区域的结构信息的负样本训练数据库来对一个初始类型识别模型进行优化训练,得到最终的类型识别模型。In one embodiment, the type recognition model analyzes and obtains the type of the environment area corresponding to the cavity area based on the texture feature information of the target environment image and the structure information of the cavity area. Wherein, in one embodiment, the texture feature information of the target environment image includes: the pixel color feature of the mapping area in the target environment image; the structure information of the cavity area includes: the elevation of the adjacent area of the cavity area Value characteristics, and/or area characteristics of the void area. The type recognition model may be a two-classification model based on a positive sample training database based on the structure information of a preset type of environmental image such as a water surface area and the structural information of the hollow area of the DSM, and a preset type of environmental image such as no water surface area. The negative sample training database of the structural information of the hollow area of its DSM is used to optimize an initial type recognition model to obtain the final type recognition model.
在其他实施例中,初始DSM中还可能存在其他的不属于预设类型的空洞区域,在此情况下,按照第二确认规则对邻接区域中各格网单元的高程值进行计算,得到多个高程更新值;将得到的多个高程更新值作为所述其他的不属于预设类型的空洞区域中的格网单元的高程值。所述的第二确认规则可以是指现有的一些填补DSM中空洞区域的规则,或者是默认填充的规则,所述第二确认规则还可以是不对这些其他的空洞区域进行高程值更新,这些空洞区域内的高程值仍然异常。In other embodiments, there may be other void areas that do not belong to the preset type in the initial DSM. In this case, the elevation value of each grid cell in the adjacent area is calculated according to the second confirmation rule to obtain multiple Elevation update value; the obtained multiple elevation update values are used as the elevation values of the grid cells in the other void areas that do not belong to the preset type. The second confirmation rule may refer to some existing rules for filling the hollow areas in the DSM, or the default filling rules. The second confirmation rule may also be that the elevation values of these other hollow areas are not updated. The elevation value in the cavity area is still abnormal.
本发明实施例中,在根据环境图像生成初始的数字地表模型后,如果初始的数字地表模型存在面积较大的空洞区域,可以基于这些空洞区域反过来在环境图像上进行投影,基于环境图像上空洞区域的投影区域来确定这些空洞区域是否是由水面等环境区域造成的,如果是,则采用相邻的邻接区域来对空洞区域的高程值进行更新得到最终的DSM。一方面,可以得到较为完整的DSM,另一方面,水面区域等相对地势较平的区域基于邻接区域的高程值作为参考进行更新也使得最终得到的DSM更准确。In the embodiment of the present invention, after the initial digital surface model is generated based on the environmental image, if the initial digital surface model has large void areas, it can be projected on the environmental image based on these void areas. The projection area of the cavity area is used to determine whether these cavity areas are caused by environmental areas such as the water surface. If so, the adjacent adjacent areas are used to update the elevation value of the cavity area to obtain the final DSM. On the one hand, a relatively complete DSM can be obtained. On the other hand, relatively flat areas such as water surface areas are updated based on the elevation values of adjacent areas as a reference, which makes the final DSM more accurate.
再请参见图3,是本发明实施例的数字地表模型构建的其中一种具体实施方式的示意图,同时结合图4对本发明实施例的初始DSM进行说明,并且可以理解的是,图4所示的初始DSM仅仅是一个用于对本发明实施例的初始DSM上各个特殊区域、格网单元的简要的示意性说明,并不代表实际的DSM。本发明实施例中,构建数字地表模型同样可以由上述提及的图像处理设备来实现。在本发明实施例中,构建过程包括以下步骤。Please refer to FIG. 3 again, which is a schematic diagram of one of the specific implementations of the construction of the digital surface model of the embodiment of the present invention. At the same time, the initial DSM of the embodiment of the present invention will be described in conjunction with FIG. 4, and it is understandable that FIG. The initial DSM is only a brief schematic description of each special area and grid unit on the initial DSM of the embodiment of the present invention, and does not represent an actual DSM. In the embodiment of the present invention, the construction of the digital surface model can also be implemented by the aforementioned image processing equipment. In the embodiment of the present invention, the construction process includes the following steps.
S301:通过无人机采集一组图像,得到目标环境区域的图像集合。S301: Collect a set of images by the drone to obtain an image set of the target environment area.
可选的,图像集合中的环境图像包含拍摄该环境图像时的RTK(经度、纬度、海拔高程)和云台角(旋转角、俯仰角、偏航角)信息,以及拍摄装置出厂前标定的相机内参信息,这些信息可以记录在对应环境图像的预设字段,示例的,可以是一个扩展的XMP字段。Optionally, the environment image in the image collection includes RTK (longitude, latitude, altitude) and pan/tilt angle (rotation angle, pitch angle, yaw angle) information when the environment image was taken, and the camera calibration before leaving the factory Camera internal parameter information, which can be recorded in a preset field corresponding to the environment image, for example, it can be an extended XMP field.
S302:通过SfM来估计图像集合中各个环境图像对应的相机内外参数,即上述提及的相机内参和相机外参。S302: Estimate the internal and external camera parameters corresponding to each environmental image in the image set by SfM, that is, the aforementioned camera internal parameters and camera external parameters.
S303:根据估计的相机内参和相机外参,进行多影像密集匹配得到场景的稠密点云,并划分格网单元得到目标环境区域的初始DSM。步骤S301到S303对应于上述实施例中提及的根据采集到的图像集合生成初始数字地表模型的步骤。基于相机内参和相机外参得到稠密点云并得到初始DSM可以采用一些现有的实施方式,或者说,构建DSM可以采用现有方式实现。S303: According to the estimated camera internal parameters and camera external parameters, perform dense matching of multiple images to obtain a dense point cloud of the scene, and divide grid units to obtain an initial DSM of the target environment area. Steps S301 to S303 correspond to the steps of generating an initial digital surface model according to the collected image set mentioned in the above embodiment. Based on the camera internal parameters and the camera external parameters to obtain a dense point cloud and obtain the initial DSM, some existing implementation methods can be used, or in other words, the construction of the DSM can be implemented in an existing method.
S304:将初始DSM中不包含稠密点的格网单元标记为空洞区域。S304: Mark grid cells that do not contain dense points in the initial DSM as hollow areas.
S305:对初始DSM进行去噪处理。针对初始DSM中的空洞区域包含的一些孤立噪声点,用一个中值滤波器过滤初始DSM中的噪声。上述的步骤S304和S305与上一实施例中的确定所述初始数字地表模型中的空洞区域的步骤相对应。S305: Perform denoising processing on the initial DSM. Aiming at some isolated noise points contained in the hole region in the initial DSM, a median filter is used to filter the noise in the initial DSM. The above steps S304 and S305 correspond to the step of determining the void area in the initial digital surface model in the previous embodiment.
S306:确定初始DSM中的空洞区域。以空洞区域中的某个格网点出发,进行连通区域搜索来检测DSM中所有的空洞区域,并记录每个空洞区域的面积,将其中面积大于一定阈值T的空洞区域挑选出来,记为H big,并标记空洞的边界格网单元M edge。如图4所示,每一个格子代表初始DSM的一个格网单元,其中,填充为白色的部分为记录有高程值的格网单元构成的正常区域401,填充为灰色的格子为没有记录高程值格网单元,即空洞区域对应的格网单元。这些格网单元构成了空洞区域402和空洞区域403、404等。其中,空洞区域402的面积大于一定的阈值T,因此,空洞区域402为上述所说的H big。而空洞区域403、404可以不作处理或者按照现有的一些方式进行高程值填充处理。而在空洞区域402中,被以“十”字填充的部格网单元为边界格网单元4021,即M edgeS306: Determine the void area in the initial DSM. Starting from a grid point in the cavity area, a connected area search is performed to detect all the cavity areas in the DSM, and the area of each cavity area is recorded, and the cavity areas with an area greater than a certain threshold T are selected and recorded as H big , And mark the boundary grid cell M edge of the hole. As shown in Figure 4, each grid represents a grid cell of the initial DSM, where the part filled in white is the normal area 401 formed by grid cells with recorded elevation values, and the grid filled in gray means no elevation values are recorded. The grid unit is the grid unit corresponding to the void area. These grid cells constitute a hollow area 402 and hollow areas 403, 404 and so on. Wherein, the area of the cavity region 402 is greater than a certain threshold T, and therefore, the cavity region 402 is the aforementioned H big . The void areas 403 and 404 may not be processed or the elevation value filling processing may be performed according to some existing methods. In the hollow area 402, the partial grid cell filled with "cross" is the boundary grid cell 4021, that is, M edge .
S307:确定SfM中没有恢复得到相机内参和相机外参的图像(记为I lose),即:第一类型的目标环境图像,并对其进行空洞区域的投影处理,以确定空洞区域对应的环境区域是否为预设类型。 S307: Determine that the images of the camera internal parameters and camera external parameters are not recovered in the SfM (denoted as I lose ), that is: the first type of target environment image, and perform projection processing on the cavity area to determine the environment corresponding to the cavity area Whether the area is a preset type.
其中,直接用图像自带的焦距f和像主点坐标来设置相机内参矩阵。可选的,图像自带的焦距和像主点坐标可以在图像被拍摄时自动存储在该被拍摄图像的XMP字段,在使用时可直接提取获得。相机内参即:Among them, directly use the image's own focal length f and the principal point coordinates to set the camera internal parameter matrix. Optionally, the focal length and principal point coordinates of the image can be automatically stored in the XMP field of the captured image when the image is captured, and can be directly extracted and obtained during use. The camera internal reference is:
Figure PCTCN2019077896-appb-000002
其中,cx=ImageWidth/2,cy=ImageHeight/2。
Figure PCTCN2019077896-appb-000002
Among them, cx=ImageWidth/2, cy=ImageHeight/2.
用RTK信息来设置相机的平移向量t、用云台角来设置相机的旋转矩阵R,然后根据相机内外参数得到投影矩阵P=[R∣t]。根据投影矩阵可以确定相机的外参。根据相机内参和相机外参可将空洞区域的边界格网单元M edge投影到图像I lose上得到图像二维点:m edge=P.M edge,计算m edge圈出的区域的像素数,如果占图像总像素数(该总像素数可以认为是映射区域的面积)的比例大于某一阈值,则判定为水面区域,确定空洞区域的类型为预设类型。 Use RTK information to set the camera's translation vector t, use the pan/tilt angle to set the camera's rotation matrix R, and then get the projection matrix P=[R∣t] according to the camera's internal and external parameters. The external parameters of the camera can be determined according to the projection matrix. According to the camera internal parameters and camera external parameters, the boundary grid unit M edge of the cavity area can be projected onto the image I lose to obtain the two-dimensional point of the image: m edge =PM edge , calculate the number of pixels in the area circled by m edge , if it occupies the image If the ratio of the total number of pixels (the total number of pixels can be considered as the area of the mapping area) is greater than a certain threshold, it is determined as a water surface area, and the type of the cavity area is determined to be a preset type.
S308:确定SfM中恢复得到相机内参和相机外参的目标环境图像,也即第二类型的目标环境图像,基于分类器对能够恢复出相机内参和相机外参的图像进行分类,确定空洞区域对应的环境区域是否属于预设类型。S308: Determine the target environment image of the camera internal parameters and the camera external parameters recovered in SfM, that is, the second type of target environment image, classify the images that can recover the camera internal parameters and the camera external parameters based on the classifier, and determine the corresponding cavity area Whether the environment area of the is of the preset type.
预设类型包括水面区域的类型,在一个实施例中,可以预训练一个用于判别空洞区域是否属于水面区域的支持向量机(Support Vector Machines,SVM)分类器,方法如下:首先收集正样本的DSM,在正样本的DSM上的空洞区域对应的环境区域为水面区域;并收集负样本的DSM,在负样本的DSM上的空洞区域对应的环境区域不为水面区域。根据正样本和负样本对应的DSM分别统计正样本和负样本的空洞区域的边界格网单元M e的高程值,计算得到边界高程方差,记为E variance,另外分别统计正样本和负样本的空洞区域的面积,记为S hole。将M e投影到SfM中成功恢复相机内参和相机外参的目标环境图像(记为I success)上,统计投影在目标环境图像上的二维点圈出的图像区域(即空洞区域的映射区域)的像素颜色,计算颜色中值(R median,G median,B median)和方差(R variance,G variance,B variance);将得到的所述边界高程方差E variance、所述空洞区域的面积S hole、所述颜色中值及方差组合成一个8维特征向量,即: The preset type includes the type of the water surface area. In one embodiment, a Support Vector Machines (SVM) classifier used to determine whether the cavity area belongs to the water surface area can be pre-trained. The method is as follows: first collect positive samples DSM, the environmental area corresponding to the void area on the DSM of the positive sample is the water surface area; and the DSM of the negative sample is collected, and the environmental area corresponding to the void area on the DSM of the negative sample is not the water surface area. The positive and negative samples corresponding to DSM statistics were elevation value of the boundary grid cells M e of the positive and negative samples in the cavity area, calculated border height variance, referred to as E variance, additional statistics were positive and negative samples of The area of the void area is denoted as S hole . The target is projected onto the surrounding image M e SfM successfully recover the camera and the camera external parameters of the internal control (referred to as I success), the two-dimensional projection image area statistics circled points on the image of the target environment (i.e., the mapping region void region ), calculate the color median (R median , G median , B median ) and variance (R variance , G variance , B variance ); the boundary elevation variance E variance , the area S of the cavity area will be obtained Hole , the color median and variance are combined into an 8-dimensional feature vector, namely:
V hole=(E variance,S hole,R median,G median,B median,R variance,G variance,B variance)。 V hole = (E variance , S hole , R median , G median , B median , R variance , G variance , B variance ).
再根据V hole训练SVM分类器,在通过大量的正样本和负样本后可以优化训练得到类型识别模型。 Then train the SVM classifier according to V hole . After passing a large number of positive samples and negative samples, the type recognition model can be optimized and trained.
在训练得到类型识别模型中,根据能够恢复得到相机内参和相机外参的目标环境图像、对应的DSM中空洞区域,计算得到特征向量V hole,输入到上述提及的SVM分类器即类型识别模型中判别空洞区域是否属于水面区域,若是,即确定空洞区域对应的环境区域为预设类型。 In the type recognition model obtained by training, the feature vector V hole is calculated according to the target environment image that can recover the camera internal parameters and the camera external parameters, and the corresponding DSM hollow area, which is input to the aforementioned SVM classifier, the type recognition model In the process of determining whether the cavity area belongs to the water surface area, if so, it is determined that the environmental area corresponding to the cavity area is a preset type.
S309:在确定了所述空洞区域所对应的环境区域的类型为预设类型,则确定所述初始数字地表模型上所述空洞区域的邻接区域中各格网单元的高程值。如图4所示,填充为白色且被多个斜线标记的格网单元构成了邻接区域405。邻接区域405中的各个格网单元存在高程值,可以以这些格网单元的高程值为参考更新空洞区域402中各个格网单元的高程值。仍然需要说明的是,图4仅为举例,邻接区域405的区域面积可以更大,覆盖的格网单元可以更多。S309: After determining that the type of the environmental area corresponding to the cavity area is a preset type, determine the elevation value of each grid cell in the adjacent area of the cavity area on the initial digital surface model. As shown in FIG. 4, the grid cells filled in white and marked by a plurality of diagonal lines constitute an adjacent area 405. Each grid cell in the adjacent area 405 has an elevation value, and the elevation value of each grid cell in the hollow area 402 can be updated with reference to the elevation value of these grid cells. It should still be noted that FIG. 4 is only an example, and the area of the adjacent area 405 may be larger, and more grid cells may be covered.
上述的S306至S309与上一实施例中提及的检测空洞区域所对应的环境区域的类型是否为预设类型、以及若所述空洞区域所对应的环境区域的类型为预设类型,则确定所述初始数字地表模型上所述空洞区域的邻接区域中各格网单元的高程值的步骤对应。Whether the type of the environmental area corresponding to the above-mentioned S306 to S309 and the detection cavity area mentioned in the previous embodiment is the preset type, and if the type of the environmental area corresponding to the cavity area is the preset type, it is determined The steps corresponding to the elevation value of each grid cell in the adjacent area of the cavity area on the initial digital surface model.
S310:对初始DSM的空洞区域中M edge的邻接区域中各格网单元的高程值进行排序,取其中较小的一个作为水域整体的高程值来填补空洞区域的高程值。例如,在100个高程值中,按从小到大排序后,取第10小的高程值用来填补空洞区域的高程值。又或是将邻接区域中个格网单元的高程值中出现的次数最多的高程值用来填补空洞区域的高程值。在步骤S310中主要是针对空洞区域402中的格网单元的更新填补。 S310: Sort the elevation values of the grid cells in the adjacent area of the M edge in the cavity area of the initial DSM, and take the smaller one as the elevation value of the entire water area to fill the elevation value of the cavity area. For example, among 100 elevation values, after sorting from smallest to largest, the 10th smallest elevation value is used to fill the elevation value of the void area. Or, the elevation value that appears most frequently among the elevation values of the grid cells in the adjacent area is used to fill the elevation value of the void area. In step S310, it is mainly aimed at updating and filling the grid cells in the hole region 402.
S311:以其他空洞区域的空洞边界作为种子点通过区域增长的方法来填补DSM中剩余的小空洞。所述S310和S311对应于上一实施例中的根据邻接区域中各格网单元的高程值,更新所述空洞区域中的格网单元的高程值,得到数字地表模型的步骤。在S311中主要是针对空洞区域403、404等小面积的空洞区域的填补方式,所述空洞区域的空洞边界例如可以是指空洞区域403左边的存在高程值的格网单元,而区域增长的方法例如可以是:空洞区域403中左边开始第一个格网单元的高程值被更新为空洞边界的高程值,第二个格网单元的高程值为在第一个格网单元的更新高程值上加上一个阈值后得到的值。S311: Use the void boundaries of other void regions as seed points to fill the remaining small voids in the DSM through the method of region growth. The S310 and S311 correspond to the step of updating the elevation value of the grid unit in the hollow area according to the elevation value of each grid unit in the adjacent area in the previous embodiment to obtain a digital surface model. In S311, it is mainly a method of filling small-area void regions such as void regions 403 and 404. The void boundary of the void region may refer to, for example, a grid unit with an elevation value on the left side of the void region 403, and the method of region growth For example: the elevation value of the first grid cell from the left in the hole area 403 is updated to the elevation value of the hole boundary, and the elevation value of the second grid cell is on the updated elevation value of the first grid cell The value obtained after adding a threshold.
S312:根据DSM对每张图像进行正射影像纠正,再将纠正的正射影像进行镶嵌融合得到整体的真正射影像。基于较为完整的DSM生成真正射影像的 方式在此不赘述。S312: Perform orthoimage correction on each image according to the DSM, and then mosaic and fuse the corrected orthoimage to obtain the overall true image. The method of generating real radio images based on a relatively complete DSM will not be repeated here.
本发明实施例中,在根据环境图像生成初始的数字地表模型后,如果初始的数字地表模型存在面积较大的空洞区域,可以基于这些空洞区域反过来在环境图像上进行投影,基于环境图像上空洞区域的投影区域来确定这些空洞区域是否是由水面等环境区域造成的,如果是,则采用相邻的邻接区域来对空洞区域的高程值进行更新得到最终的DSM。一方面,可以得到较为完整的DSM,另一方面,水面区域等相对地势较平的区域基于邻接区域的高程值作为参考进行更新也使得最终得到的DSM更准确。In the embodiment of the present invention, after the initial digital surface model is generated based on the environmental image, if the initial digital surface model has large void areas, it can be projected on the environmental image based on these void areas. The projection area of the cavity area is used to determine whether these cavity areas are caused by environmental areas such as the water surface. If so, the adjacent adjacent areas are used to update the elevation value of the cavity area to obtain the final DSM. On the one hand, a relatively complete DSM can be obtained. On the other hand, relatively flat areas such as water surface areas are updated based on the elevation values of adjacent areas as a reference, which makes the final DSM more accurate.
再请参见图5,是本发明实施例的一种图像处理设备的结构示意图,本发明实施例的所述图像处理设备主要包括:通信接口单元501、处理单元502。在一些实施例中,所述图像处理设备在硬件上可以根据需要包括多个功能单元,例如可以包括用户接口单元503、电池供电单元、充电单元、存储单元504等等。Please refer to FIG. 5 again, which is a schematic structural diagram of an image processing device according to an embodiment of the present invention. The image processing device of the embodiment of the present invention mainly includes a communication interface unit 501 and a processing unit 502. In some embodiments, the image processing device may include multiple functional units in hardware as required, for example, may include a user interface unit 503, a battery power supply unit, a charging unit, a storage unit 504, and so on.
其中,所述用户接口单元503可以用于接收用户输入并显示相应的数据、图像等内容的触摸显示屏,还可以包括一个物理按键、甚至鼠标输入等单元。所述通信接口单元501可以包括无线通信接口、有线通信接口。无线通信接口可以是WiFi接口、射频通信接口甚至移动通信接口(例如4G通信接口、5G通信接口等等),所述通信接口单元501用于接收环境图像等数据。Wherein, the user interface unit 503 may be used for a touch display screen that receives user input and displays corresponding data, images, etc., and may also include a physical button or even a mouse input unit. The communication interface unit 501 may include a wireless communication interface and a wired communication interface. The wireless communication interface may be a WiFi interface, a radio frequency communication interface or even a mobile communication interface (for example, a 4G communication interface, a 5G communication interface, etc.), and the communication interface unit 501 is used to receive data such as environmental images.
所述存储单元504可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储单元504也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),固态硬盘(solid-state drive,SSD)等;存储单元504还可以包括上述种类的存储器的组合。The storage unit 504 may include a volatile memory (volatile memory), such as a random-access memory (random-access memory, RAM); the storage unit 504 may also include a non-volatile memory (non-volatile memory), such as fast Flash memory (flash memory), solid-state drive (SSD), etc.; the storage unit 504 may also include a combination of the foregoing types of memories.
所述处理单元502可以是中央处理器(central processing unit,CPU)。所述处理单元502还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)等。上述PLD可以是现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)等。The processing unit 502 may be a central processing unit (CPU). The processing unit 502 may further include a hardware chip. The aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), etc. The above-mentioned PLD may be a field-programmable gate array (FPGA), a generic array logic (GAL), etc.
可选地,所述存储单元504还用于存储程序指令。所述处理单元502可以根据需要调用所述程序指令,分别实现如图1b、图2以及图3所对应实施例中的相关方法。具体的,所述处理单元502,用于根据采集到的图像集合生成初始数字地表模型;确定所述初始数字地表模型中的空洞区域,其中,在所述空洞区域内包括高程值异常的格网单元;若所述空洞区域所对应的环境区域的类型为预设类型,则确定所述初始数字地表模型上所述空洞区域的邻接区域中各格网单元的高程值;根据邻接区域中各格网单元的高程值,更新所述空洞区域中的格网单元的高程值,得到数字地表模型。Optionally, the storage unit 504 is also used to store program instructions. The processing unit 502 may call the program instructions as needed to implement the relevant methods in the corresponding embodiments in FIG. 1b, FIG. 2 and FIG. 3 respectively. Specifically, the processing unit 502 is configured to generate an initial digital surface model according to the collected image set; determine a hole area in the initial digital surface model, wherein the hole area includes a grid with abnormal elevation values Unit; if the type of the environmental area corresponding to the cavity area is a preset type, determine the elevation value of each grid cell in the adjacent area of the cavity area on the initial digital surface model; according to each grid in the adjacent area The elevation value of the grid unit is updated to obtain the digital surface model by updating the elevation value of the grid unit in the hollow area.
在一个实施例中,所述处理单元502,还用于在所述图像集合的目标环境图像中确定映射区域,所述映射区域是所述空洞区域在所述目标环境图像上的投影;对所述目标环境图像中的映射区域进行图像分析,并根据分析结果确定所述空洞区域所对应的环境区域的类型是否为预设类型。In one embodiment, the processing unit 502 is further configured to determine a mapping area in the target environment image of the image set, where the mapping area is a projection of the cavity area on the target environment image; Perform image analysis on the mapping area in the target environment image, and determine whether the type of the environment area corresponding to the cavity area is a preset type according to the analysis result.
在一个实施例中,所述处理单元502,用于若所述图像分析的分析结果为所述映射区域为水面区域,则所述空洞区域所对应的环境区域的类型为预设类型。In one embodiment, the processing unit 502 is configured to, if the analysis result of the image analysis is that the mapping area is a water surface area, the type of the environment area corresponding to the cavity area is a preset type.
在一个实施例中,所述处理单元502,用于:确定所述目标环境图像的图像类型;若所述目标环境图像的图像类型为第一类型,则分析所述目标环境图像中的映射区域的面积;当分析结果为所述映射区域的面积大于预设的面积阈值时,确定所述空洞区域所对应的环境区域的类型为预设类型。In one embodiment, the processing unit 502 is configured to: determine the image type of the target environment image; if the image type of the target environment image is the first type, analyze the mapping area in the target environment image When the analysis result is that the area of the mapping area is greater than the preset area threshold, it is determined that the type of the environmental area corresponding to the cavity area is the preset type.
在一个实施例中,当在根据采集到的图像集合生成初始数字地表模型的过程中,不能够确定所述图像集合中的所述目标环境图像的相机内参和相机外参时,则所述目标环境图像的图像类型为第一类型。In one embodiment, when in the process of generating the initial digital surface model based on the collected image collection, the internal camera parameters and external camera parameters of the target environment image in the image collection cannot be determined, then the target The image type of the environment image is the first type.
在一个实施例中,若所述目标环境图像的图像类型为第一类型,则所述处理单元502,用于根据拍摄所述目标环境图像时的拍摄参数,设置所述目标环境图像的相机内参和相机外参;根据为所述目标环境图像设置的相机内参和相机外参,确定所述空洞区域在所述目标环境图像上的映射区域。In one embodiment, if the image type of the target environment image is the first type, the processing unit 502 is configured to set the camera internal parameters of the target environment image according to the shooting parameters when shooting the target environment image And camera external parameters; according to the camera internal parameters and camera external parameters set for the target environment image, determine the mapping area of the cavity area on the target environment image.
在一个实施例中,所述处理单元502,用于根据拍摄所述目标环境图像时的相机焦距信息和像主点信息设置所述目标环境图像的相机内参;根据拍摄所述目标环境图像时的相机定位信息来设置相机的平移向量,并根据拍摄所述目标环境图像时的云台角信息来设置相机的旋转矩阵;根据所述平移向量和所述 旋转矩阵设置所述目标环境图像的相机外参。In one embodiment, the processing unit 502 is configured to set the camera internal parameters of the target environment image according to the camera focal length information and image principal point information when shooting the target environment image; The camera positioning information is used to set the camera's translation vector, and the camera's rotation matrix is set according to the pan/tilt angle information when the target environment image is taken; the camera outside of the target environment image is set according to the translation vector and the rotation matrix Participate.
在一个实施例中,所述处理单元502,用于确定所述目标环境图像的图像类型;若所述图像类型为第二类型,则调用预设的类型识别模型对所述目标环境图像进行分析识别;根据所述类型识别模型输出的分析结果确定所述空洞区域所对应的环境区域的类型是否为预设类型。In one embodiment, the processing unit 502 is configured to determine the image type of the target environment image; if the image type is the second type, call a preset type recognition model to analyze the target environment image Recognition; determining whether the type of the environmental area corresponding to the cavity area is a preset type according to the analysis result output by the type recognition model.
在一个实施例中,当在根据采集到的图像集合生成初始数字地表模型的过程中,能够确定所述图像集合中的所述目标环境图像的相机内参和相机外参时,则所述目标环境图像的图像类型为第二类型。In one embodiment, when in the process of generating the initial digital surface model according to the collected image collection, the internal camera parameters and external camera parameters of the target environment image in the image collection can be determined, then the target environment The image type of the image is the second type.
在一个实施例中,若所述目标环境图像的图像类型为第二类型,则所述处理单元502,用于将在根据采集到的图像集合生成初始数字地表模型的过程中所确定的所述目标环境图像的相机内参和相机外参,设置为所述目标环境图像的相机内参和相机外参;根据为所述目标环境图像设置的相机内参和相机外参,确定所述空洞区域在所述目标环境图像上的映射区域。In one embodiment, if the image type of the target environment image is the second type, the processing unit 502 is configured to combine the image determined in the process of generating the initial digital surface model according to the collected image set. The camera internal parameters and camera external parameters of the target environment image are set as the camera internal parameters and camera external parameters of the target environment image; according to the camera internal parameters and camera external parameters set for the target environment image, it is determined that the cavity area is in the The mapped area on the target environment image.
在一个实施例中,所述类型识别模型是根据所述目标环境图像的纹理特征信息和所述空洞区域的结构信息,分析得到所述空洞区域所对应的环境区域的类型。In one embodiment, the type recognition model analyzes and obtains the type of the environment area corresponding to the cavity area based on the texture feature information of the target environment image and the structure information of the cavity area.
在一个实施例中,所述目标环境图像的纹理特征信息包括:所述目标环境图像中映射区域的像素颜色特征;所述空洞区域的结构信息包括:所述空洞区域的邻接区域的高程值特征、和/或所述空洞区域的面积特征。In an embodiment, the texture feature information of the target environment image includes: the pixel color feature of the mapping area in the target environment image; the structure information of the cavity area includes: the elevation value feature of the adjacent area of the cavity area , And/or the area characteristics of the cavity area.
在一个实施例中,确定的空洞区域在初始数字地表模型上的空洞面积大于预设的空洞面积阈值。In one embodiment, the cavity area of the determined cavity area on the initial digital surface model is greater than a preset cavity area threshold.
在一个实施例中,所述空洞区域是根据连通区域搜索检测规则从所述初始数字地表模型中确定的。In an embodiment, the void area is determined from the initial digital surface model according to a connected area search detection rule.
在一个实施例中,所述处理单元502,用于根据邻接区域中各格网单元的高程值按照第一确认规则,确定得到的高程更新值;将所述高程更新值作为所述空洞区域中的格网单元的高程值。In one embodiment, the processing unit 502 is configured to determine the obtained elevation update value according to the elevation value of each grid unit in the adjacent area according to the first confirmation rule; use the elevation update value as the hole area The elevation value of the grid cell.
在一个实施例中,所述处理单元502,还用于若所述空洞区域所对应的环境区域的类型不为预设类型,则按照第二确认规则对邻接区域中各格网单元的高程值进行计算,得到多个高程更新值;将得到的多个高程更新值作为所述空洞区域中的格网单元的高程值。In one embodiment, the processing unit 502 is further configured to, if the type of the environmental area corresponding to the cavity area is not a preset type, perform a calculation of the elevation value of each grid cell in the adjacent area according to the second confirmation rule Perform calculations to obtain multiple elevation update values; and use the obtained multiple elevation update values as the elevation values of the grid cells in the hollow area.
本发明实施例中,所述处理单元的具体实现方式可参考前述实施例中相关内容的描述,在此不赘述。并且,所述处理单元在根据环境图像生成初始的数字地表模型后,如果初始的数字地表模型存在面积较大的空洞区域,可以基于这些空洞区域反过来在环境图像上进行投影,基于环境图像上空洞区域的投影区域来确定这些空洞区域是否是由水面等环境区域造成的,如果是,则采用相邻的邻接区域来对空洞区域的高程值进行更新得到最终的DSM。一方面,可以得到较为完整的DSM,另一方面,水面区域等相对地势较平的区域基于邻接区域的高程值作为参考进行更新也使得最终得到的DSM更准确。In the embodiment of the present invention, for the specific implementation of the processing unit, reference may be made to the description of the relevant content in the foregoing embodiment, which is not repeated here. In addition, after the processing unit generates the initial digital surface model based on the environmental image, if the initial digital surface model has large void areas, it can in turn project on the environmental image based on these void areas. The projection area of the cavity area is used to determine whether these cavity areas are caused by environmental areas such as the water surface. If so, the adjacent adjacent areas are used to update the elevation value of the cavity area to obtain the final DSM. On the one hand, a relatively complete DSM can be obtained. On the other hand, relatively flat areas such as water surface areas are updated based on the elevation values of adjacent areas as a reference, which makes the final DSM more accurate.
另外,本发明实施例还提供了一种图像处理系统,所述图像处理系统包括:移动平台和图像处理设备,所述移动平台上设置有图像采集设备;所述移动平台,用于通过所述图像采集设备在所述移动平台移动的过程中采集多个环境图像,并将采集到的所述多个环境图像发送给所述图像处理设备;所述图像处理设备,用于根据采集到的图像集合生成初始数字地表模型;确定所述初始数字地表模型中的空洞区域,其中,在所述空洞区域内包括高程值异常的格网单元;若所述空洞区域所对应的环境区域的类型为预设类型,则确定所述初始数字地表模型上所述空洞区域的邻接区域中各格网单元的高程值;根据邻接区域中各格网单元的高程值,更新所述空洞区域中的格网单元的高程值,得到数字地表模型。所述移动平台的示意图请参考图1所示,而所述图像处理设备是指图5所对应实施例中所示的图像处理设备。In addition, an embodiment of the present invention also provides an image processing system, the image processing system includes: a mobile platform and an image processing device, the mobile platform is provided with an image acquisition device; the mobile platform is used to pass the The image capture device captures multiple environmental images during the movement of the mobile platform, and sends the multiple captured environmental images to the image processing device; the image processing device is configured to collect images based on the Collectively generate an initial digital surface model; determine the cavity area in the initial digital surface model, wherein the cavity area includes grid cells with abnormal elevation values; if the type of the environmental area corresponding to the cavity area is pre- Set the type, determine the elevation value of each grid cell in the adjacent area of the cavity area on the initial digital surface model; update the grid cell in the cavity area according to the elevation value of each grid cell in the adjacent area The elevation value of, get the digital surface model. Please refer to FIG. 1 for a schematic diagram of the mobile platform, and the image processing device refers to the image processing device shown in the embodiment corresponding to FIG. 5.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。A person of ordinary skill in the art can understand that all or part of the processes in the above-mentioned embodiment methods can be implemented by instructing relevant hardware through a computer program. The program can be stored in a computer readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments. Wherein, the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。The above-disclosed are only some embodiments of the present invention, which of course cannot be used to limit the scope of rights of the present invention. Therefore, equivalent changes made according to the claims of the present invention still fall within the scope of the present invention.

Claims (33)

  1. 一种数字地表模型的构建方法,其特征在于,包括:A method for constructing a digital surface model, which is characterized in that it comprises:
    根据采集到的图像集合生成初始数字地表模型;Generate an initial digital surface model based on the collected image collection;
    确定所述初始数字地表模型中的空洞区域,其中,在所述空洞区域内包括高程值异常的格网单元;Determining a hollow area in the initial digital surface model, wherein the hollow area includes grid cells with abnormal elevation values;
    若所述空洞区域所对应的环境区域的类型为预设类型,则确定所述初始数字地表模型上所述空洞区域的邻接区域中各格网单元的高程值;If the type of the environmental area corresponding to the cavity area is a preset type, determining the elevation value of each grid cell in the adjacent area of the cavity area on the initial digital surface model;
    根据邻接区域中各格网单元的高程值,更新所述空洞区域中的格网单元的高程值,得到数字地表模型。According to the elevation value of each grid unit in the adjacent area, the elevation value of the grid unit in the hollow area is updated to obtain a digital surface model.
  2. 如权利要求1所述的方法,其特征在于,所述确定所述初始数字地表模型中的空洞区域之后,还包括:The method according to claim 1, wherein after determining the void area in the initial digital surface model, the method further comprises:
    在所述图像集合的目标环境图像中确定映射区域,所述映射区域是所述空洞区域在所述目标环境图像上的投影;Determining a mapping area in the target environment image of the image set, where the mapping area is a projection of the cavity area on the target environment image;
    对所述目标环境图像中的映射区域进行图像分析,并根据分析结果确定所述空洞区域所对应的环境区域的类型是否为预设类型。Perform image analysis on the mapping area in the target environment image, and determine whether the type of the environment area corresponding to the cavity area is a preset type according to the analysis result.
  3. 如权利要求2所述的方法,其特征在于,还包括:The method of claim 2, further comprising:
    若所述图像分析的分析结果为所述映射区域为水面区域,则所述空洞区域所对应的环境区域的类型为预设类型。If the analysis result of the image analysis is that the mapping area is a water surface area, the type of the environmental area corresponding to the cavity area is a preset type.
  4. 如权利要求2或3所述的方法,其特征在于,所述对所述目标环境图像中的映射区域进行图像分析,并根据分析结果确定所述空洞区域所对应的环境区域的类型是否为预设类型,包括:The method of claim 2 or 3, wherein the image analysis is performed on the mapped area in the target environment image, and according to the analysis result, it is determined whether the type of the environment area corresponding to the cavity area is a predetermined Set types, including:
    确定所述目标环境图像的图像类型;Determining the image type of the target environment image;
    若所述目标环境图像的图像类型为第一类型,则分析所述目标环境图像中的映射区域的面积;If the image type of the target environment image is the first type, analyzing the area of the mapping area in the target environment image;
    当分析结果为所述映射区域的面积大于预设的面积阈值时,确定所述空洞区域所对应的环境区域的类型为预设类型。When the analysis result is that the area of the mapping area is greater than the preset area threshold, it is determined that the type of the environmental area corresponding to the hollow area is the preset type.
  5. 如权利要求4所述的方法,其特征在于,当在根据采集到的图像集合生成初始数字地表模型的过程中,不能够确定所述图像集合中的所述目标环境图像的相机内参和相机外参时,则所述目标环境图像的图像类型为第一类型。The method according to claim 4, characterized in that, in the process of generating the initial digital surface model according to the collected image collection, it is impossible to determine the camera internal parameters and the camera external parameters of the target environment image in the image collection. Time reference, the image type of the target environment image is the first type.
  6. 如权利要求5所述的方法,其特征在于,若所述目标环境图像的图像类型为第一类型,则所述在所述图像集合的目标环境图像中确定映射区域,包括:The method according to claim 5, wherein if the image type of the target environment image is the first type, the determining a mapping area in the target environment image of the image set comprises:
    根据拍摄所述目标环境图像时的拍摄参数,设置所述目标环境图像的相机内参和相机外参;Setting the camera internal parameters and camera external parameters of the target environment image according to the shooting parameters when shooting the target environment image;
    根据为所述目标环境图像设置的相机内参和相机外参,确定所述空洞区域在所述目标环境图像上的映射区域。Determine the mapping area of the cavity area on the target environment image according to the camera internal parameters and the camera external parameters set for the target environment image.
  7. 如权利要求6所述的方法,其特征在于,所述根据拍摄所述目标环境图像时的拍摄参数,设置所述目标环境图像的相机内参和相机外参,包括:7. The method according to claim 6, wherein the setting the camera internal parameters and camera external parameters of the target environment image according to the shooting parameters when the target environment image is taken, comprises:
    根据拍摄所述目标环境图像时的相机焦距信息和像主点信息设置所述目标环境图像的相机内参;Setting the camera internal parameters of the target environment image according to the camera focal length information and image principal point information when the target environment image is taken;
    根据拍摄所述目标环境图像时的相机定位信息来设置相机的平移向量,并根据拍摄所述目标环境图像时的云台角信息来设置相机的旋转矩阵;Setting the translation vector of the camera according to the camera positioning information when the target environment image is taken, and setting the rotation matrix of the camera according to the pan/tilt angle information when the target environment image is taken;
    根据所述平移向量和所述旋转矩阵设置所述目标环境图像的相机外参。The external camera parameters of the target environment image are set according to the translation vector and the rotation matrix.
  8. 如权利要求2或3所述的方法,其特征在于,所述对所述目标环境图像中的映射区域进行图像分析,并根据分析结果确定所述空洞区域所对应的环境区域的类型是否为预设类型,包括:The method of claim 2 or 3, wherein the image analysis is performed on the mapped area in the target environment image, and according to the analysis result, it is determined whether the type of the environment area corresponding to the cavity area is a predetermined Set types, including:
    确定所述目标环境图像的图像类型;Determining the image type of the target environment image;
    若所述图像类型为第二类型,则调用预设的类型识别模型对所述目标环境图像进行分析识别;If the image type is the second type, call a preset type recognition model to analyze and recognize the target environment image;
    根据所述类型识别模型输出的分析结果确定所述空洞区域所对应的环境区域的类型是否为预设类型。According to the analysis result output by the type recognition model, it is determined whether the type of the environmental area corresponding to the cavity area is a preset type.
  9. 如权利要求8所述的方法,其特征在于,当在根据采集到的图像集合生成初始数字地表模型的过程中,能够确定所述图像集合中的所述目标环境图像的相机内参和相机外参时,则所述目标环境图像的图像类型为第二类型。The method according to claim 8, characterized in that, in the process of generating the initial digital surface model according to the collected image collection, the internal camera parameters and external camera parameters of the target environment image in the image collection can be determined When, the image type of the target environment image is the second type.
  10. 权利要求9所述的方法,其特征在于,若所述目标环境图像的图像类型为第二类型,则所述在所述图像集合的目标环境图像中确定映射区域,包括:The method of claim 9, wherein if the image type of the target environment image is the second type, the determining the mapping area in the target environment image of the image set comprises:
    将在根据采集到的图像集合生成初始数字地表模型的过程中所确定的所述目标环境图像的相机内参和相机外参,设置为所述目标环境图像的相机内参和相机外参;Setting the camera internal parameters and camera external parameters of the target environment image determined in the process of generating the initial digital surface model according to the collected image set as the camera internal parameters and camera external parameters of the target environment image;
    根据为所述目标环境图像设置的相机内参和相机外参,确定所述空洞区域在所述目标环境图像上的映射区域。Determine the mapping area of the cavity area on the target environment image according to the camera internal parameters and the camera external parameters set for the target environment image.
  11. 如权利要求8所述的方法,其特征在于,所述类型识别模型是根据所述目标环境图像的纹理特征信息和所述空洞区域的结构信息,分析得到所述空洞区域所对应的环境区域的类型。The method according to claim 8, wherein the type recognition model is based on the texture feature information of the target environment image and the structure information of the cavity region to analyze and obtain the environment region corresponding to the cavity region Types of.
  12. 如权利要求11所述的方法,其特征在于,The method of claim 11, wherein:
    所述目标环境图像的纹理特征信息包括:所述目标环境图像中映射区域的像素颜色特征;The texture feature information of the target environment image includes: the pixel color feature of the mapping area in the target environment image;
    所述空洞区域的结构信息包括:所述空洞区域的邻接区域的高程值特征、和/或所述空洞区域的面积特征。The structural information of the cavity region includes: the feature of the elevation value of the adjacent region of the cavity region, and/or the area feature of the cavity region.
  13. 如权利要求1所述的方法,其特征在于,确定的空洞区域在初始数字地表模型上的空洞面积大于预设的空洞面积阈值。The method according to claim 1, wherein the cavity area of the determined cavity area on the initial digital surface model is greater than a preset cavity area threshold.
  14. 如权利要求1所述的方法,其特征在于,所述空洞区域是根据连通区域搜索检测规则从所述初始数字地表模型中确定的。The method according to claim 1, wherein the hollow area is determined from the initial digital surface model according to a connected area search and detection rule.
  15. 如权利要求1所述的方法,其特征在于,所述根据邻接区域中各格网单元的高程值,更新所述空洞区域中的格网单元的高程值,包括:The method according to claim 1, wherein the updating the elevation value of the grid unit in the hollow area according to the elevation value of each grid unit in the adjacent area comprises:
    根据邻接区域中各格网单元的高程值按照第一确认规则,确定得到的高程更新值;Determine the obtained elevation update value according to the elevation value of each grid cell in the adjacent area according to the first confirmation rule;
    将所述高程更新值作为所述空洞区域中的格网单元的高程值。The elevation update value is used as the elevation value of the grid unit in the hollow area.
  16. 如权利要求1所述的方法,其特征在于,The method of claim 1, wherein:
    若所述空洞区域所对应的环境区域的类型不为预设类型,则按照第二确认规则对邻接区域中各格网单元的高程值进行计算,得到多个高程更新值;If the type of the environmental area corresponding to the hollow area is not the preset type, the elevation value of each grid cell in the adjacent area is calculated according to the second confirmation rule to obtain multiple elevation update values;
    将得到的多个高程更新值作为所述空洞区域中的格网单元的高程值。The obtained multiple updated elevation values are used as the elevation values of the grid cells in the hollow area.
  17. 一种图像处理设备,其特征在于,所述图像处理设备包括:通信接口单元和处理单元,其中:An image processing device, characterized in that the image processing device comprises: a communication interface unit and a processing unit, wherein:
    所述通信接口单元,用于接收环境图像;The communication interface unit is used to receive environmental images;
    所述处理单元,用于根据采集到的图像集合生成初始数字地表模型;确定所述初始数字地表模型中的空洞区域,其中,在所述空洞区域内包括高程值异常的格网单元;若所述空洞区域所对应的环境区域的类型为预设类型,则确定所述初始数字地表模型上所述空洞区域的邻接区域中各格网单元的高程值;根据邻接区域中各格网单元的高程值,更新所述空洞区域中的格网单元的高程值,得到数字地表模型。The processing unit is configured to generate an initial digital surface model according to the collected image set; determine the cavity area in the initial digital surface model, wherein the cavity area includes grid units with abnormal elevation values; If the type of the environmental area corresponding to the cavity area is a preset type, the elevation value of each grid cell in the adjacent area of the cavity area on the initial digital surface model is determined; according to the elevation value of each grid cell in the adjacent area Value, update the elevation value of the grid unit in the hollow area to obtain a digital surface model.
  18. 如权利要求17所述的图像处理设备,其特征在于,所述处理单元,还用于The image processing device according to claim 17, wherein the processing unit is further used for
    在所述图像集合的目标环境图像中确定映射区域,所述映射区域是所述空洞区域在所述目标环境图像上的投影;Determining a mapping area in the target environment image of the image set, where the mapping area is a projection of the cavity area on the target environment image;
    对所述目标环境图像中的映射区域进行图像分析,并根据分析结果确定所述空洞区域所对应的环境区域的类型是否为预设类型。Perform image analysis on the mapping area in the target environment image, and determine whether the type of the environment area corresponding to the cavity area is a preset type according to the analysis result.
  19. 如权利要求18所述的图像处理设备,其特征在于,所述处理单元,用于The image processing device according to claim 18, wherein the processing unit is configured to
    若所述图像分析的分析结果为所述映射区域为水面区域,则所述空洞区域 所对应的环境区域的类型为预设类型。If the analysis result of the image analysis is that the mapping area is a water surface area, the type of the environmental area corresponding to the cavity area is a preset type.
  20. 如权利要求18或19所述的图像处理设备,其特征在于,所述处理单元,用于:The image processing device according to claim 18 or 19, wherein the processing unit is configured to:
    确定所述目标环境图像的图像类型;Determining the image type of the target environment image;
    若所述目标环境图像的图像类型为第一类型,则分析所述目标环境图像中的映射区域的面积;If the image type of the target environment image is the first type, analyzing the area of the mapping area in the target environment image;
    当分析结果为所述映射区域的面积大于预设的面积阈值时,确定所述空洞区域所对应的环境区域的类型为预设类型。When the analysis result is that the area of the mapping area is greater than the preset area threshold, it is determined that the type of the environmental area corresponding to the hollow area is the preset type.
  21. 如权利要求20所述的图像处理设备,其特征在于,当在根据采集到的图像集合生成初始数字地表模型的过程中,不能够确定所述图像集合中的所述目标环境图像的相机内参和相机外参时,则所述目标环境图像的图像类型为第一类型。The image processing device according to claim 20, wherein, in the process of generating the initial digital surface model based on the collected image collection, it is impossible to determine the camera internal parameters of the target environment image in the image collection and When the camera is externally referenced, the image type of the target environment image is the first type.
  22. 如权利要求21所述的图像处理设备,其特征在于,若所述目标环境图像的图像类型为第一类型,则所述处理单元,用于The image processing device according to claim 21, wherein if the image type of the target environment image is the first type, the processing unit is configured to
    根据拍摄所述目标环境图像时的拍摄参数,设置所述目标环境图像的相机内参和相机外参;Setting the camera internal parameters and camera external parameters of the target environment image according to the shooting parameters when shooting the target environment image;
    根据为所述目标环境图像设置的相机内参和相机外参,确定所述空洞区域在所述目标环境图像上的映射区域。Determine the mapping area of the cavity area on the target environment image according to the camera internal parameters and the camera external parameters set for the target environment image.
  23. 如权利要求22所述的图像处理设备,其特征在于,所述处理单元,用于The image processing device according to claim 22, wherein the processing unit is configured to
    根据拍摄所述目标环境图像时的相机焦距信息和像主点信息设置所述目标环境图像的相机内参;Setting the camera internal parameters of the target environment image according to the camera focal length information and image principal point information when the target environment image is taken;
    根据拍摄所述目标环境图像时的相机定位信息来设置相机的平移向量,并根据拍摄所述目标环境图像时的云台角信息来设置相机的旋转矩阵;Setting the translation vector of the camera according to the camera positioning information when the target environment image is taken, and setting the rotation matrix of the camera according to the pan/tilt angle information when the target environment image is taken;
    根据所述平移向量和所述旋转矩阵设置所述目标环境图像的相机外参。The external camera parameters of the target environment image are set according to the translation vector and the rotation matrix.
  24. 如权利要求18或19所述的图像处理设备,其特征在于,所述处理单元,用于The image processing device according to claim 18 or 19, wherein the processing unit is configured to
    确定所述目标环境图像的图像类型;Determining the image type of the target environment image;
    若所述图像类型为第二类型,则调用预设的类型识别模型对所述目标环境图像进行分析识别;If the image type is the second type, call a preset type recognition model to analyze and recognize the target environment image;
    根据所述类型识别模型输出的分析结果确定所述空洞区域所对应的环境区域的类型是否为预设类型。According to the analysis result output by the type recognition model, it is determined whether the type of the environmental area corresponding to the cavity area is a preset type.
  25. 如权利要求24所述的图像处理设备,其特征在于,当在根据采集到的图像集合生成初始数字地表模型的过程中,能够确定所述图像集合中的所述目标环境图像的相机内参和相机外参时,则所述目标环境图像的图像类型为第二类型。The image processing device according to claim 24, characterized in that, in the process of generating the initial digital surface model based on the collected image collection, the camera internal parameters and camera parameters of the target environment image in the image collection can be determined. For external reference, the image type of the target environment image is the second type.
  26. 权利要求25所述的图像处理设备,其特征在于,若所述目标环境图像的图像类型为第二类型,则所述处理单元,用于The image processing device of claim 25, wherein if the image type of the target environment image is the second type, the processing unit is configured to
    将在根据采集到的图像集合生成初始数字地表模型的过程中所确定的所述目标环境图像的相机内参和相机外参,设置为所述目标环境图像的相机内参和相机外参;Setting the camera internal parameters and camera external parameters of the target environment image determined in the process of generating the initial digital surface model according to the collected image set as the camera internal parameters and camera external parameters of the target environment image;
    根据为所述目标环境图像设置的相机内参和相机外参,确定所述空洞区域在所述目标环境图像上的映射区域。Determine the mapping area of the cavity area on the target environment image according to the camera internal parameters and the camera external parameters set for the target environment image.
  27. 如权利要求24所述的图像处理设备,其特征在于,所述类型识别模型是根据所述目标环境图像的纹理特征信息和所述空洞区域的结构信息,分析得到所述空洞区域所对应的环境区域的类型。The image processing device according to claim 24, wherein the type recognition model is based on the texture feature information of the target environment image and the structural information of the cavity region to obtain the environment corresponding to the cavity region by analysis. The type of area.
  28. 如权利要求27所述的图像处理设备,其特征在于,The image processing device according to claim 27, wherein:
    所述目标环境图像的纹理特征信息包括:所述目标环境图像中映射区域的像素颜色特征;The texture feature information of the target environment image includes: the pixel color feature of the mapping area in the target environment image;
    所述空洞区域的结构信息包括:所述空洞区域的邻接区域的高程值特征、和/或所述空洞区域的面积特征。The structural information of the cavity region includes: the feature of the elevation value of the adjacent region of the cavity region, and/or the area feature of the cavity region.
  29. 如权利要求17所述的图像处理设备,其特征在于,确定的空洞区域在初始数字地表模型上的空洞面积大于预设的空洞面积阈值。18. The image processing device according to claim 17, wherein the cavity area of the determined cavity area on the initial digital surface model is greater than a preset cavity area threshold.
  30. 如权利要求17或29所述的图像处理设备,其特征在于,所述空洞区域是根据连通区域搜索检测规则从所述初始数字地表模型中确定的。The image processing device according to claim 17 or 29, wherein the hollow area is determined from the initial digital surface model according to a connected area search detection rule.
  31. 如权利要求17所述的图像处理设备,其特征在于,所述处理单元,用于The image processing device according to claim 17, wherein the processing unit is configured to
    根据邻接区域中各格网单元的高程值按照第一确认规则,确定得到的高程更新值;Determine the obtained elevation update value according to the elevation value of each grid cell in the adjacent area according to the first confirmation rule;
    将所述高程更新值作为所述空洞区域中的格网单元的高程值。The elevation update value is used as the elevation value of the grid unit in the hollow area.
  32. 如权利要求17所述的图像处理设备,其特征在于,所述处理单元,还用于The image processing device according to claim 17, wherein the processing unit is further used for
    若所述空洞区域所对应的环境区域的类型不为预设类型,则按照第二确认规则对邻接区域中各格网单元的高程值进行计算,得到多个高程更新值;If the type of the environmental area corresponding to the hollow area is not the preset type, the elevation value of each grid cell in the adjacent area is calculated according to the second confirmation rule to obtain multiple elevation update values;
    将得到的多个高程更新值作为所述空洞区域中的格网单元的高程值。The obtained multiple updated elevation values are used as the elevation values of the grid cells in the hollow area.
  33. 一种图像处理系统,其特征在于,所述图像处理系统包括:移动平台和图像处理设备,所述移动平台上设置有图像采集设备;An image processing system, characterized in that the image processing system comprises: a mobile platform and an image processing device, and an image acquisition device is provided on the mobile platform;
    所述移动平台,用于通过所述图像采集设备在所述移动平台移动的过程中采集多个环境图像,并将采集到的所述多个环境图像发送给所述图像处理设备;The mobile platform is configured to collect multiple environmental images during the movement of the mobile platform through the image acquisition device, and send the multiple collected environmental images to the image processing device;
    所述图像处理设备,用于根据采集到的图像集合生成初始数字地表模型;确定所述初始数字地表模型中的空洞区域,其中,在所述空洞区域内包括高程值异常的格网单元;若所述空洞区域所对应的环境区域的类型为预设类型,则确定所述初始数字地表模型上所述空洞区域的邻接区域中各格网单元的高程值;根据邻接区域中各格网单元的高程值,更新所述空洞区域中的格网单元的高程值,得到数字地表模型。The image processing device is configured to generate an initial digital surface model according to the collected image set; determine the cavity area in the initial digital surface model, wherein the cavity area includes grid cells with abnormal elevation values; if If the type of the environmental area corresponding to the cavity area is a preset type, the elevation value of each grid unit in the adjacent area of the cavity area on the initial digital surface model is determined; according to the value of each grid unit in the adjacent area The elevation value is to update the elevation value of the grid unit in the hollow area to obtain a digital surface model.
PCT/CN2019/077896 2019-03-12 2019-03-12 Digital surface model construction method, and processing device and system WO2020181508A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/077896 WO2020181508A1 (en) 2019-03-12 2019-03-12 Digital surface model construction method, and processing device and system
CN201980005040.6A CN111247564A (en) 2019-03-12 2019-03-12 Method for constructing digital earth surface model, processing equipment and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/077896 WO2020181508A1 (en) 2019-03-12 2019-03-12 Digital surface model construction method, and processing device and system

Publications (1)

Publication Number Publication Date
WO2020181508A1 true WO2020181508A1 (en) 2020-09-17

Family

ID=70866036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077896 WO2020181508A1 (en) 2019-03-12 2019-03-12 Digital surface model construction method, and processing device and system

Country Status (2)

Country Link
CN (1) CN111247564A (en)
WO (1) WO2020181508A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112419443A (en) * 2020-12-09 2021-02-26 中煤航测遥感集团有限公司 True ortho image generation method and device
CN112729260B (en) * 2020-12-15 2023-06-09 广州极飞科技股份有限公司 Surveying system and surveying method
CN113077552A (en) * 2021-06-02 2021-07-06 北京道达天际科技有限公司 DSM (digital communication system) generation method and device based on unmanned aerial vehicle image
CN114494633B (en) * 2022-04-01 2022-07-26 煤炭科学研究总院有限公司 Filling and digging data processing method and device, computer equipment and storage medium
CN117710602A (en) * 2024-02-04 2024-03-15 航天宏图信息技术股份有限公司 Building reconstruction method, device and equipment for sparse grid three-dimensional data

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173067B1 (en) * 1998-04-07 2001-01-09 Hughes Electronics Corporation System and method for rapid determination of visibility-based terrain properties over broad regions
CN106530398A (en) * 2016-12-01 2017-03-22 南京师范大学 Terrain visibility analysis-oriented visibility graph network construction method
CN108415871A (en) * 2017-02-10 2018-08-17 北京吉威时代软件股份有限公司 Based on the half matched intensive DSM generation methods of global multi-view images of object space
CN108520555A (en) * 2018-04-11 2018-09-11 长江大学 geological model construction method and device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106845074B (en) * 2016-12-19 2019-03-19 中国人民解放军信息工程大学 Establish the method for hexagonal pessimistic concurrency control, flood deduces analogy method and its system
CN109409014B (en) * 2018-12-10 2021-05-04 福州大学 BP neural network model-based annual illuminable time calculation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173067B1 (en) * 1998-04-07 2001-01-09 Hughes Electronics Corporation System and method for rapid determination of visibility-based terrain properties over broad regions
CN106530398A (en) * 2016-12-01 2017-03-22 南京师范大学 Terrain visibility analysis-oriented visibility graph network construction method
CN108415871A (en) * 2017-02-10 2018-08-17 北京吉威时代软件股份有限公司 Based on the half matched intensive DSM generation methods of global multi-view images of object space
CN108520555A (en) * 2018-04-11 2018-09-11 长江大学 geological model construction method and device

Also Published As

Publication number Publication date
CN111247564A (en) 2020-06-05

Similar Documents

Publication Publication Date Title
WO2020181508A1 (en) Digital surface model construction method, and processing device and system
CN106780712B (en) Three-dimensional point cloud generation method combining laser scanning and image matching
WO2018061010A1 (en) Point cloud transforming in large-scale urban modelling
CN113359782B (en) Unmanned aerial vehicle autonomous addressing landing method integrating LIDAR point cloud and image data
CN111815707A (en) Point cloud determining method, point cloud screening device and computer equipment
CN113192200B (en) Method for constructing urban real scene three-dimensional model based on space-three parallel computing algorithm
CN112070870B (en) Point cloud map evaluation method and device, computer equipment and storage medium
CN112862966B (en) Method, device, equipment and storage medium for constructing surface three-dimensional model
CN112150629A (en) Vision-based coal inventory system and method
CN114299236A (en) Oblique photogrammetry space-ground fusion live-action modeling method, device, product and medium
CN111458691B (en) Building information extraction method and device and computer equipment
CN112946679A (en) Unmanned aerial vehicle surveying and mapping jelly effect detection method and system based on artificial intelligence
JP2021117047A (en) Photogrammetric method using unmanned flight vehicle and photogrammetric system using the same
CN117392237A (en) Robust laser radar-camera self-calibration method
CN116051980B (en) Building identification method, system, electronic equipment and medium based on oblique photography
WO2021051220A1 (en) Point cloud fusion method, device, and system, and storage medium
CN115797310A (en) Method for determining inclination angle of photovoltaic power station group string and electronic equipment
KR102587445B1 (en) 3d mapping method with time series information using drone
CN114758087A (en) Method and device for constructing city information model
CN116086411A (en) Digital topography generation method, device, equipment and readable storage medium
US20220236055A1 (en) A system and method for providing improved geocoded reference data to a 3d map representation
Li et al. Low-cost 3D building modeling via image processing
Sani et al. 3D reconstruction of building model using UAV point clouds
CN114359489A (en) Method, device and equipment for making real-scene image in pipeline construction period and storage medium
Bai et al. Application of unmanned aerial vehicle multi-vision image 3D modeling in geological disasters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918605

Country of ref document: EP

Kind code of ref document: A1