WO2020181467A1 - Display substrate, display apparatus, method of fabricating display substrate - Google Patents

Display substrate, display apparatus, method of fabricating display substrate Download PDF

Info

Publication number
WO2020181467A1
WO2020181467A1 PCT/CN2019/077691 CN2019077691W WO2020181467A1 WO 2020181467 A1 WO2020181467 A1 WO 2020181467A1 CN 2019077691 W CN2019077691 W CN 2019077691W WO 2020181467 A1 WO2020181467 A1 WO 2020181467A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
power pad
display substrate
encapsulating
away
Prior art date
Application number
PCT/CN2019/077691
Other languages
French (fr)
Inventor
Song Zhang
Ling Shi
Original Assignee
Boe Technology Group Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boe Technology Group Co., Ltd. filed Critical Boe Technology Group Co., Ltd.
Priority to JP2020567807A priority Critical patent/JP7299248B2/en
Priority to US16/639,112 priority patent/US11239445B2/en
Priority to PCT/CN2019/077691 priority patent/WO2020181467A1/en
Priority to CN201980000265.2A priority patent/CN112005376B/en
Priority to EP19858660.4A priority patent/EP3939088A4/en
Publication of WO2020181467A1 publication Critical patent/WO2020181467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • the present invention relates to display technology, more particularly, to a display substrate, a display apparatus, and a method of fabricating a display substrate.
  • OLED display apparatuses are self-emissive devices, and do not require backlights. OLED display apparatuses also provide more vivid colors and a larger color gamut as compared to the conventional liquid crystal display (LCD) apparatuses. Further, OLED display apparatuses can be made more flexible, thinner, and lighter than a typical LCD apparatuses.
  • LCD liquid crystal display
  • the present invention provides a display substrate having a display area and a peripheral area, comprising a base substrate; a first power pad on the base substrate, the first power pad comprising a first portion in the peripheral area and along a power line interface side of the display substrate; a planarization layer on a side of the first power pad away from the base substrate; a pixel definition layer on a side of the planarization layer away from the base substrate, defining a plurality of subpixel apertures; and an encapsulating layer on a side of the pixel definition layer away from the base substrate; wherein the display substrate comprises a first groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the first portion of the first power pad in the peripheral area; and the encapsulating layer extends into the first groove and is in direct contact with the surface of the first portion, thereby encapsulating the display substrate.
  • the encapsulating layer completely covers the surface of the first portion.
  • the first portion comprises a first side away from the base substrate, a second side opposite to the first side and closer to the base substrate, a third side connecting the first side and the second side and closer to the display area, and a fourth side connecting the first side and the second side, the fourth side being opposite to the third side and away from the display area; the fourth side of the first portion is covered by one or a combination of the pixel definition layer and the planarization layer; and the first groove exposes a portion of the first side.
  • the fourth side has a concave surface.
  • the first portion comprises at least one sublayer that is over-etched on the fourth side, thereby forming the concave surface.
  • the encapsulating layer comprises a first inorganic encapsulating sub-layer, the first inorganic encapsulating sub-layer extending into the first groove and being in direct contact with the surface of the first portion.
  • the encapsulating layer further comprises an organic encapsulating sub-layer on a side of the first inorganic encapsulating sub-layer away from the base substrate, and a second inorganic encapsulating sub-layer on a side of the organic encapsulating sub-layer away from the first inorganic encapsulating sub-layer.
  • the first power pad further comprises at least one second portion connected to the first portion and extending from the first portion away from the display area; and the at least one second portion is at least partially covered by one or a combination of the pixel definition layer and the planarization layer.
  • the display substrate further comprises a second groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the at least one second portion of the first power pad in the peripheral area; and the encapsulating layer extends into the second groove and is in direct contact with the surface of the at least one second portion.
  • the encapsulating layer comprises a first inorganic encapsulating sub-layer, the first inorganic encapsulating sub-layer extending into the second groove and being in direct contact with the surface of the at least one second portion.
  • the encapsulating layer further comprises an organic encapsulating sub-layer on a side of the first inorganic encapsulating sub-layer away from the base substrate, and a second inorganic encapsulating sub-layer on a side of the organic encapsulating sub-layer away from the first inorganic encapsulating sub-layer.
  • the at least one second portion comprises two second portions connected to the first portion respectively at different locations and extending from the first portion away from the display area; and the first portion and the two second portions form a pi-shaped structure.
  • the display substrate further comprises a second power pad on the base substrate and in the peripheral area, the second power pad spaced apart from the first power pad; wherein the second power pad comprises at least one third portion on the power line interface side of the display substrate, the at least one third portion at least partially covered by one or a combination of the pixel definition layer and the planarization layer; the second groove extends through one or a combination of the planarization layer and the pixel definition layer, further exposing a surface of the at least one third portion of the second power pad in the peripheral area; and the encapsulating layer extends into the second groove and is in direct contact with the surface of the at least one third portion.
  • the display substrate further comprises a second power pad on the base substrate and in the peripheral area, the second power pad spaced apart from the first power pad; wherein the second power pad comprises at least one third portion on the power line interface side of the display substrate, the at least one third portion at least partially covered by one or a combination of the pixel definition layer and the planarization layer; the at least one third portion is on a side of the first portion extending away from the display area, the first portion and a respective one of the at least one third portion being spaced apart by a first gap; and the first groove is on a side of the first gap closer to the display area.
  • the planarization layer at least extends into the first gap.
  • the first power pad further comprises at least one second portion connected to the first portion and extending from the first portion away from the display area; the at least one second portion is at least partially covered by one or a combination of the pixel definition layer and the planarization layer; and the at least one second portion and the at least one third portion are on a side of the first portion extending away from the display area, a respective one of the at least one second portion being spaced apart from a respective one of the at least one third portion by a second gap connected to the first gap.
  • the planarization layer extends into the first gap and the second gap.
  • the display substrate further comprises a third groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the at least one second portion of the first power pad in the peripheral area;
  • the encapsulating layer comprises a first inorganic encapsulating sub-layer, the first inorganic encapsulating sub-layer extending into the third groove and being in direct contact with the surface of the at least one second portion; in a region corresponding to the third groove, the encapsulating layer further comprises a second inorganic encapsulating sub-layer on a side of the first inorganic encapsulating sub-layer away from the base substrate, the second inorganic encapsulating sub-layer being in direct contact with the first inorganic encapsulating sub-layer.
  • the first power pad is selected from a group consisting of a VDD power pad connected to a plurality of VDD high voltage power lines and a VSS power pad connected to a plurality of VSS low voltage power lines.
  • the present invention provides a display apparatus, comprising the display substrate described herein or fabricated by a method described herein, and one or more integrated circuits connected to the display substrate.
  • the present invention provides a method of fabricating a display substrate, comprising forming a first power pad on a base substrate, the first power pad formed to comprise a first portion in the peripheral area and along a power line interface side of the display substrate; forming a planarization layer on a side of the first power pad away from the base substrate; forming a pixel definition layer on a side of the planarization layer away from the base substrate, defining a plurality of subpixel apertures; forming a first groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the first portion of the first power pad in the peripheral area; and forming an encapsulating layer on a side of the pixel definition layer away from the base substrate, the encapsulating layer formed to extend into the first groove and be in direct contact with the surface of the first portion, thereby encapsulating the display substrate.
  • FIG. 1 is a plan view of a display substrate in some embodiments according to the present disclosure.
  • FIG. 2 is schematic diagram illustrating the structure of a first power pad in some embodiments according to the present disclosure.
  • FIG. 3 is a zoom-in view of an area Z in FIG. 1.
  • FIG. 4 is a cross-sectional view along an A-A’ line of FIG. 3.
  • FIG. 5 is a cross-sectional view along a B-B’ line of FIG. 3.
  • FIG. 6 is a plan view of a display substrate in some embodiments according to the present disclosure.
  • FIG. 7 is schematic diagram illustrating the structure of a first power pad in some embodiments according to the present disclosure.
  • FIG. 8 is a zoom-in view of an area Z in FIG. 6.
  • FIG. 9 is a cross-sectional view along a C-C’ line of FIG. 8.
  • FIG. 10 is a cross-sectional view along a D-D’ line of FIG. 8.
  • FIG. 11 is a partial view of a display substrate showing the structure of a first portion of a first power pad in some embodiments according to the present disclosure.
  • FIG. 12 is a partial view of a display substrate showing the structure of a first portion of a first power pad in some embodiments according to the present disclosure.
  • FIG. 13 is a partial view of a display substrate showing the structure of a first portion of a first power pad in some embodiments according to the present disclosure.
  • FIG. 1 is a plan view of a display substrate in some embodiments according to the present disclosure.
  • FIG. 2 is schematic diagram illustrating the structure of a first power pad in some embodiments according to the present disclosure.
  • FIG. 3 is a zoom-in view of an area Z in FIG. 1.
  • FIG. 4 is a cross-sectional view along an A-A’ line of FIG. 3.
  • FIG. 5 is a cross-sectional view along a B-B’ line of FIG. 3.
  • the display substrate in some embodiments have a display area DA and a peripheral area PA.
  • the display substrate includes a base substrate 10; a first power pad PP1 on the base substrate 10; a planarization layer 20 on a side of the first power pad PP1 away from the base substrate 10; a pixel definition layer 30 on a side of the planarization layer 20 away from the base substrate 10, defining a plurality of subpixel apertures SPA; and an encapsulating layer 40 on a side of the pixel definition layer 30 away from the base substrate 10.
  • the display substrate further includes a second power pad PP2 on the base substrate 10 and in the peripheral area PA, the second power pad PP2 spaced apart from the first power pad PP1.
  • the first power pad PP1 includes a first portion P1 in the peripheral area PA and along a power line interface side of the display substrate, and at least one second portion P2 connected to the first portion P1 and extending from the first portion P1 away from the display area DA.
  • the second power pad PP2 includes at least one third portion P3 on the power line interface side of the display substrate, and at least one fourth portion P4 connected to the third portion P3 and on another side of the display substrate different from the power line interface side.
  • one or a combination of the first portion P1, the at least one second portion P2, the at least one third portion P3, and the at least one fourth portion P4 is at least partially covered by one or a combination of the pixel definition layer 30 and the planarization layer 20.
  • one or a combination of the first portion P1, the at least one second portion P2, the at least one third portion P3, and the at least one fourth portion P4 is at least partially covered by both the planarization layer 20 and the pixel definition layer 30.
  • at least one of the first portion P1, the at least one second portion P2, the at least one third portion P3, and the at least one fourth portion P4 is only at least partially covered by the planarization layer 20 but not the pixel definition layer 30.
  • the power line interface side of the display substrate is an integrated circuit bonding side of the display substrate at which one or more integrated circuits are connected to the display substrate.
  • the power line interface side of the display substrate is a side of the display substrate at which one or more power line are connected to the display substrate.
  • the at least one second portion P2 includes two second portions (one on left and another on right in FIG. 2) connected to the first portion P1 respectively at different locations and extending from the first portion P1 away from the display area DA.
  • the first portion P1 and the two second portions of the at least one second portion P2 form a pi-shaped structure.
  • the display substrate further includes a plurality of light emitting elements LE respectively in the plurality of subpixel apertures SPA.
  • a respective one of a plurality of light emitting elements LE includes a first electrode 53, a light emitting layer 52 on a side of the first electrode 53 away from the base substrate 10, and a second electrode 51 on a side of the light emitting layer 52 away from the first electrode 53.
  • the display substrate further includes a plurality of thin film transistors TFT for driving light emission of the plurality of light emitting elements LE.
  • the first power pad PP1 is connected to and configured to provide a first power signal to a plurality of first power signal lines
  • the second power pad PP2 is connected to and configured to provide a second power signal to a plurality of second power signal lines.
  • the first power pad PP1 is a VDD power pad connected to a plurality of VDD high voltage power lines
  • the second power pad PP2 is a VSS power pad connected to a plurality of VSS low voltage power lines.
  • the first power pad PP1 is a VSS power pad connected to a plurality of VSS low voltage power lines
  • the second power pad PP2 is a VDD power pad connected to a plurality of VDD high voltage power lines.
  • the first power pad and the second power pad may be other pads connected to different signal lines.
  • the encapsulating layer 40 includes a first inorganic encapsulating sub-layer 41 on a side of the plurality light emitting elements LE and the pixel definition layer 30 away from the base substrate 10, an organic encapsulating sub-layer 42 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10, and a second inorganic encapsulating sub-layer 43 on a side of the organic encapsulating sub-layer 42 away from the first inorganic encapsulating sub-layer 41.
  • the display substrate has a second groove GE2 extending through one or a combination of the planarization layer 20 and the pixel definition layer 30, exposing a surface of the at least one second portion P2 of the first power pad PP1 in the peripheral area PA and a surface of the at least one third portion P3 of the second power pad PP2 in the peripheral area PA.
  • the encapsulating layer 40 extends into the second groove GE2 and is in direct contact with the surface of the at least one second portion P2 and the surface of the at least one third portion P3.
  • the first inorganic encapsulating sub-layer 41 extends into the second groove GE2 and is in direct contact with the surface of the at least one second portion P2 and the surface of the at least one third portion P3.
  • the display substrate further includes a third groove GE3 extending through one or a combination of the planarization layer 20 and the pixel definition layer 30, exposing a surface of the at least one second portion P2 of the first power pad PP1 in the peripheral area PA and a surface of the at least one third portion P3 of the second power pad PP2 in the peripheral area PA.
  • the encapsulating layer 40 extends into the third groove GE3 and is in direct contact with the surface of the at least one second portion P2 and the surface of the at least one third portion P3.
  • the first inorganic encapsulating sub-layer 41 extends into the third groove GE3 and is in direct contact with the surface of the at least one second portion P2 and the surface of the at least one third portion P3.
  • the at least one third portion P3 is on a side of the first portion P1 extending away from the display area.
  • the first portion P1 and a respective one of the at least one third portion P3 are spaced apart by a first gap G1.
  • the at least one second portion P2 and the at least one third portion P3 are on a side of the first portion P1 extending away from the display area.
  • a respective one of the at least one second portion P2 is spaced apart from a respective one of the at least one third portion P3 by a second gap G2 connected to the first gap G1.
  • the first gap G1 and the second gap G2 form a channel allowing external oxygen and moisture permeate into the inside of the display substrate, because the planarization layer 20 and the pixel definition layer 30 are not capable of completely blocking oxygen and moisture.
  • the external oxygen and moisture can permeate through the planarization layer 20 and the pixel definition layer 30, and reach the second electrode 51 of the plurality of light emitting elements LE, thereby corroding the second electrode 51, resulting in deterioration of the plurality of light emitting elements LE.
  • the present disclosure provides, inter alia, a display substrate, a display apparatus, and a method of fabricating a display substrate that substantially obviate one or more of the problems due to limitations and disadvantages of the related art.
  • the present disclosure provides a display substrate having a display area and a peripheral area.
  • the display substrate includes a base substrate; a first power pad on the base substrate, the first power pad including a first portion in the peripheral area and along a power line interface side of the display substrate; a planarization layer on a side of the first power pad away from the base substrate; a pixel definition layer on a side of the planarization layer away from the base substrate, defining a plurality of subpixel apertures; and an encapsulating layer on a side of the pixel definition layer away from the base substrate.
  • the display substrate includes a first groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the first portion of the first power pad in the peripheral area.
  • the encapsulating layer extends into the first groove and is in direct contact with the surface of the first portion, thereby encapsulating the display substrate.
  • the encapsulating layer completely covers the surface of the first portion.
  • FIG. 6 is a plan view of a display substrate in some embodiments according to the present disclosure.
  • FIG. 7 is schematic diagram illustrating the structure of a first power pad in some embodiments according to the present disclosure.
  • FIG. 8 is a zoom-in view of an area Z in FIG. 6.
  • FIG. 9 is a cross-sectional view along a C-C’ line of FIG. 8.
  • FIG. 10 is a cross-sectional view along a D-D’ line of FIG. 8.
  • the display substrate in some embodiments have a display area DA and a peripheral area PA.
  • the display substrate includes a base substrate 10; a first power pad PP1 on the base substrate 10; a planarization layer 20 on a side of the first power pad PP1 away from the base substrate 10; a pixel definition layer 30 on a side of the planarization layer 20 away from the base substrate 10, defining a plurality of subpixel apertures SPA; and an encapsulating layer 40 on a side of the pixel definition layer 30 away from the base substrate 10.
  • the first power pad PP1 includes a first portion P1 in the peripheral area PA and along a power line interface side of the display substrate.
  • the display substrate has a first groove GE1 extending through one or a combination of the planarization layer 20 and the pixel definition layer 30, exposing a surface of the first portion P1 of the first power pad PP1 in the peripheral area PA.
  • the first groove GE1 extends through both of the planarization layer 20 and the pixel definition layer 30, exposing the surface of the first portion P1 of the first power pad PP1 in the peripheral area PA.
  • the encapsulating layer 40 extends into the first groove GE1 and is in direct contact with the surface of the first portion P1, thereby encapsulating the display substrate.
  • the encapsulating layer 40 completely covers the surface of the first portion P1.
  • the display substrate further includes a second power pad PP2 on the base substrate 10 and in the peripheral area PA, the second power pad PP2 spaced apart from the first power pad PP1.
  • the first power pad PP1 is connected to and configured to provide a first power signal to a plurality of first power signal lines
  • the second power pad PP2 is connected to and configured to provide a second power signal to a plurality of second power signal lines.
  • the first power pad is a VDD power pad connected to a plurality of VDD high voltage power lines
  • the second power pad is a VSS power pad connected to a plurality of VSS low voltage power lines.
  • the first power pad is a VSS power pad connected to a plurality of VSS low voltage power lines
  • the second power pad is a VDD power pad connected to a plurality of VDD high voltage power lines.
  • the first power pad and the second power pad may be other pads connected to different signal lines.
  • the first power pad PP1 e.g., the VDD power pad
  • the second power pad PP2 e.g., the VSS power pad
  • the first power pad PP1 substantially surround at least three sides of the display substrate, and extends out of the display substrate from a circuit bonding side (e.g., the power line interface side) of the display substrate.
  • the display substrate further includes a plurality of light emitting elements LE respectively in the plurality of subpixel apertures SPA.
  • a respective one of a plurality of light emitting elements LE includes a first electrode 53, a light emitting layer 52 on a side of the first electrode 53 away from the base substrate 10, and a second electrode 51 on a side of the light emitting layer 52 away from the first electrode 53.
  • the display substrate further includes a plurality of thin film transistors TFT for driving light emission of the plurality of light emitting elements LE.
  • the first electrode 53 is electrically connected to a drain electrode of a respective one of the plurality of thin film transistors TFT.
  • the plurality of thin film transistors TFT and various signal lines (such as the plurality of VDD high voltage power lines and the plurality of VSS low voltage power lines) constitute a driving circuit for driving light emission of the display substrate.
  • FIG. 11 is a partial view of a display substrate showing the structure of a first portion of a first power pad in some embodiments according to the present disclosure.
  • the first portion P1 has a first side S1 away from the base substrate 10, a second side S2 opposite to the first side S1 and closer to the base substrate 10, a third side S3 connecting the first side S1 and the second side S2 and closer to the display area DA, and a fourth side S4 connecting the first side S1 and the second side S2, the fourth side S4 being opposite to the third side S3 and away from the display area DA.
  • the fourth side S4 of the first portion P1 is covered by one or a combination of the pixel definition layer 30 and the planarization layer 20.
  • the fourth side S4 of the first portion P1 is covered by the planarization layer 20, as shown in FIG. 11 and FIG. 9.
  • the first groove GE1 exposes a portion of the first side S1, as shown in FIG. 9 and FIG. 10.
  • the display substrate further includes an inter-layer dielectric layer 60 between the first portion P1 and the base substrate 10.
  • FIG. 12 is a partial view of a display substrate showing the structure of a first portion of a first power pad in some embodiments according to the present disclosure.
  • the third side S3 has a concave surface
  • the fourth side S4 has a concave surface.
  • the first portion P1 includes at least one sublayer that is over-etched on the fourth side S4, thereby forming the concave surface.
  • FIG. 13 is a partial view of a display substrate showing the structure of a first portion of a first power pad in some embodiments according to the present disclosure. Referring to FIG. 13, in some embodiments, the first portion P1 includes a first sub-layer P11, a second sub-layer P12 in the middle, and a third sub-layer P13, the second sub-layer P12 is sandwiched by the first sub- layer P11 and the third sub-layer P13. At least the second sub-layer P12 is over-etched, thereby forming the concave surface.
  • the first sub-layer P11 and the third sub-layer P13 are made of a relatively more etchant resistant material, and the second sub-layer P12 is made of a relatively less etchant resistant material.
  • the first sub-layer P11 and the third sub-layer P13 are made of titanium, and the second sub-layer P12 is made of aluminum.
  • the second portion P2 and the second power pad PP2 may have a similar concave surface.
  • the first power pad PP1 and the second power pad PP2 are made of a same material, and fabricated in a same patterning process and using a single mask plate.
  • each of the first power pad PP1 and the second power pad PP2 includes a plurality of sub-layers (e.g., a first sub-layer P11, a second sub-layer P12, and a third sub-layer P13) .
  • the first power pad PP1 and the second power pad PP2 are first formed and patterned on the base substrate 10.
  • a planarization layer 20 is formed on the first power pad PP1 and the second power pad PP2 (e.g., the first portion P1) , and subsequently the first electrode 53 is formed by depositing a conductive material layer followed by etching the conductive material layer to form the pattern of the first electrode 53.
  • a side surface of the first portion P1 (or any other portion of the first power pad PP1 or the second power pad PP2) that is not covered by the planarization layer 20 can be etched by the etchant for etching the conductive material layer.
  • one of the sub-layers of the first portion P1 is made of a relatively less etchant resistant material, and is over-etched during the etching process, thereby forming a concave side surface.
  • the pixel definition layer 30 is formed on the base substrate 10, the pixel definition material of the pixel definition layer 30 fills in the concave surface.
  • the encapsulating layer 40 When the encapsulating layer 40 is formed to encapsulate the display substrate, it cannot completely encapsulate the concave surface. As discussed previously, the pixel definition layer 30 and the planarization layer 20 are not capable of completely blocking oxygen and moisture. External oxygen and moisture can permeate through the planarization layer 20 and the pixel definition layer 30.
  • the encapsulating layer 40 extends into the first groove GE1 and is in direct contact with the first side S1 of the first portion P1 (see, e.g., FIGs. 11 to 13) .
  • the presence of the encapsulating layer 40 in this region blocks the pathway of external oxygen and moisture to reach the second electrode 51.
  • the second electrode 51 is protected from corrosion caused by the external oxygen and moisture permeating through the first gap G1 and the second gap G2 (see, e.g., FIG. 8) .
  • the performance and lifetime of the plurality of light emitting elements LE are significantly enhanced.
  • the encapsulating layer 40 includes a first inorganic encapsulating sub-layer 41 on a side of the plurality light emitting elements LE and the pixel definition layer 30 away from the base substrate 10, an organic encapsulating sub-layer 42 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10, and a second inorganic encapsulating sub-layer 43 on a side of the organic encapsulating sub-layer 42 away from the first inorganic encapsulating sub-layer 41.
  • the first inorganic encapsulating sub-layer 41 extends into the first groove GE1 and is in direct contact with the surface of the first portion P1 (e.g., the first side S1 of the first portion P1 as shown in FIGs. 11 to 13) .
  • the encapsulating layer 40 further includes an organic encapsulating sub-layer 42 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10, and a second inorganic encapsulating sub-layer 43 on a side of the organic encapsulating sub-layer 42 away from the first inorganic encapsulating sub-layer 41.
  • the first power pad PP1 includes a first portion P1 in the peripheral area PA and along a power line interface side of the display substrate, and at least one second portion P2 connected to the first portion P1 and extending from the first portion P1 away from the display area DA.
  • the at least one second portion P2 is at least partially covered by one or a combination of the pixel definition layer 30 and the planarization layer 20.
  • the at least one second portion P2 includes two second portions (one on left and another on right in FIG. 7) connected to the first portion P1 respectively at different locations and extending from the first portion P1 away from the display area DA.
  • the first portion P1 and the two second portions of the at least one second portion P2 form a pi-shaped structure.
  • the display substrate has a second groove GE2 extending through one or a combination of the planarization layer 20 and the pixel definition layer 30, exposing a surface of the at least one second portion P2 of the first power pad PP1 in the peripheral area PA.
  • the encapsulating layer 40 extends into the second groove GE2 and is in direct contact with the surface of the at least one second portion P2.
  • the first inorganic encapsulating sub-layer 41 extends into the second groove GE2 and is in direct contact with the surface of the at least one second portion P2.
  • the encapsulating layer 40 further includes an organic encapsulating sub-layer 42 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10, and a second inorganic encapsulating sub-layer 43 on a side of the organic encapsulating sub-layer 42 away from the first inorganic encapsulating sub-layer 41.
  • the encapsulating layer 40 further includes a second inorganic encapsulating sub-layer 43 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10.
  • the organic encapsulating sub-layer 42 is not present.
  • the second power pad PP2 includes at least one third portion P3 on the power line interface side of the display substrate.
  • the at least one third portion P3 is at least partially covered by one or a combination of the pixel definition layer 30 and the planarization layer 20.
  • the display substrate has a second groove GE2 extending through one or a combination of the planarization layer 20 and the pixel definition layer 30, exposing a surface of the at least one third portion P3 of the second power pad PP2 in the peripheral area PA.
  • the encapsulating layer 40 extends into the second groove GE2 and is in direct contact with the surface of the at least one third portion P3.
  • the first inorganic encapsulating sub-layer 41 extends into the second groove GE2 and is in direct contact with the surface of the at least one third portion P3.
  • the encapsulating layer 40 further includes an organic encapsulating sub-layer 42 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10, and a second inorganic encapsulating sub-layer 43 on a side of the organic encapsulating sub-layer 42 away from the first inorganic encapsulating sub-layer 41.
  • the display substrate has a second groove GE2 extending through one or a combination of the planarization layer 20 and the pixel definition layer 30, exposing a surface of the at least one second portion P2 of the first power pad PP1 in the peripheral area PA and a surface of the at least one third portion P3 of the second power pad PP2 in the peripheral area PA.
  • the encapsulating layer 40 extends into the second groove GE2 and is in direct contact with the surface of the at least one second portion P2 and the surface of the at least one third portion P3.
  • the first inorganic encapsulating sub-layer 41 extends into the second groove GE2 and is in direct contact with the surface of the at least one second portion P2 and the surface of the at least one third portion P3.
  • the encapsulating layer 40 further includes an organic encapsulating sub-layer 42 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10, and a second inorganic encapsulating sub-layer 43 on a side of the organic encapsulating sub-layer 42 away from the first inorganic encapsulating sub-layer 41.
  • the encapsulating layer 40 further includes a second inorganic encapsulating sub-layer 43 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10.
  • the organic encapsulating sub-layer 42 is not present.
  • the display substrate has a third groove GE3 extending through one or a combination of the planarization layer 20 and the pixel definition layer 30, exposing a surface of the at least one second portion P2 of the first power pad PP1 in the peripheral area PA.
  • the encapsulating layer 40 extends into the third groove GE3 and is in direct contact with the surface of the at least one second portion P2.
  • the first inorganic encapsulating sub-layer 41 extends into the third groove GE3 and is in direct contact with the surface of the at least one second portion P2.
  • the encapsulating layer 40 further includes a second inorganic encapsulating sub-layer 43 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10.
  • the organic encapsulating sub-layer 42 is not present.
  • the display substrate has a third groove GE3 extending through one or a combination of the planarization layer 20 and the pixel definition layer 30, exposing and a surface of the at least one third portion P3 of the second power pad PP2 in the peripheral area PA.
  • the encapsulating layer 40 extends into the third groove GE3 and is in direct contact with the surface of the at least one third portion P3.
  • the first inorganic encapsulating sub-layer 41 extends into the third groove GE3 and is in direct contact with the surface of the at least one third portion P3.
  • the encapsulating layer 40 further includes a second inorganic encapsulating sub-layer 43 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10.
  • the organic encapsulating sub-layer 42 is not present.
  • the display substrate has a third groove GE3 extending through one or a combination of the planarization layer 20 and the pixel definition layer 30, exposing a surface of the at least one second portion P2 of the first power pad PP1 in the peripheral area PA and a surface of the at least one third portion P3 of the second power pad PP2 in the peripheral area PA.
  • the encapsulating layer 40 extends into the third groove GE3 and is in direct contact with the surface of the at least one second portion P2 and the surface of the at least one third portion P3.
  • the first inorganic encapsulating sub-layer 41 extends into the third groove GE3 and is in direct contact with the surface of the at least one second portion P2 and the surface of the at least one third portion P3.
  • the encapsulating layer 40 further includes a second inorganic encapsulating sub-layer 43 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10.
  • the organic encapsulating sub-layer 42 is not present.
  • the at least one third portion P3 is on a side of the first portion P1 extending away from the display area.
  • the first portion P1 and a respective one of the at least one third portion P3 are spaced apart by a first gap G1.
  • the first groove GE1 is on a side of the first gap G1 closer to the display area DA.
  • the planarization layer 20 extends into the first gap G1.
  • the at least one second portion P2 and the at least one third portion P3 are on a side of the first portion P1 extending away from the display area.
  • a respective one of the at least one second portion P2 is spaced apart from a respective one of the at least one third portion P3 by a second gap G2 connected to the first gap G1.
  • the planarization layer 20 extends into the first gap G1 and the second gap G2.
  • appropriate light emitting elements may be used in the present display substrate.
  • appropriate light emitting elements include organic light emitting diodes, quantum dots light emitting diodes, and micro light emitting diodes.
  • the present disclosure provides a display apparatus including a display substrate described herein or fabricated by a method described herein, and one or more integrated circuits connected to the display substrate.
  • the display apparatus includes a display panel.
  • the display panel includes the display substrate described herein or fabricated by a method described herein, and a counter substrate. Examples of appropriate display apparatuses include, but are not limited to, an electronic paper, a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital album, a GPS, etc.
  • the stretchable display apparatus further includes one or more integrated circuits connected to the stretchable display panel.
  • the present disclosure provides a method of fabricating a display substrate.
  • the method includes forming a first power pad on a base substrate, the first power pad formed to include a first portion in the peripheral area and along a power line interface side of the display substrate; forming a planarization layer on a side of the first power pad away from the base substrate; forming a pixel definition layer on a side of the planarization layer away from the base substrate, defining a plurality of subpixel apertures; forming a first groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the first portion of the first power pad in the peripheral area; and forming an encapsulating layer on a side of the pixel definition layer away from the base substrate, the encapsulating layer formed to extend into the first groove and be in direct contact with the surface of the first portion, thereby encapsulating the display substrate.
  • the first portion is formed to have a first side away from the base substrate, a second side opposite to the first side and closer to the base substrate, a third side connecting the first side and the second side and closer to the display area, and a fourth side connecting the first side and the second side, the fourth side being opposite to the third side and away from the display area.
  • the fourth side of the first portion is formed to be covered by one or a combination of the pixel definition layer and the planarization layer.
  • the first groove is formed to expose a portion of the first side.
  • the first portion is formed so that the fourth side has a concave surface.
  • the first portion is formed to include a plurality of sub-layers, at least one of which is over-etched on the fourth side, thereby forming the concave surface.
  • forming the encapsulating layer includes forming a first inorganic encapsulating sub-layer on a side of the plurality light emitting elements and the pixel definition layer away from the base substrate, forming an organic encapsulating sub-layer on a side of the first inorganic encapsulating sub-layer away from the base substrate, and forming a second inorganic encapsulating sub-layer on a side of the organic encapsulating sub-layer away from the first inorganic encapsulating sub-layer.
  • the first inorganic encapsulating sub-layer is formed to extend into the first groove and be in direct contact with the surface of the first portion.
  • the organic encapsulating sub-layer is formed on a side of the first inorganic encapsulating sub-layer away from the base substrate, and a second inorganic encapsulating sub-layer is formed on a side of the organic encapsulating sub-layer away from the first inorganic encapsulating sub-layer.
  • forming the first power pad further includes forming at least one second portion connected to the first portion and extending from the first portion away from the display area.
  • one or a combination of the pixel definition layer and the planarization layer is formed to at least partially cover the at least one second portion.
  • the method further includes forming a second groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the at least one second portion of the first power pad in the peripheral area.
  • the encapsulating layer is formed to extend into the second groove and be in direct contact with the surface of the at least one second portion.
  • the first inorganic encapsulating sub-layer is formed to extend into the second groove and be in direct contact with the surface of the at least one second portion.
  • an organic encapsulating sub-layer is formed on a side of the first inorganic encapsulating sub-layer away from the base substrate, and a second inorganic encapsulating sub-layer is formed on a side of the organic encapsulating sub-layer away from the first inorganic encapsulating sub-layer.
  • forming the at least one second portion includes forming two second portions connected to the first portion respectively at different locations and extending from the first portion away from the display area.
  • the first portion and the two second portions are formed to have a pi-shaped structure.
  • the method further includes forming a second power pad on the base substrate and in the peripheral area, the second power pad formed to be spaced apart from the first power pad.
  • forming the second power pad includes forming at least one third portion on the power line interface side of the display substrate.
  • one or a combination of the pixel definition layer and the planarization layer is formed to at least partially cover the at least one third portion.
  • the second groove is formed to extend through one or a combination of the planarization layer and the pixel definition layer, further exposing a surface of the at least one third portion of the second power pad in the peripheral area.
  • the encapsulating layer is formed to extend into the second groove and be in direct contact with the surface of the at least one third portion.
  • the first portion and a respective one of the at least one third portion are formed to be spaced apart by a first gap.
  • the first groove is formed on a side of the first gap closer to the display area.
  • the planarization layer is formed to extend into the first gap.
  • the at least one second portion and the at least one third portion are formed so that a respective one of the at least one second portion is spaced apart from a respective one of the at least one third portion by a second gap connected to the first gap.
  • the planarization layer is formed to extend into the first gap and the second gap.
  • the method further includes forming a third groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the at least one second portion of the first power pad in the peripheral area.
  • the first inorganic encapsulating sub-layer is formed to extend into the third groove and is formed to be in direct contact with the surface of the at least one second portion.
  • a second inorganic encapsulating sub-layer is formed on a side of the first inorganic encapsulating sub-layer away from the base substrate, the second inorganic encapsulating sub-layer is formed to be in direct contact with the first inorganic encapsulating sub-layer.
  • the third groove is formed to expose a surface of the at least one third portion of the second power pad in the peripheral area.
  • the first inorganic encapsulating sub-layer is formed to extend into the third groove and is formed to be in direct contact with the surface of the at least one third portion.
  • a second inorganic encapsulating sub-layer is formed on a side of the first inorganic encapsulating sub-layer away from the base substrate, the second inorganic encapsulating sub-layer is formed to be in direct contact with the first inorganic encapsulating sub-layer.
  • the term “the invention” , “the present invention” or the like does not necessarily limit the claim scope to a specific embodiment, and the reference to exemplary embodiments of the invention does not imply a limitation on the invention, and no such limitation is to be inferred.
  • the invention is limited only by the spirit and scope of the appended claims.
  • these claims may refer to use “first” , “second” , etc. following with noun or element.
  • Such terms should be understood as a nomenclature and should not be construed as giving the limitation on the number of the elements modified by such nomenclature unless specific number has been given. Any advantages and benefits described may not apply to all embodiments of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A display substrate having a display area and a peripheral area. The display panel includes a base substrate; a first power pad on the base substrate, the first power pad including a first portion in the peripheral area and along a power line interface side of the display substrate; a planarization layer on a side of the first power pad away from the base substrate; a pixel definition layer on a side of the planarization layer away from the base substrate, defining a plurality of subpixel apertures; and an encapsulating layer on a side of the pixel definition layer away from the base substrate. The display substrate includes a first groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the first portion of the first power pad in the peripheral area.

Description

DISPLAY SUBSTRATE, DISPLAY APPARATUS, METHOD OF FABRICATING DISPLAY SUBSTRATE TECHNICAL FIELD
The present invention relates to display technology, more particularly, to a display substrate, a display apparatus, and a method of fabricating a display substrate.
BACKGROUND
Organic light emitting diode (OLED) display apparatuses are self-emissive devices, and do not require backlights. OLED display apparatuses also provide more vivid colors and a larger color gamut as compared to the conventional liquid crystal display (LCD) apparatuses. Further, OLED display apparatuses can be made more flexible, thinner, and lighter than a typical LCD apparatuses.
SUMMARY
In one aspect, the present invention provides a display substrate having a display area and a peripheral area, comprising a base substrate; a first power pad on the base substrate, the first power pad comprising a first portion in the peripheral area and along a power line interface side of the display substrate; a planarization layer on a side of the first power pad away from the base substrate; a pixel definition layer on a side of the planarization layer away from the base substrate, defining a plurality of subpixel apertures; and an encapsulating layer on a side of the pixel definition layer away from the base substrate; wherein the display substrate comprises a first groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the first portion of the first power pad in the peripheral area; and the encapsulating layer extends into the first groove and is in direct contact with the surface of the first portion, thereby encapsulating the display substrate.
Optionally, the encapsulating layer completely covers the surface of the first portion.
Optionally, the first portion comprises a first side away from the base substrate, a second side opposite to the first side and closer to the base substrate, a third side connecting the first side and the second side and closer to the display area, and a fourth side connecting the first side and the second side, the fourth side being opposite to the third side and away  from the display area; the fourth side of the first portion is covered by one or a combination of the pixel definition layer and the planarization layer; and the first groove exposes a portion of the first side.
Optionally, the fourth side has a concave surface.
Optionally, the first portion comprises at least one sublayer that is over-etched on the fourth side, thereby forming the concave surface.
Optionally, the encapsulating layer comprises a first inorganic encapsulating sub-layer, the first inorganic encapsulating sub-layer extending into the first groove and being in direct contact with the surface of the first portion.
Optionally, in a region corresponding to the first groove, the encapsulating layer further comprises an organic encapsulating sub-layer on a side of the first inorganic encapsulating sub-layer away from the base substrate, and a second inorganic encapsulating sub-layer on a side of the organic encapsulating sub-layer away from the first inorganic encapsulating sub-layer.
Optionally, the first power pad further comprises at least one second portion connected to the first portion and extending from the first portion away from the display area; and the at least one second portion is at least partially covered by one or a combination of the pixel definition layer and the planarization layer.
Optionally, the display substrate further comprises a second groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the at least one second portion of the first power pad in the peripheral area; and the encapsulating layer extends into the second groove and is in direct contact with the surface of the at least one second portion.
Optionally, the encapsulating layer comprises a first inorganic encapsulating sub-layer, the first inorganic encapsulating sub-layer extending into the second groove and being in direct contact with the surface of the at least one second portion.
Optionally, in a region corresponding to the second groove, the encapsulating layer further comprises an organic encapsulating sub-layer on a side of the first inorganic encapsulating sub-layer away from the base substrate, and a second inorganic encapsulating  sub-layer on a side of the organic encapsulating sub-layer away from the first inorganic encapsulating sub-layer.
Optionally, the at least one second portion comprises two second portions connected to the first portion respectively at different locations and extending from the first portion away from the display area; and the first portion and the two second portions form a pi-shaped structure.
Optionally, the display substrate further comprises a second power pad on the base substrate and in the peripheral area, the second power pad spaced apart from the first power pad; wherein the second power pad comprises at least one third portion on the power line interface side of the display substrate, the at least one third portion at least partially covered by one or a combination of the pixel definition layer and the planarization layer; the second groove extends through one or a combination of the planarization layer and the pixel definition layer, further exposing a surface of the at least one third portion of the second power pad in the peripheral area; and the encapsulating layer extends into the second groove and is in direct contact with the surface of the at least one third portion.
Optionally, the display substrate further comprises a second power pad on the base substrate and in the peripheral area, the second power pad spaced apart from the first power pad; wherein the second power pad comprises at least one third portion on the power line interface side of the display substrate, the at least one third portion at least partially covered by one or a combination of the pixel definition layer and the planarization layer; the at least one third portion is on a side of the first portion extending away from the display area, the first portion and a respective one of the at least one third portion being spaced apart by a first gap; and the first groove is on a side of the first gap closer to the display area.
Optionally, the planarization layer at least extends into the first gap.
Optionally, the first power pad further comprises at least one second portion connected to the first portion and extending from the first portion away from the display area; the at least one second portion is at least partially covered by one or a combination of the pixel definition layer and the planarization layer; and the at least one second portion and the at least one third portion are on a side of the first portion extending away from the display area, a respective one of the at least one second portion being spaced apart from a respective one of the at least one third portion by a second gap connected to the first gap.
Optionally, the planarization layer extends into the first gap and the second gap.
Optionally, the display substrate further comprises a third groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the at least one second portion of the first power pad in the peripheral area; the encapsulating layer comprises a first inorganic encapsulating sub-layer, the first inorganic encapsulating sub-layer extending into the third groove and being in direct contact with the surface of the at least one second portion; in a region corresponding to the third groove, the encapsulating layer further comprises a second inorganic encapsulating sub-layer on a side of the first inorganic encapsulating sub-layer away from the base substrate, the second inorganic encapsulating sub-layer being in direct contact with the first inorganic encapsulating sub-layer.
Optionally, the first power pad is selected from a group consisting of a VDD power pad connected to a plurality of VDD high voltage power lines and a VSS power pad connected to a plurality of VSS low voltage power lines.
In another aspect, the present invention provides a display apparatus, comprising the display substrate described herein or fabricated by a method described herein, and one or more integrated circuits connected to the display substrate.
In another aspect, the present invention provides a method of fabricating a display substrate, comprising forming a first power pad on a base substrate, the first power pad formed to comprise a first portion in the peripheral area and along a power line interface side of the display substrate; forming a planarization layer on a side of the first power pad away from the base substrate; forming a pixel definition layer on a side of the planarization layer away from the base substrate, defining a plurality of subpixel apertures; forming a first groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the first portion of the first power pad in the peripheral area; and forming an encapsulating layer on a side of the pixel definition layer away from the base substrate, the encapsulating layer formed to extend into the first groove and be in direct contact with the surface of the first portion, thereby encapsulating the display substrate.
BRIEF DESCRIPTION OF THE FIGURES
The following drawings are merely examples for illustrative purposes according to various disclosed embodiments and are not intended to limit the scope of the present invention.
FIG. 1 is a plan view of a display substrate in some embodiments according to the present disclosure.
FIG. 2 is schematic diagram illustrating the structure of a first power pad in some embodiments according to the present disclosure.
FIG. 3 is a zoom-in view of an area Z in FIG. 1.
FIG. 4 is a cross-sectional view along an A-A’ line of FIG. 3.
FIG. 5 is a cross-sectional view along a B-B’ line of FIG. 3.
FIG. 6 is a plan view of a display substrate in some embodiments according to the present disclosure.
FIG. 7 is schematic diagram illustrating the structure of a first power pad in some embodiments according to the present disclosure.
FIG. 8 is a zoom-in view of an area Z in FIG. 6.
FIG. 9 is a cross-sectional view along a C-C’ line of FIG. 8.
FIG. 10 is a cross-sectional view along a D-D’ line of FIG. 8.
FIG. 11 is a partial view of a display substrate showing the structure of a first portion of a first power pad in some embodiments according to the present disclosure.
FIG. 12 is a partial view of a display substrate showing the structure of a first portion of a first power pad in some embodiments according to the present disclosure.
FIG. 13 is a partial view of a display substrate showing the structure of a first portion of a first power pad in some embodiments according to the present disclosure.
DETAILED DESCRIPTION
The disclosure will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of some  embodiments are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
FIG. 1 is a plan view of a display substrate in some embodiments according to the present disclosure. FIG. 2 is schematic diagram illustrating the structure of a first power pad in some embodiments according to the present disclosure. FIG. 3 is a zoom-in view of an area Z in FIG. 1. FIG. 4 is a cross-sectional view along an A-A’ line of FIG. 3. FIG. 5 is a cross-sectional view along a B-B’ line of FIG. 3. Referring to FIGs. 1 to 5, the display substrate in some embodiments have a display area DA and a peripheral area PA. The display substrate includes a base substrate 10; a first power pad PP1 on the base substrate 10; a planarization layer 20 on a side of the first power pad PP1 away from the base substrate 10; a pixel definition layer 30 on a side of the planarization layer 20 away from the base substrate 10, defining a plurality of subpixel apertures SPA; and an encapsulating layer 40 on a side of the pixel definition layer 30 away from the base substrate 10. Optionally, the display substrate further includes a second power pad PP2 on the base substrate 10 and in the peripheral area PA, the second power pad PP2 spaced apart from the first power pad PP1.
In some embodiments, the first power pad PP1 includes a first portion P1 in the peripheral area PA and along a power line interface side of the display substrate, and at least one second portion P2 connected to the first portion P1 and extending from the first portion P1 away from the display area DA. In some embodiments, the second power pad PP2 includes at least one third portion P3 on the power line interface side of the display substrate, and at least one fourth portion P4 connected to the third portion P3 and on another side of the display substrate different from the power line interface side. Optionally, one or a combination of the first portion P1, the at least one second portion P2, the at least one third portion P3, and the at least one fourth portion P4 is at least partially covered by one or a combination of the pixel definition layer 30 and the planarization layer 20. In one example, as shown in FIGs. 1 to 5, one or a combination of the first portion P1, the at least one second portion P2, the at least one third portion P3, and the at least one fourth portion P4 is at least partially covered by both the planarization layer 20 and the pixel definition layer 30. In another example, at least one of the first portion P1, the at least one second portion P2, the at least one third portion P3, and the at least one fourth portion P4 is only at least partially covered by the planarization layer 20 but not the pixel definition layer 30.
Optionally, the power line interface side of the display substrate is an integrated circuit bonding side of the display substrate at which one or more integrated circuits are connected to the display substrate. Optionally, the power line interface side of the display substrate is a side of the display substrate at which one or more power line are connected to the display substrate.
Referring to FIG. 2, in some embodiments, the at least one second portion P2 includes two second portions (one on left and another on right in FIG. 2) connected to the first portion P1 respectively at different locations and extending from the first portion P1 away from the display area DA. Optionally, the first portion P1 and the two second portions of the at least one second portion P2 form a pi-shaped structure.
In some embodiments, and referring to FIG. 4 and FIG. 5, the display substrate further includes a plurality of light emitting elements LE respectively in the plurality of subpixel apertures SPA. A respective one of a plurality of light emitting elements LE includes a first electrode 53, a light emitting layer 52 on a side of the first electrode 53 away from the base substrate 10, and a second electrode 51 on a side of the light emitting layer 52 away from the first electrode 53.
In some embodiments, and referring to FIG. 4 and FIG. 5, the display substrate further includes a plurality of thin film transistors TFT for driving light emission of the plurality of light emitting elements LE.
In some embodiments, the first power pad PP1 is connected to and configured to provide a first power signal to a plurality of first power signal lines, and the second power pad PP2 is connected to and configured to provide a second power signal to a plurality of second power signal lines. Optionally, the first power pad PP1 is a VDD power pad connected to a plurality of VDD high voltage power lines, and the second power pad PP2 is a VSS power pad connected to a plurality of VSS low voltage power lines. Optionally, the first power pad PP1 is a VSS power pad connected to a plurality of VSS low voltage power lines, and the second power pad PP2 is a VDD power pad connected to a plurality of VDD high voltage power lines. Optionally, the first power pad and the second power pad may be other pads connected to different signal lines.
In some embodiments, and referring to FIG. 4 and FIG. 5, the encapsulating layer 40 includes a first inorganic encapsulating sub-layer 41 on a side of the plurality light emitting elements LE and the pixel definition layer 30 away from the base substrate 10, an  organic encapsulating sub-layer 42 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10, and a second inorganic encapsulating sub-layer 43 on a side of the organic encapsulating sub-layer 42 away from the first inorganic encapsulating sub-layer 41.
In some embodiments, and referring to FIG. 4 and FIG. 5, the display substrate has a second groove GE2 extending through one or a combination of the planarization layer 20 and the pixel definition layer 30, exposing a surface of the at least one second portion P2 of the first power pad PP1 in the peripheral area PA and a surface of the at least one third portion P3 of the second power pad PP2 in the peripheral area PA. The encapsulating layer 40 extends into the second groove GE2 and is in direct contact with the surface of the at least one second portion P2 and the surface of the at least one third portion P3. For example, the first inorganic encapsulating sub-layer 41 extends into the second groove GE2 and is in direct contact with the surface of the at least one second portion P2 and the surface of the at least one third portion P3.
In some embodiments, and referring to FIG. 4 and FIG. 5, the display substrate further includes a third groove GE3 extending through one or a combination of the planarization layer 20 and the pixel definition layer 30, exposing a surface of the at least one second portion P2 of the first power pad PP1 in the peripheral area PA and a surface of the at least one third portion P3 of the second power pad PP2 in the peripheral area PA. The encapsulating layer 40 extends into the third groove GE3 and is in direct contact with the surface of the at least one second portion P2 and the surface of the at least one third portion P3. For example, the first inorganic encapsulating sub-layer 41 extends into the third groove GE3 and is in direct contact with the surface of the at least one second portion P2 and the surface of the at least one third portion P3.
Referring to FIG. 3, the at least one third portion P3 is on a side of the first portion P1 extending away from the display area. The first portion P1 and a respective one of the at least one third portion P3 are spaced apart by a first gap G1. The at least one second portion P2 and the at least one third portion P3 are on a side of the first portion P1 extending away from the display area. A respective one of the at least one second portion P2 is spaced apart from a respective one of the at least one third portion P3 by a second gap G2 connected to the first gap G1. The first gap G1 and the second gap G2 form a channel allowing external oxygen and moisture permeate into the inside of the display substrate, because the  planarization layer 20 and the pixel definition layer 30 are not capable of completely blocking oxygen and moisture. Referring to the dotted arrow line in FIGs. 3 to 5, the external oxygen and moisture can permeate through the planarization layer 20 and the pixel definition layer 30, and reach the second electrode 51 of the plurality of light emitting elements LE, thereby corroding the second electrode 51, resulting in deterioration of the plurality of light emitting elements LE.
Accordingly, the present disclosure provides, inter alia, a display substrate, a display apparatus, and a method of fabricating a display substrate that substantially obviate one or more of the problems due to limitations and disadvantages of the related art. In one aspect, the present disclosure provides a display substrate having a display area and a peripheral area. In some embodiments, the display substrate includes a base substrate; a first power pad on the base substrate, the first power pad including a first portion in the peripheral area and along a power line interface side of the display substrate; a planarization layer on a side of the first power pad away from the base substrate; a pixel definition layer on a side of the planarization layer away from the base substrate, defining a plurality of subpixel apertures; and an encapsulating layer on a side of the pixel definition layer away from the base substrate. Optionally, the display substrate includes a first groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the first portion of the first power pad in the peripheral area. Optionally, the encapsulating layer extends into the first groove and is in direct contact with the surface of the first portion, thereby encapsulating the display substrate. Optionally, the encapsulating layer completely covers the surface of the first portion.
FIG. 6 is a plan view of a display substrate in some embodiments according to the present disclosure. FIG. 7 is schematic diagram illustrating the structure of a first power pad in some embodiments according to the present disclosure. FIG. 8 is a zoom-in view of an area Z in FIG. 6. FIG. 9 is a cross-sectional view along a C-C’ line of FIG. 8. FIG. 10 is a cross-sectional view along a D-D’ line of FIG. 8. Referring to FIGs. 6 to 10, the display substrate in some embodiments have a display area DA and a peripheral area PA. The display substrate includes a base substrate 10; a first power pad PP1 on the base substrate 10; a planarization layer 20 on a side of the first power pad PP1 away from the base substrate 10; a pixel definition layer 30 on a side of the planarization layer 20 away from the base substrate 10, defining a plurality of subpixel apertures SPA; and an encapsulating layer 40 on a side of the pixel definition layer 30 away from the base substrate 10. In some embodiments, the first  power pad PP1 includes a first portion P1 in the peripheral area PA and along a power line interface side of the display substrate. Optionally, the display substrate has a first groove GE1 extending through one or a combination of the planarization layer 20 and the pixel definition layer 30, exposing a surface of the first portion P1 of the first power pad PP1 in the peripheral area PA. In one example, and referring to FIG. 9 and FIG. 10, the first groove GE1 extends through both of the planarization layer 20 and the pixel definition layer 30, exposing the surface of the first portion P1 of the first power pad PP1 in the peripheral area PA. The encapsulating layer 40 extends into the first groove GE1 and is in direct contact with the surface of the first portion P1, thereby encapsulating the display substrate. The encapsulating layer 40 completely covers the surface of the first portion P1.
In some embodiments, the display substrate further includes a second power pad PP2 on the base substrate 10 and in the peripheral area PA, the second power pad PP2 spaced apart from the first power pad PP1. In some embodiments, the first power pad PP1 is connected to and configured to provide a first power signal to a plurality of first power signal lines, and the second power pad PP2 is connected to and configured to provide a second power signal to a plurality of second power signal lines. Optionally, the first power pad is a VDD power pad connected to a plurality of VDD high voltage power lines, and the second power pad is a VSS power pad connected to a plurality of VSS low voltage power lines. Optionally, the first power pad is a VSS power pad connected to a plurality of VSS low voltage power lines, and the second power pad is a VDD power pad connected to a plurality of VDD high voltage power lines. Optionally, the first power pad and the second power pad may be other pads connected to different signal lines.
Optionally, referring to FIG. 6, the first power pad PP1 (e.g., the VDD power pad) is disposed along one side of the display substrate, and the second power pad PP2 (e.g., the VSS power pad) substantially surround at least three sides of the display substrate, and extends out of the display substrate from a circuit bonding side (e.g., the power line interface side) of the display substrate.
In some embodiments, and referring to FIG. 9 and FIG. 10, the display substrate further includes a plurality of light emitting elements LE respectively in the plurality of subpixel apertures SPA. A respective one of a plurality of light emitting elements LE includes a first electrode 53, a light emitting layer 52 on a side of the first electrode 53 away  from the base substrate 10, and a second electrode 51 on a side of the light emitting layer 52 away from the first electrode 53.
In some embodiments, and referring to FIG. 9 and FIG. 10, the display substrate further includes a plurality of thin film transistors TFT for driving light emission of the plurality of light emitting elements LE. In one example, the first electrode 53 is electrically connected to a drain electrode of a respective one of the plurality of thin film transistors TFT. The plurality of thin film transistors TFT and various signal lines (such as the plurality of VDD high voltage power lines and the plurality of VSS low voltage power lines) constitute a driving circuit for driving light emission of the display substrate.
FIG. 11 is a partial view of a display substrate showing the structure of a first portion of a first power pad in some embodiments according to the present disclosure. Referring to FIG. 11, the first portion P1 has a first side S1 away from the base substrate 10, a second side S2 opposite to the first side S1 and closer to the base substrate 10, a third side S3 connecting the first side S1 and the second side S2 and closer to the display area DA, and a fourth side S4 connecting the first side S1 and the second side S2, the fourth side S4 being opposite to the third side S3 and away from the display area DA. Optionally, the fourth side S4 of the first portion P1 is covered by one or a combination of the pixel definition layer 30 and the planarization layer 20. In one example, the fourth side S4 of the first portion P1 is covered by the planarization layer 20, as shown in FIG. 11 and FIG. 9. Optionally, the first groove GE1 exposes a portion of the first side S1, as shown in FIG. 9 and FIG. 10. Optionally, the display substrate further includes an inter-layer dielectric layer 60 between the first portion P1 and the base substrate 10.
FIG. 12 is a partial view of a display substrate showing the structure of a first portion of a first power pad in some embodiments according to the present disclosure. Referring to FIG. 12, in some embodiments, the third side S3 has a concave surface, and the fourth side S4 has a concave surface.
In some embodiments, the first portion P1 includes at least one sublayer that is over-etched on the fourth side S4, thereby forming the concave surface. FIG. 13 is a partial view of a display substrate showing the structure of a first portion of a first power pad in some embodiments according to the present disclosure. Referring to FIG. 13, in some embodiments, the first portion P1 includes a first sub-layer P11, a second sub-layer P12 in the middle, and a third sub-layer P13, the second sub-layer P12 is sandwiched by the first sub- layer P11 and the third sub-layer P13. At least the second sub-layer P12 is over-etched, thereby forming the concave surface.
Optionally, the first sub-layer P11 and the third sub-layer P13 are made of a relatively more etchant resistant material, and the second sub-layer P12 is made of a relatively less etchant resistant material. In one example, the first sub-layer P11 and the third sub-layer P13 are made of titanium, and the second sub-layer P12 is made of aluminum.
The second portion P2 and the second power pad PP2 may have a similar concave surface. Optionally, the first power pad PP1 and the second power pad PP2 are made of a same material, and fabricated in a same patterning process and using a single mask plate. Optionally, each of the first power pad PP1 and the second power pad PP2 includes a plurality of sub-layers (e.g., a first sub-layer P11, a second sub-layer P12, and a third sub-layer P13) .
In the fabricating process of the display substrate, the first power pad PP1 and the second power pad PP2 (e.g., the first portion P1) are first formed and patterned on the base substrate 10. A planarization layer 20 is formed on the first power pad PP1 and the second power pad PP2 (e.g., the first portion P1) , and subsequently the first electrode 53 is formed by depositing a conductive material layer followed by etching the conductive material layer to form the pattern of the first electrode 53. In the process of etching the conductive material layer, a side surface of the first portion P1 (or any other portion of the first power pad PP1 or the second power pad PP2) that is not covered by the planarization layer 20 can be etched by the etchant for etching the conductive material layer. In one example, one of the sub-layers of the first portion P1 is made of a relatively less etchant resistant material, and is over-etched during the etching process, thereby forming a concave side surface. Subsequently, the pixel definition layer 30 is formed on the base substrate 10, the pixel definition material of the pixel definition layer 30 fills in the concave surface. When the encapsulating layer 40 is formed to encapsulate the display substrate, it cannot completely encapsulate the concave surface. As discussed previously, the pixel definition layer 30 and the planarization layer 20 are not capable of completely blocking oxygen and moisture. External oxygen and moisture can permeate through the planarization layer 20 and the pixel definition layer 30.
However, referring to FIG. 9 and FIG. 10, due to the formation of the first groove GE1, the encapsulating layer 40 extends into the first groove GE1 and is in direct contact with the first side S1 of the first portion P1 (see, e.g., FIGs. 11 to 13) . As shown in FIG. 9  and FIG. 10, the presence of the encapsulating layer 40 in this region blocks the pathway of external oxygen and moisture to reach the second electrode 51. As a result, the second electrode 51 is protected from corrosion caused by the external oxygen and moisture permeating through the first gap G1 and the second gap G2 (see, e.g., FIG. 8) . The performance and lifetime of the plurality of light emitting elements LE are significantly enhanced.
In some embodiments, and referring to FIG. 9 and FIG. 10, the encapsulating layer 40 includes a first inorganic encapsulating sub-layer 41 on a side of the plurality light emitting elements LE and the pixel definition layer 30 away from the base substrate 10, an organic encapsulating sub-layer 42 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10, and a second inorganic encapsulating sub-layer 43 on a side of the organic encapsulating sub-layer 42 away from the first inorganic encapsulating sub-layer 41. Optionally, the first inorganic encapsulating sub-layer 41 extends into the first groove GE1 and is in direct contact with the surface of the first portion P1 (e.g., the first side S1 of the first portion P1 as shown in FIGs. 11 to 13) . Optionally, in a region corresponding to the first groove GE1, the encapsulating layer 40 further includes an organic encapsulating sub-layer 42 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10, and a second inorganic encapsulating sub-layer 43 on a side of the organic encapsulating sub-layer 42 away from the first inorganic encapsulating sub-layer 41.
Referring to FIG. 8 and FIG. 10, in some embodiments, the first power pad PP1 includes a first portion P1 in the peripheral area PA and along a power line interface side of the display substrate, and at least one second portion P2 connected to the first portion P1 and extending from the first portion P1 away from the display area DA. Optionally, the at least one second portion P2 is at least partially covered by one or a combination of the pixel definition layer 30 and the planarization layer 20. Referring to FIG. 7, in some embodiments, the at least one second portion P2 includes two second portions (one on left and another on right in FIG. 7) connected to the first portion P1 respectively at different locations and extending from the first portion P1 away from the display area DA. Optionally, the first portion P1 and the two second portions of the at least one second portion P2 form a pi-shaped structure.
In some embodiments, and referring to FIG. 10, the display substrate has a second groove GE2 extending through one or a combination of the planarization layer 20 and the  pixel definition layer 30, exposing a surface of the at least one second portion P2 of the first power pad PP1 in the peripheral area PA. The encapsulating layer 40 extends into the second groove GE2 and is in direct contact with the surface of the at least one second portion P2. For example, the first inorganic encapsulating sub-layer 41 extends into the second groove GE2 and is in direct contact with the surface of the at least one second portion P2.
Optionally, in a region corresponding to the second groove GE2, the encapsulating layer 40 further includes an organic encapsulating sub-layer 42 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10, and a second inorganic encapsulating sub-layer 43 on a side of the organic encapsulating sub-layer 42 away from the first inorganic encapsulating sub-layer 41.
Optionally, in a region corresponding to the second groove GE2, the encapsulating layer 40 further includes a second inorganic encapsulating sub-layer 43 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10. In one example, in a region corresponding to the second groove GE2, the organic encapsulating sub-layer 42 is not present.
In some embodiments, and referring to FIG. 9, the second power pad PP2 includes at least one third portion P3 on the power line interface side of the display substrate. The at least one third portion P3 is at least partially covered by one or a combination of the pixel definition layer 30 and the planarization layer 20. In some embodiments, the display substrate has a second groove GE2 extending through one or a combination of the planarization layer 20 and the pixel definition layer 30, exposing a surface of the at least one third portion P3 of the second power pad PP2 in the peripheral area PA. The encapsulating layer 40 extends into the second groove GE2 and is in direct contact with the surface of the at least one third portion P3. For example, the first inorganic encapsulating sub-layer 41 extends into the second groove GE2 and is in direct contact with the surface of the at least one third portion P3. Optionally, in a region corresponding to the second groove GE2, the encapsulating layer 40 further includes an organic encapsulating sub-layer 42 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10, and a second inorganic encapsulating sub-layer 43 on a side of the organic encapsulating sub-layer 42 away from the first inorganic encapsulating sub-layer 41.
In some embodiments, and referring to FIG. 9 and FIG. 10, the display substrate has a second groove GE2 extending through one or a combination of the planarization layer 20  and the pixel definition layer 30, exposing a surface of the at least one second portion P2 of the first power pad PP1 in the peripheral area PA and a surface of the at least one third portion P3 of the second power pad PP2 in the peripheral area PA. The encapsulating layer 40 extends into the second groove GE2 and is in direct contact with the surface of the at least one second portion P2 and the surface of the at least one third portion P3. For example, the first inorganic encapsulating sub-layer 41 extends into the second groove GE2 and is in direct contact with the surface of the at least one second portion P2 and the surface of the at least one third portion P3.
Optionally, in a region corresponding to the second groove GE2, the encapsulating layer 40 further includes an organic encapsulating sub-layer 42 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10, and a second inorganic encapsulating sub-layer 43 on a side of the organic encapsulating sub-layer 42 away from the first inorganic encapsulating sub-layer 41.
Optionally, in a region corresponding to the second groove GE2, the encapsulating layer 40 further includes a second inorganic encapsulating sub-layer 43 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10. In one example, in a region corresponding to the second groove GE2, the organic encapsulating sub-layer 42 is not present.
In some embodiments, and referring to FIG. 10, the display substrate has a third groove GE3 extending through one or a combination of the planarization layer 20 and the pixel definition layer 30, exposing a surface of the at least one second portion P2 of the first power pad PP1 in the peripheral area PA. The encapsulating layer 40 extends into the third groove GE3 and is in direct contact with the surface of the at least one second portion P2. For example, the first inorganic encapsulating sub-layer 41 extends into the third groove GE3 and is in direct contact with the surface of the at least one second portion P2. Optionally, in a region corresponding to the third groove GE3, the encapsulating layer 40 further includes a second inorganic encapsulating sub-layer 43 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10. In one example, in a region corresponding to the third groove GE3, the organic encapsulating sub-layer 42 is not present.
In some embodiments, and referring to FIG. 9, the display substrate has a third groove GE3 extending through one or a combination of the planarization layer 20 and the pixel definition layer 30, exposing and a surface of the at least one third portion P3 of the  second power pad PP2 in the peripheral area PA. The encapsulating layer 40 extends into the third groove GE3 and is in direct contact with the surface of the at least one third portion P3. For example, the first inorganic encapsulating sub-layer 41 extends into the third groove GE3 and is in direct contact with the surface of the at least one third portion P3. Optionally, in a region corresponding to the third groove GE3, the encapsulating layer 40 further includes a second inorganic encapsulating sub-layer 43 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10. In one example, in a region corresponding to the third groove GE3, the organic encapsulating sub-layer 42 is not present.
In some embodiments, and referring to FIG. 9 and FIG. 10, the display substrate has a third groove GE3 extending through one or a combination of the planarization layer 20 and the pixel definition layer 30, exposing a surface of the at least one second portion P2 of the first power pad PP1 in the peripheral area PA and a surface of the at least one third portion P3 of the second power pad PP2 in the peripheral area PA. The encapsulating layer 40 extends into the third groove GE3 and is in direct contact with the surface of the at least one second portion P2 and the surface of the at least one third portion P3. For example, the first inorganic encapsulating sub-layer 41 extends into the third groove GE3 and is in direct contact with the surface of the at least one second portion P2 and the surface of the at least one third portion P3. Optionally, in a region corresponding to the third groove GE3, the encapsulating layer 40 further includes a second inorganic encapsulating sub-layer 43 on a side of the first inorganic encapsulating sub-layer 41 away from the base substrate 10. In one example, in a region corresponding to the third groove GE3, the organic encapsulating sub-layer 42 is not present.
Referring to FIGs. 8 to 10, in some embodiments, the at least one third portion P3 is on a side of the first portion P1 extending away from the display area. The first portion P1 and a respective one of the at least one third portion P3 are spaced apart by a first gap G1. The first groove GE1 is on a side of the first gap G1 closer to the display area DA. Optionally, the planarization layer 20 extends into the first gap G1. In some embodiments, the at least one second portion P2 and the at least one third portion P3 are on a side of the first portion P1 extending away from the display area. A respective one of the at least one second portion P2 is spaced apart from a respective one of the at least one third portion P3 by a second gap G2 connected to the first gap G1. Optionally, the planarization layer 20 extends into the first gap G1 and the second gap G2.
Various appropriate light emitting elements may be used in the present display substrate. Examples of appropriate light emitting elements include organic light emitting diodes, quantum dots light emitting diodes, and micro light emitting diodes.
In another aspect, the present disclosure provides a display apparatus including a display substrate described herein or fabricated by a method described herein, and one or more integrated circuits connected to the display substrate. Optionally, the display apparatus includes a display panel. Optionally, the display panel includes the display substrate described herein or fabricated by a method described herein, and a counter substrate. Examples of appropriate display apparatuses include, but are not limited to, an electronic paper, a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital album, a GPS, etc. Optionally, the stretchable display apparatus further includes one or more integrated circuits connected to the stretchable display panel.
In another aspect, the present disclosure provides a method of fabricating a display substrate. In some embodiments, the method includes forming a first power pad on a base substrate, the first power pad formed to include a first portion in the peripheral area and along a power line interface side of the display substrate; forming a planarization layer on a side of the first power pad away from the base substrate; forming a pixel definition layer on a side of the planarization layer away from the base substrate, defining a plurality of subpixel apertures; forming a first groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the first portion of the first power pad in the peripheral area; and forming an encapsulating layer on a side of the pixel definition layer away from the base substrate, the encapsulating layer formed to extend into the first groove and be in direct contact with the surface of the first portion, thereby encapsulating the display substrate.
In some embodiments, the first portion is formed to have a first side away from the base substrate, a second side opposite to the first side and closer to the base substrate, a third side connecting the first side and the second side and closer to the display area, and a fourth side connecting the first side and the second side, the fourth side being opposite to the third side and away from the display area. Optionally, the fourth side of the first portion is formed to be covered by one or a combination of the pixel definition layer and the planarization layer. The first groove is formed to expose a portion of the first side. Optionally, the first portion is formed so that the fourth side has a concave surface. Optionally, the first portion is formed to  include a plurality of sub-layers, at least one of which is over-etched on the fourth side, thereby forming the concave surface.
In some embodiments, forming the encapsulating layer includes forming a first inorganic encapsulating sub-layer on a side of the plurality light emitting elements and the pixel definition layer away from the base substrate, forming an organic encapsulating sub-layer on a side of the first inorganic encapsulating sub-layer away from the base substrate, and forming a second inorganic encapsulating sub-layer on a side of the organic encapsulating sub-layer away from the first inorganic encapsulating sub-layer. Optionally, the first inorganic encapsulating sub-layer is formed to extend into the first groove and be in direct contact with the surface of the first portion. Optionally, in a region corresponding to the first groove, the organic encapsulating sub-layer is formed on a side of the first inorganic encapsulating sub-layer away from the base substrate, and a second inorganic encapsulating sub-layer is formed on a side of the organic encapsulating sub-layer away from the first inorganic encapsulating sub-layer.
In some embodiments, forming the first power pad further includes forming at least one second portion connected to the first portion and extending from the first portion away from the display area. Optionally, one or a combination of the pixel definition layer and the planarization layer is formed to at least partially cover the at least one second portion. Optionally, the method further includes forming a second groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the at least one second portion of the first power pad in the peripheral area. Optionally, the encapsulating layer is formed to extend into the second groove and be in direct contact with the surface of the at least one second portion. Optionally, the first inorganic encapsulating sub-layer is formed to extend into the second groove and be in direct contact with the surface of the at least one second portion. Optionally, in a region corresponding to the second groove, an organic encapsulating sub-layer is formed on a side of the first inorganic encapsulating sub-layer away from the base substrate, and a second inorganic encapsulating sub-layer is formed on a side of the organic encapsulating sub-layer away from the first inorganic encapsulating sub-layer.
In some embodiments, forming the at least one second portion includes forming two second portions connected to the first portion respectively at different locations and extending  from the first portion away from the display area. Optionally, the first portion and the two second portions are formed to have a pi-shaped structure.
In some embodiments, the method further includes forming a second power pad on the base substrate and in the peripheral area, the second power pad formed to be spaced apart from the first power pad. Optionally, forming the second power pad includes forming at least one third portion on the power line interface side of the display substrate. Optionally, one or a combination of the pixel definition layer and the planarization layer is formed to at least partially cover the at least one third portion. Optionally, the second groove is formed to extend through one or a combination of the planarization layer and the pixel definition layer, further exposing a surface of the at least one third portion of the second power pad in the peripheral area. Optionally, the encapsulating layer is formed to extend into the second groove and be in direct contact with the surface of the at least one third portion.
In some embodiments, the first portion and a respective one of the at least one third portion are formed to be spaced apart by a first gap. Optionally, the first groove is formed on a side of the first gap closer to the display area. Optionally, the planarization layer is formed to extend into the first gap. Optionally, the at least one second portion and the at least one third portion are formed so that a respective one of the at least one second portion is spaced apart from a respective one of the at least one third portion by a second gap connected to the first gap. Optionally, the planarization layer is formed to extend into the first gap and the second gap.
In some embodiments, the method further includes forming a third groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the at least one second portion of the first power pad in the peripheral area. Optionally, the first inorganic encapsulating sub-layer is formed to extend into the third groove and is formed to be in direct contact with the surface of the at least one second portion. Optionally, in a region corresponding to the third groove, a second inorganic encapsulating sub-layer is formed on a side of the first inorganic encapsulating sub-layer away from the base substrate, the second inorganic encapsulating sub-layer is formed to be in direct contact with the first inorganic encapsulating sub-layer.
Optionally, the third groove is formed to expose a surface of the at least one third portion of the second power pad in the peripheral area. Optionally, the first inorganic encapsulating sub-layer is formed to extend into the third groove and is formed to be in direct  contact with the surface of the at least one third portion. Optionally, in a region corresponding to the third groove, a second inorganic encapsulating sub-layer is formed on a side of the first inorganic encapsulating sub-layer away from the base substrate, the second inorganic encapsulating sub-layer is formed to be in direct contact with the first inorganic encapsulating sub-layer.
The foregoing description of the embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form or to exemplary embodiments disclosed. Accordingly, the foregoing description should be regarded as illustrative rather than restrictive. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. The embodiments are chosen and described in order to explain the principles of the invention and its best mode practical application, thereby to enable persons skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use or implementation contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents in which all terms are meant in their broadest reasonable sense unless otherwise indicated. Therefore, the term “the invention” , “the present invention” or the like does not necessarily limit the claim scope to a specific embodiment, and the reference to exemplary embodiments of the invention does not imply a limitation on the invention, and no such limitation is to be inferred. The invention is limited only by the spirit and scope of the appended claims. Moreover, these claims may refer to use “first” , “second” , etc. following with noun or element. Such terms should be understood as a nomenclature and should not be construed as giving the limitation on the number of the elements modified by such nomenclature unless specific number has been given. Any advantages and benefits described may not apply to all embodiments of the invention. It should be appreciated that variations may be made in the embodiments described by persons skilled in the art without departing from the scope of the present invention as defined by the following claims. Moreover, no element and component in the present disclosure is intended to be dedicated to the public regardless of whether the element or component is explicitly recited in the following claims.

Claims (21)

  1. A display substrate having a display area and a peripheral area, comprising:
    a base substrate;
    a first power pad on the base substrate, the first power pad comprising a first portion in the peripheral area and along a power line interface side of the display substrate;
    a planarization layer on a side of the first power pad away from the base substrate;
    a pixel definition layer on a side of the planarization layer away from the base substrate, defining a plurality of subpixel apertures; and
    an encapsulating layer on a side of the pixel definition layer away from the base substrate;
    wherein the display substrate comprises a first groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the first portion of the first power pad in the peripheral area; and
    the encapsulating layer extends into the first groove and is in direct contact with the surface of the first portion, thereby encapsulating the display substrate.
  2. The display substrate of claim 1, wherein the encapsulating layer completely covers the surface of the first portion.
  3. The display substrate of claim 1, wherein the first portion comprises a first side away from the base substrate, a second side opposite to the first side and closer to the base substrate, a third side connecting the first side and the second side and closer to the display area, and a fourth side connecting the first side and the second side, the fourth side being opposite to the third side and away from the display area;
    the fourth side of the first portion is covered by one or a combination of the pixel definition layer and the planarization layer; and
    the first groove exposes a portion of the first side.
  4. The display substrate of claim 3, wherein the fourth side has a concave surface.
  5. The display substrate of claim 4, wherein the first portion comprises at least one sublayer that is over-etched on the fourth side, thereby forming the concave surface.
  6. The display substrate of any one of claims 1 to 5, wherein the encapsulating layer comprises a first inorganic encapsulating sub-layer, the first inorganic encapsulating sub-layer extending into the first groove and being in direct contact with the surface of the first portion.
  7. The display substrate of claim 6, wherein, in a region corresponding to the first groove, the encapsulating layer further comprises an organic encapsulating sub-layer on a side of the first inorganic encapsulating sub-layer away from the base substrate, and a second inorganic encapsulating sub-layer on a side of the organic encapsulating sub-layer away from the first inorganic encapsulating sub-layer.
  8. The display substrate of any one of claims 1 to 5, wherein the first power pad further comprises at least one second portion connected to the first portion and extending from the first portion away from the display area; and
    the at least one second portion is at least partially covered by one or a combination of the pixel definition layer and the planarization layer.
  9. The display substrate of claim 8, wherein the display substrate further comprises a second groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the at least one second portion of the first power pad in the peripheral area; and
    the encapsulating layer extends into the second groove and is in direct contact with the surface of the at least one second portion.
  10. The display substrate of claim 9, wherein the encapsulating layer comprises a first inorganic encapsulating sub-layer, the first inorganic encapsulating sub-layer extending into the second groove and being in direct contact with the surface of the at least one second portion.
  11. The display substrate of claim 10, wherein, in a region corresponding to the second groove, the encapsulating layer further comprises an organic encapsulating sub-layer on a side of the first inorganic encapsulating sub-layer away from the base substrate,  and a second inorganic encapsulating sub-layer on a side of the organic encapsulating sub-layer away from the first inorganic encapsulating sub-layer.
  12. The display substrate of any one of claims 8 to 11, wherein the at least one second portion comprises two second portions connected to the first portion respectively at different locations and extending from the first portion away from the display area; and
    the first portion and the two second portions form a pi-shaped structure.
  13. The display substrate of any one of claims 9 to 12, further comprising a second power pad on the base substrate and in the peripheral area, the second power pad spaced apart from the first power pad;
    wherein the second power pad comprises at least one third portion on the power line interface side of the display substrate, the at least one third portion at least partially covered by one or a combination of the pixel definition layer and the planarization layer;
    the second groove extends through one or a combination of the planarization layer and the pixel definition layer, further exposing a surface of the at least one third portion of the second power pad in the peripheral area; and
    the encapsulating layer extends into the second groove and is in direct contact with the surface of the at least one third portion.
  14. The display substrate of any one of claims 1 to 12, further comprising a second power pad on the base substrate and in the peripheral area, the second power pad spaced apart from the first power pad;
    wherein the second power pad comprises at least one third portion on the power line interface side of the display substrate, the at least one third portion at least partially covered by one or a combination of the pixel definition layer and the planarization layer;
    the at least one third portion is on a side of the first portion extending away from the display area, the first portion and a respective one of the at least one third portion being spaced apart by a first gap; and
    the first groove is on a side of the first gap closer to the display area.
  15. The display substrate of claim 14, wherein the planarization layer at least extends into the first gap.
  16. The display substrate of claim 14, wherein the first power pad further comprises at least one second portion connected to the first portion and extending from the first portion away from the display area;
    the at least one second portion is at least partially covered by one or a combination of the pixel definition layer and the planarization layer; and
    the at least one second portion and the at least one third portion are on a side of the first portion extending away from the display area, a respective one of the at least one second portion being spaced apart from a respective one of the at least one third portion by a second gap connected to the first gap.
  17. The display substrate of claim 16, wherein the planarization layer extends into the first gap and the second gap.
  18. The display substrate of any one of claims 8 to 17, the display substrate further comprises a third groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the at least one second portion of the first power pad in the peripheral area;
    the encapsulating layer comprises a first inorganic encapsulating sub-layer, the first inorganic encapsulating sub-layer extending into the third groove and being in direct contact with the surface of the at least one second portion;
    in a region corresponding to the third groove, the encapsulating layer further comprises a second inorganic encapsulating sub-layer on a side of the first inorganic encapsulating sub-layer away from the base substrate, the second inorganic encapsulating sub-layer being in direct contact with the first inorganic encapsulating sub-layer.
  19. The display substrate of any one of claims 1 to 18, wherein the first power pad is selected from a group consisting of a VDD power pad connected to a plurality of VDD high voltage power lines and a VSS power pad connected to a plurality of VSS low voltage power lines.
  20. A display apparatus, comprising the display substrate of any one of claims 1 to 19, and one or more integrated circuits connected to the display substrate.
  21. A method of fabricating a display substrate, comprising:
    forming a first power pad on a base substrate, the first power pad formed to comprise a first portion in the peripheral area and along a power line interface side of the display substrate;
    forming a planarization layer on a side of the first power pad away from the base substrate;
    forming a pixel definition layer on a side of the planarization layer away from the base substrate, defining a plurality of subpixel apertures;
    forming a first groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the first portion of the first power pad in the peripheral area; and
    forming an encapsulating layer on a side of the pixel definition layer away from the base substrate, the encapsulating layer formed to extend into the first groove and be in direct contact with the surface of the first portion, thereby encapsulating the display substrate.
PCT/CN2019/077691 2019-03-11 2019-03-11 Display substrate, display apparatus, method of fabricating display substrate WO2020181467A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020567807A JP7299248B2 (en) 2019-03-11 2019-03-11 DISPLAY SUBSTRATE, DISPLAY DEVICE, AND DISPLAY SUBSTRATE MANUFACTURING METHOD
US16/639,112 US11239445B2 (en) 2019-03-11 2019-03-11 Display substrate with power pad in peripheral area and method of manufacturing thereof
PCT/CN2019/077691 WO2020181467A1 (en) 2019-03-11 2019-03-11 Display substrate, display apparatus, method of fabricating display substrate
CN201980000265.2A CN112005376B (en) 2019-03-11 2019-03-11 Display substrate, display device, and method of manufacturing display substrate
EP19858660.4A EP3939088A4 (en) 2019-03-11 2019-03-11 Display substrate, display apparatus, method of fabricating display substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/077691 WO2020181467A1 (en) 2019-03-11 2019-03-11 Display substrate, display apparatus, method of fabricating display substrate

Publications (1)

Publication Number Publication Date
WO2020181467A1 true WO2020181467A1 (en) 2020-09-17

Family

ID=72427168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077691 WO2020181467A1 (en) 2019-03-11 2019-03-11 Display substrate, display apparatus, method of fabricating display substrate

Country Status (5)

Country Link
US (1) US11239445B2 (en)
EP (1) EP3939088A4 (en)
JP (1) JP7299248B2 (en)
CN (1) CN112005376B (en)
WO (1) WO2020181467A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148678A (en) * 2019-04-29 2019-08-20 深圳市华星光电半导体显示技术有限公司 The production method of auxiliary electrode transfer organization and display panel
WO2022266980A1 (en) * 2021-06-25 2022-12-29 京东方科技集团股份有限公司 Display substrate and method for manufacturing same, and display apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821325A (en) * 2014-02-05 2015-08-05 三星显示有限公司 Organic light-emitting display apparatus
US20170033312A1 (en) 2015-07-29 2017-02-02 Samsung Display Co., Ltd. Organic light-emitting diode display
US20170365814A1 (en) * 2016-06-16 2017-12-21 Samsung Display Co., Ltd. Display device having improved environmental tolerance
CN108091634A (en) * 2016-11-23 2018-05-29 三星显示有限公司 Display device
CN108258146A (en) 2018-01-16 2018-07-06 京东方科技集团股份有限公司 A kind of encapsulating structure and display device
US20180198092A1 (en) 2015-03-06 2018-07-12 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US20180226483A1 (en) 2015-06-12 2018-08-09 Samsung Display Co., Ltd. Display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4245032B2 (en) 2006-10-03 2009-03-25 セイコーエプソン株式会社 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
KR102490891B1 (en) * 2015-12-04 2023-01-25 삼성디스플레이 주식회사 Display device
JP2017168308A (en) 2016-03-16 2017-09-21 株式会社Joled Display device
KR102457251B1 (en) 2017-03-31 2022-10-21 삼성디스플레이 주식회사 Organic light-emitting display apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821325A (en) * 2014-02-05 2015-08-05 三星显示有限公司 Organic light-emitting display apparatus
US20150221707A1 (en) 2014-02-05 2015-08-06 Samsung Display Co., Ltd. Organic light-emitting display apparatus
US20180198092A1 (en) 2015-03-06 2018-07-12 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US20180226483A1 (en) 2015-06-12 2018-08-09 Samsung Display Co., Ltd. Display device
US20170033312A1 (en) 2015-07-29 2017-02-02 Samsung Display Co., Ltd. Organic light-emitting diode display
CN106409869A (en) * 2015-07-29 2017-02-15 三星显示有限公司 Organic light-emitting diode display
US20170365814A1 (en) * 2016-06-16 2017-12-21 Samsung Display Co., Ltd. Display device having improved environmental tolerance
CN108091634A (en) * 2016-11-23 2018-05-29 三星显示有限公司 Display device
CN108258146A (en) 2018-01-16 2018-07-06 京东方科技集团股份有限公司 A kind of encapsulating structure and display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3939088A4

Also Published As

Publication number Publication date
US20210135153A1 (en) 2021-05-06
EP3939088A1 (en) 2022-01-19
JP2022531996A (en) 2022-07-13
JP7299248B2 (en) 2023-06-27
CN112005376B (en) 2022-07-12
CN112005376A (en) 2020-11-27
US11239445B2 (en) 2022-02-01
EP3939088A4 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
JP5153825B2 (en) Organic light emitting display device and method for manufacturing the same
US10332952B2 (en) Display unit, method of manufacturing display unit, and electronic apparatus
KR100637228B1 (en) Organic light emitting device with improved pad structure and method for fabricating the same
US12041815B2 (en) Display substrate, display apparatus, and method of fabricating display substrate
US11374070B2 (en) Organic light emitting diode display panel and apparatus having a connecting electrode in an electrode connecting region
JP2009104095A (en) Organic electroluminescent display device
US11133488B2 (en) Display substrate, display apparatus, and method of fabricating display substrate having enclosure ring in buffer area
JP2006146200A (en) Flat panel display device and fabrication method thereof
US20190006329A1 (en) Backplane led integration and functionalization structures
KR20160125883A (en) Display device and method of manufacturing the same
US9911802B2 (en) Display device and method for manufacturing the same
US11239445B2 (en) Display substrate with power pad in peripheral area and method of manufacturing thereof
US11302895B2 (en) Display substrate having separation pillar in the peripheral area, display apparatus, and method of fabricating display substrate having the same
KR101480005B1 (en) Organic light emitting device and manufacturing method thereof
KR20170001878A (en) Display apparatus
US11532679B2 (en) Method of fabricating array substrate, array substrate, and display apparatus
CN114613806A (en) Display device
EP3679422B1 (en) Display substrate and display apparatus
US20240114751A1 (en) Display device
US20050146666A1 (en) Liquid crystal display device
US20240147776A1 (en) Display device
KR20230003702A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567807

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019858660

Country of ref document: EP

Effective date: 20211011