WO2020181409A1 - Capture device parameter calibration method, apparatus, and storage medium - Google Patents

Capture device parameter calibration method, apparatus, and storage medium Download PDF

Info

Publication number
WO2020181409A1
WO2020181409A1 PCT/CN2019/077475 CN2019077475W WO2020181409A1 WO 2020181409 A1 WO2020181409 A1 WO 2020181409A1 CN 2019077475 W CN2019077475 W CN 2019077475W WO 2020181409 A1 WO2020181409 A1 WO 2020181409A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
depth information
photographing device
moment
image
Prior art date
Application number
PCT/CN2019/077475
Other languages
French (fr)
Chinese (zh)
Inventor
熊策
徐彬
周游
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980005404.0A priority Critical patent/CN111316325B/en
Priority to PCT/CN2019/077475 priority patent/WO2020181409A1/en
Publication of WO2020181409A1 publication Critical patent/WO2020181409A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Embodiments of the invention provide a capture device parameter calibration method, apparatus, and storage medium. The method comprises: using a first capture device and a second capture device among capture devices to respectively capture, at a first time point, a first image and a second image comprising a target object, and determining first depth information of the target object at the first time point; using the first capture device and the second capture device to respectively capture, at a second time point, a third image and a fourth image comprising the target object, and determining second depth information of the target object at the second time point; and calibrating a rotation relationship and a displacement relationship between the first capture device and the second capture device according to the first depth information, the second depth information, and a change in orientation of a movable platform between the first time point and the second time point. The invention introduces an additional constraint, and reduces the effect of an outlier on parameter calibration, thereby improving the accuracy and efficiency of parameter calibration between a first capture device and a second capture device.

Description

拍摄装置参数标定方法、设备及存储介质Camera parameter calibration method, equipment and storage medium 技术领域Technical field
本发明实施例涉及无人机领域,尤其涉及一种拍摄装置参数标定方法、设备及存储介质。The embodiments of the present invention relate to the field of unmanned aerial vehicles, and in particular to a method, equipment and storage medium for calibration of parameters of a photographing device.
背景技术Background technique
现有技术中在智能化的可移动平台上通常设置有拍摄装置,例如双目视觉模组,双目视觉模组不仅可以给可移动平台提供目标物体的图像信息,还可以提供其深度信息,从而为智能化控制提供更丰富的决策依据可移动平台具体可以是无人机、自动驾驶车辆、辅助驾驶装置、行车记录仪、智能电动车、滑板车、平衡车、多摄像头智能手机等。In the prior art, an intelligent movable platform is usually provided with a shooting device, such as a binocular vision module. The binocular vision module can not only provide image information of the target object to the movable platform, but also provide its depth information. So as to provide a richer decision-making basis for intelligent control. The movable platform can be drones, autonomous vehicles, auxiliary driving devices, driving recorders, smart electric vehicles, scooters, balance vehicles, multi-camera smartphones, etc.
由于外界因素例如温度、湿度的变化,或者是可移动平台的震动等因素,导致双目视觉模组在可移动平台上难以保持稳定的状态。即使可移动平台在出厂时双目视觉模组经过了精准标定,但是随着可移动平台在不断被使用的过程中,双目视觉模组也可能会发生微小的形变,从而导致双目视觉模组预先标定的双目之间的参数可能不再准确,影响可移动平台的控制。Due to external factors such as changes in temperature and humidity, or vibration of the movable platform, it is difficult for the binocular vision module to maintain a stable state on the movable platform. Even if the binocular vision module of the movable platform has been accurately calibrated at the factory, as the movable platform is continuously used, the binocular vision module may undergo minor deformations, resulting in the binocular vision module. The pre-calibrated parameters between the binoculars may no longer be accurate, affecting the control of the movable platform.
而现有技术中,对可移动平台上的拍摄装置的参数进行标定的准确性和效率都较低,通常需要制作专门的标定板,通过人工操作来进行标定。However, in the prior art, the accuracy and efficiency of calibration of the parameters of the camera on the movable platform are low, and it is usually necessary to make a special calibration board to perform calibration through manual operation.
发明内容Summary of the invention
本发明实施例提供一种拍摄装置参数标定方法、设备及存储介质,以提高对拍摄装置中的第一拍摄装置和第二拍摄装置之间参数标定的准确性和效率。The embodiments of the present invention provide a method, equipment and storage medium for parameter calibration of a photographing device, so as to improve the accuracy and efficiency of parameter calibration between the first photographing device and the second photographing device in the photographing device.
本发明实施例的第一方面是提供一种拍摄装置参数标定方法,所述拍摄装置用于搭载于可移动平台,所述拍摄装置至少包括第一拍摄装置和第二拍摄装置,所述方法包括:The first aspect of the embodiments of the present invention is to provide a method for calibrating parameters of a photographing device. The photographing device is configured to be mounted on a movable platform. The photographing device includes at least a first photographing device and a second photographing device. The method includes :
获取第一时刻所述第一拍摄装置和所述第二拍摄装置分别拍摄的包 括目标物体的第一图像和第二图像,并确定所述目标物体的第一深度信息;Acquiring a first image and a second image including a target object captured by the first camera and the second camera at the first moment, and determining the first depth information of the target object;
获取第二时刻所述第一拍摄装置和所述第二拍摄装置分别拍摄的包括所述目标物体的第三图像和第四图像,并确定所述目标物体的第二深度信息;Acquiring a third image and a fourth image including the target object captured by the first photographing device and the second photographing device at a second time, and determining second depth information of the target object;
获取所述第一时刻和所述第二时刻之间所述可移动平台的位姿变化;Acquiring the pose change of the movable platform between the first moment and the second moment;
根据所述第一深度信息、所述第二深度信息及所述位姿变化,标定所述拍摄装置参数。The parameters of the photographing device are calibrated according to the first depth information, the second depth information, and the pose change.
本发明实施例的第二方面是提供一种可移动平台,所述可移动平台搭载有拍摄装置,所述拍摄装置至少包括第一拍摄装置和第二拍摄装置,所述可移动平台包括存储器和处理器;A second aspect of the embodiments of the present invention is to provide a movable platform, the movable platform is equipped with a camera, the camera at least includes a first camera and a second camera, the mobile platform includes a memory and processor;
所述存储器用于存储程序代码;The memory is used to store program codes;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:The processor calls the program code, and when the program code is executed, is used to perform the following operations:
获取第一时刻所述第一拍摄装置和所述第二拍摄装置分别拍摄的包括目标物体的第一图像和第二图像,并确定所述目标物体的第一深度信息;Acquiring a first image and a second image including a target object respectively captured by the first camera and the second camera at the first moment, and determining the first depth information of the target object;
获取第二时刻所述第一拍摄装置和所述第二拍摄装置分别拍摄的包括所述目标物体的第三图像和第四图像,并确定所述目标物体的第二深度信息;Acquiring a third image and a fourth image including the target object captured by the first photographing device and the second photographing device at a second time, and determining second depth information of the target object;
获取所述第一时刻和所述第二时刻之间所述可移动平台的位姿变化;Acquiring the pose change of the movable platform between the first moment and the second moment;
根据所述第一深度信息、所述第二深度信息及所述位姿变化,标定所述拍摄装置参数。The parameters of the photographing device are calibrated according to the first depth information, the second depth information, and the pose change.
本发明实施例的第三方面是提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现第一方面所述的方法。A third aspect of the embodiments of the present invention is to provide a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the method described in the first aspect.
本实施例提供的拍摄装置参数标定方法、设备及存储介质,通过拍摄装置中的第一拍摄装置和第二拍摄装置在第一时刻分别拍摄包括目标物体的第一图像和第二图像,确定目标物体在第一时刻的第一深度信息,以及根据第一拍摄装置和第二拍摄装置在第二时刻分别拍摄包括目标物体的第三图像和第四图像,确定目标物体在第二时刻的第二深度信息,根据第一深度信息、第二深度信息以及可移动平台在第一时刻和第二时刻之间的位姿变化,标定第一拍摄装置和第二拍摄装置之间的旋转关系和位移关 系,相比于只根据第一深度信息和第二深度信息标定第一拍摄装置和第二拍摄装置之间的旋转关系和位移关系,增加了约束项,降低了离群点对参数标定的影响,提高了对第一拍摄装置和第二拍摄装置之间参数标定的准确性和效率。The camera parameter calibration method, equipment and storage medium provided by this embodiment, through the first camera and the second camera in the camera, the first image and the second image including the target object are respectively captured at the first moment to determine the target The first depth information of the object at the first moment, and the third image and the fourth image including the target object captured by the first camera and the second camera at the second time respectively, determine the second depth information of the target object at the second time Depth information, based on the first depth information, the second depth information, and the position and attitude changes of the movable platform between the first moment and the second moment, calibrate the rotation and displacement relationships between the first camera and the second camera Compared with calibrating the rotation relationship and displacement relationship between the first imaging device and the second imaging device only according to the first depth information and the second depth information, the constraint item is added, and the influence of outliers on the parameter calibration is reduced, The accuracy and efficiency of parameter calibration between the first camera and the second camera are improved.
附图说明Description of the drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to explain the technical solutions in the embodiments of the present invention more clearly, the following will briefly introduce the drawings used in the description of the embodiments. Obviously, the drawings in the following description are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without creative labor.
图1为本发明实施例提供的拍摄装置参数标定方法的流程图;FIG. 1 is a flowchart of a method for calibrating camera parameters provided by an embodiment of the present invention;
图2为本发明实施例提供的无人机的示意图;Figure 2 is a schematic diagram of a drone provided by an embodiment of the present invention;
图3为本发明实施例提供的一种应用场景的示意图;Figure 3 is a schematic diagram of an application scenario provided by an embodiment of the present invention;
图4为本发明实施例提供的另一种应用场景的示意图;4 is a schematic diagram of another application scenario provided by an embodiment of the present invention;
图5为本发明实施例提供的再一种应用场景的示意图;Figure 5 is a schematic diagram of yet another application scenario provided by an embodiment of the present invention;
图6为本发明实施例提供的又一种应用场景的示意图;FIG. 6 is a schematic diagram of another application scenario provided by an embodiment of the present invention;
图7为本发明实施例提供的Rolling Shutter的示意图;FIG. 7 is a schematic diagram of Rolling Shutter provided by an embodiment of the present invention;
图8为本发明实施例提供的可移动平台的结构示意图。Fig. 8 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention.
附图标记:Reference signs:
20:主相机;21:第一拍摄装置;22:第二拍摄装置;20: main camera; 21: first camera; 22: second camera;
30:目标物体;31:第一图像;32:第二图像;30: target object; 31: first image; 32: second image;
33:第三图像;34:第四图像;40:图像;33: third image; 34: fourth image; 40: image;
41:图像;42:图像;51:图像;52:图像;41: image; 42: image; 51: image; 52: image;
70:可移动平台;71:第一拍摄装置;72:第二拍摄装置;70: movable platform; 71: first camera; 72: second camera;
73:存储器;74:处理器。73: memory; 74: processor.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the protection scope of the present invention.
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。It should be noted that when a component is said to be "fixed to" another component, it can be directly on the other component or a central component may also exist. When a component is considered to be "connected" to another component, it can be directly connected to another component or there may be a centered component at the same time.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by those skilled in the technical field of the present invention. The terms used in the description of the present invention herein are only for the purpose of describing specific embodiments, and are not intended to limit the present invention. The term "and/or" as used herein includes any and all combinations of one or more related listed items.
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。Hereinafter, some embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the case of no conflict, the following embodiments and features in the embodiments can be combined with each other.
本发明实施例提供一种拍摄装置参数标定方法。图1为本发明实施例提供的拍摄装置参数标定方法的流程图。拍摄装置搭载于可移动平台,可以包括安装于移动平台上,所述拍摄装置至少包括第一拍摄装置和第二拍摄装置。可选的,所述可移动平台包括无人机或车辆。本实施例以无人机为例进行示意性说明,该无人机搭载有拍摄装置,拍摄装置至少包括第一拍摄装置和第二拍摄装置,可选的,拍摄装置为该无人机的双目系统,由第一拍摄装置和第二拍摄装置构成。如图2所示,无人机包括主相机20和双目系统,该双目系统包括第一拍摄装置21和第二拍摄装置22。具体的,第一拍摄装置21可以是该无人机的左目相机,第二拍摄装置22可以是该无人机的右目相机。可以理解,此处只是示意性说明,并不限定无人机的具体形态和结构。The embodiment of the present invention provides a method for parameter calibration of a photographing device. FIG. 1 is a flowchart of a method for calibrating camera parameters provided by an embodiment of the present invention. The photographing device is mounted on a movable platform, and may include being installed on the mobile platform. The photographing device includes at least a first photographing device and a second photographing device. Optionally, the movable platform includes a drone or a vehicle. This embodiment takes a drone as an example for schematic description. The drone is equipped with a camera. The camera at least includes a first camera and a second camera. Optionally, the camera is a dual camera of the drone. The eye system is composed of a first camera and a second camera. As shown in FIG. 2, the drone includes a main camera 20 and a binocular system, and the binocular system includes a first camera 21 and a second camera 22. Specifically, the first photographing device 21 may be the left-eye camera of the drone, and the second photographing device 22 may be the right-eye camera of the drone. It can be understood that this is only a schematic description, and does not limit the specific shape and structure of the drone.
如图1所示,本实施例中的拍摄装置参数标定方法,可以包括:As shown in Figure 1, the method for calibrating the parameters of the camera in this embodiment may include:
步骤S101、获取第一时刻所述第一拍摄装置和所述第二拍摄装置分别拍摄的包括目标物体的第一图像和第二图像,并确定所述目标物体的第一深度信息。Step S101: Acquire a first image and a second image including a target object captured by the first camera and the second camera at the first moment, and determine first depth information of the target object.
在本实施例中,第一拍摄装置21和第二拍摄装置22可以在同一时刻拍摄同一目标物体。如图3所示,30表示三维空间中的目标物体,31表示t1时刻第一拍摄装置21拍摄的包括该目标物体30的第一图像,32表示t1时刻第二拍摄装置22拍摄的包括该目标物体30的第二图像。无人机 中的处理器可获取t1时刻第一拍摄装置21拍摄的第一图像31和该t1时刻第二拍摄装置22拍摄的第二图像32,并采用三角化测量法确定该目标物体30的深度信息和三角化的误差,此处,将t1时刻该目标物体30的深度信息记为第一深度信息,将t1时刻的三角化的误差记为第一误差信息。In this embodiment, the first photographing device 21 and the second photographing device 22 can photograph the same target object at the same time. As shown in Figure 3, 30 represents the target object in the three-dimensional space, 31 represents the first image captured by the first camera 21 at time t1 that includes the target object 30, and 32 represents the target captured by the second camera 22 at time t1 and includes the target The second image of the object 30. The processor in the drone can obtain the first image 31 taken by the first camera 21 at time t1 and the second image 32 taken by the second camera 22 at time t1, and use triangulation measurement to determine the target object 30 The depth information and the triangulation error. Here, the depth information of the target object 30 at time t1 is recorded as the first depth information, and the triangulation error at time t1 is recorded as the first error information.
可以理解,该目标物体30的深度信息可根据该目标物体30上的三维点的深度信息确定。如图3所示,点P表示目标物体30上的任意一个三维点。具体可根据点P在三维空间中的三维位置信息,确定点P的深度信息。例如,可通过三角化测量法计算点P在三维空间中的三维位置信息,可选的,该三维空间可以是世界坐标系。It can be understood that the depth information of the target object 30 can be determined according to the depth information of the three-dimensional points on the target object 30. As shown in FIG. 3, the point P represents any three-dimensional point on the target object 30. Specifically, the depth information of the point P can be determined according to the three-dimensional position information of the point P in the three-dimensional space. For example, the three-dimensional position information of the point P in the three-dimensional space can be calculated by the triangulation method. Optionally, the three-dimensional space can be a world coordinate system.
如图4所示,G表示世界坐标系的坐标原点,C 0、C 1、C 2表示相机处于三个不同的位姿时相机坐标系的坐标原点,图像40、图像41和图像42依次为该相机处于三个不同的位姿时拍摄的图像。可以理解,该相机可以在不同的位姿对同一目标物体进行拍摄。该相机可以是无人机的主相机、第一拍摄装置或第二拍摄装置。如图4所示,目标物体上的同一个三维点例如点P在不同图像中的映射点在对应的图像中的位置可能不同,例如,点P在图像40中的映射点为p0,点P在图像41中的映射点为p1,点P在图像42中的映射点为p2,p0、p1和p2在对应的图像中的位置可能不同。 As shown in Figure 4, G represents the coordinate origin of the world coordinate system, C 0 , C 1 , and C 2 represent the coordinate origin of the camera coordinate system when the camera is in three different poses. Image 40, image 41 and image 42 are in turn Images taken when the camera is in three different poses. It can be understood that the camera can shoot the same target object in different poses. The camera can be the main camera, the first camera or the second camera of the drone. As shown in Figure 4, the same three-dimensional point on the target object, such as the mapping point of point P in different images, may have different positions in the corresponding images. For example, the mapping point of point P in image 40 is p0, point P The mapping point in the image 41 is p1, and the mapping point of the point P in the image 42 is p2. The positions of p0, p1, and p2 in the corresponding images may be different.
根据世界坐标系和像素平面坐标系的转换关系,可得到目标物体上的三维点在世界坐标系中的三维坐标(x w,y w,z w)与该三维点在图像中的映射点在该图像中的位置信息例如像素坐标(μ,ν)的关系,该关系具体如下公式(1)所示: According to the conversion relationship between the world coordinate system and the pixel plane coordinate system, the three-dimensional coordinates (x w , y w , z w ) of the three-dimensional point on the target object in the world coordinate system and the mapping point of the three-dimensional point in the image can be obtained. The position information in the image, such as the relationship of pixel coordinates (μ, ν), is specifically shown in the following formula (1):
Figure PCTCN2019077475-appb-000001
Figure PCTCN2019077475-appb-000001
其中,z c表示该三维点在相机坐标系Z轴上的坐标。K表示相机的内参,R表示该相机坐标系相对于世界坐标系的旋转矩阵,T表示该相机坐标系相对于世界坐标系的平移矩阵,R和T为相机的外参。在本实施例中, 相机的内参K为已知量。可选的,
Figure PCTCN2019077475-appb-000002
其中,α x=fm xy=fm y,f表示相机焦距;m x和m y为图像中对应于x轴、y轴方向上的单位距离的像素数。γ为x轴和y轴之间的畸变参数。μ 0,v 0为相机的光心在像素平面坐标系中的位置。根据上述公式(1)可知,在已知K、(μ,ν)、z c、R和T的情况下,可计算出目标物体上的三维点在世界坐标系中的三维坐标(x w,y w,z w)。
Among them, z c represents the coordinates of the three-dimensional point on the Z axis of the camera coordinate system. K represents the internal parameters of the camera, R represents the rotation matrix of the camera coordinate system relative to the world coordinate system, T represents the translation matrix of the camera coordinate system relative to the world coordinate system, and R and T are the external parameters of the camera. In this embodiment, the internal parameter K of the camera is a known quantity. Optional,
Figure PCTCN2019077475-appb-000002
Wherein, α x = fm x, α y = fm y, f represents a focal length of the camera; x m and y m is the image corresponding to the x-axis, the number of pixels per unit distance in the y-axis direction. γ is the distortion parameter between the x-axis and the y-axis. μ 0 , v 0 is the position of the optical center of the camera in the pixel plane coordinate system. According to the above formula (1), it can be seen that when K, (μ, ν), z c , R and T are known, the three-dimensional coordinates of the three-dimensional point on the target object in the world coordinate system (x w , y w ,z w ).
但是,目标物体上的三维点理论上在图像中的投影点和从该图像中实际观测到的投影点可能不完全相同。例如,理论上点P在C 0机位的归一化平面上的投影点记为p′ 0However, the theoretical projection point of the three-dimensional point on the target object in the image may not be exactly the same as the projection point actually observed in the image. For example, theoretically the projection point of the point P on the normalized plane of the C 0 stand is denoted as p′ 0 .
Figure PCTCN2019077475-appb-000003
Figure PCTCN2019077475-appb-000003
其中,
Figure PCTCN2019077475-appb-000004
表示相机坐标系的坐标原点为C 0时,该相机坐标系相对于世界坐标系的旋转矩阵。
Figure PCTCN2019077475-appb-000005
表示相机坐标系的坐标原点为C 0时,该相机坐标系相对于世界坐标系的平移矩阵。此外,还可以将坐标原点为C 1时的相机坐标系相对于坐标原点为C 0时的相机坐标系的旋转矩阵记为
Figure PCTCN2019077475-appb-000006
将坐标原点为C 1时的相机坐标系相对于坐标原点为C 0时的相机坐标系的平移矩阵记为
Figure PCTCN2019077475-appb-000007
将坐标原点为C 2时的相机坐标系相对于坐标原点为C 1时的相机坐标系的旋转矩阵记为
Figure PCTCN2019077475-appb-000008
将坐标原点为C 2时的相机坐标系相对于坐标原点为C 1时的相机坐标系的平移矩阵记为
Figure PCTCN2019077475-appb-000009
among them,
Figure PCTCN2019077475-appb-000004
Indicates the rotation matrix of the camera coordinate system relative to the world coordinate system when the coordinate origin of the camera coordinate system is C 0 .
Figure PCTCN2019077475-appb-000005
Indicates the translation matrix of the camera coordinate system relative to the world coordinate system when the coordinate origin of the camera coordinate system is C 0 . In addition, the rotation matrix of the camera coordinate system when the coordinate origin is C 1 relative to the camera coordinate system when the coordinate origin is C 0 can also be recorded as
Figure PCTCN2019077475-appb-000006
The translation matrix of the camera coordinate system when the coordinate origin is C 1 relative to the camera coordinate system when the coordinate origin is C 0 is recorded as
Figure PCTCN2019077475-appb-000007
The rotation matrix of the camera coordinate system when the coordinate origin is C 2 relative to the camera coordinate system when the coordinate origin is C 1 is recorded as
Figure PCTCN2019077475-appb-000008
The translation matrix of the camera coordinate system when the coordinate origin is C 2 relative to the camera coordinate system when the coordinate origin is C 1 is recorded as
Figure PCTCN2019077475-appb-000009
例如,在图像40中实际观测到的点P的投影点记为p 0,p 0=[u 0,v 0] T。理想情况下,p′ 0=p 0,但是实际情况中,两者并不相同,p′ 0和p 0所产生的误差记为重投影误差,此处,可通过如下公式(2)确定点P在世界坐标系中的三维坐标(x w,y w,z w): For example, the projection point of the point P actually observed in the image 40 is denoted as p 0 , p 0 =[u 0 ,v 0 ] T. Ideally, p′ 0 = p 0 , but in actual situations, the two are not the same. The errors generated by p′ 0 and p 0 are recorded as reprojection errors. Here, the points can be determined by the following formula (2) The three-dimensional coordinates of P in the world coordinate system (x w ,y w ,z w ):
Figure PCTCN2019077475-appb-000010
Figure PCTCN2019077475-appb-000010
其中,n表示如图4所示的图像的个数或机位的个数,(u i,v i) T为P点(x w,y w,z w)在第i个拍摄装置拍摄图像投影得到的像素坐标。如图4所示,对于三个不同的机位C 0、C 1、C 2,通过图像中的投影点p0、p1、p2计算得到P点的位置可能不在同一位置,因此,可以通过上式,以最优化问题来求得P点的三维坐标(x w,y w,z w)。 , N represents the number of seats or the number of the image shown in Figure 4, (u i, v i) T i-th imaging device captures an image of the point P (x w, y w, z w) The projected pixel coordinates. As shown in Figure 4, for three different camera positions C 0 , C 1 , C 2 , the position of the point P calculated by the projection points p0, p1 and p2 in the image may not be the same position. Therefore, the above formula can be used ,Use the optimization problem to obtain the three-dimensional coordinates of point P (x w , y w , z w ).
在某一时刻,根据点P在第一拍摄装置和第二拍摄装置分别拍摄的图像中的映射点、第一拍摄装置和第二拍摄装置之间的外参、第一拍摄装置的内参、以及第二拍摄装置的内参,采用三角化测量法可计算得到三维点P的深度信息和三角化误差。例如,[Z,Cost]=triangulate(p L,p R,R LR,t LR,K L,K R),其中,triangulate表示三角化测量法,p L表示点P在第一拍摄装置拍摄的图像中的映射点的像素坐标,p R表示点P在第二拍摄装置拍摄的图像中的映射点的像素坐标,R LR表示第一拍摄装置和第二拍摄装置之间的旋转关系,t LR表示第一拍摄装置和第二拍摄装置之间的位移关系,K L表示第一拍摄装置的内参,K R表示第二拍摄装置的内参。Z表示采用三角化测量法计算得到的三维点P的深度信息,Cost表示三角化误差,该三角化误差具体可以是三维点P的深度信息的误差,如图5所示,点P为三维空间中的一个三维点,p1和p2分别是点P在两个不同图像(例如图像51和图像52)中的映射点,该两个不同图像可以是第一拍摄装置和第二拍摄装置在同一时刻拍摄的。点p1对应的极线在图像52中,在该极线进行极线搜索时,所找到的点为p2’,由于p2’和p2之间存在误差,导致三角化后的三维点P的深度存在一定的误差,例如图5所示的PP’,该误差即为三角化误差。 At a certain moment, according to the mapping point of the point P in the images captured by the first camera and the second camera, the external parameters between the first camera and the second camera, the internal parameters of the first camera, and The internal parameters of the second camera can be calculated using the triangulation measurement method to obtain the depth information and triangulation error of the three-dimensional point P. For example, [Z,Cost]=triangulate(p L ,p R ,R LR ,t LR ,K L ,K R ), where triangulate represents the triangulation measurement method, and p L represents the point P taken by the first camera The pixel coordinates of the mapping point in the image, p R represents the pixel coordinates of the mapping point of the point P in the image captured by the second camera, R LR represents the rotation relationship between the first camera and the second camera, t LR It represents the displacement relationship between the first camera and the second camera, K L represents the internal parameter of the first camera, and K R represents the internal parameter of the second camera. Z represents the depth information of the three-dimensional point P calculated by the triangulation measurement method, and Cost represents the triangulation error, which can specifically be the error of the depth information of the three-dimensional point P, as shown in Figure 5, the point P is a three-dimensional space A three-dimensional point in p1 and p2 are the mapping points of point P in two different images (for example, image 51 and image 52). The two different images can be the first camera and the second camera at the same time taking pictures. The epipolar line corresponding to the point p1 is in the image 52. When the epipolar line is searched for the epipolar line, the point found is p2'. Due to the error between p2' and p2, the depth of the three-dimensional point P after the triangulation exists For a certain error, such as PP' shown in Figure 5, the error is the triangulation error.
如图3所示,在t1时刻,从第一图像31实际观测到的点P的投影点在第一图像31中的像素坐标为p11,从第二图像32实际观测到的点P的投影点在第二图像32中的像素坐标为p12。将第一拍摄装置和第二拍摄装置之间的外参记为R LR和t LR,其中,R LR表示第一拍摄装置和第二拍摄装置之 间的旋转关系,该旋转关系具体为第一拍摄装置的相机坐标系相对于第二拍摄装置的相机坐标系的旋转矩阵,或第二拍摄装置的相机坐标系相对于第一拍摄装置的相机坐标系的旋转矩阵。t LR表示第一拍摄装置和第二拍摄装置之间的位移关系,该位移关系具体为第一拍摄装置的相机坐标系相对于第二拍摄装置的相机坐标系的平移矩阵,或第二拍摄装置的相机坐标系相对于第一拍摄装置的相机坐标系的平移矩阵。将第一拍摄装置的内参记为K L,将第二拍摄装置的内参记为K R,K L和K R是固定值,在本实施例中可以不需要标定,R LR和t LR是本实施例待标定的参数。 As shown in FIG. 3, at time t1, the pixel coordinates of the projection point of the point P actually observed from the first image 31 in the first image 31 is p11, and the projection point of the point P actually observed from the second image 32 The pixel coordinate in the second image 32 is p12. The external parameters between the first camera and the second camera are denoted as R LR and t LR , where R LR represents the rotational relationship between the first camera and the second camera, and the rotational relationship is specifically the first The rotation matrix of the camera coordinate system of the imaging device relative to the camera coordinate system of the second imaging device, or the rotation matrix of the camera coordinate system of the second imaging device relative to the camera coordinate system of the first imaging device. t LR represents the displacement relationship between the first camera and the second camera. The displacement relationship is specifically the translation matrix of the camera coordinate system of the first camera relative to the camera coordinate system of the second camera, or the second camera The translation matrix of the camera coordinate system relative to the camera coordinate system of the first camera. The internal parameter of the first camera is marked as K L , and the internal parameter of the second camera is marked as K R. K L and K R are fixed values. In this embodiment, calibration is not required, and R LR and t LR are the original Examples of parameters to be calibrated.
如图3所示,在t1时刻,根据p11、p12、R LR、t LR、K L和K R,采用三角化测量法可计算得到三维点P的深度信息和三角化误差。 As shown in Fig. 3, at time t1, according to p11, p12, R LR , t LR , K L and K R , the depth information and triangulation error of the three-dimensional point P can be calculated by the triangulation measurement method.
如图3所示,O1表示第一拍摄装置的光心,O2表示第二拍摄装置的光心,在t1时刻,可以以第一拍摄装置或第二拍摄装置为基准确定点P的深度信息。例如,以第一拍摄装置为基准确定点P的深度信息,将t1时刻以第一拍摄装置为基准确定的点P的深度信息记为z1,将t1时刻的三角化误差记为Cost1。相应的,[z1,Cost1]=triangulate(p11,p12,R LR,t LR,K L,K R)。 As shown in FIG. 3, O1 represents the optical center of the first camera, and O2 represents the optical center of the second camera. At time t1, the depth information of the point P can be determined based on the first camera or the second camera. For example, the depth information of the point P is determined with the first camera as a reference, the depth information of the point P determined with the first camera as the reference at t1 is recorded as z1, and the triangulation error at time t1 is recorded as Cost1. Correspondingly, [z1,Cost1]=triangulate(p11,p12,R LR ,t LR ,K L ,K R ).
步骤S102、获取第二时刻所述第一拍摄装置和所述第二拍摄装置分别拍摄的包括所述目标物体的第三图像和第四图像,并确定所述目标物体的第二深度信息。Step S102: Acquire a third image and a fourth image including the target object captured by the first camera and the second camera at a second moment, and determine second depth information of the target object.
如图3所示,33表示t2时刻第一拍摄装置21拍摄的包括该目标物体30的第三图像,34表示t2时刻第一拍摄装置21拍摄的包括该目标物体30的第四图像。无人机中的处理器可获取t2时刻第一拍摄装置21拍摄的第三图像33和第二拍摄装置22拍摄的第四图像34,并采用三角化测量法确定点P的深度信息和三角化误差,此处,将t2时刻点P的深度信息记为第二深度信息,将t2时刻的三角化的误差记为第二误差信息。As shown in FIG. 3, 33 represents the third image including the target object 30 captured by the first camera 21 at time t2, and 34 represents the fourth image including the target object 30 captured by the first camera 21 at time t2. The processor in the drone can obtain the third image 33 taken by the first camera 21 and the fourth image 34 taken by the second camera 22 at time t2, and use the triangulation method to determine the depth information and triangulation of the point P Error, here, the depth information at point P at time t2 is recorded as second depth information, and the triangulated error at time t2 is recorded as second error information.
如图3所示,在t2时刻,从第三图像33实际观测到的点P的投影点在第三图像33中的像素坐标为p21,从第四图像34实际观测到的点P的投影点在第四图像34中的像素坐标为p22。将t2时刻以第一拍摄装置为 基准确定的点P的深度信息记为z2,将t2时刻的三角化误差记为Cost2,相应的,[z2,Cost2]=triangulate(p21,p22,R LR,t LR,K L,K R)。 As shown in Fig. 3, at time t2, the pixel coordinate of the projection point of the point P actually observed from the third image 33 in the third image 33 is p21, and the projection point of the point P actually observed from the fourth image 34 The pixel coordinate in the fourth image 34 is p22. The depth information of the point P determined on the basis of the first camera at time t2 is recorded as z2, and the triangulation error at time t2 is recorded as Cost2. Correspondingly, [z2,Cost2]=triangulate(p21,p22,R LR , t LR ,K L ,K R ).
步骤S103、获取所述第一时刻和所述第二时刻之间所述可移动平台的位姿变化。Step S103: Obtain the pose change of the movable platform between the first moment and the second moment.
在本实施例中,t1时刻和t2时刻之间,无人机的位姿可能会发生变化,此处,无人机的位姿变化包括位置变化或姿态变化。也就是说,在t1时刻和t2时刻之间,无人机可能会发生移动和/或转动。当无人机在t1时刻和t2时刻之间发生移动时,根据速度计信息可以确定该无人机在t1时刻和t2时刻之间的运动距离。当无人机在t1时刻和t2时刻之间发生转动时,通过无人机上的惯性测量单元可测量该无人机的姿态变化。In this embodiment, between time t1 and time t2, the pose of the drone may change. Here, the pose change of the drone includes a position change or a posture change. In other words, between time t1 and time t2, the drone may move and/or rotate. When the drone moves between t1 and t2, the speedometer information can be used to determine the travel distance of the drone between t1 and t2. When the drone rotates between time t1 and time t2, the attitude change of the drone can be measured by the inertial measurement unit on the drone.
例如,以无人机的位置变化为例,在t1时刻和t2时刻之间,无人机的运动距离为d,相应的,第一拍摄装置21或第二拍摄装置22的运动距离也为d,如图6所示。可以理解,当在t1时刻和t2时刻之间,无人机的姿态发生变化时,第一拍摄装置21的运动距离和第二拍摄装置22的运动距离可能会不同。For example, taking the position change of the drone as an example, between t1 and t2, the movement distance of the drone is d, correspondingly, the movement distance of the first camera 21 or the second camera 22 is also d ,As shown in Figure 6. It can be understood that when the attitude of the drone changes between time t1 and time t2, the movement distance of the first camera 21 and the movement distance of the second camera 22 may be different.
步骤S104、根据所述第一深度信息、所述第二深度信息及所述位姿变化,标定所述拍摄装置参数。Step S104: Calibrate the parameters of the camera according to the first depth information, the second depth information, and the pose change.
可选的,所述拍摄装置参数,包括:所述第一拍摄装置和所述第二拍摄装置之间的外参。可选的,所述第一拍摄装置和所述第二拍摄装置之间的外参,包括:所述第一拍摄装置和所述第二拍摄装置之间的旋转关系和位移关系。Optionally, the camera parameters include: external parameters between the first camera and the second camera. Optionally, the external parameters between the first camera and the second camera include: a rotation relationship and a displacement relationship between the first camera and the second camera.
在本实施例中,第一深度信息可以是t1时刻以第一拍摄装置为基准确定的点P的深度信息,也可以是t1时刻以第二拍摄装置为基准确定的点P的深度信息。同理,第二深度信息可以是t2时刻以第一拍摄装置为基准确定的点P的深度信息,也可以是t2时刻以第二拍摄装置为基准确定的点P的深度信息。In this embodiment, the first depth information may be the depth information of the point P determined on the basis of the first camera at time t1, or the depth information of the point P determined on the basis of the second camera at time t1. Similarly, the second depth information may be the depth information of the point P determined on the basis of the first camera at time t2, or the depth information of the point P determined on the basis of the second camera at time t2.
在以第一拍摄装置为基准的情况下,可选的,根据t1时刻以第一拍摄装置为基准确定的点P的深度信息、t2时刻以第一拍摄装置为基准确定的点P的深度信息、以及t1时刻和t2时刻之间第一拍摄装置21的运动距离,标定所述第一拍摄装置和所述第二拍摄装置之间的旋转关系和位移关系。In the case of taking the first camera as the reference, optionally, according to the depth information of the point P determined on the basis of the first camera at time t1, and the depth information of the point P determined on the basis of the first camera at time t2 , And the movement distance of the first imaging device 21 between time t1 and time t2, calibrating the rotation relationship and displacement relationship between the first imaging device and the second imaging device.
在以第二拍摄装置为基准的情况下,可选的,根据t1时刻以第二拍摄装置为基准确定的点P的深度信息、t2时刻以第二拍摄装置为基准确定的点P的深度信息、以及t1时刻和t2时刻之间第二拍摄装置22的运动距离,标定所述第一拍摄装置和所述第二拍摄装置之间的旋转关系和位移关系。In the case of using the second camera as a reference, optionally, according to the depth information of the point P determined on the basis of the second camera at time t1, and the depth information of the point P determined on the basis of the second camera at time t2 , And the movement distance of the second imaging device 22 between time t1 and time t2, calibrating the rotation relationship and displacement relationship between the first imaging device and the second imaging device.
可选的,所述根据所述第一深度信息、所述第二深度信息及所述位姿变化,标定所述拍摄装置参数,包括:根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,标定所述拍摄装置参数。Optionally, the calibrating the parameters of the photographing device according to the first depth information, the second depth information, and the pose change includes: according to the first depth information and the second depth information And the geometric constraints between the pose changes and calibrate the camera parameters.
如图6所示,z1表示以第一拍摄装置为基准确定的点P在t1时刻的深度信息,z2表示以第一拍摄装置为基准确定的点P在t2时刻的深度信息。d表示在t1时刻和t2时刻之间第一拍摄装置的运动距离。z1、z2和d构成三角形的三条边,根据三角形的三条边之间的几何约束,即两边之和大于第三边,两边之差小于第三边,可标定所述第一拍摄装置和所述第二拍摄装置之间的旋转关系和位移关系。因此,当z1、z2和d都准确时,其三者之间的关系应当满足下述几何约束,该几何约束具体如下公式(3)所示:As shown in FIG. 6, z1 represents the depth information of the point P determined on the basis of the first imaging device at time t1, and z2 represents the depth information of the point P determined on the basis of the first imaging device at time t2. d represents the movement distance of the first camera between time t1 and time t2. z1, z2, and d constitute the three sides of the triangle. According to the geometric constraints between the three sides of the triangle, that is, the sum of the two sides is greater than the third side, and the difference between the two sides is less than the third side, the first camera and the The rotation relationship and displacement relationship between the second camera. Therefore, when z1, z2, and d are all accurate, the relationship between the three should satisfy the following geometric constraints, which are specifically shown in the following formula (3):
|d-z2|<z1<|d+z2|   (3)|d-z2|<z1<|d+z2| (3)
可选的,所述根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,标定所述拍摄装置参数,包括:根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,确定目标误差信息;根据所述目标误差信息,标定所述拍摄装置参数。Optionally, the calibration of the camera parameters according to the geometric constraints between the first depth information, the second depth information, and the pose change includes: according to the first depth information, the The geometric constraints between the second depth information and the pose change are used to determine target error information; and the camera parameters are calibrated according to the target error information.
例如,在确定如上公式(3)所示的几何约束后,进一步,根据该几何约束得到如下公式(4):For example, after determining the geometric constraint shown in the above formula (3), further, according to the geometric constraint, the following formula (4) is obtained:
Figure PCTCN2019077475-appb-000011
Figure PCTCN2019077475-appb-000011
其中,b表示第一拍摄装置和第二拍摄装置之间的基线距离,当z1表示以第一拍摄装置为基准确定的点P在t1时刻的深度信息,z2表示以第一拍摄装置为基准确定的点P在t2时刻的深度信息时,f表示第一拍摄装置的焦距。Among them, b represents the baseline distance between the first camera and the second camera, when z1 represents the depth information of the point P determined on the basis of the first camera at t1, and z2 represents the depth information determined on the basis of the first camera When the point P is the depth information at time t2, f represents the focal length of the first camera.
在一些实施例中,所述第一深度信息和所述第二深度信息是以所述第一拍摄装置为基准确定的;所述根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,确定目标误差信息,包括:根据所述 第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束、所述第一拍摄装置和所述第二拍摄装置之间的距离信息、以及所述第一拍摄装置的焦距,确定所述目标误差信息。In some embodiments, the first depth information and the second depth information are determined based on the first photographing device; the first depth information, the second depth information, and the The geometric constraints between the pose changes and the determination of target error information include: according to the first depth information, the second depth information, and the geometric constraints between the pose changes, the first camera, and The distance information between the second imaging devices and the focal length of the first imaging device determine the target error information.
例如,目标误差信息记为Cost3,根据公式(4)可确定Cost3,Cost3具体如下公式(5)所示:For example, the target error information is recorded as Cost3, and Cost3 can be determined according to formula (4), and Cost3 is specifically shown in formula (5) as follows:
Figure PCTCN2019077475-appb-000012
Figure PCTCN2019077475-appb-000012
其中,z1表示以第一拍摄装置为基准确定的点P在t1时刻的深度信息,z2表示以第一拍摄装置为基准确定的点P在t2时刻的深度信息。d表示在t1时刻和t2时刻之间第一拍摄装置的运动距离。b表示第一拍摄装置和第二拍摄装置之间的基线距离。f表示第一拍摄装置的焦距。当z1、z2或d之间的某一个或某多个值存在误差导致其三者之间的关系不满足公式(4)的约束时,即可能存在如公式(5)中的前两种情况的关系,此时可以赋予一个目标误差信息来表示这种误差。如公式(5)中所示,当三者之间的关系满足前述的约束时,目标误差信息可以设为0。Among them, z1 represents the depth information of the point P determined on the basis of the first imaging device at time t1, and z2 represents the depth information of the point P determined on the basis of the first imaging device at time t2. d represents the movement distance of the first camera between time t1 and time t2. b represents the baseline distance between the first camera and the second camera. f represents the focal length of the first camera. When there is an error in one or more of the values of z1, z2, or d, the relationship between the three of them does not meet the constraints of formula (4), that is, there may be the first two situations as in formula (5) At this time, a target error information can be given to indicate this error. As shown in formula (5), when the relationship between the three meets the aforementioned constraints, the target error information can be set to zero.
在另一些实施例中,所述第一深度信息和所述第二深度信息是以所述第二拍摄装置为基准确定的;所述根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,确定目标误差信息,包括:根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束、所述第一拍摄装置和所述第二拍摄装置之间的距离信息、以及所述第二拍摄装置的焦距,确定所述目标误差信息。In other embodiments, the first depth information and the second depth information are determined on the basis of the second camera; the first depth information, the second depth information, and the The geometric constraints between the pose changes and the determination of target error information include: according to the first depth information, the second depth information, and the geometric constraints between the pose changes, the first camera The distance information from the second imaging device and the focal length of the second imaging device determine the target error information.
例如,z1’表示以第二拍摄装置为基准确定的点P在t1时刻的深度信息,z2’表示以第二拍摄装置为基准确定的点P在t2时刻的深度信息,d’表示在t1时刻和t2时刻之间第二拍摄装置的运动距离。z1’、z2’、d’构成三角形的三条边,根据z1’、z2’、d’之间的几何约束得到同理于公式(3)所述的关系,进一步,根据该几何约束得到同理于公式(4)所述的关系、以及同理于公式(5)所述的目标误差信息,在该目标误差信息中,b表示第一拍摄装置和第二拍摄装置之间的基线距离,f表示第二拍摄装置的焦距。For example, z1' indicates the depth information of the point P determined on the basis of the second camera at t1, z2' indicates the depth information of the point P determined on the basis of the second camera at t2, and d'indicates the depth information at time t1 The movement distance of the second camera between t2 and t2. z1', z2', and d'constitute the three sides of the triangle. According to the geometric constraint between z1', z2', and d', the relationship described in formula (3) is obtained, and further, the same is obtained according to the geometric constraint In the relationship described in formula (4), and similarly to the target error information described in formula (5), in the target error information, b represents the baseline distance between the first camera and the second camera, f Indicates the focal length of the second camera.
在确定出目标误差信息Cost3之后,可根据该目标误差信息标定所述第一拍摄装置和所述第二拍摄装置之间的旋转关系和位移关系。After the target error information Cost3 is determined, the rotation relationship and displacement relationship between the first imaging device and the second imaging device can be calibrated according to the target error information.
可选的,所述根据所述目标误差信息,标定所述拍摄装置参数,包括:根据所述目标误差信息,确定代价函数;根据所述代价函数,标定所述拍摄装置参数。Optionally, the calibrating the parameters of the shooting device according to the target error information includes: determining a cost function according to the target error information; and calibrating the parameters of the shooting device according to the cost function.
例如,Cost1、Cost2和Cost3构成代价函数Cost,Cost具体如下公式(6)所示:For example, Cost1, Cost2, and Cost3 constitute the cost function Cost, and Cost is specifically shown in the following formula (6):
Cost=[Cost1,Cost2,Cost3]   (6)Cost=[Cost1,Cost2,Cost3] (6)
进一步,根据该代价函数,确定第一拍摄装置和第二拍摄装置之间的旋转关系和位移关系。Further, according to the cost function, the rotation relationship and the displacement relationship between the first imaging device and the second imaging device are determined.
可选的,所述根据所述代价函数,标定所述拍摄装置参数,包括:对所述代价函数进行最优化求解,确定能够使得所述代价函数的二范数最小的所述拍摄装置参数。Optionally, the calibrating the parameters of the photographing device according to the cost function includes: optimizing the solution of the cost function, and determining the parameters of the photographing device that can minimize the second norm of the cost function.
例如,通过求解如下公式(7)所述的最优化问题,确定第一拍摄装置和第二拍摄装置之间的旋转关系和位移关系:For example, by solving the optimization problem described in the following formula (7), the rotation relationship and the displacement relationship between the first camera and the second camera are determined:
Figure PCTCN2019077475-appb-000013
Figure PCTCN2019077475-appb-000013
其中,R LR表示第一拍摄装置和第二拍摄装置之间的旋转关系,t LR表示第一拍摄装置和第二拍摄装置之间的位移关系。‖Cost‖ 2表示代价函数Cost的二范数。具体的,调整参数R LR和t LR,使得
Figure PCTCN2019077475-appb-000014
最小,当
Figure PCTCN2019077475-appb-000015
最小时对应的R LR和t LR即为最终标定的参数。
Wherein, R LR represents the rotation relationship between the first camera and the second camera, and t LR represents the displacement relationship between the first camera and the second camera. ‖Cost‖ 2 represents the second norm of the cost function Cost. Specifically, adjust the parameters R LR and t LR so that
Figure PCTCN2019077475-appb-000014
The smallest when
Figure PCTCN2019077475-appb-000015
The R LR and t LR corresponding to the minimum hour are the final calibration parameters.
可以理解的是,在这里对t1时刻的三角化误差Cost1,t2时刻的三角化误差Cost2和目标误差信息Cost3整体进行最优化求解时,可以不使用如公式(7)所示的最小二范数的方法而使用其他的最优化求解的方法,此处并不做限制。It is understandable that when the triangulation error Cost1 at time t1, the triangulation error Cost2 at t2 and the target error information Cost3 are optimized here, the least squares norm shown in formula (7) may not be used. The method of using other optimization methods is not limited here.
可以理解的是,可移动平台不仅包括两个拍摄装置,例如第一拍摄装置和第二拍摄装置,还可以包括更多的拍摄装置,当可移动平台包括更多的拍摄装置时,本实施例所述的拍摄装置参数标定方法可适用于该多个拍摄装置中任意两个拍摄装置之间的外参标定。It is understandable that the movable platform not only includes two shooting devices, such as a first shooting device and a second shooting device, but also more shooting devices. When the movable platform includes more shooting devices, this embodiment The method for calibrating the parameters of the shooting device can be applied to the calibration of external parameters between any two shooting devices among the plurality of shooting devices.
本实施例通过可移动平台上的第一拍摄装置和第二拍摄装置在第一时刻分别拍摄包括目标物体的第一图像和第二图像,确定目标物体在第一时刻的第一深度信息,以及根据第一拍摄装置和第二拍摄装置在第二时刻分别拍摄包括目标物体的第三图像和第四图像,确定目标物体在第二时刻的第二深度信息,根据第一深度信息、第二深度信息以及可移动平台在第一时刻和第二时刻之间的位姿变化,标定第一拍摄装置和第二拍摄装置之间的旋转关系和位移关系,相比于只根据第一深度信息和第二深度信息标定第一拍摄装置和第二拍摄装置之间的旋转关系和位移关系,增加了约束项,降低了离群点对参数标定的影响,提高了对第一拍摄装置和第二拍摄装置之间参数标定的准确性和效率。In this embodiment, the first camera and the second camera on the movable platform respectively take the first image and the second image including the target object at the first moment to determine the first depth information of the target object at the first moment, and According to the first photographing device and the second photographing device respectively photographing the third image and the fourth image including the target object at the second time, the second depth information of the target object at the second time is determined, according to the first depth information and the second depth Information and the position and posture changes of the movable platform between the first moment and the second moment to calibrate the rotation relationship and displacement relationship between the first camera and the second camera, compared to only based on the first depth information and the second camera. Two depth information calibrate the rotation relationship and displacement relationship between the first camera and the second camera, increase the constraint item, reduce the influence of outliers on the parameter calibration, and improve the impact on the first camera and the second camera The accuracy and efficiency of parameter calibration.
本发明实施例提供一种拍摄装置参数标定方法。在上述实施例的基础上,第一拍摄装置和第二拍摄装置可以是全局快门(Global Shutter)相机,或者第一拍摄装置和第二拍摄装置可以是卷帘式快门(Rolling Shutter)相机。Global Shutter相机拍摄的图像中,每一行像素点的曝光时间均相同。The embodiment of the present invention provides a method for parameter calibration of a photographing device. On the basis of the foregoing embodiment, the first camera and the second camera may be a global shutter (Global Shutter) camera, or the first and the second camera may be a rolling shutter (Rolling Shutter) camera. In the images captured by Global Shutter cameras, the exposure time of each row of pixels is the same.
可选的,所述位置变化是根据所述第一时刻和所述第二时刻之间的时间差、以及所述可移动平台在所述第一时刻和所述第二时刻之间的运动速度确定的。Optionally, the position change is determined according to the time difference between the first time and the second time, and the moving speed of the movable platform between the first time and the second time of.
例如,当第一拍摄装置和第二拍摄装置均是Global Shutter相机时,上述实施例中的运动距离d可以表示为d=(t2-t1)*速度,该速度可以是可移动平台在t1时间和t2时间之内的运动速度。For example, when the first camera and the second camera are both Global Shutter cameras, the movement distance d in the above embodiment can be expressed as d=(t2-t1)*speed, which can be the movable platform at time t1 And the movement speed within t2 time.
由于Rolling Shutter相机拍摄的图像中,每一行像素点的曝光时间都不同。如图7所示,某一帧图像包括N行像素点,每一行在不同的时间点开始曝光,例如,第一行的曝光开始时刻记为Start1,第二行的曝光开始时刻记为Start2,第三行的曝光开始时刻记为Start3,以此类推。可选的,每一行的曝光时间长度相同,也就是说,每一行的曝光开始时刻和曝光结束时刻之间的时间间隔相同。此外,除第一行之外,每一行的曝光开始时刻与其上一行的曝光开始时刻之间的时间间隔相同。例如,Start1和Start2之间的时间间隔与Start2和Start3之间的时间间隔相同。Because in the image taken by the Rolling Shutter camera, the exposure time of each row of pixels is different. As shown in Figure 7, a certain frame of image includes N rows of pixels, and each row starts to be exposed at a different time point. For example, the exposure start time of the first line is recorded as Start1, and the exposure start time of the second line is recorded as Start2. The start time of the third line of exposure is recorded as Start3, and so on. Optionally, the exposure time length of each row is the same, that is, the time interval between the exposure start time and the exposure end time of each row is the same. In addition, except for the first row, the time interval between the exposure start time of each row and the exposure start time of the previous row is the same. For example, the time interval between Start1 and Start2 is the same as the time interval between Start2 and Start3.
因此,当第一拍摄装置和第二拍摄装置是Rolling Shutter相机时,在 不同时刻例如t1时刻和t2时刻,同一个三维点P在不同图像中的映射点位于相应图像的不同行。如图3所示,在t1时刻,三维点P在第一图像31中的映射点为p11。在t2时刻,三维点P在第三图像33中的映射点为p21。p11在第一图像31中所处的行和p21在第三图像33中所处的行不同,因此,p11和p21的曝光时间可能会不同。从而导致目标物体在第一图像31和第三图像33中的曝光时间不同。Therefore, when the first camera and the second camera are Rolling Shutter cameras, at different times, such as t1 and t2, the mapping points of the same three-dimensional point P in different images are located in different rows of the corresponding images. As shown in FIG. 3, at time t1, the mapping point of the three-dimensional point P in the first image 31 is p11. At time t2, the mapping point of the three-dimensional point P in the third image 33 is p21. The line where p11 is located in the first image 31 and the line where p21 is located in the third image 33 are different, so the exposure time of p11 and p21 may be different. As a result, the exposure time of the target object in the first image 31 and the third image 33 is different.
或者,在t1时刻,三维点P在第二图像32中的映射点为p12。在t2时刻,三维点P在第四图像34中的映射点为p22。p12在第二图像32中所处的行和p22在第四图像34中所处的行不同,因此,p12和p22的曝光时间可能会不同。从而导致目标物体在第二图像32和第四图像34中的曝光时间不同。Or, at time t1, the mapping point of the three-dimensional point P in the second image 32 is p12. At time t2, the mapping point of the three-dimensional point P in the fourth image 34 is p22. The line where p12 is located in the second image 32 and the line where p22 is located in the fourth image 34 are different, so the exposure time of p12 and p22 may be different. As a result, the exposure time of the target object in the second image 32 and the fourth image 34 is different.
可选的,所述位置变化是根据所述第一时刻和所述第二时刻之间的时间差、所述目标物体在所述第一图像和所述第三图像中的曝光时间差、以及所述可移动平台在所述第一时刻和所述第二时刻之间的运动速度确定的。Optionally, the position change is based on the time difference between the first time and the second time, the exposure time difference of the target object in the first image and the third image, and the The moving speed of the movable platform between the first moment and the second moment is determined.
例如,当第一拍摄装置和第二拍摄装置是Rolling Shutter相机时,同一个三维点P在图像中可能因移动平台的运动而导致处于不同的曝光行,从而导致同一个三维点P在不同时刻的图像中的曝光时刻也不相同。可以根据目标物体在第一图像31和第三图像33中的曝光时间的差异值,对上述实施例中的运动距离d进行补偿,可选的,补偿后的d可以表示为d=(t2-t1+Δt)*速度,其中,Δt表示目标物体在第一图像31和第三图像33中的曝光时间的差异值。For example, when the first camera and the second camera are Rolling Shutter cameras, the same 3D point P may be in different exposure lines due to the movement of the mobile platform in the image, resulting in the same 3D point P at different times. The exposure time in the image is also different. The movement distance d in the above embodiment can be compensated according to the difference in the exposure time of the target object in the first image 31 and the third image 33. Optionally, the compensated d can be expressed as d=(t2- t1+Δt)*speed, where Δt represents the difference in the exposure time of the target object in the first image 31 and the third image 33.
可选的,所述位置变化是根据所述第一时刻和所述第二时刻之间的时间差、所述目标物体在所述第二图像和所述第四图像中的曝光时间差、以及所述可移动平台在所述第一时刻和所述第二时刻之间的运动速度确定的。Optionally, the position change is based on the time difference between the first time and the second time, the exposure time difference of the target object in the second image and the fourth image, and the The moving speed of the movable platform between the first moment and the second moment is determined.
例如,当第一拍摄装置和第二拍摄装置是Rolling Shutter相机时,可以根据目标物体在第二图像32和第四图像34中的曝光时间的差异值,对上述实施例中的运动距离d进行补偿,可选的,补偿后的d可以表示为d=(t2-t1+Δt)*速度,其中,Δt表示目标物体在第二图像32和第四图像34 中的曝光时间的差异值。For example, when the first photographing device and the second photographing device are Rolling Shutter cameras, the movement distance d in the above embodiment can be calculated according to the difference in the exposure time of the target object in the second image 32 and the fourth image 34. Compensation, optionally, the compensated d can be expressed as d=(t2-t1+Δt)*speed, where Δt represents the difference value of the exposure time of the target object in the second image 32 and the fourth image 34.
本实施例通过目标物体在同一个拍摄装置不同时刻拍摄的图像中的曝光时间不同,对可移动平台的运动距离进行补偿,降低卷帘式快门相机对拍摄装置参数标定的影响,进一步提高了拍摄装置参数标定的准确性,同时使得该拍摄装置参数标定方法可以适用于卷帘式快门相机,提高了该拍摄装置参数标定方法的适用范围。This embodiment compensates for the movement distance of the movable platform through the different exposure time of the target object in the images captured by the same camera at different times, reduces the influence of the rolling shutter camera on the parameter calibration of the camera, and further improves the shooting The accuracy of the device parameter calibration also enables the camera parameter calibration method to be applicable to a rolling shutter camera, which improves the application range of the camera parameter calibration method.
本发明实施例提供一种可移动平台。图8为本发明实施例提供的可移动平台的结构示意图,如图8所示,可移动平台70至少包括第一拍摄装置71和第二拍摄装置72、存储器73和处理器74。所述存储器用于存储程序代码;所述处理器74,调用所述程序代码,当程序代码被执行时,用于执行以下操作:获取第一时刻所述第一拍摄装置和所述第二拍摄装置分别拍摄的包括目标物体的第一图像和第二图像,并确定所述目标物体的第一深度信息;获取第二时刻所述第一拍摄装置和所述第二拍摄装置分别拍摄的包括所述目标物体的第三图像和第四图像,并确定所述目标物体的第二深度信息;获取所述第一时刻和所述第二时刻之间所述可移动平台的位姿变化;根据所述第一深度信息、所述第二深度信息及所述位姿变化,标定所述拍摄装置参数。The embodiment of the present invention provides a movable platform. FIG. 8 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention. As shown in FIG. 8, the movable platform 70 includes at least a first camera 71 and a second camera 72, a memory 73 and a processor 74. The memory is used to store program code; the processor 74 calls the program code, and when the program code is executed, is used to perform the following operations: acquire the first camera and the second camera at the first moment The first image and the second image of the target object captured by the device, and the first depth information of the target object is determined; the first image and the second image captured by the first camera and the second camera at the second moment include all The third image and the fourth image of the target object, and determine the second depth information of the target object; acquire the pose change of the movable platform between the first moment and the second moment; The first depth information, the second depth information, and the pose change are used to calibrate the camera parameters.
可选的,所述处理器74根据所述第一深度信息、所述第二深度信息及所述位姿变化,标定所述拍摄装置参数时,具体用于:根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,标定所述拍摄装置参数。Optionally, the processor 74 is specifically configured to calibrate the parameters of the photographing device according to the first depth information, the second depth information, and the pose change: The geometric constraint between the second depth information and the pose change is used to calibrate the camera parameters.
可选的,所述处理器74根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,标定所述拍摄装置参数时,具体用于:根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,确定目标误差信息;根据所述目标误差信息,标定所述拍摄装置参数。Optionally, the processor 74 is specifically configured to calibrate the camera parameters according to the geometric constraints between the first depth information, the second depth information, and the pose change: The geometric constraints between the first depth information, the second depth information, and the pose change determine target error information; and the camera parameters are calibrated according to the target error information.
可选的,所述处理器74根据所述目标误差信息,标定所述拍摄装置参数时,具体用于:根据所述目标误差信息,确定代价函数;根据所述代价函数,标定所述拍摄装置参数。Optionally, when calibrating the parameters of the camera according to the target error information, the processor 74 is specifically configured to: determine a cost function according to the target error information; and calibrate the camera according to the cost function parameter.
可选的,所述处理器74根据所述代价函数,标定所述拍摄装置参数 时,具体用于:对所述代价函数进行最优化求解,确定能够使得所述代价函数的二范数最小的所述拍摄装置参数。Optionally, when calibrating the parameters of the photographing device according to the cost function, the processor 74 is specifically configured to: optimize the cost function to determine the smallest two-norm of the cost function The camera parameters.
可选的,所述拍摄装置参数,包括:所述第一拍摄装置和所述第二拍摄装置之间的外参。Optionally, the camera parameters include: external parameters between the first camera and the second camera.
可选的,所述第一拍摄装置和所述第二拍摄装置之间的外参,包括:所述第一拍摄装置和所述第二拍摄装置之间的旋转关系和位移关系。Optionally, the external parameters between the first camera and the second camera include: a rotation relationship and a displacement relationship between the first camera and the second camera.
可选的,所述第一深度信息和所述第二深度信息是以所述第一拍摄装置为基准确定的;所述处理器74根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,确定目标误差信息时,具体用于:根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束、所述第一拍摄装置和所述第二拍摄装置之间的距离信息、以及所述第一拍摄装置的焦距,确定所述目标误差信息。Optionally, the first depth information and the second depth information are determined based on the first camera; the processor 74 is based on the first depth information, the second depth information, and the When determining the target error information, the geometric constraints between the pose changes are specifically used to: according to the first depth information, the second depth information, and the geometric constraints between the pose changes, the first The distance information between a photographing device and the second photographing device and the focal length of the first photographing device determine the target error information.
可选的,所述第一深度信息和所述第二深度信息是以所述第二拍摄装置为基准确定的;所述处理器74根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,确定目标误差信息时,具体用于:根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束、所述第一拍摄装置和所述第二拍摄装置之间的距离信息、以及所述第二拍摄装置的焦距,确定所述目标误差信息。Optionally, the first depth information and the second depth information are determined based on the second camera; the processor 74 is based on the first depth information, the second depth information, and the When determining the target error information, the geometric constraints between the pose changes are specifically used to: according to the first depth information, the second depth information, and the geometric constraints between the pose changes, the first The distance information between a photographing device and the second photographing device and the focal length of the second photographing device determine the target error information.
可选的,所述位姿变化包括位置变化或姿态变化。Optionally, the posture change includes a position change or a posture change.
可选的,所述位置变化是根据所述第一时刻和所述第二时刻之间的时间差、以及所述可移动平台在所述第一时刻和所述第二时刻之间的运动速度确定的。Optionally, the position change is determined according to the time difference between the first time and the second time, and the moving speed of the movable platform between the first time and the second time of.
可选的,所述位置变化是根据所述第一时刻和所述第二时刻之间的时间差、所述目标物体在所述第一图像和所述第三图像中的曝光时间差、以及所述可移动平台在所述第一时刻和所述第二时刻之间的运动速度确定的。Optionally, the position change is based on the time difference between the first time and the second time, the exposure time difference of the target object in the first image and the third image, and the The moving speed of the movable platform between the first moment and the second moment is determined.
可选的,所述位置变化是根据所述第一时刻和所述第二时刻之间的时间差、所述目标物体在所述第二图像和所述第四图像中的曝光时间差、以及所述可移动平台在所述第一时刻和所述第二时刻之间的运动速度确定的。Optionally, the position change is based on the time difference between the first time and the second time, the exposure time difference of the target object in the second image and the fourth image, and the The moving speed of the movable platform between the first moment and the second moment is determined.
可选的,所述可移动平台包括无人机或车辆。Optionally, the movable platform includes a drone or a vehicle.
本发明实施例提供的可移动平台的具体原理和实现方式均与上述实施例类似,此处不再赘述。The specific principles and implementation manners of the movable platform provided by the embodiment of the present invention are similar to the foregoing embodiment, and will not be repeated here.
本实施例通过可移动平台上的第一拍摄装置和第二拍摄装置在第一时刻分别拍摄包括目标物体的第一图像和第二图像,确定目标物体在第一时刻的第一深度信息,以及根据第一拍摄装置和第二拍摄装置在第二时刻分别拍摄包括目标物体的第三图像和第四图像,确定目标物体在第二时刻的第二深度信息,根据第一深度信息、第二深度信息以及可移动平台在第一时刻和第二时刻之间的位姿变化,标定第一拍摄装置和第二拍摄装置之间的旋转关系和位移关系,相比于只根据第一深度信息和第二深度信息标定第一拍摄装置和第二拍摄装置之间的旋转关系和位移关系,增加了约束项,降低了离群点对参数标定的影响,提高了对第一拍摄装置和第二拍摄装置之间参数标定的准确性和效率。In this embodiment, the first camera and the second camera on the movable platform respectively take the first image and the second image including the target object at the first moment to determine the first depth information of the target object at the first moment, and According to the first photographing device and the second photographing device respectively photographing the third image and the fourth image including the target object at the second time, the second depth information of the target object at the second time is determined, according to the first depth information and the second depth Information and the position and posture changes of the movable platform between the first moment and the second moment to calibrate the rotation relationship and displacement relationship between the first camera and the second camera, compared to only based on the first depth information and the second camera. Two depth information calibrate the rotation relationship and displacement relationship between the first camera and the second camera, increase the constraint item, reduce the influence of outliers on the parameter calibration, and improve the impact on the first camera and the second camera The accuracy and efficiency of parameter calibration.
另外,本实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现上述实施例所述的拍摄装置参数标定方法。In addition, this embodiment also provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the method for calibrating the camera parameters described in the foregoing embodiment.
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided by the present invention, it should be understood that the disclosed device and method may be implemented in other ways. For example, the device embodiments described above are merely illustrative. For example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented. In addition, the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元 中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。In addition, the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit. The above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。The above-mentioned integrated unit implemented in the form of a software functional unit may be stored in a computer readable storage medium. The above-mentioned software functional unit is stored in a storage medium and includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor execute the method described in the various embodiments of the present invention. Part of the steps. The aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and conciseness of the description, only the division of the above-mentioned functional modules is used as an example. In practical applications, the above-mentioned functions can be allocated by different functional modules as required, namely, the device The internal structure is divided into different functional modules to complete all or part of the functions described above. For the specific working process of the device described above, reference may be made to the corresponding process in the foregoing method embodiment, which is not repeated here.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand: The technical solutions recorded in the foregoing embodiments can still be modified, or some or all of the technical features can be equivalently replaced; these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present invention. range.

Claims (29)

  1. 一种拍摄装置参数标定方法,其特征在于,所述拍摄装置用于搭载于可移动平台,所述拍摄装置至少包括第一拍摄装置和第二拍摄装置,所述方法包括:A method for parameter calibration of a photographing device, characterized in that the photographing device is used to be mounted on a movable platform, the photographing device includes at least a first photographing device and a second photographing device, and the method includes:
    获取第一时刻所述第一拍摄装置和所述第二拍摄装置分别拍摄的包括目标物体的第一图像和第二图像,并确定所述目标物体的第一深度信息;Acquiring a first image and a second image including a target object respectively captured by the first camera and the second camera at the first moment, and determining the first depth information of the target object;
    获取第二时刻所述第一拍摄装置和所述第二拍摄装置分别拍摄的包括所述目标物体的第三图像和第四图像,并确定所述目标物体的第二深度信息;Acquiring a third image and a fourth image including the target object captured by the first photographing device and the second photographing device at a second time, and determining second depth information of the target object;
    获取所述第一时刻和所述第二时刻之间所述可移动平台的位姿变化;Acquiring the pose change of the movable platform between the first moment and the second moment;
    根据所述第一深度信息、所述第二深度信息及所述位姿变化,标定所述拍摄装置参数。The parameters of the photographing device are calibrated according to the first depth information, the second depth information, and the pose change.
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一深度信息、所述第二深度信息及所述位姿变化,标定所述拍摄装置参数,包括:The method according to claim 1, wherein the calibrating the parameters of the photographing device according to the first depth information, the second depth information, and the pose change comprises:
    根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,标定所述拍摄装置参数。Calibration of the camera parameters according to the geometric constraints between the first depth information, the second depth information, and the pose change.
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,标定所述拍摄装置参数,包括:The method according to claim 2, wherein the calibrating the parameters of the shooting device according to the geometric constraints between the first depth information, the second depth information, and the pose change comprises:
    根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,确定目标误差信息;Determine target error information according to the geometric constraints between the first depth information, the second depth information, and the pose change;
    根据所述目标误差信息,标定所述拍摄装置参数。According to the target error information, the camera parameters are calibrated.
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述目标误差信息,标定所述拍摄装置参数,包括:The method according to claim 3, wherein the calibration of the parameters of the photographing device according to the target error information comprises:
    根据所述目标误差信息,确定代价函数;Determine a cost function according to the target error information;
    根据所述代价函数,标定所述拍摄装置参数。According to the cost function, the camera parameters are calibrated.
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述代价函数,标定所述拍摄装置参数,包括:The method according to claim 4, wherein the calibrating the parameters of the photographing device according to the cost function comprises:
    对所述代价函数进行最优化求解,确定能够使得所述代价函数的二范 数最小的所述拍摄装置参数。Optimize the cost function to determine the parameters of the photographing device that can minimize the second norm of the cost function.
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述拍摄装置参数,包括:所述第一拍摄装置和所述第二拍摄装置之间的外参。The method according to any one of claims 1 to 5, wherein the photographing device parameters comprise: external parameters between the first photographing device and the second photographing device.
  7. 根据权利要求6所述的方法,其特征在于,所述第一拍摄装置和所述第二拍摄装置之间的外参,包括:7. The method according to claim 6, wherein the external parameters between the first photographing device and the second photographing device comprise:
    所述第一拍摄装置和所述第二拍摄装置之间的旋转关系和位移关系。The rotation relationship and the displacement relationship between the first imaging device and the second imaging device.
  8. 根据权利要求3-7任一项所述的方法,其特征在于,所述第一深度信息和所述第二深度信息是以所述第一拍摄装置为基准确定的;The method according to any one of claims 3-7, wherein the first depth information and the second depth information are determined on the basis of the first photographing device;
    所述根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,确定目标误差信息,包括:The determining target error information according to the geometric constraints between the first depth information, the second depth information, and the pose change includes:
    根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束、所述第一拍摄装置和所述第二拍摄装置之间的距离信息、以及所述第一拍摄装置的焦距,确定所述目标误差信息。According to the first depth information, the second depth information and the geometric constraints between the pose changes, the distance information between the first camera and the second camera, and the first The focal length of the photographing device determines the target error information.
  9. 根据权利要求3-7任一项所述的方法,其特征在于,所述第一深度信息和所述第二深度信息是以所述第二拍摄装置为基准确定的;7. The method according to any one of claims 3-7, wherein the first depth information and the second depth information are determined on the basis of the second photographing device;
    所述根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,确定目标误差信息,包括:The determining target error information according to the geometric constraints between the first depth information, the second depth information, and the pose change includes:
    根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束、所述第一拍摄装置和所述第二拍摄装置之间的距离信息、以及所述第二拍摄装置的焦距,确定所述目标误差信息。According to the first depth information, the second depth information and the geometric constraints between the pose changes, the distance information between the first camera and the second camera, and the second The focal length of the photographing device determines the target error information.
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述位姿变化包括位置变化或姿态变化。The method according to any one of claims 1-9, wherein the pose change includes a position change or a posture change.
  11. 根据权利要求10所述的方法,其特征在于,所述位置变化是根据所述第一时刻和所述第二时刻之间的时间差、以及所述可移动平台在所述第一时刻和所述第二时刻之间的运动速度确定的。The method according to claim 10, wherein the position change is based on the time difference between the first moment and the second moment, and the movable platform between the first moment and the The speed of movement between the second moment is determined.
  12. 根据权利要求10所述的方法,其特征在于,所述位置变化是根据所述第一时刻和所述第二时刻之间的时间差、所述目标物体在所述第一图像和所述第三图像中的曝光时间差、以及所述可移动平台在所述第一时刻和所述第二时刻之间的运动速度确定的。The method according to claim 10, wherein the position change is based on the time difference between the first moment and the second moment, and the target object is in the first image and the third moment. The exposure time difference in the image and the moving speed of the movable platform between the first moment and the second moment are determined.
  13. 根据权利要求10所述的方法,其特征在于,所述位置变化是根 据所述第一时刻和所述第二时刻之间的时间差、所述目标物体在所述第二图像和所述第四图像中的曝光时间差、以及所述可移动平台在所述第一时刻和所述第二时刻之间的运动速度确定的。The method according to claim 10, wherein the position change is based on the time difference between the first moment and the second moment, and the target object is in the second image and the fourth moment. The exposure time difference in the image and the moving speed of the movable platform between the first moment and the second moment are determined.
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述可移动平台包括无人机或车辆。The method according to any one of claims 1-13, wherein the movable platform comprises a drone or a vehicle.
  15. 一种可移动平台,其特征在于,所述可移动平台搭载有拍摄装置,所述拍摄装置至少包括第一拍摄装置和第二拍摄装置,所述可移动平台包括存储器和处理器;A movable platform, characterized in that the movable platform is equipped with a camera, the camera includes at least a first camera and a second camera, and the mobile platform includes a memory and a processor;
    所述存储器用于存储程序代码;The memory is used to store program codes;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:The processor calls the program code, and when the program code is executed, is used to perform the following operations:
    获取第一时刻所述第一拍摄装置和所述第二拍摄装置分别拍摄的包括目标物体的第一图像和第二图像,并确定所述目标物体的第一深度信息;Acquiring a first image and a second image including a target object respectively captured by the first camera and the second camera at the first moment, and determining the first depth information of the target object;
    获取第二时刻所述第一拍摄装置和所述第二拍摄装置分别拍摄的包括所述目标物体的第三图像和第四图像,并确定所述目标物体的第二深度信息;Acquiring a third image and a fourth image including the target object captured by the first photographing device and the second photographing device at a second time, and determining second depth information of the target object;
    获取所述第一时刻和所述第二时刻之间所述可移动平台的位姿变化;Acquiring the pose change of the movable platform between the first moment and the second moment;
    根据所述第一深度信息、所述第二深度信息及所述位姿变化,标定所述拍摄装置参数。The parameters of the photographing device are calibrated according to the first depth information, the second depth information, and the pose change.
  16. 根据权利要求15所述的可移动平台,其特征在于,所述处理器根据所述第一深度信息、所述第二深度信息及所述位姿变化,标定所述拍摄装置参数时,具体用于:The mobile platform of claim 15, wherein the processor uses the first depth information, the second depth information, and the pose change to calibrate the parameters of the shooting device. in:
    根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,标定所述拍摄装置参数。Calibration of the camera parameters according to the geometric constraints between the first depth information, the second depth information, and the pose change.
  17. 根据权利要求16所述的可移动平台,其特征在于,所述处理器根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,标定所述拍摄装置参数时,具体用于:The movable platform of claim 16, wherein the processor calibrates the camera device according to the geometric constraints between the first depth information, the second depth information, and the pose change When parameter, it is specifically used for:
    根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,确定目标误差信息;Determine target error information according to the geometric constraints between the first depth information, the second depth information, and the pose change;
    根据所述目标误差信息,标定所述拍摄装置参数。According to the target error information, the camera parameters are calibrated.
  18. 根据权利要求17所述的可移动平台,其特征在于,所述处理器根据所述目标误差信息,标定所述拍摄装置参数时,具体用于:The mobile platform according to claim 17, wherein the processor is specifically configured to: when calibrating the parameters of the photographing device according to the target error information:
    根据所述目标误差信息,确定代价函数;Determine a cost function according to the target error information;
    根据所述代价函数,标定所述拍摄装置参数。According to the cost function, the camera parameters are calibrated.
  19. 根据权利要求18所述的可移动平台,其特征在于,所述处理器根据所述代价函数,标定所述拍摄装置参数时,具体用于:The mobile platform according to claim 18, wherein the processor is specifically configured to: when calibrating the parameters of the photographing device according to the cost function:
    对所述代价函数进行最优化求解,确定能够使得所述代价函数的二范数最小的所述拍摄装置参数。An optimized solution is performed on the cost function, and the photographing device parameters that can minimize the two norm of the cost function are determined.
  20. 根据权利要求15-19任一项所述的可移动平台,其特征在于,所述拍摄装置参数,包括:所述第一拍摄装置和所述第二拍摄装置之间的外参。The movable platform according to any one of claims 15-19, wherein the parameters of the photographing device comprise: external parameters between the first photographing device and the second photographing device.
  21. 根据权利要求20所述的可移动平台,其特征在于,所述第一拍摄装置和所述第二拍摄装置之间的外参,包括:22. The movable platform of claim 20, wherein the external parameters between the first camera and the second camera include:
    所述第一拍摄装置和所述第二拍摄装置之间的旋转关系和位移关系。The rotation relationship and the displacement relationship between the first imaging device and the second imaging device.
  22. 根据权利要求17-21任一项所述的可移动平台,其特征在于,所述第一深度信息和所述第二深度信息是以所述第一拍摄装置为基准确定的;The movable platform according to any one of claims 17-21, wherein the first depth information and the second depth information are determined on the basis of the first camera;
    所述处理器根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,确定目标误差信息时,具体用于:When the processor determines target error information according to the geometric constraints between the first depth information, the second depth information, and the pose change, it is specifically configured to:
    根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束、所述第一拍摄装置和所述第二拍摄装置之间的距离信息、以及所述第一拍摄装置的焦距,确定所述目标误差信息。According to the first depth information, the second depth information and the geometric constraints between the pose changes, the distance information between the first camera and the second camera, and the first The focal length of the photographing device determines the target error information.
  23. 根据权利要求17-21任一项所述的可移动平台,其特征在于,所述第一深度信息和所述第二深度信息是以所述第二拍摄装置为基准确定的;The movable platform according to any one of claims 17-21, wherein the first depth information and the second depth information are determined on the basis of the second camera;
    所述处理器根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束,确定目标误差信息时,具体用于:When the processor determines target error information according to the geometric constraints between the first depth information, the second depth information, and the pose change, it is specifically configured to:
    根据所述第一深度信息、所述第二深度信息及所述位姿变化之间的几何约束、所述第一拍摄装置和所述第二拍摄装置之间的距离信息、以及所述第二拍摄装置的焦距,确定所述目标误差信息。According to the first depth information, the second depth information and the geometric constraints between the pose changes, the distance information between the first camera and the second camera, and the second The focal length of the photographing device determines the target error information.
  24. 根据权利要求15-23任一项所述的可移动平台,其特征在于,所述位姿变化包括位置变化或姿态变化。The movable platform according to any one of claims 15-23, wherein the change in position and posture includes a change in position or a change in posture.
  25. 根据权利要求24所述的可移动平台,其特征在于,所述位置变化是根据所述第一时刻和所述第二时刻之间的时间差、以及所述可移动平台在所述第一时刻和所述第二时刻之间的运动速度确定的。The movable platform according to claim 24, wherein the position change is based on the time difference between the first time and the second time, and the time difference between the movable platform at the first time and the The movement speed between the second moments is determined.
  26. 根据权利要求24所述的可移动平台,其特征在于,所述位置变化是根据所述第一时刻和所述第二时刻之间的时间差、所述目标物体在所述第一图像和所述第三图像中的曝光时间差、以及所述可移动平台在所述第一时刻和所述第二时刻之间的运动速度确定的。The movable platform according to claim 24, wherein the position change is based on the time difference between the first moment and the second moment, and the target object in the first image and the The exposure time difference in the third image and the moving speed of the movable platform between the first moment and the second moment are determined.
  27. 根据权利要求24所述的可移动平台,其特征在于,所述位置变化是根据所述第一时刻和所述第二时刻之间的时间差、所述目标物体在所述第二图像和所述第四图像中的曝光时间差、以及所述可移动平台在所述第一时刻和所述第二时刻之间的运动速度确定的。The movable platform of claim 24, wherein the position change is based on the time difference between the first moment and the second moment, and the target object is in the second image and the The exposure time difference in the fourth image and the moving speed of the movable platform between the first moment and the second moment are determined.
  28. 根据权利要求15-27任一项所述的可移动平台,其特征在于,所述可移动平台包括无人机或车辆。The movable platform according to any one of claims 15-27, wherein the movable platform comprises a drone or a vehicle.
  29. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被处理器执行以实现如权利要求1-14任一项所述的方法。A computer-readable storage medium, characterized in that a computer program is stored thereon, and the computer program is executed by a processor to implement the method according to any one of claims 1-14.
PCT/CN2019/077475 2019-03-08 2019-03-08 Capture device parameter calibration method, apparatus, and storage medium WO2020181409A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980005404.0A CN111316325B (en) 2019-03-08 2019-03-08 Shooting device parameter calibration method, equipment and storage medium
PCT/CN2019/077475 WO2020181409A1 (en) 2019-03-08 2019-03-08 Capture device parameter calibration method, apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/077475 WO2020181409A1 (en) 2019-03-08 2019-03-08 Capture device parameter calibration method, apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2020181409A1 true WO2020181409A1 (en) 2020-09-17

Family

ID=71155758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077475 WO2020181409A1 (en) 2019-03-08 2019-03-08 Capture device parameter calibration method, apparatus, and storage medium

Country Status (2)

Country Link
CN (1) CN111316325B (en)
WO (1) WO2020181409A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022094772A1 (en) * 2020-11-03 2022-05-12 深圳市大疆创新科技有限公司 Position estimation method, following control method, device and storage medium
CN112911091B (en) * 2021-03-23 2023-02-24 维沃移动通信(杭州)有限公司 Parameter adjusting method and device of multipoint laser and electronic equipment
WO2023272524A1 (en) * 2021-06-29 2023-01-05 深圳市大疆创新科技有限公司 Binocular capture apparatus, and method and apparatus for determining observation depth thereof, and movable platform
WO2023141963A1 (en) * 2022-01-28 2023-08-03 深圳市大疆创新科技有限公司 Pose estimation method for movable platform, movable platform, and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130162822A1 (en) * 2011-12-27 2013-06-27 Hon Hai Precision Industry Co., Ltd. Computing device and method for controlling unmanned aerial vehicle to capture images
CN106774947A (en) * 2017-02-08 2017-05-31 亿航智能设备(广州)有限公司 A kind of aircraft and its control method
CN106803271A (en) * 2016-12-23 2017-06-06 成都通甲优博科技有限责任公司 A kind of camera marking method and device of vision guided navigation unmanned plane
CN108171787A (en) * 2017-12-18 2018-06-15 桂林电子科技大学 A kind of three-dimensional rebuilding method based on the detection of ORB features

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130162822A1 (en) * 2011-12-27 2013-06-27 Hon Hai Precision Industry Co., Ltd. Computing device and method for controlling unmanned aerial vehicle to capture images
CN106803271A (en) * 2016-12-23 2017-06-06 成都通甲优博科技有限责任公司 A kind of camera marking method and device of vision guided navigation unmanned plane
CN106774947A (en) * 2017-02-08 2017-05-31 亿航智能设备(广州)有限公司 A kind of aircraft and its control method
CN108171787A (en) * 2017-12-18 2018-06-15 桂林电子科技大学 A kind of three-dimensional rebuilding method based on the detection of ORB features

Also Published As

Publication number Publication date
CN111316325B (en) 2021-07-30
CN111316325A (en) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2020181409A1 (en) Capture device parameter calibration method, apparatus, and storage medium
US10085011B2 (en) Image calibrating, stitching and depth rebuilding method of a panoramic fish-eye camera and a system thereof
US20170127045A1 (en) Image calibrating, stitching and depth rebuilding method of a panoramic fish-eye camera and a system thereof
WO2018076154A1 (en) Spatial positioning calibration of fisheye camera-based panoramic video generating method
WO2021043213A1 (en) Calibration method, device, aerial photography device, and storage medium
JP5992184B2 (en) Image data processing apparatus, image data processing method, and image data processing program
JP2017108387A (en) Image calibrating, stitching and depth rebuilding method of panoramic fish-eye camera and system thereof
WO2019113966A1 (en) Obstacle avoidance method and device, and unmanned aerial vehicle
WO2019104571A1 (en) Image processing method and device
TWI649721B (en) Panoramic photographing method of unmanned aerial vehicle and unmanned aerial vehicle using same
JP2019510234A (en) Depth information acquisition method and apparatus, and image acquisition device
CN108235815B (en) Imaging control device, imaging system, moving object, imaging control method, and medium
CN107560603B (en) Unmanned aerial vehicle oblique photography measurement system and measurement method
WO2021139176A1 (en) Pedestrian trajectory tracking method and apparatus based on binocular camera calibration, computer device, and storage medium
KR101342393B1 (en) Georeferencing Method of Indoor Omni-Directional Images Acquired by Rotating Line Camera
CN107545586B (en) Depth obtaining method and system based on light field polar line plane image local part
CN111612794A (en) Multi-2D vision-based high-precision three-dimensional pose estimation method and system for parts
JP2017026552A (en) Three-dimensional measurement device, three-dimensional measurement method and program
CN113551665A (en) High dynamic motion state sensing system and sensing method for motion carrier
WO2021043214A1 (en) Calibration method and device, and unmanned aerial vehicle
JP2022089269A (en) Calibration device and calibration method
CN113587934A (en) Robot, indoor positioning method and device and readable storage medium
CN114396944B (en) Autonomous positioning error correction method based on digital twinning
WO2021081707A1 (en) Data processing method and apparatus, movable platform and computer-readable storage medium
CN113436267B (en) Visual inertial navigation calibration method, device, computer equipment and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919340

Country of ref document: EP

Kind code of ref document: A1