WO2020180073A1 - Wireless power transmission device for wirelessly transmitting power - Google Patents

Wireless power transmission device for wirelessly transmitting power Download PDF

Info

Publication number
WO2020180073A1
WO2020180073A1 PCT/KR2020/002971 KR2020002971W WO2020180073A1 WO 2020180073 A1 WO2020180073 A1 WO 2020180073A1 KR 2020002971 W KR2020002971 W KR 2020002971W WO 2020180073 A1 WO2020180073 A1 WO 2020180073A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission coil
coil
transmission
ferrite
wireless power
Prior art date
Application number
PCT/KR2020/002971
Other languages
French (fr)
Korean (ko)
Inventor
박재현
이종민
김동조
하민철
김광섭
김기현
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2020180073A1 publication Critical patent/WO2020180073A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices

Definitions

  • Various embodiments of the present disclosure relate to a wireless power transmission apparatus for wirelessly transmitting power.
  • the magnetic induction or magnetic resonance method is advantageous for charging an electronic device located relatively close to the wireless power transmission device.
  • the electromagnetic wave method is more advantageous for long-distance power transmission up to several meters in magnetic induction or magnetic resonance method.
  • the electromagnetic wave method is mainly used for long-distance power transmission, and power can be delivered most efficiently by grasping the exact location of a power receiver in a long distance.
  • a wireless power transmission device for charging a smart phone generally includes a spiral-shaped coil, and the transmission coil and the reception coil are designed to have almost the same size for strong coupling.
  • the transmission efficiency increases as the resistance of the coil decreases and the coupling coefficient increases.
  • the size of the transmitting coil and the receiving coil is 1:1. It can be designed to have a size close to.
  • the transmitting coil and the receiving coil are designed to have almost the same size, if the position of the electronic device slightly deviates from the preset charging position on the wireless power transmission device, the power transmission efficiency is greatly reduced and normal charging becomes impossible. .
  • the power transmission efficiency is low, power loss from the receiving coil increases, and heat may be generated in the electronic device. If the size of the transmitting coil is increased to secure the degree of freedom of the charging position, the magnetic field generated by the transmitting coil is excited by the conductor included in the electronic device, thereby forming unnecessary induced current, resulting in additional power loss and heat generation. There is a problem with this occurring.
  • a wireless power transmission apparatus may include at least one transmission coil and a ferrite positioned inside the at least one transmission coil.
  • the height of the ferrite may be greater than the height of at least one transmission coil, and when the electronic device is disposed on the wireless power transmission device, the ferrite and the receiving coil in the electronic device may be close.
  • a wireless power transmission apparatus includes a power source, a first ferrite having a sheet form, a first ferrite positioned on the first ferrite, and forming a magnetic field using power provided from the power source.
  • a wireless power transmission apparatus includes a power source, a first ferrite having a sheet form, a first ferrite positioned on the first ferrite, and forming a magnetic field using power provided from the power source.
  • a second ferrite positioned inside the coil, and an outer diameter of the first transmission coil may be larger than an outer diameter of the second transmission coil.
  • a structure for generating a magnetic field includes a first ferrite having a sheet form, a first transmission coil positioned on the first ferrite and forming a magnetic field using power provided from the outside, A second transmission coil that is located on the first transmission coil and forms a magnetic field by using the power provided from the outside, and is located inside the first transmission coil and inside the second transmission coil. And a second ferrite having a height greater than the sum of the height of the first transmission coil and the height of the second transmission coil.
  • a wireless power transmission apparatus including at least one coil and a ferrite positioned inside the at least one coil may be provided.
  • the height of the ferrite may be higher than the size of the transmitting coil. Accordingly, when the electronic device is disposed on the wireless power transmission device, the ferrite may be close to the receiving coil in the electronic device. Accordingly, even if each of the at least one transmission coil is manufactured in a relatively large area, the magnetic field may be concentrated to the center of the transmission coil. According to the structure, while the degree of freedom of the charging position increases, the heat generation problem can be alleviated.
  • FIG. 1 is a block diagram of an apparatus for transmitting power wirelessly and an electronic device according to various embodiments of the present disclosure.
  • 2A is a diagram illustrating a wireless power transmission device and an electronic device according to various embodiments of the present disclosure.
  • 2B is a detailed block diagram of a power transmission circuit and a power reception circuit according to various embodiments.
  • 3A is a plan view of a coil according to a comparative example for comparison with various embodiments.
  • 3B is a side view of a coil according to a comparative example for comparison with various embodiments.
  • 3C is a side view showing an arrangement of a transmitting coil and an electronic device according to a comparative example.
  • 4A is a plan view illustrating a transmission coil and a ferrite according to various embodiments.
  • 4B is a side view illustrating a transmission coil and a ferrite according to various embodiments.
  • 4C is a side view illustrating a transmission coil and a ferrite according to various embodiments.
  • 5A is a plan view illustrating a structure of a plurality of coils according to various embodiments.
  • 5B are plan views illustrating a structure of a plurality of coils according to various embodiments.
  • 6A is a diagram illustrating a coil connection relationship in a wireless power transmission apparatus according to various embodiments.
  • 6B is a diagram illustrating a coil connection relationship in a wireless power transmission apparatus according to various embodiments.
  • FIG. 7A is a diagram illustrating a coil connection relationship in a wireless power transmission apparatus according to various embodiments.
  • FIG. 7B is a diagram illustrating a coil connection relationship in a wireless power transmission apparatus according to various embodiments.
  • FIG. 8 is a side view illustrating a transmission coil and a ferrite according to various embodiments.
  • FIG 9 illustrates a transmission coil according to various embodiments.
  • FIG. 10A illustrates a transmission coil according to a comparative example for comparison with various embodiments.
  • 10B is a diagram illustrating a transmission coil and a ferrite according to various embodiments.
  • 10C shows an experimental environment for testing a coupling coefficient according to a degree of misalignment.
  • 10D are graphs showing a coupling coefficient measured according to an x-axis misalignment degree for a transmission coil according to a comparative example and a transmission coil according to various embodiments.
  • 11A is a diagram illustrating coil positions of electronic devices that wirelessly receive power according to various embodiments of the present disclosure.
  • 11B is a diagram illustrating an arrangement of a transmitting coil and a ferrite according to various embodiments.
  • 11C are coupling coefficients measured according to various x-axis misalignment degrees for each structure according to a comparative example and various embodiments when the y-axis misalignment degree is 0.
  • 11D is a diagram illustrating coupling coefficients measured according to various degrees of x-axis misalignment for each structure according to a comparative example and various embodiments when the y-axis misalignment degree is 6 mm.
  • FIG. 1 is a block diagram of an apparatus for transmitting power wirelessly and an electronic device according to various embodiments of the present disclosure.
  • the apparatus 100 for transmitting power wirelessly may wirelessly transmit power 161 to the electronic device 150.
  • the wireless power transmission device 100 may transmit power 161 to the electronic device 150 according to various charging methods.
  • the apparatus 100 for transmitting power wirelessly may transmit the power 161 according to an induction method.
  • the wireless power transmission device 100 may include, for example, a power source, a DC-AC conversion circuit, an amplifying circuit, an impedance matching circuit, at least one capacitor, and at least one It may include a coil, a communication modem circuit, and the like. At least one capacitor may form a resonance circuit together with at least one coil.
  • the wireless power transmission apparatus 100 may be implemented in a manner defined in a wireless power consortium (WPC) standard (or Qi standard). For example, the wireless power transmission apparatus 100 may transmit the power 161 according to the resonance method.
  • the wireless power transmission apparatus 100 includes, for example, a power source, a DC-AC conversion circuit, an amplifying circuit, an impedance matching circuit, at least one capacitor, at least one coil, an out-band communication circuit ( Example: Bluetooth low energy (BLE) communication circuit). At least one capacitor and at least one coil may constitute a resonance circuit.
  • the apparatus 100 for transmitting power wirelessly may be implemented in a manner defined in the Alliance for Wireless Power (A4WP) standard (or air fuel alliance (AFA) standard).
  • A4WP Alliance for Wireless Power
  • AFA air fuel alliance
  • the wireless power transmission apparatus 100 may include a coil capable of generating an induced magnetic field when a current flows according to a resonance method or an induction method. The process of generating the induced magnetic field by the wireless power transmission apparatus 100 may be expressed as that the wireless power transmission apparatus 100 transmits the power 161 wirelessly.
  • the electronic device 150 may include a coil in which induced electromotive force is generated by a magnetic field that changes in size according to time formed around it. The process of generating the induced electromotive force through the coil may be expressed as the electronic device 150 wirelessly receiving the power 161.
  • the wireless power transmission apparatus 100 may perform communication with the electronic device 150.
  • the apparatus 100 for transmitting power wirelessly may communicate with the electronic device 150 according to an in-band method.
  • the wireless power transmission device 100 or the electronic device 150 may change the load (or impedance) of data to be transmitted according to, for example, an on/off keying modulation method.
  • the wireless power transmission device 100 or the electronic device 150 may determine the data transmitted from the counterpart device by measuring a load change (or impedance change) based on a change in the amount of current, voltage, or power of the coil. have.
  • the wireless power transmission apparatus 100 may perform communication with the electronic device 150 according to an out-band method.
  • the wireless power transmission device 100 or the electronic device 150 may transmit and receive data using a communication circuit (eg, a BLE communication module) separately provided with a coil or patch antenna.
  • a communication circuit eg, a BLE communication module
  • the wireless power transmission device 100 or the electronic device 150 performing a specific operation is a variety of hardware included in the wireless power transmission device 100 or the electronic device 150, for example, a processor. It may mean that a control circuit, a coil, or a patch antenna performs a specific operation. Alternatively, when the wireless power transmission apparatus 100 or the electronic device 150 performs a specific operation, it may mean that the processor controls other hardware to perform a specific operation. Alternatively, when the wireless power transmission device 100 or the electronic device 150 performs a specific operation, a specific operation that has been stored in a storage circuit (eg, memory) of the wireless power transmission device 100 or electronic device 150 As an instruction to be executed is executed, it may mean causing a processor or other hardware to perform a specific operation.
  • a storage circuit eg, memory
  • 2A is a diagram illustrating a wireless power transmission device and an electronic device according to various embodiments of the present disclosure.
  • a wireless power transmission apparatus 100 includes a control circuit 102, a communication circuit 103, a memory 105, a power source 106, or a power transmission circuit 109. It may include at least one of.
  • the electronic device 150 may include at least one of a charger, a control circuit 152, a communication circuit 153, a battery 154, a memory 156, or a power receiving circuit 159. Can include.
  • the power transmission circuit 109 may wirelessly transmit the power 161 according to at least one of an induction method, a resonance method, and an electromagnetic wave method. Detailed configurations of the power transmission circuit 109 and the power reception circuit 159 will be described in more detail with reference to FIGS. 2A and 2B.
  • the control circuit 102 can control the overall operation of the wireless power transmission device 100. For example, the control circuit 102 determines whether to transmit the power 161, controls the magnitude of the power 161, or at least one function of the electronic device 150 (e.g., charging Start or stop charging) can also be controlled.
  • the control circuit 102 or the control circuit 152 is a general-purpose processor such as a CPU, a mini computer, a microprocessor, a micro controlling unit (MCU), a field programmable gate array (FPGA), etc. It can be implemented, and there is no limit to its kind.
  • the control circuit 102 may transmit and receive data to and from the electronic device 150 through the communication circuit 103. The data can be used to control wireless power transmission/reception.
  • the communication circuit 103 and the communication circuit 153 are implemented as, for example, an out-band communication type communication circuit (eg, a Bluetooth communication module or an NFC communication module), or an in-band communication type communication circuit. Can be.
  • the communication circuit 153 includes, for example, a switch connected directly to the coil of the power receiving circuit 159 or through another element, and a dummy connected directly to the coil or through other elements through the switch. It may include a load (eg, a dummy resistor or a dummy capacitor).
  • the communication circuit 103 may check information based on a change in voltage or current applied to the coil in the power transmission circuit 109 detected during the on/off process of the switch.
  • the power receiving circuit 159 may wirelessly receive power from the power transmission circuit 109 according to at least one of an induction method, a resonance method, and an electromagnetic wave method.
  • the power receiving circuit 159 may perform power processing of rectifying the power of the received AC waveform into a DC waveform, converting a voltage, or regulating power.
  • the charger 151 may charge the battery 154 using the received regulated power (eg, DC power).
  • the charger 151 may adjust at least one of a voltage or a current of the received power and transmit it to the battery 154.
  • the battery 154 may store power and transfer it to other hardware.
  • a power management integrated circuit (PMIC) (not shown) may receive power from the power receiving circuit 159 and transmit it to other hardware, or may receive power from the battery 154 and transmit it to other hardware. .
  • PMIC power management integrated circuit
  • the control circuit 152 may control the overall operation of the electronic device 150.
  • the memory 156 may store instructions for performing overall operations of the electronic device 150.
  • instructions for performing the overall operation of the wireless power transmission device 100 may be stored, or a relationship between the information acquired through the communication circuit 103 and the amount of power to be transmitted may be stored.
  • a lookup table or equation information about a relationship between the obtained information and the amount of power to be transmitted may be stored.
  • the memory 105 or the memory 156 may be implemented in various forms such as read only memory (ROM), random access memory (RAM), or flash memory, and there is no limitation on the form of implementation.
  • 2B is a detailed block diagram of a power transmission circuit and a power reception circuit according to various embodiments.
  • the power transmission circuit 109 may include a power adapter 211, a power generation circuit 212, a coil 213, and a matching circuit 214.
  • the power adapter 211 may receive power from the power source 106 and provide it to the power generation circuit 212.
  • the adapter 211 may be, for example, a power interface, and may not be included in the wireless power transmission apparatus 100 depending on implementation.
  • the power generation circuit 212 may convert the received power into an AC waveform, for example, and/or amplify and transfer the received power to the coil 213.
  • the frequency of the AC waveform may be set to 100 to 205 kHz or 6.78 MHz or the like according to the standard, but there is no limitation.
  • the power generation circuit 212 may also include an inverter.
  • the inverter may be a full-bridge inverter or a half-bridge inverter, but the type is not limited.
  • an induced magnetic field that changes in size with time may be formed from the coil 213, and accordingly, power may be transmitted wirelessly.
  • at least one capacitor constituting the resonance circuit together with the coil 213 may be further included in the power transmission circuit 109.
  • the matching circuit 214 changes at least one of the capacitance or reactance of the circuit connected to the coil 213 according to the control of the control circuit 102, so that the power transmission circuit 109 and the power reception circuit 159 are Impedance matching can be made.
  • Induction electromotive force may be generated in the coil 221 of the power receiving circuit 159 by a magnetic field that changes in size according to the time formed around it, and accordingly, the power receiving circuit 159 may receive power wirelessly. .
  • the rectifying circuit 222 may rectify the power of the received AC waveform.
  • the converting circuit 223 may adjust the voltage of the rectified power and transmit it to the PMIC or charger.
  • the power receiving circuit 159 may further include a regulator, or the converting circuit 223 may be replaced with a regulator.
  • the matching circuit 224 changes at least one of the capacitance or reactance of the circuit connected to the coil 221 under the control of the control circuit 152, so that the power transmission circuit 109 and the power reception circuit 159 are Impedance matching can be made.
  • the number of coils 213 may be one or more. When there are a plurality of coils 213, the coils may be connected in series or in parallel with each other. Various implementation forms of the coil 213 will be described in more detail later.
  • 3A is a top view of a coil according to a comparative example for comparison with various embodiments.
  • 3B is a side view of a coil according to a comparative example for comparison with various embodiments.
  • the transmission coil 301 may be positioned on the ferrite 302.
  • the ferrite 302 may have a sheet shape.
  • the ferrite 302 may shield a magnetic field formed from the transmission coil 301.
  • the ferrite 302 can prevent the magnetic field from flowing into the surface opposite to the surface on which the transmission coil 301 is disposed.
  • the ferrite 302 may increase the inductance of the transmitting coil 301 and may reduce the influence of an external conductor on the transmitting coil 301.
  • the transmission coil 301 may have a spiral shape, but there is no limitation on the implementation type.
  • 3C is a side view showing an arrangement of a transmitting coil and an electronic device according to a comparative example.
  • the size of the transmitting coil 301 may be substantially the same as the size of the receiving coil 322 in the electronic device 150.
  • the difference between the sizes may be less than or equal to a threshold.
  • the threshold may be a value set such that the coupling efficiency between the transmitting coil 301 and the receiving coil 322 is equal to or greater than a specified value (eg, 0.5) in a specified alignment state.
  • the transmitting coil 301 and the receiving coil 322 have substantially the same size, when the transmitting coil 301 and the receiving coil 322 are accurately aligned and arranged, power is reduced with high power transmission efficiency. Can be delivered.
  • the center of the transmitting coil 301 and the receiving coil 322 in a three-dimensional space are spaced apart in the z-axis direction, the two-dimensional position of the transmitting coil 301 on the x-axis and y-axis
  • the two-dimensional positions on the x-axis and y-axis of the receiving coil 322 are substantially the same, power can be delivered with high power transmission efficiency.
  • the power transmission efficiency can decrease rapidly. Accordingly, charging is possible only when the electronic device 150 is accurately disposed in correspondence with the position of the transmission coil 301, thereby reducing the degree of freedom in the arrangement of the electronic device 150.
  • the electronic device 150 may include metallic materials (eg, aluminum) 323 and 324 at both ends according to implementation.
  • the magnetic field generated from the transmission coil 301 may be excited by the metal materials 323 and 324, which may cause unnecessary induced current formation in the metal materials 323 and 324 and thus generate heat.
  • 4A is a plan view illustrating a transmission coil and a ferrite according to various embodiments.
  • 4B is a side view illustrating a transmission coil and a ferrite according to various embodiments.
  • a wireless power transmission apparatus 100 includes a first ferrite 401, a first transmission coil 402, a second transmission coil 403, or a second transmission coil. It may include at least one of the ferrites 410.
  • the first ferrite 401 may have a sheet shape.
  • the first transmission coil 402 may be positioned on the first ferrite 401.
  • the first transmission coil 402 may have a spiral shape, but the shape is not limited.
  • a second transmission coil 403 may be positioned on the first transmission coil 402.
  • the second transmission coil 403 may have a spiral shape, but the shape is not limited.
  • the outer diameter of the first transmission coil 402 may be larger than the outer diameter of the second transmission coil 403.
  • the inner diameter of the first transmission coil 402 may be larger than the inner diameter of the second transmission coil 403.
  • the first transmission coil 402 and the second transmission coil 403 may have an inner diameter of the same length, which will be described with reference to FIG. 4C.
  • the thick line in FIG. 4A is only used to easily distinguish the inner and outer boundaries of the first transmission coil 402 and the second transmission coil 403, and it means that the width of the coil is different in the corresponding part. I don't.
  • the second ferrite 410 may be positioned inside the first transmission coil 402 and inside the second transmission coil 403.
  • the height of the second ferrite 410 may be greater than the sum of the height of the first transmission coil 402 and the height of the second transmission coil 403.
  • the height of the second ferrite 410 may be equal to or smaller than the sum of the height of the first transmission coil 402 and the height of the second transmission coil 403 depending on implementation.
  • the height of the second ferrite 410 is relatively high, when the electronic device 150 is disposed in the wireless power transmission device 100, the receiving coil and the second ferrite 410 of the electronic device 150 The distance between them can be relatively short.
  • the height of the second ferrite 410 may be determined so that the distance between the receiving coil and the second ferrite 410 is within 0.3 mm to 30 mm.
  • the difference between the outer diameter of the second ferrite 410 and the inner diameter of the second transmission coil 403 may be determined within a range of, for example, 0 to 10 mm.
  • the first transmission coil 402 and the second transmission coil 403 The magnetic field formed by this may be concentrated to the centers of the first transmission coil 402 and the second transmission coil 403.
  • the sizes (eg, outer diameters) of the first transmission coil 402 and the second transmission coil 403 may be larger than the transmission coil 301 according to the comparative example. That is, the size (eg, outer diameter) of the first transmission coil 402 and the second transmission coil 403 is an electronic device (eg, a smart phone, a tablet PC, or a smart watch) for general power reception. It may be larger than the size of the receiving coil 322 included in.
  • the degree of freedom of arrangement of the electronic device 150 during wireless power transmission/reception may increase.
  • the magnetic field formed by the first transmission coil 402 and the second transmission coil 403 is the center of the first transmission coil 402 and the second transmission coil 403 As the concentration is concentrated, magnetic field excitation to the metal materials 323 and 324 positioned at both ends of the electronic device 150 may also be reduced.
  • the magnetic fields induced by the first transmission coil 402 and the second transmission coil 403 by the second ferrite 410 may be further strengthened.
  • the height of the second ferrite 410 may be greater than the sum of the height of the first transmission coil 402 and the height of the second transmission coil 403, and accordingly The ferrite 410 may be close to the receiving coil 322 of the electronic device 150 for wireless power reception, and accordingly, power transmission efficiency may be increased.
  • the permeability of the second ferrite 410 may be higher than that of the first ferrite 401, but there is no limitation.
  • the permeability of the second ferrite 410 may be equal to or lower than the permeability of the first ferrite 401.
  • 4C is a side view illustrating a transmission coil and a ferrite according to various embodiments.
  • a wireless power transmission apparatus 100 includes a first ferrite 431, a first transmission coil 432, a second transmission coil 433, or a second ferrite ( 430) may be included.
  • the first ferrite 431 may have a sheet shape.
  • the first transmission coil 432 may be positioned on the first ferrite 431.
  • the second transmission coil 433 may be positioned on the first transmission coil 432.
  • a second ferrite 430 may be positioned inside the first transmission coil 432 and the second transmission coil 433.
  • the outer diameter of the first transmission coil 432 may be larger than the outer diameter of the second transmission coil 433.
  • the inner diameter of the first transmission coil 432 and the inner diameter of the second transmission coil 433 may be substantially the same.
  • 5A is a plan view illustrating a structure of a plurality of coils according to various embodiments.
  • an apparatus 100 for transmitting wireless power may include a first ferrite 511 and a second ferrite 521.
  • the first ferrite 511 and the second ferrite 521 are illustrated as being spaced apart from each other, but may be implemented as a single sheet-type ferrite depending on implementation.
  • a first transmission coil 511 may be located on the first ferrite 511, and a second transmission coil 512 may be located on the first transmission coil 211.
  • the outer diameter of the first transmission coil 511 may be larger than the outer diameter of the second transmission coil 512.
  • a third ferrite 514 may be positioned inside the first transmission coil 511 and the second transmission coil 512.
  • the height of the third ferrite 512 may be greater than the sum of the height of the first transmission coil 511 and the height of the second transmission coil 512.
  • a third transmission coil 521 may be located on the second ferrite 521, and a fourth transmission coil 522 may be located on the third transmission coil 521.
  • the outer diameter of the third transmission coil 521 may be larger than the outer diameter of the fourth transmission coil 522.
  • a fourth ferrite 514 may be positioned inside the third transmission coil 521 and the fourth transmission coil 522. The height of the fourth ferrite 514 may be greater than the sum of the height of the third transmission coil 521 and the height of the fourth transmission coil 522.
  • 5B are plan views illustrating a structure of a plurality of coils according to various embodiments.
  • the apparatus for transmitting power wirelessly may further include a fifth transmission coil 530 compared to FIG. 5A.
  • the fifth transmission coil 530 may be positioned on, for example, the second transmission coil 513 and the fourth transmission coil 523.
  • the two-dimensional position of the center of the fifth transmission coil 530 is between the two-dimensional position of the center of the second transmission coil 513 and the two-dimensional position of the center of the fourth transmission coil 523 I can.
  • the magnetic field from the first transmission coil 512 and the second transmission coil 513 may be concentrated at the center of the first transmission coil 512 and the second transmission coil 513, and may be used for the third transmission.
  • the magnetic field from the coil 522 and the fourth transmission coil 523 may be concentrated at the centers of the third transmission coil 522 and the fourth transmission coil 523.
  • the fifth transmission coil 530 is a shaded area by the first transmission coil 512, the second transmission coil 513, the third transmission coil 522 and the fourth transmission coil 523 ( Example: It is possible to transmit power with a relatively high power transmission efficiency to the electronic device 150 disposed in the area between the center of the first transmission coil 512 and the center of the third transmission coil 522). .
  • 6A is a diagram illustrating a coil connection relationship in a wireless power transmission apparatus according to various embodiments.
  • 6B is a diagram illustrating a coil connection relationship in a wireless power transmission apparatus according to various embodiments.
  • a first transmission coil 602 and a second transmission coil 603 may be connected to an inverter 601 included in the wireless power transmission apparatus 100.
  • the first transmission coil 602 and the second transmission coil 603 may be connected in series.
  • the inverter 601 may invert the input power into AC power and transmit it to the first transmission coil 602 and the second transmission coil 603.
  • at least one element eg, a capacitor
  • circuit eg, an amplifying circuit
  • the inverter 601 is shown to be connected to the first transmission coil 602 and the second transmission coil 603, but any of the wireless power transmission apparatus 100 according to various embodiments
  • the first transmission coil 602 and the second transmission coil 603 may be connected to the device.
  • the inverter 601 may be included in the power transmission circuit 109, for example, but its name may be referred to as a DC-AC conversion circuit, a converter, or the like according to implementation.
  • the wireless power transmission apparatus 100 may not include an inverter 601, in this case, the first transmission coil 602 and the second transmission coil 603 are directly or It may be connected through other circuits (or other devices).
  • the first transmission coil 613 may be wound in a spiral shape in the first layer.
  • the second transmission coil 612 may be wound in a spiral shape in the second layer.
  • One end of the first transmission coil 613 may be connected directly to the inverter 601 or through another element (or another circuit).
  • the other end of the first transmission coil 613 may be connected to one end of the second transmission coil 612 of the second layer.
  • the other end of the second transmission coil 612 may be connected directly to the inverter 601 or through another element (or other circuit).
  • 7A is a diagram illustrating a coil connection relationship in a wireless power transmission apparatus according to various embodiments.
  • 7B is a diagram illustrating a coil connection relationship in a wireless power transmission apparatus according to various embodiments.
  • a first transmission coil 702 and a second transmission coil 703 may be connected to an inverter 701 included in the wireless power transmission apparatus 100.
  • the first transmission coil 702 and the second transmission coil 703 may be connected in parallel.
  • the inverter 701 may invert the input power into AC power and transmit it to the first transmission coil 702 and the second transmission coil 703.
  • at least one element (eg, capacitor) or circuit (eg, an amplifying circuit) intervenes between the inverter 702 and the first transmission coil 702 and the second transmission coil 703 Can be connected.
  • the first transmission coil 712 may be wound in a spiral shape in the first layer.
  • the second transmission coil 713 may be wound in a spiral shape in the second layer. Both ends of the first transmission coil 712 may be connected directly to the inverter 601 or through other elements (or other circuits). Both ends of the first transmission coil 712 may be connected to both ends of the second transmission coil 713 of the second layer. Both ends of the second transmission coil 713 may be connected directly to the inverter 601 or through other elements (or other circuits).
  • FIG. 8 is a side view illustrating a transmission coil and a ferrite according to various embodiments.
  • a wireless power transmission apparatus 100 includes a first ferrite 800, a first transmission coil 811, a second transmission coil 812, or a second ferrite ( 810).
  • the first ferrite 800 may have a sheet shape.
  • the first transmission coil 811 may be positioned on the first ferrite 800.
  • the first transmission coil 801 may have a spiral shape, but the shape is not limited.
  • a second transmission coil 802 may be positioned on the first transmission coil 801.
  • the second transmission coil 802 may have a spiral shape, but the shape is not limited.
  • the center of the first transmission coil 811 and the center of the second transmission coil 812 may be arranged so that they do not coincide on the two-dimensional coordinates. That is, the position on the 2D coordinate of the center of the first transmission coil 811 may be spaced apart from the position on the 2D coordinate of the center of the second transmission coil 812.
  • the first transmission coil 811 and the second transmission coil 812 may be spaced apart on two-dimensional coordinates in order to secure a wider charging area.
  • the distance between the centers of the coils 811 and 812 may be determined to cover a charging area required to be secured.
  • the second ferrite 810 may be positioned inside the first transmission coil 811 and inside the second transmission coil 812.
  • the height of the second ferrite 810 may be greater than the sum of the height of the first transmission coil 811 and the height of the second transmission coil 812.
  • FIG 9 illustrates a transmitting coil according to various embodiments.
  • the transmission coil 910 may be wound in a spiral shape.
  • the width w1 of the first portion 911 of the transmission coil 910 may be different from the width w2 of the second portion 912.
  • the width w1 of the first part 911 may be smaller than the width w2 of the second part 912, and the gap between wires located in the first part 911 is limited. It may be smaller than the spacing between the wires located in the 2 part 912.
  • At least some of the coils of various embodiments of the present disclosure may have a winding structure of the transmission coil of FIG. 9.
  • 10A illustrates a transmission coil according to a comparative example for comparison with various embodiments.
  • the transmission coil 1001 according to the comparative example may have an area of 40.5 X 47.5 mm2.
  • 10B is a diagram illustrating a transmission coil and a ferrite according to various embodiments. As shown in FIG. 10B, the transmission coil 1011 according to various embodiments may have an area of 60 X 47.5 40.5 X 47.5 mm2. The transmission coil 1011 according to various embodiments may have a larger area than the transmission coil 1011 according to the comparative example.
  • a ferrite 1012 may be located inside the transmitting coil 1011. The ferrite 1012 may compensate for a reduction in coupling coefficient and may strengthen a magnetic field.
  • FIG. 10C shows an experimental environment for testing a coupling coefficient according to a degree of misalignment.
  • a transmitting coil 1011 and a receiving coil 1020 according to a comparative example may be displayed by being superimposed on a 2D coordinate.
  • the position of the center of the transmitting coil 1011 on the two-dimensional coordinates and the position of the center of the receiving coil 1020 on the two-dimensional coordinates may be separated by 20 mm, and x-axis misalignment. It can be expressed as a degree of 20mm.
  • the coupling coefficient measurement experiment may be performed, for example, while adjusting the degree of x-axis misalignment.
  • the experiment may be performed while moving the receiving coil 1020 in an environment in which the transmitting coil 1011 and the ferrite 1012 according to various embodiments are located.
  • 10D are graphs showing a coupling coefficient measured according to an x-axis misalignment degree for a transmission coil according to a comparative example and a transmission coil according to various embodiments.
  • a first graph 1031 shows coupling coefficients measured according to various x-axis misalignment degrees for the transmission coil 1001 according to the comparative example of FIG. 10A.
  • the second graph 1032 shows coupling coefficients measured according to various degrees of x-axis misalignment with respect to the transmission coil 1011 in which the ferrite 1012 is located, as in the various embodiments of FIG. 10B.
  • the third graph 1033 is the coupling coefficients measured according to various degrees of x-axis misalignment of the transmitting coil 1011 when the ferrite 1012 is not located inside in various embodiments of FIG. 10B. .
  • the degree of misalignment of the expected charging area may be about 13 mm. It can be seen that the coupling coefficient indicated by the first graph 1031 at the boundary of the expected charging region is about 0.3, and the coupling coefficient indicated by the second graph 1032 is about 0.4. That is, according to the structure of the transmission coil 1011 and the ferrite 1012 according to various embodiments, a higher coupling coefficient may be secured at the boundary of the expected charging area. Accordingly, the degree of freedom of the charging position may be increased by the structure according to various embodiments.
  • the coupling coefficient of the second graph 1032 is higher than that of the third graph 1033 at the same degree of x-axis misalignment, and accordingly, the coupling coefficient is increased by the ferrite 1012 disposed inside. It can be confirmed that.
  • 11A is a diagram illustrating coil positions of electronic devices that wirelessly receive power according to various embodiments of the present disclosure.
  • the center of the coil 1101 included in the first type of electronic device 1100 may be located at a point of 81.25 mm with respect to the support surface of the wireless power transmission device 1150.
  • the center of the coil 1101 included in the first type of electronic device 1100 is a support surface of the wireless power transmission device 1150 when the first type of electronic device 1100 is inserted into the case 1102 It can be located at a point of 83.2mm.
  • the center of the coil 1111 included in the second type of electronic device 1110 may be located at a point of 71.2 mm with respect to the support surface of the wireless power transmission device 1150.
  • the first type of electronic device 1100 may be a large sized smart phone on the market, and the second type of electronic device 1110 may be a small sized smart phone on the market.
  • the center position of about 12mm (ie, about -6mm to +6mm). This can be referred to as the y-axis center error.
  • 11B is a diagram illustrating an arrangement of a transmitting coil and a ferrite according to various embodiments.
  • the first structure 1120 may include a first transmission coil 1121 and a ferrite 1122 positioned inside the second transmission coil 1121.
  • the first transmission coil 1121 may have an area of 60 X 47.5 mm2.
  • an effective charging area of 18 mm in the y-axis direction may be secured in the first structure 1120.
  • the second structure 1120 is a ferrite positioned inside the first transmission coil 1131, the second transmission coil 1132, and the first transmission coil 1131 and the second transmission coil 1132 ( 1133) may be included.
  • Each of the first transmission coil 1131 and the second transmission coil 1132 may have an area of 70 X 50.5 mm2.
  • an effective charging area of 22 mm may be secured in the y-axis direction.
  • 11C are coupling coefficients measured according to various x-axis misalignment degrees for each structure according to a comparative example and various embodiments when the y-axis misalignment degree is 0.
  • a first graph 1141 shows coupling coefficients measured according to various x-axis misalignment degrees for the transmission coil 1001 according to the comparative example of FIG. 10A.
  • the second graph 1142 shows coupling coefficients measured according to various degrees of x-axis misalignment for the first structure 1120 in FIG. 11B.
  • a third graph 1143 shows coupling coefficients measured according to various degrees of x-axis misalignment for the second structure 1130 in FIG. 11B. It can be seen that the coupling coefficient by the second structure 1130 at the same x-axis misalignment degree is higher than the coupling coefficient by the first structure 1120.
  • 11D is a diagram illustrating coupling coefficients measured according to various degrees of x-axis misalignment for each structure according to a comparative example and various embodiments when the y-axis misalignment degree is 6 mm.
  • a first graph 1151 shows coupling coefficients measured according to various x-axis misalignment degrees for the transmitting coil 1001 according to the comparative example of FIG. 10A.
  • the second graph 1152 shows coupling coefficients measured according to various degrees of x-axis misalignment with respect to the first structure 1120 in FIG. 11B.
  • a third graph 1153 shows coupling coefficients measured according to various degrees of x-axis misalignment for the second structure 1130 in FIG. 11B. It can be seen that the coupling coefficient by the second structure 1130 at the same x-axis misalignment degree is higher than the coupling coefficient by the first structure 1120.
  • phrases such as “at least one of, B, or C” may include any one of the items listed together in the corresponding one of the phrases, or all possible combinations thereof.
  • Terms such as “first”, “second”, or “first” or “second” may be used simply to distinguish the component from other corresponding components, and the components may be referred to in other aspects (eg, importance or Order) is not limited.
  • Some (eg, first) component is referred to as “coupled” or “connected” to another (eg, second) component, with or without the terms “functionally” or “communicatively”. When mentioned, it means that any of the above components can be connected to the other components directly (eg by wire), wirelessly, or via a third component.
  • Each of the aforementioned components of the wireless power transmitter or electronic device may be composed of one or more components, and the name of the corresponding component may vary according to the type of the electronic device.
  • the electronic device may include at least one of the above-described components, and some components may be omitted or additional other components may be further included.
  • some of the constituent elements of the electronic device according to various embodiments of the present disclosure are combined to form a single entity, so that functions of the corresponding constituent elements before the combination may be performed in the same manner.
  • module used in this document may mean, for example, a unit including one or a combination of two or more of hardware, software, or firmware.
  • Module may be used interchangeably with terms such as unit, logic, logical block, component, or circuit, for example.
  • the “module” may be the smallest unit of integrally configured parts or a part thereof.
  • the “module” may be a minimum unit or a part of one or more functions.
  • the “module” can be implemented mechanically or electronically.
  • a “module” is one of known or future developed application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), or programmable-logic devices that perform certain operations. It may include at least one.
  • ASIC application-specific integrated circuit
  • FPGAs field-programmable gate arrays
  • programmable-logic devices that perform certain operations. It may include at least one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A wireless power transmission device according to various embodiments can comprise: a power source; a first ferrite having a sheet form; a first transmission coil which is positioned on the first ferrite and which forms a magnetic field by using power provided from the power source; a second transmission coil which is positioned on the first transmission coil and which forms a magnetic field by using the power provided from the power source; and a second ferrite which is positioned on the inside of the first transmission coil and on the inside of the second transmission coil and which has a height larger than the sum of the heights of the first transmission coil and the second transmission coil. Additional various embodiments are possible.

Description

무선으로 전력을 송신하는 무선 전력 송신 장치Wireless power transmission device that transmits power wirelessly
본 개시의 다양한 실시예들은, 무선으로 전력을 송신하는 무선 전력 송신 장치에 관한 것이다.Various embodiments of the present disclosure relate to a wireless power transmission apparatus for wirelessly transmitting power.
현대를 살아가는 많은 사람들에게 휴대용 디지털 통신기기들은 하나의 필수 요소가 되었다. 소비자들은 언제 어디서나 자신이 원하는 다양한 고품질의 서비스를 제공받고 싶어한다. 뿐만 아니라 최근 IoT (Internet of Thing)로 인하여 우리 생활 속에 존재하는 각종 센서, 가전기기, 통신기기 등은 하나로 네트워크화 되고 있다. 이러한 각종 센서들을 원활하게 동작시키기 위해서는 무선 전력 송신 시스템이 필요하다.For many people living in modern times, portable digital communication devices have become an essential element. Consumers want to be provided with a variety of high-quality services they want anytime, anywhere. In addition, due to the recent IoT (Internet of Thing), various sensors, home appliances, and communication devices that exist in our daily life are becoming one network. In order to smoothly operate these various sensors, a wireless power transmission system is required.
무선 전력 송신은 자기유도, 자기공진, 그리고 전자기파 방식이 있다. 자기유도 또는 자기공진 방식은, 무선 전력 송신 장치에 상대적으로 근거리에 위치한 전자 장치를 충전하는데 유리하다. 전자기파 방식은, 자기유도 또는 자기 공진 방식에 수 m에 이르는 원거리 전력 전송에 보다 유리하다. 전자기파 방식은 주로 원거리 전력 전송에 사용되며, 원거리에 있는 전력 수신기의 정확한 위치를 파악하여 전력을 가장 효율적으로 전달할 수 있다.There are magnetic induction, magnetic resonance, and electromagnetic wave methods for wireless power transmission. The magnetic induction or magnetic resonance method is advantageous for charging an electronic device located relatively close to the wireless power transmission device. The electromagnetic wave method is more advantageous for long-distance power transmission up to several meters in magnetic induction or magnetic resonance method. The electromagnetic wave method is mainly used for long-distance power transmission, and power can be delivered most efficiently by grasping the exact location of a power receiver in a long distance.
스마트 폰 충전을 위한 무선 전력 송신 장치는 일반적으로 스파이럴 형태의 코일을 포함하고 있으며, 강한 커플링을 위해 송신용 코일 및 수신용 코일은 거의 비슷한 크기로 설계되어 있다. 전송 효율은 코일의 저항이 낮을수록, 결합 계수가 높을수록 증가하는데, 상대적으로 높은 결합 계수(예를 들어, 0.5 이상의 결합 계수)를 확보하기 위해서 송신용 코일과 수신용 코일의 크기가 1:1에 가까운 크기를 갖도록 설계될 수 있다.A wireless power transmission device for charging a smart phone generally includes a spiral-shaped coil, and the transmission coil and the reception coil are designed to have almost the same size for strong coupling. The transmission efficiency increases as the resistance of the coil decreases and the coupling coefficient increases.In order to secure a relatively high coupling coefficient (for example, a coupling coefficient of 0.5 or more), the size of the transmitting coil and the receiving coil is 1:1. It can be designed to have a size close to.
송신용 코일 및 수신용 코일이 거의 비슷한 크기로 설계된 경우, 무선 전력 송신 장치 위의 미리 설정된 충전 위치로부터 전자 장치의 위치가 약간이라도 벗어나게 될 경우, 전력 송신 효율이 크게 하락하게 되어 정상적인 충전이 불가능해진다. 전력 송신 효율이 낮을 경우, 수신용 코일에서 손실되는 전력이 증가하여 전자 장치에서 발열이 발생할 수 있다. 만약, 충전 위치의 자유도를 확보하고자 송신용 코일의 크기를 증가시킨다면, 송신용 코일에 의해 발생되는 자계가 전자 장치에 포함된 도체에 여기되어 불필요한 유도 전류가 형성되고, 이에 따른 추가적인 전력 손실 및 발열이 발생되는 문제가 있다.When the transmitting coil and the receiving coil are designed to have almost the same size, if the position of the electronic device slightly deviates from the preset charging position on the wireless power transmission device, the power transmission efficiency is greatly reduced and normal charging becomes impossible. . When the power transmission efficiency is low, power loss from the receiving coil increases, and heat may be generated in the electronic device. If the size of the transmitting coil is increased to secure the degree of freedom of the charging position, the magnetic field generated by the transmitting coil is excited by the conductor included in the electronic device, thereby forming unnecessary induced current, resulting in additional power loss and heat generation. There is a problem with this occurring.
다양한 실시예에 따른 무선 전력 송신 장치는, 적어도 하나의 송신용 코일 및 적어도 하나의 송신용 코일 내측에 위치하는 페라이트를 포함할 수 있다. 페라이트의 높이는 적어도 하나의 송신용 코일의 높이보다 클 수 있으며, 전자 장치가 무선 전력 송신 장치 상에 배치된 경우, 페라이트 및 전자 장치 내의 수신용 코일이 근접할 수 있다.A wireless power transmission apparatus according to various embodiments may include at least one transmission coil and a ferrite positioned inside the at least one transmission coil. The height of the ferrite may be greater than the height of at least one transmission coil, and when the electronic device is disposed on the wireless power transmission device, the ferrite and the receiving coil in the electronic device may be close.
다양한 실시예에 따라서, 무선 전력 송신 장치는, 전력 소스, 시트(sheet) 형태를 가지는 제 1 페라이트, 상기 제 1 페라이트 상에 위치하고, 상기 전력 소스로부터 제공되는 전력을 이용하여 자기장을 형성하는 제 1 송신용 코일, 상기 제 1 송신용 코일 상에 위치하고, 상기 전력 소스로부터 제공되는 상기 전력을 이용하여 자기장을 형성하는 제 2 송신용 코일, 및 상기 제 1 송신용 코일의 내측 및 상기 제 2 송신용 코일의 내측에 위치하며, 상기 제 1 송신용 코일의 높이 및 상기 제 2 송신용 코일의 높이의 합계보다 큰 높이를 가지는 제 2 페라이트를 포함할 수 있다.According to various embodiments, a wireless power transmission apparatus includes a power source, a first ferrite having a sheet form, a first ferrite positioned on the first ferrite, and forming a magnetic field using power provided from the power source. A transmission coil, a second transmission coil positioned on the first transmission coil and forming a magnetic field using the power provided from the power source, and an inner side of the first transmission coil and the second transmission It may include a second ferrite located inside the coil and having a height greater than the sum of the height of the first transmission coil and the height of the second transmission coil.
다양한 실시예에 따라서, 무선 전력 송신 장치는, 전력 소스, 시트(sheet) 형태를 가지는 제 1 페라이트, 상기 제 1 페라이트 상에 위치하고, 상기 전력 소스로부터 제공되는 전력을 이용하여 자기장을 형성하는 제 1 송신용 코일, 상기 제 1 송신용 코일 상에 위치하고, 상기 전력 소스로부터 제공되는 상기 전력을 이용하여 자기장을 형성하는 제 2 송신용 코일, 및 상기 제 1 송신용 코일의 내측 및 상기 제 2 송신용 코일의 내측에 위치하는 제 2 페라이트를 포함하며, 상기 제 1 송신용 코일의 외경은, 상기 제 2 송신용 코일의 외경보다 클 수 있다.According to various embodiments, a wireless power transmission apparatus includes a power source, a first ferrite having a sheet form, a first ferrite positioned on the first ferrite, and forming a magnetic field using power provided from the power source. A transmission coil, a second transmission coil positioned on the first transmission coil and forming a magnetic field using the power provided from the power source, and an inner side of the first transmission coil and the second transmission And a second ferrite positioned inside the coil, and an outer diameter of the first transmission coil may be larger than an outer diameter of the second transmission coil.
다양한 실시예에 따라서, 자기장 생성을 위한 구조체는, 시트(sheet) 형태를 가지는 제 1 페라이트, 상기 제 1 페라이트 상에 위치하고, 외부로부터 제공되는 전력을 이용하여 자기장을 형성하는 제 1 송신용 코일, 상기 제 1 송신용 코일 상에 위치하고, 외부로부터 제공되는 상기 전력을 이용하여 자기장을 형성하는 제 2 송신용 코일, 및 상기 제 1 송신용 코일의 내측 및 상기 제 2 송신용 코일의 내측에 위치하며, 상기 제 1 송신용 코일의 높이 및 상기 제 2 송신용 코일의 높이의 합계보다 큰 높이를 가지는 제 2 페라이트를 포함할 수 있다.According to various embodiments, a structure for generating a magnetic field includes a first ferrite having a sheet form, a first transmission coil positioned on the first ferrite and forming a magnetic field using power provided from the outside, A second transmission coil that is located on the first transmission coil and forms a magnetic field by using the power provided from the outside, and is located inside the first transmission coil and inside the second transmission coil. And a second ferrite having a height greater than the sum of the height of the first transmission coil and the height of the second transmission coil.
다양한 실시예에 따라서, 적어도 하나의 코일 및 적어도 하나의 코일 내측에 위치하는 페라이트를 포함하는 무선 전력 송신 장치가 제공될 수 있다. 페라이트의 높이가 송신용 코일의 크기보다 높을 수 있으며, 이에 따라 전자 장치가 무선 전력 송신 장치 상에 배치된 경우, 페라이트가 전자 장치 내의 수신용 코일에 근접할 수 있다. 이에 따라, 적어도 하나의 송신용 코일 각각이 상대적으로 큰 면적으로 제작되더라도, 송신용 코일 중앙부로 자계가 집중될 수 있다. 해당 구조에 따라서, 충전 위치의 자유도가 증가하면서도, 발열 문제가 완화될 수 있다.According to various embodiments, a wireless power transmission apparatus including at least one coil and a ferrite positioned inside the at least one coil may be provided. The height of the ferrite may be higher than the size of the transmitting coil. Accordingly, when the electronic device is disposed on the wireless power transmission device, the ferrite may be close to the receiving coil in the electronic device. Accordingly, even if each of the at least one transmission coil is manufactured in a relatively large area, the magnetic field may be concentrated to the center of the transmission coil. According to the structure, while the degree of freedom of the charging position increases, the heat generation problem can be alleviated.
도 1은 본 발명의 다양한 실시예에 따른 무선 전력 송신 장치 및 전자 장치의 블록도를 도시한다.1 is a block diagram of an apparatus for transmitting power wirelessly and an electronic device according to various embodiments of the present disclosure.
도 2a는 다양한 실시예에 따른 무선 전력 송신 장치 및 전자 장치를 도시한다.2A is a diagram illustrating a wireless power transmission device and an electronic device according to various embodiments of the present disclosure.
도 2b는 다양한 실시예에 따른 전력 송신 회로 및 전력 수신 회로의 상세 블록도를 도시한다.2B is a detailed block diagram of a power transmission circuit and a power reception circuit according to various embodiments.
도 3a는 다양한 실시예와의 비교를 위한 비교예에 따른 코일의 평면도를 도시한다.3A is a plan view of a coil according to a comparative example for comparison with various embodiments.
도 3b는 다양한 실시예와의 비교를 위한 비교예에 따른 코일의 측면도를 도시한다.3B is a side view of a coil according to a comparative example for comparison with various embodiments.
도 3c는 비교예에 의한 송신용 코일 및 전자 장치의 배치를 나타내는 측면도를 도시한다.3C is a side view showing an arrangement of a transmitting coil and an electronic device according to a comparative example.
도 4a는 다양한 실시예에 따른 송신용 코일 및 페라이트를 도시하는 평면도이다.4A is a plan view illustrating a transmission coil and a ferrite according to various embodiments.
도 4b는 다양한 실시예에 따른 송신용 코일 및 페라이트를 도시하는 측면도이다.4B is a side view illustrating a transmission coil and a ferrite according to various embodiments.
도 4c는 다양한 실시예에 따른 송신용 코일 및 페라이트를 도시하는 측면도이다.4C is a side view illustrating a transmission coil and a ferrite according to various embodiments.
도 5a는 다양한 실시예에 따른 복수 개의 코일 구조를 나타내는 평면도들이다.5A is a plan view illustrating a structure of a plurality of coils according to various embodiments.
도 5b는 다양한 실시예에 따른 복수 개의 코일 구조를 나타내는 평면도들이다.5B are plan views illustrating a structure of a plurality of coils according to various embodiments.
도 6a는 다양한 실시예에 따른 무선 전력 송신 장치 내의 코일 연결 관계를 도시하는 도면이다.6A is a diagram illustrating a coil connection relationship in a wireless power transmission apparatus according to various embodiments.
도 6b는 다양한 실시예에 따른 무선 전력 송신 장치 내의 코일 연결 관계를 도시하는 도면이다.6B is a diagram illustrating a coil connection relationship in a wireless power transmission apparatus according to various embodiments.
도 7a는 다양한 실시예에 따른 무선 전력 송신 장치 내의 코일 연결 관계를 도시하는 도면이다.7A is a diagram illustrating a coil connection relationship in a wireless power transmission apparatus according to various embodiments.
도 7b는 다양한 실시예에 따른 무선 전력 송신 장치 내의 코일 연결 관계를 도시하는 도면이다.7B is a diagram illustrating a coil connection relationship in a wireless power transmission apparatus according to various embodiments.
도 8은 다양한 실시예에 따른 송신용 코일 및 페라이트를 도시하는 측면도이다.8 is a side view illustrating a transmission coil and a ferrite according to various embodiments.
도 9는 다양한 실시예에 따른 송신용 코일을 도시한다.9 illustrates a transmission coil according to various embodiments.
도 10a는 다양한 실시예와의 비교를 위한 비교예에 따른 송신용 코일을 도시한다.10A illustrates a transmission coil according to a comparative example for comparison with various embodiments.
도 10b는 다양한 실시예에 따른 송신용 코일 및 페라이트를 도시한다.10B is a diagram illustrating a transmission coil and a ferrite according to various embodiments.
도 10c는, 비정렬(misalignment) 정도에 따른 결합 계수를 실험하기 위한 실험 환경을 도시한다.10C shows an experimental environment for testing a coupling coefficient according to a degree of misalignment.
도 10d는 비교예에 따른 송신용 코일 및 다양한 실시예에 따른 송신용 코일에 대하여, x축 비정렬 정도에 따라 측정된 결합 계수를 나타내는 그래프들이다.10D are graphs showing a coupling coefficient measured according to an x-axis misalignment degree for a transmission coil according to a comparative example and a transmission coil according to various embodiments.
도 11a는 다양한 실시예에 따른 무선으로 전력을 수신하는 전자 장치들의 코일 위치를 나타내는 도면이다.11A is a diagram illustrating coil positions of electronic devices that wirelessly receive power according to various embodiments of the present disclosure.
도 11b는 다양한 실시예에 따른 송신용 코일 및 페라이트의 배치를 도시한다.11B is a diagram illustrating an arrangement of a transmitting coil and a ferrite according to various embodiments.
도 11c는 y축 비정렬 정도가 0인 경우에 대하여, 비교예 및 다양한 실시예들에 따른 구조 각각에 대한, 다양한 x축 비정렬 정도에 따라 측정된 결합 계수들이다.11C are coupling coefficients measured according to various x-axis misalignment degrees for each structure according to a comparative example and various embodiments when the y-axis misalignment degree is 0.
도 11d는 y축 비정렬 정도가 6mm인 경우에 대하여, 비교예 및 다양한 실시예들에 따른 구조 각각에 대한, 다양한 x축 비정렬 정도에 따라 측정된 결합 계수들이다.11D is a diagram illustrating coupling coefficients measured according to various degrees of x-axis misalignment for each structure according to a comparative example and various embodiments when the y-axis misalignment degree is 6 mm.
도 1은 다양한 실시예에 따른 무선 전력 송신 장치 및 전자 장치의 블록도를 도시한다 .1 is a block diagram of an apparatus for transmitting power wirelessly and an electronic device according to various embodiments of the present disclosure.
도 1을 참조하면, 다양한 실시예에 따른 무선 전력 송신 장치(100)는 전자 장치(150)에 무선으로 전력(161)을 송신할 수 있다. 무선 전력 송신 장치(100)는, 다양한 충전 방식에 따라 전자 장치(150)로 전력(161)을 송신할 수 있다. 예를 들어, 무선 전력 송신 장치(100)는, 유도 방식에 따라 전력(161)을 송신할 수 있다. 무선 전력 송신 장치(100)가 유도 방식에 의한 경우에, 무선 전력 송신 장치(100)는, 예를 들어 전력 소스, 직류-교류 변환 회로, 증폭 회로, 임피던스 매칭 회로, 적어도 하나의 커패시터, 적어도 하나의 코일, 통신 변복조 회로 등을 포함할 수 있다. 적어도 하나의 커패시터는 적어도 하나의 코일과 함께 공진 회로를 구성할 수도 있다. 무선 전력 송신 장치(100)는, WPC(wireless power consortium) 표준 (또는, Qi 표준)에서 정의된 방식으로 구현될 수 있다. 예를 들어, 무선 전력 송신 장치(100)는, 공진 방식에 따라 전력(161)을 송신할 수 있다. 공진 방식에 의한 경우에는, 무선 전력 송신 장치(100)는, 예를 들어 전력 소스, 직류-교류 변환 회로, 증폭 회로, 임피던스 매칭 회로, 적어도 하나의 커패시터, 적어도 하나의 코일, 아웃 밴드 통신 회로(예: BLE(bluetooth low energy) 통신 회로) 등을 포함할 수 있다. 적어도 하나의 커패시터 및 적어도 하나의 코일은 공진 회로를 구성할 수 있다. 무선 전력 송신 장치(100)는, A4WP(Alliance for Wireless Power) 표준 (또는, AFA(air fuel alliance) 표준)에서 정의된 방식으로 구현될 수 있다. 무선 전력 송신 장치(100)는, 공진 방식 또는 유도 방식에 따라 전류가 흐르면 유도 자기장을 생성할 수 있는 코일을 포함할 수 있다. 무선 전력 송신 장치(100)가 유도 자기장을 생성하는 과정을, 무선 전력 송신 장치(100)가 전력(161)을 무선으로 송신한다고 표현할 수 있다. 아울러, 전자 장치(150)는, 주변에 형성된 시간에 따라 크기가 변경되는 자기장에 의하여 유도 기전력이 발생되는 코일을 포함할 수 있다. 코일을 통하여 유도 기전력을 발생시키는 과정을, 전자 장치(150)가 전력(161)을 무선으로 수신한다고 표현할 수 있다.Referring to FIG. 1, the apparatus 100 for transmitting power wirelessly according to various embodiments may wirelessly transmit power 161 to the electronic device 150. The wireless power transmission device 100 may transmit power 161 to the electronic device 150 according to various charging methods. For example, the apparatus 100 for transmitting power wirelessly may transmit the power 161 according to an induction method. In the case where the wireless power transmission device 100 is based on the induction method, the wireless power transmission device 100 may include, for example, a power source, a DC-AC conversion circuit, an amplifying circuit, an impedance matching circuit, at least one capacitor, and at least one It may include a coil, a communication modem circuit, and the like. At least one capacitor may form a resonance circuit together with at least one coil. The wireless power transmission apparatus 100 may be implemented in a manner defined in a wireless power consortium (WPC) standard (or Qi standard). For example, the wireless power transmission apparatus 100 may transmit the power 161 according to the resonance method. In the case of the resonance method, the wireless power transmission apparatus 100 includes, for example, a power source, a DC-AC conversion circuit, an amplifying circuit, an impedance matching circuit, at least one capacitor, at least one coil, an out-band communication circuit ( Example: Bluetooth low energy (BLE) communication circuit). At least one capacitor and at least one coil may constitute a resonance circuit. The apparatus 100 for transmitting power wirelessly may be implemented in a manner defined in the Alliance for Wireless Power (A4WP) standard (or air fuel alliance (AFA) standard). The wireless power transmission apparatus 100 may include a coil capable of generating an induced magnetic field when a current flows according to a resonance method or an induction method. The process of generating the induced magnetic field by the wireless power transmission apparatus 100 may be expressed as that the wireless power transmission apparatus 100 transmits the power 161 wirelessly. In addition, the electronic device 150 may include a coil in which induced electromotive force is generated by a magnetic field that changes in size according to time formed around it. The process of generating the induced electromotive force through the coil may be expressed as the electronic device 150 wirelessly receiving the power 161.
본 발명의 다양한 실시예에 의한 무선 전력 송신 장치(100)는, 전자 장치(150)와 통신을 수행할 수 있다. 예를 들어, 무선 전력 송신 장치(100)는, 인-밴드 방식에 따라 전자 장치(150)와 통신을 수행할 수 있다. 무선 전력 송신 장치(100) 또는 전자 장치(150)는, 송신하고자 하는 데이터를 예를 들어 온/오프 키잉(on/off keying) 변조 방식에 따라, 로드(또는, 임피던스)를 변경할 수 있다. 무선 전력 송신 장치(100) 또는 전자 장치(150)는, 코일의 전류, 전압 또는 전력의 크기 변경에 기초하여 로드 변경(또는, 임피던스 변경)을 측정함으로써, 상대 장치에서 송신하는 데이터를 판단할 수 있다. 예를 들어, 무선 전력 송신 장치(100)는, 아웃-밴드 방식에 따라 전자 장치(150)와 통신을 수행할 수 있다. 무선 전력 송신 장치(100) 또는 전자 장치(150)는, 코일 또는 패치 안테나와 별도로 구비된 통신 회로(예: BLE 통신 모듈)를 이용하여 데이터를 송수신할 수 있다.The wireless power transmission apparatus 100 according to various embodiments of the present disclosure may perform communication with the electronic device 150. For example, the apparatus 100 for transmitting power wirelessly may communicate with the electronic device 150 according to an in-band method. The wireless power transmission device 100 or the electronic device 150 may change the load (or impedance) of data to be transmitted according to, for example, an on/off keying modulation method. The wireless power transmission device 100 or the electronic device 150 may determine the data transmitted from the counterpart device by measuring a load change (or impedance change) based on a change in the amount of current, voltage, or power of the coil. have. For example, the wireless power transmission apparatus 100 may perform communication with the electronic device 150 according to an out-band method. The wireless power transmission device 100 or the electronic device 150 may transmit and receive data using a communication circuit (eg, a BLE communication module) separately provided with a coil or patch antenna.
본 문서에서, 무선 전력 송신 장치(100) 또는 전자 장치(150)가 특정 동작을 수행하는 것은, 무선 전력 송신 장치(100) 또는 전자 장치(150)에 포함된 다양한 하드웨어, 예를 들어 프로세서와 같은 제어 회로, 코일 또는 패치 안테나 등이 특정 동작을 수행하는 것을 의미할 수 있다. 또는, 무선 전력 송신 장치(100) 또는 전자 장치(150)가 특정 동작을 수행하는 것은, 프로세서가 다른 하드웨어로 하여금 특정 동작을 수행하도록 제어하는 것을 의미할 수도 있다. 또는, 무선 전력 송신 장치(100) 또는 전자 장치(150)가 특정 동작을 수행하는 것은, 무선 전력 송신 장치(100) 또는 전자 장치(150)의 저장 회로(예: 메모리)에 저장되었던 특정 동작을 수행하기 위한 인스트럭션이 실행됨에 따라, 프로세서 또는 다른 하드웨어가 특정 동작을 수행하도록 야기하는 것을 의미할 수도 있다.In this document, the wireless power transmission device 100 or the electronic device 150 performing a specific operation is a variety of hardware included in the wireless power transmission device 100 or the electronic device 150, for example, a processor. It may mean that a control circuit, a coil, or a patch antenna performs a specific operation. Alternatively, when the wireless power transmission apparatus 100 or the electronic device 150 performs a specific operation, it may mean that the processor controls other hardware to perform a specific operation. Alternatively, when the wireless power transmission device 100 or the electronic device 150 performs a specific operation, a specific operation that has been stored in a storage circuit (eg, memory) of the wireless power transmission device 100 or electronic device 150 As an instruction to be executed is executed, it may mean causing a processor or other hardware to perform a specific operation.
도 2a는 다양한 실시예에 따른 무선 전력 송신 장치 및 전자 장치를 도시한다. 2A is a diagram illustrating a wireless power transmission device and an electronic device according to various embodiments of the present disclosure.
도 2a를 참조하면, 다양한 실시예에 따른 무선 전력 송신 장치(100)는, 제어 회로(102), 통신 회로(103), 메모리(105), 전력 소스(106), 또는 전력 송신 회로(109) 중 적어도 하나를 포함할 수 있다. 다양한 실시예에 따른 전자 장치(150)는, 차저(charger), 제어 회로(152), 통신 회로(153), 배터리(154), 메모리(156), 또는 전력 수신 회로(159) 중 적어도 하나를 포함할 수 있다.Referring to FIG. 2A, a wireless power transmission apparatus 100 according to various embodiments includes a control circuit 102, a communication circuit 103, a memory 105, a power source 106, or a power transmission circuit 109. It may include at least one of. The electronic device 150 according to various embodiments may include at least one of a charger, a control circuit 152, a communication circuit 153, a battery 154, a memory 156, or a power receiving circuit 159. Can include.
다양한 실시예에 따른 전력 송신 회로(109)는 유도 방식, 공진 방식 또는 전자기파 방식 중 적어도 하나의 방식에 따라 무선으로 전력(161)을 송신할 수 있다. 전력 송신 회로(109) 및 전력 수신 회로(159)의 상세 구성에 대하여서는 도 2a 및 2b를 참조하여 더욱 상세하게 설명하도록 한다. 제어 회로(102)는, 무선 전력 송신 장치(100)의 동작 전반을 제어할 수 있다. 예를 들어, 제어 회로(102)는, 전력(161)의 송신 여부를 결정하거나, 전력(161)의 크기를 제어하거나, 또는 전자 장치(150)의 적어도 하나의 기능(예를 들어, 충전의 개시 또는 충전의 중단)을 제어할 수도 있다. 제어 회로(102) 또는 제어 회로(152)는, CPU와 같은 범용 프로세서, 미니 컴퓨터, 마이크로 프로세서, MCU(micro controlling unit), FPGA(field programmable gate array) 등의 연산을 수행할 수 있는 다양한 회로로 구현될 수 있으며, 그 종류에는 제한이 없다. 제어 회로(102)는, 통신 회로(103)를 통하여 전자 장치(150)와 데이터를 송수신할 수 있다. 데이터는, 무선 전력 송수신의 제어에 이용될 수 있다. 통신 회로(103) 및 통신 회로(153)는, 예를 들어 아웃 밴드 통신 방식의 통신 회로(예: 블루투스 통신 모듈, 또는 NFC 통신 모듈)로 구현되거나, 또는 인-밴드 통신 방식의 통신 회로로 구현될 수 있다. 인-밴드 통신 방식인 경우, 통신 회로(153)는, 예를 들어 전력 수신 회로(159)의 코일에 직접 또는 다른 소자를 통하여 연결된 스위치와, 스위치를 통하여 코일에 직접 또는 다른 소자를 통하여 연결된 더미 로드(예: 더미 저항 또는 더미 커패시터)를 포함할 수 있다. 통신 회로(103)는, 스위치의 온/오프 과정에서 검출되는 전력 송신 회로(109) 내 코일에 인가되는 전압, 또는 전류의 변경에 기반하여 정보를 확인할 수 있다.The power transmission circuit 109 according to various embodiments may wirelessly transmit the power 161 according to at least one of an induction method, a resonance method, and an electromagnetic wave method. Detailed configurations of the power transmission circuit 109 and the power reception circuit 159 will be described in more detail with reference to FIGS. 2A and 2B. The control circuit 102 can control the overall operation of the wireless power transmission device 100. For example, the control circuit 102 determines whether to transmit the power 161, controls the magnitude of the power 161, or at least one function of the electronic device 150 (e.g., charging Start or stop charging) can also be controlled. The control circuit 102 or the control circuit 152 is a general-purpose processor such as a CPU, a mini computer, a microprocessor, a micro controlling unit (MCU), a field programmable gate array (FPGA), etc. It can be implemented, and there is no limit to its kind. The control circuit 102 may transmit and receive data to and from the electronic device 150 through the communication circuit 103. The data can be used to control wireless power transmission/reception. The communication circuit 103 and the communication circuit 153 are implemented as, for example, an out-band communication type communication circuit (eg, a Bluetooth communication module or an NFC communication module), or an in-band communication type communication circuit. Can be. In the case of the in-band communication method, the communication circuit 153 includes, for example, a switch connected directly to the coil of the power receiving circuit 159 or through another element, and a dummy connected directly to the coil or through other elements through the switch. It may include a load (eg, a dummy resistor or a dummy capacitor). The communication circuit 103 may check information based on a change in voltage or current applied to the coil in the power transmission circuit 109 detected during the on/off process of the switch.
다양한 실시예에 따른 전력 수신 회로(159)는 전력 송신 회로(109)로부터 유도 방식, 공진 방식 또는 전자기파 방식 중 적어도 하나의 방식에 따라 무선으로 전력을 수신할 수 있다. 전력 수신 회로(159)는, 수신된 교류 파형의 전력을 직류 파형으로 정류하거나, 전압을 컨버팅(converting)하거나, 전력을 레귤레이팅(regulating)하는 전력 처리를 수행할 수 있다. 차저(151)는, 수신된 레귤레이팅된 전력(예: DC 전력)을 이용하여 배터리(154)를 충전할 수 있다. 차저(151)는, 수신된 전력의 전압 또는 전류 중 적어도 하나를 조정하여 배터리(154)로 전달할 수 있다. 배터리(154)는, 전력을 저장하고 있다가 다른 하드웨어로 전달할 수 있다. 도시되지는 않았지만, PMIC(power management integrated circuit)(미도시)가 전력 수신 회로(159)로부터 전력을 수신하여 다른 하드웨어로 전달하거나, 또는 배터리(154)로부터 전력을 수신하여 다른 하드웨어로 전달할 수도 있다.The power receiving circuit 159 according to various embodiments may wirelessly receive power from the power transmission circuit 109 according to at least one of an induction method, a resonance method, and an electromagnetic wave method. The power receiving circuit 159 may perform power processing of rectifying the power of the received AC waveform into a DC waveform, converting a voltage, or regulating power. The charger 151 may charge the battery 154 using the received regulated power (eg, DC power). The charger 151 may adjust at least one of a voltage or a current of the received power and transmit it to the battery 154. The battery 154 may store power and transfer it to other hardware. Although not shown, a power management integrated circuit (PMIC) (not shown) may receive power from the power receiving circuit 159 and transmit it to other hardware, or may receive power from the battery 154 and transmit it to other hardware. .
제어 회로(152)는, 전자 장치(150)의 전반적인 동작을 제어할 수 있다. 메모리(156)는, 전자 장치(150)의 전반적인 동작의 수행을 위한 인스트럭션이 저장될 수 있다. 메모리(105)에는, 무선 전력 송신 장치(100)의 전반적인 동작의 수행을 위한 인스트럭션이 저장될 수 있으며, 또는 통신 회로(103)를 통하여 획득된 정보와 송신하여야 하는 전력의 크기 사이의 관계에 대한 룩업테이블 또는 획득된 정보와 송신하여야 하는 전력의 크기 사이의 관계에 대한 수학식 정보 등이 저장될 수 있다. 메모리(105) 또는 메모리(156)는, ROM(read only memory), RAM(random access memory), 또는 플래시 메모리 등의 다양한 형태로 구현될 수 있으며, 구현 형태에는 제한이 없다.The control circuit 152 may control the overall operation of the electronic device 150. The memory 156 may store instructions for performing overall operations of the electronic device 150. In the memory 105, instructions for performing the overall operation of the wireless power transmission device 100 may be stored, or a relationship between the information acquired through the communication circuit 103 and the amount of power to be transmitted may be stored. A lookup table or equation information about a relationship between the obtained information and the amount of power to be transmitted may be stored. The memory 105 or the memory 156 may be implemented in various forms such as read only memory (ROM), random access memory (RAM), or flash memory, and there is no limitation on the form of implementation.
도 2b는 다양한 실시예에 따른 전력 송신 회로 및 전력 수신 회로의 상세 블록도를 도시한다.2B is a detailed block diagram of a power transmission circuit and a power reception circuit according to various embodiments.
다양한 실시예에서, 전력 송신 회로(109)는, 전력 어댑터(211), 전력 생성 회로(212), 코일(213) 및 매칭 회로(214)를 포함할 수 있다. 전력 어댑터(211)는, 전력 소스(106)로부터 전력을 수신하여 전력 생성 회로(212)로 제공할 수 있다. 어댑터(211)는, 예를 들어 전력 인터페이스일 수 있으며, 구현에 따라 무선 전력 송신 장치(100)에 포함되지 않을 수도 있다. 전력 생성 회로(212)는, 수신된 전력을 예를 들어 교류 파형으로 변환하거나, 및/또는 증폭하여 코일(213)로 전달할 수 있다. 교류 파형의 주파수는, 표준에 따라 100 내지 205kHz 또는 6.78MHz 등으로 설정될 수 있으나, 제한은 없다. 전력 생성 회로(212)는, 인버터(inverter)를 포함할 수도 있다. 예를 들어, 인버터는 풀-브릿지 인버터 또는 하프-브릿지 인버터일 수 있으나, 종류에는 제한이 없다. 코일(213)에 전력이 인가되면, 코일(213)로부터 시간에 따라 크기가 변경되는 유도 자기장이 형성될 수 있으며, 이에 따라 무선으로 전력이 송신될 수 있다. 도시되지는 않았지만, 코일(213)과 함께 공진 회로를 구성하는 적어도 하나의 커패시터가 전력 송신 회로(109)에 더 포함될 수도 있다. 매칭 회로(214)는, 제어 회로(102)의 제어에 따라 코일(213)과 연결되는 회로의 커패시턴스 또는 리액턴스 중 적어도 하나를 변경함으로써, 전력 송신 회로(109) 및 전력 수신 회로(159)가 서로 임피던스 매칭되도록 할 수 있다. 전력 수신 회로(159)의 코일(221)에는, 주변에 형성된 시간에 따라 크기가 변경되는 자기장에 의하여 유도 기전력이 발생할 수 있으며, 이에 따라 전력 수신 회로(159)는 무선으로 전력을 수신할 수 있다. 정류 회로(222)는, 수신된 교류 파형의 전력을 정류할 수 있다. 컨버팅 회로(223)는 정류된 전력의 전압을 조정하여 PMIC 또는 차저로 전달할 수 있다. 전력 수신 회로(159)는 레귤레이터를 더 포함할 수도 있으며, 또는 컨버팅 회로(223)가 레귤레이터로 치환될 수도 있다. 매칭 회로(224)는, 제어 회로(152)의 제어에 따라 코일(221)과 연결되는 회로의 커패시턴스 또는 리액턴스 중 적어도 하나를 변경함으로써, 전력 송신 회로(109) 및 전력 수신 회로(159)가 서로 임피던스 매칭되도록 할 수 있다.In various embodiments, the power transmission circuit 109 may include a power adapter 211, a power generation circuit 212, a coil 213, and a matching circuit 214. The power adapter 211 may receive power from the power source 106 and provide it to the power generation circuit 212. The adapter 211 may be, for example, a power interface, and may not be included in the wireless power transmission apparatus 100 depending on implementation. The power generation circuit 212 may convert the received power into an AC waveform, for example, and/or amplify and transfer the received power to the coil 213. The frequency of the AC waveform may be set to 100 to 205 kHz or 6.78 MHz or the like according to the standard, but there is no limitation. The power generation circuit 212 may also include an inverter. For example, the inverter may be a full-bridge inverter or a half-bridge inverter, but the type is not limited. When power is applied to the coil 213, an induced magnetic field that changes in size with time may be formed from the coil 213, and accordingly, power may be transmitted wirelessly. Although not shown, at least one capacitor constituting the resonance circuit together with the coil 213 may be further included in the power transmission circuit 109. The matching circuit 214 changes at least one of the capacitance or reactance of the circuit connected to the coil 213 according to the control of the control circuit 102, so that the power transmission circuit 109 and the power reception circuit 159 are Impedance matching can be made. Induction electromotive force may be generated in the coil 221 of the power receiving circuit 159 by a magnetic field that changes in size according to the time formed around it, and accordingly, the power receiving circuit 159 may receive power wirelessly. . The rectifying circuit 222 may rectify the power of the received AC waveform. The converting circuit 223 may adjust the voltage of the rectified power and transmit it to the PMIC or charger. The power receiving circuit 159 may further include a regulator, or the converting circuit 223 may be replaced with a regulator. The matching circuit 224 changes at least one of the capacitance or reactance of the circuit connected to the coil 221 under the control of the control circuit 152, so that the power transmission circuit 109 and the power reception circuit 159 are Impedance matching can be made.
다양한 실시예에서, 코일(213)의 개수는 하나 또는 이상일 수 있다. 코일(213)이 복수개인 경우, 코일들은 서로 직렬 또는 병렬로 연결될 수 있다. 코일(213)의 다양한 구현 형태에 대하여 더욱 상세하게 후술하도록 한다.In various embodiments, the number of coils 213 may be one or more. When there are a plurality of coils 213, the coils may be connected in series or in parallel with each other. Various implementation forms of the coil 213 will be described in more detail later.
도 3a는 다양한 실시예와의 비교를 위한 비교예에 따른 코일의 평면도(top view)를 도시한다. 도 3b는 다양한 실시예와의 비교를 위한 비교예에 따른 코일의 측면도(side view)를 도시한다.3A is a top view of a coil according to a comparative example for comparison with various embodiments. 3B is a side view of a coil according to a comparative example for comparison with various embodiments.
도 3a 및 3b에 도시된 바와 같이, 비교예에 따른 송신용 코일(301)은 페라이트(302) 상에 위치할 수 있다. 페라이트(ferrite)(302)는 시트(sheet) 형태를 가질 수 있다. 페라이트(302)는 송신용 코일(301)로부터 형성되는 자기장을 차폐할 수 있다. 페라이트(302)는, 송신용 코일(301)이 배치되는 면과 대향되는 면으로의 자기장이 유입되는 것을 방지할 수 있다. 아울러, 페라이트(302)는 송신용 코일(301)의 인덕턴스를 증대할 수도 있으며, 외부 도체가 송신용 코일(301)에 영향을 미치는 영향을 감소시킬 수도 있다. 송신용 코일(301)은 스파이럴(spiral) 형태를 가질 수 있으나, 구현 형태에는 제한이 없다.As shown in FIGS. 3A and 3B, the transmission coil 301 according to the comparative example may be positioned on the ferrite 302. The ferrite 302 may have a sheet shape. The ferrite 302 may shield a magnetic field formed from the transmission coil 301. The ferrite 302 can prevent the magnetic field from flowing into the surface opposite to the surface on which the transmission coil 301 is disposed. In addition, the ferrite 302 may increase the inductance of the transmitting coil 301 and may reduce the influence of an external conductor on the transmitting coil 301. The transmission coil 301 may have a spiral shape, but there is no limitation on the implementation type.
도 3c는 비교예에 의한 송신용 코일 및 전자 장치의 배치를 나타내는 측면도를 도시한다.3C is a side view showing an arrangement of a transmitting coil and an electronic device according to a comparative example.
비교예에 따라서, 송신용 코일(301)의 크기는 전자 장치(150) 내의 수신용 코일(322)의 크기와 실질적으로 동일할 수 있다. 여기에서, 크기가 실질적으로 동일하다는 것은, 양 크기의 차이가 임계치 이하인 것일 수 있다. 송신용 코일(301) 및 수신용 코일(322)의 크기 차이가 작을수록, 송신용 코일(301) 및 수신용 코일(322) 사이의 전력 송신 효율이 높을 수 있다. 임계치는, 지정된 정렬 상태에서 송신용 코일(301) 및 수신용 코일(322) 사이의 결합 효율이 지정된 값(예: 0.5) 이상이 되도록 설정된 값일 수 있다. 송신용 코일(301) 및 수신용 코일(322)이 실질적으로 동일한 크기를 가지므로, 송신용 코일(301)과 수신용 코일(322)이 정확하게 정렬되어 배치된 경우에 높은 전력 송신 효율로 전력이 전달될 수 있다. 예를 들어, 3차원 공간에서의 송신용 코일(301)의 중심과 수신용 코일(322)이 z축 방향으로 이격된 경우, 송신용 코일(301)의 x축 및 y축 상의 2차원 위치와 수신용 코일(322)의 x축 및 y축 상의 2차원 위치 사이가 실질적으로 동일한 경우 높은 전력 송신 효율로 전력이 전달될 수 있다. 양 코일들의 중심들 사이의 차이가 증가할수록, 전력 송신 효율은 급격하게 감소할 수 있다. 이에 따라, 전자 장치(150)를 정확하게 송신용 코일(301)의 위치에 대응시켜 배치하여야만 충전이 가능하게 됨으로써, 전자 장치(150)의 배치 자유도가 감소한다.According to the comparative example, the size of the transmitting coil 301 may be substantially the same as the size of the receiving coil 322 in the electronic device 150. Here, when the sizes are substantially the same, the difference between the sizes may be less than or equal to a threshold. As the difference in size between the transmitting coil 301 and the receiving coil 322 is smaller, the power transmission efficiency between the transmitting coil 301 and the receiving coil 322 may be higher. The threshold may be a value set such that the coupling efficiency between the transmitting coil 301 and the receiving coil 322 is equal to or greater than a specified value (eg, 0.5) in a specified alignment state. Since the transmitting coil 301 and the receiving coil 322 have substantially the same size, when the transmitting coil 301 and the receiving coil 322 are accurately aligned and arranged, power is reduced with high power transmission efficiency. Can be delivered. For example, when the center of the transmitting coil 301 and the receiving coil 322 in a three-dimensional space are spaced apart in the z-axis direction, the two-dimensional position of the transmitting coil 301 on the x-axis and y-axis When the two-dimensional positions on the x-axis and y-axis of the receiving coil 322 are substantially the same, power can be delivered with high power transmission efficiency. As the difference between the centers of both coils increases, the power transmission efficiency can decrease rapidly. Accordingly, charging is possible only when the electronic device 150 is accurately disposed in correspondence with the position of the transmission coil 301, thereby reducing the degree of freedom in the arrangement of the electronic device 150.
배치 자유도 향상을 위하여 송신용 코일(301)의 크기 증가가 고려될 수 있다. 하지만, 전자 장치(150)는, 구현에 따라 양단에 금속 물질(예: 알루미늄)(323,324)을 포함할 수도 있다. 이 경우, 송신용 코일(301)로부터 발생하는 자기장이 금속 물질(323,324)로 여기될 수도 있으며, 이는 금속 물질(323,324) 내의 불필요한 유도 전류 형성과, 이에 따른 발열 발생을 야기할 수 있다.Increasing the size of the transmission coil 301 may be considered in order to improve the degree of freedom of arrangement. However, the electronic device 150 may include metallic materials (eg, aluminum) 323 and 324 at both ends according to implementation. In this case, the magnetic field generated from the transmission coil 301 may be excited by the metal materials 323 and 324, which may cause unnecessary induced current formation in the metal materials 323 and 324 and thus generate heat.
도 4a는 다양한 실시예에 따른 송신용 코일 및 페라이트를 도시하는 평면도이다. 도 4b는 다양한 실시예에 따른 송신용 코일 및 페라이트를 도시하는 측면도이다.4A is a plan view illustrating a transmission coil and a ferrite according to various embodiments. 4B is a side view illustrating a transmission coil and a ferrite according to various embodiments.
도 4a 및 4b를 참조하면, 다양한 실시예에 따른 무선 전력 송신 장치(100)는, 제 1 페라이트(401), 제 1 송신용 코일(402), 제 2 송신용 코일(403), 또는 제 2 페라이트(410) 중 적어도 하나를 포함할 수 있다. 다양한 실시예에 따라서, 제 1 페라이트(401)는 시트 형태를 가질 수 있다. 제 1 송신용 코일(402)은 제 1 페라이트(401) 상에 위치할 수 있다. 제 1 송신용 코일(402)은 스파이럴 형태를 가질 수 있으나, 그 형태에는 제한이 없다. 제 1 송신용 코일(402) 상에는 제 2 송신용 코일(403)이 위치할 수 있다. 제 2 송신용 코일(403)은 스파이럴 형태를 가질 수 있으나, 그 형태에는 제한이 없다. 도 4a 및 4b를 참조하면, 제 1 송신용 코일(402)의 외경은 제 2 송신용 코일(403)의 외경보다 클 수 있다. 제 1 송신용 코일(402)의 내경은 제 2 송신용 코일(403)의 내경보다 클 수 있다. 다양한 실시예에서, 제 1 송신용 코일(402) 및 제 2 송신용 코일(403)은 동일한 길이의 내경을 가질 수도 있으며, 이에 대하여서는 도 4c를 참조하여 설명하도록 한다. 도 4a에서의 굵은 선은, 제 1 송신용 코일(402) 및 제 2 송신용 코일(403)의 내측과 외측 경계를 용이하게 구분하기 위하여 이용되었을 뿐이며, 해당 부분에서 코일의 폭이 상이한 것을 의미하지는 않는다.4A and 4B, a wireless power transmission apparatus 100 according to various embodiments includes a first ferrite 401, a first transmission coil 402, a second transmission coil 403, or a second transmission coil. It may include at least one of the ferrites 410. According to various embodiments, the first ferrite 401 may have a sheet shape. The first transmission coil 402 may be positioned on the first ferrite 401. The first transmission coil 402 may have a spiral shape, but the shape is not limited. A second transmission coil 403 may be positioned on the first transmission coil 402. The second transmission coil 403 may have a spiral shape, but the shape is not limited. 4A and 4B, the outer diameter of the first transmission coil 402 may be larger than the outer diameter of the second transmission coil 403. The inner diameter of the first transmission coil 402 may be larger than the inner diameter of the second transmission coil 403. In various embodiments, the first transmission coil 402 and the second transmission coil 403 may have an inner diameter of the same length, which will be described with reference to FIG. 4C. The thick line in FIG. 4A is only used to easily distinguish the inner and outer boundaries of the first transmission coil 402 and the second transmission coil 403, and it means that the width of the coil is different in the corresponding part. I don't.
다양한 실시예에 따라서, 제 1 송신용 코일(402)의 내측 및 제 2 송신용 코일(403)의 내측에는 제 2 페라이트(410)가 위치할 수 있다. 제 2 페라이트(410)의 높이는, 제 1 송신용 코일(402)의 높이 및 제 2 송신용 코일(403)의 높이의 합보다 클 수 있다. 다만, 제 2 페라이트(410)의 높이는, 구현에 따라 제 1 송신용 코일(402)의 높이 및 제 2 송신용 코일(403)의 높이의 합과 같거나, 또는 더 작을 수도 있다. 제 2 페라이트(410)의 높이가 상대적으로 높음에 따라서, 전자 장치(150)가 무선 전력 송신 장치(100)에 배치된 경우에, 전자 장치(150)의 수신용 코일과 제 2 페라이트(410) 사이의 거리는 상대적으로 짧을 수 있다. 예를 들어, 수신용 코일과 제 2 페라이트(410) 사이의 거리가 0.3 mm 내지 30mm 이내가 될 수 있도록 제 2 페라이트(410)의 높이가 결정될 수 있다. 제 2 페라이트(410)의 외경과 제 2 송신용 코일(403)의 내경 사이의 차이는 예를 들어 0 내지 10mm의 범위 내에서 결정될 수 있다.According to various embodiments, the second ferrite 410 may be positioned inside the first transmission coil 402 and inside the second transmission coil 403. The height of the second ferrite 410 may be greater than the sum of the height of the first transmission coil 402 and the height of the second transmission coil 403. However, the height of the second ferrite 410 may be equal to or smaller than the sum of the height of the first transmission coil 402 and the height of the second transmission coil 403 depending on implementation. As the height of the second ferrite 410 is relatively high, when the electronic device 150 is disposed in the wireless power transmission device 100, the receiving coil and the second ferrite 410 of the electronic device 150 The distance between them can be relatively short. For example, the height of the second ferrite 410 may be determined so that the distance between the receiving coil and the second ferrite 410 is within 0.3 mm to 30 mm. The difference between the outer diameter of the second ferrite 410 and the inner diameter of the second transmission coil 403 may be determined within a range of, for example, 0 to 10 mm.
제 1 송신용 코일(402), 제 2 송신용 코일(403), 및 제 2 페라이트(410)를 포함하는 구조에 따라서, 제 1 송신용 코일(402) 및 제 2 송신용 코일(403)에 의하여 형성되는 자계가, 제 1 송신용 코일(402) 및 제 2 송신용 코일(403)의 중심부로 집중될 수 있다. 제 1 송신용 코일(402) 및 제 2 송신용 코일(403)의 크기(예를 들어, 외경)는, 비교예에 따른 송신용 코일(301)보다 클 수 있다. 즉, 제 1 송신용 코일(402) 및 제 2 송신용 코일(403)의 크기(예를 들어, 외경)는, 일반적인 전력 수신을 위한 전자 장치(예: 스마트 폰, 태블릿 PC, 또는 스마트 워치)에 포함된 수신용 코일(322)의 크기보다 클 수 있다. 이에 따라, 제 1 송신용 코일(402) 및 제 2 송신용 코일(403)의 중심으로부터, 수신용 코일(322)의 중심 사이의 2차원상에서의 거리가 어느 정도 떨어진다 하더라도, 상대적으로 양호한 전력 전송 효율이 담보될 수 있다. 즉, 무선 전력 송수신 시의 전자 장치(150)의 배치 자유도가 증가할 수 있다. 아울러, 상술한 바와 같이, 제 1 송신용 코일(402) 및 제 2 송신용 코일(403)에 의하여 형성되는 자계가, 제 1 송신용 코일(402) 및 제 2 송신용 코일(403)의 중심부로 집중됨에 따라서, 전자 장치(150) 내의 양단에 위치하는 금속 물질(323,324)로의 자계 여기 또한 감소할 수 있다.According to the structure including the first transmission coil 402, the second transmission coil 403, and the second ferrite 410, the first transmission coil 402 and the second transmission coil 403 The magnetic field formed by this may be concentrated to the centers of the first transmission coil 402 and the second transmission coil 403. The sizes (eg, outer diameters) of the first transmission coil 402 and the second transmission coil 403 may be larger than the transmission coil 301 according to the comparative example. That is, the size (eg, outer diameter) of the first transmission coil 402 and the second transmission coil 403 is an electronic device (eg, a smart phone, a tablet PC, or a smart watch) for general power reception. It may be larger than the size of the receiving coil 322 included in. Accordingly, even if the distance in two dimensions between the center of the first transmission coil 402 and the second transmission coil 403 and the center of the reception coil 322 is somewhat lower, relatively good power transmission Efficiency can be guaranteed. That is, the degree of freedom of arrangement of the electronic device 150 during wireless power transmission/reception may increase. In addition, as described above, the magnetic field formed by the first transmission coil 402 and the second transmission coil 403 is the center of the first transmission coil 402 and the second transmission coil 403 As the concentration is concentrated, magnetic field excitation to the metal materials 323 and 324 positioned at both ends of the electronic device 150 may also be reduced.
아울러, 제 2 페라이트(410)에 의하여 제 1 송신용 코일(402) 및 제 2 송신용 코일(403)에 의하여 유도된 자계가 더 강화될 수도 있다. 상술한 바와 같이, 다양한 실시예에 따라서 제 2 페라이트(410)의 높이는 제 1 송신용 코일(402)의 높이 및 제 2 송신용 코일(403)의 높이의 합보다 클 수도 있으며, 이에 따라 제 2 페라이트(410)는 무선 전력 수신을 위한 전자 장치(150)의 수신용 코일(322)에 근접할 수 있으며, 이에 따라 전력 송신 효율이 증가할 수 있다. 제 2 페라이트(410)의 투자율은 제 1 페라이트(401)의 투자율보다 높을 수도 있으나, 제한은 없다. 예를 들어, 제 2 페라이트(410)의 투자율은 제 1 페라이트(401)의 투자율과 같거나, 또는 더 낮을 수도 있다.In addition, the magnetic fields induced by the first transmission coil 402 and the second transmission coil 403 by the second ferrite 410 may be further strengthened. As described above, according to various embodiments, the height of the second ferrite 410 may be greater than the sum of the height of the first transmission coil 402 and the height of the second transmission coil 403, and accordingly The ferrite 410 may be close to the receiving coil 322 of the electronic device 150 for wireless power reception, and accordingly, power transmission efficiency may be increased. The permeability of the second ferrite 410 may be higher than that of the first ferrite 401, but there is no limitation. For example, the permeability of the second ferrite 410 may be equal to or lower than the permeability of the first ferrite 401.
도 4c는 다양한 실시예에 따른 송신용 코일 및 페라이트를 도시하는 측면도이다.4C is a side view illustrating a transmission coil and a ferrite according to various embodiments.
도 4c를 참조하면, 다양한 실시예에 따른 무선 전력 송신 장치(100)는, 제 1 페라이트(431), 제 1 송신용 코일(432), 제 2 송신용 코일(433), 또는 제 2 페라이트(430) 중 적어도 하나를 포함할 수 있다. 다양한 실시예에 따라서, 제 1 페라이트(431)는 시트 형태를 가질 수 있다. 제 1 송신용 코일(432)은 제 1 페라이트(431) 상에 위치할 수 있다. 제 2 송신용 코일(433)은 제 1 송신용 코일(432) 상에 위치할 수 있다. 제 1 송신용 코일(432) 및 제 2 송신용 코일(433)의 내측에는 제 2 페라이트(430)가 위치할 수 있다. 도 4c의 실시예에서, 제 1 송신용 코일(432)의 외경은 제 2 송신용 코일(433)의 외경보다 클 수 있다. 제 1 송신용 코일(432)의 내경 및 제 2 송신용 코일(433)의 내경은 실질적으로 동일할 수 있다.Referring to FIG. 4C, a wireless power transmission apparatus 100 according to various embodiments includes a first ferrite 431, a first transmission coil 432, a second transmission coil 433, or a second ferrite ( 430) may be included. According to various embodiments, the first ferrite 431 may have a sheet shape. The first transmission coil 432 may be positioned on the first ferrite 431. The second transmission coil 433 may be positioned on the first transmission coil 432. A second ferrite 430 may be positioned inside the first transmission coil 432 and the second transmission coil 433. In the embodiment of FIG. 4C, the outer diameter of the first transmission coil 432 may be larger than the outer diameter of the second transmission coil 433. The inner diameter of the first transmission coil 432 and the inner diameter of the second transmission coil 433 may be substantially the same.
도 5a는 다양한 실시예에 따른 복수 개의 코일 구조를 나타내는 평면도들이다 .5A is a plan view illustrating a structure of a plurality of coils according to various embodiments.
도 5a를 참조하면, 다양한 실시예에 따른 무선 전력 송신 장치(100)는, 제 1 페라이트(511) 및 제 2 페라이트(521)를 포함할 수 있다. 제 1 페라이트(511) 및 제 2 페라이트(521)는, 서로 이격된 것과 같이 도시되어 있지만, 구현에 따라서 하나의 시트형 페라이트로 구현될 수도 있다. 제 1 페라이트(511) 상에는 제 1 송신용 코일(511)이 위치할 수 있으며, 제 1 송신용 코일(211) 상에는 제 2 송신용 코일(512)이 위치할 수 있다. 제 1 송신용 코일(511)의 외경은 제 2 송신용 코일(512)의 외경보다 클 수 있다. 제 1 송신용 코일(511) 및 제 2 송신용 코일(512) 내측에는 제 3 페라이트(514)가 위치할 수 있다. 제 3 페라이트(512)의 높이는, 제 1 송신용 코일(511)의 높이 및 제 2 송신용 코일(512)의 높이의 합계보다 클 수 있다. 제 2 페라이트(521) 상에는 제 3 송신용 코일(521)이 위치할 수 있으며, 제 3 송신용 코일(521) 상에는 제 4 송신용 코일(522)이 위치할 수 있다. 제 3 송신용 코일(521)의 외경은 제 4 송신용 코일(522)의 외경보다 클 수 있다. 제 3 송신용 코일(521) 및 제 4 송신용 코일(522) 내측에는 제 4 페라이트(514)가 위치할 수 있다. 제 4 페라이트(514)의 높이는, 제 3 송신용 코일(521)의 높이 및 제 4 송신용 코일(522)의 높이의 합계보다 클 수 있다.Referring to FIG. 5A, an apparatus 100 for transmitting wireless power according to various embodiments may include a first ferrite 511 and a second ferrite 521. The first ferrite 511 and the second ferrite 521 are illustrated as being spaced apart from each other, but may be implemented as a single sheet-type ferrite depending on implementation. A first transmission coil 511 may be located on the first ferrite 511, and a second transmission coil 512 may be located on the first transmission coil 211. The outer diameter of the first transmission coil 511 may be larger than the outer diameter of the second transmission coil 512. A third ferrite 514 may be positioned inside the first transmission coil 511 and the second transmission coil 512. The height of the third ferrite 512 may be greater than the sum of the height of the first transmission coil 511 and the height of the second transmission coil 512. A third transmission coil 521 may be located on the second ferrite 521, and a fourth transmission coil 522 may be located on the third transmission coil 521. The outer diameter of the third transmission coil 521 may be larger than the outer diameter of the fourth transmission coil 522. A fourth ferrite 514 may be positioned inside the third transmission coil 521 and the fourth transmission coil 522. The height of the fourth ferrite 514 may be greater than the sum of the height of the third transmission coil 521 and the height of the fourth transmission coil 522.
도 5b는 다양한 실시예에 따른 복수 개의 코일 구조를 나타내는 평면도들이다.5B are plan views illustrating a structure of a plurality of coils according to various embodiments.
도 5b의 실시예에 따른 무선 전력 송신 장치는, 도 5a와 비교하여 제 5 송신용 코일(530)을 더 포함할 수 있다. 제 5 송신용 코일(530)은, 예를 들어 제 2 송신용 코일(513) 및 제 4 송신용 코일(523) 상에 위치할 수 있다. 제 5 송신용 코일(530)의 중심의 2차원 상의 위치는, 제 2 송신용 코일(513)의 중심의 2차원 상의 위치 및 제 4 송신용 코일(523)의 중심의 2차원 상의 위치 사이일 수 있다. 제 1 송신용 코일(512) 및 제 2 송신용 코일(513)로부터의 자계는 제 1 송신용 코일(512) 및 제 2 송신용 코일(513)의 중심으로 집중될 수 있으며, 제 3 송신용 코일(522) 및 제 4 송신용 코일(523)로부터의 자계는 제 3 송신용 코일(522) 및 제 4 송신용 코일(523)의 중심으로 집중될 수 있다. 제 5 송신용 코일(530)은, 제 1 송신용 코일(512), 제 2 송신용 코일(513), 제 3 송신용 코일(522) 및 제 4 송신용 코일(523)에 의한 음영 지역(예: 제 1 송신용 코일(512)의 중심 및 제 3 송신용 코일(522)의 중심 사이의 영역)에 배치된 전자 장치(150)에 대하여 상대적으로 높은 전력 송신 효율로 전력을 송신할 수 있다.The apparatus for transmitting power wirelessly according to the embodiment of FIG. 5B may further include a fifth transmission coil 530 compared to FIG. 5A. The fifth transmission coil 530 may be positioned on, for example, the second transmission coil 513 and the fourth transmission coil 523. The two-dimensional position of the center of the fifth transmission coil 530 is between the two-dimensional position of the center of the second transmission coil 513 and the two-dimensional position of the center of the fourth transmission coil 523 I can. The magnetic field from the first transmission coil 512 and the second transmission coil 513 may be concentrated at the center of the first transmission coil 512 and the second transmission coil 513, and may be used for the third transmission. The magnetic field from the coil 522 and the fourth transmission coil 523 may be concentrated at the centers of the third transmission coil 522 and the fourth transmission coil 523. The fifth transmission coil 530 is a shaded area by the first transmission coil 512, the second transmission coil 513, the third transmission coil 522 and the fourth transmission coil 523 ( Example: It is possible to transmit power with a relatively high power transmission efficiency to the electronic device 150 disposed in the area between the center of the first transmission coil 512 and the center of the third transmission coil 522). .
도 6a는 다양한 실시예에 따른 무선 전력 송신 장치 내의 코일 연결 관계를 도시하는 도면이다. 도 6b는 다양한 실시예에 따른 무선 전력 송신 장치 내의 코일 연결 관계를 도시하는 도면이다 .6A is a diagram illustrating a coil connection relationship in a wireless power transmission apparatus according to various embodiments. 6B is a diagram illustrating a coil connection relationship in a wireless power transmission apparatus according to various embodiments.
도 6a에 도시된 바와 같이, 무선 전력 송신 장치(100)에 포함된 인버터(601)에는 제 1 송신용 코일(602) 및 제 2 송신용 코일(603)이 연결될 수 있다. 제 1 송신용 코일(602) 및 제 2 송신용 코일(603)은 직렬로 연결될 수 있다. 인버터(601)는, 입력된 전력을 교류 전력으로 인버팅하여 제 1 송신용 코일(602) 및 제 2 송신용 코일(603)로 전달할 수 있다. 다양한 실시예에 따라서, 인버터(602)와, 제 1 송신용 코일(602) 및 제 2 송신용 코일(603) 사이에는 적어도 하나의 소자(예: 커패시터) 또는 회로(예: 증폭 회로)가 개입되어 연결될 수도 있다. 한편, 도 6a에서는 인버터(601)가 제 1 송신용 코일(602) 및 제 2 송신용 코일(603)에 연결되는 것으로 도시되어 있지만, 다양한 실시예에 따른 무선 전력 송신 장치(100) 내의 임의의 소자에 제 1 송신용 코일(602) 및 제 2 송신용 코일(603)이 연결될 수도 있다. 인버터(601)는, 예를 들어 전력 송신 회로(109)에 포함될 수 있으나, 구현에 따라 그 명칭은 직류-교류 변환 회로, 컨버터 등으로 명명될 수도 있다. 또는, 구현에 따라 무선 전력 송신 장치(100)는 인버터(601)를 포함하지 않을 수도 있으며, 이 경우에는 제 1 송신용 코일(602) 및 제 2 송신용 코일(603)은 전력 소스로 직접 또는 다른 회로(또는, 다른 소자)를 통하여 연결될 수 있다.As shown in FIG. 6A, a first transmission coil 602 and a second transmission coil 603 may be connected to an inverter 601 included in the wireless power transmission apparatus 100. The first transmission coil 602 and the second transmission coil 603 may be connected in series. The inverter 601 may invert the input power into AC power and transmit it to the first transmission coil 602 and the second transmission coil 603. According to various embodiments, at least one element (eg, a capacitor) or circuit (eg, an amplifying circuit) intervenes between the inverter 602 and the first transmission coil 602 and the second transmission coil 603 Can be connected. Meanwhile, in FIG. 6A, the inverter 601 is shown to be connected to the first transmission coil 602 and the second transmission coil 603, but any of the wireless power transmission apparatus 100 according to various embodiments The first transmission coil 602 and the second transmission coil 603 may be connected to the device. The inverter 601 may be included in the power transmission circuit 109, for example, but its name may be referred to as a DC-AC conversion circuit, a converter, or the like according to implementation. Alternatively, depending on the implementation, the wireless power transmission apparatus 100 may not include an inverter 601, in this case, the first transmission coil 602 and the second transmission coil 603 are directly or It may be connected through other circuits (or other devices).
도 6b에서와 같이, 제 1 송신용 코일(613)은 제 1 층에서 스파이럴 형태로 권선될 수 있다. 제 2 송신용 코일(612)는 제 2 층에서 스파이럴 형태로 권선될 수 있다. 제 1 송신용 코일(613)의 일단은 인버터(601)로 직접 또는 다른 소자(또는, 다른 회로)를 통하여 연결될 수 있다. 제 1 송신용 코일(613)의 타단은 제 2 층의 제 2 송신용 코일(612)의 일단에 연결될 수 있다. 제 2 송신용 코일(612)의 타단은 인버터(601)로 직접 또는 다른 소자(또는, 다른 회로)를 통하여 연결될 수 있다.As shown in FIG. 6B, the first transmission coil 613 may be wound in a spiral shape in the first layer. The second transmission coil 612 may be wound in a spiral shape in the second layer. One end of the first transmission coil 613 may be connected directly to the inverter 601 or through another element (or another circuit). The other end of the first transmission coil 613 may be connected to one end of the second transmission coil 612 of the second layer. The other end of the second transmission coil 612 may be connected directly to the inverter 601 or through another element (or other circuit).
도 7a는 다양한 실시예에 따른 무선 전력 송신 장치 내의 코일 연결 관계를 도시하는 도면이다. 도 7b는 다양한 실시예에 따른 무선 전력 송신 장치 내의 코일 연결 관계를 도시하는 도면이다 .7A is a diagram illustrating a coil connection relationship in a wireless power transmission apparatus according to various embodiments. 7B is a diagram illustrating a coil connection relationship in a wireless power transmission apparatus according to various embodiments.
도 7a에 도시된 바와 같이, 무선 전력 송신 장치(100)에 포함된 인버터(701)에는 제 1 송신용 코일(702) 및 제 2 송신용 코일(703)이 연결될 수 있다. 제 1 송신용 코일(702) 및 제 2 송신용 코일(703)은 병렬로 연결될 수 있다. 인버터(701)는, 입력된 전력을 교류 전력으로 인버팅하여 제 1 송신용 코일(702) 및 제 2 송신용 코일(703)로 전달할 수 있다. 다양한 실시예에 따라서, 인버터(702)와, 제 1 송신용 코일(702) 및 제 2 송신용 코일(703) 사이에는 적어도 하나의 소자(예: 커패시터) 또는 회로(예: 증폭 회로)가 개입되어 연결될 수도 있다.As shown in FIG. 7A, a first transmission coil 702 and a second transmission coil 703 may be connected to an inverter 701 included in the wireless power transmission apparatus 100. The first transmission coil 702 and the second transmission coil 703 may be connected in parallel. The inverter 701 may invert the input power into AC power and transmit it to the first transmission coil 702 and the second transmission coil 703. According to various embodiments, at least one element (eg, capacitor) or circuit (eg, an amplifying circuit) intervenes between the inverter 702 and the first transmission coil 702 and the second transmission coil 703 Can be connected.
도 7b에서와 같이, 제 1 송신용 코일(712)은 제 1 층에서 스파이럴 형태로 권선될 수 있다. 제 2 송신용 코일(713)는 제 2 층에서 스파이럴 형태로 권선될 수 있다. 제 1 송신용 코일(712)의 양단은 인버터(601)로 직접 또는 다른 소자(또는, 다른 회로)를 통하여 연결될 수 있다. 제 1 송신용 코일(712)의 양단은 제 2 층의 제 2 송신용 코일(713)의 양단에 연결될 수 있다. 제 2 송신용 코일(713)의 양단은 인버터(601)로 직접 또는 다른 소자(또는, 다른 회로)를 통하여 연결될 수 있다.As shown in FIG. 7B, the first transmission coil 712 may be wound in a spiral shape in the first layer. The second transmission coil 713 may be wound in a spiral shape in the second layer. Both ends of the first transmission coil 712 may be connected directly to the inverter 601 or through other elements (or other circuits). Both ends of the first transmission coil 712 may be connected to both ends of the second transmission coil 713 of the second layer. Both ends of the second transmission coil 713 may be connected directly to the inverter 601 or through other elements (or other circuits).
도 8은 다양한 실시예에 따른 송신용 코일 및 페라이트를 도시하는 측면도이다 .8 is a side view illustrating a transmission coil and a ferrite according to various embodiments.
도 8을 참조하면, 다양한 실시예에 따른 무선 전력 송신 장치(100)는, 제 1 페라이트(800), 제 1 송신용 코일(811), 제 2 송신용 코일(812), 또는 제 2 페라이트(810) 중 적어도 하나를 포함할 수 있다. 다양한 실시예에 따라서, 제 1 페라이트(800)는 시트 형태를 가질 수 있다. 제 1 송신용 코일(811)은 제 1 페라이트(800) 상에 위치할 수 있다. 제 1 송신용 코일(801)은 스파이럴 형태를 가질 수 있으나, 그 형태에는 제한이 없다. 제 1 송신용 코일(801) 상에는 제 2 송신용 코일(802)이 위치할 수 있다. 제 2 송신용 코일(802)은 스파이럴 형태를 가질 수 있으나, 그 형태에는 제한이 없다.Referring to FIG. 8, a wireless power transmission apparatus 100 according to various embodiments includes a first ferrite 800, a first transmission coil 811, a second transmission coil 812, or a second ferrite ( 810). According to various embodiments, the first ferrite 800 may have a sheet shape. The first transmission coil 811 may be positioned on the first ferrite 800. The first transmission coil 801 may have a spiral shape, but the shape is not limited. A second transmission coil 802 may be positioned on the first transmission coil 801. The second transmission coil 802 may have a spiral shape, but the shape is not limited.
도 4a 및 4b의 실시예에서는 제 1 송신용 코일(402)의 중심 및 제 2 송신용 코일(403)의 중심이 2차원 좌표상에서 실질적으로 일치하도록 배치된 것과는 대조적으로, 도 8의 실시예에서는 제 1 송신용 코일(811)의 중심 및 제 2 송신용 코일(812)의 중심이 2차원 좌표상에서 일치하지 않도록 배치될 수 있다. 즉, 제 1 송신용 코일(811)의 중심의 2차원 좌표상의 위치는 제 2 송신용 코일(812)의 중심의 2차원 좌표상의 위치는 이격될 수 있다. 제 1 송신용 코일(811) 및 제 2 송신용 코일(812)은 보다 넓은 충전 영역을 확보하기 위하여, 2차원 좌표상에서 이격 배치될 수 있다. 코일들(811,812)의 중심들 사이의 거리는, 확보 요구되는 충전 영역을 커버할 수 있도록 결정될 수 있다. 제 1 송신용 코일(811)의 내측 및 제 2 송신용 코일(812)의 내측에 제 2 페라이트(810)가 위치할 수 있다. 제 2 페라이트(810)의 높이는, 제 1 송신용 코일(811)의 높이 및 제 2 송신용 코일(812)의 높이의 합계보다 클 수 있다.In the embodiment of Figs. 4A and 4B, in contrast to the arrangement in which the center of the first transmission coil 402 and the center of the second transmission coil 403 substantially coincide on a two-dimensional coordinate, in the embodiment of Fig. 8 The center of the first transmission coil 811 and the center of the second transmission coil 812 may be arranged so that they do not coincide on the two-dimensional coordinates. That is, the position on the 2D coordinate of the center of the first transmission coil 811 may be spaced apart from the position on the 2D coordinate of the center of the second transmission coil 812. The first transmission coil 811 and the second transmission coil 812 may be spaced apart on two-dimensional coordinates in order to secure a wider charging area. The distance between the centers of the coils 811 and 812 may be determined to cover a charging area required to be secured. The second ferrite 810 may be positioned inside the first transmission coil 811 and inside the second transmission coil 812. The height of the second ferrite 810 may be greater than the sum of the height of the first transmission coil 811 and the height of the second transmission coil 812.
도 9는 다양한 실시예에 따른 송신용 코일을 도시한다 .9 illustrates a transmitting coil according to various embodiments.
도 9에 도시된 바와 같이, 다양한 실시예에 따른 송신용 코일(910)은 스파이럴 형태로 권선될 수 있다. 다양한 실시예에 따른 송신용 코일(910)의 제 1 부분(911)의 폭(w1)은 제 2 부분(912)의 폭(w2)과 상이할 수 있다. 예를 들어, 제 1 부분(911)의 폭(w1)은 제 2 부분(912)의 폭(w2)보다 작을 수 있으며, 제 1 부분(911)에 위치한 와이어(wire) 들 사이의 간격이 제 2 부분(912)에 위치한 와이어들 사이의 간격보다 작을 수 있다. 본 개시의 다양한 실시예들의 코일들 중 적어도 일부는 도 9의 송신용 코일의 권선 구조를 가질 수 있다.As shown in FIG. 9, the transmission coil 910 according to various embodiments may be wound in a spiral shape. The width w1 of the first portion 911 of the transmission coil 910 according to various embodiments may be different from the width w2 of the second portion 912. For example, the width w1 of the first part 911 may be smaller than the width w2 of the second part 912, and the gap between wires located in the first part 911 is limited. It may be smaller than the spacing between the wires located in the 2 part 912. At least some of the coils of various embodiments of the present disclosure may have a winding structure of the transmission coil of FIG. 9.
도 10a는 다양한 실시예와의 비교를 위한 비교예에 따른 송신용 코일을 도시한다. 비교예에 따른 송신용 코일(1001)는, 40.5 X 47.5 mm2의 면적을 가질 수 있다. 도 10b는 다양한 실시예에 따른 송신용 코일 및 페라이트를 도시한다. 도 10b에서와 같이, 다양한 실시예에 따른 송신용 코일(1011)은 60 X 47.5 40.5 X 47.5 mm2의 면적을 가질 수 있다. 다양한 실시예에 따른 송신용 코일(1011)은 비교예에 따른 송신용 코일(1011)보다 넓은 면적을 가질 수 있다. 송신용 코일(1011)의 내측에는 페라이트(1012)가 위치할 수 있다. 페라이트(1012)는 결합 계수(coupling coefficient) 감소를 보완할 수 있으며, 자계를 강화할 수도 있다. 도 10c는, 비정렬(misalignment) 정도에 따른 결합 계수를 실험하기 위한 실험 환경을 도시한다. 도 10c를 참조하면, 비교예에 따른 송신용 코일(1011) 및 수신용 코일(1020)을 2차원 좌표 상에서 중첩되어 표시될 수 있다. 도 10c에서는, 송신용 코일(1011)의 중심의 2차원 좌표 상에서의 위치와 수신용 코일(1020)의 중심의 2차원 좌표 상에서의 위치가 20mm만큼 떨어질 수 있으며, x축 비정렬(X misalignment) 정도가 20mm임으로 표현될 수 있다. 결합 계수 측정 실험은, 예를 들어 x축 비정렬 정도를 조정하면서 수행될 수 있다. 해당 실험은, 다양한 실시예에 따른 송신용 코일(1011)과 페라이트(1012)가 위치한 환경에서 수신용 코일(1020)을 이동시키면서 수행될 수 있다.10A illustrates a transmission coil according to a comparative example for comparison with various embodiments. The transmission coil 1001 according to the comparative example may have an area of 40.5 X 47.5 mm2. 10B is a diagram illustrating a transmission coil and a ferrite according to various embodiments. As shown in FIG. 10B, the transmission coil 1011 according to various embodiments may have an area of 60 X 47.5 40.5 X 47.5 mm2. The transmission coil 1011 according to various embodiments may have a larger area than the transmission coil 1011 according to the comparative example. A ferrite 1012 may be located inside the transmitting coil 1011. The ferrite 1012 may compensate for a reduction in coupling coefficient and may strengthen a magnetic field. 10C shows an experimental environment for testing a coupling coefficient according to a degree of misalignment. Referring to FIG. 10C, a transmitting coil 1011 and a receiving coil 1020 according to a comparative example may be displayed by being superimposed on a 2D coordinate. In FIG. 10C, the position of the center of the transmitting coil 1011 on the two-dimensional coordinates and the position of the center of the receiving coil 1020 on the two-dimensional coordinates may be separated by 20 mm, and x-axis misalignment. It can be expressed as a degree of 20mm. The coupling coefficient measurement experiment may be performed, for example, while adjusting the degree of x-axis misalignment. The experiment may be performed while moving the receiving coil 1020 in an environment in which the transmitting coil 1011 and the ferrite 1012 according to various embodiments are located.
도 10d는 비교예에 따른 송신용 코일 및 다양한 실시예에 따른 송신용 코일에 대하여, x축 비정렬 정도에 따라 측정된 결합 계수를 나타내는 그래프들이다.10D are graphs showing a coupling coefficient measured according to an x-axis misalignment degree for a transmission coil according to a comparative example and a transmission coil according to various embodiments.
제 1 그래프(1031)는, 도 10a에서의 비교예에 따른 송신용 코일(1001)에 대한 다양한 x축 비정렬 정도에 따라 측정된 결합 계수들이다. 제 2 그래프(1032)는, 도 10b에서의 다양한 실시예에서와 같이 내측에 페라이트(1012)가 위치한 송신용 코일(1011)에 대한 다양한 x축 비정렬 정도에 따라 측정된 결합 계수들이다. 제 3 그래프(1033)는, 도 10b에서의 다양한 실시예에서의 내측에 페라이트(1012)가 위치하지 않은 경우의 송신용 코일(1011)에 대한 다양한 x축 비정렬 정도에 따라 측정된 결합 계수들이다.A first graph 1031 shows coupling coefficients measured according to various x-axis misalignment degrees for the transmission coil 1001 according to the comparative example of FIG. 10A. The second graph 1032 shows coupling coefficients measured according to various degrees of x-axis misalignment with respect to the transmission coil 1011 in which the ferrite 1012 is located, as in the various embodiments of FIG. 10B. The third graph 1033 is the coupling coefficients measured according to various degrees of x-axis misalignment of the transmitting coil 1011 when the ferrite 1012 is not located inside in various embodiments of FIG. 10B. .
도 10d에서와 같이, 예상 충전 영역의 비정렬 정도는 약 13mm 일 수 있다. 예상 충전 영역의 경계에서의 제 1 그래프(1031)가 나타내는 결합 계수는 약 0.3이며, 제 2 그래프(1032)가 나타내는 결합 계수는 약 0.4임을 확인할 수 있다. 즉, 다양한 실시예에 따른 송신용 코일(1011) 및 페라이트(1012) 구조에 따라서 예상되는 충전 영역의 경계에서 더 높은 결합 계수가 확보될 수 있다. 이에 따라, 다양한 실시예에 따른 구조에 의하여 충전 위치의 자유도가 증가될 수 있다. 아울러, 동일한 x축 비정렬 정도에서, 제 3 그래프(1033)에 비하여 제 2 그래프(1032)의 결합 계수가 높은 것을 확인할 수 있으며, 이에 따라 내측에 배치되는 페라이트(1012)에 의하여 결합 계수가 증가함을 확인할 수 있다.As shown in FIG. 10D, the degree of misalignment of the expected charging area may be about 13 mm. It can be seen that the coupling coefficient indicated by the first graph 1031 at the boundary of the expected charging region is about 0.3, and the coupling coefficient indicated by the second graph 1032 is about 0.4. That is, according to the structure of the transmission coil 1011 and the ferrite 1012 according to various embodiments, a higher coupling coefficient may be secured at the boundary of the expected charging area. Accordingly, the degree of freedom of the charging position may be increased by the structure according to various embodiments. In addition, it can be seen that the coupling coefficient of the second graph 1032 is higher than that of the third graph 1033 at the same degree of x-axis misalignment, and accordingly, the coupling coefficient is increased by the ferrite 1012 disposed inside. It can be confirmed that.
도 11a는 다양한 실시예에 따른 무선으로 전력을 수신하는 전자 장치들의 코일 위치를 나타내는 도면이다.11A is a diagram illustrating coil positions of electronic devices that wirelessly receive power according to various embodiments of the present disclosure.
도 11a에서와 같이, 제 1 타입의 전자 장치(1100)에 포함된 코일(1101)의 중심은, 무선 전력 송신 장치(1150)의 지지면을 기준으로 81.25mm의 지점에 위치할 수 있다. 제 1 타입의 전자 장치(1100)에 포함된 코일(1101)의 중심은, 제 1 타입의 전자 장치(1100)가 케이스(1102)에 인입된 경우에, 무선 전력 송신 장치(1150)의 지지면을 기준으로 83.2mm의 지점에 위치할 수 있다. 제 2 타입의 전자 장치(1110)에 포함된 코일(1111)의 중심은, 무선 전력 송신 장치(1150)의 지지면을 기준으로 71.2mm의 지점에 위치할 수 있다. 제 1 타입의 전자 장치(1100)는 시중에 출시되는 대형 크기의 스마트 폰일 수 있으며, 제 2 타입의 전자 장치(1110)는 시중에 출시되는 소형 크기의 스마트 폰일 수 있다. 시중에 출시되는 스마트 폰들의 크기에 따라, 약 12mm 정도(즉, -6mm 내지 +6mm 정도)의 중심 위치 차이가 있을 수 있다. 이를 y축 중심 오차라 명명할 수 있다.As shown in FIG. 11A, the center of the coil 1101 included in the first type of electronic device 1100 may be located at a point of 81.25 mm with respect to the support surface of the wireless power transmission device 1150. The center of the coil 1101 included in the first type of electronic device 1100 is a support surface of the wireless power transmission device 1150 when the first type of electronic device 1100 is inserted into the case 1102 It can be located at a point of 83.2mm. The center of the coil 1111 included in the second type of electronic device 1110 may be located at a point of 71.2 mm with respect to the support surface of the wireless power transmission device 1150. The first type of electronic device 1100 may be a large sized smart phone on the market, and the second type of electronic device 1110 may be a small sized smart phone on the market. Depending on the size of commercially available smart phones, there may be a difference in the center position of about 12mm (ie, about -6mm to +6mm). This can be referred to as the y-axis center error.
도 11b는 다양한 실시예에 따른 송신용 코일 및 페라이트의 배치를 도시한다.11B is a diagram illustrating an arrangement of a transmitting coil and a ferrite according to various embodiments.
도 11b를 참조하면, 제 1 구조(1120)는 제 1 송신용 코일(1121) 및 제 2 송신용 코일(1121)의 내측에 위치하는 페라이트(1122)를 포함할 수 있다. 제 1 송신용 코일(1121)은 60 X 47.5 mm2의 면적을 가질 수 있다. y축의 중심 오차를 고려하였을 때, 제 1 구조(1120)에서는 y축 방향으로는 18mm의 유효 충전 영역이 확보될 수 있다. 제 2 구조(1120)는, 제 1 송신용 코일(1131), 제 2 송신용 코일(1132), 및 제 1 송신용 코일(1131)과 제 2 송신용 코일(1132) 내측에 위치하는 페라이트(1133)를 포함할 수 있다. 제 1 송신용 코일(1131) 및 제 2 송신용 코일(1132) 각각은 70 X 50.5 mm2의 면적을 가질 수 있다. y축의 중심 오차를 고려하였을 때, 제 2 구조(1130)에서는 y축 방향으로는 22mm의 유효 충전 영역이 확보될 수 있다.Referring to FIG. 11B, the first structure 1120 may include a first transmission coil 1121 and a ferrite 1122 positioned inside the second transmission coil 1121. The first transmission coil 1121 may have an area of 60 X 47.5 mm2. When the center error of the y-axis is considered, an effective charging area of 18 mm in the y-axis direction may be secured in the first structure 1120. The second structure 1120 is a ferrite positioned inside the first transmission coil 1131, the second transmission coil 1132, and the first transmission coil 1131 and the second transmission coil 1132 ( 1133) may be included. Each of the first transmission coil 1131 and the second transmission coil 1132 may have an area of 70 X 50.5 mm2. Considering the center error of the y-axis, in the second structure 1130, an effective charging area of 22 mm may be secured in the y-axis direction.
도 11c는 y축 비정렬 정도가 0인 경우에 대하여, 비교예 및 다양한 실시예들에 따른 구조 각각에 대한, 다양한 x축 비정렬 정도에 따라 측정된 결합 계수들이다.11C are coupling coefficients measured according to various x-axis misalignment degrees for each structure according to a comparative example and various embodiments when the y-axis misalignment degree is 0.
제 1 그래프(1141)는, 도 10a에서의 비교예에 따른 송신용 코일(1001)에 대한 다양한 x축 비정렬 정도에 따라 측정된 결합 계수들이다. 제 2 그래프(1142)는, 도 11b에서의 제 1 구조(1120)에 대한 다양한 x축 비정렬 정도에 따라 측정된 결합 계수들이다. 제 3 그래프(1143)는, 도 11b에서의 제 2 구조(1130)에 대한 다양한 x축 비정렬 정도에 따라 측정된 결합 계수들이다. 동일한 x축 비정렬 정도에서의 제 2 구조(1130)에 의한 결합 계수가 제 1 구조(1120)에 의한 결합 계수보다 높은 것을 확인할 수 있다.A first graph 1141 shows coupling coefficients measured according to various x-axis misalignment degrees for the transmission coil 1001 according to the comparative example of FIG. 10A. The second graph 1142 shows coupling coefficients measured according to various degrees of x-axis misalignment for the first structure 1120 in FIG. 11B. A third graph 1143 shows coupling coefficients measured according to various degrees of x-axis misalignment for the second structure 1130 in FIG. 11B. It can be seen that the coupling coefficient by the second structure 1130 at the same x-axis misalignment degree is higher than the coupling coefficient by the first structure 1120.
도 11d는 y축 비정렬 정도가 6mm인 경우에 대하여, 비교예 및 다양한 실시예들에 따른 구조 각각에 대한, 다양한 x축 비정렬 정도에 따라 측정된 결합 계수들이다.11D is a diagram illustrating coupling coefficients measured according to various degrees of x-axis misalignment for each structure according to a comparative example and various embodiments when the y-axis misalignment degree is 6 mm.
제 1 그래프(1151)는, 도 10a에서의 비교예에 따른 송신용 코일(1001)에 대한 다양한 x축 비정렬 정도에 따라 측정된 결합 계수들이다. 제 2 그래프(1152)는, 도 11b에서의 제 1 구조(1120)에 대한 다양한 x축 비정렬 정도에 따라 측정된 결합 계수들이다. 제 3 그래프(1153)는, 도 11b에서의 제 2 구조(1130)에 대한 다양한 x축 비정렬 정도에 따라 측정된 결합 계수들이다. 동일한 x축 비정렬 정도에서의 제 2 구조(1130)에 의한 결합 계수가 제 1 구조(1120)에 의한 결합 계수보다 높은 것을 확인할 수 있다.A first graph 1151 shows coupling coefficients measured according to various x-axis misalignment degrees for the transmitting coil 1001 according to the comparative example of FIG. 10A. The second graph 1152 shows coupling coefficients measured according to various degrees of x-axis misalignment with respect to the first structure 1120 in FIG. 11B. A third graph 1153 shows coupling coefficients measured according to various degrees of x-axis misalignment for the second structure 1130 in FIG. 11B. It can be seen that the coupling coefficient by the second structure 1130 at the same x-axis misalignment degree is higher than the coupling coefficient by the first structure 1120.
도 11c 및 11d에서와 같이, 다양한 y축 비정렬 정도에서, 제 1 구조(1120) 및 제 2 구조(1130)에 의하여 x축 방향으로의 충전 위치 자유도가 확장됨을 확인할 수 있다.As shown in FIGS. 11C and 11D, it can be seen that the degree of freedom of the charging position in the x-axis direction is expanded by the first structure 1120 and the second structure 1130 at various degrees of y-axis misalignment.
본 문서의 다양한 실시예들 및 이에 사용된 용어들은 본 문서에 기재된 기술적 특징들을 특정한 실시예들로 한정하려는 것이 아니며, 해당 실시예의 다양한 변경, 균등물, 또는 대체물을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 또는 관련된 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다. 아이템에 대응하는 명사의 단수 형은 관련된 문맥상 명백하게 다르게 지시하지 않는 한, 상기 아이템 한 개 또는 복수 개를 포함할 수 있다. 본 문서에서, "A 또는 B", "A 및 B 중 적어도 하나",“A 또는 B 중 적어도 하나,”"A, B 또는 C," "A, B 및 C 중 적어도 하나,”및 “A, B, 또는 C 중 적어도 하나"와 같은 문구들 각각은 그 문구들 중 해당하는 문구에 함께 나열된 항목들 중 어느 하나, 또는 그들의 모든 가능한 조합을 포함할 수 있다. "제 1", "제 2", 또는 "첫째" 또는 "둘째"와 같은 용어들은 단순히 해당 구성요소를 다른 해당 구성요소와 구분하기 위해 사용될 수 있으며, 해당 구성요소들을 다른 측면(예: 중요성 또는 순서)에서 한정하지 않는다. 어떤(예: 제 1) 구성요소가 다른(예: 제 2) 구성요소에, “기능적으로” 또는 “통신적으로”라는 용어와 함께 또는 이런 용어 없이, “커플드” 또는 “커넥티드”라고 언급된 경우, 그것은 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로(예: 유선으로), 무선으로, 또는 제 3 구성요소를 통하여 연결될 수 있다는 것을 의미한다.Various embodiments of the present document and terms used therein are not intended to limit the technical features described in this document to specific embodiments, and should be understood to include various modifications, equivalents, or substitutes of the corresponding embodiments. In connection with the description of the drawings, similar reference numerals may be used for similar or related components. The singular form of a noun corresponding to an item may include one or a plurality of the items unless clearly indicated otherwise in a related context. In this document, “A or B”, “at least one of A and B”, “at least one of A or B,” “A, B or C,” “at least one of A, B and C,” and “A Each of phrases such as "at least one of, B, or C" may include any one of the items listed together in the corresponding one of the phrases, or all possible combinations thereof. Terms such as "first", "second", or "first" or "second" may be used simply to distinguish the component from other corresponding components, and the components may be referred to in other aspects (eg, importance or Order) is not limited. Some (eg, first) component is referred to as “coupled” or “connected” to another (eg, second) component, with or without the terms “functionally” or “communicatively”. When mentioned, it means that any of the above components can be connected to the other components directly (eg by wire), wirelessly, or via a third component.
상기 무선 전력 송신 장치 또는 전자 장치의 전술한 구성요소들 각각은 하나 또는 그 이상의 부품(component)으로 구성될 수 있으며, 해당 구성 요소의 명칭은 전자 장치의 종류에 따라서 달라질 수 있다. 다양한 실시예에서, 전자 장치는 전술한 구성요소 중 적어도 하나를 포함하여 구성될 수 있으며, 일부 구성요소가 생략되거나 또는 추가적인 다른 구성요소를 더 포함할 수 있다. 또한, 다양한 실시예에 따른 전자 장치의 구성 요소들 중 일부가 결합되어 하나의 개체(entity)로 구성됨으로써, 결합되기 이전의 해당 구성 요소들의 기능을 동일하게 수행할 수 있다.Each of the aforementioned components of the wireless power transmitter or electronic device may be composed of one or more components, and the name of the corresponding component may vary according to the type of the electronic device. In various embodiments, the electronic device may include at least one of the above-described components, and some components may be omitted or additional other components may be further included. In addition, some of the constituent elements of the electronic device according to various embodiments of the present disclosure are combined to form a single entity, so that functions of the corresponding constituent elements before the combination may be performed in the same manner.
본 문서에서 사용된 용어 "모듈"은, 예를 들면, 하드웨어, 소프트웨어 또는 펌웨어(firmware) 중 하나 또는 둘 이상의 조합을 포함하는 단위(unit)를 의미할 수 있다. "모듈"은, 예를 들면, 유닛(unit), 로직(logic), 논리 블록(logical block), 부품(component), 또는 회로(circuit) 등의 용어와 바꾸어 사용(interchangeably use)될 수 있다. "모듈"은, 일체로 구성된 부품의 최소 단위 또는 그 일부가 될 수 있다. "모듈"은 하나 또는 그 이상의 기능을 수행하는 최소 단위 또는 그 일부가 될 수도 있다. "모듈"은 기계적으로 또는 전자적으로 구현될 수 있다. 예를 들면,"모듈"은, 알려졌거나 앞으로 개발될, 어떤 동작들을 수행하는 ASIC(application-specific integrated circuit) 칩, FPGAs(field-programmable gate arrays) 또는 프로그램 가능 논리 장치(programmable-logic device) 중 적어도 하나를 포함할 수 있다. The term "module" used in this document may mean, for example, a unit including one or a combination of two or more of hardware, software, or firmware. "Module" may be used interchangeably with terms such as unit, logic, logical block, component, or circuit, for example. The "module" may be the smallest unit of integrally configured parts or a part thereof. The "module" may be a minimum unit or a part of one or more functions. The "module" can be implemented mechanically or electronically. For example, a "module" is one of known or future developed application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), or programmable-logic devices that perform certain operations. It may include at least one.
그리고 본 문서에 개시된 실시예는 개시된, 기술 내용의 설명 및 이해를 위해 제시된 것이며, 본 개시의 범위를 한정하는 것은 아니다. 따라서, 본 개시의 범위는, 본 개시의 기술적 사상에 근거한 모든 변경 또는 다양한 다른 실시예를 포함하는 것으로 해석되어야 한다.In addition, the embodiments disclosed in this document are presented for description and understanding of the disclosed and technical content, and do not limit the scope of the present disclosure. Therefore, the scope of the present disclosure should be construed as including all changes or various other embodiments based on the technical idea of the present disclosure.

Claims (15)

  1. 무선 전력 송신 장치에 있어서,In the wireless power transmission device,
    전력 소스;Power source;
    시트(sheet) 형태를 가지는 제 1 페라이트;A first ferrite having a sheet form;
    상기 제 1 페라이트 상에 위치하고, 상기 전력 소스로부터 제공되는 전력을 이용하여 자기장을 형성하는 제 1 송신용 코일;A first transmission coil positioned on the first ferrite and forming a magnetic field using power provided from the power source;
    상기 제 1 송신용 코일 상에 위치하고, 상기 전력 소스로부터 제공되는 상기 전력을 이용하여 자기장을 형성하는 제 2 송신용 코일; 및A second transmitting coil positioned on the first transmitting coil and forming a magnetic field using the power provided from the power source; And
    상기 제 1 송신용 코일의 내측 및 상기 제 2 송신용 코일의 내측에 위치하며, 상기 제 1 송신용 코일의 높이 및 상기 제 2 송신용 코일의 높이의 합계보다 큰 높이를 가지는 제 2 페라이트를 포함하는 무선 전력 송신 장치.And a second ferrite positioned inside the first transmission coil and inside the second transmission coil, and having a height greater than the sum of the heights of the first transmission coil and the second transmission coil Wireless power transmission device.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 송신용 코일의 외경은, 상기 제 2 송신용 코일의 외경보다 큰 것을 특징으로 하는 무선 전력 송신 장치.The wireless power transmission device, wherein an outer diameter of the first transmission coil is larger than an outer diameter of the second transmission coil.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 송신용 코일의 중심의 2차원 상에서의 위치는, 상기 제 2 송신용 코일의 중심의 2차원 상에서의 위치와 실질적으로 동일한 것을 특징으로 하는 무선 전력 송신 장치.The wireless power transmission device, wherein a position of the center of the first transmission coil in two dimensions is substantially the same as a position of the center of the second transmission coil in two dimensions.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 송신용 코일의 내경은, 상기 제 2 송신용 코일의 내경과 실질적으로 동일한 것을 특징으로 하는 무선 전력 송신 장치.The wireless power transmission device, wherein the inner diameter of the first transmission coil is substantially the same as the inner diameter of the second transmission coil.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 송신용 코일의 내경은, 상기 제 2 송신용 코일의 내경보다 큰 것을 특징으로 하는 무선 전력 송신 장치.The wireless power transmission device, wherein an inner diameter of the first transmission coil is larger than an inner diameter of the second transmission coil.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 송신용 코일 및 상기 제 2 송신용 코일은 실질적으로 동일한 형태 및 실질적으로 동일한 크기를 가지며,The first transmission coil and the second transmission coil have substantially the same shape and substantially the same size,
    상기 제 1 송신용 코일의 중심의 2차원 상에서의 위치는, 상기 제 2 송신용 코일의 중심의 2차원 상에서의 위치로부터 이격된 것을 특징으로 하는 무선 전력 송신 장치.A wireless power transmission apparatus, wherein a position of the center of the first transmission coil in two dimensions is separated from a position of the center of the second transmission coil in two dimensions.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 무선 전력 송신 장치 상에 무선으로 전력을 수신하기 위한 전자 장치가 위치한 경우, 상기 제 2 페라이트 및 상기 전자 장치 내의 수신용 코일 사이의 거리가 지정된 길이 이내가 되도록, 상기 제 2 페라이트의 높이가 설정된 무선 전력 송신 장치.When an electronic device for wirelessly receiving power is located on the wireless power transmission device, the height of the second ferrite is set so that the distance between the second ferrite and the receiving coil in the electronic device is within a specified length. Wireless power transmission device.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 송신용 코일 및 상기 제 2 송신용 코일은 스파이럴 형태를 가지는 것을 특징으로 하는 무선 전력 송신 장치.The wireless power transmission device, characterized in that the first transmission coil and the second transmission coil have a spiral shape.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 제 1 송신용 코일 및 상기 제 2 송신용 코일의 제 1 방향으로 연장된 부분의 폭은, 상기 제 1 송신용 코일 및 상기 제 2 송신용 코일의 제 2 방향으로 연장된 부분의 폭보다 큰 것을 특징으로 하는 무선 전력 송신 장치.The width of the portion extending in the first direction of the first transmission coil and the second transmission coil is larger than the width of the portion extending in the second direction of the first transmission coil and the second transmission coil. Wireless power transmission device, characterized in that.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 송신용 코일의 내경 및 상기 제 2 페라이트의 외경 사이의 차이는 지정된 범위 이내가 되도록 설정된 것을 특징으로 하는 무선 전력 송신 장치.The wireless power transmission apparatus, characterized in that the difference between the inner diameter of the first transmission coil and the outer diameter of the second ferrite is set to be within a specified range.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 송신용 코일은 상기 제 2 송신용 코일에 직렬 또는 병렬로 연결되는 것을 특징으로 하는 무선 전력 송신 장치.The first transmission coil is a wireless power transmission device, characterized in that connected in series or parallel to the second transmission coil.
  12. 무선 전력 송신 장치에 있어서,In the wireless power transmission device,
    전력 소스;Power source;
    시트(sheet) 형태를 가지는 제 1 페라이트;A first ferrite having a sheet form;
    상기 제 1 페라이트 상에 위치하고, 상기 전력 소스로부터 제공되는 전력을 이용하여 자기장을 형성하는 제 1 송신용 코일;A first transmission coil positioned on the first ferrite and forming a magnetic field using power provided from the power source;
    상기 제 1 송신용 코일 상에 위치하고, 상기 전력 소스로부터 제공되는 상기 전력을 이용하여 자기장을 형성하는 제 2 송신용 코일; 및A second transmitting coil positioned on the first transmitting coil and forming a magnetic field using the power provided from the power source; And
    상기 제 1 송신용 코일의 내측 및 상기 제 2 송신용 코일의 내측에 위치하는 제 2 페라이트를 포함하며,And a second ferrite positioned inside the first transmission coil and inside the second transmission coil,
    상기 제 1 송신용 코일의 외경은, 상기 제 2 송신용 코일의 외경보다 큰 것을 특징으로 하는 무선 전력 송신 장치.The wireless power transmission device, wherein an outer diameter of the first transmission coil is larger than an outer diameter of the second transmission coil.
  13. 자기장 생성을 위한 구조체에 있어서,In the structure for generating a magnetic field,
    시트(sheet) 형태를 가지는 제 1 페라이트;A first ferrite having a sheet form;
    상기 제 1 페라이트 상에 위치하고, 외부로부터 제공되는 전력을 이용하여 자기장을 형성하는 제 1 송신용 코일;A first transmission coil positioned on the first ferrite and forming a magnetic field using power provided from the outside;
    상기 제 1 송신용 코일 상에 위치하고, 외부로부터 제공되는 상기 전력을 이용하여 자기장을 형성하는 제 2 송신용 코일; 및A second transmission coil positioned on the first transmission coil and forming a magnetic field using the power provided from the outside; And
    상기 제 1 송신용 코일의 내측 및 상기 제 2 송신용 코일의 내측에 위치하며, 상기 제 1 송신용 코일의 높이 및 상기 제 2 송신용 코일의 높이의 합계보다 큰 높이를 가지는 제 2 페라이트를 포함하는 구조체.And a second ferrite positioned inside the first transmission coil and inside the second transmission coil, and having a height greater than the sum of the height of the first transmission coil and the height of the second transmission coil Structure.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 제 1 송신용 코일의 외경은, 상기 제 2 송신용 코일의 외경보다 큰 것을 특징으로 하는 구조체.The structure, characterized in that the outer diameter of the first transmission coil is larger than the outer diameter of the second transmission coil.
  15. 제 13 항에 있어서,The method of claim 13,
    상기 제 1 송신용 코일의 중심의 2차원 상에서의 위치는, 상기 제 2 송신용 코일의 중심의 2차원 상에서의 위치와 실질적으로 동일한 것을 특징으로 하는 구조체.A structure, wherein a position of the center of the first transmission coil in two dimensions is substantially the same as a position of the center of the second transmission coil in two dimensions.
PCT/KR2020/002971 2019-03-05 2020-03-02 Wireless power transmission device for wirelessly transmitting power WO2020180073A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190025442A KR102691761B1 (en) 2019-03-05 2019-03-05 Wireless power transmitting device for wirelessly transmitting power
KR10-2019-0025442 2019-03-05

Publications (1)

Publication Number Publication Date
WO2020180073A1 true WO2020180073A1 (en) 2020-09-10

Family

ID=72337810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002971 WO2020180073A1 (en) 2019-03-05 2020-03-02 Wireless power transmission device for wirelessly transmitting power

Country Status (2)

Country Link
KR (1) KR102691761B1 (en)
WO (1) WO2020180073A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090539A1 (en) * 2009-02-05 2010-08-12 Auckland Uniservices Limited Inductive power transfer apparatus
US20160268844A1 (en) * 2013-12-10 2016-09-15 The Chugoku Electric Power Co., Inc. Power transmission device, power feeding system, and impedance adjusting device of electric circuit
KR20170093029A (en) * 2016-02-04 2017-08-14 주식회사 아모센스 Shielding unit for a wireless power transmission module and a wireless power transmission module having the same
KR20170140666A (en) * 2016-06-13 2017-12-21 엘지이노텍 주식회사 Antenna, apparutus and system for transmitting wireless power
KR20180041945A (en) * 2016-10-17 2018-04-25 현대자동차주식회사 Secondary pad for wireless power transfer system and manufactuing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101976613B1 (en) * 2012-11-09 2019-05-10 엘지이노텍 주식회사 Wireless power receiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090539A1 (en) * 2009-02-05 2010-08-12 Auckland Uniservices Limited Inductive power transfer apparatus
US20160268844A1 (en) * 2013-12-10 2016-09-15 The Chugoku Electric Power Co., Inc. Power transmission device, power feeding system, and impedance adjusting device of electric circuit
KR20170093029A (en) * 2016-02-04 2017-08-14 주식회사 아모센스 Shielding unit for a wireless power transmission module and a wireless power transmission module having the same
KR20170140666A (en) * 2016-06-13 2017-12-21 엘지이노텍 주식회사 Antenna, apparutus and system for transmitting wireless power
KR20180041945A (en) * 2016-10-17 2018-04-25 현대자동차주식회사 Secondary pad for wireless power transfer system and manufactuing method thereof

Also Published As

Publication number Publication date
KR102691761B1 (en) 2024-08-06
KR20200106786A (en) 2020-09-15

Similar Documents

Publication Publication Date Title
US20230327491A1 (en) Transmitting assembly for a universal wireless charging device and a method thereof
JP5121307B2 (en) Non-contact power transmission coil unit, portable terminal, power transmission device, and non-contact power transmission system
KR101438910B1 (en) The Wired-Wireless Combined Power Transmission Apparatus and The Method using the same
WO2012169769A2 (en) Wireless power-transmission apparatus and system
WO2013035986A1 (en) Wireless power repeater
JP2006314181A (en) Non-contact charger, non-contact charging system, and non-contact charging method
WO2016114629A1 (en) Wireless power transmission device
US9960638B2 (en) Wireless power transmission system
WO2013002516A2 (en) Wireless power repeater and method thereof
WO2013151259A1 (en) Device and system for wireless power transmission using transmission coil array
WO2014025168A1 (en) Apparatus and method for providing compatibility in wireless power transmission system
WO2013002488A1 (en) Wireless power transmission apparatus and wireless power transmission method thereof
WO2013035987A1 (en) Wireless power apparatus and operation method thereof
KR101740924B1 (en) Portable wireless dual charging battery pack
US20210044155A1 (en) Wireless charging receiving apparatus, method for realizing wireless charging, and mobile terminal
WO2013032129A1 (en) Wireless power transmitter and wireless power transmission method
WO2020213904A1 (en) Method for performing wireless charging, wireless power transmission device, and storage medium
CN113054753A (en) Wireless charging equipment and equipment to be charged
WO2016114637A1 (en) Wireless power transmission device
JP2015213421A (en) Wireless power reception device and electronic device including the same
WO2013048036A1 (en) Wireless power repeater and wireless power transmitter
US10784043B2 (en) Wireless power transmission device, wireless power reception device, and wireless charging system
WO2020180073A1 (en) Wireless power transmission device for wirelessly transmitting power
WO2016140463A1 (en) Wireless power transmission/reception device
WO2017090964A1 (en) Wireless power transmitter and wireless power receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765765

Country of ref document: EP

Kind code of ref document: A1