WO2020180011A1 - Humidity-responsive photonic crystal composite, method for preparing same, and sensor using same - Google Patents

Humidity-responsive photonic crystal composite, method for preparing same, and sensor using same Download PDF

Info

Publication number
WO2020180011A1
WO2020180011A1 PCT/KR2020/001604 KR2020001604W WO2020180011A1 WO 2020180011 A1 WO2020180011 A1 WO 2020180011A1 KR 2020001604 W KR2020001604 W KR 2020001604W WO 2020180011 A1 WO2020180011 A1 WO 2020180011A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
humidity
ipn
present
hydrogel
Prior art date
Application number
PCT/KR2020/001604
Other languages
French (fr)
Korean (ko)
Inventor
박수영
명단비
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of WO2020180011A1 publication Critical patent/WO2020180011A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/81Indicating humidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K2019/523Organic solid particles

Definitions

  • the present invention relates to a humidity-reactive photonic crystal composite, a method of manufacturing the same, and a sensor using the same, and more particularly, to a photonic crystal structure prepared by removing a non-reactive chiral dopant after UV curing a reactive CLC mixture, and to the inner space of the photonic crystal structure.
  • the present invention relates to a photonic crystal composite having an IPN structure having a humidity reactivity in which various colors reflected according to the degree of swelling by moisture, including the infiltrated hydrogel and salt, and a method of manufacturing the same, and a sensor using the same.
  • the biosensor can be applied to various fields such as medical use, environmental use, food use, military use, industrial use.
  • the biosensor technology applied to date requires a large amount of samples to recognize the biomaterial to be detected.
  • in order to analyze a sample there is a hassle of having to go through a very complex process such as an analyte input step, a signal generation step, a signal amplification step, a complex analysis result interpretation step, etc., and it is very expensive to apply to real life.
  • a sensor that detects humidity uses an electrolyte polymer obtained by polymerization of vinyl monomers containing salts to detect humidity.
  • electrolyte polymers since most of the electrolyte polymers have high water solubility, they dissolve in condensation or high humidity for a long period of time, resulting in a change over time.
  • an electrolyte was introduced by copolymerization with various hydrophobic monomers or by graft copolymerization on a hydrophobic polymer.
  • the water resistance of the polymer copolymer is improved by using the IPN structure of the humidity-reactive polymer copolymer, but there is a problem that it is difficult to detect immediately visually.
  • an optical sensor capable of visually detecting a change in color (or intensity) without a battery using a photonic crystal that is easy to detect a biological material or a chemical material and reflects light at a specific wavelength.
  • the hydrogel polymer can be used as a polymer having an IPN structure because a volume change can be easily generated by the application of an external stimulus through absorption (or desorption) of water.
  • Photonic crystals represent a spirally twisted molecular orientation in which a cholesteric liquid crystal (CLC) gives a specific optical property, and it can be used as a sensor by using a pitch that changes due to external stimuli because it is easy to manufacture a one-dimensional photonic structure. have. That is, as the polymer penetrated into the IPN structure expands/contracts in response to an external stimulus, a color change may be induced in the corresponding CLC.
  • CLC cholesteric liquid crystal
  • the present invention was devised to solve the above problems, and an object of the present invention is to provide a photonic crystal composite having an IPN structure having humidity reactivity.
  • Another object of the present invention is to provide a method of manufacturing the photonic crystal composite.
  • an object of the present invention is to provide a method of measuring humidity using the photonic crystal composite.
  • an object of the present invention is to provide a sensor including the photonic crystal composite.
  • a photonic crystal structure prepared by UV curing a reactive CLC (Cholesteric Liquid Crystals) mixture and then removing a non-reactive chiral dopant;
  • It includes a salt, and provides a photonic crystal complex having an IPN (Interpenetrating Polymeric Network) structure having humidity reactivity.
  • IPN Interpenetrating Polymeric Network
  • a second step of forming a complex having an IPN structure by penetrating the hydrogel into the inner space of the photonic crystal structure;
  • It provides a method for producing a photonic crystal composite having humidity reactivity comprising a third step of reacting the IPN-structured composite with a salt to form a photonic crystal composite having humidity reactivity.
  • the hydrogel may include acrylic acid, diacrylate (TPGDA), and a photoinitiator.
  • the salt may be a sodium salt or potassium salt that reacts with the carboxyl group of the hydrogel.
  • It provides a method of measuring humidity using a photonic crystal composite having humidity reactivity.
  • It provides a sensor comprising a photonic crystal composite having humidity reactivity.
  • the sensor may be a humidity sensor or a biosensor for detecting calcium ions.
  • the calcium ions form a cross-link with the carboxyl group of the hydrogel, and the contracted and expanded hydrogel induces contraction and expansion of the photonic crystal structure, thereby changing the wavelength range of the optical band gap, thereby detecting calcium ions.
  • the calcium ions may include calcium ions in human plasma or saliva.
  • the change in the wavelength range may be performed at pH 2 to 12.
  • the photonic crystal composite of the present invention can be used as a humidity sensor and a biosensor by controlling the degree of swelling in moisture and reflecting colors according to humidity and ions in various ways.
  • the method of manufacturing a photonic crystal composite according to the present invention maximizes swelling due to absorption of moisture by destroying hydrogen bonds between carboxyl groups of a polymer, and has an effect that the manufacturing method is simple and the manufacturing cost is low.
  • the senor using the photonic crystal composite of the present invention exhibits various colors reflected according to humidity or calcium ions, so that it can be easily detected by the naked eye, and can be reused through recovery through acid treatment.
  • IPN 1 is an IPN according to the present invention It shows the manufacturing process of the array film.
  • SEM scanning electron microscope
  • FIG. 4 is a photograph of a dry or wet state of an array film according to an embodiment or a comparative example of the present invention.
  • 5A and 5B are UV-Vis spectra and ⁇ PBG according to pH of an array film according to a comparative example of the present invention, respectively.
  • FIG. 6 is a photograph of a dry state and a wet state of an acetone-treated array film according to an embodiment of the present invention.
  • 7A and 7B are UV-Vis spectra of dots in a dry or wet state of an array film according to an embodiment and a comparative example of the present invention, respectively.
  • RH relative humidity
  • FIG. 10 is a photograph of an array film according to an embodiment of the present invention treated with 1mM, 3mM, and 8mM CaCl 2 aqueous solution and then exposed to human breath.
  • FIG. 11 is a photograph showing a color change of an image included in an array film according to an embodiment of the present invention.
  • FIG. 12 is a photograph of a film treated with HNO 3 on an array film according to an embodiment of the present invention reacted with CaCl 2 .
  • FIG. 13 is a photograph after treatment of CaCl 2 , HNO 3 and KOH four times in a row on the array film according to an embodiment of the present invention.
  • 15A and 15B are UV-Vis spectrum and ⁇ PBG according to pH of an array film according to an embodiment of the present invention, respectively.
  • 16 is a UV-Vis spectrum over time after CaCl 2 is treated on an array film according to an embodiment of the present invention.
  • 17 is a photograph showing a change in color reflected after dropping water on an array film according to an embodiment of the present invention.
  • 18A and 18B are UV-Vis spectra measured after treating an array film according to an embodiment of the present invention with CaCl 2 of various volumes and concentrations, respectively.
  • 19A and 19B are UV-Vis spectra and photographs of an array film according to an embodiment of the present invention treated with plasma and saliva of hypocalcemia-i, hypocalcemia-ii, and normal and hypercalcemia, respectively.
  • 20A and 20B are respectively FeCl 2 ⁇ 4H 2 O, Zn(NO 3 ) 2 ⁇ 6H 2 O, Cu(NO 3 ) 2 ⁇ 3H 2 O, Mg(NO 3 ) 2 ⁇ 6H 2 O, NaNO 3 and A photograph of an array film according to an embodiment of the present invention treated with an aqueous solution of CaCl 2 , a change in wavelength, and a UV-Vis spectrum.
  • 21 is a photograph showing a reaction result of an array film according to an embodiment of the present invention and each set having different C Ca and C Mg values.
  • a photonic crystal structure prepared by removing a non-reactive chiral dopant after UV curing a reactive CLC (Cholesteric Liquid Crystals) mixture; A hydrogel penetrating into the inner space of the photonic crystal structure; And a salt; It provides a photonic crystal complex having a humidity reactivity of the IPN (Interpenetrating Polymeric Network) structure.
  • CLC Organic Liquid Crystals
  • CLC are cholesteric liquid crystals.
  • cholesteric liquid crystals exhibit a spirally twisted molecular orientation that imparts specific optical properties, and have the advantage of being easy to fabricate a one-dimensional photon structure.
  • the reflection wavelength ( ⁇ ) of the cholesteric liquid crystal material is dependent on the pitch P of the spiral. That is, since the cholesteric optical material exhibits a unique reflection pattern as it exhibits selective light reflection by the pitch of the helix, the CLC can be used as a sensor using a pitch that is changed by an external stimulus.
  • the photonic crystal structure may be prepared by mixing and curing a non-reactive chiral dopant and a reactive nematic mesogen, and then removing the chiral dopant.
  • Non-reactive chiral dopants are C15, CB15, CM21, R/S-811, CM44, CM45, CM47, R/S-2011, R/S-3011, R/S-4011, R/S-5011 and R/S It is characterized in that any one dopant selected from the group consisting of -1011, and preferably CB15 ((S)-4-cyano-4'-(2-methylbutyl)biphenyl) may be used.
  • the reactive nematic mesogen is characterized in that it is any one mesogen selected from the group consisting of RM 82, RM 257, RM308, and RMM727, and preferably RMM727 may be used.
  • RMM727 is a mixture containing acryloyloxy group, 1,6-hexamethylenediol diacrylate, (2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one), and the acrylic Reactive acryloyloxy mesogen APBMP, AHBCP, AHBMP, and AHBPCHP may be used as a material containing a loyloxy group.
  • the helical structure can be maintained as it is and can exhibit light reflection characteristics like cholesteric liquid crystals. Accordingly, the pitch is changed by the external stimulus, so that the reflected color can be displayed so that it can be easily checked with the naked eye.
  • the hydrogel may include acrylic acid, diacrylate (TPGDA), and a photoinitiator.
  • TPDGDA can be used as a crosslinking agent to induce maximum expansion of PAA hydrogel droplets.
  • Photoinitiators include molecules that absorb UV or UV-Vis to generate free radicals.
  • a single photoinitiator may be used or mixtures of photoinitiators may be used.
  • the photoinitiator may be selected such that the absorption wavelength of the photoinitiator overlaps the emission wavelength of the light source used for initiation.
  • the class of photoinitiators includes ⁇ -hydroxy ketones.
  • a commercial example of a photoinitiator of this class is Irgacure.
  • the hydrogel penetrates the photonic crystal structure and forms an IPN structure.
  • the IPN structure is an Interpenetrating Polymer Network (IPN).
  • IPNs are polymers comprising two or more networks that are at least partially interlaced on a molecular scale but cannot be separated unless covalently bonded to each other and chemical bonds are broken. It can be produced by infiltrating a monomer into a previously formed crosslinked structure, and forming a second crosslinked structure between the impregnated monomers.
  • Salts can react with the carboxyl groups of the hydrogel. This reaction is a reaction between a carboxyl group and an acid group of a salt, and a salt can be selected in consideration of the pKa (about 4.3) of the carboxyl group of the hydrogel. Preferably it may be a sodium salt or a potassium salt, more preferably NaOH or KOH.
  • Hydrogel carboxyl groups form hydrogen bonds to limit swelling due to moisture. If the hydrogel is treated with a salt, hydrogen bonds between carboxyl groups can be broken and a complex can be formed. Hydrogels with broken hydrogen bonds may have different degrees of swelling depending on humidity.
  • a first step of preparing a photonic crystal structure by removing a non-reactive chiral dopant after UV curing a reactive CLC mixture A second step of forming a complex having an IPN structure by penetrating the hydrogel into the inner space of the photonic crystal structure; And a third step of forming a photonic crystal composite having humidity reactivity by reacting the IPN-structured composite with a salt. It provides a method for producing a photonic crystal composite having humidity reactivity.
  • a photonic crystal structure can be obtained by injecting and curing a mixture of a non-reactive chiral dopant and a reactive nematic mesogen between two substrates stacked in parallel, and then removing the upper substrate and removing the chiral dopant.
  • Non-reactive chiral dopants are C15, CB15, CM21, R/S-811, CM44, CM45, CM47, R/S-2011, R/S-3011, R/S-4011, R/S-5011 and R/S It is characterized in that any one dopant selected from the group consisting of -1011, and preferably CB15 ((S)-4-cyano-4'-(2-methylbutyl)biphenyl) may be used.
  • the reactive nematic mesogen is characterized in that it is any one mesogen selected from the group consisting of RM 82, RM 257, RM308, and RMM727, and preferably RMM727 may be used.
  • RMM727 is a mixture containing RMM727 acryloyloxy group (acryloyloxy), 1,6-hexamethylenediol diacrylate, (2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one), As the material containing the acryloyloxy group, reactive acryloyloxy mesogen APBMP, AHBCP, AHBMP and AHBPCHP may be used.
  • the hydrogel may include AA (Acrlyic acid), diacrylate (TPGDA) and a photoinitiator.
  • TPDGDA can be used as a crosslinking agent to induce maximum expansion of PAA hydrogel droplets.
  • Photoinitiators include molecules that absorb UV or UV-Vis to generate free radicals.
  • a single photoinitiator may be used or mixtures of photoinitiators may be used.
  • the photoinitiator may be selected such that the absorption wavelength of the photoinitiator overlaps the emission wavelength of the light source used for initiation.
  • the hydrogel penetrates the photonic crystal structure and forms an IPN structure.
  • the IPN structure is an Interpenetrating Polymer Network (IPN).
  • IPNs are polymers comprising two or more networks that are at least partially interlaced on a molecular scale but cannot be separated unless covalently bonded to each other and chemical bonds are broken. It can be produced by infiltrating a monomer into a previously formed crosslinked structure, and forming a second crosslinked structure between the impregnated monomers.
  • Salts can react with the carboxyl groups of the hydrogel. This reaction is a reaction between a carboxyl group and an acid group of a salt, and a salt can be selected in consideration of the pKa (about 4.3) of the carboxyl group of the hydrogel. Preferably it may be a sodium salt or a potassium salt, more preferably NaOH or KOH.
  • Hydrogel carboxyl groups form hydrogen bonds to limit swelling due to moisture. If the hydrogel is treated with a salt, hydrogen bonds between carboxyl groups can be broken and a complex can be formed. Hydrogels with broken hydrogen bonds may have different degrees of swelling depending on humidity.
  • a treatment with acetone may be further included in order to expand the range of swelling.
  • an acid treatment process may be further included.
  • the carboxy group of the hydrogel may be recovered through acid treatment, and salt treatment and ion treatment may be performed again.
  • a method of measuring humidity using a photonic crystal composite having humidity reactivity is provided.
  • the photonic crystal composite thus manufactured may have a different degree of swelling depending on the degree of humidity, and may exhibit various reflective colors. Humidity can be measured by detecting the reflected color with the naked eye.
  • a sensor is provided, characterized in that it is manufactured using a photonic crystal composite.
  • the sensor according to the present invention may be a humidity sensor or a biosensor for detecting calcium ions.
  • the humidity sensor can detect humidity by using various reflected colors that appear when the photonic crystal complex in which the hydrogen bond of the carboxyl group is disconnected expands or contracts according to humidity.
  • the biosensor can detect the ions by using ion exchange to occur when the photonic crystal complex in which the hydrogen bond of the carboxyl group is disconnected through salt treatment detects calcium ions.
  • Calcium ions form a cross-link with the carboxy group of the hydrogel, and the contracted and expanded hydrogel induces contraction and expansion of the photonic crystal structure, thereby changing the wavelength range of the optical band gap, thereby detecting calcium ions.
  • the biosensor according to the present invention can also detect calcium ions in human plasma or saliva. Variation of the wavelength range of the optical band gap may be performed at pH 2 to 12.
  • RMM727 reactive LC mixture, Merck, UK), CB15 (Shinton, Germany), AA (Junsei, Japan), tri(propylene glycol) diacrylate (TPGDA, Sigma-Aldrich, USA), trichloro-(1H,1H, 2H,2H,2H,2H hyperfluorotoxyl) silan (PFOTS, 97%, Sigma-Aldrich, USA), Irgacure 500 (photoinitiator, Ciba Inc., Switzerland), 3-(trimethhosilyl) propyl methacrylate (TMSPMA, 98%, Sigma-Aldrich, USA), acetone, Norland optical adhesive 65 (NOA65, Norland Products, USA), micro-pearls, potassium hydroxide (KOH, DC Chemical, Korea), Calcium chromaticity measurement (MAK022, USA Sigma-Aldrich, copper(II) nitrate 3-hydrate (Cu(NO3)2 ⁇ 3H2O, Japan Junsei),
  • a uniform film of a reactive CLC mixture was prepared between two glass slides.
  • the upper and lower slides were treated with PFOTS and TMSPMA, respectively.
  • the glass slide was put into a sealed chamber and the PFOTS-treated top glass was coated in such a way that the PFOTS in a small container evaporated at 70° C. for 30 minutes.
  • a spin coater SPIN-1200D, Midas, South Korea
  • the bottom slide was coated with TMSPMA by operating at 3000 rpm for 45 seconds and drying in an oven at 110° C. for 60 minutes. This coating on the bottom slide will react with the reactive CLC mixture.
  • the glass coated with PFOTS and TMSPMA was fixed at an interval of 6 ⁇ m using a micropulse bonded with NOA65.
  • a reactive CLC mixture was prepared by mixing RMM727 and CB15 at 60° C. for 12 hours by magnetic stirring.
  • the CB15 content of the mixture of RMM727 and CB15 is expressed as pi ( ⁇ ).
  • the clear homogeneous mixture turned milky as the temperature dropped to 25°C.
  • the gap between the two slides was filled with a reactive CLC mixture by capillary action.
  • UV curing was performed at 365nm for 10 minutes using a UV curing machine (Innocure 100N, Lichtzen, South Korea). After UV curing, the slide coated with PFOTS was removed so that the CLC solid film remained on the lower slide coated with TMSPMA. The slide was washed with acetone to extract unreacted chiral dopant. The light band spacing of the film attached to the glass was measured using a UV-Vis spectrometer.
  • the penetrating film was exposed to UV light with a photomask for 10 minutes at a distance of 6 cm from the sample, followed by UV curing.
  • On the opaque photomask there were transparent dots, each 2mm in diameter, and the centers were 4mm apart from each other.
  • the photonic crystal IPN array film was washed 5 times with water to remove uncured acrylic acid monomers in regions other than dots.
  • the photonic crystal IPN array film was put in acetone and immersed in 1M KOH solution for 5 minutes to form a carboxylate to prepare an IPN acetone/KOH array film.
  • IPN acetone/KOH array film it is referred to as IPN acetone/KOH array film.
  • IPN KOH array film It was the same as in Example 1, but was prepared without the treatment of acetone that proceeds after removing the acrylic acid monomer to obtain a photonic crystal IPN array film. Hereinafter, it is referred to as IPN KOH array film.
  • An array sensor was fabricated using the film prepared in Example 1 or Example 2.
  • Example 2 It was the same as in Example 1, but was prepared without the treatment of KOH and acetone that proceed after removing the acrylic acid monomer to obtain a photonic crystal IPN array film. Hereinafter, it is referred to as an untreated IPN array film.
  • the actual Ca 2+ ion concentration in human plasma and saliva was detected using a calcium chromaticity measurement kit (MAK022, Sigma-Aldrich, USA).
  • a calcium chromaticity measurement kit MAK022, Sigma-Aldrich, USA.
  • C Ca free Ca 2+ ions
  • 90 ⁇ L of each chromogenic reagent was added to a cuvette containing 50 ⁇ L of a calcium standard and sample (human serum, saliva). Mix gently.
  • 60 ⁇ L of calcium analysis buffer was additionally added, mixed gently, and reacted at room temperature for 5 to 10 minutes while protecting from light.
  • a cross-sectional image of the photon IPN film was photographed using a field emission scanning electron microscope (FE-SEM, SU8220, Hitachi, Japan) operated with an acceleration voltage of 15 kV.
  • FE-SEM field emission scanning electron microscope
  • the FE-SEM sample was prepared by coating the cracked cross section of the photonic crystal IPN film with platinum.
  • FT-IR spectrum (FT / IR-4100, Japan jaseuko) is to collect the average of 64 scans were obtained with respect to meeting the range of from -1 600-1800cm of 4cm -1 resolution.
  • the UV-Vis spectrum of the CLC film was obtained in the range of 300 to 900 nm by placing the film perpendicular to the beam of a UV-Vis spectrometer (UV-2401PC, Shimadzu Japan).
  • the spot and background UV-Vis spectra of the photonic crystal IPN array were obtained using a screen with a 1 mm hole through which the UV-Vis beam passes.
  • the structure of the photonic crystal IPN array film manufactured according to the present invention was confirmed before and after KOH treatment by analyzing a Fourier transform infrared (FT-IR) spectrum and a scanning electron microscope (SEM) image.
  • FT-IR Fourier transform infrared
  • SEM scanning electron microscope
  • FIG. 2 is an FT-IR spectrum of an IPN array film according to an embodiment or a comparative example of the present invention.
  • Figure 2 (a) is an untreated IPN array film according to Comparative Example 1, (b) is a KOH-treated IPN array film according to Example 2, (c) is acetone / KOH-treated IPN array film according to Example 1 Is the FT-IR spectrum.
  • 3 is a scanning electron microscope (SEM) image of a layer structure of an IPN array film according to an embodiment or a comparative example of the present invention.
  • 3A is an extracted photonic crystal CLC film
  • (b) is an untreated IPN array film according to Comparative Example 1
  • (c) is an IPN KOH array film according to Example 2
  • (d) is according to Example 1. This is an SEM image of the IPN acetone/KOH array film.
  • the structure of the photonic crystal layer appears in all samples by showing the reflected color in all samples. That is, it was confirmed that extraction of dopant, penetration of AA, UV curing, and treatment of KOH or acetone/KOH did not significantly affect the structure of the regular photonic crystal layer.
  • each layer represents P/2 and P is the helical pitch.
  • the measured P values were 260 nm, 282 nm, 290 nm and 306 nm for the dopant extraction film and untreated IPN, IPN KOH and IPN acetone/KOH array films, respectively.
  • the degree of swelling increased in the order of dopant extraction film, untreated IPN, IPN KOH, and IPN acetone/KOH array film. This is a result of reflecting the P value measured from the SEM image.
  • the color and UV-Vis spectrum of the array film according to the dry/wet state, different pH, and different amounts of Ca 2+ were analyzed.
  • 4 is a photograph of a dry or wet state of an IPN array film according to an embodiment or a comparative example of the present invention.
  • 4(i) is an IPN array film according to Comparative Example 1 in a dry state
  • (ii) is an IPN array film according to Example 2 in a dry state
  • (iii) is an IPN array film according to Example 1 in a dry state
  • (iv) is an IPN array film according to Comparative Example 1 in a wet state
  • (v) is an IPN array film according to Example 2 in a wet state
  • (vi) is a photograph of an IPN array film according to Example 1 in a wet state And UV-vis spectrum.
  • 5A and 5B are UV-Vis spectra and ⁇ PBG according to pH of the IPN array film according to Comparative Example 1 of the present invention, respectively.
  • FIG. 5A As the pH increases, the reflected color changes from blue to green and continuously to red. The change to red is due to the increase in helical pitch as the entangled PAA expands.
  • the photonic crystal IPN film was immersed in 1M KOH aqueous solution (IPN array film according to Example 2).
  • IPN array film 1M KOH aqueous solution
  • the penetration of K + ions into the IPN film breaks the hydrogen bonds between carboxyl groups in the PAA network by forming the corresponding salt (COO-K + ) and the film can absorb more water.
  • the photon IPN array film was swollen in acetone, a good solvent of CLC solid , before immersion in 1M KOH aqueous solution (IPN array film according to Example 1).
  • IPN array film a good solvent of CLC solid
  • K + ions can easily penetrate the film.
  • the IPN acetone/KOH array film after acetone/KOH treatment showed red dots on a blue background in a wet state, and when the film was dried, the original blue dots were restored. That is, it was confirmed that all reflected colors including red can be obtained as a result of the application of the acetone/KOH treatment.
  • FIG. 6 is a photograph of a dry state and a wet state of an acetone-treated IPN array film according to an embodiment of the present invention.
  • (i) is a film in a dry state and
  • (ii) is a film in a wet state. It was confirmed that when the photonic crystal IPN array film was immersed in acetone, the CLC structure expanded, the color of the IPN dots changed to dark green and the background color changed to green.
  • 7A and 7B are UV-Vis spectra of dots in a dry or wet state of an array film according to an embodiment and a comparative example of the present invention, respectively.
  • 7A is a spectrum of a dot in an air-drying state
  • FIG. 7B is a spectrum of a dot in a wet state.
  • Each (i) is an array film according to Comparative Example 1
  • (ii) is an array film according to Example 2
  • (iii) is a result of an array film according to Example 1. Referring to FIG. 7, it can be seen that when the film is dried, the ⁇ PBG value is restored to the ⁇ PBG value of the untreated IPN array film.
  • the difference between ⁇ PBG in the wet and dry states was 150 nm or more.
  • RH relative humidity
  • the reflected color is highly dependent on the expansion of the photonic crystal structure.
  • the expansion of the photonic crystal structure is controlled by the amount of divalent ions complexed to the IPN array film.
  • the carboxy group of the IPN film can be converted into a metal salt, and when a divalent ion is used, a bridge can be formed between the carboxy groups.
  • FIG. 9 shows the change in the spiral pitch of CLC by KOH and CaCl 2 aqueous solution.
  • Ca 2+ which is a divalent ion, breaks hydrogen bonds to form a crosslinked structure
  • the spiral pitch is expanded and contracted.
  • the degree of expansion can be controlled through the number of crosslinked structures, and the color of the IPN acetone/KOH-CaCl2 array film can be determined. Accordingly, the film of the present invention can be used for hidden images that generate various colors.
  • Example 10 is a photograph of an array film according to Example 1 of the present invention treated with 1mM, 3mM, and 8mM CaCl 2 aqueous solution and then exposed to human breath (high humidity).
  • the letters K, N, and U exposed to a moist environment produced yellow K, green N and blue U, respectively.
  • the letter "U” treated with 8mM CaCl 2 showed no color change before and after exposure to high humidity. This can be seen as a result of all carboxylate groups being combined with Ca 2+ ions.
  • the formation of cross-links with all carboxylates inhibited the absorption of water and expansion of IPN. In other words, it was confirmed that the number of crosslinked structures was controlled according to the amount of calcium ions, and various images could be generated using the colors displayed through them.
  • FIG. 11 is a photograph showing a color change of an image included in the array film according to Example 1 of the present invention. Referring to FIG. 11, it was confirmed that the letter "KNU" changed from blue (i) to red (ii) after exposure to moisture due to human breathing. That is, the image can be hidden on the label made of the IPN acetone/KOH film of the present invention, and a genuine product can be used as a security label to easily distinguish a genuine product from a counterfeit product by using human breath.
  • crosslinked structure of the IPN array film prepared according to the present invention could be removed by HNO 3 treatment as shown in Formula 1 below.
  • FIG. 13 is a photograph after treatment of CaCl 2 , HNO 3 and KOH four times in a row on the array film according to an embodiment of the present invention.
  • (a) to (d) show the results according to 1 to 4 cycles, (i) after treatment with 2mM CaCl 2 , (ii) after drying, and (iii) after treatment with HNO 3 (0.1M)
  • (iv) is a photograph of a film after acetone treatment, and (v) is a KOH treatment.
  • the IPN acetone/KOH array film needs to be checked for pH dependence. In order to confirm the pH dependence of the array film according to the present invention, it was confirmed whether hydrogen bonds were maintained at different pH values and the change in reflected color accordingly. The results were analyzed based on the color of the dots of the array film, the UV-Vis spectrum, and ⁇ PBG .
  • the carboxyl group of the array film according to the present invention has a pKa of about 4.3.
  • 15A and 15B are UV-Vis spectrum and ⁇ PBG according to pH of an IPN array film according to an embodiment of the present invention, respectively.
  • the ⁇ PBG according to the pH of the IPN KOH array film was similar to that of the untreated photonic crystal IPN array film, except that the ⁇ PBG value shifted red at the same pH value.
  • acetone/KOH was treated according to the present invention, there was no particular change in the dependence of pH, so that it could be used for sensors and other applications.
  • the time at which the color change appears after treatment with CaCl 2 or water was measured.
  • 16 is a UV-Vis spectrum over time after CaCl 2 is treated on an array film according to an embodiment of the present invention. After dropping the 2mM CaCl 2 aqueous solution on the dots, the color change of the 2 ⁇ 2 IPN acetone/KOH array film was observed. Referring to FIG. 16, the reflective color of the red photonic crystal completely turned green within 20 minutes.
  • FIG. 17 is a photograph showing a change in color reflected after dropping water on an array film according to an embodiment of the present invention.
  • (a) is an array film according to Example 1 treated with acetone/KOH
  • (b) is an array film according to Example 2 treated with only KOH.
  • (i) is a photograph of the film immediately after exposure to water, (ii) is 1 minute, (iii) is 10 minutes, (iv) is 30 minutes, (v) is 50 minutes, and (vi) is 60 minutes.
  • the change from blue dot (i) to red dot (ii) was within 1 minute, but the array film (b) according to Example 2 was blue dot In the color change of (i), it took 10 minutes for the outer part of the dot and 50 minutes for the center, and a much longer time (60 minutes) was required to induce a complete color change of the entire dot. The color of was also green. That is, it was confirmed that the acetone treatment can accelerate the water absorption process.
  • the array film of the present invention was tested in various volumes to confirm the difference in the effect according to the volume and concentration of the Ca 2+ sample.
  • CaCl 2 treatment of the present invention The array film is hereinafter referred to as an IPN acetone/KOH-CaCl2 array film.
  • 18A is a UV-Vis spectrum measured after treating an array film with various volumes of CaCl 2 according to an embodiment of the present invention.
  • 3 mM CaCl 2 aqueous solution was treated by 1.2 ⁇ L, 1.7 ⁇ L, 2.2 ⁇ L, 2.7 ⁇ L, 3.2 ⁇ L, 3.7 ⁇ L, 4.2 ⁇ L and 4.7 ⁇ L, respectively.
  • FIG. 18A it was confirmed that as the capacity of the CaCl 2 aqueous solution increased, more Ca 2+ ions were absorbed by the dots, and thus the ⁇ PBG value decreased.
  • C Ca was 0mM, 0.4mM, 0.8mM, 2.0mM, 2.5mM, 3.0mM, 3.5mM, 4.0mM and 5.0mM, respectively.
  • ⁇ PBG continuously decreased with the increase of C Ca up to 3.4 mM
  • the degree of expansion was inversely proportional to the amount of Ca 2+ and saturated at C Ca > 3.4 mM.
  • the detection limit (LOD) and a linear range were obtained from the plot of C Ca versus ⁇ in which the ⁇ PBG value decreases as a result of the addition of the Ca 2+ aqueous solution.
  • the calculated LOD was 0.0142 mM in the linear range of 0.05 to 5 mM.
  • the maximum detection limit of Ca 2+ confirmed by this experiment was also 3.4 mM. Through this, it was confirmed that images of various colors can be displayed using the array film according to the present invention within the detection limit range.
  • hypocalcemia-i and hypocalcemia-ii were prepared by diluting 2 times and 3 times with water, respectively, and hypercalcemia samples were prepared by mixing human plasma and saliva (0.1 mL) with CaCl 2 aqueous solution (6 mM, 0.1 mL). Ready. Since the total calcium concentration of healthy humans was 2.2 ⁇ 2.6mM in plasma and 1.3 ⁇ 1.8mM in saliva, the plasma and saliva of normal samples were prepared at 2.45 mM and 1.53 mM, respectively.
  • the C Ca values for hypocalcemia-i, hypocalcemia-ii, normal and hypercalcemia plasma were 1.22mM, 0.81mM, 2.45mM and 4.22mM, respectively, hypocalcemia-i, hypocalcemia-ii, normal and The C Ca values for high calcium saliva were 0.76mM, 0.51mM, 1.53mM and 3.76mM, respectively.
  • 19A and 19B are UV-Vis spectra and photographs of an array film according to an embodiment of the present invention treated with plasma and saliva of hypocalcemia-i, hypocalcemia-ii, and normal and hypercalcemia, respectively.
  • 19A is a result for plasma
  • FIG. 19B is a result for saliva.
  • ⁇ PBG of the plasma sample appears at 517 nm in the case of a normal plasma sample, and the hypocalcemia-i and hypokalemia-ii samples are shown with red shifts to 556 nm and 532 nm, respectively, and the hypercalcemia sample is blue at 493 nm. Appeared on the side.
  • ⁇ PBG of the saliva sample was shown at 524 nm in the case of a normal saliva sample, the hypocalcemia-i and hypocalcemia-ii samples were shown at 552 nm and 564 nm, respectively, and the hypercalcemia saliva sample appeared at 478 nm.
  • the level of normal calcium in the serum and saliva of a healthy person exists in the effective area of the array film according to the present invention, so that the reflected color can be changed according to the concentration. That is, it was confirmed that the array film of the present invention can be used as a biosensor for detecting calcium in human plasma and saliva.
  • 20A and 20B are respectively FeCl 2 ⁇ 4H 2 O, Zn(NO 3 ) 2 ⁇ 6H 2 O, Cu(NO 3 ) 2 ⁇ 3H 2 O, Mg(NO 3 ) 2 ⁇ 6H 2 O, NaNO 3 and A photograph of an array film according to an embodiment of the present invention treated with an aqueous solution of CaCl 2 , a change in wavelength, and a UV-Vis spectrum. Each was treated with a concentration of 4 mM (NaNO 3 was used as equivalent to a divalent metal, and was immersed in water).
  • the film including the crosslinked structure did not swell easily and the reflected color changed to blue when immersed in water. Since the monovalent ion Na + cannot form a crosslinked structure, the difference between the presence and absence of a metal ion was smaller than that of the divalent ion.
  • the IPN acetone/KOH array film which was initially red, was treated with divalent metal ions such as Fe 2+ , Zn 2+ , Cu 2+ , Mg 2+ and Ca 2+ A blue shift appeared.
  • divalent metal ions such as Fe 2+ , Zn 2+ , Cu 2+ , Mg 2+ and Ca 2+ A blue shift appeared.
  • the ⁇ value decreased in the order of Ca 2+ > Mg 2+ > Fe 2+ > Zn 2+ > Cu 2+ . It was confirmed that the largest blue shift occurred when Ca 2+ was added.
  • the second most common ion in human saliva after Ca 2+ is Mg 2+ .
  • the interference from Mg 2+ was confirmed by using 4 sets of samples.
  • the concentrations of Ca 2+ and Mg 2+ were expressed in mM (C Ca , C Mg ).
  • C Ca, C Mg (1, 0), (2.2, 0), (3.5, 0)
  • ⁇ PBG values of Set I were 575 nm, 527 nm, and 496 nm, respectively, and ⁇ PBG values of Set II were 535 nm, 526 nm, and 492 nm, respectively. There was no significant difference in the results of sets I and II.
  • the ⁇ PBG values for Set III were 529 nm, 525 nm and 518 nm, respectively, and the ⁇ PBG values for Set IV were 635 nm, 627 nm and 591 nm, respectively.
  • the array film according to the present invention has selectivity and sensitivity to calcium ions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention relates to a humidity-responsive photonic crystal composite, a method for preparing same, and a sensor using same and, more specifically, to: a photonic crystal composite having humidity responsiveness and an IPN structure, in which, by including a photonic crystal structure, which is prepared by UV curing a reactive CLC mixture and then removing a non-reactive chiral dopant, and hydrogel and a salt that permeate into the internal space of the photonic crystal structure, various colors are reflected according to the degree of swelling due to moisture; a method for preparing same; and a sensor using same. The photonic crystal composite of the present invention can be effectively used as a humidity sensor and a biosensor since, by controlling the degree of swelling due to moisture, various colors are reflected according to humidity and ions. The method for preparing the photonic crystal composite according to the present invention maximizes swelling according to the absorption of moisture by breaking hydrogen bonds between carboxyl groups of a polymer. The sensor using the photonic crystal composite according to the present invention allows easy detection, with the naked eye, of various colors reflected according to humidity or calcium ions, and can be reused through recovery through acid treatment.

Description

습도 반응성 광결정 복합체, 그 제조방법 및 이를 이용한 센서Humidity-responsive photonic crystal composite, manufacturing method thereof, and sensor using same
본 발명은 습도 반응성 광결정 복합체, 그 제조방법 및 이를 이용한 센서에 관한 것으로, 더욱 상세하게는 반응성 CLC 혼합물을 UV 경화한 후 비반응성 키랄 도판트를 제거하여 제조된 광결정 구조체와 광결정 구조체의 내부 공간에 침투된 하이드로겔 및 염을 포함하여 습기에 팽윤되는 정도에 따라 반사되는 색상이 다양하게 나타나는 습도 반응성을 갖는 IPN 구조의 광결정 복합체, 그 제조방법 및 이를 이용한 센서에 관한 것이다.The present invention relates to a humidity-reactive photonic crystal composite, a method of manufacturing the same, and a sensor using the same, and more particularly, to a photonic crystal structure prepared by removing a non-reactive chiral dopant after UV curing a reactive CLC mixture, and to the inner space of the photonic crystal structure. The present invention relates to a photonic crystal composite having an IPN structure having a humidity reactivity in which various colors reflected according to the degree of swelling by moisture, including the infiltrated hydrogel and salt, and a method of manufacturing the same, and a sensor using the same.
바이오센서는 의료용도, 환경적 용도, 식품용도, 군사적 용도, 산업적 용도 등 다양한 분야에 응용이 가능하다. 하지만 현재까지 적용하고 있는 바이오센서 기술은 검출하고자 하는 바이오 물질 인식을 위해서 다량의 샘플이 요구된다. 또한, 샘플을 분석하기 위하여, 분석물 투입단계, 신호 발생 단계, 신호 증폭 단계, 복잡한 분석 결과 해석 단계 등 매우 복잡한 과정을 거쳐야만 하는 번거로움이 있고, 실생활에 적용하기에 매우 고가의 비용이 든다.The biosensor can be applied to various fields such as medical use, environmental use, food use, military use, industrial use. However, the biosensor technology applied to date requires a large amount of samples to recognize the biomaterial to be detected. In addition, in order to analyze a sample, there is a hassle of having to go through a very complex process such as an analyte input step, a signal generation step, a signal amplification step, a complex analysis result interpretation step, etc., and it is very expensive to apply to real life.
바이오센서 중에서 습도를 감지하는 센서는 습도 검출을 위하여 염을 포함하고 있는 비닐단량체들의 중합에 의하여 얻어지는 전해질 고분자를 이용하고 있다. 그러나, 대부분의 전해질 고분자는 수용해성이 크기 때문에 장시간 결로상태나 다습한 상태에서 용해되어 경시변화가 생기는 단점을 가지고 있다. 이를 위하여 여러가지 소수성 단량체들과 공중합하거나, 소수성 중합체에 그라프트 공중합하여 전해질을 도입하였다. 또는 일본 공개특허 제 2007-100096 호와 같이 습도 반응성 고분자 공중합물의 IPN 구조를 사용하여 고분자 공중합물의 내수성을 개선하였으나 시각적으로 즉각 감지하기 어려운 문제점이 있다.Among the biosensors, a sensor that detects humidity uses an electrolyte polymer obtained by polymerization of vinyl monomers containing salts to detect humidity. However, since most of the electrolyte polymers have high water solubility, they dissolve in condensation or high humidity for a long period of time, resulting in a change over time. To this end, an electrolyte was introduced by copolymerization with various hydrophobic monomers or by graft copolymerization on a hydrophobic polymer. Alternatively, as in Japanese Patent Laid-Open No. 2007-100096, the water resistance of the polymer copolymer is improved by using the IPN structure of the humidity-reactive polymer copolymer, but there is a problem that it is difficult to detect immediately visually.
이러한 관점에서 생체물질 또는 화학물질의 검출이 용이하고, 특정한 파장에서 빛을 반사하는 광 결정체를 이용하여 배터리 없이 색상(또는 강도) 변화로 시각적인 감지가 가능한 광센서를 제조할 필요성이 있다.From this point of view, there is a need to manufacture an optical sensor capable of visually detecting a change in color (or intensity) without a battery using a photonic crystal that is easy to detect a biological material or a chemical material and reflects light at a specific wavelength.
하이드로겔 폴리머는 물의 흡수(또는 탈착)를 통한 외부 자극의 적용에 의해 체적 변화가 쉽게 생성 될 수 있기 때문에 IPN 구조의 폴리머로 사용될 수 있다. 광 결정체는 콜레스테릭 액정(Cholesteric Liquid Crystal, CLC)이 특정 광학 성질을 부여하는 나선형으로 비틀린 분자 배향을 나타내며, 일차원 광자 구조의 제작이 용이하여 외부 자극에 변화되는 피치를 이용하여 센서로서 사용될 수 있다. 즉, IPN 구조로 침투된 폴리머가 외부 자극에 반응하여 팽창/수축함에 따라 대응하는 CLC에서 색 변화를 유도할 수 있다.The hydrogel polymer can be used as a polymer having an IPN structure because a volume change can be easily generated by the application of an external stimulus through absorption (or desorption) of water. Photonic crystals represent a spirally twisted molecular orientation in which a cholesteric liquid crystal (CLC) gives a specific optical property, and it can be used as a sensor by using a pitch that changes due to external stimuli because it is easy to manufacture a one-dimensional photonic structure. have. That is, as the polymer penetrated into the IPN structure expands/contracts in response to an external stimulus, a color change may be induced in the corresponding CLC.
그러나 팽윤의 정도를 조절하여 다양한 단계의 습도를 감지할 수 있고, 재사용이 가능하도록 하여 센서의 기능적 측면을 향상시킬 필요성이 있다.However, there is a need to improve the functional aspect of the sensor by controlling the degree of swelling so that various levels of humidity can be sensed and reused.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 습도 반응성을 갖는 IPN 구조의 광결정 복합체를 제공하는 것을 목적으로 한다.The present invention was devised to solve the above problems, and an object of the present invention is to provide a photonic crystal composite having an IPN structure having humidity reactivity.
또한, 상기 광결정 복합체의 제조방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method of manufacturing the photonic crystal composite.
또한, 상기 광결정 복합체를 이용하여 습도를 측정하는 방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method of measuring humidity using the photonic crystal composite.
또한, 상기 광결정 복합체를 포함하는 센서를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a sensor including the photonic crystal composite.
상기 목적을 달성하기 위하여 본 발명은,In order to achieve the above object, the present invention,
반응성 CLC(Cholesteric Liquid Crystals) 혼합물을 UV 경화한 후 비반응성 키랄 도판트를 제거하여 제조된 광결정 구조체;A photonic crystal structure prepared by UV curing a reactive CLC (Cholesteric Liquid Crystals) mixture and then removing a non-reactive chiral dopant;
상기 광결정 구조체의 내부 공간에 침투된 하이드로겔; 및A hydrogel penetrating into the inner space of the photonic crystal structure; And
염;을 포함하고, 습도 반응성을 갖는 IPN(Interpenetrating Polymeric Network) 구조의 광결정 복합체를 제공한다.It includes a salt, and provides a photonic crystal complex having an IPN (Interpenetrating Polymeric Network) structure having humidity reactivity.
상기 다른 목적을 달성하기 위하여 본 발명은,In order to achieve the above other object, the present invention,
반응성 CLC 혼합물을 UV 경화한 후 비반응성 키랄 도판트를 제거하여 광결정 구조체를 제조하는 제 1 단계;A first step of UV-curing the reactive CLC mixture and then removing the non-reactive chiral dopant to prepare a photonic crystal structure;
상기 광결정 구조체의 내부 공간에 하이드로겔을 침투시켜 IPN 구조의 복합체를 형성하는 제 2 단계; 및A second step of forming a complex having an IPN structure by penetrating the hydrogel into the inner space of the photonic crystal structure; And
상기 IPN 구조의 복합체를 염과 반응시켜 습도 반응성을 갖는 광결정 복합체를 형성하는 제 3 단계;를 포함하는 습도 반응성을 갖는 광결정 복합체 제조방법을 제공한다.It provides a method for producing a photonic crystal composite having humidity reactivity comprising a third step of reacting the IPN-structured composite with a salt to form a photonic crystal composite having humidity reactivity.
상기 하이드로겔은 아크릴산(Acrlyic acid), 디아크릴레이트(TPGDA) 및 광개시제를 포함할 수 있다.The hydrogel may include acrylic acid, diacrylate (TPGDA), and a photoinitiator.
상기 염은 상기 하이드로겔의 카르복시기와 반응하는 나트륨염 또는 칼륨염일 수 있다.The salt may be a sodium salt or potassium salt that reacts with the carboxyl group of the hydrogel.
상기 또 다른 목적을 달성하기 위하여 본 발명은,In order to achieve the above another object, the present invention,
습도 반응성을 갖는 광결정 복합체를 이용하여 습도를 측정하는 방법을 제공한다.It provides a method of measuring humidity using a photonic crystal composite having humidity reactivity.
상기 또 다른 목적을 달성하기 위하여 본 발명은,In order to achieve the above another object, the present invention,
습도 반응성을 갖는 광결정 복합체를 포함하는 센서를 제공한다.It provides a sensor comprising a photonic crystal composite having humidity reactivity.
상기 센서는 습도센서 또는 칼슘 이온의 검출을 위한 바이오센서일 수 있다.The sensor may be a humidity sensor or a biosensor for detecting calcium ions.
상기 칼슘 이온이 상기 하이드로겔의 카르복시기와 가교 결합을 형성하고, 수축 및 팽창된 하이드로겔이 상기 광결정 구조체의 수축 및 팽창을 유도하여 광 밴드갭의 파장 범위가 변화함으로써 칼슘 이온을 감지할 수 있다.The calcium ions form a cross-link with the carboxyl group of the hydrogel, and the contracted and expanded hydrogel induces contraction and expansion of the photonic crystal structure, thereby changing the wavelength range of the optical band gap, thereby detecting calcium ions.
상기 칼슘 이온은 사람의 혈장 또는 타액의 칼슘 이온을 포함할 수 있다.The calcium ions may include calcium ions in human plasma or saliva.
상기 파장 범위의 변화는 pH 2 내지 12에서 수행될 수 있다.The change in the wavelength range may be performed at pH 2 to 12.
상기 과제의 해결 수단에 의해 본 발명의 광결정 복합체는 습기에 팽윤되는 정도를 조절하여 습도 및 이온에 따라 반사되는 색상이 다양하게 나타나 습도센서 및 바이오센서로 활용할 수 있는 효과가 있다.By means of solving the above problems, the photonic crystal composite of the present invention can be used as a humidity sensor and a biosensor by controlling the degree of swelling in moisture and reflecting colors according to humidity and ions in various ways.
또한, 본 발명의 광결정 복합체 제조방법은 폴리머의 카르복시기 사이의 수소결합을 파괴하여 수분의 흡수에 따른 팽윤을 최대화하며, 제조방법이 간단하고, 제조 비용이 저렴한 효과가 있다.In addition, the method of manufacturing a photonic crystal composite according to the present invention maximizes swelling due to absorption of moisture by destroying hydrogen bonds between carboxyl groups of a polymer, and has an effect that the manufacturing method is simple and the manufacturing cost is low.
또한, 본 발명의 광결정 복합체를 이용한 센서는 습도 또는 칼슘 이온에 따라 다양하게 반사되는 색이 나타나 육안으로 쉽게 감지할 수 있고, 산처리를 통한 회복으로 재사용이 가능한 효과가 있다.In addition, the sensor using the photonic crystal composite of the present invention exhibits various colors reflected according to humidity or calcium ions, so that it can be easily detected by the naked eye, and can be reused through recovery through acid treatment.
도 1은 본 발명에 따른 IPN 어레이 필름의 제조과정을 나타낸 것이다.1 is an IPN according to the present invention It shows the manufacturing process of the array film.
도 2는 본 발명의 일 실시예 또는 비교예에 따른 어레이 필름의 FT-IR 스펙트럼이다.2 is an FT-IR spectrum of an array film according to an embodiment or a comparative example of the present invention.
도 3은 본 발명의 일 실시예 또는 비교예에 따른 어레이 필름의 층 구조에 대한 주사 전자 현미경(SEM) 이미지이다.3 is a scanning electron microscope (SEM) image of a layer structure of an array film according to an embodiment or a comparative example of the present invention.
도 4는 본 발명의 일 실시예 또는 비교예에 따른 어레이 필름의 건조 또는 습윤 상태의 사진이다.4 is a photograph of a dry or wet state of an array film according to an embodiment or a comparative example of the present invention.
도 5a 및 도 5b는 각각 본 발명의 일 비교예에 따른 어레이 필름의 pH에 따른 UV-Vis 스펙트럼과 λPBG이다.5A and 5B are UV-Vis spectra and λ PBG according to pH of an array film according to a comparative example of the present invention, respectively.
도 6은 본 발명의 일 실시예에 따른 아세톤 처리를 한 어레이 필름의 건조 상태와 습윤 상태의 사진이다.6 is a photograph of a dry state and a wet state of an acetone-treated array film according to an embodiment of the present invention.
도 7a 및 도 7b는 각각 본 발명의 일 실시예 및 비교예에 따른 어레이 필름의 건조 또는 습윤 상태 도트의 UV-Vis 스펙트럼이다.7A and 7B are UV-Vis spectra of dots in a dry or wet state of an array film according to an embodiment and a comparative example of the present invention, respectively.
도 8은 본 발명의 일 실시예에 따른 어레이 필름의 서로 다른 상대 습도(RH)에서의 사진이다. 8 is a photograph of an array film according to an embodiment of the present invention at different relative humidity (RH).
도 9는 KOH 및 CaCl2 수용액에 의한 CLC의 나선형 피치 변화를 나타낸 것이다.9 shows the change in the spiral pitch of CLC by KOH and CaCl 2 aqueous solution.
도 10은 본 발명의 일 실시예에 따른 어레이 필름을 각각 1mM, 3mM 및 8mM의 CaCl2 수용액으로 처리한 후 사람의 호흡에 노출한 사진이다.10 is a photograph of an array film according to an embodiment of the present invention treated with 1mM, 3mM, and 8mM CaCl 2 aqueous solution and then exposed to human breath.
도 11은 본 발명의 일 실시예에 따른 어레이 필름에 포함된 이미지의 색상 변화를 나타낸 사진이다.11 is a photograph showing a color change of an image included in an array film according to an embodiment of the present invention.
도 12는 CaCl2와 반응한 본 발명의 일 실시예에 따른 어레이 필름에 HNO3를 처리한 필름의 사진이다.12 is a photograph of a film treated with HNO 3 on an array film according to an embodiment of the present invention reacted with CaCl 2 .
도 13은 본 발명의 일 실시예에 따른 어레이 필름에 CaCl2, HNO3 및 KOH를 4회 연속으로 처리한 후의 사진이다.13 is a photograph after treatment of CaCl 2 , HNO 3 and KOH four times in a row on the array film according to an embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따른 어레이 필름의 상이한 pH 값에서의 사진이다. 14 is a photograph of an array film according to an embodiment of the present invention at different pH values.
도 15a 및 도 15b는 각각 본 발명의 일 실시예에 따른 어레이 필름의 pH에 따른 UV-Vis 스페트럼과 λPBG이다.15A and 15B are UV-Vis spectrum and λ PBG according to pH of an array film according to an embodiment of the present invention, respectively.
도 16은 본 발명의 일 실시예에 따른 어레이 필름에 CaCl2를 처리한 후 시간에 따른 UV-Vis 스펙트럼이다.16 is a UV-Vis spectrum over time after CaCl 2 is treated on an array film according to an embodiment of the present invention.
도 17은 본 발명의 일 실시예에 따른 어레이 필름에 물을 떨어뜨린 후 반사된 색의 변화를 나타낸 사진이다.17 is a photograph showing a change in color reflected after dropping water on an array film according to an embodiment of the present invention.
도 18a 및 도 18b는 각각 본 발명의 일 실시예에 따른 어레이 필름에 다양한 용적과 농도의 CaCl2를 처리한 후 측정한 UV-Vis 스펙트럼이다.18A and 18B are UV-Vis spectra measured after treating an array film according to an embodiment of the present invention with CaCl 2 of various volumes and concentrations, respectively.
도 19a 및 도 19b는 각각 저칼슘 혈증-i, 저칼슘 혈증-ii, 정상 및 고칼슘 혈증의 혈장과 타액으로 처리된 본 발명의 일 실시예에 따른 어레이 필름의 UV-Vis 스펙트럼과 사진이다.19A and 19B are UV-Vis spectra and photographs of an array film according to an embodiment of the present invention treated with plasma and saliva of hypocalcemia-i, hypocalcemia-ii, and normal and hypercalcemia, respectively.
도 20a 및 도 20b는 각각 FeCl2·4H2O, Zn(NO3)2·6H2O, Cu(NO3)2·3H2O, Mg(NO3)2·6H2O, NaNO3 및 CaCl2의 수용액으로 처리된 본 발명의 일 실시예에 따른 어레이 필름의 사진, 파장의 변화량, UV-Vis 스펙트럼이다.20A and 20B are respectively FeCl 2 ·4H 2 O, Zn(NO 3 ) 2 ·6H 2 O, Cu(NO 3 ) 2 ·3H 2 O, Mg(NO 3 ) 2 ·6H 2 O, NaNO 3 and A photograph of an array film according to an embodiment of the present invention treated with an aqueous solution of CaCl 2 , a change in wavelength, and a UV-Vis spectrum.
도 21은 본 발명의 일 실시예에 따른 어레이 필름과 CCa, CMg 값이 다른 각각의 세트와의 반응결과를 나타낸 사진이다. 21 is a photograph showing a reaction result of an array film according to an embodiment of the present invention and each set having different C Ca and C Mg values.
도 22는 본 발명의 일 실시예에 따른 어레이 필름과 CCa, CMg 값이 다른 각각의 세트와의 반응결과를 나타낸 UV-Vis 스펙트럼이다.22 is a UV-Vis spectrum showing a reaction result between an array film according to an embodiment of the present invention and each set having different C Ca and C Mg values.
이하, 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 측면에 따르면, 반응성 CLC(Cholesteric Liquid Crystals) 혼합물을 UV 경화한 후 비반응성 키랄 도판트를 제거하여 제조된 광결정 구조체; 상기 광결정 구조체의 내부 공간에 침투된 하이드로겔; 및 염;을 포함하고, 습도 반응성을 갖는 IPN(Interpenetrating Polymeric Network) 구조의 광결정 복합체를 제공한다.According to an aspect of the present invention, a photonic crystal structure prepared by removing a non-reactive chiral dopant after UV curing a reactive CLC (Cholesteric Liquid Crystals) mixture; A hydrogel penetrating into the inner space of the photonic crystal structure; And a salt; It provides a photonic crystal complex having a humidity reactivity of the IPN (Interpenetrating Polymeric Network) structure.
먼저 반응성 CLC 혼합물로 제조되는 광결정 구조체에 대하여 설명한다.First, a photonic crystal structure made of a reactive CLC mixture will be described.
CLC는 콜레스테릭 액정(cholesteric liquid crystals)이다. 광결정체 중에서 콜레스테릭 액정은 특정 광학 성질을 부여하는 나선형으로 비틀린 분자 배향을 나타내며, 일차원 광자 구조의 제작이 용이한 장점이 있다.CLC are cholesteric liquid crystals. Among photonic crystals, cholesteric liquid crystals exhibit a spirally twisted molecular orientation that imparts specific optical properties, and have the advantage of being easy to fabricate a one-dimensional photon structure.
콜레스테릭 액정의 반사 파장은 λ=n×P×cosθ로 나타낼 수 있다.The reflection wavelength of the cholesteric liquid crystal can be expressed as λ=n×P×cosθ.
콜레스테릭 액정이 비편광으로 조사되는 경우는, 선택된 파장의 입사광과 나선 구조의 상호 작용으로 인해 주어진 핸디니스(handiness)의 환형 편광(나선의 핸디니스에 따라 왼손 방향으로 감기거나 오른손 방향으로 감김)으로서 이의 강도의 50%가 반사되고, 나머지 50%는 반대 핸디니스의 환형 편광으로서 전달된다.When the cholesteric liquid crystal is irradiated with unpolarized light, circular polarization of a given handiness due to the interaction between the incident light of the selected wavelength and the spiral structure (winding in the left-hand direction or winding in the right-hand direction depending on the handiness of the spiral) ), 50% of its intensity is reflected, and the remaining 50% is transmitted as annular polarization of opposite handiness.
또한, 콜레스테릭 액정 물질의 평균 굴절 지수(n)가 일정하면, 상기 콜레스테릭 액정의 반사 파장(λ)은 나선의 피치(P)에 의존하게 된다. 즉, 콜레스테릭 광학 물질은 나선의 피치에 의해 선택적인 광 반사를 나타냄에 따라 독특한 반사 패턴을 나타내기 때문에 상기 CLC는 외부 자극에 변화되는 피치를 이용하여 센서로서 사용될 수 있다.In addition, when the average refractive index (n) of the cholesteric liquid crystal material is constant, the reflection wavelength (λ) of the cholesteric liquid crystal material is dependent on the pitch P of the spiral. That is, since the cholesteric optical material exhibits a unique reflection pattern as it exhibits selective light reflection by the pitch of the helix, the CLC can be used as a sensor using a pitch that is changed by an external stimulus.
광결정 구조체는 비반응성 키랄 도판트와 반응성 네마틱 메조겐을 혼합 및 경화한 후 키랄 도판트를 제거하여 제조할 수 있다.The photonic crystal structure may be prepared by mixing and curing a non-reactive chiral dopant and a reactive nematic mesogen, and then removing the chiral dopant.
비반응성 키랄 도판트는 C15, CB15, CM21, R/S-811, CM44, CM45, CM47, R/S-2011, R/S-3011, R/S-4011, R/S-5011 및 R/S-1011로 이루어진 군 중에서 선택되는 어느 하나의 도판트인 것을 특징으로 하며, 바람직하게는 CB15 ((S)-4-cyano-4'-(2-methylbutyl)biphenyl)을 사용할 수 있다.Non-reactive chiral dopants are C15, CB15, CM21, R/S-811, CM44, CM45, CM47, R/S-2011, R/S-3011, R/S-4011, R/S-5011 and R/S It is characterized in that any one dopant selected from the group consisting of -1011, and preferably CB15 ((S)-4-cyano-4'-(2-methylbutyl)biphenyl) may be used.
반응성 네마틱 메조겐은 RM 82, RM 257, RM308 및 RMM727로 이루어진 군 중에서 선택되는 어느 하나의 메조겐인 것을 특징으로 하며, 바람직하게는 RMM727을 사용할 수 있다.The reactive nematic mesogen is characterized in that it is any one mesogen selected from the group consisting of RM 82, RM 257, RM308, and RMM727, and preferably RMM727 may be used.
RMM727은 아크릴로일록시기(acryloyloxy), 1,6-헥사메틸렌디올 디아크릴레이트, (2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one)을 포함하는 혼합물이며, 상기 아크릴로일록시기를 포함하는 물질로 반응성 아크릴로일록시 메조겐 APBMP, AHBCP, AHBMP 및 AHBPCHP을 사용할 수 있다.RMM727 is a mixture containing acryloyloxy group, 1,6-hexamethylenediol diacrylate, (2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one), and the acrylic Reactive acryloyloxy mesogen APBMP, AHBCP, AHBMP, and AHBPCHP may be used as a material containing a loyloxy group.
광결정 구조체로부터 키랄 도판트가 제거되었음에도 불구하고 나선 구조형태를 그대로 유지할 수 있고, 콜레스테릭 액정과 같은 빛 반사 특성을 나타낼 수 있다. 이에, 외부 자극에 의해 피치가 변화되어 육안으로도 쉽게 확인할 수 있도록 변화된 반사색을 나타낼 수 있는 특징이 있다.Although the chiral dopant has been removed from the photonic crystal structure, the helical structure can be maintained as it is and can exhibit light reflection characteristics like cholesteric liquid crystals. Accordingly, the pitch is changed by the external stimulus, so that the reflected color can be displayed so that it can be easily checked with the naked eye.
다음으로 광결정 구조체의 내부 공간에 침투되는 하이드로겔에 대하여 설명한다.Next, the hydrogel penetrating into the inner space of the photonic crystal structure will be described.
하이드로겔은 아크릴산(Acrlyic acid), 디아크릴레이트(TPGDA) 및 광개시제를 포함할 수 있다. The hydrogel may include acrylic acid, diacrylate (TPGDA), and a photoinitiator.
TPDGDA는 PAA 하이드로겔 액적의 최대 팽창을 유도하는 가교 결합제로 사용될 수 있다.TPDGDA can be used as a crosslinking agent to induce maximum expansion of PAA hydrogel droplets.
광개시제는 UV 또는 UV-Vis를 흡수하여 자유 라디칼을 생성하는 분자를 포함한다. 단일 광개시제가 사용될 수 있거나 광개시제들의 혼합물들이 사용될 수 있다. 광개시제는 광개시제의 흡수 파장이 개시를 위해 사용되는 광원의 방출 파장과 겹치도록 선택될 수 있다.Photoinitiators include molecules that absorb UV or UV-Vis to generate free radicals. A single photoinitiator may be used or mixtures of photoinitiators may be used. The photoinitiator may be selected such that the absorption wavelength of the photoinitiator overlaps the emission wavelength of the light source used for initiation.
광개시제의 부류에는 α-히드록시 케톤이 포함된다. 상기 부류 중의 광개시제의 시판 예로는 이르가큐어(Irgacure)가 있다.The class of photoinitiators includes α-hydroxy ketones. A commercial example of a photoinitiator of this class is Irgacure.
하이드로겔은 광결정 구조체에 침투하여 IPN 구조를 형성한다.The hydrogel penetrates the photonic crystal structure and forms an IPN structure.
IPN 구조는 상호침투 중합체 네트워크(Interpenetrating Polymer Network, IPN)이다. IPN은 분자 규모에서 적어도 부분적으로 비월(interlaced)되어 있지만 서로 공유 결합되지 않고 화학적 결합이 끊어지지 않는 한 분리될 수 없는 2개 이상의 망을 포함하는 중합체이다. 기 형성된 가교구조에 단량체를 침투시키고, 침투된 단량체끼리 제 2의 가교구조를 형성하므로써 제조될 수 있다.The IPN structure is an Interpenetrating Polymer Network (IPN). IPNs are polymers comprising two or more networks that are at least partially interlaced on a molecular scale but cannot be separated unless covalently bonded to each other and chemical bonds are broken. It can be produced by infiltrating a monomer into a previously formed crosslinked structure, and forming a second crosslinked structure between the impregnated monomers.
마지막으로 염에 대해 설명한다.Finally, salt is explained.
염은 하이드로겔의 카르복시기와 반응할 수 있다. 이 반응은 카르복시기(carboxyl group)와 염의 산염기 반응으로, 하이드로겔의 카르복시기의 pKa(약 4.3)를 고려하여 염을 선택할 수 있다. 바람직하게는 나트륨염 또는 칼륨염일 수 있고, 더욱 바람직하게는 NaOH 또는 KOH일 수 있다.Salts can react with the carboxyl groups of the hydrogel. This reaction is a reaction between a carboxyl group and an acid group of a salt, and a salt can be selected in consideration of the pKa (about 4.3) of the carboxyl group of the hydrogel. Preferably it may be a sodium salt or a potassium salt, more preferably NaOH or KOH.
하이드로겔의 카르복시기는 수소결합을 형성하여 수분에 따른 팽윤을 제한한다. 이 하이드로겔에 염을 처리하면 카르복시기 사이의 수소결합을 깨고 복합체(complex)를 형성할 수 있다. 수소결합이 끊어진 하이드로겔은 습도에 따라 팽윤의 정도가 달라질 수 있다.Hydrogel carboxyl groups form hydrogen bonds to limit swelling due to moisture. If the hydrogel is treated with a salt, hydrogen bonds between carboxyl groups can be broken and a complex can be formed. Hydrogels with broken hydrogen bonds may have different degrees of swelling depending on humidity.
본 발명의 다른 일 측면에 따르면, 반응성 CLC 혼합물을 UV 경화한 후 비반응성 키랄 도판트를 제거하여 광결정 구조체를 제조하는 제 1 단계; 상기 광결정 구조체의 내부 공간에 하이드로겔을 침투시켜 IPN 구조의 복합체를 형성하는 제 2 단계; 및 상기 IPN 구조의 복합체를 염과 반응시켜 습도 반응성을 갖는 광결정 복합체를 형성하는 제 3 단계;를 포함하는 습도 반응성을 갖는 광결정 복합체 제조방법을 제공한다.According to another aspect of the present invention, a first step of preparing a photonic crystal structure by removing a non-reactive chiral dopant after UV curing a reactive CLC mixture; A second step of forming a complex having an IPN structure by penetrating the hydrogel into the inner space of the photonic crystal structure; And a third step of forming a photonic crystal composite having humidity reactivity by reacting the IPN-structured composite with a salt. It provides a method for producing a photonic crystal composite having humidity reactivity.
먼저 광결정 구조체를 제조하는 제 1 단계에 대하여 설명한다.First, a first step of manufacturing a photonic crystal structure will be described.
평행하게 쌓인 두 개의 기판 사이에 비반응성 키랄 도판트와 반응성 네마틱 메조겐을 혼합한 혼합물을 주입 및 경화한 후, 상부 기판을 제거하고 키랄 도판트를 제거하여 광결정 구조체를 얻을 수 있다.A photonic crystal structure can be obtained by injecting and curing a mixture of a non-reactive chiral dopant and a reactive nematic mesogen between two substrates stacked in parallel, and then removing the upper substrate and removing the chiral dopant.
비반응성 키랄 도판트는 C15, CB15, CM21, R/S-811, CM44, CM45, CM47, R/S-2011, R/S-3011, R/S-4011, R/S-5011 및 R/S-1011로 이루어진 군 중에서 선택되는 어느 하나의 도판트인 것을 특징으로 하며, 바람직하게는 CB15 ((S)-4-cyano-4'-(2-methylbutyl)biphenyl)을 사용할 수 있다.Non-reactive chiral dopants are C15, CB15, CM21, R/S-811, CM44, CM45, CM47, R/S-2011, R/S-3011, R/S-4011, R/S-5011 and R/S It is characterized in that any one dopant selected from the group consisting of -1011, and preferably CB15 ((S)-4-cyano-4'-(2-methylbutyl)biphenyl) may be used.
반응성 네마틱 메조겐은 RM 82, RM 257, RM308 및 RMM727로 이루어진 군 중에서 선택되는 어느 하나의 메조겐인 것을 특징으로 하며, 바람직하게는 RMM727을 사용할 수 있다.The reactive nematic mesogen is characterized in that it is any one mesogen selected from the group consisting of RM 82, RM 257, RM308, and RMM727, and preferably RMM727 may be used.
RMM727은 RMM727은 아크릴로일록시기(acryloyloxy), 1,6-헥사메틸렌디올 디아크릴레이트, (2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one)을 포함하는 혼합물이며, 상기 아크릴로일록시기를 포함하는 물질로 반응성 아크릴로일록시 메조겐 APBMP, AHBCP, AHBMP 및 AHBPCHP을 사용할 수 있다.RMM727 is a mixture containing RMM727 acryloyloxy group (acryloyloxy), 1,6-hexamethylenediol diacrylate, (2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one), As the material containing the acryloyloxy group, reactive acryloyloxy mesogen APBMP, AHBCP, AHBMP and AHBPCHP may be used.
다음으로 IPN 구조의 복합체를 형성하는 제 2 단계에 대하여 설명한다.Next, a second step of forming an IPN-structured composite will be described.
하이드로겔은 AA(Acrlyic acid), 디아크릴레이트(TPGDA) 및 광개시제를 포함할 수 있다.The hydrogel may include AA (Acrlyic acid), diacrylate (TPGDA) and a photoinitiator.
TPDGDA는 PAA 하이드로겔 액적의 최대 팽창을 유도하는 가교 결합제로 사용될 수 있다.TPDGDA can be used as a crosslinking agent to induce maximum expansion of PAA hydrogel droplets.
광개시제는 UV 또는 UV-Vis를 흡수하여 자유 라디칼을 생성하는 분자를 포함한다. 단일 광개시제가 사용될 수 있거나 광개시제들의 혼합물들이 사용될 수 있다. 광개시제는 광개시제의 흡수 파장이 개시를 위해 사용되는 광원의 방출 파장과 겹치도록 선택될 수 있다.Photoinitiators include molecules that absorb UV or UV-Vis to generate free radicals. A single photoinitiator may be used or mixtures of photoinitiators may be used. The photoinitiator may be selected such that the absorption wavelength of the photoinitiator overlaps the emission wavelength of the light source used for initiation.
하이드로겔은 광결정 구조체에 침투하여 IPN 구조를 형성한다.The hydrogel penetrates the photonic crystal structure and forms an IPN structure.
IPN 구조는 상호침투 중합체 네트워크(Interpenetrating Polymer Network, IPN)이다. IPN은 분자 규모에서 적어도 부분적으로 비월(interlaced)되어 있지만 서로 공유 결합되지 않고 화학적 결합이 끊어지지 않는 한 분리될 수 없는 2개 이상의 망을 포함하는 중합체이다. 기 형성된 가교구조에 단량체를 침투시키고, 침투된 단량체끼리 제 2의 가교구조를 형성하므로써 제조될 수 있다.The IPN structure is an Interpenetrating Polymer Network (IPN). IPNs are polymers comprising two or more networks that are at least partially interlaced on a molecular scale but cannot be separated unless covalently bonded to each other and chemical bonds are broken. It can be produced by infiltrating a monomer into a previously formed crosslinked structure, and forming a second crosslinked structure between the impregnated monomers.
마지막으로 염과 반응하여 습도 반응성을 갖는 광결정 복합체를 형성하는 제 3 단계에 대하여 설명한다.Finally, a third step of reacting with a salt to form a photonic crystal complex having humidity reactivity will be described.
염은 하이드로겔의 카르복시기와 반응할 수 있다. 이 반응은 카르복시기(carboxyl group)와 염의 산염기 반응으로, 하이드로겔의 카르복시기의 pKa(약 4.3)을 고려하여 염을 선택할 수 있다. 바람직하게는 나트륨염 또는 칼륨염일 수 있고, 더욱 바람직하게는 NaOH 또는 KOH일 수 있다.Salts can react with the carboxyl groups of the hydrogel. This reaction is a reaction between a carboxyl group and an acid group of a salt, and a salt can be selected in consideration of the pKa (about 4.3) of the carboxyl group of the hydrogel. Preferably it may be a sodium salt or a potassium salt, more preferably NaOH or KOH.
하이드로겔의 카르복시기는 수소결합을 형성하여 수분에 따른 팽윤을 제한한다. 이 하이드로겔에 염을 처리하면 카르복시기 사이의 수소결합을 깨고 복합체(complex)를 형성할 수 있다. 수소결합이 끊어진 하이드로겔은 습도에 따라 팽윤의 정도가 달라질 수 있다.Hydrogel carboxyl groups form hydrogen bonds to limit swelling due to moisture. If the hydrogel is treated with a salt, hydrogen bonds between carboxyl groups can be broken and a complex can be formed. Hydrogels with broken hydrogen bonds may have different degrees of swelling depending on humidity.
나아가 팽윤의 범위를 확장하기 위하여 아세톤(acetone)의 처리를 더 포함할 수 있다.Furthermore, a treatment with acetone may be further included in order to expand the range of swelling.
또한 산처리 과정을 더 포함할 수 있다. 산처리를 통해 하이드로겔의 카르복시기를 회복하고, 다시 염처리 및 이온처리를 진행할 수 있다.In addition, an acid treatment process may be further included. The carboxy group of the hydrogel may be recovered through acid treatment, and salt treatment and ion treatment may be performed again.
본 발명의 또 다른 일 측면에 따르면, 습도 반응성을 갖는 광결정 복합체를 이용하여 습도를 측정하는 방법을 제공한다.According to another aspect of the present invention, a method of measuring humidity using a photonic crystal composite having humidity reactivity is provided.
IPN 구조의 광결정 복합체는 염처리에 따라 카르복시기 사이의 수소결합이 파괴된다. 하이드로겔의 팽창을 제한하는 카르복시기 사이 수소결합은 염처리를 통해 끊을 수 있다. 이에 따라 제조된 광결정 복합체는 습도의 정도에 따라 팽윤정도가 달라지고 다양하게 반사되는 색을 나타낼 수 있다. 육안으로 반사된 색을 감지하여 습도를 측정할 수 있다. In the IPN structured photonic crystal complex, hydrogen bonds between carboxyl groups are destroyed by salt treatment. Hydrogen bonds between carboxyl groups that limit the expansion of the hydrogel can be broken through salt treatment. The photonic crystal composite thus manufactured may have a different degree of swelling depending on the degree of humidity, and may exhibit various reflective colors. Humidity can be measured by detecting the reflected color with the naked eye.
본 발명의 또 다른 일 측면에 따르면, 광결정 복합체를 이용하여 제조되는 것을 특징으로 하는 센서를 제공한다. 본 발명에 따른 센서는 습도센서 또는 칼슘 이온의 검출을 위한 바이오센서일 수 있다.According to another aspect of the present invention, a sensor is provided, characterized in that it is manufactured using a photonic crystal composite. The sensor according to the present invention may be a humidity sensor or a biosensor for detecting calcium ions.
습도센서는 카르복시기의 수소결합이 끊어진 광결정 복합체가 습도에 따라 팽창 또는 수축하면서 나타나는 다양한 반사된 색을 이용하여 습도를 감지 할 수 있다.The humidity sensor can detect humidity by using various reflected colors that appear when the photonic crystal complex in which the hydrogen bond of the carboxyl group is disconnected expands or contracts according to humidity.
바이오센서는 염처리를 통해 카르복시기의 수소결합이 끊어진 광결정 복합체가 칼슘 이온을 감지하면 이온교환이 일어나는 것을 이용하여 이온을 감지할 수 있다. The biosensor can detect the ions by using ion exchange to occur when the photonic crystal complex in which the hydrogen bond of the carboxyl group is disconnected through salt treatment detects calcium ions.
칼슘 이온이 하이드로겔의 카르복시기와 가교 결합을 형성하고, 수축 및 팽창된 하이드로겔이 광결정 구조체의 수축 및 팽창을 유도하여 광 밴드갭의 파장 범위가 변화함으로써 칼슘 이온을 감지할 수 있다.Calcium ions form a cross-link with the carboxy group of the hydrogel, and the contracted and expanded hydrogel induces contraction and expansion of the photonic crystal structure, thereby changing the wavelength range of the optical band gap, thereby detecting calcium ions.
1가 이온이 2가 이온으로 교환되면서 광결정 복합체의 팽창 또는 수축의 정도가 달라지고, 그 변화에 따라 다양하게 반사된 색을 육안으로 감지할 수 있다.As monovalent ions are exchanged for divalent ions, the degree of expansion or contraction of the photonic crystal complex changes, and various reflected colors can be detected with the naked eye according to the change.
본 발명에 따른 바이오 센서는 사람의 혈장 또는 타액의 칼슘 이온도 감지할 수 있다. 광밴드 갭의 파장 범위의 변화는 pH 2 내지 12에서 수행될 수 있다.The biosensor according to the present invention can also detect calcium ions in human plasma or saliva. Variation of the wavelength range of the optical band gap may be performed at pH 2 to 12.
이하, 첨부된 도면들을 참조하면서 본 발명의 바람직한 실시예에 대해 상세히 설명하기로 한다. 한편, 해당 기술분야의 통상적인 지식을 가진자로부터 용이하게 알 수 있는 구성과 그에 대한 작용 및 효과에 대한 도시 및 상세한 설명은 간략히 하거나 생략하고 본 발명과 관련된 부분들을 중심으로 상세히 설명하도록 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. On the other hand, the illustrations and detailed descriptions of configurations, actions and effects thereof that can be easily recognized by those of ordinary skill in the art will be simplified or omitted, and will be described in detail centering on parts related to the present invention.
<실시예><Example>
재료material
RMM727(반응성 LC 혼합물, 영국 Merck), CB15(독일 신톤), AA(일본 준세이), 트라이(프로필렌 글리콜) 디아크릴레이트(TPGDA, 시그마-알드리히, 미국), 트리클로로-(1H,1H,2H,2H,2H,2H 과플로우로톡실)사일란(PFOTS, 97%, Sigma-Aldrich, 미국), Irgacure 500 (광개시제, Ciba Inc., Switzerland), 3-(트리메트호실릴)프로필메타크릴레이트(TMSPMA, 98%, 시그마-알드리히, 미국), 아세톤, 노르랜드 광학 접착제 65(NOA65, Norland Products, 미국), 마이크로펄스(micro-pearls), 수산화칼륨(KOH, DC화학, 한국), 칼슘 색도 측정(MAK022, 미국 시그마-알드리히, 구리(II) 질산 3-수화물(Cu(NO3)2·3H2O, 일본 준세이), 질산 아연 6-수화물(Zn(NO3)2·6H2O, Sigma-Aldrich, USA), 질산 마그네슘 6-수화물(Mg(NO3)2·6H2O, Sigma-Aldrich, USA), 질산 나트륨(NaNO3, Duksan, South Korea), 철(II) 클로라이드 4-수화물(FeCl2·4H2O, Samchun, South Korea), 사람의 혈청(Sigma-Aldrich, USA), and pH 버퍼 용액(Samchun, South Korea)를 그대로 사용하였다. 베어글라스 슬라이드(독일 마리엔펠트)는 순차적으로 에탄올과 탈이온(DI) 물에 씻겼다. DI 물은 역증상 시스템(μPure RO, Romax, South Korea)을 이용해 정제하였다.RMM727 (reactive LC mixture, Merck, UK), CB15 (Shinton, Germany), AA (Junsei, Japan), tri(propylene glycol) diacrylate (TPGDA, Sigma-Aldrich, USA), trichloro-(1H,1H, 2H,2H,2H,2H hyperfluorotoxyl) silan (PFOTS, 97%, Sigma-Aldrich, USA), Irgacure 500 (photoinitiator, Ciba Inc., Switzerland), 3-(trimethhosilyl) propyl methacrylate (TMSPMA, 98%, Sigma-Aldrich, USA), acetone, Norland optical adhesive 65 (NOA65, Norland Products, USA), micro-pearls, potassium hydroxide (KOH, DC Chemical, Korea), Calcium chromaticity measurement (MAK022, USA Sigma-Aldrich, copper(II) nitrate 3-hydrate (Cu(NO3)2·3H2O, Japan Junsei), zinc nitrate 6-hydrate (Zn(NO3)2·6H2O, Sigma- Aldrich, USA), magnesium nitrate 6-hydrate (Mg(NO3)2·6H2O, Sigma-Aldrich, USA), sodium nitrate (NaNO3, Duksan, South Korea), iron(II) chloride 4-hydrate (FeCl2·4H2O, Samchun, South Korea), human serum (Sigma-Aldrich, USA), and pH buffer solution (Samchun, South Korea) were used as they were Bare glass slides (Marienfeld, Germany) were sequentially ethanol and deionized (DI). Washed in water DI water was purified using an inverse symptom system (μPure RO, Romax, South Korea).
실시예 1 - acetone/KOH 처리된 광결정 IPN 어레이 필름Example 1-Acetone/KOH-treated photonic crystal IPN array film
도 1은 IPNacetone/KOH 어레이 필름의 제조과정을 나타낸 것이다. 1 shows the manufacturing process of the IPN acetone/KOH array film.
도 1을 참고하여 설명하면, 두 개의 유리 슬라이드 사이에 반응성 CLC 혼합물의 균일한 필름을 제작하였다. 상단 슬라이드와 하단 슬라이드는 각각 PFOTS와 TMSPMA로 처리되었다. 유리 슬라이드를 밀폐된 챔버에 넣어 소형 컨테이너의 PFOTS가 70℃에서 30분간 증발시키는 방식으로 PFOTS가 처리된 상단 유리를 코팅하였다. 스핀코터(SPIN-1200D, Midas, South Korea)를 사용하여 3000rpm으로 45초간 작동시킨 뒤 오븐에서 60분간 110℃로 건조시키는 방식으로 TMSPMA가 처리된 하단 슬라이드를 코팅하였다. 하단 슬라이드의 이 코팅이 반응성 CLC 혼합물과 반응하게 된다. PFOTS와 TMSPMA로 코팅된 유리는 NOA65와 접합된 마이크로펄스를 사용하여 6μm의 간격을 두고 고정하였다.Referring to FIG. 1, a uniform film of a reactive CLC mixture was prepared between two glass slides. The upper and lower slides were treated with PFOTS and TMSPMA, respectively. The glass slide was put into a sealed chamber and the PFOTS-treated top glass was coated in such a way that the PFOTS in a small container evaporated at 70° C. for 30 minutes. Using a spin coater (SPIN-1200D, Midas, South Korea), the bottom slide was coated with TMSPMA by operating at 3000 rpm for 45 seconds and drying in an oven at 110° C. for 60 minutes. This coating on the bottom slide will react with the reactive CLC mixture. The glass coated with PFOTS and TMSPMA was fixed at an interval of 6 μm using a micropulse bonded with NOA65.
반응성 CLC 혼합물을 자기 교반으로 60℃에서 12시간 동안 RMM727과 CB15를 혼합하여 준비하였다. RMM727과 CB15 혼합물의 CB15 내용은 파이(Φ)로 표시된다. 투명한 동질 혼합물은 온도가 25℃까지 떨어지면서 우유빛으로 변했다. 두 슬라이드 사이의 간격은 모세관 작용에 의하여 반응성 CLC 혼합물로 채워졌다. A reactive CLC mixture was prepared by mixing RMM727 and CB15 at 60° C. for 12 hours by magnetic stirring. The CB15 content of the mixture of RMM727 and CB15 is expressed as pi (Φ). The clear homogeneous mixture turned milky as the temperature dropped to 25°C. The gap between the two slides was filled with a reactive CLC mixture by capillary action.
UV 경화기(Innocure 100N, Lichtzen, South Korea)를 이용해 10분간 365nm에서 UV 경화를 하였다. UV 경화 후, CLCsolid 필름이 TMSPMA로 코팅된 하단 슬라이드에 남아있도록 PFOTS로 코팅된 슬라이드를 떼어냈다. 이 슬라이드를 아세톤으로 세척하여 비반응 키랄 도펀트를 추출하였다. 유리에 붙어 있는 필름의 광선 밴드 간격은 UV-Vis 분광기를 이용하여 측정하였다. UV curing was performed at 365nm for 10 minutes using a UV curing machine (Innocure 100N, Lichtzen, South Korea). After UV curing, the slide coated with PFOTS was removed so that the CLC solid film remained on the lower slide coated with TMSPMA. The slide was washed with acetone to extract unreacted chiral dopant. The light band spacing of the film attached to the glass was measured using a UV-Vis spectrometer.
아크릴산, TPGDA, Irgacure 500(98.5/0.5/1 wt%)의 혼합물을 필름 표면에 떨어뜨렸고, 30분 경과 후 침투가 진행되었다. 침투한 필름을 샘플에서 6cm 떨어진 거리에서 10분간 포토마스크로 자외선에 노출시켜 자외선 경화하였다. 불투명한 포토마스크에는 직경이 각각 2mm인 투명한 점들이 있었고, 그 중심은 서로로부터 각각 4mm 떨어져 있었다. A mixture of acrylic acid, TPGDA, and Irgacure 500 (98.5/0.5/1 wt%) was dropped on the surface of the film, and penetration proceeded after 30 minutes. The penetrating film was exposed to UV light with a photomask for 10 minutes at a distance of 6 cm from the sample, followed by UV curing. On the opaque photomask, there were transparent dots, each 2mm in diameter, and the centers were 4mm apart from each other.
광결정 IPN 어레이 필름을 물로 5번 세척하여 도트 이외의 영역에 있는 미경화 아크릴산 단량체를 제거하였다. 광결정 IPN 어레이 필름을 아세톤(acetone)에 넣고 5분 동안 1M KOH 용액에 담가 카르복실산염을 형성하는 IPNacetone/KOH 어레이 필름을 제조하였다. 이하 IPNacetone/KOH 어레이 필름이라 한다.The photonic crystal IPN array film was washed 5 times with water to remove uncured acrylic acid monomers in regions other than dots. The photonic crystal IPN array film was put in acetone and immersed in 1M KOH solution for 5 minutes to form a carboxylate to prepare an IPN acetone/KOH array film. Hereinafter, it is referred to as IPN acetone/KOH array film.
실시예 2 - KOH 처리된 광결정 IPN 어레이 필름Example 2-KOH-treated photonic crystal IPN array film
실시예 1과 동일하되 아크릴산 단량체 제거 후 진행되는 아세톤의 처리과정 없이 제조하여 광결정 IPN 어레이 필름을 얻었다. 이하 IPNKOH 어레이 필름이라 한다.It was the same as in Example 1, but was prepared without the treatment of acetone that proceeds after removing the acrylic acid monomer to obtain a photonic crystal IPN array film. Hereinafter, it is referred to as IPN KOH array film.
실시예 3 - IPN 어레이 센서Example 3-IPN array sensor
실시예 1 또는 실시예 2로 제조된 필름을 이용하여 어레이 센서를 제작하였다.An array sensor was fabricated using the film prepared in Example 1 or Example 2.
비교예 1 - 미처리 IPN 어레이 필름Comparative Example 1-Untreated IPN Array Film
실시예 1과 동일하되 아크릴산 단량체 제거 후 진행되는 KOH와 아세톤의 처리과정 없이 제조하여 광결정 IPN 어레이 필름을 얻었다. 이하 미처리 IPN 어레이 필름이라 한다.It was the same as in Example 1, but was prepared without the treatment of KOH and acetone that proceed after removing the acrylic acid monomer to obtain a photonic crystal IPN array film. Hereinafter, it is referred to as an untreated IPN array film.
<평가 및 결과><Evaluation and results>
일반정보General information
사람의 혈장과 타액의 실제 Ca2+ 이온 농도는 칼슘 색도 측정 키트(MAK022, Sigma-Aldrich, USA)를 사용해 검출하였다. 사람의 혈장 및 타액에서 자유 Ca2+ 이온(CCa) 농도를 측정하기 위하여 칼슘 표준과 샘플(사람의 혈청, 타액) 50μL가 들어있는 큐벳에 색소성 시약(chromogenic reagent)을 각 90μL 첨가한 뒤 부드럽게 섞었다. 큐벳에 준비된 혼합 용액에 60μL의 칼슘 분석 완충제를 추가로 넣고 부드럽게 섞은 뒤 빛으로부터 보호하면서 5 ~ 10분간 상온에서 반응시켰다.The actual Ca 2+ ion concentration in human plasma and saliva was detected using a calcium chromaticity measurement kit (MAK022, Sigma-Aldrich, USA). To measure the concentration of free Ca 2+ ions (C Ca ) in human plasma and saliva, 90 μL of each chromogenic reagent was added to a cuvette containing 50 μL of a calcium standard and sample (human serum, saliva). Mix gently. Into the mixed solution prepared in the cuvette, 60 μL of calcium analysis buffer was additionally added, mixed gently, and reacted at room temperature for 5 to 10 minutes while protecting from light.
표준곡선을 작성하기 위하여 5mM 표준용액 0μL, 2μL, 4μL, 6μL, 8μL, 10μL를 큐벳마다 첨가하고 DI 워터로 총량을 50μL로 조정하여 CCa 값이 다른 칼슘 표준용액을 준비하였다.To prepare a standard curve, 0 μL, 2 μL, 4 μL, 6 μL, 8 μL, and 10 μL of 5 mM standard solutions were added for each cuvette, and the total amount was adjusted to 50 μL with DI water to prepare a calcium standard solution with different C Ca values.
광자 IPN 필름의 단면 영상을 15kV의 가속 전압으로 동작하는 현장 방출 스캐닝 전자 현미경(FE-SEM, SU8220, 일본 히타치)을 이용하여 촬영하였다. A cross-sectional image of the photon IPN film was photographed using a field emission scanning electron microscope (FE-SEM, SU8220, Hitachi, Japan) operated with an acceleration voltage of 15 kV.
FE-SEM 샘플은 광결정 IPN 필름의 균열된 단면을 백금으로 코팅하여 제조하였다. The FE-SEM sample was prepared by coating the cracked cross section of the photonic crystal IPN film with platinum.
약화된 총 반사 FT-IR 스펙트럼(FT/IR-4100, 일본 자스코)은 평균 64회의 스캔을 수집해 4cm-1의 해상도에서 600-1800cm-1의 범위에 대하여 얻었다. It attenuated total reflection FT-IR spectrum (FT / IR-4100, Japan jaseuko) is to collect the average of 64 scans were obtained with respect to meeting the range of from -1 600-1800cm of 4cm -1 resolution.
CLC 필름의 UV-Vis 스펙트럼은 UV-Vis 분광계(UV-2401PC, 일본 시마즈)의 빔에 수직으로 필름을 배치하여 300 ~ 900nm 범위에서 얻었다. 광결정 IPN 배열의 점과 배경의 UV-Vis 스펙트럼은 UV-Vis 빔이 통과하는 1mm 구멍이 있는 화면을 사용하여 얻었다.The UV-Vis spectrum of the CLC film was obtained in the range of 300 to 900 nm by placing the film perpendicular to the beam of a UV-Vis spectrometer (UV-2401PC, Shimadzu Japan). The spot and background UV-Vis spectra of the photonic crystal IPN array were obtained using a screen with a 1 mm hole through which the UV-Vis beam passes.
광결정 IPN 어레이 필름Photonic Crystal IPN Array Film
(1) 구조(1) structure
본 발명에 따라 제조된 IPN 어레이 필름의 구조를 확인하기 위하여 FT-IR(Fourier transform infrared) 스펙트럼과 주사 전자 현미경(SEM) 이미지를 분석하여 KOH 처리 전후에 광결정 IPN 어레이 필름의 구조를 확인하였다.In order to confirm the structure of the IPN array film manufactured according to the present invention, the structure of the photonic crystal IPN array film was confirmed before and after KOH treatment by analyzing a Fourier transform infrared (FT-IR) spectrum and a scanning electron microscope (SEM) image.
도 2는 본 발명의 일 실시예 또는 비교예에 따른 IPN 어레이 필름의 FT-IR 스펙트럼이다. 도 2의 (a)는 비교예 1에 따른 미처리 IPN 어레이 필름, (b)는 실시예 2에 따른 KOH 처리된 IPN 어레이 필름, (c)는 실시예 1에 따른 acetone/KOH 처리된 IPN 어레이 필름의 FT-IR 스펙트럼이다.2 is an FT-IR spectrum of an IPN array film according to an embodiment or a comparative example of the present invention. Figure 2 (a) is an untreated IPN array film according to Comparative Example 1, (b) is a KOH-treated IPN array film according to Example 2, (c) is acetone / KOH-treated IPN array film according to Example 1 Is the FT-IR spectrum.
도 2의 (a)를 참고하면, 미처리 광결정 IPN 어레이 필름의 FT-IR 스펙트럼은 수소 결합된 히드록실기를 나타내는 890cm-1, 1253cm-1에서 피크가 나타나고 C-O, C=C(방향족) 및 C=O(카르보닐)에 상응하여 각각 1510cm-1 및 1728cm-1에서 나타난다. 이들은 모두 메조겐 혼합물에 의해 나타난다. Referring to Figure 2 (a), the FT-IR spectrum of the untreated photonic crystal IPN array film shows a peak at 890cm -1 , 1253cm -1 representing hydrogen-bonded hydroxyl groups, and CO, C=C (aromatic) and C = O, respectively in correspondence to the (carbonyl) appears at 1510cm -1 and 1728cm -1. These are all manifested by mesogenic mixtures.
도 2의 (b)를 참고하면, IPNKOH 어레이 필름에서는 KOH 처리 후 890cm-1에서 수소 결합된 히드록실기 밴드가 거의 사라지는 반면, 반대쪽 대칭 및 대칭 스트레칭으로 인해 1565cm-1와 1400cm-1에 새로운 밴드가 나타난다. 이 결과에 따라 KOH 처리가 카르복시기를 이온화함으로써 수소 결합을 막는 것을 확인할 수 있었다.Referring to (b) of FIG. 2, in the IPN KOH array film, the hydrogen-bonded hydroxyl group band almost disappears at 890cm -1 after KOH treatment, while the opposite side symmetry and symmetrical stretching causes new in 1565cm -1 and 1400cm -1 . The band appears. According to this result, it was confirmed that the KOH treatment prevented hydrogen bonding by ionizing the carboxyl group.
도 2의 (b)와 (c)를 참고하면, IPNKOH 및 IPNacetone/KOH 어레이 필름의 FT-IR 스펙트럼 사이에는 약간의 차이만 있다. 이는 아세톤 처리가 작용기에 영향을 미치지 않음을 의미한다.Referring to (b) and (c) of FIG. 2, there is only a slight difference between the FT-IR spectra of the IPN KOH and IPN acetone/KOH array films. This means that the acetone treatment does not affect the functional groups.
도 3은 본 발명의 일 실시예 또는 비교예에 따른 IPN 어레이 필름의 층 구조에 대한 주사 전자 현미경(SEM) 이미지이다. 도 3의 (a)는 추출된 광결정 CLC 필름, (b)는 비교예 1에 따른 미처리 IPN 어레이 필름, (c)는 실시예 2에 따른 IPNKOH 어레이 필름, (d)는 실시예 1에 따른 IPNacetone/KOH 어레이 필름의 SEM 이미지이다. 3 is a scanning electron microscope (SEM) image of a layer structure of an IPN array film according to an embodiment or a comparative example of the present invention. 3A is an extracted photonic crystal CLC film, (b) is an untreated IPN array film according to Comparative Example 1, (c) is an IPN KOH array film according to Example 2, (d) is according to Example 1. This is an SEM image of the IPN acetone/KOH array film.
도 3을 참고하면, 반사된 색상이 모든 시료에서 나타남을 통해 광결정 층의 구조는 모든 시료에서 나타남을 확인할 수 있다. 즉, 도펀트의 추출, AA의 침투, UV 경화 및 KOH 또는 acetone/KOH 처리가 규칙적인 광결정 층의 구조에 유의미한 영향을 미치지 않는다는 것을 확인할 수 있었다.Referring to FIG. 3, it can be seen that the structure of the photonic crystal layer appears in all samples by showing the reflected color in all samples. That is, it was confirmed that extraction of dopant, penetration of AA, UV curing, and treatment of KOH or acetone/KOH did not significantly affect the structure of the regular photonic crystal layer.
각 샘플의 레이어 간격을 측정함에 있어 각 레이어는 P/2를 나타내며 P는 헬리컬 피치이다. 측정된 P값은 도펀트 추출 필름 및 미처리 IPN, IPNKOH 및 IPNacetone/KOH 어레이 필름에 대해 각각 260nm, 282nm, 290nm 및 306 nm이었다. 팽창 정도는 도판트 추출 필름, 미처리 IPN, IPNKOH 및 IPNacetone/KOH 어레이 필름 순으로 증가하였다. 이는 SEM 이미지로부터 측정된 P값을 반영한 결과이다.In measuring the layer spacing of each sample, each layer represents P/2 and P is the helical pitch. The measured P values were 260 nm, 282 nm, 290 nm and 306 nm for the dopant extraction film and untreated IPN, IPN KOH and IPN acetone/KOH array films, respectively. The degree of swelling increased in the order of dopant extraction film, untreated IPN, IPN KOH, and IPN acetone/KOH array film. This is a result of reflecting the P value measured from the SEM image.
(2) 색상의 범위(2) range of colors
본 발명에 따라 제조된 IPN 어레이 필름의 반사된 색상의 범위를 확인하기 위하여 건조/습윤상태, 서로 다른 pH, 서로 다른 양의 Ca2+에 따른 어레이 필름의 색상과 UV-Vis 스펙트럼을 분석하였다.In order to confirm the range of the reflected color of the IPN array film prepared according to the present invention, the color and UV-Vis spectrum of the array film according to the dry/wet state, different pH, and different amounts of Ca 2+ were analyzed.
도 4는 본 발명의 실시예 또는 비교예에 따른 IPN 어레이 필름의 건조 또는 습윤 상태의 사진이다. 도 4의 (i)는 건조 상태의 비교예 1에 따른 IPN 어레이 필름, (ii)는 건조 상태의 실시예 2에 따른 IPN 어레이 필름, (iii)는 건조 상태의 실시예 1에 따른 IPN 어레이 필름, (iv)는 습윤 상태의 비교예 1에 따른 IPN 어레이 필름, (v)는 습윤 상태의 실시예 2에 따른 IPN 어레이 필름, (vi)는 습윤 상태의 실시예 1에 따른 IPN 어레이 필름의 사진 및 UV-vis 스펙트럼이다. 4 is a photograph of a dry or wet state of an IPN array film according to an embodiment or a comparative example of the present invention. 4(i) is an IPN array film according to Comparative Example 1 in a dry state, (ii) is an IPN array film according to Example 2 in a dry state, and (iii) is an IPN array film according to Example 1 in a dry state. , (iv) is an IPN array film according to Comparative Example 1 in a wet state, (v) is an IPN array film according to Example 2 in a wet state, (vi) is a photograph of an IPN array film according to Example 1 in a wet state And UV-vis spectrum.
도 4의 (i)와 (iv)를 참고하면, 비교예 1에 따른 습윤 상태의 IPN 어레이 필름의 경우 도트의 수소 결합이 IPN으로의 물의 흡수를 막기 때문에 배경과 도트의 반사된 색상이 크게 변하지 않는다. 배경과 도트 사이의 색의 차이(λPBG)는 CLC 구조의 나선 피치를 증가시키는 침투된 PAA 네트워크 때문에 나타날 수 있다.Referring to Figures 4(i) and (iv), in the case of the wet IPN array film according to Comparative Example 1, the background and the reflected color of the dots are not significantly changed because hydrogen bonding of the dots prevents the absorption of water to the IPN. Does not. The difference in color between the background and dots (λ PBG ) may appear due to the infiltrated PAA network increasing the helix pitch of the CLC structure.
도 5a와 5b는 각각 본 발명의 비교예 1에 따른 IPN 어레이 필름의 pH에 따른 UV-Vis 스펙트럼과 λPBG이다. 도 5a를 참고하면, pH가 증가함에 따라 반사된 색은 청색에서 녹색으로, 연속적으로 붉은색으로 변화가 나타났다. 붉은색으로의 변화는 얽힌 PAA의 팽창에 따른 나선형 피치의 증가로 인한 것이다. 도 5b를 참고하면, 카르복시기의 탈수소화 정도가 pH에 따라 달라져 λPBG가 pH에 따라 증가하는 것을 확인할 수 있다. 가장 큰 pH 12에서 반사된 색은 녹색이며 λPBG = 570nm이었다. 이는 반사된 색으로 붉은 적색을 얻으려면 PAA 네트워크를 추가로 확장할 필요가 있음을 의미한다.5A and 5B are UV-Vis spectra and λ PBG according to pH of the IPN array film according to Comparative Example 1 of the present invention, respectively. Referring to FIG. 5A, as the pH increases, the reflected color changes from blue to green and continuously to red. The change to red is due to the increase in helical pitch as the entangled PAA expands. Referring to FIG. 5B, it can be seen that the degree of dehydrogenation of the carboxyl group varies with pH, and thus λ PBG increases with pH. The color reflected at the largest pH 12 was green with λ PBG = 570 nm. This means that the PAA network needs to be further expanded to get reddish red as the reflected color.
따라서 물에 의한 필름의 팽윤을 최대화하기 위하여 광결정 IPN 필름을 1M의 KOH 수용액에 침지시켰다(실시예 2에 따른 IPN 어레이 필름). IPN 필름으로의 K+ 이온의 침투는 상응하는 염(COO-K+)을 형성함으로써 PAA 네트워크에서 카르복시기 사이의 수소 결합을 파괴시키고 필름은 더 많은 물을 흡수할 수 있다. Therefore, in order to maximize the swelling of the film by water, the photonic crystal IPN film was immersed in 1M KOH aqueous solution (IPN array film according to Example 2). The penetration of K + ions into the IPN film breaks the hydrogen bonds between carboxyl groups in the PAA network by forming the corresponding salt (COO-K + ) and the film can absorb more water.
도 4의 (ii), (v)를 참고하면, 실시예 2에 따른 IPNKOH 어레이 필름을 물에 담그면 배경의 색은 파란색에서 많이 변하지 않았지만 도트의 색은 녹색으로 바뀌는 것을 확인할 수 있다. 녹색이 나타남은 침투된 PAA 네트워크에 의한 물의 흡수로 인해 IPN 구조가 팽창했음을 의미할 수 있다.Referring to (ii) and (v) of FIG. 4, when the IPN KOH array film according to Example 2 is immersed in water, the color of the background did not change much from blue, but the color of the dots changed to green. The appearance of green may mean that the IPN structure has expanded due to the absorption of water by the infiltrated PAA network.
나아가 KOH 처리의 효과를 최대화하기 위해, 1M KOH 수용액에 담그기 전에 광자 IPN 어레이 필름을 CLCsolid의 좋은 용매인 아세톤(acetone)에서 팽윤시켰다(실시예 1에 따른 IPN 어레이 필름). 아세톤에서의 CLC 팽창 정도가 증가하면 K+ 이온이 필름에 쉽게 침투할 수 있게 된다.Furthermore, in order to maximize the effect of the KOH treatment, the photon IPN array film was swollen in acetone, a good solvent of CLC solid , before immersion in 1M KOH aqueous solution (IPN array film according to Example 1). When the degree of CLC expansion in acetone increases, K + ions can easily penetrate the film.
도 4의 (iii), (vi)를 참고하면, acetone/KOH 처리 후 IPNacetone/KOH 어레이 필름은 습윤 상태에서 파란색 배경에 빨간색 도트가 나타났고, 필름이 건조되면 원래 파란색 도트로 복원되었다. 즉, acetone/KOH 처리의 적용의 결과로 적색을 포함하는 모든 반사된 색상을 얻을 수 있음을 확인하였다. Referring to (iii) and (vi) of FIG. 4, the IPN acetone/KOH array film after acetone/KOH treatment showed red dots on a blue background in a wet state, and when the film was dried, the original blue dots were restored. That is, it was confirmed that all reflected colors including red can be obtained as a result of the application of the acetone/KOH treatment.
도 6은 본 발명의 일 실시예에 따른 아세톤 처리를 한 IPN 어레이 필름의 건조 상태와 습윤 상태의 사진이다. (i)는 건조 상태의 필름이고 (ii)는 습윤 상태의 필름이다. 광결정 IPN 어레이 필름을 아세톤에 담그면 CLC 구조가 팽창하여 IPN 도트의 색이 짙은 녹색으로 변하고 배경색도 녹색으로 변하는 것을 확인하였다. 6 is a photograph of a dry state and a wet state of an acetone-treated IPN array film according to an embodiment of the present invention. (i) is a film in a dry state and (ii) is a film in a wet state. It was confirmed that when the photonic crystal IPN array film was immersed in acetone, the CLC structure expanded, the color of the IPN dots changed to dark green and the background color changed to green.
도 7a 및 도 7b는 각각 본 발명의 일 실시예 및 비교예에 따른 어레이 필름의 건조 또는 습윤 상태 도트의 UV-Vis 스펙트럼이다. 도 7a는 건조 상태시(air-drying) 도트의 스펙트럼이고 도 7b는 습윤 상태시 도트의 스펙트럼이다. 각각의 (i)는 비교예 1에 따른 어레이 필름, (ii)는 실시예 2에 따른 어레이 필름, (iii)는 실시예 1에 따른 어레이 필름의 결과이다. 도 7을 참고하면, 필름이 건조되면 λPBG 값이 미처리 IPN 어레이 필름의 λPBG 값으로 회복되는 것을 확인할 수 있다. 또한 IPNacetone/KOH 어레이 필름의 경우, 습식 및 건식 상태의 λPBG차이는 150nm 이상으로 나타나는 것을 확인할 수 있었다.7A and 7B are UV-Vis spectra of dots in a dry or wet state of an array film according to an embodiment and a comparative example of the present invention, respectively. 7A is a spectrum of a dot in an air-drying state and FIG. 7B is a spectrum of a dot in a wet state. Each (i) is an array film according to Comparative Example 1, (ii) is an array film according to Example 2, and (iii) is a result of an array film according to Example 1. Referring to FIG. 7, it can be seen that when the film is dried, the λ PBG value is restored to the λ PBG value of the untreated IPN array film. In addition, in the case of the IPN acetone/KOH array film, it was confirmed that the difference between λ PBG in the wet and dry states was 150 nm or more.
도 8은 본 발명의 일 실시예에 따른 IPN 어레이의 서로 다른 상대 습도(RH)에서 필름의 사진이다. 도 8을 참고하면, 상대습도가 증가함에 따라 색상이 하늘색에서 빨간색으로 연속적으로 변경되었다. 즉, 습도에 따라 다양한 스펙트럼을 가지는 본 발명의 필름을 사용하여 육안으로 인식할 수 있는 색상의 변화로 습도를 감지할 수 있음을 확인할 수 있었다.8 is a photograph of a film at different relative humidity (RH) of an IPN array according to an embodiment of the present invention. Referring to FIG. 8, as the relative humidity increased, the color was continuously changed from sky blue to red. That is, it was confirmed that the humidity can be detected by a change in color that can be recognized by the naked eye using the film of the present invention having various spectrums according to humidity.
반사되어 나타나는 색은 광결정 구조의 팽창에 크게 의존한다. 광결정 구조의 팽창은 IPN 어레이 필름에 착화된 2가 이온의 양에 의해 제어된다. IPN 필름의 카르복시기는 금속염으로 전환될 수 있으며, 2가 이온이 사용되면 카르복시기 사이에 다리를 형성할 수 있다. The reflected color is highly dependent on the expansion of the photonic crystal structure. The expansion of the photonic crystal structure is controlled by the amount of divalent ions complexed to the IPN array film. The carboxy group of the IPN film can be converted into a metal salt, and when a divalent ion is used, a bridge can be formed between the carboxy groups.
도 9는 KOH 및 CaCl2 수용액에 의한 CLC의 나선형 피치 변화를 나타낸 것이다. 도 9를 참고하면, 2가 이온인 Ca2+는 수소 결합을 끊어 가교 구조를 형성하므로 나선형 피치를 확장 및 수축시킨다. 가교 구조의 수를 통해 팽창의 정도를 조절할 수 있고, IPNacetone/KOH-CaCl2 어레이 필름의 색상을 결정할 수 있다. 이에 따라 본 발명의 필름은 다양한 색상을 생성하는 숨겨진 이미지에 사용할 수 있다.9 shows the change in the spiral pitch of CLC by KOH and CaCl 2 aqueous solution. Referring to FIG. 9, since Ca 2+ , which is a divalent ion, breaks hydrogen bonds to form a crosslinked structure, the spiral pitch is expanded and contracted. The degree of expansion can be controlled through the number of crosslinked structures, and the color of the IPN acetone/KOH-CaCl2 array film can be determined. Accordingly, the film of the present invention can be used for hidden images that generate various colors.
도 10은 본 발명의 실시예 1에 따른 어레이 필름을 각각 1mM, 3mM 및 8mM의 CaCl2 수용액으로 처리한 후 사람의 호흡(고습도)에 노출한 사진이다. 습윤한 환경에 노출된 문자 K, N 및 U의 경우 각각 황색 K, 녹색 N 및 청색 U를 생성하였다. 8mM CaCl2로 처리한 문자 "U"는 고습도에 노출되기 전과 후에 색의 변화가 없었다. 이는 모든 카르복실레이트기가 Ca2+ 이온과 결합한 결과라고 볼 수 있다. 모든 카르복실레이트와의 가교 결합의 형성으로 물의 흡수와 IPN의 팽창을 억제한 것이다. 즉, 칼슘 이온의 양에 따라 가교 구조의 수가 조절되고 이를 통해 나타난 색상을 이용하여 다양한 이미지의 생성이 가능함을 확인하였다.10 is a photograph of an array film according to Example 1 of the present invention treated with 1mM, 3mM, and 8mM CaCl 2 aqueous solution and then exposed to human breath (high humidity). The letters K, N, and U exposed to a moist environment produced yellow K, green N and blue U, respectively. The letter "U" treated with 8mM CaCl 2 showed no color change before and after exposure to high humidity. This can be seen as a result of all carboxylate groups being combined with Ca 2+ ions. The formation of cross-links with all carboxylates inhibited the absorption of water and expansion of IPN. In other words, it was confirmed that the number of crosslinked structures was controlled according to the amount of calcium ions, and various images could be generated using the colors displayed through them.
(3) 보안 라벨으로의 활용(3) Use as a security label
다양한 이미지의 생성이 가능하므로, 건조 상태에서는 숨겨지고 사용자의 호흡에 따른 습한 조건에서는 나타나는 이미지를 필름에 포함할 수 있다. 이 필름은 다양한 이미지와 색상을 가질 수 있으므로 위조 방지 필름으로 사용할 수도 있다.Since it is possible to create various images, it is possible to include an image that is hidden in a dry state and appears in a humid condition according to the user's breath. Since this film can have various images and colors, it can also be used as an anti-counterfeiting film.
도 11은 본 발명 실시예 1에 따른 어레이 필름에 포함된 이미지의 색상 변화를 나타낸 사진이다. 도 11을 참고하면, 문자 "KNU"가 사람의 호흡으로 인한 습기에 노출된 후 파란색(i)에서 빨간색(ii)으로 바뀌는 것을 확인할 수 있었다. 즉, 본 발명의 IPNacetone/KOH 필름으로 제작된 라벨에 이미지를 숨기고, 사람의 호흡을 이용하여 정품 제품을 위조품과 쉽게 구별하는 보안 라벨로 사용할 수 있다.11 is a photograph showing a color change of an image included in the array film according to Example 1 of the present invention. Referring to FIG. 11, it was confirmed that the letter "KNU" changed from blue (i) to red (ii) after exposure to moisture due to human breathing. That is, the image can be hidden on the label made of the IPN acetone/KOH film of the present invention, and a genuine product can be used as a security label to easily distinguish a genuine product from a counterfeit product by using human breath.
광결정 IPN 센서Photonic crystal IPN sensor
(1) 회복성(1) recovery
본 발명에 따라 제조된 IPN 어레이 필름의 재사용 가부를 판단하기 위하여 산처리 후 KOH 및 CaCl2의 반복 처리에 따른 기능의 회복여부를 확인하였다.In order to determine the reusability of the IPN array film prepared according to the present invention, it was confirmed whether the function was recovered by repeated treatment of KOH and CaCl 2 after acid treatment.
도 12는 CaCl2와 반응한 본 발명의 일 실시예에 따른 어레이 필름에 HNO3(0.1 M)를 처리한 필름의 사진이다. (i)는 CaCl2와 반응한 어레이 필름의 사진이며 도트 아래 숫자는 각 도트에 처리된 CaCl2의 CCa이다. (ii)는 HNO3를 처리한 필름의 사진이며, (iii)는 다시 KOH를 처리한 필름의 사진이다. (i)와 (ii)를 참고하면, CaCl2와 반응한 어레이 필름을 HNO3로 처리하면 칼슘 이온의 가교 결합이 끊어지고 카르복시기가 회복되어 파란색의 도트가 나타나는 것을 확인할 수 있었다. (iii)를 참고하면, HNO3가 처리된 필름을 다시 KOH로 처리하면 수소 결합이 파괴되어 IPNacetone/KOH 어레이 필름의 초기 붉은 색을 회복하는 것을 확인할 수 있었다.12 is a photograph of a film treated with HNO 3 (0.1 M) on an array film according to an embodiment of the present invention reacted with CaCl 2 . (i) is a photograph of the array film reacted with CaCl 2, and the number under the dot is the C Ca of CaCl 2 treated on each dot. (ii) is a photograph of a film treated with HNO 3 and (iii) is a photograph of a film treated with KOH again. Referring to (i) and (ii), it was confirmed that when the array film reacted with CaCl 2 was treated with HNO 3 , the cross-linking of calcium ions was broken and the carboxy group was recovered, and blue dots appeared. Referring to (iii), it was confirmed that when the HNO 3 treated film was treated with KOH again, hydrogen bonds were destroyed and the initial red color of the IPN acetone/KOH array film was restored.
즉, 본 발명에 따라 제조된 IPN 어레이 필름의 가교 구조는 하기 화학식 1와 같이 HNO3 처리에 의해 제거될 수 있었다.That is, the crosslinked structure of the IPN array film prepared according to the present invention could be removed by HNO 3 treatment as shown in Formula 1 below.
Figure PCTKR2020001604-appb-C000001
Figure PCTKR2020001604-appb-C000001
도 13은 본 발명의 일 실시예에 따른 어레이 필름에 CaCl2, HNO3 및 KOH를 4회 연속으로 처리한 후의 사진이다. (a) 내지 (d)는 1 내지 4회의 사이클에 따른 결과를 나타내고, (i)는 2mM CaCl2의 처리 후, (ii)는 건조 후, (iii)는 HNO3(0.1M) 처리 후 (iv)는 아세톤 처리 후, (v)는 KOH 처리 후 필름의 사진이다. 13 is a photograph after treatment of CaCl 2 , HNO 3 and KOH four times in a row on the array film according to an embodiment of the present invention. (a) to (d) show the results according to 1 to 4 cycles, (i) after treatment with 2mM CaCl 2 , (ii) after drying, and (iii) after treatment with HNO 3 (0.1M) ( iv) is a photograph of a film after acetone treatment, and (v) is a KOH treatment.
도 13을 참고하면, 사이클이 반복되어도 각 단계의 색상은 크게 달라지지 않음을 확인할 수 있었다. 이러한 회수 결과는 CaCl2에 의한 성공적인 착화, HNO3 처리에 의한 완전한 회복을 의미한다고 볼 수 있다. 즉, 본 발명에 따른 어레이 필름은 다중 사이클에 걸쳐도 산처리를 통한 회복으로 재사용이 가능함을 확인할 수 있었다.Referring to FIG. 13, it was confirmed that the color of each step did not change significantly even if the cycle was repeated. These recovery results can be seen to mean successful complexation by CaCl 2 and complete recovery by HNO 3 treatment. That is, it was confirmed that the array film according to the present invention can be reused through recovery through acid treatment even over multiple cycles.
(2) pH 의존도(2) pH dependence
수소 결합은 높은 pH에서 파괴될 수 있으므로 IPNacetone/KOH 어레이 필름은 pH 의존성을 확인할 필요가 있다. 본 발명에 따른 어레이 필름의 pH 의존도를 확인하기 위해 상이한 pH 값에서 수소 결합의 유지 여부 및 이에 따른 반사된 색상의 변화를 확인하였다. 그 결과는 어레이 필름의 도트의 색상과 UV-Vis 스펙트럼 및 λPBG을 기초로 분석하였다.Since hydrogen bonds can be broken at high pH, the IPN acetone/KOH array film needs to be checked for pH dependence. In order to confirm the pH dependence of the array film according to the present invention, it was confirmed whether hydrogen bonds were maintained at different pH values and the change in reflected color accordingly. The results were analyzed based on the color of the dots of the array film, the UV-Vis spectrum, and λ PBG .
도 14는 본 발명 일 실시예에 따른 어레이 필름의 상이한 pH 값에서의 사진이다. 도트 상부의 숫자는 각각의 pH이다. 도트는 pH 2와 pH 4에서 파란색으로 변하고, pH 6에서 녹색으로 변하고, pH 8, pH 10 및 pH 12에서는 붉은색으로 변하는 것을 확인하였다. 이는 IPNacetone/KOH 어레이 필름의 팽윤이 pH에 의존함을 나타낸다. pH가 pKa보다 낮으면 COO-K+ 염은 COOH 그룹으로 전환되어 도트를 수축시킨다. 반면 pH가 pKa보다 높으면 COO- 그룹 사이의 정전기적 반발력이 증가하여 도트가 팽창하였다. 본 발명에 따른 어레이 필름의 카르복시기는 약 4.3의 pKa를 가진다.14 is a photograph of an array film according to an embodiment of the present invention at different pH values. The number above the dot is the respective pH. It was confirmed that the dots turned blue at pH 2 and pH 4, turned green at pH 6, and turned red at pH 8, pH 10, and pH 12. This indicates that the swelling of the IPN acetone/KOH array film is pH dependent. When the pH is lower than pKa, the COO-K + salt is converted to COOH groups, causing the dots to shrink. On the other hand, when the pH was higher than pKa, the electrostatic repulsion between the COO- groups increased and the dots expanded. The carboxyl group of the array film according to the present invention has a pKa of about 4.3.
도 15a 및 도 15b는 각각 본 발명의 일 실시예에 따른 IPN 어레이 필름의 pH에 따른 UV-Vis 스페트럼과 λPBG이다. 도 15를 도 5와 비교하여 설명하면, IPNKOH 어레이 필름의 pH에 따른 λPBG는 λPBG값이 동일한 pH 값에서 적색 편이된다는 점을 제외하고는 미처리 광결정 IPN 어레이 필름의 것과 유사하였다. 즉, 본 발명에 따라 acetone/KOH를 처리하여도 pH의 의존성에 특별한 변화가 없어 센서 및 기타 응용 분야로의 활용이 가능함을 확인할 수 있었다.15A and 15B are UV-Vis spectrum and λ PBG according to pH of an IPN array film according to an embodiment of the present invention, respectively. Referring to FIG. 15 in comparison with FIG. 5, the λ PBG according to the pH of the IPN KOH array film was similar to that of the untreated photonic crystal IPN array film, except that the λ PBG value shifted red at the same pH value. In other words, it was confirmed that even if acetone/KOH was treated according to the present invention, there was no particular change in the dependence of pH, so that it could be used for sensors and other applications.
(3) 응답속도(3) Response speed
본 발명에 따라 제조된 IPN 어레이 필름의 응답속도를 확인하기 위하여, CaCl2 또는 물을 처리한 후 색상의 변화가 나타나는 시간을 측정하였다.In order to check the response speed of the IPN array film prepared according to the present invention, the time at which the color change appears after treatment with CaCl 2 or water was measured.
도 16은 본 발명의 일 실시예에 따른 어레이 필름에 CaCl2를 처리한 후 시간에 따른 UV-Vis 스펙트럼이다. 2mM CaCl2 수용액을 도트 위에 떨어뜨린 후, 2 × 2 IPNacetone/KOH 어레이 필름의 색상 변화를 관찰하였다. 도 16을 참고하면, 빨간 광결정의 반사색은 20분 이내에 완전히 녹색으로 변하였다.16 is a UV-Vis spectrum over time after CaCl 2 is treated on an array film according to an embodiment of the present invention. After dropping the 2mM CaCl 2 aqueous solution on the dots, the color change of the 2 × 2 IPN acetone/KOH array film was observed. Referring to FIG. 16, the reflective color of the red photonic crystal completely turned green within 20 minutes.
한편 본 발명에 따른 어레이 필름을 물에 노출한 후 반사된 색이 변하는 속도를 측정하였다. 도 17은 본 발명의 일 실시예에 따른 어레이 필름에 물을 떨어뜨린 후 반사된 색의 변화를 나타낸 사진이다. (a)는 acetone/KOH 처리된 실시예 1에 따른 어레이 필름이고, (b)는 KOH만 처리된 실시예 2에 따른 어레이 필름이다. (i)는 물에 노출된 직후, (ii)는 1분, (iii)는 10분, (iv)는 30분, (v)는 50분, (vi)는 60분 후 필름의 사진이다. Meanwhile, the rate at which the reflected color changes after exposing the array film according to the present invention to water was measured. 17 is a photograph showing a change in color reflected after dropping water on an array film according to an embodiment of the present invention. (a) is an array film according to Example 1 treated with acetone/KOH, and (b) is an array film according to Example 2 treated with only KOH. (i) is a photograph of the film immediately after exposure to water, (ii) is 1 minute, (iii) is 10 minutes, (iv) is 30 minutes, (v) is 50 minutes, and (vi) is 60 minutes.
도 17을 참고하면, 실시예 1에 따른 어레이 필름(a)은 파란색 도트(i)에서 적색 도트(ii)로의 변화가 1분 이내로 나타났으나 실시예 2에 따른 어레이 필름(b)은 파란색 도트(i)의 색상 변화에 있어 도트의 외곽부분은 10분, 중심은 50분의 시간이 소요되었고, 도트 전체의 완전한 색의 변화를 유도하는데는 훨씬 긴 시간(60분)이 필요했으며, 변화된 도트의 색도 녹색으로 나타났다. 즉, 아세톤 처리가 수분 흡수 공정을 촉진시킬 수 있음을 확인하였다.Referring to FIG. 17, in the array film (a) according to Example 1, the change from blue dot (i) to red dot (ii) was within 1 minute, but the array film (b) according to Example 2 was blue dot In the color change of (i), it took 10 minutes for the outer part of the dot and 50 minutes for the center, and a much longer time (60 minutes) was required to induce a complete color change of the entire dot. The color of was also green. That is, it was confirmed that the acetone treatment can accelerate the water absorption process.
(4) 용적과 농도에 따른 효과(4) Effect according to volume and concentration
Ca2+ 시료의 용적과 농도에 따른 효과의 차이를 확인하기 위하여 다양한 용적으로 본 발명의 어레이 필름을 테스트하였다. CaCl2 처리된 본 발명의 어레이 필름은 이하 IPNacetone/KOH-CaCl2 어레이 필름으로 표시한다.The array film of the present invention was tested in various volumes to confirm the difference in the effect according to the volume and concentration of the Ca 2+ sample. CaCl 2 treatment of the present invention The array film is hereinafter referred to as an IPN acetone/KOH-CaCl2 array film.
도 18a는 본 발명의 일 실시예에 따른 어레이 필름에 다양한 용적의 CaCl2를 처리한 후 측정한 UV-Vis 스펙트럼이다. 3mM CaCl2 수용액을 각각 1.2μL, 1.7μL, 2.2μL, 2.7μL, 3.2μL, 3.7μL, 4.2μL, 4.7μL만큼 처리하였다. 도 18a를 참고하면, CaCl2 수용액의 용량이 증가함에 따라 더 많은 Ca2+ 이온이 도트에 흡수되어 λPBG 값이 감소하는 것을 확인하였다.18A is a UV-Vis spectrum measured after treating an array film with various volumes of CaCl 2 according to an embodiment of the present invention. 3 mM CaCl 2 aqueous solution was treated by 1.2 μL, 1.7 μL, 2.2 μL, 2.7 μL, 3.2 μL, 3.7 μL, 4.2 μL and 4.7 μL, respectively. Referring to FIG. 18A, it was confirmed that as the capacity of the CaCl 2 aqueous solution increased, more Ca 2+ ions were absorbed by the dots, and thus the λ PBG value decreased.
도 18b는 다양한 CCa의 샘플로 처리된 본 발명의 일 실시예에 따른 어레이 필름의 UV-Vis 스펙트럼이다. CCa는 각각 0mM, 0.4mM, 0.8mM, 2.0mM, 2.5mM, 3.0mM, 3.5mM, 4.0mM, 5.0mM이었다. 도 18b를 참고하면, λPBG는 3.4mM까지 CCa의 증가에 따라 연속적으로 감소하고, 팽창의 정도는 Ca2+의 양에 반비례하며 CCa > 3.4mM에서 포화되는 것을 확인할 수 있었다.18B is a UV-Vis spectrum of an array film according to an embodiment of the present invention treated with samples of various C Ca. C Ca was 0mM, 0.4mM, 0.8mM, 2.0mM, 2.5mM, 3.0mM, 3.5mM, 4.0mM and 5.0mM, respectively. Referring to FIG. 18B, it was confirmed that λ PBG continuously decreased with the increase of C Ca up to 3.4 mM, the degree of expansion was inversely proportional to the amount of Ca 2+ and saturated at C Ca > 3.4 mM.
한편 Ca2+ 수용액을 첨가한 결과로 λPBG 값이 감소하는 CCa 대 Δλ의 플롯으로부터 검출 한계(LOD)와 선형 범위를 얻을 수 있었다. LOD는 LOD = 3.3 × (SD/S)를 사용하여 계산되었으며, 여기서 SD는 빈 시료의 표준 편차이고 S는 그래프의 기울기이다. 계산된 LOD는 0.05 ~ 5 mM의 선형 범위에서 0.0142 mM이었다. 이 실험으로 확인한 Ca2+의 최대 검출 한계도 3.4mM이었다. 이를 통해 검출 한계 범위 내에서는 본 발명에 따른 어레이 필름을 이용하여 여러 가지 색상의 이미지를 나타낼 수 있음을 확인하였다.On the other hand, the detection limit (LOD) and a linear range were obtained from the plot of C Ca versus Δλ in which the λ PBG value decreases as a result of the addition of the Ca 2+ aqueous solution. LOD was calculated using LOD = 3.3 × (SD/S), where SD is the standard deviation of the blank sample and S is the slope of the graph. The calculated LOD was 0.0142 mM in the linear range of 0.05 to 5 mM. The maximum detection limit of Ca 2+ confirmed by this experiment was also 3.4 mM. Through this, it was confirmed that images of various colors can be displayed using the array film according to the present invention within the detection limit range.
(5) 사람의 혈장 또는 타액 검사로의 활용(5) Utilization for human plasma or saliva test
본 발명에 따른 어레이 필름이 사람의 혈장 및 타액의 칼슘 이온을 감지할 수 있는지 확인하기 위하여 저칼슘 혈증(HypoCa), 고칼슘 혈증(HyperCa), 정상 혈증의 샘플에 대한 UV-Vis 스펙트럼과 사진을 분석하였다. Analysis of UV-Vis spectra and photographs of samples of hypocalcemia (HypoCa), hypercalcemia (HyperCa), and normoemia in order to confirm whether the array film according to the present invention can detect calcium ions in human plasma and saliva I did.
저칼슘 혈증-i 및 저칼슘 혈증-ii는 각각 물로 2배 및 3배 희석하여 준비하였고, 고칼슘 혈증 샘플은 사람의 혈장과 타액(0.1mL)에 CaCl2 수용액(6mM, 0.1mL)을 혼합하여 준비하였다. 건강한 사람의 총 칼슘 농도는 혈장 2.2 ~ 2.6mM, 타액 1.3 ~ 1.8mM이므로 정상 샘플의 혈장과 타액의 칼슘 농도는 각각 2.45 mM 및 1.53 mM로 준비하였다.Hypocalcemia-i and hypocalcemia-ii were prepared by diluting 2 times and 3 times with water, respectively, and hypercalcemia samples were prepared by mixing human plasma and saliva (0.1 mL) with CaCl 2 aqueous solution (6 mM, 0.1 mL). Ready. Since the total calcium concentration of healthy humans was 2.2 ~ 2.6mM in plasma and 1.3 ~ 1.8mM in saliva, the plasma and saliva of normal samples were prepared at 2.45 mM and 1.53 mM, respectively.
저칼슘 혈증-i, 저칼슘 혈증-ii, 정상 및 고칼슘 혈장에 대한 CCa 값은 각각 1.22mM, 0.81mM, 2.45mM 및 4.22mM이었고, 저칼슘 혈증-i, 저칼슘 혈증-ii, 정상 및 고칼슘 타액에 대한 CCa 값은 각각 0.76mM, 0.51mM, 1.53mM 및 3.76mM이었다. The C Ca values for hypocalcemia-i, hypocalcemia-ii, normal and hypercalcemia plasma were 1.22mM, 0.81mM, 2.45mM and 4.22mM, respectively, hypocalcemia-i, hypocalcemia-ii, normal and The C Ca values for high calcium saliva were 0.76mM, 0.51mM, 1.53mM and 3.76mM, respectively.
도 19a 및 도 19b는 각각 저칼슘 혈증-i, 저칼슘 혈증-ii, 정상 및 고칼슘 혈증의 혈장과 타액으로 처리된 본 발명의 일 실시예에 따른 어레이 필름의 UV-Vis 스펙트럼과 사진이다. 도 19a는 혈장에 대한 결과이고, 도 19b는 타액에 대한 결과이다.19A and 19B are UV-Vis spectra and photographs of an array film according to an embodiment of the present invention treated with plasma and saliva of hypocalcemia-i, hypocalcemia-ii, and normal and hypercalcemia, respectively. 19A is a result for plasma, and FIG. 19B is a result for saliva.
도 19a를 참고하면, 혈장 샘플의 λPBG는 정상 혈장 샘플의 경우 517nm에서 나타나고, 저칼슘 혈증-i 및 저칼륨 혈증-ii 샘플은 각각 556nm 및 532nm로 적색 편이되어 나타나며, 고칼슘 혈증 샘플은 493nm로 청색 편이되어 나타났다. Referring to FIG. 19A, λ PBG of the plasma sample appears at 517 nm in the case of a normal plasma sample, and the hypocalcemia-i and hypokalemia-ii samples are shown with red shifts to 556 nm and 532 nm, respectively, and the hypercalcemia sample is blue at 493 nm. Appeared on the side.
도 19b를 참고하면, 타액 샘플의 λPBG는 정상 타액 샘플의 경우 524nm에서 나타나고, 저칼슘 혈증-i 및 저칼슘 혈증-ii 샘플은 각각 552nm 및 564nm로 나타나며, 고칼슘 혈증 타액 샘플은 478nm에서 나타났다. Referring to FIG. 19B, λ PBG of the saliva sample was shown at 524 nm in the case of a normal saliva sample, the hypocalcemia-i and hypocalcemia-ii samples were shown at 552 nm and 564 nm, respectively, and the hypercalcemia saliva sample appeared at 478 nm.
건강한 사람의 혈청 및 타액에서 정상 칼슘의 수치는 본 발명에 따른 어레이 필름의 유효 영역에 존재하여 농도에 따라 반사되는 색을 변화시킬 수 있었다. 즉, 본 발명의 어레이 필름을 사람의 혈장 및 타액에서 칼슘 검출을 위한 바이오센서로 활용할 수 있음을 확인하였다.The level of normal calcium in the serum and saliva of a healthy person exists in the effective area of the array film according to the present invention, so that the reflected color can be changed according to the concentration. That is, it was confirmed that the array film of the present invention can be used as a biosensor for detecting calcium in human plasma and saliva.
(6) 이온의 선택성 및 민감성(6) Ion selectivity and sensitivity
본 발명에 따른 어페이 필름의 칼슘 이온 선택성 및 민감성을 평가하기 위하여 다양한 금속 이온과의 반응여부를 조사하였다. In order to evaluate the calcium ion selectivity and sensitivity of the apey film according to the present invention, the reaction with various metal ions was investigated.
도 20a 및 도 20b는 각각 FeCl2·4H2O, Zn(NO3)2·6H2O, Cu(NO3)2·3H2O, Mg(NO3)2·6H2O, NaNO3 및 CaCl2의 수용액으로 처리된 본 발명의 일 실시예에 따른 어레이 필름의 사진, 파장의 변화량, UV-Vis 스펙트럼이다. 각각을 4mM의 농도(NaNO3는 2가 금속과 동등한 것으로 사용 된 8mM의 농도)로 처리하고 물에 담갔다. 20A and 20B are respectively FeCl 2 ·4H 2 O, Zn(NO 3 ) 2 ·6H 2 O, Cu(NO 3 ) 2 ·3H 2 O, Mg(NO 3 ) 2 ·6H 2 O, NaNO 3 and A photograph of an array film according to an embodiment of the present invention treated with an aqueous solution of CaCl 2 , a change in wavelength, and a UV-Vis spectrum. Each was treated with a concentration of 4 mM (NaNO 3 was used as equivalent to a divalent metal, and was immersed in water).
가교 구조를 포함한 필름은 쉽게 부풀어 오르지 않고 물에 잠겨있을 때 반사된 색상이 파란색으로 변하는 것을 확인하였다. 1가 이온인 Na+는 가교 구조를 형성 할 수 없기 때문에, 금속 이온이 있는 경우와 없는 경우의 차이가 2가 이온의 경우보다 작게 나타났다. It was confirmed that the film including the crosslinked structure did not swell easily and the reflected color changed to blue when immersed in water. Since the monovalent ion Na + cannot form a crosslinked structure, the difference between the presence and absence of a metal ion was smaller than that of the divalent ion.
도 20a의 그래프와 20b를 참고하면, 초기에 적색이었던 IPNacetone/KOH 어레이 필름은 Fe2+, Zn2+, Cu2+, Mg2+ 및 Ca2+와 같은 2가 금속 이온으로 처리한 경우 청색 편이가 나타났다. 이는 2가 이온이 카르복시기 사이에서 가교를 형성 할 수 있음을 의미한다. Δλ 값은 Ca2+> Mg2+> Fe2+> Zn2+> Cu2+의 순서로 감소하였다. Ca2+를 첨가한 경우에 가장 큰 청색 편이가 일어남을 확인할 수 있었다.Referring to the graph of FIG. 20A and 20B, the IPN acetone/KOH array film, which was initially red, was treated with divalent metal ions such as Fe 2+ , Zn 2+ , Cu 2+ , Mg 2+ and Ca 2+ A blue shift appeared. This means that divalent ions can form bridges between carboxyl groups. The Δλ value decreased in the order of Ca 2+ > Mg 2+ > Fe 2+ > Zn 2+ > Cu 2+ . It was confirmed that the largest blue shift occurred when Ca 2+ was added.
도 20a의 사진을 참고하면, Ca2+를 포함한 혼합물로 처리한 경우 파란색 도트가 관찰되는 반면, Ca2+가 없는 Fe2+, Zn2+, Cu2+ 및 Mg2+를 포함한 혼합물로 처리한 경우 녹색 도트가 관찰되었다. 이는 Ca2+가 2가 이온들 중 킬레이션에 대해 카르복실레이트 이온과 가장 강한 친화성을 갖는다는 것을 의미한다.Referring to the photo of FIG. 20A, when treated with a mixture containing Ca 2+ , blue dots were observed, whereas treatment with a mixture containing Fe 2+ , Zn 2+ , Cu 2+ and Mg 2+ without Ca 2+ In one case, green dots were observed. This means that Ca 2+ has the strongest affinity with carboxylate ions for chelation among divalent ions.
사람의 타액에서 Ca2+ 다음으로 가장 흔한 이온은 Mg2+이다. 칼슘 이온의 선택성과 관련하여 Mg2+로부터의 간섭 여부를 4세트의 시료로 이용하여 확인하였다. Ca2+ 및 Mg2+의 농도는 mM 단위로 (CCa, CMg)로 표시하였다.The second most common ion in human saliva after Ca 2+ is Mg 2+ . Regarding the selectivity of calcium ions, the interference from Mg 2+ was confirmed by using 4 sets of samples. The concentrations of Ca 2+ and Mg 2+ were expressed in mM (C Ca , C Mg ).
도 21은 본 발명의 일 실시예에 따른 어레이 필름과 CCa, CMg 값이 다른 각각의 세트와의 반응결과를 나타낸 사진이다. 세트 I은 (CCa, CMg) = (1, 0), (2.2, 0), (3.5, 0), 세트 II는 CMg가 생리학적 농도인 0.9mM로 고정된 (CCa, CMg) = (1, 0.9), (2.2, 0.9), (3.5, 0.9), 세트 III는 CCa가 생리학적 농도인 2.2mM로 고정된 (CCa, CMg) = (2.2, 0.5), (2.2, 0.9), (2.2, 1.5), 세트 IV는 (CCa, CMg) = (0, 0.5), (0, 0.9), (0, 1.5)이었다. 21 is a photograph showing a reaction result of an array film according to an embodiment of the present invention and each set having different C Ca and C Mg values. Set I is (C Ca, C Mg) = (1, 0), (2.2, 0), (3.5, 0), the set II is a C Mg fixed to physiological concentration of 0.9mM (C Ca, Mg C ) = (1, 0.9), (2.2, 0.9), (3.5, 0.9), in set III, C Ca is fixed at a physiological concentration of 2.2 mM (C Ca , C Mg ) = (2.2, 0.5), ( 2.2, 0.9), (2.2, 1.5), set IV were (C Ca , C Mg ) = (0, 0.5), (0, 0.9), (0, 1.5).
도 22는 본 발명의 일 실시예에 따른 어레이 필름과 CCa, CMg 값이 다른 각각의 세트와의 반응결과를 나타낸 UV-Vis 스펙트럼이다. 22 is a UV-Vis spectrum showing a reaction result between an array film according to an embodiment of the present invention and each set having different C Ca and C Mg values.
도 22를 참고하면, 세트 I의 λPBG 값은 각각 575nm, 527nm, 496nm이며 세트 II의 λPBG 값은 각각 535nm, 526nm 및 492nm이었다. 세트 I과 II의 결과에는 큰 차이가 나타나지 않았다. 세트 III의 λPBG 값은 각각 529nm, 525nm 및 518nm이었고 세트 IV의 λPBG 값은 각각 635nm, 627nm 및 591nm이었다.Referring to FIG. 22, λ PBG values of Set I were 575 nm, 527 nm, and 496 nm, respectively, and λ PBG values of Set II were 535 nm, 526 nm, and 492 nm, respectively. There was no significant difference in the results of sets I and II. The λ PBG values for Set III were 529 nm, 525 nm and 518 nm, respectively, and the λ PBG values for Set IV were 635 nm, 627 nm and 591 nm, respectively.
도 21 및 도 22를 참고하면, Mg2+가 존재하여도 Ca2+ 이온의 농도가 증가하면 Mg2+ 이온이 없을 때와 같은 방식으로 도트의 색이 변하는 것을 확인할 수 있었다. 나아가 Mg2+ 이온만으로 붉은색 도트의 색이 크게 변하지 않으나 Ca2+ 이온과 혼합된 Mg2+ 이온은 도트의 색을 붉은색에서 녹색으로 도트의 색이 변하게 함을 확인할 수 있다. Referring to FIGS. 21 and 22, it can be seen that even in the presence of Mg 2+, when the concentration of Ca 2+ ions increases, the color of the dots changes in the same manner as in the absence of Mg 2+ ions. Furthermore, it can be seen that the color of the red dot does not change significantly with only Mg 2+ ions, but the Mg 2+ ions mixed with Ca 2+ ions change the color of the dot from red to green.
이 결과를 통해 Ca2+ 이온만이 본 발명에 따른 필름의 도트의 색 변화를 일으키고 생리학적 농도를 지닌 Mg2+ 이온은 IPNacetone/KOH 어레이 필름의 광학적 반응 또는 해당 UV-vis 스펙트럼에 영향을 미치지 않으므로 본 발명에 따른 어레이 필름은 칼슘 이온에 선택성과 민감성이 있음을 확인할 수 있었다.Through this result, only Ca 2+ ions cause a color change of the dots of the film according to the present invention, and Mg 2+ ions having a physiological concentration affect the optical reaction of the IPN acetone/KOH array film or the corresponding UV-vis spectrum. Therefore, it was confirmed that the array film according to the present invention has selectivity and sensitivity to calcium ions.
전술한 내용은 후술할 발명의 청구범위를 더욱 잘 이해할 수 있도록 본 발명의 특징과 기술적 장점을 다소 폭넓게 상술하였다. 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The foregoing has been somewhat broadly described in terms of features and technical advantages of the present invention so that the claims of the invention to be described later can be better understood. Those of ordinary skill in the art to which the present invention pertains will appreciate that the present invention can be implemented in other specific forms without changing the technical spirit or essential features thereof. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not limiting. The scope of the present invention is indicated by the claims to be described later rather than the detailed description, and all changes or modified forms derived from the claims and their equivalent concepts should be interpreted as being included in the scope of the present invention.

Claims (12)

  1. 반응성 CLC(Cholesteric Liquid Crystals) 혼합물을 UV 경화한 후 비반응성 키랄 도판트를 제거하여 제조된 광결정 구조체;A photonic crystal structure prepared by UV curing a reactive CLC (Cholesteric Liquid Crystals) mixture and then removing a non-reactive chiral dopant;
    상기 광결정 구조체의 내부 공간에 침투된 하이드로겔; 및A hydrogel penetrating into the inner space of the photonic crystal structure; And
    염;을 포함하고, 습도 반응성을 갖는 IPN(Interpenetrating Polymeric Network) 구조의 광결정 복합체.Salt; Including, and having a humidity reactivity IPN (Interpenetrating Polymeric Network) structure photonic crystal complex.
  2. 제 1 항에 있어서, 상기 하이드로겔은 아크릴산(Acrlyic acid), 디아크릴레이트(TPGDA) 및 광개시제를 포함하는 것을 특징으로 하는 습도 반응성을 갖는 광결정 복합체.The photonic crystal composite of claim 1, wherein the hydrogel comprises acrylic acid, diacrylate (TPGDA), and a photoinitiator.
  3. 제 1 항에 있어서, 상기 염은 상기 하이드로겔의 카르복시기와 반응하는 나트륨염 또는 칼륨염인 것을 특징으로 하는 습도 반응성을 갖는 광결정 복합체.The photonic crystal complex having humidity reactivity according to claim 1, wherein the salt is a sodium salt or potassium salt that reacts with a carboxyl group of the hydrogel.
  4. 반응성 CLC 혼합물을 UV 경화한 후 비반응성 키랄 도판트를 제거하여 광결정 구조체를 제조하는 제 1 단계;A first step of UV-curing the reactive CLC mixture and then removing the non-reactive chiral dopant to prepare a photonic crystal structure;
    상기 광결정 구조체의 내부 공간에 하이드로겔을 침투시켜 IPN 구조의 복합체를 형성하는 제 2 단계; 및A second step of forming a complex having an IPN structure by penetrating the hydrogel into the inner space of the photonic crystal structure; And
    상기 IPN 구조의 복합체를 염과 반응시켜 습도 반응성을 갖는 광결정 복합체를 형성하는 제 3 단계;를 포함하는 습도 반응성을 갖는 광결정 복합체 제조방법.A method for producing a photonic crystal composite having humidity reactivity comprising a third step of reacting the IPN-structured composite with a salt to form a photonic crystal composite having humidity reactivity.
  5. 제 4 항에 있어서, 상기 하이드로겔은 아크릴산(Acrlyic acid), 디아크릴레이트(TPGDA) 및 광개시제를 포함하는 것을 특징으로 하는 습도 반응성을 갖는 광결정 복합체 제조방법.The method of claim 4, wherein the hydrogel comprises acrylic acid, diacrylate (TPGDA) and a photoinitiator.
  6. 제 4 항에 있어서, 상기 염은 상기 하이드로겔의 카르복시기와 반응하는 나트륨염 또는 칼륨염인 것을 특징으로 하는 습도 반응성을 갖는 광결정 복합체 제조방법.The method of claim 4, wherein the salt is a sodium salt or potassium salt that reacts with the carboxyl group of the hydrogel.
  7. 제 1 항에 따른 광결정 복합체를 이용하여 습도를 측정하는 방법.A method of measuring humidity using the photonic crystal composite according to claim 1.
  8. 제 1 항에 따른 광결정 복합체를 이용하여 제조되는 것을 특징으로 하는 습도센서.A humidity sensor manufactured by using the photonic crystal composite according to claim 1.
  9. 제 1 항에 따른 광결정 복합체를 이용하여 제조되는 것을 특징으로 하는 칼슘 이온의 검출을 위한 바이오센서.A biosensor for detecting calcium ions, which is manufactured using the photonic crystal complex according to claim 1.
  10. 제 9 항에 있어서, 상기 칼슘 이온이 상기 하이드로겔의 카르복시기와 가교 결합을 형성하고, 수축 및 팽창된 하이드로겔이 상기 광결정 구조체의 수축 및 팽창을 유도하여 광 밴드갭의 파장 범위가 변화함으로써 칼슘 이온을 감지하는 것을 특징으로 하는 바이오센서.The method of claim 9, wherein the calcium ions form a crosslinking bond with the carboxyl group of the hydrogel, and the contracted and expanded hydrogel induces contraction and expansion of the photonic crystal structure to change the wavelength range of the optical bandgap. Biosensor, characterized in that to detect.
  11. 제 10 항에 있어서, 상기 칼슘 이온은 사람의 혈장 또는 타액의 칼슘 이온을 포함하는 것을 특징으로 하는 바이오센서.11. The biosensor of claim 10, wherein the calcium ions include calcium ions in human plasma or saliva.
  12. 제 10 항에 있어서, 상기 파장 범위의 변화는 pH 2 내지 12에서 수행되는 것을 특징으로 하는 바이오센서.The biosensor according to claim 10, wherein the change in the wavelength range is performed at a pH of 2 to 12.
PCT/KR2020/001604 2019-03-06 2020-02-04 Humidity-responsive photonic crystal composite, method for preparing same, and sensor using same WO2020180011A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0025620 2019-03-06
KR1020190025620A KR102186502B1 (en) 2019-03-06 2019-03-06 Moisture reactive photonic complex, manufacturing method thereof and a sensor using the same

Publications (1)

Publication Number Publication Date
WO2020180011A1 true WO2020180011A1 (en) 2020-09-10

Family

ID=72338541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001604 WO2020180011A1 (en) 2019-03-06 2020-02-04 Humidity-responsive photonic crystal composite, method for preparing same, and sensor using same

Country Status (2)

Country Link
KR (1) KR102186502B1 (en)
WO (1) WO2020180011A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964650A (en) * 2021-02-05 2021-06-15 武汉纺织大学 Fiber-based humidity sensor based on moisture absorption and color change and preparation method thereof
EP4253077A1 (en) * 2022-03-30 2023-10-04 BIC Violex Single Member S.A. System with salt-based color adjustment of substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994021587A1 (en) * 1993-03-23 1994-09-29 Exxon Chemical Patents Inc. Basic calcium carboxylates
KR20170068274A (en) * 2015-12-09 2017-06-19 한국화학연구원 Colorimetric photonic crystal structure and colorimetric photonic crystal sensor using the same
KR101825597B1 (en) * 2017-02-28 2018-02-05 경북대학교 산학협력단 manufacturing method for solid-state helical photonic crystal structure and photonic crystal prepared thereby

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200714615A (en) 2005-10-05 2007-04-16 Chilisin Electronics Corp Resistance-type humidity-sensing copolymer, the composition, and the method of preparing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994021587A1 (en) * 1993-03-23 1994-09-29 Exxon Chemical Patents Inc. Basic calcium carboxylates
KR20170068274A (en) * 2015-12-09 2017-06-19 한국화학연구원 Colorimetric photonic crystal structure and colorimetric photonic crystal sensor using the same
KR101825597B1 (en) * 2017-02-28 2018-02-05 경북대학교 산학협력단 manufacturing method for solid-state helical photonic crystal structure and photonic crystal prepared thereby

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KYUNG-GYU NOH, SOO-YOUNG PARK: "Biosensor Array of Interpenetrating Polymer Network with Photonic Film Templated from Reactive Cholesteric Liquid Crystal and Enzyme-Immobilized Hydrogel Polymer", ADVANCED FUNCTIONAL MATERIALS, vol. 28, 2018, pages 1707562-1 - 1707562-9, XP055737124 *
STUMPEL, J. E.: "Stimuli-Responsive Materials Based on Interpenetrating Polymer Liquid Crystal Hydrogels", ADVANCED FUNCTIONAL MATERIALS, vol. 25, 2015, pages 3314 - 3320, XP055635286, DOI: 10.1002/adfm.201500745 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964650A (en) * 2021-02-05 2021-06-15 武汉纺织大学 Fiber-based humidity sensor based on moisture absorption and color change and preparation method thereof
CN112964650B (en) * 2021-02-05 2022-09-02 武汉纺织大学 Fiber-based humidity sensor based on moisture absorption and color change and preparation method thereof
EP4253077A1 (en) * 2022-03-30 2023-10-04 BIC Violex Single Member S.A. System with salt-based color adjustment of substrate

Also Published As

Publication number Publication date
KR20200107085A (en) 2020-09-16
KR102186502B1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
WO2020180011A1 (en) Humidity-responsive photonic crystal composite, method for preparing same, and sensor using same
Abdollahi et al. Photochromic properties of stimuli-responsive cellulosic papers modified by spiropyran-acrylic copolymer in reusable pH-sensors
Scheid et al. Redox-and mechano-chromic response of metallopolymer-based elastomeric colloidal crystal films
Lan et al. Humidity‐Induced Simultaneous Visible and Fluorescence Photonic Patterns Enabled by Integration of Covalent Bonds and Ionic Crosslinks
EP3388869A1 (en) Color-conversion photonic crystal structure and color-conversion photonic crystal sensor using same
US11892410B2 (en) Method for preparing solid-state photonic crystal IPN composite functionalized with enzyme, photonic crystal IPN composite prepared by the method and biosensor using the photonic crystal IPN composite
KR950703009A (en) METHOD OF PREPARING A COMPOSITE MATERIAL COMPRISING A SILICA NETWORK AND CHAINS OF A POLYHYDROXY COMPOUND AND A LIQUID CRYSTAL DISPLAY DEVICE HAVING A TOP COAT OF SUCH MATERIAL)
Long et al. High‐Performance Photochromic Hydrogels for Rewritable Information Record
Ngampeungpis et al. Colorimetric UV sensors with tunable sensitivity from diacetylenes
CN107085249B (en) A kind of preparation method of two-dimensional invisible photonic crystal
Rella et al. Refractive Index‐Adaptive Nanoporous Chiral Photonic Crystal Film for Chemical Detection Visualized via Selective Reflection
Qiu et al. Preparation, optical properties and 1× 2 polymeric thermo-optic switch of polyurethane-urea
JP2017519859A (en) Yellow to transparent electrochromic polymer
Scorsone et al. Evanescent sensing of alkaline and acidic vapours using a plastic clad silica fibre doped with poly (o-methoxyaniline)
KR102148874B1 (en) Sensor for detecting nerve agent, method of detecting nerve agent using thereof and method of recycling the sensor
US5665844A (en) Polymer films for detecting chemical substances
US7041364B2 (en) Security paper
Verge et al. Thermal ageing of poly (ethylene oxide)/poly (3, 4-ethylenedioxythiophene) semi-IPNs
CN106750424B (en) Flexible air-sensitive film and its preparation method and application
Sreenivasan Identification of salicylic acid using surface modified polyurethane film using an imprinted layer of polyaniline
He et al. A novel polymer dispersed liquid crystal film prepared by reversible addition fragmentation chain transfer polymerization
Shiga et al. Stress monitoring in thin polymer coatings using time resolved fluorescence
DE19650198A1 (en) Heat-stable, flexible polariser film
Shiveshwarkar et al. Investigating the Characteristics and Responses of Diacetylene Based Materials as Spray-On Colorimetric Sensors
Rosenberger et al. Humidity-induced effects on polymer planar Bragg gratings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20767018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20767018

Country of ref document: EP

Kind code of ref document: A1