WO2020179629A1 - Calibration system, calibration device, and program - Google Patents

Calibration system, calibration device, and program Download PDF

Info

Publication number
WO2020179629A1
WO2020179629A1 PCT/JP2020/008081 JP2020008081W WO2020179629A1 WO 2020179629 A1 WO2020179629 A1 WO 2020179629A1 JP 2020008081 W JP2020008081 W JP 2020008081W WO 2020179629 A1 WO2020179629 A1 WO 2020179629A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
combination
correction coefficient
color
spectral
Prior art date
Application number
PCT/JP2020/008081
Other languages
French (fr)
Japanese (ja)
Inventor
浩大 永井
聡史 出石
幹夫 上松
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN202080017772.XA priority Critical patent/CN113518903B/en
Priority to JP2021504026A priority patent/JP7459863B2/en
Publication of WO2020179629A1 publication Critical patent/WO2020179629A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors

Definitions

  • the present invention relates to a calibration system, a calibration device, and a program used for calibrating a stimulus-type colorimeter including at least three color channels.
  • a stimulus value type measurement in which a sensor receives light whose wavelength is selected by an optical filter, such as a color luminance meter having a spectral responsivity similar to a color matching function, and the stimulus value according to the light intensity is used as the measurement value.
  • the color apparatus has a measurement error due to a difference between the spectral response of the colorimeter formed by the spectral characteristics of the optical filter or the sensor and the target spectral response such as a color matching function.
  • a coefficient for correcting the measured value as shown in the following formula (1) is calculated, and the measured value is calculated by the correction coefficient.
  • a correction technique is known (for example, Patent Document 1 and Patent Document 2).
  • P * S * CM1 P * CMF (1)
  • P is a matrix that is the individual spectral values of the emission spectrum of the target light source
  • S is a matrix that is the individual spectral values of the spectral sensitivity of the filter of the measuring instrument
  • CMF is the standard defined by CIE1931.
  • a matrix that is each spectrum value of the spectrum evaluation function of, CM1 represents a calibration matrix (correction coefficient).
  • the spectral radiation characteristic (spectral data) of the measurement target is measured by a color measurement device (also referred to as a spectrophotometer) by a spectrocolorimetry method, and the stimulation value type
  • the spectral responsivity of the color measuring device is measured in advance.
  • the correction coefficient CM1 is calculated from the spectral responsivity of the filter measuring instrument and the spectral radiation characteristic of the measurement object, and the actual measurement value of the filter measuring instrument is corrected by the correction coefficient to obtain a correct measurement value.
  • Patent Documents 1 and 2 do not consider a combination of a spectroscopic measuring device that measures the spectral radiation characteristic of a measurement target and a filter measuring device that uses an optical filter. Further, the spectral radiation characteristic of the measurement target depends on the measurement position, the measurement angle, and the like. That is, the correction coefficient CM1 exists for each of a plurality of combinations including the spectral radiation characteristics of the reference object to be measured, the filter measuring device, and various parameters that cause errors. Therefore, in order to calculate an appropriate correction coefficient CM1 and perform highly accurate calibration, it is necessary to select an optimum combination from a plurality of combinations. Not shown.
  • the measurement object or the spectroscopy measurement device will be changed. Spectral radiation characteristics and the like must be measured every time, which is inefficient and requires time for calibration work.
  • the present invention has been made in view of such a technical background, and when measuring an object to be measured with a stimulus value type colorimeter including at least three color channels, different measurement conditions are used. Another object of the present invention is to provide a calibration system, a calibration device, and a program that can perform highly accurate calibration easily and efficiently.
  • the first color measuring device is used when calibrating a storage means that stores a plurality of combination information in which radiation characteristics are associated and combined in advance and the first color measuring device that has measured a measurement object.
  • the optimum combination of the first color measuring device, the object to be measured, and the spectral radiation characteristics of the object to be measured is obtained.
  • Discrimination means for discriminating from among the plurality of combination information stored in the storage means, spectral radiation characteristics of the measurement object included in the combination discriminated by the discrimination means, and the measurement result A calibration system including: a calibration unit that corrects a measurement value obtained by the first color measurement device based on a spectral responsivity of the first color measurement device. (2) The calibration system according to item 1, wherein the combination information is stored in advance in the storage unit as a table.
  • Each combination in the combination information includes information for specifying the measurement position, and the discrimination means determines the optimum combination based on the measurement position of the first color measuring device used for the measurement.
  • Each combination in the combination information includes information for specifying the measurement angle, and the discrimination means determines the optimum combination based on the measurement angle of the first color measuring device used for the measurement.
  • Each combination in the combination information includes information on the measurement environment, and the discrimination means determines the optimum combination based on the measurement environment of the first color measuring device used for the measurement.
  • the calibration system according to any one of 4.
  • the determination unit determines the spectral emission characteristic. 6.
  • the storage unit stores an initial value table of weights for determining a combination of measurement objects having similar spectral radiation characteristics.
  • a correction coefficient based on the spectral radiation characteristic of the measurement object and the spectral responsivity of the first color measurement device used for measurement is set as a first correction coefficient, and a measurement value by the first measurement device is set as a first correction coefficient.
  • the correction coefficient for calibrating to the value obtained by the measuring device 2 is the second correction coefficient and the correction coefficient for associating the first correction coefficient with the second correction coefficient is the third correction coefficient.
  • the combination stored in the storage means includes the third correction coefficient, and the calibration means calculates the first correction coefficient, and the calculated first correction coefficient, and The second correction coefficient is calculated from the third correction coefficient included in the combination determined by the determination means, and the measured value is corrected using the calculated second correction coefficient.
  • the calibration system according to any one of 8.
  • the first color measuring device is used when calibrating a storage means that stores a plurality of combination information in which radiation characteristics are associated and combined in advance and the first color measuring device that has measured a measurement object.
  • a calibration device comprising: a calibration unit that corrects a measurement value obtained by the first color measurement device based on a spectral responsivity of the first color measurement device.
  • One or a plurality of first identification information for specifying one or a plurality of stimulus value type first color measuring devices each including at least three color channels, and one or a plurality of them.
  • One or a plurality of second identification information for specifying one measurement object, and the spectrum of the measurement object measured by the second color measurement device by one or a plurality of spectrocolorimetry methods can communicate with an external database device having a storage means for pre-storing a plurality of combined information in association with each other, and the calibration of the first color measuring device that has measured the measurement object can be performed.
  • the first color measuring device, the measuring object, and the measuring object that have been measured based on the first identification information of the first color measuring device and the second identification information of the measurement object are measured.
  • Discriminating means for discriminating the optimum combination of spectral radiation characteristics of the objects from among the plurality of combination information stored in the storage means, and the measuring object contained in the combination discriminated by the discriminating means.
  • a calibration device including a calibration means for correcting a measured value by the first color measuring device based on the spectral radiation characteristics of the above and the spectral response of the first color measuring device in which the measurement is performed.
  • Each combination in the combination information includes information for specifying the measurement position, and the discrimination means determines the optimum combination based on the measurement position of the first color measuring device used for the measurement.
  • the calibrator according to any one of 13 to 15.
  • Each combination in the combination information includes information for specifying the measurement angle, and the discriminating means determines the optimum combination based on the measurement angle of the first color measuring device used for the measurement.
  • the calibration device according to any one of 13 to 16.
  • Each combination in the combination information includes information on the measurement environment, and the determination means determines the optimum combination based on the measurement environment of the first color measuring device used for the measurement.
  • the calibrator according to any one of 17.
  • the determination means determines the spectral emission characteristic. 19.
  • the calibration device according to any one of items 13 to 18 above, which determines a combination of measurement objects that are similar to each other from the combination information.
  • the calibration device (20) The calibration device according to item 19, wherein the storage means stores an initial value table of weights for discriminating a combination of measurement objects having similar spectral radiation characteristics.
  • the calibration device (20) The calibration device according to the above item 19 or 20, wherein a user can input an evaluation of the combination determined by the determination means.
  • a correction coefficient based on the spectral radiation characteristic of the measurement object and the spectral responsivity of the first color measurement device used for measurement is set as a first correction coefficient, and a measurement value by the first measurement device is set as a first correction coefficient.
  • the correction coefficient for calibrating to the value obtained by the measuring device 2 is the second correction coefficient and the correction coefficient for associating the first correction coefficient with the second correction coefficient is the third correction coefficient.
  • the combination stored in the storage means includes the third correction coefficient, and the calibration means calculates the first correction coefficient, and the calculated first correction coefficient, and The second correction coefficient is calculated from the third correction coefficient included in the combination determined by the determination means, and the measured value is corrected using the calculated second correction coefficient.
  • 21. The calibrator according to any one of 21.
  • (23) The calibration device according to any one of items 13 to 22, wherein the spectral responsivity of the first color measurement device is stored in the first color measurement device.
  • the third identification information for identifying the second colorimetric device is combined with the first identification information, the second identification information, and the spectral radiation characteristic in association with each other.
  • the calibrator according to any one of the preceding paragraphs 13 to 24.
  • One or a plurality of first identification information for specifying one or a plurality of stimulus value type first color measuring devices each including at least three color channels, and one or a plurality of them.
  • One or a plurality of second identification information for specifying one measurement object, and the spectrum of the measurement object measured by the second color measurement device by one or a plurality of spectrocolorimetry methods.
  • the computer of the calibrating device When calibrating the first color measuring device in which the measurement object is measured, the computer of the calibrating device provided with the storage means for storing a plurality of combination information in which the radiation characteristics are associated and combined in advance is used. Based on the first identification information of the first color measurement device and the second identification information of the measurement target, the first color measurement device that performed the measurement, the measurement target, and the spectral emission of the measurement target A determination step of determining an optimum combination of characteristics from among the plurality of combination information stored in the storage means, and a spectral radiation characteristic of the measurement target included in the combination determined by the determination step. And a calibration step of correcting a measurement value by the first color measurement device based on the spectral responsivity of the first color measurement device that has performed the measurement.
  • the first colorimetric measurement is performed on a computer of a calibration device that is capable of communicating with an external database device that includes a storage unit that stores in advance a plurality of pieces of combination information whose emission characteristics are associated with each other.
  • the first color measuring device and the measuring object are measured based on the first identification information of the first color measuring device and the second identification information of the measurement object.
  • one or more for specifying one or more stimulus value type first colorimetric devices including at least three color channels, respectively.
  • Individual first identification information, one or more second identification information for identifying one or more measurement objects, each spectral responsivity of the first color measuring device, and A plurality of pieces of combination information in which the spectral radiation characteristics of the measurement target measured by the second colorimetric apparatus using one or a plurality of spectrocolorimetric methods are associated and combined are stored in advance in the storage unit. Then, when calibrating the first color measurement device that has measured the measurement target, the measurement is performed based on the first identification information of the first color measurement device and the second identification information of the measurement target.
  • the optimum combination of the first colorimetric device, the measurement object, and the spectral emission characteristic of the measurement object that has been determined is determined from among the plurality of combination information stored in the storage unit, and the determined combination is determined.
  • the value measured by the first color measuring device is corrected based on the spectral radiation characteristics of the included object to be measured and the spectral response of the first color measuring device in which the measurement is performed.
  • the optimum combination corresponding to the first color measuring device actually used and the measurement object is selected from the plurality of combinations stored in advance in the storage means, and is included in the selected combination. Since the spectrophotometric characteristics are used for calibration of the first colorimeter, even if the first colorimeter used for measurement or the object to be measured changes, highly accurate calibration adapted to the conditions can be easily performed. be able to. In addition, it is not necessary to measure the spectral radiation characteristics of the measurement object and the spectral response of the filter measuring instrument each time calibration is performed, and it is not necessary to calculate the correction coefficient from the measurement results. it can.
  • the discriminating means can discriminate the optimum combination from the table of combination information stored in the storage means.
  • the optimum combination can be determined in consideration of the measurement position of the first measuring device, so that more accurate calibration can be performed. it can.
  • the optimum combination can be determined in consideration of the measurement angle of the first measuring device, so that more accurate calibration can be performed. it can.
  • the optimum combination can be determined in consideration of the information on the measurement environment of the first measuring device, so that more accurate calibration is performed. be able to.
  • the spectral radiation characteristic A combination of similar measurement objects is determined from the combination information.
  • the user can input the evaluation of the determined combination, so that the input evaluation can be referred to when determining the optimum combination.
  • the first correction coefficient is a correction coefficient based on the spectral emission characteristic of the measurement target and the spectral responsivity of the first color measurement device used for the measurement.
  • a correction coefficient for calibrating the measurement value of the first measurement device to a value obtained by the second measurement device is used as a second correction coefficient, and the first correction coefficient and the second correction coefficient are associated with each other.
  • the correction coefficient is the third correction coefficient
  • the combination stored in the storage unit includes the third correction coefficient. Therefore, the first correction coefficient is calculated and the calculated first correction coefficient is calculated.
  • the second correction coefficient can be calculated from the correction coefficient and the third correction coefficient included in the determined combination, and the measured value can be corrected using the calculated second correction coefficient.
  • the spectral responsivity of the first color measurement device can be called from the first color measurement device.
  • the spectral responsivity of the first color measurement device can be called from the storage means.
  • the combination information includes the third identification information for identifying the second color measurement device, the first identification information, and the second identification information. And because it is combined in association with the spectrophotometric characteristics, if the user holds a second colorimeter identified by this third identification, then this second colorimeter is used again. It is possible to perform processing such as measuring the spectral radiation characteristic of the measurement object and performing correction based on the result.
  • the optimum combination corresponding to the first color measuring device actually used and the measurement object is selected from a plurality of combinations stored in advance in the storage means. Since the spectral radiation characteristics included in the selected combination are used for the calibration of the first color measurement device, even if the first color measurement device or the measurement target used for the measurement is changed, the condition is adapted. Highly accurate calibration can be performed easily and efficiently. Moreover, since the storage means is provided in an external database device different from the calibration device, the combination information can be centrally managed by the database device, and the calibration device can connect to the database device to store necessary information when necessary. Can be obtained.
  • one or a plurality of first colorimetric devices for specifying one or a plurality of stimulus value type first colorimetric devices each including at least three color channels.
  • the spectral emission characteristics of the measurement object measured by the second colorimetric device according to the spectrocolorimetric method are measured by the computer of the calibration device including a storage unit that stores in advance a plurality of pieces of combination information associated with each other.
  • the optimum combination of the first color measuring device, the measurement object, and the spectral radiation characteristic of the measurement object is discriminated from a plurality of combination information stored in the storage unit, and is included in the discriminated combination. It is possible to execute a process of correcting the measured value by the first color measuring device based on the spectral radiation characteristics of the object to be measured and the spectral response of the first color measuring device in which the measurement is performed.
  • one or a plurality of first colorimetric devices for specifying one or a plurality of stimulus value type first colorimetric devices each including at least three color channels.
  • Identification information, and one or more second identification information for specifying one or more measurement objects, and one or more second color measurement device using a spectral colorimetric method.
  • the measurement of the measured object is performed on a computer of a calibrator that can communicate with an external database device equipped with a storage means that stores a plurality of combination information in which the spectral radiation characteristics of the measured object are associated and combined in advance.
  • the first color measurement measurement is performed based on the first identification information of the first color measurement device and the second identification information of the measurement target.
  • the optimum combination of the device, the measurement object, and the spectral radiation characteristic of the measurement object is determined from a plurality of pieces of combination information stored in the storage unit, and the measurement object included in the determined combination is determined.
  • the process of correcting the measured value by the first color measuring device can be executed based on the spectral radiation characteristics and the spectral response of the first color measuring device in which the measurement is performed.
  • (A) is a diagram showing a relationship of correction coefficients at the time of factory shipment
  • (B) is a diagram showing a relationship of correction coefficients at the time of user use.
  • 7 is a flowchart for explaining still another operation of the calibration device in the calibration system shown in FIG. 1. It is a figure which shows an example of a neural network.
  • (A)-(C) is a figure for demonstrating the difference of a spectrum shape when comparing two measurement objects (display panels). It is a figure which shows an example of the initial value table of a weight. It is a figure which shows the structure of the calibration apparatus which concerns on other embodiment of this invention. It is a figure for demonstrating the basic calibration method.
  • FIG. 1 is a diagram showing a schematic configuration of a calibration system according to an embodiment of the present invention.
  • This calibration system includes a first color measurement device 2 that measures an object to be measured 1, and a calibration device 3 that receives measurement data from the first color measurement device 2 and calibrates the first color measurement device 2. And a database server 4.
  • a display panel such as a liquid crystal is exemplified as the measurement object 1, but the measurement object 1 is not limited to the display panel.
  • the first color measurement device 2 is a stimulus value type color measurement device that receives light whose wavelength is selected by an optical filter or the like with a sensor and uses a stimulus value according to the light intensity as a measurement value. Contains color channels. That is, it has three or more filters having different spectral transmissibility and three or more sensors for converting the light received through the filters into the corresponding measurement signals.
  • the first color measuring device is also referred to as a filter measuring device.
  • the calibration device 3 is composed of a personal computer, and includes a CPU 31, a RAM 32, a non-volatile memory 33 such as a hard disk, and a functional unit including a measurement unit 34, a determination unit 35, a calibration unit 36, and a communication unit 37.
  • the CPU 31 centrally controls the entire calibration device 3, and the RAM 32 provides a work area when the CPU 31 operates according to an operation program stored in the nonvolatile memory 33 or the like.
  • the non-volatile memory 33 stores the operation program of the CPU 31 and various data.
  • various data measurement data that is raw data (raw data) of the object to be measured acquired from the filter measuring device 2, filter measuring device ID that is identification information for specifying the filter measuring device 2, There is a spectral responsivity of the filter measuring device 2.
  • the measuring unit 34 acquires the measurement data from the filter measuring device 2, and also acquires the filter measuring device ID and the spectral responsivity.
  • the acquired measurement data, filter measuring device ID, and spectral responsivity are stored in the nonvolatile memory 33 as described above.
  • a measurement object ID also referred to as a display type
  • the measurement object ID is acquired based on, for example, user input.
  • the filter measuring instrument ID and the like may also be acquired based on the user input.
  • the discriminating unit 35 selects the optimum combination of the filter measuring device 2 used for the actual measurement and the measurement object 1 from the combination information stored in the database server 4. Although it is determined, this point will be described later.
  • the calibration unit 36 calibrates the filter measuring device 2 by using the spectral radiation characteristics of the measurement object 1 included in the optimum combination determined by the discrimination unit 35.
  • the communication unit 37 is a communication interface for connecting the calibration device 3 to the database server 4 and the filter measuring device 2 via the network 5.
  • the database server 4 is composed of a personal computer or the like, has a storage unit 41, and holds a plurality of combination information for performing calibration of the filter measuring instrument 2 as a combination table in the storage unit 41.
  • the filter measuring instrument 2 has a measurement error due to the difference between the spectral responsivity and the target spectral responsivity such as the color matching function. It is desirable to calibrate the filter measuring instrument 2 by calculating the correction count and correcting the measured value by using the information on the spectral response rate and the spectral radiation characteristic of the object 1 to be measured.
  • a plurality of filter measuring devices 2 of different types, a plurality of measurement objects 1 of different types, and a second color measuring device (hereinafter, also referred to as a spectroscopic measuring device) 5 by a spectrocolorimetric method are provided.
  • the spectral radiation characteristic of the measuring object 1 is measured in advance by the spectroscopic measurement device 5.
  • the spectral response of the filter measuring device 2 is also measured.
  • the measurement object 1 and the filter measuring instrument 2 are given a measurement object ID (display type) and a filter measuring instrument ID for identifying them, but in this embodiment, as a desirable embodiment.
  • the spectroscopic measuring instrument 5 is also given a spectroscopic measuring instrument ID. Then, the obtained spectral radiation characteristic, the ID of the spectroscopic measuring instrument 5 that measured the spectral radiation characteristic, the ID of the filter measuring instrument 2, and the ID of the measuring object 1 are associated with each other and stored in the database server 4 as a combination table. It is stored in the section 41 and saved.
  • FIG. 2 shows an example of a combination table stored and saved in the database server 4.
  • the filter measuring device ID the measurement target ID (Display Type), the spectroscopic measuring device ID, and the spectral radiation characteristic are stored in association with each other.
  • the spectral responsivity of each filter measuring instrument 2 may be defined in this table in association with the filter measuring instrument ID, the measurement object ID, the spectroscopic measuring instrument ID, etc. It may be stored in the container 2 itself.
  • the filter measuring instrument 2 when the filter measuring instrument 2 is shipped from the factory, the filter measuring instrument 2, various measuring objects 1 and various spectroscopic measuring instruments 5 are combined to measure the spectral radiation characteristics of the measuring object 1, and the results are shown.
  • the filter measuring device ID, the measurement object ID, and the spectroscopic measuring device ID are stored as combination information in the storage unit 41 of the database server 4 as a combination table.
  • the spectral response of the filter measuring device 2 is also measured and stored in the filter measuring device 2 itself, or stored in the combination table of the database server 4 in association with the filter measuring device ID. By repeating this, a large amount of combination information is stored in the database server.
  • the user measures the measurement object 1 using the shipped filter measuring device 2, but the measuring unit 34 of the calibration device 3 acquires the measurement data, the filter measuring device ID, and the spectral responsivity from the filter measuring device 2.
  • the display type of the measuring object 1 is acquired by user input or the like (step S01).
  • the determination unit 35 of the calibration device 3 accesses the database server 4 via the network and acquires the combination information from the combination table of the database server 4 (step S01).
  • the determination unit 35 further compares the acquired combination information with the filter measurement device ID and display type acquired by the measurement unit 34, and determines a combination in which the filter measurement device ID and the display type match from the combination information. (Step S01). Then, the spectroscopic measurement device 5 and the spectroscopic radiation characteristic indicated by the spectroscopic measurement device ID included in the determined combination are the optimum spectroscopic measurement device corresponding to the filter measurement device 2 and the measurement target 1 that are actually used. 5 and the spectroscopic radiation characteristics are determined (step S01).
  • the filter measuring instrument ID is a and the display type is a circle number 1
  • the spectroscopic measuring instrument ID is determined to be A and the spectral radiation characteristic is determined to be ⁇ .
  • the calibration unit 36 calculates a correction coefficient (corresponding to the first correction coefficient) CM1 using the determined spectral radiation characteristic and the spectral responsivity of the filter measuring device 2 (step S02), and the calculated correction is performed.
  • the measurement data (Raw data) is corrected using the coefficient CM1 (step S03).
  • a plurality of combinations of the spectral radiation characteristics of the filter measuring device 2, the measuring object 1, the spectroscopic measuring device 5, and the measuring object 1 are stored in association with the database server 4 in advance. From the combination information, the optimum combination corresponding to the actually used filter measuring device 2 and the measurement object 1 is selected, and the spectral radiation characteristics included in the selected combination are corrected when the filter measuring device 2 is calibrated. Since it is used for calculating the coefficient, even if the filter measuring device 2 or the measuring object 1 used for the measurement is changed, or the user does not hold the optimum spectroscopic measuring device 5, the accuracy suitable for the conditions can be obtained. High calibration can be done easily and efficiently.
  • the combination information includes the spectroscopic measurement device ID for specifying the spectroscopic measurement device 5
  • the user holds the spectroscopic measurement device 5 specified by this spectroscopic measurement device ID.
  • the spectral radiation characteristic of the measurement object 1 may be measured again using the spectroscopic measurement device 5, and the correction coefficient CM1 may be calculated based on the result.
  • the spectral emission characteristic since the spectral emission characteristic has already been obtained, it is possible to perform calibration with high traceability.
  • a large number of pieces of combination information defined in the combination table shown in FIG. 2 are associated with the filter measuring instrument ID, the display type of the measurement object 1, the spectroscopic measuring instrument ID, and the spectral radiation characteristic, respectively. It was the one that was done.
  • the spectral radiation characteristics are measured in advance by changing the measurement position on the measurement object 1 under various combinations, and information for specifying the measurement position is displayed as shown in the combination table of FIG. Is also held in the combination table in association with the filter measuring device ID, display type, spectroscopic measuring device ID, and spectral radiation characteristic.
  • the measuring unit 34 of the calibration device 3 acquires the measurement data, the filter measuring device ID, and the spectral responsivity from the filter measuring device 2, and Information on the measurement position and the display type are acquired by user input or the like (step S11).
  • the determination unit 35 of the calibration device 3 accesses the database server 4 via the network and acquires the combination information from the combination table of the database server 4 (step S11).
  • the determination unit 35 further compares the acquired combination information with the filter measurement device ID, the display type, and the measurement position acquired by the measurement unit 34, and the filter measurement device ID, the display type, and the measurement position are selected from the combination information. A matching combination is determined (step S11). Then, the spectroscopic measuring instrument 5 and the spectral radiation characteristics indicated by the spectroscopic measuring instrument ID included in the determined combination are optimally spectroscopically measured corresponding to the filter measuring instrument 2 and the measurement object 1 used for the measurement. It is determined as the device 5 and the spectroscopic radiation characteristics (step S11).
  • the filter measuring instrument ID is a
  • the display type is a circle number 1
  • the measuring position is the measuring position 1
  • the spectroscopic measuring instrument ID is determined to be A and the spectral radiation characteristic is determined to be ⁇ .
  • the calibration unit 36 calculates the correction coefficient CM1 using the determined spectral radiation characteristic and the spectral responsivity of the filter measuring device 2 (step S12), and corrects the measurement data using the calculated correction coefficient CM1. Yes (step S13).
  • the combination information stored in advance in the database server 4 also includes information for specifying the measurement position, so that the optimum combination is determined in consideration of the measurement position. And more accurate calibration can be done.
  • the correction coefficient CM1 differs not only with the measurement position on the measurement object but also with the measurement angle, it is not possible to perform highly accurate calibration if the measurement angles are different.
  • the measurement position in the measurement object 1 is changed under various combinations to perform the measurement in advance, and the measurement position and the measurement angle are specified as shown in the combination table of FIG.
  • the information for doing so is also stored in the combination table in association with the filter measuring device ID, the display type, the spectroscopic measuring device ID, and the spectral radiation characteristic.
  • the measuring unit 34 of the calibration device 3 acquires the measurement data, the filter measuring device ID, and the spectral responsivity from the filter measuring device 2, and Information on the measurement position and the measurement angle and the display type are acquired by user input or the like (step S21).
  • the determination unit 35 of the calibration device 3 accesses the database server 4 via the network and acquires the combination information from the combination table of the database server 4 (step S21).
  • the determination unit 35 further compares the acquired combination information with the filter measurement device ID, the display type, the measurement position, and the measurement angle acquired by the measurement unit 34, and from the combination information, the filter measurement device ID, the display type, A combination in which the measurement position and the measurement angle match is determined (step S21). Then, the spectroscopic measuring instrument 5 and the spectral radiation characteristics indicated by the spectroscopic measuring instrument ID included in the determined combination are optimally spectroscopically measured corresponding to the filter measuring instrument 2 and the measurement object 1 used for the measurement. It is determined as the device 5 and the spectroscopic radiation characteristics (step S21).
  • the filter measuring device ID is a
  • the display type is circled number 1
  • the measuring position is measuring position 1
  • the measuring angle is ⁇
  • the spectroscopic measuring device ID is determined to be A
  • the spectral radiation characteristic is determined to be ⁇ .
  • the calibration unit 36 calculates the correction coefficient CM1 using the determined spectral radiation characteristic and the spectral response of the filter measuring device 2 (step S22), and corrects the measurement data using the calculated correction coefficient CM1. Yes (step S23).
  • the combination information stored in advance in the database server 4 includes information for specifying the measurement angle as well as the measurement position, the measurement angle is also taken into consideration. The optimal combination can be determined, and more accurate calibration can be performed.
  • the combination table may include only information about the measurement angle, not both the measurement position and the measurement angle.
  • Value[Spectrometer] is a matrix that is the individual stimulus values obtained from the spectroscopic data
  • Value[Filter type measuring instrument]] is a matrix that is the individual stimulus values of the measurement data (Raw data) obtained by the filter measuring instrument.
  • CM2 be the calibration matrix (second correction factor)
  • Value [Spectrometer] CM2 * Value [Filter type measuring instrument]] ⁇ ⁇ ⁇ (2) It is represented by.
  • the first correction described above is performed.
  • the coefficient (CM1) and the above second correction coefficient (CM2) do not completely match.
  • CM1 and CM2' represent the first and second correction coefficients when the user is actually using the filter measuring instrument.
  • the third correction coefficient (CM3) may be obtained by the ratio of the first correction coefficient (CM1) and the second correction coefficient (CM2) as in the following formula (4).
  • CM2' CM1' * (CM2 / CM1)) ⁇ (4)
  • ID identification information
  • ID Information on the spectral radiation characteristic and further the third correction coefficient (CM3) are associated with each other and held as a combination table.
  • the ID of the filter measurement device 2 and the ID of the measurement object 1 which are being used are measured by the measurement unit 34 of the calibration device 3 by the acquired measurement data (Raw Data) and set and hold. Then, a combination that matches the filter measuring device ID and the measurement object ID is determined from the combination information, and the spectroscopic measuring device ID, the spectral radiation characteristic, and the third correction coefficient (CM3) included in the combination are determined. To do.
  • the first correction coefficient (CM1′) is calculated from the spectral responsivity of the filter measuring device 2 and the spectral radiation characteristic, and from the first correction coefficient (CM1′) and the third correction coefficient (CM3).
  • the second correction coefficient (CM2′) is derived from the expression (3) or the expression (4), and the measurement value is corrected using the second correction coefficient (CM2′).
  • an ID that is identification information is attached to the filter measuring device 2 and the measuring object 1, and the spectral responsivity of each filter measuring device 2 and the measuring device information and the spectrum used for measuring each measuring object 1 Information on the radiation characteristics is set (associated) with each of these IDs and held as a combination table. Then, as shown in the flowchart of FIG. 10, at the time of actual measurement, the temperature, the humidity, the place, and the external light (measurement) obtained by the external environment measuring device 6 provided integrally with or separately from the calibration device 3 are measured.
  • Measurement environment information such as (illuminance of place), external electric field magnetic field, vibration of measuring instrument, cleanliness of measurement place, stability of power supply, and ID of worker involved in measurement.
  • the user may add the measurement environment information (measurement environment parameters) to the combination table read by the determination unit 35. 10 is the same as the flowchart of FIG. 5 except that the measurement environment information (measurement environment parameters) is stored as a set with the measurement data. Detailed description is omitted.
  • the measured value is uniquely changed from the measured value of each lot or each measuring device accumulated in the database server 4, or Failure prediction may be performed in advance by finding a lot or a measuring instrument that changes linearly.
  • a combination in which the IDs of the filter measuring instrument 2 used for the actual measurement and the measurement object 1 match is selected from the combination information stored in the combination table.
  • AI artificial intelligence
  • the database server 4 may store an initial value table of weights for discriminating a combination of the measurement objects 1 having similar spectral radiation characteristics together with the combination table.
  • the weight initial value table indicates the ID (display type) of a measurement object having a similar spectrum shape even when measuring a measurement object (display panel) that differs from the spectrum shape of the spectral emission characteristics of the measurement object. It means a table for specifying, for example, the weighting coefficient W in the neural network.
  • the neural network is represented by a schematic diagram as shown in FIG. In FIG. 11, o1 1 , o2 1 , and o3 1 output 1 if the difference is large at each wavelength, and 0 if the difference is small (step function below: 1 if u is larger than the threshold value b, 0 if smaller) Output).
  • the spectral shapes of the LED and the OLED are as shown in FIGS. There is no difference, and there is a small difference in relative intensity at 550 nm, and a large difference in relative intensity at 650 nm.
  • the weighting coefficient W (initial value table of weights) shown in FIG. 13 is determined.
  • the probability of mismatch is 79% [1.5 / (1.5 + 0.4) * 100]
  • the probability of match is 21% [0.4 / (1.5 + 0.4) * 100].
  • the combination table is stored in the database server 4, and the calibration device 3 acquires the combination information from the database server 4 via the network.
  • the combination table may be stored and stored in the non-volatile memory (storage unit) 33 in the calibration device 3.
  • the calibration device 3 does not need to acquire the combination information from the external database server 4.
  • the operation of the calibration device 3 in FIG. 14 is the same as the operation of the calibration device 3 in the calibration system shown in FIG. 1, except that the combination information is acquired in the own device as described above.
  • the present invention can be used to calibrate a stimulus-type colorimeter that includes at least three color channels.

Abstract

Identification information of a first color measurement device (2) of a stimulus value type, identification information of a measurement object (1), and multiple pieces of combinatorial information obtained by associating and combining spectral emittance characteristics of a measurement object measured by spectroscopic colorimetry using a second color measurement device (5), are stored in advance. When performing calibration on the first color measurement device (2) that has made a measurement of the measurement object (1), an optimal combination is identified from among the multiple pieces of combinatorial information on the basis of the identification information of the first color measurement device (2) and the identification information of the measurement object (1), and then, on the basis of the spectral emittance characteristics included in the identified combination and a spectral responsivity of the first color measurement device (2) that has made the measurement, correction is performed on a measurement value provided by the first color measurement device (2).

Description

較正システム、較正装置及びプログラムCalibration system, calibration device and program
 この発明は、少なくとも3個のカラーチャンネルを含む刺激値タイプの測色装置の較正を行う際に使用される較正システム、較正装置及びプログラムに関する。 The present invention relates to a calibration system, a calibration device, and a program used for calibrating a stimulus-type colorimeter including at least three color channels.
 等色関数に近似した分光応答度を持つ色彩輝度計のような、光学フィルタなどで波長選択をした光をセンサで受光し、光強度に応じた刺激値を測定値とする刺激値タイプの測色装置は、光学フィルタやセンサの分光特性で形成される測色装置の分光応答度と、例えば等色関数のような目標とする分光応答度の差異に起因する測定誤差を持つ。 A stimulus value type measurement, in which a sensor receives light whose wavelength is selected by an optical filter, such as a color luminance meter having a spectral responsivity similar to a color matching function, and the stimulus value according to the light intensity is used as the measurement value. The color apparatus has a measurement error due to a difference between the spectral response of the colorimeter formed by the spectral characteristics of the optical filter or the sensor and the target spectral response such as a color matching function.
 そこで、測色装置の分光応答度と測定対象物の分光放射特性の情報を利用し、下記式(1)で示されるような測定値を補正する係数を算定し、その補正係数で測定値を補正する技術が知られている(例えば特許文献1及び特許文献2)。
P * S * CM1 = P * CMF・・・(1)
 上記式(1)において、Pは目標光源の発光スペクトルの個々のスペクトル値である行列、Sは測定器のフィルタのスペクトル感度の個々のスペクトル値である行列、CMFは、CIE1931で定められた基準のスペクトル評価関数の個々のスペクトル値である行列、CM1は較正行列(補正係数)を表す。
Therefore, by using the information on the spectral responsivity of the color measuring device and the spectral radiation characteristic of the measurement target, a coefficient for correcting the measured value as shown in the following formula (1) is calculated, and the measured value is calculated by the correction coefficient. A correction technique is known (for example, Patent Document 1 and Patent Document 2).
P * S * CM1 = P * CMF (1)
In the above formula (1), P is a matrix that is the individual spectral values of the emission spectrum of the target light source, S is a matrix that is the individual spectral values of the spectral sensitivity of the filter of the measuring instrument, and CMF is the standard defined by CIE1931. A matrix that is each spectrum value of the spectrum evaluation function of, CM1 represents a calibration matrix (correction coefficient).
 即ち、図15に示すように、工場等において、測定対象物の分光放射特性(分光データ)を分光測色方式による測色装置(分光測定器ともいう)で測定しておくとともに、刺激値タイプの測色装置(フィルタ測定器ともいう)の分光応答度を予め測定しておく。そして、フィルタ測定器の分光応答度と測定対象物の分光放射特性とから補正係数CM1を算定し、フィルタ測定器による実際の測定値を補正係数で補正することにより、正しい測定値を得る。 That is, as shown in FIG. 15, in a factory or the like, the spectral radiation characteristic (spectral data) of the measurement target is measured by a color measurement device (also referred to as a spectrophotometer) by a spectrocolorimetry method, and the stimulation value type The spectral responsivity of the color measuring device (also referred to as a filter measuring device) is measured in advance. Then, the correction coefficient CM1 is calculated from the spectral responsivity of the filter measuring instrument and the spectral radiation characteristic of the measurement object, and the actual measurement value of the filter measuring instrument is corrected by the correction coefficient to obtain a correct measurement value.
米国特許第9163990号公報US Pat. No. 9,163,990 特開2012-215570号公報JP 2012-215570 A
 しかし、特許文献1及び2では、測定対象物の分光放射特性を測定する分光測定器と光学フィルタを用いたフィルタ測定器の組み合わせは考慮されていない。また、測定対象物の分光放射特性は測定位置や測定角度等にも依存する。つまり、参照となる測定対象物の分光放射特性、フィルタ測定器、及び誤差の起因となる様々なパラーメーターからなる複数の組み合わせに対し、それぞれ補正係数CM1が存在する。従って、適正な補正係数CM1を算出して精度の高い較正を行うためには、複数の組み合わせの中から最適な組み合わせを選定しなければならないが、特許文献1及び2にはこのような考え方は示されていない。 However, Patent Documents 1 and 2 do not consider a combination of a spectroscopic measuring device that measures the spectral radiation characteristic of a measurement target and a filter measuring device that uses an optical filter. Further, the spectral radiation characteristic of the measurement target depends on the measurement position, the measurement angle, and the like. That is, the correction coefficient CM1 exists for each of a plurality of combinations including the spectral radiation characteristics of the reference object to be measured, the filter measuring device, and various parameters that cause errors. Therefore, in order to calculate an appropriate correction coefficient CM1 and perform highly accurate calibration, it is necessary to select an optimum combination from a plurality of combinations. Not shown.
 しかも、測定対象物の分光放射特性やフィルタ測定器の分光応答度等を、較正の都度測定し、測定結果から補正係数を算定していたのでは、測定対象物や分光測定器が変更されるたびに分光放射特性等を測定しなければならず、効率が悪く、較正作業に時間を要することになる。 Moreover, if the spectral radiation characteristic of the measurement object or the spectral response of the filter measurement device is measured each time calibration is performed and the correction coefficient is calculated from the measurement result, the measurement object or the spectroscopy measurement device will be changed. Spectral radiation characteristics and the like must be measured every time, which is inefficient and requires time for calibration work.
 この発明は、このような技術的背景に鑑みてなされたものであって、少なくとも3個のカラーチャンネルを含む刺激値タイプの測色装置で測定対象物を測定する場合に、測定条件が異なっても精度の高い較正を容易に効率よく行うことができる較正システム、較正装置およびプログラムを提供することを目的とする。 The present invention has been made in view of such a technical background, and when measuring an object to be measured with a stimulus value type colorimeter including at least three color channels, different measurement conditions are used. Another object of the present invention is to provide a calibration system, a calibration device, and a program that can perform highly accurate calibration easily and efficiently.
 上記目的は以下の手段によって達成される。
(1)少なくとも3個のカラーチャンネルを含む1個又は複数個の刺激値タイプの第1の測色装置をそれぞれ特定するための1個又は複数個の第1の識別情報と、1個又は複数個の測定対象物を特定するための1個又は複数個の第2の識別情報と、1個又は複数個の分光測色方式による第2の測色装置により測定された前記測定対象物の分光放射特性が、関連付けて組み合わされた複数の組み合わせ情報を予め記憶する記憶手段と、測定対象物の測定を行った前記第1の測色装置の較正を行う際に、前記第1の測色装置の第1の識別情報及び前記測定対象物の第2の識別情報に基づいて、測定を行った第1の測色装置と測定対象物と該測定対象物の分光放射特性の最適な組み合わせを、前記記憶手段に記憶されている複数の前記組み合わせ情報の中から判別する判別手段と、前記判別手段により判別された組み合わせに含まれている前記測定対象物の分光放射特性と、測定を行った前記第1の測色装置の分光応答度に基づいて、前記第1の測色装置による測定値を補正する較正手段と、を備えた較正システム。
(2)前記組み合わせ情報は、予めテーブルとして前記記憶手段に記憶されている前項1に記載の較正システム。
(3)前記組み合わせ情報における各組み合わせには測定位置を特定する情報が含まれ、前記判別手段は、測定に用いられた第1の測色装置の測定位置に基づいて最適な組み合わせを判別する前項1または2に記載の較正システム。
(4)前記組み合わせ情報における各組み合わせには測定角度を特定する情報が含まれ、前記判別手段は、測定に用いられた第1の測色装置の測定角度に基づいて最適な組み合わせを判別する前項1~3のいずれかに記載の較正システム。
(5)前記組み合わせ情報における各組み合わせには測定環境の情報が含まれ、前記判別手段は、測定に用いられた第1の測色装置の測定環境に基づいて最適な組み合わせを判別する前項1~4のいずれかに記載の較正システム。
(6)前記判別手段は、第1の測色装置により測定された測定対象物を示す前記第2の情報が、前記記憶手段に記憶されている組み合わせ情報の中に存在しない場合、分光放射特性の近似する測定対象物についての組み合わせを前記組み合わせ情報の中から判別する前項1~5のいずれかに記載の較正システム。
(7)前記記憶手段は、分光放射特性の近似する測定対象物についての組み合わせを判別するための重みの初期値テーブルを記憶している前項6に記載の較正システム。
(8)前記判別手段により判別された組み合わせの評価をユーザーが入力可能である前項6または7に記載の較正システム。
(9)前記測定対象物の分光放射特性と測定に用いられた第1の測色装置の分光応答度とに基づく補正係数を第1の補正係数とし、第1の測定装置による測定値を第2の測定装置で得られる値に較正するための補正係数を第2の補正係数とし、第1の補正係数と第2の補正係数を関連付けるための補正係数を第3の補正係数とするとき、前記記憶手段に記憶されている組み合わせには前記第3の補正係数が含まれており、前記較正手段は、前記第1の補正係数を算出するとともに、算出された第1の補正係数と、前記判別手段により判別された組み合わせに含まれている前記第3の補正係数とから前記第2の補正係数を算出し、算出された前記第2の補正係数を用いて測定値を補正する前項1~8のいずれかに記載の較正システム。
(10)前記第1の測色装置の分光応答度は前記第1の測色装置に記憶されている前項1~9のいずれかに記載の較正システム。
(11)前記第1の測色装置の分光応答度は前記記憶手段に記憶されている前項1~9のいずれかに記載の較正システム。
(12)前記組み合わせ情報には、前記第2の測色装置を特定するための第3の識別情報が、前記第1の識別情報、前記第2の識別情報及び前記分光放射特性と関連付けて組み合わされている前項1~11のいずれかに記載の較正システム。
(13)少なくとも3個のカラーチャンネルを含む1個又は複数個の刺激値タイプの第1の測色装置をそれぞれ特定するための1個又は複数個の第1の識別情報と、1個又は複数個の測定対象物を特定するための1個又は複数個の第2の識別情報と、1個又は複数個の分光測色方式による第2の測色装置により測定された前記測定対象物の分光放射特性が、関連付けて組み合わされた複数の組み合わせ情報を予め記憶する記憶手段と、測定対象物の測定を行った前記第1の測色装置の較正を行う際に、前記第1の測色装置の第1の識別情報及び前記測定対象物の第2の識別情報に基づいて、測定を行った第1の測色装置と測定対象物と該測定対象物の分光放射特性の最適な組み合わせを、前記記憶手段に記憶されている複数の前記組み合わせ情報の中から判別する判別手段と、前記判別手段により判別された組み合わせに含まれている前記測定対象物の分光放射特性と、測定を行った前記第1の測色装置の分光応答度に基づいて、前記第1の測色装置による測定値を補正する較正手段と、を備えた較正装置。
(14)少なくとも3個のカラーチャンネルを含む1個又は複数個の刺激値タイプの第1の測色装置をそれぞれ特定するための1個又は複数個の第1の識別情報と、1個又は複数個の測定対象物を特定するための1個又は複数個の第2の識別情報と、1個又は複数個の分光測色方式による第2の測色装置により測定された前記測定対象物の分光放射特性が、関連付けて組み合わされた複数の組み合わせ情報を予め記憶する記憶手段を備えた外部のデータベース装置と通信可能であり、測定対象物の測定を行った前記第1の測色装置の較正を行う際に、前記第1の測色装置の第1の識別情報及び前記測定対象物の第2の識別情報に基づいて、測定を行った第1の測色装置と測定対象物と該測定対象物の分光放射特性の最適な組み合わせを、前記記憶手段に記憶されている複数の前記組み合わせ情報の中から判別する判別手段と、前記判別手段により判別された組み合わせに含まれている前記測定対象物の分光放射特性と、測定を行った前記第1の測色装置の分光応答度に基づいて、前記第1の測色装置による測定値を補正する較正手段と、を備えた較正装置。
(15)前記組み合わせ情報は、予めテーブルとして前記記憶手段に記憶されている前項13または14に記載の較正装置。
(16)前記組み合わせ情報における各組み合わせには測定位置を特定する情報が含まれ、前記判別手段は、測定に用いられた第1の測色装置の測定位置に基づいて最適な組み合わせを判別する前項13~15のいずれかに記載の較正装置。
(17)前記組み合わせ情報における各組み合わせには測定角度を特定する情報が含まれ、前記判別手段は、測定に用いられた第1の測色装置の測定角度に基づいて最適な組み合わせを判別する前項13~16のいずれかに記載の較正装置。
(18)前記組み合わせ情報における各組み合わせには測定環境の情報が含まれ、前記判別手段は、測定に用いられた第1の測色装置の測定環境に基づいて最適な組み合わせを判別する前項13~17のいずれかに記載の較正装置。
(19)前記判別手段は、第1の測色装置により測定された測定対象物を示す前記第2の情報が、前記記憶手段に記憶されている組み合わせ情報の中に存在しない場合、分光放射特性の近似する測定対象物についての組み合わせを前記組み合わせ情報の中から判別する前項13~18のいずれかに記載の較正装置。
(20)前記記憶手段は、分光放射特性の近似する測定対象物についての組み合わせを判別するための重みの初期値テーブルを記憶している前項19に記載の較正装置。
(21)前記判別手段により判別された組み合わせの評価をユーザーが入力可能である前項19または20に記載の較正装置。
(22)前記測定対象物の分光放射特性と測定に用いられた第1の測色装置の分光応答度とに基づく補正係数を第1の補正係数とし、第1の測定装置による測定値を第2の測定装置で得られる値に較正するための補正係数を第2の補正係数とし、第1の補正係数と第2の補正係数を関連付けるための補正係数を第3の補正係数とするとき、前記記憶手段に記憶されている組み合わせには前記第3の補正係数が含まれており、前記較正手段は、前記第1の補正係数を算出するとともに、算出された第1の補正係数と、前記判別手段により判別された組み合わせに含まれている前記第3の補正係数とから前記第2の補正係数を算出し、算出された前記第2の補正係数を用いて測定値を補正する前項13~21のいずれかに記載の較正装置。
(23)前記第1の測色装置の分光応答度は前記第1の測色装置に記憶されている前項13~22のいずれかに記載の較正装置。
(24)前記第1の測色装置の分光応答度は前記記憶手段に記憶されている前項13~22のいずれかに記載の較正装置。
(25)前記組み合わせ情報には、前記第2の測色装置を特定するための第3の識別情報が、前記第1の識別情報、前記第2の識別情報及び前記分光放射特性と関連付けて組み合わされている前項13~24のいずれかに記載の較正装置。
(26)少なくとも3個のカラーチャンネルを含む1個又は複数個の刺激値タイプの第1の測色装置をそれぞれ特定するための1個又は複数個の第1の識別情報と、1個又は複数個の測定対象物を特定するための1個又は複数個の第2の識別情報と、1個又は複数個の分光測色方式による第2の測色装置により測定された前記測定対象物の分光放射特性が、関連付けて組み合わされた複数の組み合わせ情報を予め記憶する記憶手段を備えた較正装置のコンピュータに、測定対象物の測定を行った前記第1の測色装置の較正を行う際に、前記第1の測色装置の第1の識別情報及び前記測定対象物の第2の識別情報に基づいて、測定を行った第1の測色装置と測定対象物と該測定対象物の分光放射特性の最適な組み合わせを、前記記憶手段に記憶されている複数の前記組み合わせ情報の中から判別する判別ステップと、前記判別ステップにより判別された組み合わせに含まれている前記測定対象物の分光放射特性と、測定を行った前記第1の測色装置の分光応答度に基づいて、前記第1の測色装置による測定値を補正する較正ステップと、を実行させるためのプログラム。
(27)少なくとも3個のカラーチャンネルを含む1個又は複数個の刺激値タイプの第1の測色装置をそれぞれ特定するための1個又は複数個の第1の識別情報と、1個又は複数個の測定対象物を特定するための1個又は複数個の第2の識別情報と、1個又は複数個の分光測色方式による第2の測色装置により測定された前記測定対象物の分光放射特性が、関連付けて組み合わされた複数の組み合わせ情報を予め記憶する記憶手段を備えた外部のデータベース装置と通信可能な較正装置のコンピュータに、測定対象物の測定を行った前記第1の測色装置の較正を行う際に、前記第1の測色装置の第1の識別情報及び前記測定対象物の第2の識別情報に基づいて、測定を行った第1の測色装置と測定対象物と該測定対象物の分光放射特性の最適な組み合わせを、前記記憶手段に記憶されている複数の前記組み合わせ情報の中から判別する判別ステップと、前記判別ステップにより判別された組み合わせに含まれている前記測定対象物の分光放射特性と、測定を行った前記第1の測色装置の分光応答度に基づいて、前記第1の測色装置による測定値を補正する較正ステップと、を実行させるためのプログラム。
The above object is achieved by the following means.
(1) One or more first identification information for specifying each of the first or more stimulus value type first color measuring devices including at least three color channels, and one or more One or a plurality of second identification information for specifying one measurement object, and the spectrum of the measurement object measured by the second color measurement device by one or a plurality of spectrocolorimetry methods. The first color measuring device is used when calibrating a storage means that stores a plurality of combination information in which radiation characteristics are associated and combined in advance and the first color measuring device that has measured a measurement object. Based on the first identification information of the above and the second identification information of the object to be measured, the optimum combination of the first color measuring device, the object to be measured, and the spectral radiation characteristics of the object to be measured is obtained. Discrimination means for discriminating from among the plurality of combination information stored in the storage means, spectral radiation characteristics of the measurement object included in the combination discriminated by the discrimination means, and the measurement result A calibration system including: a calibration unit that corrects a measurement value obtained by the first color measurement device based on a spectral responsivity of the first color measurement device.
(2) The calibration system according to item 1, wherein the combination information is stored in advance in the storage unit as a table.
(3) Each combination in the combination information includes information for specifying the measurement position, and the discrimination means determines the optimum combination based on the measurement position of the first color measuring device used for the measurement. The calibration system according to 1 or 2.
(4) Each combination in the combination information includes information for specifying the measurement angle, and the discrimination means determines the optimum combination based on the measurement angle of the first color measuring device used for the measurement. The calibration system according to any one of 1 to 3.
(5) Each combination in the combination information includes information on the measurement environment, and the discrimination means determines the optimum combination based on the measurement environment of the first color measuring device used for the measurement. The calibration system according to any one of 4.
(6) When the second information indicating the measurement object measured by the first color measuring device does not exist in the combination information stored in the storage unit, the determination unit determines the spectral emission characteristic. 6. The calibration system according to any one of items 1 to 5 above, which determines a combination of measurement objects that are similar to each other from the combination information.
(7) The calibration system according to item 6, wherein the storage unit stores an initial value table of weights for determining a combination of measurement objects having similar spectral radiation characteristics.
(8) The calibration system according to the above item 6 or 7, wherein the user can input the evaluation of the combination determined by the determination means.
(9) A correction coefficient based on the spectral radiation characteristic of the measurement object and the spectral responsivity of the first color measurement device used for measurement is set as a first correction coefficient, and a measurement value by the first measurement device is set as a first correction coefficient. When the correction coefficient for calibrating to the value obtained by the measuring device 2 is the second correction coefficient and the correction coefficient for associating the first correction coefficient with the second correction coefficient is the third correction coefficient. The combination stored in the storage means includes the third correction coefficient, and the calibration means calculates the first correction coefficient, and the calculated first correction coefficient, and The second correction coefficient is calculated from the third correction coefficient included in the combination determined by the determination means, and the measured value is corrected using the calculated second correction coefficient. The calibration system according to any one of 8.
(10) The calibration system according to any one of items 1 to 9 above, wherein the spectral responsivity of the first color measuring device is stored in the first color measuring device.
(11) The calibration system according to any one of items 1 to 9 above, wherein the spectral responsivity of the first color measuring device is stored in the storage means.
(12) In the combination information, a third identification information for identifying the second color measuring device is combined in association with the first identification information, the second identification information, and the spectral radiation characteristic. The calibration system according to any one of the preceding paragraphs 1 to 11.
(13) One or a plurality of first identification information for specifying one or a plurality of stimulus value type first color measuring devices each including at least three color channels, and one or a plurality of them. One or a plurality of second identification information for specifying one measurement object, and the spectrum of the measurement object measured by the second color measurement device by one or a plurality of spectrocolorimetry methods. The first color measuring device is used when calibrating a storage means that stores a plurality of combination information in which radiation characteristics are associated and combined in advance and the first color measuring device that has measured a measurement object. Based on the first identification information and the second identification information of the measurement target, an optimal combination of the first colorimetric device that has performed the measurement, the measurement target, and the spectral emission characteristics of the measurement target, Discrimination means for discriminating from among the plurality of combination information stored in the storage means, spectral radiation characteristics of the measurement object included in the combination discriminated by the discrimination means, and the measurement result A calibration device comprising: a calibration unit that corrects a measurement value obtained by the first color measurement device based on a spectral responsivity of the first color measurement device.
(14) One or a plurality of first identification information for specifying one or a plurality of stimulus value type first color measuring devices each including at least three color channels, and one or a plurality of them. One or a plurality of second identification information for specifying one measurement object, and the spectrum of the measurement object measured by the second color measurement device by one or a plurality of spectrocolorimetry methods. The radiation characteristics can communicate with an external database device having a storage means for pre-storing a plurality of combined information in association with each other, and the calibration of the first color measuring device that has measured the measurement object can be performed. When the measurement is performed, the first color measuring device, the measuring object, and the measuring object that have been measured based on the first identification information of the first color measuring device and the second identification information of the measurement object are measured. Discriminating means for discriminating the optimum combination of spectral radiation characteristics of the objects from among the plurality of combination information stored in the storage means, and the measuring object contained in the combination discriminated by the discriminating means. A calibration device including a calibration means for correcting a measured value by the first color measuring device based on the spectral radiation characteristics of the above and the spectral response of the first color measuring device in which the measurement is performed.
(15) The calibration device according to item 13 or 14, wherein the combination information is stored in the storage unit as a table in advance.
(16) Each combination in the combination information includes information for specifying the measurement position, and the discrimination means determines the optimum combination based on the measurement position of the first color measuring device used for the measurement. The calibrator according to any one of 13 to 15.
(17) Each combination in the combination information includes information for specifying the measurement angle, and the discriminating means determines the optimum combination based on the measurement angle of the first color measuring device used for the measurement. The calibration device according to any one of 13 to 16.
(18) Each combination in the combination information includes information on the measurement environment, and the determination means determines the optimum combination based on the measurement environment of the first color measuring device used for the measurement. The calibrator according to any one of 17.
(19) When the second information indicating the measurement object measured by the first color measuring device does not exist in the combination information stored in the storage means, the determination means determines the spectral emission characteristic. 19. The calibration device according to any one of items 13 to 18 above, which determines a combination of measurement objects that are similar to each other from the combination information.
(20) The calibration device according to item 19, wherein the storage means stores an initial value table of weights for discriminating a combination of measurement objects having similar spectral radiation characteristics.
(21) The calibration device according to the above item 19 or 20, wherein a user can input an evaluation of the combination determined by the determination means.
(22) A correction coefficient based on the spectral radiation characteristic of the measurement object and the spectral responsivity of the first color measurement device used for measurement is set as a first correction coefficient, and a measurement value by the first measurement device is set as a first correction coefficient. When the correction coefficient for calibrating to the value obtained by the measuring device 2 is the second correction coefficient and the correction coefficient for associating the first correction coefficient with the second correction coefficient is the third correction coefficient. The combination stored in the storage means includes the third correction coefficient, and the calibration means calculates the first correction coefficient, and the calculated first correction coefficient, and The second correction coefficient is calculated from the third correction coefficient included in the combination determined by the determination means, and the measured value is corrected using the calculated second correction coefficient. 21. The calibrator according to any one of 21.
(23) The calibration device according to any one of items 13 to 22, wherein the spectral responsivity of the first color measurement device is stored in the first color measurement device.
(24) The calibration device according to any one of items 13 to 22 above, wherein the spectral responsivity of the first color measurement device is stored in the storage means.
(25) In the combination information, the third identification information for identifying the second colorimetric device is combined with the first identification information, the second identification information, and the spectral radiation characteristic in association with each other. The calibrator according to any one of the preceding paragraphs 13 to 24.
(26) One or a plurality of first identification information for specifying one or a plurality of stimulus value type first color measuring devices each including at least three color channels, and one or a plurality of them. One or a plurality of second identification information for specifying one measurement object, and the spectrum of the measurement object measured by the second color measurement device by one or a plurality of spectrocolorimetry methods. When calibrating the first color measuring device in which the measurement object is measured, the computer of the calibrating device provided with the storage means for storing a plurality of combination information in which the radiation characteristics are associated and combined in advance is used. Based on the first identification information of the first color measurement device and the second identification information of the measurement target, the first color measurement device that performed the measurement, the measurement target, and the spectral emission of the measurement target A determination step of determining an optimum combination of characteristics from among the plurality of combination information stored in the storage means, and a spectral radiation characteristic of the measurement target included in the combination determined by the determination step. And a calibration step of correcting a measurement value by the first color measurement device based on the spectral responsivity of the first color measurement device that has performed the measurement.
(27) One or a plurality of first identification information for specifying one or a plurality of stimulus value type first color measuring devices each including at least three color channels, and one or a plurality of them. One or a plurality of second identification information for specifying one measurement object, and the spectrum of the measurement object measured by the second color measurement device by one or a plurality of spectrocolorimetry methods. The first colorimetric measurement is performed on a computer of a calibration device that is capable of communicating with an external database device that includes a storage unit that stores in advance a plurality of pieces of combination information whose emission characteristics are associated with each other. When calibrating the device, the first color measuring device and the measuring object are measured based on the first identification information of the first color measuring device and the second identification information of the measurement object. And a determination step of determining the optimum combination of the spectral radiation characteristics of the measurement target from the plurality of combination information stored in the storage means, and a combination determined by the determination step. To execute a calibration step of correcting the measured value by the first color measurement device based on the spectral emission characteristic of the measurement target and the spectral responsivity of the first color measurement device that has performed the measurement. Program.
 前項(1)及び(13)に記載の発明によれば、少なくとも3個のカラーチャンネルを含む1個又は複数個の刺激値タイプの第1の測色装置をそれぞれ特定するための1個又は複数個の第1の識別情報と、1個又は複数個の測定対象物を特定するための1個又は複数個の第2の識別情報と、第1の測色装置の各分光応答度と、1個又は複数個の分光測色方式による第2の測色装置により測定された測定対象物の分光放射特性が、関連付けて組み合わされた複数の組み合わせ情報が、予め記憶手段に記憶されている。そして、測定対象物の測定を行った第1の測色装置の較正を行う際に、第1の測色装置の第1の識別情報及び測定対象物の第2の識別情報に基づいて、測定を行った第1の測色装置と測定対象物と該測定対象物の分光放射特性の最適な組み合わせが、記憶手段に記憶されている複数の組み合わせ情報の中から判別され、判別された組み合わせに含まれている測定対象物の分光放射特性と、測定を行った第1の測色装置の分光応答度に基づいて、第1の測色装置による測定値が補正される。 According to the inventions described in the above paragraphs (1) and (13), one or more for specifying one or more stimulus value type first colorimetric devices including at least three color channels, respectively. Individual first identification information, one or more second identification information for identifying one or more measurement objects, each spectral responsivity of the first color measuring device, and A plurality of pieces of combination information in which the spectral radiation characteristics of the measurement target measured by the second colorimetric apparatus using one or a plurality of spectrocolorimetric methods are associated and combined are stored in advance in the storage unit. Then, when calibrating the first color measurement device that has measured the measurement target, the measurement is performed based on the first identification information of the first color measurement device and the second identification information of the measurement target. The optimum combination of the first colorimetric device, the measurement object, and the spectral emission characteristic of the measurement object that has been determined is determined from among the plurality of combination information stored in the storage unit, and the determined combination is determined. The value measured by the first color measuring device is corrected based on the spectral radiation characteristics of the included object to be measured and the spectral response of the first color measuring device in which the measurement is performed.
 このように、記憶手段に予め記憶されている複数の組み合わせの中から、実際に使用される第1の測色装置と測定対象物に対応する最適な組み合わせが選択され、選択された組み合わせに含まれる分光放射特性が第1の測色装置の較正に用いられるから、測定に使用される第1の測色装置や測定対象物が変わっても、条件に適応した精度の高い較正を容易に行うことができる。しかも、測定対象物の分光放射特性やフィルタ測定器の分光応答度等を、較正の都度測定し、測定結果から補正係数を算定する必要はなくなるから、短時間で効率よく較正作業を行うことができる。 In this way, the optimum combination corresponding to the first color measuring device actually used and the measurement object is selected from the plurality of combinations stored in advance in the storage means, and is included in the selected combination. Since the spectrophotometric characteristics are used for calibration of the first colorimeter, even if the first colorimeter used for measurement or the object to be measured changes, highly accurate calibration adapted to the conditions can be easily performed. be able to. In addition, it is not necessary to measure the spectral radiation characteristics of the measurement object and the spectral response of the filter measuring instrument each time calibration is performed, and it is not necessary to calculate the correction coefficient from the measurement results. it can.
 前項(2)及び(15)に記載の発明によれば、判別手段は、記憶手段に記憶されている組み合わせ情報のテーブルの中から、最適な組み合わせを判別することができる。 According to the inventions described in the preceding paragraphs (2) and (15), the discriminating means can discriminate the optimum combination from the table of combination information stored in the storage means.
 前項(3)及び(16)に記載の発明によれば、第1の測定装置の測定位置をも考慮して、最適な組み合わせを判別することができるから、より高精度の較正を行うことができる。 According to the inventions described in the preceding paragraphs (3) and (16), the optimum combination can be determined in consideration of the measurement position of the first measuring device, so that more accurate calibration can be performed. it can.
 前項(4)及び(17)に記載の発明によれば、第1の測定装置の測定角度をも考慮して、最適な組み合わせを判別することができるから、より高精度の較正を行うことができる。 According to the inventions described in the preceding paragraphs (4) and (17), the optimum combination can be determined in consideration of the measurement angle of the first measuring device, so that more accurate calibration can be performed. it can.
 前項(5)及び(18)に記載の発明によれば、第1の測定装置の測定環境の情報をも考慮して、最適な組み合わせを判別することができるから、より高精度の較正を行うことができる。 According to the inventions described in the preceding paragraphs (5) and (18), the optimum combination can be determined in consideration of the information on the measurement environment of the first measuring device, so that more accurate calibration is performed. be able to.
 前項(6)及び(19)に記載の発明によれば、第1の測色装置により測定された測定対象物を示す第2の情報が、組み合わせ情報の中に存在しない場合、分光放射特性の近似する測定対象物についての組み合わせが組み合わせ情報の中から判別される。 According to the inventions described in the above paragraphs (6) and (19), when the second information indicating the measurement target measured by the first color measuring device is not present in the combination information, the spectral radiation characteristic A combination of similar measurement objects is determined from the combination information.
 前項(7)及び(20)に記載の発明によれば、重みの初期値テーブルに基づいて、分光放射特性の近似する測定対象物についての組み合わせを判別することができる。 According to the inventions described in the above paragraphs (7) and (20), it is possible to determine the combination of the measurement objects having similar spectral emission characteristics based on the initial value table of weights.
 前項(8)及び(21)に記載の発明によれば、ユーザーは判別された組み合わせの評価を入力可能であるから、最適な組み合わせの判別に、入力された評価を参考にすることができる。 According to the inventions described in the above paragraphs (8) and (21), the user can input the evaluation of the determined combination, so that the input evaluation can be referred to when determining the optimum combination.
 前項(9)及び(22)に記載の発明によれば、測定対象物の分光放射特性と測定に用いられた第1の測色装置の分光応答度とに基づく補正係数を第1の補正係数とし、第1の測定装置による測定値を第2の測定装置で得られる値に較正するための補正係数を第2の補正係数とし、第1の補正係数と第2の補正係数を関連付けるための補正係数を第3の補正係数とするとき、記憶手段に記憶されている組み合わせには第3の補正係数が含まれているから、第1の補正係数を算出するとともに、算出された第1の補正係数と、判別された組み合わせに含まれている第3の補正係数とから第2の補正係数を算出し、算出された第2の補正係数を用いて測定値を補正することができる。 According to the inventions described in the above paragraphs (9) and (22), the first correction coefficient is a correction coefficient based on the spectral emission characteristic of the measurement target and the spectral responsivity of the first color measurement device used for the measurement. And a correction coefficient for calibrating the measurement value of the first measurement device to a value obtained by the second measurement device is used as a second correction coefficient, and the first correction coefficient and the second correction coefficient are associated with each other. When the correction coefficient is the third correction coefficient, the combination stored in the storage unit includes the third correction coefficient. Therefore, the first correction coefficient is calculated and the calculated first correction coefficient is calculated. The second correction coefficient can be calculated from the correction coefficient and the third correction coefficient included in the determined combination, and the measured value can be corrected using the calculated second correction coefficient.
 前項(10)及び(23)に記載の発明によれば、第1の測色装置の分光応答度を第1の測色装置から呼び出すことができる。 According to the inventions described in (10) and (23) above, the spectral responsivity of the first color measurement device can be called from the first color measurement device.
 前項(11)及び(24)に記載の発明によれば、第1の測色装置の分光応答度を記憶手段から呼び出すことができる。 According to the inventions described in (11) and (24) above, the spectral responsivity of the first color measurement device can be called from the storage means.
 前項(12)及び(25)に記載の発明によれば、組み合わせ情報には、第2の測色装置を特定するための第3の識別情報が、第1の識別情報、第2の識別情報及び分光放射特性と関連付けて組み合わされているから、この第3の識別情報で特定される第2の測色装置をユーザーが保持している場合、この第2の測色装置を用いて再度、測定対象物の分光放射特性を測定し、その結果に基づいて補正を行うというような処理が可能となる。 According to the inventions described in (12) and (25) above, the combination information includes the third identification information for identifying the second color measurement device, the first identification information, and the second identification information. And because it is combined in association with the spectrophotometric characteristics, if the user holds a second colorimeter identified by this third identification, then this second colorimeter is used again. It is possible to perform processing such as measuring the spectral radiation characteristic of the measurement object and performing correction based on the result.
 前項(14)に記載の発明によれば、記憶手段に予め記憶されている複数の組み合わせの中から、実際に使用される第1の測色装置と測定対象物に対応する最適な組み合わせが選択され、選択された組み合わせに含まれる分光放射特性が第1の測色装置の較正に用いられるから、測定に使用される第1の測色装置や測定対象物が変わっても、条件に適応した精度の高い較正を容易にかつ効率的に行うことができる。しかも、記憶手段は較正装置とは異なる外部のデータベース装置に備えられているから、組み合わせ情報をデータベース装置により集中的に管理でき、必要に応じて較正装置がデータベース装置に接続して必要な情報を取得することができる。 According to the invention described in the previous section (14), the optimum combination corresponding to the first color measuring device actually used and the measurement object is selected from a plurality of combinations stored in advance in the storage means. Since the spectral radiation characteristics included in the selected combination are used for the calibration of the first color measurement device, even if the first color measurement device or the measurement target used for the measurement is changed, the condition is adapted. Highly accurate calibration can be performed easily and efficiently. Moreover, since the storage means is provided in an external database device different from the calibration device, the combination information can be centrally managed by the database device, and the calibration device can connect to the database device to store necessary information when necessary. Can be obtained.
 前項(26)に記載の発明によれば、少なくとも3個のカラーチャンネルを含む1個又は複数個の刺激値タイプの第1の測色装置をそれぞれ特定するための1個又は複数個の第1の識別情報と、1個又は複数個の測定対象物を特定するための1個又は複数個の第2の識別情報と、第1の測色装置の各分光応答度と、1個又は複数個の分光測色方式による第2の測色装置により測定された測定対象物の分光放射特性が、関連付けて組み合わされた複数の組み合わせ情報を予め記憶する記憶手段を備えた較正装置のコンピュータに、測定対象物の測定を行った第1の測色装置の較正を行う際に、第1の測色装置の第1の識別情報及び測定対象物の第2の識別情報に基づいて、測定を行った第1の測色装置と測定対象物と該測定対象物の分光放射特性の最適な組み合わせを、記憶手段に記憶されている複数の組み合わせ情報の中から判別し、判別された組み合わせに含まれている測定対象物の分光放射特性と、測定を行った第1の測色装置の分光応答度に基づいて、第1の測色装置による測定値を補正する処理を、実行させることができる。 According to the invention described in the above paragraph (26), one or a plurality of first colorimetric devices for specifying one or a plurality of stimulus value type first colorimetric devices each including at least three color channels. Identification information, one or more second identification information for specifying one or more measurement objects, each spectral response of the first color measurement device, and one or more The spectral emission characteristics of the measurement object measured by the second colorimetric device according to the spectrocolorimetric method are measured by the computer of the calibration device including a storage unit that stores in advance a plurality of pieces of combination information associated with each other. When calibrating the first color measurement device that measured the object, the measurement was performed based on the first identification information of the first color measurement device and the second identification information of the measurement object. The optimum combination of the first color measuring device, the measurement object, and the spectral radiation characteristic of the measurement object is discriminated from a plurality of combination information stored in the storage unit, and is included in the discriminated combination. It is possible to execute a process of correcting the measured value by the first color measuring device based on the spectral radiation characteristics of the object to be measured and the spectral response of the first color measuring device in which the measurement is performed.
 前項(27)に記載の発明によれば、少なくとも3個のカラーチャンネルを含む1個又は複数個の刺激値タイプの第1の測色装置をそれぞれ特定するための1個又は複数個の第1の識別情報と、1個又は複数個の測定対象物を特定するための1個又は複数個の第2の識別情報と、1個又は複数個の分光測色方式による第2の測色装置により測定された測定対象物の分光放射特性が、関連付けて組み合わされた複数の組み合わせ情報を予め記憶する記憶手段を備えた外部のデータベース装置と通信可能な較正装置のコンピュータに、測定対象物の測定を行った第1の測色装置の較正を行う際に、第1の測色装置の第1の識別情報及び測定対象物の第2の識別情報に基づいて、測定を行った第1の測色装置と測定対象物と該測定対象物の分光放射特性の最適な組み合わせを、記憶手段に記憶されている複数の組み合わせ情報の中から判別し、判別された組み合わせに含まれている測定対象物の分光放射特性と、測定を行った第1の測色装置の分光応答度に基づいて、第1の測色装置による測定値を補正する処理を、実行させることができる。 According to the invention described in the above paragraph (27), one or a plurality of first colorimetric devices for specifying one or a plurality of stimulus value type first colorimetric devices each including at least three color channels. Identification information, and one or more second identification information for specifying one or more measurement objects, and one or more second color measurement device using a spectral colorimetric method. The measurement of the measured object is performed on a computer of a calibrator that can communicate with an external database device equipped with a storage means that stores a plurality of combination information in which the spectral radiation characteristics of the measured object are associated and combined in advance. When performing the calibration of the performed first color measurement device, the first color measurement measurement is performed based on the first identification information of the first color measurement device and the second identification information of the measurement target. The optimum combination of the device, the measurement object, and the spectral radiation characteristic of the measurement object is determined from a plurality of pieces of combination information stored in the storage unit, and the measurement object included in the determined combination is determined. The process of correcting the measured value by the first color measuring device can be executed based on the spectral radiation characteristics and the spectral response of the first color measuring device in which the measurement is performed.
この発明の一実施形態に係る較正システムの概略構成を示す図である。It is a figure which shows schematic structure of the calibration system which concerns on one Embodiment of this invention. データベースサーバに格納保存されている組み合わせテーブルの一例を示す図である。It is a figure which shows an example of the combination table which is stored and stored in the database server. 図2の組み合わせテーブルの下で、図1に示した較正システムにおける較正装置の動作を説明するためのフローチャートである。3 is a flowchart for explaining the operation of the calibration device in the calibration system shown in FIG. 1 under the combination table of FIG. 2. 組み合わせテーブルの他の例を示す図である。It is a figure which shows the other example of a combination table. 図4の組み合わせテーブルの下で、図1に示した較正システムにおける較正装置の動作を説明するためのフローチャートである。5 is a flowchart for explaining the operation of the calibration device in the calibration system shown in FIG. 1 under the combination table of FIG. 4. 組み合わせテーブルのさらに他の例を示す図である。It is a figure which shows still another example of a combination table. 図6の組み合わせテーブルの下で、図1に示した較正システムにおける較正装置の動作を説明するためのフローチャートである。7 is a flowchart for explaining the operation of the calibration device in the calibration system shown in FIG. 1 under the combination table of FIG. 6. 任意較正方法を説明するための図である。It is a figure for demonstrating an arbitrary calibration method. (A)は工場出荷時における補正係数の関係を示す図、(B)はユーザー利用時における補正係数の関係を示す図である。(A) is a diagram showing a relationship of correction coefficients at the time of factory shipment, and (B) is a diagram showing a relationship of correction coefficients at the time of user use. 図1に示した較正システムにおける較正装置のさらに他の動作を説明するためのフローチャートである。7 is a flowchart for explaining still another operation of the calibration device in the calibration system shown in FIG. 1. ニューラルネットワークの一例を示す図である。It is a figure which shows an example of a neural network. (A)~(C)は2つの測定対象物(ディスプレイパネル)を比較した場合におけるスペクトル形状の相違を説明するための図である。(A)-(C) is a figure for demonstrating the difference of a spectrum shape when comparing two measurement objects (display panels). 重みの初期値テーブルの一例を示す図である。It is a figure which shows an example of the initial value table of a weight. この発明の他の実施形態に係る較正装置の構成を示す図である。It is a figure which shows the structure of the calibration apparatus which concerns on other embodiment of this invention. 基本となる較正方法を説明するための図である。It is a figure for demonstrating the basic calibration method.
 以下、この発明の実施形態を図面に基づいて説明する。
[第1の実施形態]
 図1は、この発明の一実施形態に係る較正システムの概略構成を示す図である。この較正システムは、測定対象物1を測定する第1の測色装置2と、第1の測色装置2からの測定データを受信して第1の測色装置2の較正を行う較正装置3と、データベースサーバ4とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a diagram showing a schematic configuration of a calibration system according to an embodiment of the present invention. This calibration system includes a first color measurement device 2 that measures an object to be measured 1, and a calibration device 3 that receives measurement data from the first color measurement device 2 and calibrates the first color measurement device 2. And a database server 4.
 測定対象物1としてこの実施形態では液晶等のディスプレイパネルを例示するが、ディスプレイパネルに限定されない。 In this embodiment, a display panel such as a liquid crystal is exemplified as the measurement object 1, but the measurement object 1 is not limited to the display panel.
 第1の測色装置2は、光学フィルタなどで波長選択をした光をセンサで受光し、光強度に応じた刺激値を測定値とする刺激値タイプの測色装置であり、少なくとも3個のカラーチャンネルを含んでいる。つまり、分光透過性の異なる3つ以上のフィルタと、フィルタを介して受け取られた光を、対応する測定信号に変換するための3個以上のセンサを有している。以下、第1の測色装置をフィルタ測定器ともいう。 The first color measurement device 2 is a stimulus value type color measurement device that receives light whose wavelength is selected by an optical filter or the like with a sensor and uses a stimulus value according to the light intensity as a measurement value. Contains color channels. That is, it has three or more filters having different spectral transmissibility and three or more sensors for converting the light received through the filters into the corresponding measurement signals. Hereinafter, the first color measuring device is also referred to as a filter measuring device.
 較正装置3は、パーソナルコンピュータで構成されており、CPU31とRAM32とハードディスク等の不揮発メモリ33の他、機能的に測定部34と判別部35と較正部36と通信部37を備えている。 The calibration device 3 is composed of a personal computer, and includes a CPU 31, a RAM 32, a non-volatile memory 33 such as a hard disk, and a functional unit including a measurement unit 34, a determination unit 35, a calibration unit 36, and a communication unit 37.
 CPU31は較正装置3の全体を統括的に制御するものであり、RAM32はCPU31が不揮発メモリ33等に格納された動作プログラムに従って動作する際の作業領域を提供する。 The CPU 31 centrally controls the entire calibration device 3, and the RAM 32 provides a work area when the CPU 31 operates according to an operation program stored in the nonvolatile memory 33 or the like.
 不揮発メモリ33はCPU31の動作プログラムや各種のデータを保存する。各種のデータの一例としては、フィルタ測定器2から取得された、被測定物の生データ(Rawデータ)である測定データ、フィルタ測定器2を特定するための識別情報であるフィルタ測定器ID、フィルタ測定器2の分光応答度等がある。 The non-volatile memory 33 stores the operation program of the CPU 31 and various data. As an example of various data, measurement data that is raw data (raw data) of the object to be measured acquired from the filter measuring device 2, filter measuring device ID that is identification information for specifying the filter measuring device 2, There is a spectral responsivity of the filter measuring device 2.
 測定部34は、フィルタ測定器2から測定データを取得するとともに、フィルタ測定器IDと分光応答度を取得する。取得された測定データ、フィルタ測定器ID、分光応答度は、上述したように不揮発メモリ33に保存される。また、測定が行われる測定対象物1を特定するための測定対象物ID(ディスプレイタイプ(Display Type)ともいう)も取得する。測定対象物IDは例えばユーザー入力に基づいて取得される。フィルタ測定器ID等もユーザー入力に基づいて取得されても良い。 The measuring unit 34 acquires the measurement data from the filter measuring device 2, and also acquires the filter measuring device ID and the spectral responsivity. The acquired measurement data, filter measuring device ID, and spectral responsivity are stored in the nonvolatile memory 33 as described above. In addition, a measurement object ID (also referred to as a display type) for identifying the measurement object 1 to be measured is also acquired. The measurement object ID is acquired based on, for example, user input. The filter measuring instrument ID and the like may also be acquired based on the user input.
 判別部35は、精度の高い較正を行うために、データベースサーバ4に格納されている組み合わせ情報の中から、実際の測定に用いられるフィルタ測定器2と測定対象物1に適合する最適な組み合わせを判別するが、この点については後述する。 In order to perform highly accurate calibration, the discriminating unit 35 selects the optimum combination of the filter measuring device 2 used for the actual measurement and the measurement object 1 from the combination information stored in the database server 4. Although it is determined, this point will be described later.
 較正部36は、判別部35により判別された最適な組み合わせに含まれている測定対象物1の分光放射特性等を用いて、フィルタ測定器2の較正を行う。 The calibration unit 36 calibrates the filter measuring device 2 by using the spectral radiation characteristics of the measurement object 1 included in the optimum combination determined by the discrimination unit 35.
 通信部37は、ネットワーク5を介して較正装置3をデータベースサーバ4やフィルタ測定器2等と接続するための通信インターフェースである。 The communication unit 37 is a communication interface for connecting the calibration device 3 to the database server 4 and the filter measuring device 2 via the network 5.
 データベースサーバ4は、パーソナルコンピュータ等によって構成され、記憶部41を備えると共に、この記憶部41に、フィルタ測定器2の較正を行うための複数の組み合わせ情報を組み合わせテーブルとして保持している。 The database server 4 is composed of a personal computer or the like, has a storage unit 41, and holds a plurality of combination information for performing calibration of the filter measuring instrument 2 as a combination table in the storage unit 41.
 組み合わせテーブルについて詳細に説明すると、前述したように、フィルタ測定器2は分光応答度と等色関数のような目標とする分光応答度の差異に起因する測定誤差を持つことから、フィルタ測定器2の分光応答度と測定対象物1の分光放射特性の情報を利用し、補正計数を算定して測定値を補正することで、フィルタ測定器2の較正を行うことが望ましい。 The combination table will be described in detail. As described above, the filter measuring instrument 2 has a measurement error due to the difference between the spectral responsivity and the target spectral responsivity such as the color matching function. It is desirable to calibrate the filter measuring instrument 2 by calculating the correction count and correcting the measured value by using the information on the spectral response rate and the spectral radiation characteristic of the object 1 to be measured.
 しかし、測定対象物1の分光放射特性、フィルタ測定器2、及び誤差の起因となる様々なパラーメーターからなる複数の組み合わせに対し、それぞれ補正係数が存在する。従って、適正な補正係数を算出して精度の高い較正を行うためには、複数の組み合わせの中から最適な組み合わせを選定しなければならない。しかも、測定対象物1の分光放射特性等をその都度測定し、測定結果から補正係数を算定していたのでは、測定対象物1が変更されるたびに分光放射特性等を測定しなければならず、効率が悪く、較正作業にも時間を要することになる。 However, there are correction coefficients for each of a plurality of combinations consisting of the spectral radiation characteristics of the object 1 to be measured, the filter measuring instrument 2, and various parameters that cause errors. Therefore, in order to calculate an appropriate correction coefficient and perform highly accurate calibration, it is necessary to select an optimum combination from a plurality of combinations. Moreover, if the spectral radiation characteristic of the measuring object 1 is measured each time and the correction coefficient is calculated from the measurement result, the spectral radiation characteristic etc. must be measured every time the measuring object 1 is changed. However, it is inefficient and takes time for calibration work.
 そこで、この実施形態では、種類の異なる複数のフィルタ測定器2と種類の異なる複数の測定対象物1と、分光測色方式による第2の測色装置(以下、分光測定器ともいう)5を組み合わせて、測定対象物1の分光放射特性を分光測定器5により予め測定しておく。また、フィルタ測定器2の分光応答度も測定しておく。 Therefore, in this embodiment, a plurality of filter measuring devices 2 of different types, a plurality of measurement objects 1 of different types, and a second color measuring device (hereinafter, also referred to as a spectroscopic measuring device) 5 by a spectrocolorimetric method are provided. In combination, the spectral radiation characteristic of the measuring object 1 is measured in advance by the spectroscopic measurement device 5. In addition, the spectral response of the filter measuring device 2 is also measured.
 前述したように、測定対象物1及びフィルタ測定器2にはそれらを特定するための測定対象物ID(ディスプレイタイプ)やフィルタ測定器IDが付与されているが、この実施形態では、望ましい形態として、分光測定器5にも分光測定器IDが付与されている。そして、得られた分光放射特性と、分光放射特性を測定した分光測定器5のIDと、フィルタ測定器2のIDと、測定対象物1のIDとを関連付けて組み合わせテーブルとしてデータベースサーバ4の記憶部41に格納保存しておく。 As described above, the measurement object 1 and the filter measuring instrument 2 are given a measurement object ID (display type) and a filter measuring instrument ID for identifying them, but in this embodiment, as a desirable embodiment. , The spectroscopic measuring instrument 5 is also given a spectroscopic measuring instrument ID. Then, the obtained spectral radiation characteristic, the ID of the spectroscopic measuring instrument 5 that measured the spectral radiation characteristic, the ID of the filter measuring instrument 2, and the ID of the measuring object 1 are associated with each other and stored in the database server 4 as a combination table. It is stored in the section 41 and saved.
 図2にデータベースサーバ4に格納保存されている組み合わせテーブルの一例を示す。この組み合わせテーブルでは、フィルタ測定器IDと、測定対象物ID(Display Type)と、分光測定器IDと、分光放射特性が関連付けられて記憶されている。また、図示は省略したが、フィルタ測定器ID、測定対象物ID、分光測定器ID等と関連付けて各フィルタ測定器2の分光応答度も、このテーブルに規定されていても良いし、フィルタ測定器2自体に記憶保持されても良い。 FIG. 2 shows an example of a combination table stored and saved in the database server 4. In this combination table, the filter measuring device ID, the measurement target ID (Display Type), the spectroscopic measuring device ID, and the spectral radiation characteristic are stored in association with each other. Although not shown, the spectral responsivity of each filter measuring instrument 2 may be defined in this table in association with the filter measuring instrument ID, the measurement object ID, the spectroscopic measuring instrument ID, etc. It may be stored in the container 2 itself.
 この組み合わせテーブルを用い、較正装置3は、実際の測定に用いるフィルタ測定器2のIDと測定対象物1のIDが入力(Input)されることで、組み合わせテーブルの各組み合わせ情報の中から、それらのフィルタ測定器ID及び測定対象物IDが含まれる組み合わせを最適な組み合わせとして判別し、対応する分光測定器5とそれによって測定された測定対象物1の分光放射特性を特定(Output)することができるようになっている。 Using this combination table, the calibration device 3 inputs the ID of the filter measuring device 2 used for actual measurement and the ID of the measurement object 1 from the combination information of the combination table. It is possible to determine a combination including the filter measuring device ID and the measurement target object ID as the optimum combination, and to specify (Output) the spectral emission characteristics of the corresponding spectroscopic measuring device 5 and the measurement target object 1 measured by the spectrometric measuring device 5. You can do it.
 次に、図1に示した較正システムにおける較正装置3の動作を、図3のフローチャートを用いて説明する。 Next, the operation of the calibration device 3 in the calibration system shown in FIG. 1 will be described using the flowchart in FIG.
 まず、フィルタ測定器2の工場出荷時等に、フィルタ測定器2と各種の測定対象物1と各種の分光測定器5を組み合わせて、測定対象物1の分光放射特性を測定し、その結果を、フィルタ測定器ID、測定対象物ID、分光測定器IDと関連付けて、組み合わせ情報としてデータベースサーバ4の記憶部41に組み合わせテーブルとして保存する。また、フィルタ測定器2の分光応答度も測定し、フィルタ測定器2自体に記憶保持させ、あるいはデータベースサーバ4の組み合わせテーブルにフィルタ測定器IDと関連付けて保存しておく。これを繰り返すことで、データベースサーバに多数の組み合わせ情報を蓄積する。 First, when the filter measuring instrument 2 is shipped from the factory, the filter measuring instrument 2, various measuring objects 1 and various spectroscopic measuring instruments 5 are combined to measure the spectral radiation characteristics of the measuring object 1, and the results are shown. , The filter measuring device ID, the measurement object ID, and the spectroscopic measuring device ID are stored as combination information in the storage unit 41 of the database server 4 as a combination table. In addition, the spectral response of the filter measuring device 2 is also measured and stored in the filter measuring device 2 itself, or stored in the combination table of the database server 4 in association with the filter measuring device ID. By repeating this, a large amount of combination information is stored in the database server.
 ユーザーは出荷されたフィルタ測定器2を用いて測定対象物1の測定を行うが、較正装置3の測定部34は、フィルタ測定器2から測定データ、フィルタ測定器ID、分光応答度を取得すると共に、ユーザー入力等によって測定対象物1のディスプレイタイプを取得する(ステップS01)。 The user measures the measurement object 1 using the shipped filter measuring device 2, but the measuring unit 34 of the calibration device 3 acquires the measurement data, the filter measuring device ID, and the spectral responsivity from the filter measuring device 2. At the same time, the display type of the measuring object 1 is acquired by user input or the like (step S01).
 次に、較正装置3の判別部35は、データベースサーバ4にネットワークを介してアクセスし、データベースサーバ4の組み合わせテーブルから組み合わせ情報を取得する(ステップS01)。 Next, the determination unit 35 of the calibration device 3 accesses the database server 4 via the network and acquires the combination information from the combination table of the database server 4 (step S01).
 判別部35は更に、取得した組み合わせ情報と、測定部34で取得されたフィルタ測定器ID及びディスプレイタイプを比較し、組み合わせ情報の中から、フィルタ測定器ID及びディスプレイタイプが合致する組み合わせを判別する(ステップS01)。そして、判別された組み合わせに含まれている分光測定器IDで示される分光測定器5及び分光放射特性を、実際に使用されるフィルタ測定器2及び測定対象物1に対応する最適な分光測定器5及び分光放射特性として決定する(ステップS01)。 The determination unit 35 further compares the acquired combination information with the filter measurement device ID and display type acquired by the measurement unit 34, and determines a combination in which the filter measurement device ID and the display type match from the combination information. (Step S01). Then, the spectroscopic measurement device 5 and the spectroscopic radiation characteristic indicated by the spectroscopic measurement device ID included in the determined combination are the optimum spectroscopic measurement device corresponding to the filter measurement device 2 and the measurement target 1 that are actually used. 5 and the spectroscopic radiation characteristics are determined (step S01).
 例えば、図2の組み合わせテーブルにおいて、フィルタ測定器IDがa、ディスプレイタイプが丸数字1であれば、分光測定器IDはA、分光放射特性はαと決定される。 For example, in the combination table of FIG. 2, if the filter measuring instrument ID is a and the display type is a circle number 1, the spectroscopic measuring instrument ID is determined to be A and the spectral radiation characteristic is determined to be α.
 次に、較正部36は決定された分光放射特性と、フィルタ測定器2の分光応答度を用いて補正係数(第1の補正係数に相当)CM1を算定し(ステップS02)、算定された補正係数CM1を用いて測定データ(Rawデータ)を補正する(ステップS03)。 Next, the calibration unit 36 calculates a correction coefficient (corresponding to the first correction coefficient) CM1 using the determined spectral radiation characteristic and the spectral responsivity of the filter measuring device 2 (step S02), and the calculated correction is performed. The measurement data (Raw data) is corrected using the coefficient CM1 (step S03).
 このように、この実施形態では、データベースサーバ4に予め関連付けて記憶されている、フィルタ測定器2と測定対象物1と分光測定器5と測定対象物1の分光放射特性の組み合わせからなる複数の組み合わせ情報の中から、実際に使用されるフィルタ測定器2と測定対象物1に対応する最適な組み合わせが選択され、選択された組み合わせに含まれる分光放射特性がフィルタ測定器2の較正時の補正係数の算定に用いられるから、測定に使用されるフィルタ測定器2や測定対象物1が変わっても、あるいはユーザーが最適な分光測定器5を保持していなくても、条件に適応した精度の高い較正を容易かつ効率的に行うことができる。 As described above, in this embodiment, a plurality of combinations of the spectral radiation characteristics of the filter measuring device 2, the measuring object 1, the spectroscopic measuring device 5, and the measuring object 1 are stored in association with the database server 4 in advance. From the combination information, the optimum combination corresponding to the actually used filter measuring device 2 and the measurement object 1 is selected, and the spectral radiation characteristics included in the selected combination are corrected when the filter measuring device 2 is calibrated. Since it is used for calculating the coefficient, even if the filter measuring device 2 or the measuring object 1 used for the measurement is changed, or the user does not hold the optimum spectroscopic measuring device 5, the accuracy suitable for the conditions can be obtained. High calibration can be done easily and efficiently.
 また、この実施形態では、組み合わせ情報に分光測定器5を特定するための分光測定器IDが含まれているから、この分光測定器IDで特定される分光測定器5をユーザーが保持している場合、この分光測定器5を用いて再度、測定対象物1の分光放射特性を測定し、その結果に基づいて補正係数CM1を算定してもよい。この場合、分光放射特性が既に得られていることから、トレーサビィリティ(追跡可能性)の高い較正を行うことができる。
[第2の実施形態]
 上述した第1の実施形態において、図2に示した組み合わせテーブルに規定される多数の組み合わせ情報は、フィルタ測定器ID、測定対象物1のディスプレイタイプ、分光測定器ID、分光放射特性がそれぞれ関連付けられたものであった。
Further, in this embodiment, since the combination information includes the spectroscopic measurement device ID for specifying the spectroscopic measurement device 5, the user holds the spectroscopic measurement device 5 specified by this spectroscopic measurement device ID. In this case, the spectral radiation characteristic of the measurement object 1 may be measured again using the spectroscopic measurement device 5, and the correction coefficient CM1 may be calculated based on the result. In this case, since the spectral emission characteristic has already been obtained, it is possible to perform calibration with high traceability.
[Second Embodiment]
In the above-described first embodiment, a large number of pieces of combination information defined in the combination table shown in FIG. 2 are associated with the filter measuring instrument ID, the display type of the measurement object 1, the spectroscopic measuring instrument ID, and the spectral radiation characteristic, respectively. It was the one that was done.
 しかし、補正係数CM1は、測定対象物における測定位置によっても相違するため、測定位置が異なっていれば精度の高い較正を行うことができない。 However, since the correction coefficient CM1 also differs depending on the measurement position on the measurement object, highly accurate calibration cannot be performed if the measurement position is different.
 そこで、この実施形態では、各種の組み合わせの下で測定対象物1における測定位置を変えて予め分光放射特性の測定を行い、図4の組み合わせテーブルに示すように、測定位置を特定するための情報をもフィルタ測定器ID、ディスプレイタイプ、分光測定器ID、分光放射特性と関連付けて組み合わせテーブルに保持しておく。 Therefore, in this embodiment, the spectral radiation characteristics are measured in advance by changing the measurement position on the measurement object 1 under various combinations, and information for specifying the measurement position is displayed as shown in the combination table of FIG. Is also held in the combination table in association with the filter measuring device ID, display type, spectroscopic measuring device ID, and spectral radiation characteristic.
 図1の較正システムにおいて、図4の組み合わせテーブルを用いる場合の較正装置3の動作を、図5のフローチャートを用いて説明する。 The operation of the calibration device 3 when the combination table of FIG. 4 is used in the calibration system of FIG. 1 will be described with reference to the flowchart of FIG.
 フィルタ測定器2を用いた測定対象物1の測定の較正を行う際に、較正装置3の測定部34は、フィルタ測定器2から測定データ、フィルタ測定器ID、分光応答度を取得すると共に、ユーザー入力等によって測定位置の情報、ディスプレイタイプを取得する(ステップS11)。 When calibrating the measurement of the measurement object 1 using the filter measuring device 2, the measuring unit 34 of the calibration device 3 acquires the measurement data, the filter measuring device ID, and the spectral responsivity from the filter measuring device 2, and Information on the measurement position and the display type are acquired by user input or the like (step S11).
 次に、較正装置3の判別部35は、データベースサーバ4にネットワークを介してアクセスし、データベースサーバ4の組み合わせテーブルから組み合わせ情報を取得する(ステップS11)。 Next, the determination unit 35 of the calibration device 3 accesses the database server 4 via the network and acquires the combination information from the combination table of the database server 4 (step S11).
 判別部35は更に、取得した組み合わせ情報と、測定部34で取得されたフィルタ測定器ID、ディスプレイタイプ及び測定位置を比較し、組み合わせ情報の中から、フィルタ測定器ID、ディスプレイタイプ及び測定位置が合致する組み合わせを判別する(ステップS11)。そして、判別された組み合わせに含まれている分光測定器IDで示される分光測定器5及び分光放射特性を、測定に使用されているフィルタ測定器2及び測定対象物1に対応する最適な分光測定器5及び分光放射特性として決定する(ステップS11)。 The determination unit 35 further compares the acquired combination information with the filter measurement device ID, the display type, and the measurement position acquired by the measurement unit 34, and the filter measurement device ID, the display type, and the measurement position are selected from the combination information. A matching combination is determined (step S11). Then, the spectroscopic measuring instrument 5 and the spectral radiation characteristics indicated by the spectroscopic measuring instrument ID included in the determined combination are optimally spectroscopically measured corresponding to the filter measuring instrument 2 and the measurement object 1 used for the measurement. It is determined as the device 5 and the spectroscopic radiation characteristics (step S11).
 例えば、フィルタ測定器IDがa、ディスプレイタイプが丸数字1、測定位置が測定位置1であれば、分光測定器IDはA、分光放射特性はαと決定される。 For example, if the filter measuring instrument ID is a, the display type is a circle number 1, and the measuring position is the measuring position 1, the spectroscopic measuring instrument ID is determined to be A and the spectral radiation characteristic is determined to be α.
 次に、較正部36は決定された分光放射特性と、フィルタ測定器2の分光応答度を用いて補正係数CM1を算定し(ステップS12)、算定された補正係数CM1を用いて測定データを補正する(ステップS13)。 Next, the calibration unit 36 calculates the correction coefficient CM1 using the determined spectral radiation characteristic and the spectral responsivity of the filter measuring device 2 (step S12), and corrects the measurement data using the calculated correction coefficient CM1. Yes (step S13).
 このように、この実施形態では、データベースサーバ4に予め記憶されている組み合わせ情報の中に、測定位置を特定するための情報も含まれているから、測定位置を考慮して最適な組み合わせを判別することができ、より高精度の較正を行うことができる。
[第3の実施形態]
 補正係数CM1は、測定対象物における測定位置のみならず測定角度によっても相違するため、測定角度が異なっていれば精度の高い較正を行うことができない。
As described above, in this embodiment, the combination information stored in advance in the database server 4 also includes information for specifying the measurement position, so that the optimum combination is determined in consideration of the measurement position. And more accurate calibration can be done.
[Third Embodiment]
Since the correction coefficient CM1 differs not only with the measurement position on the measurement object but also with the measurement angle, it is not possible to perform highly accurate calibration if the measurement angles are different.
 そこで、この実施形態では、各種の組み合わせの下で測定対象物1における測定位置のみならず測定角度を変えて予め測定を行い、図6の組み合わせテーブルに示すように、測定位置及び測定角度を特定するための情報をもフィルタ測定器ID、ディスプレイタイプ、分光測定器ID、分光放射特性と関連付けて組み合わせテーブルに保持しておく。 Therefore, in this embodiment, not only the measurement position in the measurement object 1 but also the measurement angle is changed under various combinations to perform the measurement in advance, and the measurement position and the measurement angle are specified as shown in the combination table of FIG. The information for doing so is also stored in the combination table in association with the filter measuring device ID, the display type, the spectroscopic measuring device ID, and the spectral radiation characteristic.
 図1の較正システムにおいて、図6の組み合わせテーブルを用いる場合の較正装置3の動作を、図7のフローチャートを用いて説明する。 The operation of the calibration device 3 when the combination table of FIG. 6 is used in the calibration system of FIG. 1 will be described using the flowchart of FIG.
 フィルタ測定器2を用いた測定対象物1の測定の較正を行う際に、較正装置3の測定部34は、フィルタ測定器2から測定データ、フィルタ測定器ID、分光応答度を取得すると共に、ユーザー入力等によって測定位置及び測定角度の情報、ディスプレイタイプを取得する(ステップS21)。 When calibrating the measurement of the measurement object 1 using the filter measuring device 2, the measuring unit 34 of the calibration device 3 acquires the measurement data, the filter measuring device ID, and the spectral responsivity from the filter measuring device 2, and Information on the measurement position and the measurement angle and the display type are acquired by user input or the like (step S21).
 次に、較正装置3の判別部35は、データベースサーバ4にネットワークを介してアクセスし、データベースサーバ4の組み合わせテーブルから組み合わせ情報を取得する(ステップS21)。 Next, the determination unit 35 of the calibration device 3 accesses the database server 4 via the network and acquires the combination information from the combination table of the database server 4 (step S21).
 判別部35は更に、取得した組み合わせ情報と、測定部34で取得されたフィルタ測定器ID、ディスプレイタイプ、測定位置及び測定角度を比較し、組み合わせ情報の中から、フィルタ測定器ID、ディスプレイタイプ、測定位置及び測定角度が合致する組み合わせを判別する(ステップS21)。そして、判別された組み合わせに含まれている分光測定器IDで示される分光測定器5及び分光放射特性を、測定に使用されているフィルタ測定器2及び測定対象物1に対応する最適な分光測定器5及び分光放射特性として決定する(ステップS21)。例えば、フィルタ測定器IDがa、ディスプレイタイプが丸数字1、測定位置が測定位置1、測定角度がθであれば、分光測定器IDはA、分光放射特性はαと決定される。 The determination unit 35 further compares the acquired combination information with the filter measurement device ID, the display type, the measurement position, and the measurement angle acquired by the measurement unit 34, and from the combination information, the filter measurement device ID, the display type, A combination in which the measurement position and the measurement angle match is determined (step S21). Then, the spectroscopic measuring instrument 5 and the spectral radiation characteristics indicated by the spectroscopic measuring instrument ID included in the determined combination are optimally spectroscopically measured corresponding to the filter measuring instrument 2 and the measurement object 1 used for the measurement. It is determined as the device 5 and the spectroscopic radiation characteristics (step S21). For example, if the filter measuring device ID is a, the display type is circled number 1, the measuring position is measuring position 1, and the measuring angle is θ, the spectroscopic measuring device ID is determined to be A and the spectral radiation characteristic is determined to be α.
 次に、較正部36は決定された分光放射特性と、フィルタ測定器2の分光応答度を用いて補正係数CM1を算定し(ステップS22)、算定された補正係数CM1を用いて測定データを補正する(ステップS23)。 Next, the calibration unit 36 calculates the correction coefficient CM1 using the determined spectral radiation characteristic and the spectral response of the filter measuring device 2 (step S22), and corrects the measurement data using the calculated correction coefficient CM1. Yes (step S23).
 このように、この実施形態では、データベースサーバ4に予め記憶されている組み合わせ情報の中に、測定位置のほか測定角度を特定するための情報も含まれているから、測定角度をも考慮して最適な組み合わせを判別することができ、より高精度の較正を行うことができる。 As described above, in this embodiment, since the combination information stored in advance in the database server 4 includes information for specifying the measurement angle as well as the measurement position, the measurement angle is also taken into consideration. The optimal combination can be determined, and more accurate calibration can be performed.
 なお、組み合わせテーブルには、測定位置と測定角度の両方ではなく測定角度についての情報のみが含まれていても良い。
[第4の実施形態]
 分光測定器5とフィルタ測定器2では、それぞれの測定値を比較すると違いが生じる。そこで、その測定値の違いから補正係数を算出し、フィルタ測定器2の測定データに補正を加える技術(任意較正)がある。
The combination table may include only information about the measurement angle, not both the measurement position and the measurement angle.
[Fourth Embodiment]
When the measured values of the spectroscopic measuring instrument 5 and the filter measuring instrument 2 are compared, a difference occurs. Therefore, there is a technique (arbitrary calibration) in which a correction coefficient is calculated from the difference in the measured values and the correction is added to the measurement data of the filter measuring device 2.
 ここで、Value[Spectrometer]を分光データから得られる個々の刺激値である行列、Value[Filter type measuring instrument]]をフィルタ測定器で得られる測定データ(Rawデータ)の個々の刺激値である行列、CM2を較正行列(第2の補正係数)とすると、
Value[Spectrometer] = CM2 * Value[Filter type measuring instrument]]・・・(2)
で表される。
Where Value[Spectrometer] is a matrix that is the individual stimulus values obtained from the spectroscopic data, and Value[Filter type measuring instrument]] is a matrix that is the individual stimulus values of the measurement data (Raw data) obtained by the filter measuring instrument. , Let CM2 be the calibration matrix (second correction factor)
Value [Spectrometer] = CM2 * Value [Filter type measuring instrument]] ・ ・ ・ (2)
It is represented by.
 フィルタ測定器2の分光応答度を取得するために用いる光源(分光測定器)と測定対象物1であるディスプレイパネルでは、偏光特性や指向性などの光学特性が異なるため、前述した第1の補正係数(CM1)と上記の第2の補正係数(CM2)は完全には一致しない。 Since the light source (spectroscopic measuring instrument) used to acquire the spectral responsivity of the filter measuring instrument 2 and the display panel which is the measurement object 1 have different optical characteristics such as polarization characteristics and directivity, the first correction described above is performed. The coefficient (CM1) and the above second correction coefficient (CM2) do not completely match.
 そこで、図8の任意較正の説明図に示すように、工場出荷前に事前に同じ測定対象物1であるディスプレイパネルを、分光測定器5とフィルタ測定器1を用いて、同タイミングで測定し、第1の補正係数(CM1)、第2の補正係数(CM2)を求める。求めたCM1とCM2の差分を、工場出荷時における補正係数の関係を示す図9(A)のように第3の補正係数(CM3)とすると、ユーザー利用時における補正係数の関係を示す図9(B)のように、
CM2’ = CM1’ + CM3 = CM1’ + (CM2 ・ CM1)・・・(3)
となる。ここで、CM1’、CM2’はユーザーが実際にフィルタ測定器を使用している時の第1及び第2の補正係数を表す。なお、第3の補正係数(CM3)の求め方は下記式(4)のように第1の補正係数(CM1)と第2の補正係数(CM2)の比であっても構わない。
CM2’ = CM1’ * (CM2 / CM1))・・・(4)
 そして、フィルタ測定器2や測定対象物1に識別情報(ID)を付与しておき、個々のフィルタ測定器2の分光応答度、個々の測定対象物1の測定に用いたフィルタ測定器2と分光放射特性の情報、更には第3の補正係数(CM3)をそれぞれ関連付けて組み合わせテーブルとして保持しておく。
Therefore, as shown in the explanatory diagram of the arbitrary calibration in FIG. 8, before the factory shipment, the display panel which is the same measurement object 1 is measured in advance at the same timing by using the spectroscopic measurement device 5 and the filter measurement device 1. , The first correction coefficient (CM1) and the second correction coefficient (CM2). Assuming that the calculated difference between CM1 and CM2 is the third correction coefficient (CM3) as shown in FIG. 9A showing the relationship between the correction coefficients at the time of factory shipment, FIG. As in (B)
CM2' = CM1' + CM3 = CM1' + (CM2 · CM1)・・・(3)
Becomes Here, CM1' and CM2' represent the first and second correction coefficients when the user is actually using the filter measuring instrument. The third correction coefficient (CM3) may be obtained by the ratio of the first correction coefficient (CM1) and the second correction coefficient (CM2) as in the following formula (4).
CM2' = CM1' * (CM2 / CM1))・・・(4)
Then, identification information (ID) is given to the filter measuring device 2 and the measuring object 1, and the spectral responsivity of each filter measuring device 2 and the filter measuring device 2 used to measure each measuring object 1 Information on the spectral radiation characteristic and further the third correction coefficient (CM3) are associated with each other and held as a combination table.
 フィルタ測定器2による測定対象物1の実際の測定の際、利用しているフィルタ測定器2のIDと測定対象物1のIDを、較正装置3の測定部34は、取得した測定データ(Rawデータ)とセットにして保持する。そして、フィルタ測定器IDと測定対象物IDに合致する組み合わせを組み合わせ情報の中から判別し、その組み合わせに含まれている分光測定器IDと分光放射特性と第3の補正係数(CM3)を決定する。 In the actual measurement of the measurement object 1 by the filter measurement device 2, the ID of the filter measurement device 2 and the ID of the measurement object 1 which are being used are measured by the measurement unit 34 of the calibration device 3 by the acquired measurement data (Raw Data) and set and hold. Then, a combination that matches the filter measuring device ID and the measurement object ID is determined from the combination information, and the spectroscopic measuring device ID, the spectral radiation characteristic, and the third correction coefficient (CM3) included in the combination are determined. To do.
 そして、フィルタ測定器2の分光応答度と分光放射特性とから第1の補正係数(CM1’)を算定し、この第1の補正係数(CM1’)と第3の補正係数(CM3)とから、式(3)又は式(4)から第2の補正係数(CM2’) を導き、この第2の補正係数(CM2’)を用いて測定値を補正する。 Then, the first correction coefficient (CM1′) is calculated from the spectral responsivity of the filter measuring device 2 and the spectral radiation characteristic, and from the first correction coefficient (CM1′) and the third correction coefficient (CM3). , The second correction coefficient (CM2′) is derived from the expression (3) or the expression (4), and the measurement value is corrected using the second correction coefficient (CM2′).
 このように、第3の補正係数(CM3)を組み合わせテーブルに保持させておくことで、任意較正を測定前に毎回実施する必要がなくなり、作業者の負担を減少させることができる。
[その他の実施形態]
 以上、本発明の一実施形態を説明したが、本発明は上記実施形態に限定されることはない。
In this way, by storing the third correction coefficient (CM3) in the combination table, it is not necessary to perform arbitrary calibration before each measurement, and the burden on the operator can be reduced.
[Other Embodiments]
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.
 例えば、フィルタ測定器2や測定対象物1等に識別情報であるIDを付けておき、個々のフィルタ測定器2の分光応答度、個々の測定対象物1の測定に用いた測定器情報と分光放射特性の情報をそれぞれそれらIDとセットにして(関連付けて)組み合わせテーブルとして保持しておく。そして、図10のフローチャートに示すように、実際の測定の際、較正装置3と一体で又は別体で備えられた外部環境測定器6により取得された、温度や湿度、場所、外光(測定場所の照度)、外部電場磁場、測定器の振動、測定場所のクリーン度、電源の安定性、更には測定に携わった作業者のIDなど、測定環境の情報(測定環境パラメータ)を、測定データとセットにして保持しておくことで、測定環境の傾向を分析することができる。また、ユーザーは判別部35に読み込まれた組み合わせテーブルに測定環境の情報(測定環境パラメータ)を追加してもよい。なお、図10のフローチャートにおいて、測定環境の情報(測定環境パラメータ)を測定データとセットにして保持しておくこと以外は、図5のフローチャートと同じであるので、同一のステップ符号を付し、詳細な説明は省略する。 For example, an ID that is identification information is attached to the filter measuring device 2 and the measuring object 1, and the spectral responsivity of each filter measuring device 2 and the measuring device information and the spectrum used for measuring each measuring object 1 Information on the radiation characteristics is set (associated) with each of these IDs and held as a combination table. Then, as shown in the flowchart of FIG. 10, at the time of actual measurement, the temperature, the humidity, the place, and the external light (measurement) obtained by the external environment measuring device 6 provided integrally with or separately from the calibration device 3 are measured. Measurement environment information (measurement environment parameters) such as (illuminance of place), external electric field magnetic field, vibration of measuring instrument, cleanliness of measurement place, stability of power supply, and ID of worker involved in measurement. By holding as a set, the tendency of the measurement environment can be analyzed. Further, the user may add the measurement environment information (measurement environment parameters) to the combination table read by the determination unit 35. 10 is the same as the flowchart of FIG. 5 except that the measurement environment information (measurement environment parameters) is stored as a set with the measurement data. Detailed description is omitted.
 また、複数台のフィルタ測定器2を用いて、同じ測定対象物1を管理する場合、データベースサーバ4に蓄積された各ロットや各測定器の測定値から、特異に測定値が変化する、もしくは線形に変化するロットや測定器を見つけることで、事前に不良予測を行うようにしてもよい。 Moreover, when managing the same measuring object 1 using a plurality of filter measuring devices 2, the measured value is uniquely changed from the measured value of each lot or each measuring device accumulated in the database server 4, or Failure prediction may be performed in advance by finding a lot or a measuring instrument that changes linearly.
 また、上記実施形態では、組み合わせテーブルに保持されている組み合わせ情報の中から、実際の測定に使用しているフィルタ測定器2と測定対象物1のIDが合致している組み合わせを選択した。しかし、これらの組み合わせ情報を多数蓄積していくことで、いわゆるAI(人工知能)等を用いることにより、測定対象物1と同じIDが組み合わせ情報の中に存在しない場合であっても、分光放射特性の近似する測定対象物1についての組み合わせを取得することができる。 Further, in the above embodiment, a combination in which the IDs of the filter measuring instrument 2 used for the actual measurement and the measurement object 1 match is selected from the combination information stored in the combination table. However, by accumulating a large number of these pieces of combination information, by using so-called AI (artificial intelligence) or the like, even if the same ID as that of the measurement object 1 does not exist in the combination information, the spectral emission It is possible to acquire a combination for the measurement object 1 having similar characteristics.
 この場合、望ましくは、分光放射特性の近似する測定対象物1についての組み合わせを判別するための重みの初期値テーブルが、組み合わせテーブルと共にデータベースサーバ4に記憶されていても良い。 In this case, preferably, the database server 4 may store an initial value table of weights for discriminating a combination of the measurement objects 1 having similar spectral radiation characteristics together with the combination table.
 ここで、重みの初期値テーブルの一例について説明する。重みの初期値テーブルとは、測定対象物の分光放射特性のスペクトル形状から異なる測定対象物(ディスプレイパネル)の測定であっても、似たスペクトル形状を持つ測定対象物のID(ディスプレイタイプ)を特定するためのテーブルを意味し、例えばニューラルネットワークにおける重み係数Wをさす。 Here, an example of the weight initial value table will be described. The weight initial value table indicates the ID (display type) of a measurement object having a similar spectrum shape even when measuring a measurement object (display panel) that differs from the spectrum shape of the spectral emission characteristics of the measurement object. It means a table for specifying, for example, the weighting coefficient W in the neural network.
 ニューラルネットワークの一例を示すと、ニューラルネットワークとは、図11のような模式図であらわされる。図11のo11 、o21 、o31 はそれぞれの波長で差が大きければ1を、差が小さければ0を出力する(下記のステップ関数:uが閾値bより大きければ1、小さければ0を出力する)。 As an example of the neural network, the neural network is represented by a schematic diagram as shown in FIG. In FIG. 11, o1 1 , o2 1 , and o3 1 output 1 if the difference is large at each wavelength, and 0 if the difference is small (step function below: 1 if u is larger than the threshold value b, 0 if smaller) Output).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
また、o12 、o22 は、それぞれ以下の式で求められる。
o12 =o11 *W11 + o21 * W21 + o31 * W31
o22 = o11* W12 + o21 * W22 + o31 * W32
そして、o12 、o22 それぞれの値から一致、不一致を判断する仕組みである。
In addition, o1 2 and o2 2 are calculated by the following equations, respectively.
o1 2 = o1 1 * W11 + o2 1 * W21 + o3 1 * W31
o2 2 = o1 1 * W12 + o2 1 * W22 + o3 1 * W32
Then, it is a mechanism to judge match or mismatch from the values of o1 2 and o2 2 .
 2つの測定対象物(ディスプレイパネル)(片方はLED、もう片方はOLED)を比較する場合において、LEDとOLEDのスペクトル形状は、図12(A)~(C)の通り、450nmでは相対強度の差はなく、550nmでは相対強度の差が少しあり、650nmでは相対強度の差が大きくある。 When comparing two measurement objects (display panels) (one is an LED and the other is an OLED), the spectral shapes of the LED and the OLED are as shown in FIGS. There is no difference, and there is a small difference in relative intensity at 550 nm, and a large difference in relative intensity at 650 nm.
 この前提のもとに、図13に示す重み係数W(重みの初期値テーブル)を定める。一例を示すと、二つの測定対象物1があり、比較すると450nmでは差がないが、550nm、650nmでは差がある場合(o11 = 0、o21= 1、o31= 1)、この時、o12 、o22は重みの初期値テーブル(図13)と合わせて、
o12 = 0 * 0.01 + 1 * 0.6 + 1 * 0.9 = 1.5
o22 = 0 * 0.01 + 1 * 0.3 + 1 * 0.1 = 0.4
と求められる。つまり、不一致の確率は、79 %[1.5 / (1.5 + 0.4) * 100]、一致の確率は、21 %[0.4 / (1.5 + 0.4) * 100]となる。
Based on this premise, the weighting coefficient W (initial value table of weights) shown in FIG. 13 is determined. As an example, if there are two measurement objects 1 and there is no difference at 450 nm, but there is a difference at 550 nm and 650 nm (o1 1 = 0, o2 1 = 1, o3 1 = 1), then , O1 2 and o2 2 are combined with the initial weight table (Fig. 13).
o1 2 = 0 * 0.01 + 1 * 0.6 + 1 * 0.9 = 1.5
o2 2 = 0 * 0.01 + 1 * 0.3 + 1 * 0.1 = 0.4
Is required. That is, the probability of mismatch is 79% [1.5 / (1.5 + 0.4) * 100], and the probability of match is 21% [0.4 / (1.5 + 0.4) * 100].
 以上の例は3カ所の波長での比較の例であったが、可視光域全域(380nm~780nm)で1nmごと(401カ所)の比較を実施することで、より精度よく比較を実施することができる。 Although the above example was an example of comparison at three wavelengths, it is possible to perform the comparison more accurately by comparing every 1 nm (401 places) in the entire visible light range (380 nm to 780 nm). You can
 このように、重みの初期値テーブルを参照することで、共通性のある測定対象物1を有している組み合わせを選択することができ、近似した補正係数を算定することができる。 In this way, by referring to the weight initial value table, it is possible to select a combination having the measurement object 1 having a commonality, and it is possible to calculate an approximate correction coefficient.
 また、選択した組み合わせにおいて測定対象物IDを共通性のある測定対象物IDに置き換えた新たな組み合わせを、更新装置が自動的に作成してデータベースサーバに蓄積していってもよい。また、近似する組み合わせの評価をユーザーが入力できるようにし、この評価に基づいて新たな組み合わせを自動的に作成してデータベースサーバに蓄積していってもよい。これにより、ユーザー等が新たな組み合わせテーブルを作成しなくても、組み合わせ情報が増えていくから、組み合わせテーブルの作成の手間が軽減される。 Alternatively, the update device may automatically create a new combination in which the measurement object ID is replaced with a measurement object ID having commonity in the selected combination, and stored in the database server. It is also possible to allow the user to input the evaluation of the similar combination, and to automatically create a new combination based on this evaluation and store it in the database server. As a result, even if the user or the like does not create a new combination table, the combination information increases, so that the labor of creating the combination table is reduced.
 また、以上の実施形態では、組み合わせテーブルがデータベースサーバ4に保存されており、較正装置3がデータベースサーバ4から組み合わせ情報をネットワークを介して取得するものとした。しかし、図14に示すように、較正装置3内の不揮発メモリ(記憶部)33に組み合わせテーブルが保存蓄積されていても良い。この構成では、較正装置3は外部のデータベースサーバ4から組み合わせ情報を取得する必要はなくなる。なお、図14の較正装置3の動作は、上記のように組み合わせ情報を自装置内で取得する点を除いて、図1に示した較正システムにおける較正装置3の動作と同じである。 Further, in the above embodiment, the combination table is stored in the database server 4, and the calibration device 3 acquires the combination information from the database server 4 via the network. However, as shown in FIG. 14, the combination table may be stored and stored in the non-volatile memory (storage unit) 33 in the calibration device 3. With this configuration, the calibration device 3 does not need to acquire the combination information from the external database server 4. The operation of the calibration device 3 in FIG. 14 is the same as the operation of the calibration device 3 in the calibration system shown in FIG. 1, except that the combination information is acquired in the own device as described above.
 本発明は、少なくとも3個のカラーチャンネルを含む刺激値タイプの測色装置の較正を行う際に利用可能である。 The present invention can be used to calibrate a stimulus-type colorimeter that includes at least three color channels.
 1  被測定対象物
 2  フィルタ測定器(第1の測色装置)
 3  較正装置
 31 CPU
 33 不揮発メモリ
 34 測定部
 35 判別部
 36 較正部
 37 通信部
 4  データベースサーバ
 41 記憶部
 5  分光測定器(第2の測色装置)
 6  外部環境測定部
1 Object to be measured 2 Filter measuring device (first color measuring device)
3 Calibration device 31 CPU
33 non-volatile memory 34 measuring unit 35 discriminating unit 36 calibration unit 37 communication unit 4 database server 41 storage unit 5 spectrophotometer (second color measuring device)
6 External environment measurement section

Claims (27)

  1.  少なくとも3個のカラーチャンネルを含む1個又は複数個の刺激値タイプの第1の測色装置をそれぞれ特定するための1個又は複数個の第1の識別情報と、1個又は複数個の測定対象物を特定するための1個又は複数個の第2の識別情報と、1個又は複数個の分光測色方式による第2の測色装置により測定された前記測定対象物の分光放射特性が、関連付けて組み合わされた複数の組み合わせ情報を予め記憶する記憶手段と、
     測定対象物の測定を行った前記第1の測色装置の較正を行う際に、前記第1の測色装置の第1の識別情報及び前記測定対象物の第2の識別情報に基づいて、測定を行った第1の測色装置と測定対象物と該測定対象物の分光放射特性の最適な組み合わせを、前記記憶手段に記憶されている複数の前記組み合わせ情報の中から判別する判別手段と、
     前記判別手段により判別された組み合わせに含まれている前記測定対象物の分光放射特性と、測定を行った前記第1の測色装置の分光応答度に基づいて、前記第1の測色装置による測定値を補正する較正手段と、
     を備えた較正システム。
    One or more first identification information and one or more measurements for respectively identifying one or more first colorimetric devices of stimulus value type including at least three color channels One or a plurality of second identification information for specifying an object and spectral emission characteristics of the measurement object measured by a second colorimetric device using one or more spectral colorimetric methods , Storage means for storing in advance a plurality of combination information associated with each other,
    When calibrating the first color measurement device that has measured the measurement target, based on the first identification information of the first color measurement device and the second identification information of the measurement target, A first colorimetric device that has performed the measurement, a determination unit that determines the optimum combination of the measurement target and the spectral emission characteristics of the measurement target from among the plurality of combination information stored in the storage unit. ,
    Based on the spectral emission characteristic of the measurement target included in the combination discriminated by the discriminating unit and the spectral responsivity of the first colorimeter that has performed the measurement, the first colorimeter measures Calibration means to correct the measured value and
    Calibration system with.
  2.  前記組み合わせ情報は、予めテーブルとして前記記憶手段に記憶されている請求項1に記載の較正システム。 The calibration system according to claim 1, wherein the combination information is stored in advance in the storage means as a table.
  3.  前記組み合わせ情報における各組み合わせには測定位置を特定する情報が含まれ、
     前記判別手段は、測定に用いられた第1の測色装置の測定位置に基づいて最適な組み合わせを判別する請求項1または2に記載の較正システム。
    Each combination in the combination information includes information for specifying the measurement position.
    The calibration system according to claim 1 or 2, wherein the discrimination means determines the optimum combination based on the measurement position of the first color measuring device used for the measurement.
  4.  前記組み合わせ情報における各組み合わせには測定角度を特定する情報が含まれ、
     前記判別手段は、測定に用いられた第1の測色装置の測定角度に基づいて最適な組み合わせを判別する請求項1~3のいずれかに記載の較正システム。
    Each combination in the combination information includes information for specifying the measurement angle.
    The calibration system according to any one of claims 1 to 3, wherein the discrimination means discriminates an optimum combination based on a measurement angle of a first color measuring device used for measurement.
  5.  前記組み合わせ情報における各組み合わせには測定環境の情報が含まれ、
     前記判別手段は、測定に用いられた第1の測色装置の測定環境に基づいて最適な組み合わせを判別する請求項1~4のいずれかに記載の較正システム。
    Each combination in the combination information includes information on the measurement environment.
    The calibration system according to any one of claims 1 to 4, wherein the discrimination means determines the optimum combination based on the measurement environment of the first color measuring device used for the measurement.
  6.  前記判別手段は、第1の測色装置により測定された測定対象物を示す前記第2の情報が、前記記憶手段に記憶されている組み合わせ情報の中に存在しない場合、分光放射特性の近似する測定対象物についての組み合わせを前記組み合わせ情報の中から判別する請求項1~5のいずれかに記載の較正システム。 When the second information indicating the measurement object measured by the first color measuring device does not exist in the combination information stored in the storage unit, the determining unit approximates the spectral radiation characteristic. The calibration system according to any one of claims 1 to 5, wherein a combination of measurement objects is determined from the combination information.
  7.  前記記憶手段は、分光放射特性の近似する測定対象物についての組み合わせを判別するための重みの初期値テーブルを記憶している請求項6に記載の較正システム。 The calibration system according to claim 6, wherein the storage means stores an initial value table of weights for discriminating combinations of measurement objects having similar spectral radiation characteristics.
  8.  前記判別手段により判別された組み合わせの評価をユーザーが入力可能である請求項6または7に記載の較正システム。 The calibration system according to claim 6 or 7, wherein a user can input an evaluation of the combination determined by the determination means.
  9.  前記測定対象物の分光放射特性と測定に用いられた第1の測色装置の分光応答度とに基づく補正係数を第1の補正係数とし、第1の測定装置による測定値を第2の測定装置で得られる値に較正するための補正係数を第2の補正係数とし、第1の補正係数と第2の補正係数を関連付けるための補正係数を第3の補正係数とするとき、前記記憶手段に記憶されている組み合わせには前記第3の補正係数が含まれており、
     前記較正手段は、前記第1の補正係数を算出するとともに、算出された第1の補正係数と、前記判別手段により判別された組み合わせに含まれている前記第3の補正係数とから前記第2の補正係数を算出し、算出された前記第2の補正係数を用いて測定値を補正する請求項1~8のいずれかに記載の較正システム。
    A correction coefficient based on the spectral emission characteristic of the measurement object and the spectral responsivity of the first color measurement device used for measurement is used as a first correction coefficient, and a measurement value obtained by the first measurement device is used as a second measurement. When the correction coefficient for calibrating to a value obtained by the apparatus is the second correction coefficient and the correction coefficient for associating the first correction coefficient and the second correction coefficient is the third correction coefficient, the storage means The combination stored in is included in the third correction coefficient.
    The calibrating means calculates the first correction coefficient and calculates the second correction coefficient from the calculated first correction coefficient and the third correction coefficient included in the combination determined by the determining means. The calibration system according to any one of claims 1 to 8, wherein the correction coefficient of the above is calculated, and the measured value is corrected by using the calculated second correction coefficient.
  10.  前記第1の測色装置の分光応答度は前記第1の測色装置に記憶されている請求項1~9のいずれかに記載の較正システム。 The calibration system according to any one of claims 1 to 9, wherein the spectral responsivity of the first color measuring device is stored in the first color measuring device.
  11.  前記第1の測色装置の分光応答度は前記記憶手段に記憶されている請求項1~9のいずれかに記載の較正システム。 The calibration system according to any one of claims 1 to 9, wherein the spectral responsivity of the first color measuring device is stored in the storage means.
  12.  前記組み合わせ情報には、前記第2の測色装置を特定するための第3の識別情報が、前記第1の識別情報、前記第2の識別情報及び前記分光放射特性と関連付けて組み合わされている請求項1~11のいずれかに記載の較正システム。 In the combination information, a third identification information for identifying the second color measuring device is combined in association with the first identification information, the second identification information, and the spectral radiation characteristic. The calibration system according to any one of claims 1 to 11.
  13.  少なくとも3個のカラーチャンネルを含む1個又は複数個の刺激値タイプの第1の測色装置をそれぞれ特定するための1個又は複数個の第1の識別情報と、1個又は複数個の測定対象物を特定するための1個又は複数個の第2の識別情報と、1個又は複数個の分光測色方式による第2の測色装置により測定された前記測定対象物の分光放射特性が、関連付けて組み合わされた複数の組み合わせ情報を予め記憶する記憶手段と、
     測定対象物の測定を行った前記第1の測色装置の較正を行う際に、前記第1の測色装置の第1の識別情報及び前記測定対象物の第2の識別情報に基づいて、測定を行った第1の測色装置と測定対象物と該測定対象物の分光放射特性の最適な組み合わせを、前記記憶手段に記憶されている複数の前記組み合わせ情報の中から判別する判別手段と、
     前記判別手段により判別された組み合わせに含まれている前記測定対象物の分光放射特性と、測定を行った前記第1の測色装置の分光応答度に基づいて、前記第1の測色装置による測定値を補正する較正手段と、
     を備えた較正装置。
    One or more first identification information and one or more measurements for respectively identifying one or more first colorimetric devices of stimulus value type including at least three color channels One or a plurality of second identification information for specifying an object and spectral emission characteristics of the measurement object measured by a second colorimetric device using one or more spectral colorimetric methods , A storage means that stores a plurality of combination information associated and combined in advance, and
    When calibrating the first color measurement device that has measured the measurement target, based on the first identification information of the first color measurement device and the second identification information of the measurement target, A first colorimetric device that has performed the measurement, a determination unit that determines the optimum combination of the measurement target and the spectral emission characteristics of the measurement target from among the plurality of combination information stored in the storage unit. ,
    Based on the spectral emission characteristic of the measurement target included in the combination discriminated by the discriminating unit and the spectral responsivity of the first colorimeter that has performed the measurement, the first colorimeter measures Calibration means for correcting the measured values,
    A calibration device equipped with.
  14.  少なくとも3個のカラーチャンネルを含む1個又は複数個の刺激値タイプの第1の測色装置をそれぞれ特定するための1個又は複数個の第1の識別情報と、1個又は複数個の測定対象物を特定するための1個又は複数個の第2の識別情報と、1個又は複数個の分光測色方式による第2の測色装置により測定された前記測定対象物の分光放射特性が、関連付けて組み合わされた複数の組み合わせ情報を予め記憶する記憶手段を備えた外部のデータベース装置と通信可能であり、
     測定対象物の測定を行った前記第1の測色装置の較正を行う際に、前記第1の測色装置の第1の識別情報及び前記測定対象物の第2の識別情報に基づいて、測定を行った第1の測色装置と測定対象物と該測定対象物の分光放射特性の最適な組み合わせを、前記記憶手段に記憶されている複数の前記組み合わせ情報の中から判別する判別手段と、
     前記判別手段により判別された組み合わせに含まれている前記測定対象物の分光放射特性と、測定を行った前記第1の測色装置の分光応答度に基づいて、前記第1の測色装置による測定値を補正する較正手段と、
     を備えた較正装置。
    One or more first identification information and one or more measurements for respectively identifying one or more first colorimetric devices of stimulus value type including at least three color channels One or a plurality of second identification information for specifying an object and spectral emission characteristics of the measurement object measured by a second colorimetric device using one or more spectral colorimetric methods , Is capable of communicating with an external database device provided with a storage unit that stores in advance a plurality of combination information associated with each other,
    When calibrating the first color measurement device that has measured the measurement target, based on the first identification information of the first color measurement device and the second identification information of the measurement target, A first colorimetric device that has performed the measurement, a determination unit that determines the optimum combination of the measurement target and the spectral emission characteristics of the measurement target from among the plurality of combination information stored in the storage unit. ,
    Based on the spectral emission characteristic of the measurement target included in the combination discriminated by the discriminating unit and the spectral responsivity of the first colorimeter that has performed the measurement, the first colorimeter measures Calibration means to correct the measured value and
    Calibration device equipped with.
  15.  前記組み合わせ情報は、予めテーブルとして前記記憶手段に記憶されている請求項13または14に記載の較正装置。 The calibration device according to claim 13 or 14, wherein the combination information is stored in advance in the storage means as a table.
  16.  前記組み合わせ情報における各組み合わせには測定位置を特定する情報が含まれ、
     前記判別手段は、測定に用いられた第1の測色装置の測定位置に基づいて最適な組み合わせを判別する請求項13~15のいずれかに記載の較正装置。
    Each combination in the combination information includes information for specifying the measurement position.
    The calibration device according to any one of claims 13 to 15, wherein the discrimination means discriminates the optimum combination based on the measurement position of the first color measuring device used for the measurement.
  17.  前記組み合わせ情報における各組み合わせには測定角度を特定する情報が含まれ、
     前記判別手段は、測定に用いられた第1の測色装置の測定角度に基づいて最適な組み合わせを判別する請求項13~16のいずれかに記載の較正装置。
    Each combination in the combination information includes information for specifying the measurement angle.
    The calibration device according to any one of claims 13 to 16, wherein the discrimination means determines the optimum combination based on the measurement angle of the first color measuring device used for the measurement.
  18.  前記組み合わせ情報における各組み合わせには測定環境の情報が含まれ、
     前記判別手段は、測定に用いられた第1の測色装置の測定環境に基づいて最適な組み合わせを判別する請求項13~17のいずれかに記載の較正装置。
    Each combination in the combination information includes information on the measurement environment.
    The calibration device according to any one of claims 13 to 17, wherein the discrimination means determines the optimum combination based on the measurement environment of the first color measuring device used for the measurement.
  19.  前記判別手段は、第1の測色装置により測定された測定対象物を示す前記第2の情報が、前記記憶手段に記憶されている組み合わせ情報の中に存在しない場合、分光放射特性の近似する測定対象物についての組み合わせを前記組み合わせ情報の中から判別する請求項13~18のいずれかに記載の較正装置。 The discriminating means approximates the spectral radiation characteristics when the second information indicating the measurement object measured by the first color measuring device does not exist in the combination information stored in the storage means. The calibration device according to any one of claims 13 to 18, wherein a combination of measurement objects is determined from the combination information.
  20.  前記記憶手段は、分光放射特性の近似する測定対象物についての組み合わせを判別するための重みの初期値テーブルを記憶している請求項19に記載の較正装置。 The calibration device according to claim 19, wherein the storage means stores an initial value table of weights for discriminating combinations of measurement objects having similar spectral radiation characteristics.
  21.  前記判別手段により判別された組み合わせの評価をユーザーが入力可能である請求項19または20に記載の較正装置。 The calibration device according to claim 19 or 20, wherein a user can input an evaluation of the combination determined by the determination means.
  22.  前記測定対象物の分光放射特性と測定に用いられた第1の測色装置の分光応答度とに基づく補正係数を第1の補正係数とし、第1の測定装置による測定値を第2の測定装置で得られる値に較正するための補正係数を第2の補正係数とし、第1の補正係数と第2の補正係数を関連付けるための補正係数を第3の補正係数とするとき、前記記憶手段に記憶されている組み合わせには前記第3の補正係数が含まれており、
     前記較正手段は、前記第1の補正係数を算出するとともに、算出された第1の補正係数と、前記判別手段により判別された組み合わせに含まれている前記第3の補正係数とから前記第2の補正係数を算出し、算出された前記第2の補正係数を用いて測定値を補正する請求項13~21のいずれかに記載の較正装置。
    A correction coefficient based on the spectral emission characteristic of the measurement object and the spectral responsivity of the first color measurement device used for measurement is used as a first correction coefficient, and a measurement value obtained by the first measurement device is used as a second measurement. When the correction coefficient for calibrating to a value obtained by the apparatus is the second correction coefficient and the correction coefficient for associating the first correction coefficient and the second correction coefficient is the third correction coefficient, the storage means And the third correction coefficient is included in the combination stored in
    The calibrating means calculates the first correction coefficient and calculates the second correction coefficient from the calculated first correction coefficient and the third correction coefficient included in the combination determined by the determining means. 22. The calibration device according to claim 13, wherein the correction coefficient is calculated, and the measured value is corrected using the calculated second correction coefficient.
  23.  前記第1の測色装置の分光応答度は前記第1の測色装置に記憶されている請求項13~22のいずれかに記載の較正装置。 The calibration device according to any one of claims 13 to 22, wherein the spectral responsivity of the first color measurement device is stored in the first color measurement device.
  24.  前記第1の測色装置の分光応答度は前記記憶手段に記憶されている請求項13~22のいずれかに記載の較正装置。 The calibration device according to any one of claims 13 to 22, wherein the spectral responsivity of the first color measuring device is stored in the storage means.
  25.  前記組み合わせ情報には、前記第2の測色装置を特定するための第3の識別情報が、前記第1の識別情報、前記第2の識別情報及び前記分光放射特性と関連付けて組み合わされている請求項13~24のいずれかに記載の較正装置。 In the combination information, a third identification information for identifying the second color measuring device is combined in association with the first identification information, the second identification information, and the spectral radiation characteristic. The calibration device according to any one of claims 13 to 24.
  26.  少なくとも3個のカラーチャンネルを含む1個又は複数個の刺激値タイプの第1の測色装置をそれぞれ特定するための1個又は複数個の第1の識別情報と、1個又は複数個の測定対象物を特定するための1個又は複数個の第2の識別情報と、1個又は複数個の分光測色方式による第2の測色装置により測定された前記測定対象物の分光放射特性が、関連付けて組み合わされた複数の組み合わせ情報を予め記憶する記憶手段を備えた較正装置のコンピュータに、
     測定対象物の測定を行った前記第1の測色装置の較正を行う際に、前記第1の測色装置の第1の識別情報及び前記測定対象物の第2の識別情報に基づいて、測定を行った第1の測色装置と測定対象物と該測定対象物の分光放射特性の最適な組み合わせを、前記記憶手段に記憶されている複数の前記組み合わせ情報の中から判別する判別ステップと、
     前記判別ステップにより判別された組み合わせに含まれている前記測定対象物の分光放射特性と、測定を行った前記第1の測色装置の分光応答度に基づいて、前記第1の測色装置による測定値を補正する較正ステップと、
     を実行させるためのプログラム。
    One or more first identification information and one or more measurements for respectively identifying one or more first colorimetric devices of stimulus value type including at least three color channels One or a plurality of second identification information for specifying an object and spectral emission characteristics of the measurement object measured by a second colorimetric device using one or more spectral colorimetric methods , A computer of a calibration device having a storage means for pre-storing a plurality of combination information associated with each other,
    When calibrating the first color measurement device that has measured the measurement target, based on the first identification information of the first color measurement device and the second identification information of the measurement target, A determination step of determining the optimal combination of the first colorimetric device that has performed the measurement, the measurement target, and the spectral emission characteristics of the measurement target from among the plurality of combination information stored in the storage means. ,
    Based on the spectral emission characteristic of the measurement target included in the combination determined by the determination step and the spectral responsivity of the first color measurement device that has performed the measurement, the first color measurement device determines Calibration steps to correct measurements and
    A program to execute.
  27.  少なくとも3個のカラーチャンネルを含む1個又は複数個の刺激値タイプの第1の測色装置をそれぞれ特定するための1個又は複数個の第1の識別情報と、1個又は複数個の測定対象物を特定するための1個又は複数個の第2の識別情報と、1個又は複数個の分光測色方式による第2の測色装置により測定された前記測定対象物の分光放射特性が、関連付けて組み合わされた複数の組み合わせ情報を予め記憶する記憶手段を備えた外部のデータベース装置と通信可能な較正装置のコンピュータに、
     測定対象物の測定を行った前記第1の測色装置の較正を行う際に、前記第1の測色装置の第1の識別情報及び前記測定対象物の第2の識別情報に基づいて、測定を行った第1の測色装置と測定対象物と該測定対象物の分光放射特性の最適な組み合わせを、前記記憶手段に記憶されている複数の前記組み合わせ情報の中から判別する判別ステップと、
     前記判別ステップにより判別された組み合わせに含まれている前記測定対象物の分光放射特性と、測定を行った前記第1の測色装置の分光応答度に基づいて、前記第1の測色装置による測定値を補正する較正ステップと、
     を実行させるためのプログラム。
    One or more first identification information and one or more measurements for respectively identifying one or more first colorimetric devices of stimulus value type including at least three color channels One or a plurality of second identification information for specifying an object and spectral emission characteristics of the measurement object measured by a second colorimetric device using one or more spectral colorimetric methods , A computer of a calibration device capable of communicating with an external database device provided with a storage means for storing in advance a plurality of combination information associated and combined,
    When calibrating the first color measurement device that has measured the measurement target, based on the first identification information of the first color measurement device and the second identification information of the measurement target, A determination step of determining the optimal combination of the first colorimetric device that has performed the measurement, the measurement target, and the spectral emission characteristics of the measurement target from among the plurality of combination information stored in the storage means. ,
    Based on the spectral emission characteristic of the measurement target included in the combination determined by the determination step and the spectral responsivity of the first color measurement device that has performed the measurement, the first color measurement device determines Calibration steps to correct measurements and
    A program to execute.
PCT/JP2020/008081 2019-03-05 2020-02-27 Calibration system, calibration device, and program WO2020179629A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080017772.XA CN113518903B (en) 2019-03-05 2020-02-27 Calibration system, calibration device, and program
JP2021504026A JP7459863B2 (en) 2019-03-05 2020-02-27 Calibration systems, calibration devices and programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-039795 2019-03-05
JP2019039795 2019-03-05

Publications (1)

Publication Number Publication Date
WO2020179629A1 true WO2020179629A1 (en) 2020-09-10

Family

ID=72338632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008081 WO2020179629A1 (en) 2019-03-05 2020-02-27 Calibration system, calibration device, and program

Country Status (3)

Country Link
JP (1) JP7459863B2 (en)
CN (1) CN113518903B (en)
WO (1) WO2020179629A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228452A (en) * 2009-03-25 2010-10-14 Heidelberger Druckmas Ag Color value correction depending on angle
JP2012215570A (en) * 2011-04-01 2012-11-08 X-Rite Europe Gmbh Color measuring device calibration method
US8525997B1 (en) * 2012-03-30 2013-09-03 Datacolor, Inc. System and apparatus for improved low reflectance color measurement
JP2015121507A (en) * 2013-12-25 2015-07-02 キヤノン株式会社 Measurement device, calibration device and display device
WO2017046829A1 (en) * 2015-09-17 2017-03-23 株式会社Elan Color measuring device and color measuring method
JP2018207225A (en) * 2017-05-31 2018-12-27 キヤノン株式会社 Image formation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228452A (en) * 2009-03-25 2010-10-14 Heidelberger Druckmas Ag Color value correction depending on angle
JP2012215570A (en) * 2011-04-01 2012-11-08 X-Rite Europe Gmbh Color measuring device calibration method
US8525997B1 (en) * 2012-03-30 2013-09-03 Datacolor, Inc. System and apparatus for improved low reflectance color measurement
JP2015121507A (en) * 2013-12-25 2015-07-02 キヤノン株式会社 Measurement device, calibration device and display device
WO2017046829A1 (en) * 2015-09-17 2017-03-23 株式会社Elan Color measuring device and color measuring method
JP2018207225A (en) * 2017-05-31 2018-12-27 キヤノン株式会社 Image formation device

Also Published As

Publication number Publication date
CN113518903A (en) 2021-10-19
JPWO2020179629A1 (en) 2020-09-10
CN113518903B (en) 2024-03-15
JP7459863B2 (en) 2024-04-02

Similar Documents

Publication Publication Date Title
JP5340878B2 (en) How to calibrate an imaging spectrograph
US7151600B2 (en) Calibration system for a spectral luminometer and a method for calibrating a spectral luminometer
US7557924B2 (en) Apparatus and methods for facilitating calibration of an optical instrument
US9163990B2 (en) Color measuring device calibration
KR102343121B1 (en) Spectrometry device and spectrometry method
US20130003064A1 (en) Dynamic Spectral Radiance Calibration Source
KR20170093867A (en) Method for calibrating a spectroradiometer
CN108731811B (en) Method and apparatus for calibrating a color measurement instrument
US10746599B2 (en) System and method for spectral interpolation using multiple illumination sources
KR102265425B1 (en) Spectrometry device and spectrometry method
US20190368936A1 (en) Fluorescence measurement of samples
JP6733667B2 (en) Spectral colorimeter and method for calculating spectral reflectance
WO2020179629A1 (en) Calibration system, calibration device, and program
Schmähling et al. Uncertainty evaluation and propagation for spectral measurements
Vilaseca et al. Repeatability, reproducibility, and accuracy of a novel pushbroom hyperspectral system
US11774290B2 (en) Compensate surface gloss in spectrum recovery
US11733099B2 (en) System and method to calibrate color measurement devices
JP2019113568A (en) Spectrometric measurement device and spectrometric measurement method
WO2023041566A1 (en) Method for calibrating a spectrometer device
US11287384B2 (en) System and method for improving calibration transfer between multiple raman analyzer installations
WO2021208349A1 (en) Integrating sphere photometer spectral response measurement method and system
Workman Jr First principles of instrument calibration
JP2004177147A (en) Light emission measuring apparatus
JP6683201B2 (en) Spectral colorimeter and conversion rule setting method
WO2022153963A1 (en) Optical characteristics measurement device, wavelength shift correction device, wavelength shift correction method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20767239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20767239

Country of ref document: EP

Kind code of ref document: A1