WO2020179605A1 - Learning apparatus and learning method - Google Patents

Learning apparatus and learning method Download PDF

Info

Publication number
WO2020179605A1
WO2020179605A1 PCT/JP2020/007982 JP2020007982W WO2020179605A1 WO 2020179605 A1 WO2020179605 A1 WO 2020179605A1 JP 2020007982 W JP2020007982 W JP 2020007982W WO 2020179605 A1 WO2020179605 A1 WO 2020179605A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
output
learning
synthesizer
learners
Prior art date
Application number
PCT/JP2020/007982
Other languages
French (fr)
Japanese (ja)
Inventor
敦丈 小菅
幸徳 赤峰
俊 大島
敬亮 山本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020179605A1 publication Critical patent/WO2020179605A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/08Control effected solely on the basis of the response, to the intensity of the light received by the camera, of a built-in light-sensitive device
    • G03B7/091Digital circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to a learning device and a learning method, and is particularly a technique related to self-learning using a plurality of sensors.
  • the recognition calculation unit recognizes peripheral information using sensor data obtained from various sensors, and device control is performed based on the sensor data.
  • a sensor that recognizes surrounding objects and the like an RGB camera, an infrared camera, LiDAR, a millimeter wave radar, and the like are known.
  • a machine learning algorithm that extracts and identifies features from sensor data is used. Further, since a single sensor has a limited range, an object, and an environment that can be recognized, a sensor fusion technology has been developed in which a plurality of sensors are combined to operate complementarily.
  • Patent Document 1 Regarding self-learning in machine learning and fusion technology of artificial intelligence, for example, there is Patent Document 1.
  • the result is output by another processing function of artificial intelligence 1 and artificial intelligence 2 for one input information, and the processing content to be executed next is determined by comparing the results. Since the evaluation results can be obtained from multiple viewpoints, it is possible to improve the reliability of the processing operation.
  • Patent Document 2 discloses high efficiency of a plurality of learners in a computer network. This technology first sends performance score information from each learner to the control unit, and the control unit calculates the degree of freedom and reliability of each learner based on the received performance score information, and the degree of freedom of each learner. To calculate. It is said that high efficiency will be realized by operating each learning device based on this degree of freedom.
  • artificial intelligence does not have a function of receiving an external signal and autonomously and adaptively adjusting the recognition and judgment function. Therefore, it is considered that the environmental conditions for which the reliability can be improved are limited. Moreover, it does not autonomously relearn without receiving the comparison result as a feedback signal.
  • the processing is not performed to quantify the reliability of the processing operation and the accuracy of the output result of the artificial intelligence, the judgment and accuracy when different results are output between the artificial intelligence 1 and the artificial intelligence 2 are issues. Become.
  • a feedback loop is formed by the performance score information from each learning device to the control unit and the information of the degree of freedom from the control unit to each learning device (learning system). This is mainly intended to improve efficiency by optimizing the entire learning system, and not to re-learn each learning device. However, if each learning device can improve the accuracy individually, further improvement in accuracy can be expected.
  • An object of the present invention is to provide a learning device and a learning method capable of automatically performing re-learning and additional learning with respect to changes in the environment and the like.
  • the learning device there are a plurality of learning devices that input signals from a plurality of sensors and determine a state based on teacher data.
  • a synthesizer that synthesizes information output from the plurality of learners and outputs output information including identification results, and a synthesizer. It has a feedback system that gives the output information output from the synthesizer to the plurality of learners.
  • the plurality of learners are configured as a learning device that learns by using the output information obtained via the feedback system as teacher data.
  • the present invention is also grasped as a learning method executed by the learning device.
  • the present invention it is possible to improve the accuracy even with a learning device having insufficient teacher data, and it is possible to automatically perform re-learning and additional learning in response to changes in the environment and the like.
  • FIG. 1 shows an example of a self-learning system to which a self-learning device is applied.
  • the self-learning system mainly includes a plurality of sensors 101, a plurality of learners 102 arranged at the outputs of the sensors 101, and a combiner 107 that combines the results of the plurality of learners 102.
  • This self-learning system is realized by a computer executing a program.
  • a configuration including a plurality of learners 102 and a synthesizer 107 may be referred to as a self-learning device.
  • the sensor 101 may also be included and called a self-learning device. Since the synthesizer 107 learns how to synthesize by itself, it may be called a learning synthesizer or a synthetic learner.
  • the sensor 101 is executed by, for example, a sensor element that detects physical information, chemical information, and the like, a controller that monitors the state of the sensor element and processes data detected by the sensor element, and a controller.
  • the memory is configured to store programs and detection data, and a communication unit that transmits and receives control information and detection data to and from the learning device.
  • a combination of an RGB camera and a millimeter wave radar can be considered as the plurality of sensors 101.
  • the output of the RGB camera is color image data
  • the output of the millimeter wave radar is the speed associated with the point group and the points in the three-dimensional spatial coordinates.
  • the same target is detected by an RGB camera and a millimeter-wave radar to classify what the target is, if the different characteristics of the two sensors can be combined well, high accuracy of the classification can be expected.
  • the learning device 102 corresponding to the sensor 101, perform the type for each sensor, and then make an integrated judgment with the synthesizer 107 based on the result of each type.
  • the identification result 103 for each type is output from each learner 102.
  • the identification result may be called an estimation result.
  • the synthesizer 107 synthesizes and estimates using, for example, a majority vote. It is expected that the inference accuracy will be improved by using the law of majority voting.
  • a situation may occur in which an erroneous estimation result is biased under a specific environment. For example, the accuracy of the RGB camera deteriorates in an environment such as a dark place or backlight, and thus the accuracy of the estimation result classified by the learning device 102 deteriorates.
  • the accuracy of millimeter-wave radar deteriorates because it is attenuated by rainfall.
  • the identification result 103 of each learner is effective to weight the identification result 103 of each learner according to the environment in order to avoid the accuracy deterioration unique to the sensor under the specific condition and to realize the further improvement of the inference accuracy by combining.
  • the sensor 101 (S1) is an RGB camera
  • the brightness is applied to the multiplier 106 as environmental information 105 (this portion is referred to as an application portion), and is reflected in the weighting coefficient to the accuracy information 104.
  • the sensor 101 (S2) is a millimeter wave radar
  • the rainfall information is applied to the multiplier 106 as the environment information 105 and reflected in the weighting coefficient for the accuracy information 104.
  • the synthesizer 107 synthesizes the accuracy information 104 in which the weighting coefficient of the environment information 105 is reflected, so that the accuracy can be further improved.
  • these environmental information 105 are acquired by a plurality of external sensors 111.
  • the environment information 105 is not always acquired from the external sensor 111, and for example, the rainfall information may use information distributed from an external organization such as the Meteorological Agency or an external device.
  • CNN Convolutional Neural Network
  • SVM Serial Vector Machine
  • Machine learning algorithms which are relatively light in processing, are often used. With these learning algorithms, it is possible to extract an approximate accuracy for the identification result 103 classified based on the correlation amount in CNN and the distance from the threshold value in SVM. By outputting this accuracy information 104 from the learner 102 and performing weighted synthesis in the synthesizer 107, it is possible to achieve higher accuracy than the identification result of the learner 102.
  • the weighted coefficient based on the environmental information 105 is included in the accuracy information 104 and the weighted synthesis is performed by the synthesizer 107, it is possible to obtain a highly accurate identification result 108 that is resistant to environmental changes.
  • the algorithm of the synthesizer 107 is not a simple majority vote, but a machine learning algorithm such as CNN or SVM can be used. As a result, the optimum nonlinear function for each task can be obtained from learning, and high accuracy can be expected.
  • the error from the training data is fed back to the synthesizer 107 by the feedback system 110, and the weighting coefficient 112 is updated by learning.
  • the error means the difference between the identification result 108 and the learning data given from the outside.
  • the error is, for example, the difference between the estimation result of the position coordinates of a person and the correct coordinate data described in advance in the learning data.
  • the calculation of the error is performed, for example, by the synthesizer 107 itself or by using an external function at a part connected ahead of the identification result 108 of the synthesizer 107.
  • FIG. 2 is a diagram schematically showing the correct answer rate of the learning device 102 when the surrounding environment or state of the sensor changes with time.
  • the x-axis shows the passage of time 201
  • the y-axis shows the correct answer rate 202.
  • the teacher data is ideal as color image data from an RGB camera, and if dirt adheres or becomes cloudy to the camera lens over time, color spectrum variation or distortion will occur, resulting in learning.
  • the correct answer rate of the vessel deteriorates.
  • the correct answer rate continues to deteriorate with the passage of time as indicated by a dotted line 203.
  • the identification result 108 which is the output of the synthesizer 107, is more accurate than the output result 103 of the single learner 102 based on the law of large numbers.
  • the feedback system 110 feeds back to each learner 102.
  • the learning device 102 can always perform self-learning against environmental changes including deterioration of the sensor over time. it can.
  • synthesizing this with the synthesizer 107, as shown by the dotted line 205 in FIG. 2, it is possible to maintain higher accuracy and correct answer rate as the whole learning device.
  • Each learner 102 receives the output identification result 108 and updates its own weighting coefficient.
  • the weighting coefficient uses the error back propagation method, and the identification result of each learner 102 is updated so that the identification result of each learner 102 is most associated with the output 110 of the synthesizer 107.
  • FIG. 3 shows a self-learning system according to the second embodiment.
  • the self-learning system according to the second embodiment is a synthesizer 107 that synthesizes the results of the plurality of sensors 302, the plurality of learners 102 arranged at the outputs of the respective sensors, and the plurality of learners 102. Is configured.
  • the difference from the first embodiment is that the output of the synthesizer 107 is connected to each sensor 302 via the feedback system 301.
  • the feedback signal from the synthesizer 107 is given to the controller of the sensor 302.
  • An example is a combination of an RGB camera and an IR camera (infrared camera) as a plurality of sensors 302.
  • an RGB camera infrared camera
  • the dynamic range of brightness is insufficient with the RGB camera alone, and the bright part is painted white.
  • the deterioration phenomenon of the image referred to as “” or the deterioration phenomenon of the image referred to as “underexposure” in which a dark portion is painted black occurs.
  • the identification result 103 is output.
  • the weighting coefficient is reduced for the peripheral pixels exceeding the dynamic range when synthesizing with the synthesizer 107, and the brightness is dark with the RGB camera.
  • the controller of the sensor 302 is always optimal as a system. It can be controlled to maintain the state of the sensor, and it is possible to stably detect a person even under the spotlight at night.
  • FIG. 4 shows a self-learning system according to the third embodiment.
  • an RGB / IR integrated image sensor has been developed in which an image sensor for RGB and an image sensor for infrared rays (Infra Red, IR) are integrated on the same silicon chip.
  • the self-learning system can be configured by using the RGB / IR integrated camera 401 equipped with the RGB / IR integrated image sensor.
  • the integrated camera As compared with the second embodiment, it is possible to realize the same focal length, the same angle of view, and the same shutter timing for the RGB image and the IR image. This eliminates the need for complicated signal processing for performing viewpoint conversion or time conversion due to the difference in shutter timing between the RGB image and the IR image.
  • the camera controller 402 can control the gain 403, shutter speed 405, and aperture 406 of each RGB image and IR image.
  • the combiner 107 can realize high accuracy of learning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Exposure Control For Cameras (AREA)
  • Image Analysis (AREA)

Abstract

The present invention automatically performs relearning and additional learning on changes in environment and usage situation. This learning apparatus comprises: a plurality of learning devices 102 to which signals from a plurality of sensors 101 are inputted, respectively, and the states of which are determined by teacher data; a synthesizer 107 which synthesizes information outputted from the plurality of learning devices and outputs output information including an identification result; and a feedback system 110 which gives the output information outputted from the synthesizer to the plurality of learning devices. The plurality of leaning devices 102 perform learning using, as the teacher data, the output information obtained via the feedback system.

Description

学習装置および学習方法Learning device and learning method
 本発明は学習装置および学習方法に係り、特に複数センサを利用した自己学習に関する技術である。 The present invention relates to a learning device and a learning method, and is particularly a technique related to self-learning using a plurality of sensors.
 物流倉庫におけるピッキングロボットや公道を走行する自動運転車両では、多種のセンサから得られたセンサデータを用いて認識演算部で周辺情報を認識し、それに基づいた機器制御が行われている。周囲の物体等を認識するセンサとしては、RGBカメラ、赤外線カメラ、LiDAR、ミリ波レーダなどが知られている。認識演算ではセンサデータから特徴量を抽出して識別する機械学習アルゴリズムが用いられる。また、単体のセンサでは認識できる範囲、物体、環境が限られるので、複数のセンサを組み合わせ相補的に動作させるセンサフュージョン技術が開発されている。 In a picking robot in a distribution warehouse or an automatically driven vehicle traveling on a public road, the recognition calculation unit recognizes peripheral information using sensor data obtained from various sensors, and device control is performed based on the sensor data. As a sensor that recognizes surrounding objects and the like, an RGB camera, an infrared camera, LiDAR, a millimeter wave radar, and the like are known. In the recognition calculation, a machine learning algorithm that extracts and identifies features from sensor data is used. Further, since a single sensor has a limited range, an object, and an environment that can be recognized, a sensor fusion technology has been developed in which a plurality of sensors are combined to operate complementarily.
 機械学習を用いて精度よく物体の識別を行うには、予め多量の教師データを用いてトレーニングした学習器が用いられる。機械学習アルゴリズムは、学習過程において学習データセットに含まれる環境、物体に学習パラメータが最適化されるため、経年劣化や周囲環境の変動、未学習環境に対しては正しく認識することができない。この場合、学習用データを再度用意して学習を行う必要がある。 To accurately identify objects using machine learning, learners trained with a large amount of teacher data in advance are used. Since the learning parameters are optimized for the environment and objects included in the learning data set in the learning process, the machine learning algorithm cannot correctly recognize aging deterioration, fluctuations in the surrounding environment, and unlearned environment. In this case, it is necessary to prepare the learning data again and perform learning.
 機械学習や人工知能のフュージョン技術における自己再学習に関しては、例えば特許文献1がある。特許文献1では、1つの入力情報に対して人工知能1と人工知能2という別の処理機能で結果を出力し、その結果を比較することで次に実行する処理内容を決定している。多面的な観点から評価した結果が得られることになるために、処理動作の信頼性の向上が実現可能である。 Regarding self-learning in machine learning and fusion technology of artificial intelligence, for example, there is Patent Document 1. In Patent Document 1, the result is output by another processing function of artificial intelligence 1 and artificial intelligence 2 for one input information, and the processing content to be executed next is determined by comparing the results. Since the evaluation results can be obtained from multiple viewpoints, it is possible to improve the reliability of the processing operation.
 また、特許文献2には、コンピュータネットワークにおける複数の学習器の高効率化について開示されている。この技術は、まず、各学習器からパフォーマンススコア情報を制御部へ送り、制御部では受信したパフォーマンススコア情報に基づいて、各学習器の自由度と信頼度を計算し、各学習器の自由度を算出する。この自由度に基づいて各学習器が動作することで高効率化が実現される、としている。 Further, Patent Document 2 discloses high efficiency of a plurality of learners in a computer network. This technology first sends performance score information from each learner to the control unit, and the control unit calculates the degree of freedom and reliability of each learner based on the received performance score information, and the degree of freedom of each learner. To calculate. It is said that high efficiency will be realized by operating each learning device based on this degree of freedom.
特開2018-151950Japanese Patent Laid-Open No. 2018-151950 米国特許公報US9836696US Patent Publication US9836696
 特許文献1の技術によれば、人工知能は外部信号を受け取り、自律的かつ適応的に認識判断機能を調節する機能を持たない。そのため、信頼性の向上が得られる環境条件は限定されると考えられる。また、比較結果をフィードバック信号として受け取ることなく、自律的に再学習することはない。また、処理動作の信頼性や人工知能の出力結果の確度を定量化するような処理はしていないため、人工知能1と人工知能2で異なる結果が出力された場合の判定や精度が課題となる。 According to the technology of Patent Document 1, artificial intelligence does not have a function of receiving an external signal and autonomously and adaptively adjusting the recognition and judgment function. Therefore, it is considered that the environmental conditions for which the reliability can be improved are limited. Moreover, it does not autonomously relearn without receiving the comparison result as a feedback signal. In addition, since the processing is not performed to quantify the reliability of the processing operation and the accuracy of the output result of the artificial intelligence, the judgment and accuracy when different results are output between the artificial intelligence 1 and the artificial intelligence 2 are issues. Become.
 特許文献2の技術は、各学習器から制御部へのパフォーマンススコア情報と制御部から各学習器(学習システム)への自由度という情報によるフィードバックループが形成されている。これは、学習システム全体の最適化による高効率化を主な目的としたもので、各学習器を再度学習することを目的としたものではない。然るに、各学習器が個別に精度改善することができれば、更なる高精度化が期待できる。 In the technique of Patent Document 2, a feedback loop is formed by the performance score information from each learning device to the control unit and the information of the degree of freedom from the control unit to each learning device (learning system). This is mainly intended to improve efficiency by optimizing the entire learning system, and not to re-learn each learning device. However, if each learning device can improve the accuracy individually, further improvement in accuracy can be expected.
 このように、特許文献1,2に記載の従来の技術は、環境や使用状況が変化した場合に学習器の精度の劣化が生じる。また、教師あり学習の学習器を想定した場合、教師データに対して想定していない環境等の変化が実際に生じた場合には、学習器の正答率の劣化や誤警報確率の増加が発生する。 As described above, in the conventional techniques described in Patent Documents 1 and 2, the accuracy of the learning device deteriorates when the environment or the usage situation changes. In addition, when a learning device for supervised learning is assumed, if an unexpected change in the environment, etc. occurs with respect to the teacher data, the correct answer rate of the learning device deteriorates and the false alarm probability increases. To do.
 本発明の目的は、環境等の変化に対して再学習や追加学習を自動で行うことができる学習装置および学習方法を提供することにある。 An object of the present invention is to provide a learning device and a learning method capable of automatically performing re-learning and additional learning with respect to changes in the environment and the like.
 本発明に係る学習装置の好ましい例によれば、複数のセンサからの信号をそれぞれ入力し、教師データにより状態が決定される複数の学習器と、
前記複数の学習器から出力される情報を合成して、識別結果を含む出力情報を出力する合成器と、
前記合成器から出力される前記出力情報を前記複数の学習器に与えるフィードバック系と、を有し、
前記複数の学習器は、前記フィードバック系を介して得られる前記出力情報を教師データとして用いて学習する、学習装置として構成される。
  本発明はまた、上記学習装置が実行する学習方法としても把握される。
According to a preferred example of the learning device according to the present invention, there are a plurality of learning devices that input signals from a plurality of sensors and determine a state based on teacher data.
A synthesizer that synthesizes information output from the plurality of learners and outputs output information including identification results, and a synthesizer.
It has a feedback system that gives the output information output from the synthesizer to the plurality of learners.
The plurality of learners are configured as a learning device that learns by using the output information obtained via the feedback system as teacher data.
The present invention is also grasped as a learning method executed by the learning device.
 本発明によれば、教師データが不十分な学習器でも精度の改善が可能となり、環境等の変化に対して再学習や追加学習を自動で実施することが可能となる。 According to the present invention, it is possible to improve the accuracy even with a learning device having insufficient teacher data, and it is possible to automatically perform re-learning and additional learning in response to changes in the environment and the like.
実施例1による自己学習システムのブロック図である。It is a block diagram of the self-learning system according to Example 1. 環境が変化した場合の学習器の正答率を示す図である。It is a figure which shows the correct answer rate of the learning device when the environment changes. 実施例2による自己学習システムのブロック図である。It is a block diagram of the self-learning system according to Example 2. 実施例3による自己学習システムのブロック図である。It is a block diagram of the self-learning system according to Example 3.
 以下、図面を参照して、好ましい実施形態について説明する。 Hereinafter, preferred embodiments will be described with reference to the drawings.
 図1は、自己学習装置が適用される自己学習システムの例を示す。
  自己学習システムは主に、複数のセンサ101と、各センサ101の出力に配置された複数の学習器102と、複数の学習器102の結果を合成する合成器107を有して構成される。この自己学習システムは、コンピュータがプログラムを実行することで実現される。ここで、複数の学習器102と合成器107を含む構成を自己学習装置と呼んでよい。或いは、センサ101をも含んで自己学習装置と呼んでもよい。合成器107は自ら合成の仕方を学習するので学習型合成器、或いは合成型学習器と呼んでもよい。
FIG. 1 shows an example of a self-learning system to which a self-learning device is applied.
The self-learning system mainly includes a plurality of sensors 101, a plurality of learners 102 arranged at the outputs of the sensors 101, and a combiner 107 that combines the results of the plurality of learners 102. This self-learning system is realized by a computer executing a program. Here, a configuration including a plurality of learners 102 and a synthesizer 107 may be referred to as a self-learning device. Alternatively, the sensor 101 may also be included and called a self-learning device. Since the synthesizer 107 learns how to synthesize by itself, it may be called a learning synthesizer or a synthetic learner.
 センサ101は、例えば、物理情報や化学情報等を検知するセンサ素子と、センサ素子の状態を監視し、センサ素子で検知したデータを処理するマイクロプロセッサで構成されるコントローラと、コントローラで実行されるプログラムや検知データ等を記憶するメモリと、学習装置との間で制御情報や検知データ等を送受信する通信部、等を有して構成される。 The sensor 101 is executed by, for example, a sensor element that detects physical information, chemical information, and the like, a controller that monitors the state of the sensor element and processes data detected by the sensor element, and a controller. The memory is configured to store programs and detection data, and a communication unit that transmits and receives control information and detection data to and from the learning device.
 車載向けの物体を検知する場合、複数のセンサ101としては、例えば、RGBカメラとミリ波レーダの組み合わせが考えられる。RGBカメラの出力はカラー画像データであり、ミリ波レーダの出力は、3次元の空間座標における点群と点に紐づけられる速度である。同一のターゲットをRGBカメラとミリ波レーダで検知して、ターゲットが何であるかを種別する場合、2つのセンサの異なる特性をうまく合成することができれば、種別の高精度化が期待できる。2つのセンサ出力を合成する方法として、視差を利用したRGB画像の3次元空間座標化と、ミリ波レーダの点群データとを合成して、学習器により種別することが考えられる。しかし、異種センサ間で時間及び空間同期処理を行うことは容易でなく、かつ座標変換の信号処理量が膨大であり現実的でない。そこで、センサ101対応に学習器102を用意して、センサ毎に種別を行った上で、種別したそれぞれの結果に基づき合成器107で統合判断することが好ましい。この場合、各学習器102からはそれぞれ種別した識別結果103が出力される。なお、識別結果は推定結果と呼んでもよい。 When a vehicle-mounted object is detected, for example, a combination of an RGB camera and a millimeter wave radar can be considered as the plurality of sensors 101. The output of the RGB camera is color image data, and the output of the millimeter wave radar is the speed associated with the point group and the points in the three-dimensional spatial coordinates. When the same target is detected by an RGB camera and a millimeter-wave radar to classify what the target is, if the different characteristics of the two sensors can be combined well, high accuracy of the classification can be expected. As a method of synthesizing the two sensor outputs, it is conceivable to combine the three-dimensional spatial coordination of the RGB image using the parallax and the point cloud data of the millimeter wave radar and classify them by the learner. However, it is not easy to perform time and space synchronization processing between different kinds of sensors, and the signal processing amount of coordinate conversion is enormous, which is not realistic. Therefore, it is preferable to prepare the learning device 102 corresponding to the sensor 101, perform the type for each sensor, and then make an integrated judgment with the synthesizer 107 based on the result of each type. In this case, the identification result 103 for each type is output from each learner 102. The identification result may be called an estimation result.
 合成器107は、例えば多数決を用いて合成及び推定を行う。多数決の法則を用いることで推論精度の向上が期待される。一方、センサによっては特定環境下では誤った推定結果に偏ってしまう事態が生じる。例えば、RGBカメラは、暗い場所や逆光といった環境では精度が悪くなるために、学習器102で種別した推定結果の確度は悪化する。ミリ波レーダは降雨により減衰が生じるため、確度が悪化する。特定条件におけるセンサ固有の精度劣化を回避し、合成による更なる推論精度向上を実現するために、各学習器の識別結果103に対して環境に応じて重み付けすることが有効である。例えば、センサ101(S1)がRGBカメラの場合、明るさが環境情報105として乗算器106に印加されて(この部位を印加部という)、確度情報104への重み付き係数に反映される。センサ101(S2)がミリ波レーダの場合は、降雨情報が環境情報105として乗算器106に印加されて、確度情報104への重み付き係数に反映される。合成器107は、環境情報105による重み係数が反映された確度情報104を合成することになり、一層高精度化が図れる。ここで、これらの環境情報105は複数の外部センサ111により取得される。なお、環境情報105は、必ずしも外部センサ111から取得するとは限らず、例えば降雨情報は気象庁のような外部機関或いは外部装置から配信される情報を用いてもよい。 The synthesizer 107 synthesizes and estimates using, for example, a majority vote. It is expected that the inference accuracy will be improved by using the law of majority voting. On the other hand, depending on the sensor, a situation may occur in which an erroneous estimation result is biased under a specific environment. For example, the accuracy of the RGB camera deteriorates in an environment such as a dark place or backlight, and thus the accuracy of the estimation result classified by the learning device 102 deteriorates. The accuracy of millimeter-wave radar deteriorates because it is attenuated by rainfall. It is effective to weight the identification result 103 of each learner according to the environment in order to avoid the accuracy deterioration unique to the sensor under the specific condition and to realize the further improvement of the inference accuracy by combining. For example, when the sensor 101 (S1) is an RGB camera, the brightness is applied to the multiplier 106 as environmental information 105 (this portion is referred to as an application portion), and is reflected in the weighting coefficient to the accuracy information 104. When the sensor 101 (S2) is a millimeter wave radar, the rainfall information is applied to the multiplier 106 as the environment information 105 and reflected in the weighting coefficient for the accuracy information 104. The synthesizer 107 synthesizes the accuracy information 104 in which the weighting coefficient of the environment information 105 is reflected, so that the accuracy can be further improved. Here, these environmental information 105 are acquired by a plurality of external sensors 111. The environment information 105 is not always acquired from the external sensor 111, and for example, the rainfall information may use information distributed from an external organization such as the Meteorological Agency or an external device.
 各センサ101の出力の特徴に応じて最適な学習器を配置するということは識別結果の高精度化や信号処理量の削減という観点で重要となる。種別を目的とした学習器102としては、カラー画像データの場合はCNN(Convolutional Neural Network)と呼ばれる機械学習アルゴリズムが用いられることが多く、点群データの場合は、SVM(Support Vector Machine)と呼ばれる比較的処理の軽い機械学習アルゴリズムが用いられることが多い。これらの学習アルゴリズムでは、CNNにおける相関量やSVMにおける閾値からの距離を基に種別した識別結果103に対しておおよその確度を抽出することが可能である。この確度情報104を学習器102から出力して、合成器107にて重み付き合成を行うことで、学習器102の識別結果より高精度化を図ることが可能である。 It is important to arrange the optimum learner according to the output characteristics of each sensor 101 from the viewpoint of improving the accuracy of the identification result and reducing the amount of signal processing. As the learning device 102 for the purpose of classification, a machine learning algorithm called CNN (Convolutional Neural Network) is often used in the case of color image data, and an SVM (Support Vector Machine) in the case of point cloud data. Machine learning algorithms, which are relatively light in processing, are often used. With these learning algorithms, it is possible to extract an approximate accuracy for the identification result 103 classified based on the correlation amount in CNN and the distance from the threshold value in SVM. By outputting this accuracy information 104 from the learner 102 and performing weighted synthesis in the synthesizer 107, it is possible to achieve higher accuracy than the identification result of the learner 102.
 さらに、環境情報105による重み付き係数を確度情報104に含めて、合成器107で重み付き合成を行えば、環境変化に強い、高精度な識別結果108を得ることが可能である。また、合成器107のアルゴリズムは単純な多数決ではなく、CNNやSVMといった機械学習アルゴリズムを用いることができる。これにより、タスクごとに最適な非線形関数を学習から得ることができ、高精度化することが期待できる。この場合、学習データとの誤差を、フィードバック系110にて合成器107へフィードバックして重み係数112を学習により更新する。ここで、誤差とは、識別結果108と外部から与えられた学習用データの差をいう。誤差は例えば、人の位置座標の推定結果と、学習用データに予め記載された正解座標データとの差になる。誤差の計算は例えば、合成器107自身で行う、或いは合成器107の識別結果108の先に接続される部位で外部の関数を用いて行われる。 Further, if the weighted coefficient based on the environmental information 105 is included in the accuracy information 104 and the weighted synthesis is performed by the synthesizer 107, it is possible to obtain a highly accurate identification result 108 that is resistant to environmental changes. Further, the algorithm of the synthesizer 107 is not a simple majority vote, but a machine learning algorithm such as CNN or SVM can be used. As a result, the optimum nonlinear function for each task can be obtained from learning, and high accuracy can be expected. In this case, the error from the training data is fed back to the synthesizer 107 by the feedback system 110, and the weighting coefficient 112 is updated by learning. Here, the error means the difference between the identification result 108 and the learning data given from the outside. The error is, for example, the difference between the estimation result of the position coordinates of a person and the correct coordinate data described in advance in the learning data. The calculation of the error is performed, for example, by the synthesizer 107 itself or by using an external function at a part connected ahead of the identification result 108 of the synthesizer 107.
 環境変化に対して更に強くするためには、根本的な対策としては学習器102に対して追加学習や再学習を実施することが挙げられる。 As a fundamental measure to further strengthen the environment change, additional learning and re-learning are performed on the learning device 102.
 図2は、時間経過とともにセンサの周辺環境や状態が変化した場合の学習器102の正答率を概略的に示す図である。図2において、x軸は時間経過201、y軸は正答率202を示す。例として、RGBカメラの場合、教師データが理想的なRGBカメラによるカラー画像データとして、時間経過とともにカメラレンズに対して汚れの付着や曇りが生じると、色のスペクトル変異や歪が生じることで学習器の正答率が劣化する。ここで、追加学習や再学習を行わない場合は、点線203のように正答率が時間経過とともに劣化しつづける。一方で、変化する環境下におけるデータ、すなわち経年劣化したレンズでのデータで追加学習や再学習を行うことができれば、実線204のように正答率は改善する。正答率を常に高い状態で維持したい場合には、追加学習または再学習を正答率の劣化の都度に実施することになり、膨大な教師データが必要となる。 FIG. 2 is a diagram schematically showing the correct answer rate of the learning device 102 when the surrounding environment or state of the sensor changes with time. In FIG. 2, the x-axis shows the passage of time 201, and the y-axis shows the correct answer rate 202. As an example, in the case of an RGB camera, the teacher data is ideal as color image data from an RGB camera, and if dirt adheres or becomes cloudy to the camera lens over time, color spectrum variation or distortion will occur, resulting in learning. The correct answer rate of the vessel deteriorates. Here, when the additional learning or the re-learning is not performed, the correct answer rate continues to deteriorate with the passage of time as indicated by a dotted line 203. On the other hand, if additional learning or re-learning can be performed with data under a changing environment, that is, data with a lens that has deteriorated over time, the correct answer rate will improve as shown by the solid line 204. If it is desired to keep the correct answer rate high at all times, additional learning or re-learning will be performed each time the correct answer rate deteriorates, which requires a huge amount of teacher data.
 合成器107の出力である識別結果108は、単体の学習器102の出力結果103と比較して大数の法則に基づき精度が良いことを利用して、合成器107の出力である識別結果108と確度情報109を教師データとして、フィードバック系110にて各学習器102へフィードバックする。学習器102にフィードバックされる識別結果108に基づいてセンサ101に対応した学習器102を再学習させることで、学習器102はセンサの経時劣化を含む環境変化に対して常に自己学習を行うことができる。これを合成器107により合成することで、図2の点線205のように、学習装置全体として更に高い精度および正答率を維持することが可能となる。 The identification result 108, which is the output of the synthesizer 107, is more accurate than the output result 103 of the single learner 102 based on the law of large numbers. With the accuracy information 109 as teacher data, the feedback system 110 feeds back to each learner 102. By re-learning the learning device 102 corresponding to the sensor 101 based on the identification result 108 fed back to the learning device 102, the learning device 102 can always perform self-learning against environmental changes including deterioration of the sensor over time. it can. By synthesizing this with the synthesizer 107, as shown by the dotted line 205 in FIG. 2, it is possible to maintain higher accuracy and correct answer rate as the whole learning device.
 各学習器102は出力の識別結果108を受け取り、自身の重み係数を更新する。CNNアルゴリズムやSVMアルゴリズムが各学習器に採用されている場合、重み係数は誤差逆伝搬法を用い、各学習器102の識別結果が合成器107の出力110に最も関連付けが高くなるようにアップデートされる。 Each learner 102 receives the output identification result 108 and updates its own weighting coefficient. When the CNN algorithm or SVM algorithm is adopted for each learner, the weighting coefficient uses the error back propagation method, and the identification result of each learner 102 is updated so that the identification result of each learner 102 is most associated with the output 110 of the synthesizer 107. It
 なお、合成器107の出力での精度または正答率が悪い場合は、間違った教師データを頻繁にフィードバックする恐れがあり、この場合にはフィードバックループとして悪循環を起こす。この対策として、合成器107の識別結果108に対する確度情報109を算出し、確度が低いデータは教師データとして用いないように制御することで、悪循環を回避することができる。 If the accuracy or correct answer rate at the output of the synthesizer 107 is poor, there is a risk that incorrect teacher data will be fed back frequently, and in this case, a vicious cycle will occur as a feedback loop. As a countermeasure, a vicious cycle can be avoided by calculating the accuracy information 109 for the identification result 108 of the synthesizer 107 and controlling the data with low accuracy so as not to be used as the teacher data.
 図3は、実施例2による自己学習システムを示す。
  実施例2による自己学習システムは、実施例1と同様に、複数のセンサ302と、各センサの出力に配置された複数の学習器102と、複数の学習器102の結果を合成する合成器107を有して構成される。実施例1との相違は、合成器107の出力が、フィードバック系301を介して各センサ302に接続される点である。合成器107からのフィードバック信号は、センサ302のコントローラに与えられる。
FIG. 3 shows a self-learning system according to the second embodiment.
Similar to the first embodiment, the self-learning system according to the second embodiment is a synthesizer 107 that synthesizes the results of the plurality of sensors 302, the plurality of learners 102 arranged at the outputs of the respective sensors, and the plurality of learners 102. Is configured. The difference from the first embodiment is that the output of the synthesizer 107 is connected to each sensor 302 via the feedback system 301. The feedback signal from the synthesizer 107 is given to the controller of the sensor 302.
 複数のセンサ302として、RGBカメラとIRカメラ(赤外カメラ)の組み合わせを例示する。ここで、夜間でのスポットライトなど、部分的に非常に明るく他が暗いような明暗が混在するシーンでは、RGBカメラ単体では明るさのダイナミックレンジ不足が生じ、明るい箇所が白く塗りつぶされる「白とび」と呼ばれる画像の劣化現象、もしくは暗部が黒く塗りつぶされる「黒つぶれ」と呼ばれる画像の劣化現象が生じる。解決方法としては、例えば、RGBカメラで明るい箇所が見えるようにカメラの露出を調整し、暗い箇所については、センサとして優位性を持つIRカメラを用いるのが好ましい。 An example is a combination of an RGB camera and an IR camera (infrared camera) as a plurality of sensors 302. Here, in a scene where light and dark are mixed, such as a spotlight at night, which is very bright in part and dark in others, the dynamic range of brightness is insufficient with the RGB camera alone, and the bright part is painted white. The deterioration phenomenon of the image referred to as “” or the deterioration phenomenon of the image referred to as “underexposure” in which a dark portion is painted black occurs. As a solution, for example, it is preferable to adjust the exposure of the camera so that a bright part can be seen with an RGB camera, and use an IR camera having an advantage as a sensor for a dark part.
 例えば、夜の工事現場のようなスポットライトの周辺で作業する人を検知したい場合、RGBカメラの出力に配置する学習器102およびIRカメラの出力に配置する学習器102から人であるか否かという識別結果103が出力される。このときの確度情報104に、検出した周辺ピクセルの輝度情報を含めることで、合成器107で合成する際に、ダイナミックレンジを超えている周辺ピクセルでは重み係数を小さくする、RGBカメラで暗い輝度の周辺ピクセルでは、IRカメラの重み係数を上げる、という処理も可能である。また、合成器107に入力された、輝度情報を含む確度情報104をもとに、RGBカメラの露出やIRカメラのゲインをフィードバック(301)すれば、センサ302のコントローラは、システムとして常に最適なセンサの状態を保つように制御することができ、夜のスポットライト下でも安定して人を検知することが可能となる。 For example, when it is desired to detect a person working in the vicinity of a spotlight such as a construction site at night, whether or not the person is from the learner 102 arranged at the output of the RGB camera and the learner 102 arranged at the output of the IR camera. The identification result 103 is output. By including the brightness information of the detected peripheral pixels in the accuracy information 104 at this time, the weighting coefficient is reduced for the peripheral pixels exceeding the dynamic range when synthesizing with the synthesizer 107, and the brightness is dark with the RGB camera. For peripheral pixels, it is also possible to increase the weight coefficient of the IR camera. Further, if the exposure of the RGB camera and the gain of the IR camera are fed back (301) based on the accuracy information 104 including the brightness information input to the synthesizer 107, the controller of the sensor 302 is always optimal as a system. It can be controlled to maintain the state of the sensor, and it is possible to stably detect a person even under the spotlight at night.
 図4は、実施例3による自己学習システムを示す。
  近年、RGB用イメージセンサと赤外線(Infra Red, IR)用イメージセンサが同一のシリコンチップ上に集積される、RGB・IR一体型イメージセンサが開発されている。
FIG. 4 shows a self-learning system according to the third embodiment.
In recent years, an RGB / IR integrated image sensor has been developed in which an image sensor for RGB and an image sensor for infrared rays (Infra Red, IR) are integrated on the same silicon chip.
 この場合、図4に示すように、RGB・IR一体型イメージセンサを搭載したRGB・IR一体型カメラ401を用いて自己学習システムを構成することができる。実施例2と比べて、一体型カメラを用いることで、RGB画像とIR画像で同一の焦点距離、同一の画角、同一のシャッタータイミングを実現することができる。これにより、RGB画像とIR画像の間で視点変換やシャッタータイミングの差に起因する時間変換を行うための複雑な信号処理が不要となる。フィードバック制御信号301に含まれるRGBカメラの露出とIRカメラのゲインを用いて、カメラコントローラ402は、各RGB画像とIR画像のゲイン403、シャッタースピード405、絞り406を制御することができる。 In this case, as shown in FIG. 4, the self-learning system can be configured by using the RGB / IR integrated camera 401 equipped with the RGB / IR integrated image sensor. By using the integrated camera as compared with the second embodiment, it is possible to realize the same focal length, the same angle of view, and the same shutter timing for the RGB image and the IR image. This eliminates the need for complicated signal processing for performing viewpoint conversion or time conversion due to the difference in shutter timing between the RGB image and the IR image. Using the exposure of the RGB camera and the gain of the IR camera included in the feedback control signal 301, the camera controller 402 can control the gain 403, shutter speed 405, and aperture 406 of each RGB image and IR image.
 上記実施例1乃至3を基にした幾つかの変形例について説明する。
  実施例2では、合成器107の出力である識別結果108と確度情報109を、トレーニングデータとして複数の各学習器102にフィードバック(110)することを前提にして、さらに合成器107からカメラの露出やゲインの信号を、複数のセンサ302へセンサ制御信号としてフィードバックしている。変形例によれば、トレーニングデータのフィードバック(110)を止めて、センサ制御信号のみを各センサ302へフィードバックすることが可能である。これにより、実施例1におけるトレーニングデータのフィードバックによる効果は得られないが、実施例2の効果は実現できる。
Some modifications based on the above Examples 1 to 3 will be described.
In the second embodiment, assuming that the identification result 108 and the accuracy information 109, which are the outputs of the synthesizer 107, are fed back (110) to each of the plurality of learners 102 as training data, the exposure of the camera from the synthesizer 107 is further performed. The gain signal is fed back to the plurality of sensors 302 as a sensor control signal. According to the modification, it is possible to stop the feedback (110) of the training data and feed back only the sensor control signal to each sensor 302. As a result, the effect of the feedback of the training data in Example 1 cannot be obtained, but the effect of Example 2 can be realized.
 さらに他の変形例として、実施例1におけるトレーニングデータのフィードバック(110)を止めて、環境情報105の印加による各学習器102の確度情報104への重み係数の反映のみを行うことが可能である。合成器107は、環境情報105による重み係数が反映された確度情報104を合成することで、学習の高精度化が実現できる。 As yet another modification, it is possible to stop the feedback (110) of the training data in the first embodiment and only reflect the weighting coefficient in the accuracy information 104 of each learner 102 by applying the environmental information 105. .. By combining the accuracy information 104 in which the weighting factor based on the environment information 105 is reflected, the combiner 107 can realize high accuracy of learning.
101:センサ
102:学習器
103:識別結果
104:確度情報
105:環境情報
106:乗算器
107:合成器
108:推定結果
109:確度情報
110:フィードバック
111:環境情報取得用センサ
112:学習アルゴリズムの重み係数
201:経過時間
202:正答率
203:再学習を実施しない場合の正答率
204:再学習を実施した場合の正答率
205:実施例1の正答率
301:フィードバック
302:センサ
401:RGB及びIR一体型カメラ
402:カメラコントローラ
403:プログラマブル信号増幅器
404:RGBおよびIR一体型イメージセンサ
405:シャッター
406:絞り
101: Sensor 102: Learner 103: Identification result 104: Accuracy information 105: Environmental information 106: Multiplier 107: Synthesizer 108: Estimate result 109: Accuracy information 110: Feedback 111: Environmental information acquisition sensor 112: Learning algorithm Weight coefficient 201: Elapsed time 202: Correct answer rate 203: Correct answer rate when relearning is not performed 204: Correct answer rate when relearning is performed 205: Correct answer rate 301 of Example 1: Feedback 302: Sensor 401: RGB and IR integrated camera 402: Camera controller 403: Programmable signal amplifier 404: RGB and IR integrated image sensor 405: Shutter 406: Aperture

Claims (13)

  1. 複数のセンサからの信号をそれぞれ入力し、教師データにより状態が決定される複数の学習器と、
    前記複数の学習器から出力される情報を合成して、識別結果を含む出力情報を出力する合成器と、
    前記合成器から出力される前記出力情報を前記複数の学習器に与えるフィードバック系と、を有し、
    前記複数の学習器は、前記フィードバック系を介して得られる前記出力情報を教師データとして用いて学習する、ことを特徴とする学習装置。
    Multiple learners that input signals from multiple sensors and determine the state based on teacher data,
    A synthesizer that synthesizes information output from the plurality of learners and outputs output information including identification results, and a synthesizer.
    It has a feedback system that gives the output information output from the synthesizer to the plurality of learners.
    The plurality of learning devices are learning devices characterized in that the output information obtained via the feedback system is used as teacher data for learning.
  2. 前記複数の学習器は、それぞれ、識別結果と確度情報を出力し、
    前記合成器は、前記複数の学習器から出力される前記識別結果と前記確度情報に基づいて合成処理を行い、識別結果と確度情報を出力する、請求項1に記載の学習装置。
    Each of the plurality of learners outputs the identification result and the accuracy information, respectively.
    The learning device according to claim 1, wherein the combiner performs a combining process based on the identification result and the accuracy information output from the plurality of learning devices, and outputs an identification result and accuracy information.
  3. 前記複数の学習器は、前記フィードバック系を介して提供される前記識別結果と前記確度情報を基にそれぞれ学習する、請求項2に記載の学習装置。 The learning device according to claim 2, wherein the plurality of learning devices learn based on the identification result and the accuracy information provided via the feedback system.
  4. 前記複数の学習器は、それぞれ重み係数を有し、前記フィードバック系を介して提供される前記識別結果と前記確度情報に応じて前記重み係数を更新する、請求項2に記載の学習装置。 The learning device according to claim 2, wherein each of the plurality of learning devices has a weighting coefficient and updates the weighting coefficient according to the identification result and the accuracy information provided via the feedback system.
  5. 前記合成器は、前記複数の学習器に対応した重み係数を有し、該重み係数に応じて前記複数の学習器からの出力情報を合成処理する、請求項2に記載の学習装置。 The learning device according to claim 2, wherein the synthesizer has a weighting coefficient corresponding to the plurality of learning devices, and synthesizes output information from the plurality of learning devices according to the weighting coefficient.
  6. 前記合成器は、自らの出力である前記識別結果と学習データとの誤差をフィードバックして、学習によって前記重み係数を更新する、請求項5に記載の学習装置。 The learning device according to claim 5, wherein the synthesizer feeds back an error between the identification result and the learning data, which is its own output, and updates the weighting coefficient by learning.
  7. 前記複数の学習器から出力される複数の前記確度情報に対して、外部センサから得られる環境情報を印加する印加部を有し、
    前記合成器は、前記印加部で該環境情報により重み付けされた前記確度情報を用いて合成処理する、請求項2に記載の学習装置。
    It has an application unit that applies environmental information obtained from an external sensor to the plurality of accuracy information output from the plurality of learners.
    The learning device according to claim 2, wherein the synthesizer performs a synthesis process using the accuracy information weighted by the environmental information at the application unit.
  8. 前記合成器は、前記複数の学習器から入力される各識別結果と確度情報を、多数決を用いて合成処理する、請求項2に記載の学習装置。 The learning device according to claim 2, wherein the synthesizer synthesizes each identification result and accuracy information input from the plurality of learning devices by using a majority vote.
  9. 前記合成器は、識別結果と確度情報(第1の出力情報)と、前記複数のセンサのための制御情報(第2の出力情報)を出力し、
    前記第2の出力情報は、第2のフィードバック系を介して前記複数のセンサに提供され、
    前記複数のセンサは、該第2のフィードバック系を介して得られる前記第2の出力情報を用いて、自センサの制御を行う、請求項2に記載の学習装置。
    The synthesizer outputs identification results and accuracy information (first output information) and control information for the plurality of sensors (second output information).
    The second output information is provided to the plurality of sensors via the second feedback system.
    The learning device according to claim 2, wherein the plurality of sensors control their own sensors using the second output information obtained via the second feedback system.
  10. 前記第2の出力情報は、RGBカメラの露出とIRカメラのゲインを含み、
    制御部は、前記露出と前記ゲインを用いて、各RGB画像とIR画像のゲインと絞りを制御する、
    請求項9に記載の学習装置を用いたRGB・IR一体型カメラ。
    The second output information includes the exposure of the RGB camera and the gain of the IR camera.
    The control unit controls the gain and aperture of each RGB image and IR image by using the exposure and the gain.
    An RGB / IR integrated camera using the learning device according to claim 9.
  11. 複数のセンサからの信号をそれぞれ入力し、教師データにより状態が決定されて、識別結果と確度情報を出力する複数の学習器と、
    前記複数の学習器から出力される識別結果と確度情報を基に合成処理を行い、識別結果と確度情報を含む第1の出力情報と、前記複数のセンサのための制御情報(第2の出力情報)を出力する合成器と、
    前記第2の出力情報を前記複数のセンサに提供する第2のフィードバック系と、を有し、
    前記複数のセンサは、該第2のフィードバック系を介して得られる前記第2の出力情報を用いて自センサの制御を行う、ことを特徴とする学習装置。
    Multiple learners that input signals from multiple sensors, determine the state based on teacher data, and output identification results and accuracy information.
    A synthesis process is performed based on the identification results and accuracy information output from the plurality of learners, and the first output information including the identification results and the accuracy information and the control information for the plurality of sensors (second output). A synthesizer that outputs information) and
    It has a second feedback system that provides the second output information to the plurality of sensors.
    The learning device is characterized in that the plurality of sensors control their own sensors using the second output information obtained via the second feedback system.
  12. 複数のセンサからの信号をそれぞれ入力し、教師データにより状態が決定されて、識別結果と確度情報を出力する複数の学習器と、
    前記複数の学習器から出力される識別結果と確度情報を基に合成処理を行い、識別結果と確度情報を含む出力情報を出力する合成器と、
    前記複数の学習器から出力される複数の前記確度情報に対して、外部センサから得られる環境情報を印加する印加部と、を有し、
    前記合成器は、前記印加部で該環境情報により重み付けされた前記確度情報を用いて合成処理する、ことを特徴とする学習装置。
    Multiple learners that input signals from multiple sensors, determine the state based on teacher data, and output identification results and accuracy information.
    A synthesizer that performs synthesis processing based on the identification results and accuracy information output from the plurality of learners and outputs output information including the identification results and accuracy information.
    It has an application unit that applies environmental information obtained from an external sensor to the plurality of accuracy information output from the plurality of learners.
    The synthesizer is a learning device characterized in that the application unit performs a synthesis process using the accuracy information weighted by the environmental information.
  13. 複数の学習装置が、複数のセンサからの信号をそれぞれ入力し、教師データにより状態が決定されて、識別結果と確度情報を出力するステップと、
    合成器が、前記複数の学習器から出力される情報を合成して、識別結果を含む出力情報を出力するステップと、
    前記合成器から出力される前記出力情報をフィードバックして、前記複数の学習器に提供するステップと、
    前記複数の学習器が、前記フィードバックされた前記出力情報を教師データとして用いて学習するステップと、
    を有することを特徴とする学習方法。
    A step in which a plurality of learning devices input signals from a plurality of sensors, a state is determined by teacher data, and an identification result and accuracy information are output.
    A step in which the synthesizer synthesizes information output from the plurality of learners and outputs output information including the identification result.
    A step of feeding back the output information output from the synthesizer and providing the output information to the plurality of learners.
    A step in which the plurality of learners learn using the feedback output information as teacher data.
    A learning method characterized by having.
PCT/JP2020/007982 2019-03-01 2020-02-27 Learning apparatus and learning method WO2020179605A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019037788A JP2020140644A (en) 2019-03-01 2019-03-01 Learning device and learning method
JP2019-037788 2019-03-01

Publications (1)

Publication Number Publication Date
WO2020179605A1 true WO2020179605A1 (en) 2020-09-10

Family

ID=72264960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007982 WO2020179605A1 (en) 2019-03-01 2020-02-27 Learning apparatus and learning method

Country Status (2)

Country Link
JP (1) JP2020140644A (en)
WO (1) WO2020179605A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107595A1 (en) * 2020-11-17 2022-05-27 ソニーグループ株式会社 Information processing device, information processing method, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103679677A (en) * 2013-12-12 2014-03-26 杭州电子科技大学 Dual-model image decision fusion tracking method based on mutual updating of models
WO2018163725A1 (en) * 2017-03-08 2018-09-13 ソニー株式会社 Image processing device, image processing method, and program
JP2020035443A (en) * 2018-08-24 2020-03-05 株式会社豊田中央研究所 Sensing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103679677A (en) * 2013-12-12 2014-03-26 杭州电子科技大学 Dual-model image decision fusion tracking method based on mutual updating of models
WO2018163725A1 (en) * 2017-03-08 2018-09-13 ソニー株式会社 Image processing device, image processing method, and program
JP2020035443A (en) * 2018-08-24 2020-03-05 株式会社豊田中央研究所 Sensing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REN OHMURA , NAOYUKI HASIDA , MICHIGAN IMAI: "Evaluation of activity recognition with auto-segmentation of accelerometer data", IPSJ SIG TECHNICAL REPORT, vol. 2010-UBI-27, no. 11, 15 August 2010 (2010-08-15), pages 1 - 7, XP055736215, ISSN: 1884-0930 *

Also Published As

Publication number Publication date
JP2020140644A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
KR20220143617A (en) Method for acquiring movement attributes of moving object and apparatus for performing the same
US20190204834A1 (en) Method and apparatus for object detection using convolutional neural network systems
US20190086546A1 (en) Processing method of a 3d point cloud
CN100579174C (en) Motion detection method and device
CN108377380B (en) Image scanning system and method thereof
EP2065842B1 (en) Adaptive driver assistance system with robust estimation of object properties
WO2019154541A1 (en) Methods and apparatuses for object detection in a scene represented by depth data of a range detection sensor and image data of a camera
WO2017155602A1 (en) Systems and methods for normalizing an image
US11585896B2 (en) Motion-based object detection in a vehicle radar using convolutional neural network systems
EP1255177A2 (en) Image recognizing apparatus and method
Haghbayan et al. An efficient multi-sensor fusion approach for object detection in maritime environments
CN105335955A (en) Object detection method and object detection apparatus
US11455503B2 (en) Method and sensor apparatus for generating an object classification for an object
EP4139892A2 (en) Method and apparatus for camera calibration
US11852749B2 (en) Method and apparatus for object detection using a beam steering radar and a decision network
WO2020179605A1 (en) Learning apparatus and learning method
CN110610130A (en) Multi-sensor information fusion power transmission line robot navigation method and system
US20200089315A1 (en) Systems and methods for capturing training data for a gaze estimation model
US20200401151A1 (en) Device motion control
Begum et al. Deep learning models for gesture-controlled drone operation
CN117218380A (en) Dynamic target detection tracking method for unmanned ship remote sensing image
Muhammad et al. Visual object detection based lidar point cloud classification
Vasco et al. Vergence control with a neuromorphic iCub
Xu et al. Adaptive brightness learning for active object recognition
CN112598742A (en) Stage interaction system based on image and radar data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766085

Country of ref document: EP

Kind code of ref document: A1