WO2020179336A1 - Method for measuring thickness of coating material, system for measuring thickness of coating material, and method for constructing coating material - Google Patents

Method for measuring thickness of coating material, system for measuring thickness of coating material, and method for constructing coating material Download PDF

Info

Publication number
WO2020179336A1
WO2020179336A1 PCT/JP2020/004333 JP2020004333W WO2020179336A1 WO 2020179336 A1 WO2020179336 A1 WO 2020179336A1 JP 2020004333 W JP2020004333 W JP 2020004333W WO 2020179336 A1 WO2020179336 A1 WO 2020179336A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
covering material
target surface
measuring
dimensional coordinates
Prior art date
Application number
PCT/JP2020/004333
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 横田
定樹 兼久
一真 西尾
Original Assignee
倉敷紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 倉敷紡績株式会社 filed Critical 倉敷紡績株式会社
Priority to JP2021503476A priority Critical patent/JPWO2020179336A1/ja
Publication of WO2020179336A1 publication Critical patent/WO2020179336A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/18Adjusting tools; Templates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material

Definitions

  • the present invention relates to a coating material thickness measuring method, a coating material thickness measuring system, and a coating material construction method that are applied to a target surface such as a wall or floor of a building by a spraying method or the like.
  • a method of providing a heat insulating material on the wall of a building an operator uses a foaming machine on site to apply the foaming material as the main raw material to the target surface such as the wall, floor, roof or ceiling of the building.
  • a method is known in which the added foaming stock solution is directly sprayed to solidify the foam.
  • the heat insulating material has a great effect on the heat insulating effect, the heat insulating material is required to have a uniform thickness. In particular, in buildings, apartment houses, etc., it is required to provide uniform quality, and construction with a thickness error of 0 to 20 mm and a severe one of 0 to 5 mm is required.
  • the construction work of the heat insulating material is one of the very complicated work for the worker.
  • the work speed varies greatly depending on the skill level of the operator, and the quality also varies. Furthermore, when reporting to the owner, etc.
  • the construction thickness is checked by inserting measurement gauges at various places in the construction site, and a mark (for example, the measured value of the thickness) related to the result is displayed. This was done by marking on the surface of the heat insulating material (wall) and presenting a photograph of a part of the surface. In this way, inserting the measurement gauge many times may cause physical damage to the heat insulating material, and it is possible to obtain only scattered measurement values, and sufficient quality control cannot be performed.
  • U.S. Pat. No. 5,837,058 discloses a method and robot comprising a spray nozzle connected to a source of foam and a sensing device configured to monitor the coating thickness.
  • the finishing process can be reduced by controlling the spraying amount of the foaming material while monitoring the spraying thickness with a laser range finder.
  • Patent Document 2 discloses a remotely controllable robot arm having a spray nozzle and a range finder at its tip. There is a description that this robot arm can measure the material (object) before and after application with a range finder and calculate the thickness to be supplemented.
  • Patent Document 1 presupposes the use of a robot, the use of the robot is not always advantageous in a messy field.
  • the method of Patent Document 1 is performed by an operator, but since the thickness is controlled by spraying the foam material while monitoring the thickness at any time with a laser range finder instead of the measuring gauge. The spraying work and the confirmation of the thickness (confirmation of the monitor) are performed alternately, and the work is complicated. For example, human error such as mistaking the monitor is likely to occur.
  • Patent Document 2 does not measure the entire material to be applied (target surface), but measures a part of the material to be applied (target surface) at any time, and has the same problem as Patent Document 1.
  • An object of the present invention is to provide a method for measuring the thickness of a covering material to be applied to a target surface such as a wall of a building, a system for measuring the thickness of the covering material, and a method for constructing the covering material.
  • the present invention is a method for measuring the thickness of a covering material applied to a target surface, which is three-dimensional coordinates of the surface of the covering material, and three-dimensional equidistant points of three or more points having the same distance from the target surface.
  • the process of acquiring the construction shape including the reference three-dimensional coordinates of one or more reference points whose coordinates and the distance from the target surface are known, the three-dimensional coordinates of the surface of the covering material, and the three-dimensionality of the equidistant points. Calculating the thickness of the covering material based on the coordinates and the reference three-dimensional coordinates.
  • the “thickness of the covering material” refers to the length in the direction perpendicular to the target surface.
  • the “three-dimensional coordinate of the surface of the covering material” means the three-dimensional coordinate on the surface of the covering material exposed on the space side opposite to the target surface. For example, a set of three-dimensional coordinates of a plurality of points on the surface of a covering material can be mentioned. Furthermore, the "distance from the target surface” means the length of a perpendicular line drawn from that point to the target surface.
  • the method of expressing the three-dimensional coordinates is not particularly limited as long as it can be processed on a computer.
  • it may be represented by a set of coordinate values of the (X, Y, Z) three-dimensional Cartesian coordinate system (so-called point cloud data), a polygon mesh, a plane / curved surface formula or parameter representation, or It may be a volume data representation (voxel, etc.) and a combination thereof.
  • point cloud data three-dimensional Cartesian coordinate system
  • polygon mesh a polygon mesh
  • plane / curved surface formula or parameter representation or It may be a volume data representation (voxel, etc.) and a combination thereof.
  • the three-dimensional coordinates of the surface of the coating material and the three-dimensional coordinates of three or more equidistant points having the same distance from the target surface and the distance from the target surface are known. Since the construction shape that includes the reference three-dimensional coordinates of one or more reference points is the same plane coordinates (plane coordinates parallel to the target surface) as the predetermined point of the covering material, The virtual point whose distance is the same as the reference three-dimensional coordinate is obtained, and the thickness of the predetermined point of the covering material is calculated by comparing the predetermined point of the covering material with the virtual point whose distance to the target surface is known. Can be calculated.
  • the method for measuring the thickness of a covering material of the present invention is such that the distance of the equidistant point from the target surface is known and the equidistant point is also the reference point. Further, it further includes a step of calculating a virtual plane based on the acquired three-dimensional coordinates of the equidistant points, and calculates the thickness of the covering material based on the three-dimensional coordinates of the surface of the covering material and the virtual plane. It is more preferable to do so.
  • the distance of the equidistant point from the target surface is unknown and the reference point is different from the equidistant point.
  • the covering is based on the three-dimensional coordinates of the surface of the covering material and the virtual plane. More preferably, the thickness of the material is calculated.
  • the "virtual plane” refers to a plane whose distance to the target surface is known and is parallel to the target surface, and preferably includes the reference three-dimensional coordinates, but may not be included.
  • the thickness of the entire covering material can be calculated by one calculation. After applying the covering material in this way, the thickness of the entire covering material can be calculated by one measurement, which is preferable.
  • a method for measuring the thickness of a covering material which comprises a step of setting a reference marker on the covering material or in the vicinity of the covering material before the step of acquiring the construction shape, and the reference three-dimensional shape.
  • the coordinates are preferably three-dimensional coordinates on the reference marker.
  • the reference marker has a pin extending in one direction
  • the step of installing the reference marker is a step of inserting the pin into the covering material so that a tip of the pin contacts the target surface. Is preferred.
  • the equidistant points are points on the surface of the covering material and a structure adjacent to or near the target surface.
  • the “structure” is a structure including a plane parallel to the target surface
  • the “surface of the structure” includes a plane whose distance to the target surface is known and which is parallel to the target surface.
  • it is a wall surface that is flush with the wall surface that is the target surface, or the surface of a pillar or beam that is built in parallel with the wall surface that is the target surface.
  • the thickness of the covering material can be easily calculated.
  • the equidistant points on the surface of the structure are known to be the distance from the target plane, It can be an equidistant point and at the same time a reference point. Therefore, it is not necessary to install the reference marker, and human error when installing the reference marker can be reduced.
  • the distance between the surface parallel to the target surface of the structure and the target surface is unknown, one or more reference markers are provided on or near the coating material, and three or more equidistant points on the surface of the structure. And, the thickness of the covering material can be calculated based on the reference three-dimensional coordinates on the reference marker.
  • the method for measuring the thickness of a covering material of the present invention includes a step of displaying a covering material image showing the distribution of the thickness of the covering material in color or shading.
  • the covering material image in which the thickness distribution is shown by color or shading in this way the defective part of construction can be confirmed at a glance, and the work speed can be increased. Also, it is preferable because it is easy to see as the data of the covering material for quality control.
  • the method for measuring the thickness of the covering material of the present invention includes a step of determining the presence or absence of a construction defective portion where the thickness of the covering material is out of a predetermined range.
  • the work defect determination image has high workability.
  • the method of measuring the thickness of the coating material according to the present invention further includes a step of storing the thickness of the coating material in association with the target surface.
  • a step of storing the covering material image in association with the target surface it is preferable to have a step of measuring the moisture content of the target surface and a step of storing the moisture content in association with the thickness of the coating material before applying the coating material.
  • a step of measuring the temperature distribution of the target surface and a step of storing the temperature distribution in association with the thickness of the covering material before applying the covering material it is preferable to have a step of measuring the temperature distribution of the target surface and a step of storing the temperature distribution in association with the thickness of the covering material before applying the covering material.
  • the coating material is a sprayed hard urethane foam heat insulating material
  • the method includes a step of acquiring a spraying condition of the coating material and a step of storing the spraying condition in association with the thickness of the coating material.
  • the coating material thickness measurement system of the present invention is a system for measuring the thickness of a coating material applied to a target surface, including a three-dimensional measuring device and a data processing unit, the three-dimensional measuring device, Three-dimensional coordinates of the surface of the covering material, three-dimensional coordinates of three or more equidistant points having the same distance from the target surface, and reference three-dimensional of one or more reference points whose distance from the target surface is known.
  • the feature is that the construction shape including the coordinates is acquired, and the data processing unit calculates the thickness of the covering material based on the construction shape. By using this measuring system, the thickness of the covering material can be accurately measured with one measurement.
  • the distance of the equidistant point from the target surface is known, and the equidistant point is also the reference point.
  • the distance of the equidistant point from the target surface is unknown and the reference point is different from the equidistant point.
  • the coating material thickness measuring system of the present invention further includes a reference marker installed on or in the vicinity of the coating material, and the data processing unit is a color or shape from the construction shape. Those that recognize the reference marker based on characteristics are preferable. By automatically recognizing the reference marker from the construction shape and at the same time recognizing the three-dimensional coordinates on the reference marker as the reference three-dimensional coordinates, the reference marker can be recognized accurately and quickly.
  • a second aspect of the coating material thickness measuring system of the present invention is a system for measuring the thickness of a coating material applied to a target surface, which includes a three-dimensional measuring device, a data processing unit, and a user.
  • the data processing unit is provided with a display unit provided in front of the user's eyes, and the data processing unit has three points where the three-dimensional coordinates of the surface of the covering material acquired by the three-dimensional measuring device and the distance from the target surface are the same.
  • the thickness of the covering material is calculated based on the three-dimensional coordinates of the above equidistant points and the reference three-dimensional coordinates of one or more reference points whose distances from the target surface are known, and the thickness of the covering material.
  • the display unit displays the covering material image in an overlapping manner on the covering material in the field of view of the user.
  • the distance of the equidistant point from the target surface is known and the equidistant point is also the reference point.
  • the distance of the equidistant point from the target surface is unknown, and the reference point is different from the equidistant point. Is preferable.
  • the user can confirm the thickness of the coating material on site by mounting the device equipped with the display unit by the user. Therefore, the finishing work time can be shortened.
  • an image acquiring unit for photographing the visual field direction of the user's eye is provided, and the covering material is provided on the surface of the covering material on the image photographed by the image acquiring unit. Those that overlap the images are preferred.
  • the three-dimensional measuring device, the display unit, and the data processing unit are integrally configured to form a wearable computer system that can be worn by the user.
  • a head-mounted device such as a head-mounted display (HMD) or smart glasses may be used. This makes it possible to perform the finishing work after construction while checking it in real time. As a result, even if the skill level of the operator is low, the coating material can be applied to a uniform thickness without failure or redone of the installation. In addition, the thickness check work after construction, which was conventionally required repeatedly for each finishing work, becomes unnecessary.
  • the method of applying a coating material of the present invention is a method of applying a coating material to a target surface, the step of applying the coating material to the target surface, the three-dimensional coordinates of the surface of the coating material, from the target surface The step of acquiring the three-dimensional coordinates of three or more equidistant points having the same distance and the reference three-dimensional coordinates of one or more reference points whose distances from the target surface are known, and the tertiary of the surface of the covering material.
  • the method for constructing the covering material of the present invention is such that the distance of the equidistant point from the target surface is known and the equidistant point is also the reference point.
  • the distance of the equidistant point from the target surface is unknown and the reference point is different from the equidistant point. Since the method of applying the covering material of the present invention uses the method of measuring the thickness of the present invention, it is possible to confirm at a glance the defective part of the coating, and the covering material of uniform quality is not limited to the skill level of the operator. Can be provided.
  • a worker on site can grasp the thickness of the applied covering material with one measurement. Therefore, it is possible to easily perform a finishing process on a portion having a poor construction. Furthermore, it can be left as objective data on the quality of the covering material.
  • FIG. 2a is a front view showing a construction shape
  • FIG. 2b is a sectional view taken along line XX
  • FIG. 2c is a perspective view showing the construction shape in which a virtual plane is calculated.
  • 2nd Embodiment of the thickness measuring method of the coating material of this invention It is a perspective view which shows the construction shape which calculated the virtual plane used in 2nd Embodiment of the thickness measuring method of the coating material of this invention.
  • the thickness of the covering material is calculated based on three-dimensional coordinates of three or more points whose distances from the target surface are known and equal. These three or more points are equidistant points having the same distance from the target surface, and at the same time, are reference points whose distances from the target surface are known.
  • the covering material measured by the thickness measuring method of the embodiment is covered by an operator or the like by applying it to the target surface at the site.
  • the target surface construction surface
  • examples of the target surface include walls, floors, roofs, ceilings, rooftops, etc. of buildings, and are particularly useful for parts where thickness measurement is difficult, such as roofs and ceilings.
  • heat insulating material As the covering material, heat insulating material, fireproof material, waterproof material, general building material (FRP, FRC, FRG) and the like can be mentioned.
  • heat insulating material include soft or hard urethane foam, rock wool, and cellulose fiber.
  • an on-site foaming type hard urethane foam for example, a hard urethane foam defined in JIS A9526 constructed by the spraying method is preferable.
  • the undiluted foaming solution sprayed on the target surface expands irregularly to a foaming ratio of 20 to 120 times, so even an expert can This is because it is difficult to apply a uniform thickness (about 10 to 200 mm), and the applied thickness directly affects the heat insulation performance.
  • the waterproof material include urethane-based, FRP-based, acrylic rubber-based, acrylic resin and the like.
  • the coating material applied by spraying is suitable for the thickness measuring method of the present invention because it is difficult to make the thickness after application uniform as compared with the coating.
  • the thickness measuring method includes a step of setting a reference marker (first step), three-dimensional coordinates of the surface of the covering material, and reference three-dimensional coordinates of three or more reference points.
  • Step a step of determining whether finishing processing is necessary based on the covering material image (sixth step), and a step of performing finishing processing when it is determined that finishing processing is necessary (seventh step) And a step (eighth step) of storing the three-dimensional data of the covering material in association with the target surface when it is determined that the finishing process is not necessary.
  • a reference marker is set on the covering material.
  • the reference marker is installed on the covering material at a position separated from the target surface by a predetermined distance.
  • reference numeral 11 is a wall (target surface)
  • reference numeral 12 is a covering material
  • reference numeral 13 is a disc-shaped reference marker.
  • This reference marker gives a reference point that serves as a reference when calculating the virtual plane in the third step and its reference three-dimensional coordinates.
  • the distance between the target surface and the reference point may be referred to as “reference distance”.
  • the reference marker 13 is provided on the head of the pin 13a, for example, as shown in FIG. 2b. Then, the pin 13a is pierced into the covering material 12 so that the pin 13a is perpendicular to the target surface (so that the plane of the head of the pin 13a is parallel to the target surface), and the tip of the pin 13a is aimed at the target surface. By making contact with each other, the reference marker 13 can be provided on the covering material 12.
  • the distance from the reference marker 13 to the wall 11 at this time is L (pin length+thickness of the reference marker 13). That is, the length of the perpendicular line drawn from the reference marker 13 to the target surface becomes the distance L, and any point on the reference marker can be set as the reference three-dimensional coordinate.
  • the length of the pin 13a is substantially the same as or slightly larger than the planned thickness of the covering material 12. As a result, the reference marker 13 is not buried in the covering material 12 that has been constructed to a predetermined thickness.
  • reference markers 13 are provided, and at least one reference three-dimensional coordinate is set for each reference marker.
  • one or two reference markers may be provided by setting a plurality of reference three-dimensional coordinates in one reference marker. It can be appropriately determined according to the required accuracy.
  • all the reference markers should be installed at the same distance from the target surface.
  • the reference marker 13 is a disk-shaped one, but may be a sphere, a cube, or a polygonal flat plate such as a triangle or a square.
  • the shape of the reference marker 13 is not particularly limited, but it is preferable if it has the geometric features as listed above because it can be easily recognized automatically by image processing. Further, it is preferable to use a reference marker of a predetermined color. For example, if the head of the reference marker is set to a predetermined color that can be easily identified with a covering material such as red, blue, or green as a background, it becomes easy to automatically recognize the reference marker by using the color feature as a clue. When a flat plate is used, it is important that the flat plate be parallel to the target surface when installed. Further, the pin 13a that supports the reference marker 13 is not particularly limited. For example, the reference marker may be supported by three or more pins.
  • the three pins 13a can be made perpendicular to the target surface by piercing the covering material 12 so that the tips of the three pins come into contact with the target surface (wall 11). Can easily place the reference marker at a predetermined distance from the target surface.
  • the second step is to obtain a construction shape including the three-dimensional coordinates of the surface of the covering material and the reference three-dimensional coordinates of three or more reference points whose distances from the target surface are known and are substantially the same.
  • the construction shape including the three-dimensional coordinates of the surface of the covering material 12 and the three-dimensional coordinates of the surface of the reference marker 13 is acquired.
  • the construction shape 10 of FIGS. 2a and 2b includes the three-dimensional coordinates of the covering material 12 and the three-dimensional coordinates of the surfaces of the four reference markers 13 (reference three-dimensional coordinates).
  • “Acquisition of construction shape” means acquisition of the three-dimensional shape of the target surface by a set of three-dimensional coordinates, for example.
  • point cloud data obtained by scanning the target surface with a three-dimensional measuring device or the like can be mentioned.
  • the three-dimensional measuring device it is acquired by a three-dimensional measuring device such as a three-dimensional scanner or a stereo camera.
  • a three-dimensional scanner irradiates a target surface with laser light and calculates the three-dimensional shape of the target surface based on the reflected light (so-called LIDAR method), and measures the distance by the time it takes for the irradiated light to be reflected and returned.
  • LIDAR method reflected light
  • TOF method something to measure
  • the stereo camera calculates the three-dimensional shape from the images of the target surface captured by the two cameras based on the principle of triangular measurement, and is separately measured by a projector in order to improve the matching accuracy of the images of the two cameras.
  • a color image can be acquired at the same time as the three-dimensional coordinates, and point cloud data to which color information is added can be generated.
  • the reference marker and the covering material area can be recognized based on the color information of the construction shape.
  • a virtual plane is calculated. Specifically, based on the reference marker 13 (reference three-dimensional coordinates), the virtual plane S obtained by translating the target surface in parallel with the target surface by a predetermined distance in the vertical direction is calculated within the construction shape. The target surface may be calculated based on the reference three-dimensional coordinates.
  • FIG. 2c is a construction shape 10a in which the virtual plane S is calculated.
  • the calculation method of the virtual plane S uses four reference markers 13 separated from the target surface (wall 11) at a predetermined distance. Specifically, first, four reference markers are recognized from the construction shapes based on the characteristics of the color and shape. For example, when a red reference marker is used, the red region can be recognized as a reference marker from the construction shape. For such recognition, the operator may manually indicate the position of the reference marker on the screen, or the processing unit of the computer may automatically recognize the position. Next, three or more reference three-dimensional coordinates are extracted from the recognized four reference markers. For example, the barycentric coordinates of each reference marker may be the reference three-dimensional coordinates.
  • the plane S1 is estimated based on the extracted three or more reference three-dimensional coordinates.
  • the plane may be fitted to the plurality of reference three-dimensional coordinates.
  • the least squares method may be used to obtain the least squares plane for a plurality of reference three-dimensional coordinates.
  • This plane S1 is parallel to the wall 11 and is separated by a predetermined distance L.
  • the virtual plane S is calculated by expanding the plane S1 to a position and size obtained by translating the target plane in the direction perpendicular to the target plane by a predetermined distance.
  • the virtual plane S may be calculated at a position separated from the target surface by a predetermined reference thickness. At this time, if the covering material is constructed according to the reference thickness, the surface of the covering material coincides with the virtual plane S.
  • the fourth step is to calculate the thickness of the covering material.
  • the thickness of the covering material is calculated based on the virtual plane calculated based on the three-dimensional coordinates of the surface of the covering material and the reference three-dimensional coordinates. Specifically, the distances between the points on the surface of the covering material and the points on the virtual plane that intersect the vertical line with respect to the target surface are calculated, and the distance L on the virtual plane with respect to the target surface is taken into consideration to determine the points on the surface of the covering material. Calculate the thickness. That is, as shown in FIG.
  • the distance between the point C1 on the surface of the covering material intersecting the vertical line V1 with respect to the target surface and the corresponding point T1 on the virtual plane is Z1, and the point C1 covers the virtual plane S. If so, the thickness of the point C1 of the covering material is LZ1.
  • the distance between the point C2 on the surface of the covering material that intersects the vertical line with respect to the target surface and the point T2 on the corresponding virtual plane is Z2, and the point C2 protrudes from the virtual plane S, the point of the covering material.
  • the thickness of C2 is L + Z2 (not shown).
  • the covering material image is displayed. More specifically, it is an image showing the surface of the covering material, and a covering material image showing the distribution of the thickness of the covering material in color or shading is calculated and displayed.
  • Examples of the image displaying the surface of the covering material include a perspective image expressed three-dimensionally and a two-dimensional image obtained by projecting the construction shape on a predetermined plane (for example, a plane parallel to the target surface).
  • the finishing process is necessary based on the image of the covering material. Specifically, based on the covering material image, it is confirmed whether there is a construction defective part where the thickness of the covering material is out of the predetermined range, and if there is a construction defective part, it is judged that finishing treatment is necessary, and the construction defective part is determined. If not, it is judged that the finishing process is unnecessary. Further, it is calculated how thick or thin the part of the covering material is from a predetermined reference thickness, and it is determined whether or not the thickness is within a predetermined range.
  • an example of the construction standard is a range of ⁇ 0 mm to +20 mm with respect to the standard thickness of 30 mm (a portion thinner than the standard is defective, and a thick portion is allowed up to 20 mm). It can be set more strictly in the range of ⁇ 0 mm to +5 mm.
  • the defective construction portion may be displayed in color or shade (construction defectiveness determination image).
  • the portion may be specified by a lead line, and a numerical value indicating how much the portion deviates from a predetermined value may be indicated.
  • a 7th process performs a finishing process, when it determines that a finishing process is required. That is, in the sixth step, when it is determined that the finishing process is necessary, the finishing process is performed on the portion requiring the finishing process so that the thickness of the covering material falls within the predetermined range. Specifically, the surplus is cut for a portion thicker than a predetermined range, and additional spraying or coating is applied to a portion thinner than a predetermined range. In addition, after performing the finishing process, the process returns to the second step to acquire the construction shape. Then, in the sixth step, the second to seventh steps are repeated until the finishing process is unnecessary.
  • the three-dimensional shape of the surface of the covering material and the thickness of the covering material, in particular, the covering material image and the target surface are stored as a database. That is, in the sixth step, when it is determined that the finishing process is not necessary, the construction of the covering material is completed and the data is saved. For example, by storing the position information and identification information of the target surface in association with the covering material image, such as the wall on the east side of Room 102, the data of the database managed for each target surface (wall) can be obtained. be able to. Moreover, when 3D CAD data of the building exists, it is preferable to store the 3D CAD data in association with the 3D CAD data.
  • BIM Building Information Modeling
  • BIM Building Information Modeling
  • the three-dimensional shape before finishing may be stored together. This makes it possible to track the work process.
  • these data are preferably stored as an electronic file that cannot be edited with security set with a password, for example.
  • the electronic file is a non-falsification proof and a time proof by adding a time stamp.
  • the method for measuring the thickness of the covering material calculates a virtual plane in which the target surface is translated in the vertical direction with respect to the target surface by a predetermined distance based on the reference three-dimensional coordinates within the construction shape.
  • the thickness of the covering material is calculated from the surface of the covering material and the virtual plane, the thickness of the covering material is not measured while piercing a pin etc. , The total thickness of the covering material is known.
  • the finishing treatment of the covering material is also easy. Particularly, by using the covering material image, the location of the finishing process can be easily specified.
  • the method of constructing the covering material using this thickness measuring method is not limited to the skill level of the operator, and can provide a covering material of uniform quality.
  • the method for measuring the thickness of the covering material of the first embodiment using the reference marker is not limited to the above.
  • the reference marker in the step of installing the reference marker (first step), the reference marker is installed on the covering material, but the reference marker may be installed in the vicinity of the covering material.
  • a reference marker may be placed on a pillar around the covering material. Where to place the reference marker can be appropriately determined according to the target surface.
  • a covering material image in which the thickness is shown by color or shading is given, but a projected image or three-dimensional of the covering material in which no color or shading is provided depending on the thickness. It may be an image (perspective image).
  • the fifth step not only the image is displayed, but also a table in which the position data on the target surface and the thickness data of the covering material are associated with each other may be displayed.
  • the moisture content of the target surface may be measured and the moisture content may be stored in association with the thickness of the coating material, particularly the coating material image. Since the foaming agent of rigid urethane foam contains water, if the target surface (wall surface) contains a large amount of water, the reaction balance may be lost and the quality as a heat insulating material may deteriorate. Therefore, by storing the moisture content of the wall surface before construction together with the data of the heat insulating material, a more detailed database can be constructed. For the measurement of the water content, an existing high-frequency water meter “HI-520-2 manufactured by Kett Scientific Research Institute Co., Ltd.” or the like can be used.
  • the temperature distribution of the target surface is measured using a thermo camera or the like, and the temperature distribution is measured by the three-dimensional shape of the surface of the coating material and the thickness of the coating material, particularly the coating material image. It may be stored in association with. Since the temperature of the sprayed surface of the rigid urethane foam may affect the quality, it is preferable to memorize the relationship between the temperature distribution and the thickness from the viewpoint of quality control. At this time, the two-dimensional temperature image acquired by the thermo camera may be mapped to the three-dimensional shape of the surface of the covering material based on the reference marker or the structure.
  • the spraying conditions in the case of a two-component rigid urethane foam, the mixing pressure and the mixing temperature of the two liquids
  • the spraying conditions are set to the three-dimensional shape of the surface of the coating material.
  • the thickness of the dressing in particular, may be stored in association with the dressing image. Since the quality of rigid urethane foam changes greatly depending on the spray conditions, it is preferable in terms of quality control and a detailed database can be constructed by storing the spray conditions before construction together with the three-dimensional data of the heat insulating material.
  • the indoor environmental information temperature, humidity, etc.
  • the environmental information is stored in association with the three-dimensional shape of the surface of the covering material and the thickness of the covering material, especially the covering material image. May be good.
  • a step of acquiring the construction shape (step 1A), a step of calculating a virtual plane (step 2A), and a step of calculating the thickness of the covering material (step 3A).
  • a step of displaying a covering material image (4A step), a step of determining whether a finishing process is necessary based on the covering material image (5A step), and a finishing process when it is determined that a finishing process is necessary.
  • steps 3A to 7A are substantially the same as steps 4 to 8 of the embodiment of FIG.
  • the construction shape includes the three-dimensional coordinates of the surface of the structure located adjacent to or near the covering material and the target surface.
  • the structure is a structure including a surface parallel to the target surface.
  • the surface of the structure includes a surface parallel to the target surface.
  • the structure includes, for example, a structure such as a pillar, a sash, a threshold, a peripheral edge, a skirting board, or a beam material located in the same room as the wall surface of the target surface, or a floor, a ceiling, a wall boundary, a pipe, a door, or a window.
  • An opening such as a ventilation port, and a structure having a characteristic shape of a power distribution box.
  • a rising portion such as a parapet or a structure such as a pillar can be used as a reference point.
  • the construction shape 10 in FIG. 4 includes the covering material 12 and the pillar P having the surface S2 parallel to the target surface.
  • Step 2A calculates a virtual plane. Specifically, the three-dimensional coordinates of arbitrary three points on the plane parallel to the target surface of the structure are acquired and used as the reference three-dimensional coordinates. Here, three points (not shown) are selected from the plane S2 of the pillar P and set as the reference three-dimensional coordinates. It is assumed that the plane S2 has a known distance L from the target surface based on the known dimension of the pillar P. Based on the reference three-dimensional coordinates on S2, a virtual plane S obtained by translating the target surface in the direction perpendicular to the target surface by a predetermined distance is calculated within the construction shape. The dotted line in FIG. 4 is the virtual plane S.
  • the virtual plane S is calculated within the construction shape by enlarging the surface S2 parallel to the target surface to the same size as the target surface and translating it in the plane direction. .. If the construction shape is represented by a polygon mesh rather than point cloud data, one plane parallel to the target plane should be selected instead of acquiring the three-dimensional reference three-dimensional coordinates. Is the same as selecting three reference three-dimensional coordinates that define the selected surface.
  • the thickness measuring method of the second embodiment as in the first embodiment, a virtual plane obtained by translating the target surface in the vertical direction with respect to the target surface by a predetermined distance is calculated within the construction shape. Therefore, it is possible to confirm the total thickness of the covering material with one measurement after the covering material is applied.
  • the method of applying a coating material using this thickness measuring method can provide a coating material of uniform quality, not limited to the skill level of the operator.
  • the virtual plane is calculated based on the three-dimensional reference coordinates of three or more points whose distances from the target surface are known and equal. These points were not only equidistant points having the same distance from the target surface but also reference points having a known distance from the target surface.
  • three-dimensional coordinates of three or more equidistant points that are equal in distance from the target surface but are unknown and reference three-dimensional coordinates of one or more reference points whose distance from the target surface are known are used. Based on this, a virtual plane is calculated.
  • a flowchart of this embodiment is shown in FIG. Steps 4B to 8B are substantially the same as steps 4 to 8 in FIG.
  • step 1B set a reference marker on the covering material.
  • the same reference marker as in the first embodiment can be used. However, only one reference marker needs to be installed, and one reference three-dimensional coordinate may be set on the reference marker.
  • the construction shape is acquired.
  • the construction shape includes the three-dimensional coordinates of the surface of the structure located adjacent to or in the vicinity of the covering material and the target surface, and the reference three-dimensional coordinates set in the reference marker.
  • the structure is a structure including a surface parallel to the target surface, and the surface of the structure is the surface parallel to the target surface.
  • the example of the structure is also the same as that of the second embodiment.
  • the construction shape 10b of FIG. 10 includes a covering material 12, one reference marker 13, and a pillar P having a surface S2 parallel to the target surface.
  • step 3B Calculating a virtual plane in step 3B.
  • the three-dimensional coordinates of any three points on the plane parallel to the target plane of the structure are acquired as equidistant points.
  • three points (not shown) on the plane S2 of the pillar P are selected as equidistant points.
  • a plane parallel to the target surface is calculated based on the three-dimensional coordinates of equidistant points on S2, and the plane is translated to a position where the reference point on the reference marker 13 is on the plane, and the virtual plane S is Calculate within the construction shape.
  • a virtual plane S is shown by a dotted line in FIG.
  • a virtual plane obtained by translating the target surface in the vertical direction by a predetermined distance can be calculated within the construction shape. After the coating material is applied, the total thickness of the coating material can be confirmed with one measurement. Similar to the first embodiment, the method of constructing the covering material using this thickness measuring method can also provide a covering material of uniform quality regardless of the skill level of the operator.
  • the measurement system 20 of FIG. 5 includes a three-dimensional measurement device 21, a control unit 22, a reference marker 23, and a display unit 24.
  • the three-dimensional measuring device 21 measures a construction shape including the three-dimensional shape of the surface of the covering material 12 applied to the target surface.
  • the thickness measuring system 20 can be used in the thickness measuring method of FIG.
  • the reference marker 23 is substantially the same as the reference marker 13 used in the thickness measuring method of FIG.
  • the three-dimensional measuring device 21 is a three-dimensional scanner including a light emitting unit 21a that emits a laser beam, a light receiving unit 21b that receives the laser beam reflected by the covering material, and a calculation unit (not shown).
  • the three-dimensional measuring device 21 is substantially the same as the three-dimensional measuring device used in the measuring method of FIG. 1, and is not particularly limited as long as it can measure the three-dimensional shape of the surface of the covering material.
  • the control unit 22 includes a storage unit 26 and a data processing unit 27 that calculates the thickness of the covering material.
  • the storage unit 26 stores construction shape data including the three-dimensional shape of the surface of the covering material measured by the three-dimensional measuring device 21.
  • the virtual plane data and the thickness data of the covering material calculated by the data processing unit 27 are stored as described later.
  • the three-dimensional data of the surface of the covering material and the thickness data of the covering material, in particular, the covering material image and the target surface are stored in association with each other.
  • environmental information such as temperature and humidity at the time of construction, spray conditions (mixing pressure and temperature of two-component rigid urethane foam), and data obtained by measuring the moisture content of the target surface are associated with the coating material image. You may memorize it.
  • these data are preferably stored as an electronic file that cannot be edited with security set with a password, for example.
  • the electronic file is a non-falsification proof and a time proof by adding a time stamp.
  • the storage unit 26 itself may be locked with a password or the like so that rewriting except for special authority cannot be performed.
  • the data stored in the storage unit 26 may be stored in a disk-shaped storage medium such as a CD or DVD or a storage medium such as a USB or a memory card by a person having a special authority set by a password or the like. ..
  • a disk-shaped storage medium such as a CD-R or a DVD-R capable of writing data only once, or a storage medium such as a USB or a memory card having a tamper-proof function is preferable.
  • the data processing unit 27 automatically extracts the reference marker 23 based on the color or shape feature from the construction shape data, or the operator specifies and extracts the reference marker 23, and targets the target surface based on the reference marker 23.
  • Virtual plane data obtained by translating a predetermined distance in parallel to the surface is calculated, and the thickness of the covering material is calculated based on the three-dimensional shape data of the surface of the covering material and the virtual plane data.
  • the virtual plane data is calculated by the same method as the third step of the thickness measuring method of FIG. Also, the thickness of the covering material is calculated by the same method as the fourth step of the thickness measuring method of FIG.
  • the data processing unit 27 converts the construction shape data into an image of the surface of the covering material, which is a covering material image in which the distribution of the thickness of the covering material is shown in color or shade.
  • the dressing image is substantially the same as the thickness measuring method of FIG.
  • the data processing unit 27 specifies the portion of the covering material in which the thickness of the covering material is out of the predetermined range based on the thickness of the covering material. That is, the portion where the covering material is too thick or the portion where the covering material is too thin is automatically indicated. For example, such a poorly constructed part may be displayed in a special color in the covering material image, or only the defective part may be extracted and displayed, or may be blinked. In addition, it is preferable to indicate how much the poorly constructed part deviates from a predetermined range.
  • the display unit 24 is a two-dimensional liquid crystal monitor that displays the covering material image created by the data processing unit 27.
  • This measuring system 20 installs the reference marker 23 on the coating material after applying the coating material, and obtains the construction shape including the three-dimensional shape of the coating material and the reference marker 23 to determine the total thickness of the coating material. Since it can be calculated, it is possible to easily identify a poorly constructed part. Moreover, since the confirmation work can be performed at one time, the labor of the operator can be greatly reduced. Further, since it can be displayed as a covering material image on the display unit, the operator can easily and accurately confirm the position of the construction defect at the site. In addition, since the target surface, the three-dimensional shape of the surface of the covering material, and the thickness of the covering material can be stored in association with each other, that is, the data of the covering material can be stored together by being linked to the target surface. Easy quality control.
  • data such as the thickness of the covering material is stored in the storage unit 26 of the control unit 22, but the data is stored directly in a storage medium such as a CD, DVD, USB, or memory card. May be good.
  • a storage medium such as a CD, DVD, USB, or memory card.
  • data such as CD-R and DVD-R directly on a disk-shaped storage medium that can be written only once, or on a storage medium such as a USB or memory card with a tamper-proof function.
  • the objectivity of the data can be retained.
  • the data once stored in the storage unit 26 may be copied to the storage medium in a non-modifiable state, and then the data in the storage unit 26 may be deleted.
  • the reference marker 23 was recognized and virtual plane data was calculated based on the reference marker 23.
  • the virtual plane data may be calculated based on the surface of the structure located adjacent to or near the target surface without using the reference marker 23 and parallel to the target surface of the structure.
  • the data processing unit 27 automatically extracts the surface of the structure parallel to the target surface from the construction shape data, or the operator specifies and extracts the surface. Based on that surface, virtual plane data in which the target surface is translated by a predetermined distance in the direction perpendicular to the target surface is calculated.
  • the method of calculating the virtual plane is the same as step 2A of the thickness measuring method of FIG.
  • the other processes are substantially the same as those of the thickness measuring system 20.
  • a projector may be used as the display unit 24 of the measuring system 20.
  • the reference marker provided on the covering material is aligned with the reference marker (or the plane of the structure) of the image to be projected, and the thickness is displayed on the covering material. It is preferable to perform projection mapping as described above. With such a configuration, the operator can identify the position of the poor construction of the covering material from the image projected on the target surface, so that the finishing process can be simplified.
  • the thickness measuring system 20a includes a three-dimensional measuring device 21, a control unit 22, a reference marker 23, and a glasses-type display 30. Then, on the glasses-type display 30, the surface shape of the covering material is displayed so as to overlap the target surface in the field of view of the user.
  • the three-dimensional measuring device 21 and the control unit 22 including the storage unit 26 and the data processing unit 27 are substantially the same as the thickness measuring system 20 of FIG.
  • the glasses-type display 30 includes a lens-shaped display unit 31, an image acquisition unit 32, and a display control unit 33.
  • the lens-shaped display unit 31 is transparent and fixed to the frame of the glasses-type display 30 so as to be positioned in front of the eyes of the user when the glasses-type display 30 is attached to the head of the user.
  • the image acquisition unit 32 acquires information on the visual field direction of the user's eye via the lens-shaped display unit 31 as image data. For example, a camera fixed to the frame of the glasses-type display 30 near the display unit 31 may be used.
  • the display control unit 33 has a display storage unit 33a and a display data processing unit 33b (not shown).
  • the display storage unit 33a stores the image data acquired by the image acquisition unit 32 and the covering material image created by the data processing unit 27. Further, the geometrical relationship between the display unit 31 and the image data is stored. For example, the relationship such as the positional relationship and the size ratio between the display unit 31 that projects the image and the image data acquired by the image acquisition unit 32 is stored.
  • the display data processing unit 33b compares the image data acquired by the image acquisition unit 32 with the covering material image, and deforms the image so that the reference marker of the image data and the reference marker of the covering material image overlap. And alignment processing.
  • the coating material image is projected on the display unit 31 so that the coating material image overlaps the coating material in the field of view of the user.
  • Data communication between the display data processing unit 33b and the data processing unit 27 may be wired or wireless. Further, the calculation of the data processing unit 27 may be performed by the display data processing unit 33b, and conversely, the calculation of the display data processing unit 33b may be performed by the data processing unit 27.
  • the worker can check the position of the defective coating material through the lens by simply wearing the glasses-type display 30, and the finishing process can be further simplified.
  • the data processing unit 27 does not use the reference marker to determine the target of the structure from the construction shape.
  • Virtual plane data that is automatically extracted from the plane parallel to the plane, or specified by the operator, and the target plane is translated based on the plane in the vertical direction by a predetermined distance. May be calculated.
  • the display unit 31 may be opaque. In this case, the display unit displays the image captured by the image acquisition unit and the covering material image on the display unit. In this case, the same effect can be obtained.
  • a wearable display such as a head-mounted display (HMD) may be used instead of the glasses-type display.
  • HMD head-mounted display
  • the three-dimensional measuring device 21 and the control unit 22 are also built in the HMD.
  • Examples of such an HMD include "HoloLens (registered trademark)" which is a holographic computer manufactured by Microsoft Corporation. HoloLens® is a so-called mixed reality wearable device that can project computer graphics on top of a real landscape.
  • this three-dimensional measurement system includes various sensors such as a 2D camera (image acquisition unit), a 3D sensor (three-dimensional measurement device), an acceleration sensor (IMU), a CPU (data processing unit and data processing unit for display), and storage.
  • a device storage unit and display storage unit and the like are built in the HMD.
  • a reference marker is installed on the covering material, Hololens (registered trademark) is attached, and the construction shape including the three-dimensional shape of the surface of the covering material after construction is acquired by a three-dimensional measuring device, and the applied coating is performed.
  • the material image is calculated in real time and projected onto the operator's field of view so that the reference marker of the covering material image overlaps the reference marker on the actual covering material. In this way, the worker can check the construction result of the entire construction site in real time during the construction of the covering material, and can immediately take measures for the defective construction site where the thickness of the covering material is insufficient. it can.
  • the image in Fig. 7 is an image of the construction shape using a three-dimensional measuring device (Mantis Vision's handy 3D scanner "F6SMART").
  • This wall surface is a heat insulating material having a shaded portion.
  • the reference marker M1 of FIG. 8a is provided in the range of “reference installation surface 1”
  • the reference marker M2 of FIG. 8b is provided in the range of “reference installation surface 2”.
  • the heat insulating material was sprayed with the hard urethane foam shown in Table 1.
  • FIG. 8a is a contour diagram showing how far the three-dimensional shape of the surface of the heat insulating material is away from the virtual plane based on the reference marker M1 provided on the heat insulating material.
  • FIG. 8b is a contour diagram showing how far the three-dimensional shape of the surface of the heat insulating material is away from the virtual plane based on the reference marker M2 provided on the pillar P adjacent to the target surface.
  • the thickness and unevenness of the heat insulating material for each virtual plane can be seen at a glance. Then, the worker can perform finishing processing on the basis of this image. Further, since the state of the heat insulating material can be stored as objective data in this way, it is also optimal as data for quality assurance of the installed heat insulating material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

[Problem] To provide: a method for measuring the thickness of a coating material provided to, inter alia, a wall of a building; a system for measuring the thickness of a coating material; and a method for constructing a coating material. [Solution] A method for measuring the thickness of a coating material, the method having a step for installing a reference marker (step 1), a step for acquiring a construction shape that includes three-dimensional coordinates of the surface of the coating material and three or more reference three-dimensional coordinates (step 2), a step for calculating a virtual plane within the construction shape (step 3), a step for calculating the thickness of the coating material (step 4), and a step for displaying an image of the coating material (step 5).

Description

被覆材の厚さ計測方法、被覆材の厚さ計測システム、および、被覆材の施工方法Coating material thickness measuring method, coating material thickness measuring system, and coating material construction method
 本発明は、吹付け工法等によって建築物の壁や床等の対象面に施工される被覆材の厚さ計測方法、被覆材の厚さ計測システム、および、被覆材の施工方法に関する。 The present invention relates to a coating material thickness measuring method, a coating material thickness measuring system, and a coating material construction method that are applied to a target surface such as a wall or floor of a building by a spraying method or the like.
 建築物の壁等に断熱材を設ける方法として、現場で作業者が発泡機を用いて、建築物の壁部、床部、屋根部や天井部等の対象面に、主原料に発泡材を加えた発泡原液を直接吹き付けて、発泡固化させる方法が知られている。しかし、断熱材は、その厚さによって断熱効果が大きく左右されるため、均等な厚さにすることが求められている。特に、ビルや集合住宅等では、均一な品質の提供が求められており、厚さの誤差が0~20mm、厳しいもので0~5mmでの施工が求められている。つまり、対象面に発泡材を吹き付けて発泡固化させた後、その厚さを確認し、厚すぎる部位については余剰分を切削し、薄すぎる部位については追加する仕上げ処理を必要とする。詳しくは、施工現場において、吹き付け作業をしながら、発泡固化した断熱材の各所に針状の測定ゲージを刺し、その厚さを計測し、各所に仕上げ処理が必要かを確認しながら行っている。そのため、断熱材の施工作業は、作業者にとって非常に煩雑な作業の一つとなっている。また、作業者の熟練度によって、作業スピードが大きく異なり、その品質にもばらつきが見られる。
 さらに、断熱材の品質を保証するための施主等への報告は、施工部位の各所に測定ゲージを差し込むことで施工厚さをチェックし、その結果に関するマーク(例えば、厚さの計測値)を断熱材(壁)の表面に記し、その表面の一部の写真を提示することにより行ってきた。このように測定ゲージを何回も差し込むことは断熱材に物理的なダメージを与えるおそれもあり、かつ、飛び飛びの計測値しか得ることが出来ず、十分な品質管理ができなかった。
As a method of providing a heat insulating material on the wall of a building, an operator uses a foaming machine on site to apply the foaming material as the main raw material to the target surface such as the wall, floor, roof or ceiling of the building. A method is known in which the added foaming stock solution is directly sprayed to solidify the foam. However, since the heat insulating material has a great effect on the heat insulating effect, the heat insulating material is required to have a uniform thickness. In particular, in buildings, apartment houses, etc., it is required to provide uniform quality, and construction with a thickness error of 0 to 20 mm and a severe one of 0 to 5 mm is required. That is, after blowing a foaming material on the target surface to foam and solidify it, it is necessary to check the thickness, cut the excess portion for the portion that is too thick, and add an additional finishing treatment for the portion that is too thin. For details, at the construction site, while spraying, needle-shaped measuring gauges are pierced in various parts of the foamed and solidified heat insulating material, the thickness is measured, and it is confirmed whether finishing treatment is required in each part. .. Therefore, the construction work of the heat insulating material is one of the very complicated work for the worker. In addition, the work speed varies greatly depending on the skill level of the operator, and the quality also varies.
Furthermore, when reporting to the owner, etc. to guarantee the quality of the heat insulating material, the construction thickness is checked by inserting measurement gauges at various places in the construction site, and a mark (for example, the measured value of the thickness) related to the result is displayed. This was done by marking on the surface of the heat insulating material (wall) and presenting a photograph of a part of the surface. In this way, inserting the measurement gauge many times may cause physical damage to the heat insulating material, and it is possible to obtain only scattered measurement values, and sufficient quality control cannot be performed.
 特許文献1には、発泡材の供給源に連結された吹き付けノズル、および、その被覆の厚さをモニターするように構成されたセンシング機器を備えた方法およびロボットが開示されている。この特許文献1の方法では、レーザー距離計で吹き付け厚をモニターしながら、発泡材の吹きつけ量を制御することにより、仕上げ処理を減少させることができる。
 特許文献2には、先端にスプレーノズルとレンジファインダとを備えた遠隔操作可能なロボットアームが開示されている。このロボットアームにおいて、レンジファインダで塗布する前後の材料(対象物)の測定を行い、補填する厚さを計算することができるとの記載がある。
U.S. Pat. No. 5,837,058 discloses a method and robot comprising a spray nozzle connected to a source of foam and a sensing device configured to monitor the coating thickness. In the method of Patent Document 1, the finishing process can be reduced by controlling the spraying amount of the foaming material while monitoring the spraying thickness with a laser range finder.
Patent Document 2 discloses a remotely controllable robot arm having a spray nozzle and a range finder at its tip. There is a description that this robot arm can measure the material (object) before and after application with a range finder and calculate the thickness to be supplemented.
特開2016-526121号公報JP, 2016-526121, A 特開2017-536976号公報JP, 2017-536976, A
 しかし、特許文献1の方法は、ロボットを用いることを前提としているが、乱雑な現場において必ずしもロボットの使用が有利であるとは限らない。一方、特許文献1の方法を作業者によって行うことも考えられるが、測定ゲージの代わりにレーザー距離計で厚さを随時モニターしながら発泡材の吹き付け作業による厚さを制御するものであるため、吹き付け作業と厚さの確認(モニターの確認)とを交互に行うことには変わりなく、作業は煩雑である。例えば、モニターを見間違えるなどの人為的なミスが起こりやすい。また特許文献2も塗布する材料(対象面)の全体を測定するものではなく、随時、塗布する材料(対象面)の一部を測定するものであり、特許文献1と同様の問題がある。
 本発明は、建築物の壁等の対象面に施工される被覆材の厚さ計測方法、被覆材の厚さ計測システムおよび被覆材の施工方法を提供することを目的としている。
However, although the method of Patent Document 1 presupposes the use of a robot, the use of the robot is not always advantageous in a messy field. On the other hand, it is conceivable that the method of Patent Document 1 is performed by an operator, but since the thickness is controlled by spraying the foam material while monitoring the thickness at any time with a laser range finder instead of the measuring gauge. The spraying work and the confirmation of the thickness (confirmation of the monitor) are performed alternately, and the work is complicated. For example, human error such as mistaking the monitor is likely to occur. Further, Patent Document 2 does not measure the entire material to be applied (target surface), but measures a part of the material to be applied (target surface) at any time, and has the same problem as Patent Document 1.
An object of the present invention is to provide a method for measuring the thickness of a covering material to be applied to a target surface such as a wall of a building, a system for measuring the thickness of the covering material, and a method for constructing the covering material.
 本発明は、対象面に施工した被覆材の厚さを計測する方法であって、前記被覆材の表面の三次元座標、前記対象面からの距離が等しい3点以上の等距離点の三次元座標及び前記対象面からの距離が既知である1点以上の基準点の基準三次元座標を含む施工形状を取得する工程と、前記被覆材の表面の三次元座標、前記等距離点の三次元座標及び前記基準三次元座標に基づいて前記被覆材の厚さを算出する工程とを有することを特徴としている。
 本発明において「被覆材の厚さ」とは、対象面に対して垂直な方向の長さをいう。また「被覆材の表面の三次元座標」とは、対象面と反対の空間側に露出した被覆材表面上の三次元座標をいう。例えば、被覆材表面上の複数の点の三次元座標の集合が挙げられる。さらに「対象面からの距離」とは、その点から対象面におろした垂線の長さをいう。
 三次元座標の表現方法については、計算機上で処理可能なものであれば特に限定しない。例えば、(X,Y,Z)の三次元直交座標系の座標値の集合(いわゆる点群データ)で表現したものであってもよいし、ポリゴンメッシュや平面/曲面の数式やパラメータ表現、またはボリュームデータ表現(ボクセル等)、およびそれらの組み合わせであってもよい。
The present invention is a method for measuring the thickness of a covering material applied to a target surface, which is three-dimensional coordinates of the surface of the covering material, and three-dimensional equidistant points of three or more points having the same distance from the target surface. The process of acquiring the construction shape including the reference three-dimensional coordinates of one or more reference points whose coordinates and the distance from the target surface are known, the three-dimensional coordinates of the surface of the covering material, and the three-dimensionality of the equidistant points. Calculating the thickness of the covering material based on the coordinates and the reference three-dimensional coordinates.
In the present invention, the “thickness of the covering material” refers to the length in the direction perpendicular to the target surface. The “three-dimensional coordinate of the surface of the covering material” means the three-dimensional coordinate on the surface of the covering material exposed on the space side opposite to the target surface. For example, a set of three-dimensional coordinates of a plurality of points on the surface of a covering material can be mentioned. Furthermore, the "distance from the target surface" means the length of a perpendicular line drawn from that point to the target surface.
The method of expressing the three-dimensional coordinates is not particularly limited as long as it can be processed on a computer. For example, it may be represented by a set of coordinate values of the (X, Y, Z) three-dimensional Cartesian coordinate system (so-called point cloud data), a polygon mesh, a plane / curved surface formula or parameter representation, or It may be a volume data representation (voxel, etc.) and a combination thereof.
 本発明の被覆材の厚さ計測方法は、前記被覆材の表面の三次元座標及び前記対象面からの距離が等しい3点以上の等距離点の三次元座標および前記対象面からの距離が既知である1点以上の基準点の基準三次元座標を含む施工形状を取得しているため、被覆材の所定の点と同じ平面座標(対象面と平行な平面座標)であって、対象面との距離が基準三次元座標と同じ仮想点を求め、被覆材の所定の点と、その対象面との距離が既知である仮想点とを比較することにより、被覆材の所定の点の厚さを算出することができる。 In the coating material thickness measuring method of the present invention, the three-dimensional coordinates of the surface of the coating material and the three-dimensional coordinates of three or more equidistant points having the same distance from the target surface and the distance from the target surface are known. Since the construction shape that includes the reference three-dimensional coordinates of one or more reference points is the same plane coordinates (plane coordinates parallel to the target surface) as the predetermined point of the covering material, The virtual point whose distance is the same as the reference three-dimensional coordinate is obtained, and the thickness of the predetermined point of the covering material is calculated by comparing the predetermined point of the covering material with the virtual point whose distance to the target surface is known. Can be calculated.
 本発明の被覆材の厚さ計測方法であって、前記等距離点の前記対象面からの距離が既知であって、前記等距離点が前記基準点でもあるものが好ましい。また、取得した前記等距離点の三次元座標に基づいて仮想平面を算出する工程をさらに有し、前記被覆材の表面の三次元座標と前記仮想平面に基づいて前記被覆材の厚さを算出するのがさらに好ましい。
 あるいは、本発明の被覆材の厚さ計測方法であって、前記等距離点の前記対象面からの距離が未知であって、前記基準点が前記等距離点と異なる点であるものが好ましい。また、取得した前記等距離点の三次元座標と前記基準三次元座標に基づいて仮想平面を算出する工程をさらに有し、前記被覆材の表面の三次元座標と前記仮想平面に基づいて前記被覆材の厚さを算出するのがさらに好ましい。
 なお、「仮想平面」とは、対象面との距離が既知で対象面と平行な平面をいい、基準三次元座標を含むものが好ましいが、含んでいなくてもよい。
 このように仮想平面に基づいて被覆材の厚さを算出する場合、仮想平面と、被覆材の表面との距離を計算することにより、被覆材の厚さを算出することができる。特に、仮想平面が少なくとも対象面を対象面に対して垂直方向に平行移動させた平面を含んでいる場合、一度の計算により被覆材全体の厚さを算出することができる。このように被覆材を施工した後、一回の計測で、被覆材全体の厚さを算出することができるため、好ましい。
It is preferable that the method for measuring the thickness of a covering material of the present invention is such that the distance of the equidistant point from the target surface is known and the equidistant point is also the reference point. Further, it further includes a step of calculating a virtual plane based on the acquired three-dimensional coordinates of the equidistant points, and calculates the thickness of the covering material based on the three-dimensional coordinates of the surface of the covering material and the virtual plane. It is more preferable to do so.
Alternatively, in the method for measuring the thickness of a covering material of the present invention, it is preferable that the distance of the equidistant point from the target surface is unknown and the reference point is different from the equidistant point. Further, it further includes a step of calculating a virtual plane based on the acquired three-dimensional coordinates of the equidistant point and the reference three-dimensional coordinates, and the covering is based on the three-dimensional coordinates of the surface of the covering material and the virtual plane. More preferably, the thickness of the material is calculated.
The "virtual plane" refers to a plane whose distance to the target surface is known and is parallel to the target surface, and preferably includes the reference three-dimensional coordinates, but may not be included.
When the thickness of the covering material is calculated based on the virtual plane as described above, the thickness of the covering material can be calculated by calculating the distance between the virtual plane and the surface of the covering material. In particular, when the virtual plane includes at least a plane in which the target surface is translated in the direction perpendicular to the target surface, the thickness of the entire covering material can be calculated by one calculation. After applying the covering material in this way, the thickness of the entire covering material can be calculated by one measurement, which is preferable.
 本発明の被覆材の厚さ計測方法であって、前記施工形状を取得する工程の前に、前記被覆材上または前記被覆材の近傍に基準マーカーを設置する工程を有し、前記基準三次元座標は前記基準マーカー上の三次元座標であるのが好ましい。この場合、基準マーカーを3以上設置し、各基準マーカーに少なくとも一つの基準三次元座標を設定すれば、対象面からの距離が等しい3以上の基準三次元座標が得られるので好ましい。また前記基準マーカーが一方向に延びるピンを有しており、前記基準マーカーを設置する工程が、前記ピンの先端が前記対象面に当接するように前記ピンを前記被覆材に挿通する工程であるのが好ましい。 A method for measuring the thickness of a covering material according to the present invention, which comprises a step of setting a reference marker on the covering material or in the vicinity of the covering material before the step of acquiring the construction shape, and the reference three-dimensional shape. The coordinates are preferably three-dimensional coordinates on the reference marker. In this case, it is preferable to install three or more reference markers and set at least one reference three-dimensional coordinate for each reference marker, because three or more reference three-dimensional coordinates with the same distance from the target surface can be obtained. Further, the reference marker has a pin extending in one direction, and the step of installing the reference marker is a step of inserting the pin into the covering material so that a tip of the pin contacts the target surface. Is preferred.
 本発明の被覆材の厚さ計測方法であって、前記等距離点は、前記被覆材及び前記対象面に隣接もしくは近傍の構造物の表面上の点であることが好ましい。
 ここで「構造物」とは、対象面と平行な面を含む構造物であり、「構造物の表面」とは、その対象面との距離が既知で対象面と平行な面を含んだものをいう。例えば、対象面である壁面と面一の壁面や、対象面である壁面と平行に建てられた柱や梁等の表面である。
 この場合も被覆材の厚さの算出が簡単にできる。特に、構造物の対象面と平行な面と、対象面との距離が、設計図により正確に把握できる場合は、構造物の表面上の等距離点は対象面からの距離が既知であり、等距離点であると同時に基準点とすることが可能である。そのため、基準マーカーを設置する必要がなく、基準マーカーを設置する際の人為的なミスを軽減できる。構造物の対象面と平行な面と対象面との距離が不明な場合は、被覆材上または被覆材近傍に1以上の基準マーカーを設け、構造物の表面上の3点以上の等距離点と、基準マーカー上の基準三次元座標に基づいて、被覆材の厚さを算出できる。
In the method for measuring the thickness of a covering material of the present invention, it is preferable that the equidistant points are points on the surface of the covering material and a structure adjacent to or near the target surface.
Here, the "structure" is a structure including a plane parallel to the target surface, and the "surface of the structure" includes a plane whose distance to the target surface is known and which is parallel to the target surface. To say. For example, it is a wall surface that is flush with the wall surface that is the target surface, or the surface of a pillar or beam that is built in parallel with the wall surface that is the target surface.
Also in this case, the thickness of the covering material can be easily calculated. In particular, if the distance between the target plane and the plane parallel to the target plane of the structure can be accurately grasped from the design drawing, the equidistant points on the surface of the structure are known to be the distance from the target plane, It can be an equidistant point and at the same time a reference point. Therefore, it is not necessary to install the reference marker, and human error when installing the reference marker can be reduced. If the distance between the surface parallel to the target surface of the structure and the target surface is unknown, one or more reference markers are provided on or near the coating material, and three or more equidistant points on the surface of the structure. And, the thickness of the covering material can be calculated based on the reference three-dimensional coordinates on the reference marker.
 本発明の被覆材の厚さ計測方法であって、前記被覆材の厚さの分布を色または濃淡で示した被覆材画像を表示する工程を有することが好ましい。
 このように厚さの分布を色または濃淡で示した被覆材画像は、施工不良の部位を一目で確認することができ、作業の高速化が可能になる。また、品質管理上の被覆材のデータとしても見やすく好ましい。
It is preferable that the method for measuring the thickness of a covering material of the present invention includes a step of displaying a covering material image showing the distribution of the thickness of the covering material in color or shading.
In the covering material image in which the thickness distribution is shown by color or shading in this way, the defective part of construction can be confirmed at a glance, and the work speed can be increased. Also, it is preferable because it is easy to see as the data of the covering material for quality control.
 本発明の被覆材の厚さ計測方法であって、前記被覆材の厚さが所定の範囲から外れている施工不良箇所の有無を判断する工程を有することが好ましい。特に、前記施工不良箇所を、前記被覆材画像に表示する工程を有することが好ましい。
 このように施工不良箇所がわかれば、被覆材の仕上げ処理の特定が簡単である。特に、施工不良判定画像は、作業性も高くなる。
It is preferable that the method for measuring the thickness of the covering material of the present invention includes a step of determining the presence or absence of a construction defective portion where the thickness of the covering material is out of a predetermined range. In particular, it is preferable to have a step of displaying the defective construction site on the covering material image.
If the location of the defective work is known in this way, it is easy to identify the finishing treatment of the covering material. In particular, the work defect determination image has high workability.
 本発明の被覆材の厚さ計測方法であって、被覆材の厚さを前記対象面と関連付けて記憶させる工程を有することが好ましい。特に被覆材画像を前記対象面と関連付けて記憶させる工程を有することが好ましい。なお、前記被覆材を施工する前に、前記対象面の水分率を計測する工程と、前記水分率を被覆材の厚さと関連付けて記憶させる工程とを有することが好ましい。あるいは、前記被覆材を施工する前に、対象面の温度分布を測定する工程と、前記温度分布を被覆材の厚さと関連付けて記憶させる工程とを有することが好ましい。さらに、前記被覆材は吹き付け硬質ウレタンフォーム断熱材であり、前記被覆材の吹き付け条件を取得する工程と、前記吹き付け条件を被覆材の厚さと関連付けて記憶させる工程とを有することが好ましい。
 このように被覆材の厚さと種々のデータとを関連付けて記憶させることにより、被覆材のデータとして管理しやすい。例えば、ビルや集合住宅のように対象面が多数ある場合、管理しやすい。特に、被覆材の厚さと、対象面の水分率、温度分布および/または吹き付け条件とを、関連付けて記憶させることにより、被覆材のデータとして品質管理上一層好ましい。
It is preferable that the method of measuring the thickness of the coating material according to the present invention further includes a step of storing the thickness of the coating material in association with the target surface. In particular, it is preferable to have a step of storing the covering material image in association with the target surface. It is preferable to have a step of measuring the moisture content of the target surface and a step of storing the moisture content in association with the thickness of the coating material before applying the coating material. Alternatively, it is preferable to have a step of measuring the temperature distribution of the target surface and a step of storing the temperature distribution in association with the thickness of the covering material before applying the covering material. Further, it is preferable that the coating material is a sprayed hard urethane foam heat insulating material, and the method includes a step of acquiring a spraying condition of the coating material and a step of storing the spraying condition in association with the thickness of the coating material.
By thus storing the thickness of the covering material and various data in association with each other, it is easy to manage the data as the covering material. For example, when there are many target surfaces such as buildings and apartments, it is easy to manage. In particular, by storing the thickness of the covering material in association with the moisture content, temperature distribution and / or spraying conditions of the target surface, it is more preferable in terms of quality control as the data of the covering material.
 本発明の被覆材の厚さ計測システムは、対象面に施工した被覆材の厚さを計測するシステムであって、三次元計測装置と、データ処理部とを備え、前記三次元計測装置は、前記被覆材の表面の三次元座標、前記対象面からの距離が等しい3点以上の等距離点の三次元座標及び前記対象面からの距離が既知である1点以上の基準点の基準三次元座標を含む施工形状を取得し、前記データ処理部は、前記施工形状に基づいて前記被覆材の厚さを算出することを特徴としている。
 この計測システムを用いることにより、被覆材の厚さを一回の計測で正確に測ることができる。
The coating material thickness measurement system of the present invention is a system for measuring the thickness of a coating material applied to a target surface, including a three-dimensional measuring device and a data processing unit, the three-dimensional measuring device, Three-dimensional coordinates of the surface of the covering material, three-dimensional coordinates of three or more equidistant points having the same distance from the target surface, and reference three-dimensional of one or more reference points whose distance from the target surface is known. The feature is that the construction shape including the coordinates is acquired, and the data processing unit calculates the thickness of the covering material based on the construction shape.
By using this measuring system, the thickness of the covering material can be accurately measured with one measurement.
 本発明の被覆材の厚さ計測システムであって、前記等距離点の前記対象面からの距離が既知であって、前記等距離点が前記基準点でもあることが好ましい。あるいは、本発明の被覆材の厚さ計測システムであって、前記等距離点の前記対象面からの距離が未知であって、前記基準点が前記等距離点と異なる点であることが好ましい。 In the coating material thickness measurement system of the present invention, it is preferable that the distance of the equidistant point from the target surface is known, and the equidistant point is also the reference point. Alternatively, in the coating material thickness measurement system of the present invention, it is preferable that the distance of the equidistant point from the target surface is unknown and the reference point is different from the equidistant point.
 本発明の被覆材の厚さ計測システムであって、前記被覆材上または前記被覆材の近傍に設置される基準マーカーをさらに備えており、前記データ処理部は、前記施工形状から色又は形状の特徴に基づいて前記基準マーカーを認識するものが好ましい。
 このように施工形状から基準マーカーを自動認識させると同時に、前記基準マーカー上の三次元座標を前記基準三次元座標と認識させることにより、基準マーカーの認識を正確かつ迅速にできる。
The coating material thickness measuring system of the present invention further includes a reference marker installed on or in the vicinity of the coating material, and the data processing unit is a color or shape from the construction shape. Those that recognize the reference marker based on characteristics are preferable.
By automatically recognizing the reference marker from the construction shape and at the same time recognizing the three-dimensional coordinates on the reference marker as the reference three-dimensional coordinates, the reference marker can be recognized accurately and quickly.
 本発明の被覆材の厚さ計測システムの第2の態様は、対象面に施工した被覆材の厚さを計測するシステムであって、三次元計測装置と、データ処理部と、使用者が身に付け、使用者の眼前に設けられる表示部とを備え、前記データ処理部は、前記三次元計測装置で取得した前記被覆材の表面の三次元座標、前記対象面からの距離が等しい3点以上の等距離点の三次元座標及び前記対象面からの距離が既知である1点以上の基準点の基準三次元座標に基づいて前記被覆材の厚さを算出し、前記被覆材の厚さの分布を示した被覆材画像を算出し、前記表示部において、使用者の視界における被覆材上に、前記被覆材画像をオーバーラップさせて表示することを特徴としている。
 本発明の被覆材の厚さ計測システムの第2の態様において、前記等距離点の前記対象面からの距離が既知であって、前記等距離点が前記基準点でもあることが好ましい。あるいは、本発明の被覆材の厚さ計測システムの第2の態様において、前記等距離点の前記対象面からの距離が未知であって、前記基準点が前記等距離点と異なる点であることが好ましい。
 本発明の被覆材の厚さ計測システムの第2の態様は、使用者が表示部を備えたデバイスを装着することにより、使用者は現場で被覆材の厚さを確認できる。そのため、仕上げ作業時間を短縮させることができる。
A second aspect of the coating material thickness measuring system of the present invention is a system for measuring the thickness of a coating material applied to a target surface, which includes a three-dimensional measuring device, a data processing unit, and a user. The data processing unit is provided with a display unit provided in front of the user's eyes, and the data processing unit has three points where the three-dimensional coordinates of the surface of the covering material acquired by the three-dimensional measuring device and the distance from the target surface are the same. The thickness of the covering material is calculated based on the three-dimensional coordinates of the above equidistant points and the reference three-dimensional coordinates of one or more reference points whose distances from the target surface are known, and the thickness of the covering material. Is calculated, and the display unit displays the covering material image in an overlapping manner on the covering material in the field of view of the user.
In the second aspect of the coating thickness measuring system of the present invention, it is preferable that the distance of the equidistant point from the target surface is known and the equidistant point is also the reference point. Alternatively, in the second aspect of the coating material thickness measuring system of the present invention, the distance of the equidistant point from the target surface is unknown, and the reference point is different from the equidistant point. Is preferable.
According to the second aspect of the coating material thickness measuring system of the present invention, the user can confirm the thickness of the coating material on site by mounting the device equipped with the display unit by the user. Therefore, the finishing work time can be shortened.
 このような被覆材の三次元形状の計測システムにおいて、前記使用者の眼の視界方向を撮影する画像取得部を備え、前記画像取得部が撮影した画像上の前記被覆材の表面に前記被覆材画像をオーバーラップさせるものが好ましい。
 さらに、前記の三次元計測装置、表示部、データ処理部を一体的に構成し、なおかつ使用者が装着可能なウェアラブルコンピュータシステムとすることがより好ましい。例えば、ヘッドマウントディスプレイ(HMD)やスマートグラスのような頭部装着型デバイスを用いてもよい。これにより、施工後の仕上げ作業をリアルタイムで確認しながら行うことができる。これにより、作業者の熟練度が低い場合でも、施工の失敗・やり直しがなく、被覆材を均一の厚さに施工できる。また、従来仕上げ作業の度に繰り返し必要だった施工後の厚さチェック作業も不要となる。
In such a three-dimensional shape measuring system for a covering material, an image acquiring unit for photographing the visual field direction of the user's eye is provided, and the covering material is provided on the surface of the covering material on the image photographed by the image acquiring unit. Those that overlap the images are preferred.
Further, it is more preferable that the three-dimensional measuring device, the display unit, and the data processing unit are integrally configured to form a wearable computer system that can be worn by the user. For example, a head-mounted device such as a head-mounted display (HMD) or smart glasses may be used. This makes it possible to perform the finishing work after construction while checking it in real time. As a result, even if the skill level of the operator is low, the coating material can be applied to a uniform thickness without failure or redone of the installation. In addition, the thickness check work after construction, which was conventionally required repeatedly for each finishing work, becomes unnecessary.
 本発明の被覆材の施工方法は、対象面に被覆材を施工する方法であって、前記対象面に前記被覆材を施工する工程と、前記被覆材の表面の三次元座標、前記対象面からの距離が等しい3点以上の等距離点の三次元座標および前記対象面からの距離が既知である1点以上の基準点の基準三次元座標を取得する工程と、前記被覆材の表面の三次元座標、前記等距離点の三次元座標および前記基準三次元座標に基づいて前記被覆材の厚さを算出する工程と、前記被覆材の厚さが所定の範囲から外れている施工不良箇所の有無を判断する工程とを有することを特徴としている。
 本発明の被覆材の施工方法であって、前記等距離点の前記対象面からの距離が既知であって、前記等距離点が前記基準点でもあるものが好ましい。あるいは、本発明の被覆材の施工方法であって、前記等距離点の前記対象面からの距離が未知であって、前記基準点が前記等距離点と異なる点であることが好ましい。
 本発明の被覆材の施工方法は、本発明の厚さ計測方法を用いているため、施工不良個所を一目で確認することができ、作業者の熟練度に限らず、均一な品質の被覆材を提供することができる。
The method of applying a coating material of the present invention is a method of applying a coating material to a target surface, the step of applying the coating material to the target surface, the three-dimensional coordinates of the surface of the coating material, from the target surface The step of acquiring the three-dimensional coordinates of three or more equidistant points having the same distance and the reference three-dimensional coordinates of one or more reference points whose distances from the target surface are known, and the tertiary of the surface of the covering material. Original coordinates, a step of calculating the thickness of the covering material based on the three-dimensional coordinates of the equidistant points and the reference three-dimensional coordinates, and the thickness of the covering material is out of a predetermined range It is characterized by having a step of judging the presence or absence.
It is preferable that the method for constructing the covering material of the present invention is such that the distance of the equidistant point from the target surface is known and the equidistant point is also the reference point. Alternatively, in the method of constructing the covering material of the present invention, it is preferable that the distance of the equidistant point from the target surface is unknown and the reference point is different from the equidistant point.
Since the method of applying the covering material of the present invention uses the method of measuring the thickness of the present invention, it is possible to confirm at a glance the defective part of the coating, and the covering material of uniform quality is not limited to the skill level of the operator. Can be provided.
 本発明によれば、現場の作業者が、施工した被覆材の厚さを一度の計測で把握することができる。そのため、施工不良の部位への仕上げ処理も簡単にできる。さらに、被覆材の品質の客観的なデータとして残すことができる。 According to the present invention, a worker on site can grasp the thickness of the applied covering material with one measurement. Therefore, it is possible to easily perform a finishing process on a portion having a poor construction. Furthermore, it can be left as objective data on the quality of the covering material.
本発明の被覆材の厚さ計測方法の第1の実施形態を示すフローチャートである。It is a flowchart which shows 1st Embodiment of the thickness measuring method of the coating material of this invention. 図2aは施工形状を示す正面図であり、図2bはX-X線断面図であり、図2cは仮想平面を算出した施工形状を示す斜視図である。2a is a front view showing a construction shape, FIG. 2b is a sectional view taken along line XX, and FIG. 2c is a perspective view showing the construction shape in which a virtual plane is calculated. 本発明の被覆材の厚さ計測方法の第2の実施形態を示すフローチャートである。It is a flowchart which shows 2nd Embodiment of the thickness measuring method of the coating material of this invention. 本発明の被覆材の厚さ計測方法の第2の実施形態で用いられる仮想平面を算出した施工形状を示す斜視図である。It is a perspective view which shows the construction shape which calculated the virtual plane used in 2nd Embodiment of the thickness measuring method of the coating material of this invention. 本発明の被覆材の厚さ計測システムの第1の実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of 1st Embodiment of the thickness measuring system of the coating material of this invention. 本発明の被覆材の厚さ計測システムの第4の実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of 4th Embodiment of the thickness measuring system of the coating material of this invention. 断熱材の表面の三次元形状を含む施工形状を示す画像である。It is an image which shows the construction shape containing the three-dimensional shape of the surface of a heat insulating material. 図8a、図8bは、それぞれ断熱材の厚さの分布を示す被覆材画像である。8a and 8b are covering material images showing the distribution of the thickness of the heat insulating material. 本発明の被覆材の厚さ計測方法の第3の実施形態を示すフローチャートである。It is a flowchart which shows 3rd Embodiment of the thickness measuring method of the coating material of this invention. 本発明の被覆材の厚さ計測方法の第3の実施形態で用いられる仮想平面を算出した施工形状を示す斜視図である。It is a perspective view which shows the construction shape which calculated the virtual plane used in the 3rd Embodiment of the thickness measurement method of the covering material of this invention.
 次に、図1のフローチャートを参照して、対象面に施工した被覆材の厚さを計測する方法(以下、厚さ計測方法とする)の第1の実施形態について説明する。
 本実施形態では、対象面からの距離が既知で等しい3点以上の三次元座標に基づいて被覆材の厚さを算出する。この3点以上の点は、対象面からの距離が等しい等距離点であると同時に、対象面からの距離が既知である基準点でもある。
Next, a first embodiment of a method for measuring the thickness of a covering material applied to a target surface (hereinafter referred to as a thickness measuring method) will be described with reference to the flowchart of FIG.
In the present embodiment, the thickness of the covering material is calculated based on three-dimensional coordinates of three or more points whose distances from the target surface are known and equal. These three or more points are equidistant points having the same distance from the target surface, and at the same time, are reference points whose distances from the target surface are known.
 初めに、実施形態の厚さ計測方法が計測する被覆材は、作業者等が、現場において対象面に施工することによって被覆するものである。
 対象面(施工面)としては、建築物の壁、床、屋根、天井、屋上などが挙げられ、特に屋根・天井のような厚さ測定の難しい部位に有用である。
First, the covering material measured by the thickness measuring method of the embodiment is covered by an operator or the like by applying it to the target surface at the site.
Examples of the target surface (construction surface) include walls, floors, roofs, ceilings, rooftops, etc. of buildings, and are particularly useful for parts where thickness measurement is difficult, such as roofs and ceilings.
 被覆材としては、断熱材、耐火材、防水材、一般建材(FRP、FRC、FRG)等が挙げられる。断熱材としては、軟質または硬質ウレタンフォーム、ロックウール、セルロースファイバー等が挙げられる。特に、吹き付け工法によって施工される現場発泡型の硬質ウレタンフォーム(例えばJISA9526に規定される硬質ウレタンフォーム)が好ましい。オクチル酸カリウムやオクチル酸鉛を用いた反応速度の速い吹付ウレタンフォームは、対象面に吹き付けた発泡原液が、発泡倍率20倍~120倍程度に不規則に膨張するため、熟練者であっても均一な厚さ(10~200mm程度)に施工するのが難しいうえ、施工厚さが断熱性能に直接影響するからである。一方、防水材としては、ウレタン系、FRP系、アクリルゴム系、アクリル系樹脂等が挙げられる。 As the covering material, heat insulating material, fireproof material, waterproof material, general building material (FRP, FRC, FRG) and the like can be mentioned. Examples of the heat insulating material include soft or hard urethane foam, rock wool, and cellulose fiber. In particular, an on-site foaming type hard urethane foam (for example, a hard urethane foam defined in JIS A9526) constructed by the spraying method is preferable. With urethane foam with a high reaction rate using potassium octylate or lead octylate, the undiluted foaming solution sprayed on the target surface expands irregularly to a foaming ratio of 20 to 120 times, so even an expert can This is because it is difficult to apply a uniform thickness (about 10 to 200 mm), and the applied thickness directly affects the heat insulation performance. On the other hand, examples of the waterproof material include urethane-based, FRP-based, acrylic rubber-based, acrylic resin and the like.
 施工方法については、吹き付け(スプレー)または塗布が挙げられる。特に、吹き付けで施工する被覆材は、施工後の厚さが塗布に比べて均一な厚さにすることが難しいため、本発明の厚さ計測方法に適している。  As for the construction method, spraying or application can be mentioned. In particular, the coating material applied by spraying is suitable for the thickness measuring method of the present invention because it is difficult to make the thickness after application uniform as compared with the coating.
 次に工程について説明する。厚さ計測方法は、図1のフローチャートに示すように、基準マーカーを設置する工程(第1工程)と、被覆材の表面の三次元座標及び3点以上の基準点の基準三次元座標を含む施工形状を取得する工程と(第2工程)と、仮想平面を算出する工程(第3工程)と、被覆材の厚さを算出する工程(第4工程)と、被覆材画像を表示する工程(第5工程)と、被覆材画像に基づいて仕上げ処理が必要かを判断する工程(第6工程)と、仕上げ処理が必要であると判断した場合、仕上げ処理を行う工程(第7工程)と、仕上げ処理が必要でないと判断した場合、被覆材の三次元データを対象面と関連付けて記憶させる工程(第8工程)とを有する。 Next, the process will be explained. As shown in the flowchart of FIG. 1, the thickness measuring method includes a step of setting a reference marker (first step), three-dimensional coordinates of the surface of the covering material, and reference three-dimensional coordinates of three or more reference points. A step of acquiring a construction shape (second step), a step of calculating a virtual plane (third step), a step of calculating the thickness of the covering material (fourth step), and a step of displaying the covering material image. (Fifth step), a step of determining whether finishing processing is necessary based on the covering material image (sixth step), and a step of performing finishing processing when it is determined that finishing processing is necessary (seventh step) And a step (eighth step) of storing the three-dimensional data of the covering material in association with the target surface when it is determined that the finishing process is not necessary.
 第1工程は、被覆材上に基準マーカーを設置する。詳しくは、被覆材上であって、対象面から所定の距離だけ離れた位置に基準マーカーを設置する。例えば、図2a、bにおいて、符号11は壁(対象面)であり、符号12は被覆材であり、符号13は円板状の基準マーカーである。この基準マーカーは、第3工程における仮想平面を算出するときの基準となる基準点及びその基準三次元座標を与える。なお、以下において、対象面と基準点との距離を「基準距離」ということがある。 In the first step, a reference marker is set on the covering material. Specifically, the reference marker is installed on the covering material at a position separated from the target surface by a predetermined distance. For example, in FIGS. 2a and 2b, reference numeral 11 is a wall (target surface), reference numeral 12 is a covering material, and reference numeral 13 is a disc-shaped reference marker. This reference marker gives a reference point that serves as a reference when calculating the virtual plane in the third step and its reference three-dimensional coordinates. In the following, the distance between the target surface and the reference point may be referred to as “reference distance”.
 基準マーカー13は、例えば、図2bに示すように、ピン13aの頭に設ける。そして、ピン13aが対象面に対して垂直となるように(ピン13aの頭の平面が対象面と平行になるように)ピン13aを被覆材12に刺して、ピン13aの先端を対象面に当接させることにより、基準マーカー13を被覆材12上に設けることができる。このときの基準マーカー13から壁11までの距離をL(ピンの長さ+基準マーカー13の厚さ)とする。つまり、基準マーカー13から対象面におろした垂線の長さが距離Lとなり、基準マーカー上の任意の点を基準三次元座標とすることができる。なお、ピン13aの長さは、予定している被覆材12の厚さに対して、実質的に同じか、若干大きくする。これにより、基準マーカー13が予定された厚さに施工されている被覆材12内に埋もれることがない。 The reference marker 13 is provided on the head of the pin 13a, for example, as shown in FIG. 2b. Then, the pin 13a is pierced into the covering material 12 so that the pin 13a is perpendicular to the target surface (so that the plane of the head of the pin 13a is parallel to the target surface), and the tip of the pin 13a is aimed at the target surface. By making contact with each other, the reference marker 13 can be provided on the covering material 12. The distance from the reference marker 13 to the wall 11 at this time is L (pin length+thickness of the reference marker 13). That is, the length of the perpendicular line drawn from the reference marker 13 to the target surface becomes the distance L, and any point on the reference marker can be set as the reference three-dimensional coordinate. The length of the pin 13a is substantially the same as or slightly larger than the planned thickness of the covering material 12. As a result, the reference marker 13 is not buried in the covering material 12 that has been constructed to a predetermined thickness.
 図2では基準マーカー13を4つ設け、各基準マーカーに少なくとも1つの基準三次元座標を設定しており、仮想平面を推定するためには基準マーカーを3つ以上設けるのが好ましい。しかし、複数の基準三次元座標を一つの基準マーカーに設定することにより、基準マーカーを1つまたは2つとしても構わない。求められる精度に応じて適宜決定することができる。複数の基準マーカーを設ける場合、全ての基準マーカーが対象面からの距離が同じとなるように設置する。
 基準マーカー13としては、円板状のものを挙げたが、球体やキューブ、三角や四角等の多角形の平板などが挙げられる。基準マーカー13の形状は、特に限定されるものではないが、上記列挙したような幾何的特徴を有していれば画像処理で自動認識しやすいため好ましい。また、所定の色の基準マーカーを用いるのが好ましい。例えば、基準マーカーの頭部を赤、青、緑等の被覆材を背景として識別しやすい所定の色にしておけば、色の特徴を手掛かりに基準マーカーを自動認識することが容易となる。なお、平板を用いる場合、設置したとき、その平板が対象面と平行であるようにすることが重要となる。
 また基準マーカー13を支持するピン13aも、特に限定されない。例えば、3本以上のピンで基準マーカーを支持してもよい。この場合、3本のピンの先端を対象面(壁11)と当接させるように被覆材12に刺すことにより、3本のピン13aを対象面に対して垂直とすることができ、作業者は、簡単に基準マーカーを対象面から所定の距離に設置することができる。
In FIG. 2, four reference markers 13 are provided, and at least one reference three-dimensional coordinate is set for each reference marker. In order to estimate the virtual plane, it is preferable to provide three or more reference markers. However, one or two reference markers may be provided by setting a plurality of reference three-dimensional coordinates in one reference marker. It can be appropriately determined according to the required accuracy. When a plurality of reference markers are provided, all the reference markers should be installed at the same distance from the target surface.
The reference marker 13 is a disk-shaped one, but may be a sphere, a cube, or a polygonal flat plate such as a triangle or a square. The shape of the reference marker 13 is not particularly limited, but it is preferable if it has the geometric features as listed above because it can be easily recognized automatically by image processing. Further, it is preferable to use a reference marker of a predetermined color. For example, if the head of the reference marker is set to a predetermined color that can be easily identified with a covering material such as red, blue, or green as a background, it becomes easy to automatically recognize the reference marker by using the color feature as a clue. When a flat plate is used, it is important that the flat plate be parallel to the target surface when installed.
Further, the pin 13a that supports the reference marker 13 is not particularly limited. For example, the reference marker may be supported by three or more pins. In this case, the three pins 13a can be made perpendicular to the target surface by piercing the covering material 12 so that the tips of the three pins come into contact with the target surface (wall 11). Can easily place the reference marker at a predetermined distance from the target surface.
 第2工程は、被覆材の表面の三次元座標及び対象面から距離が既知で実質的に同じである3点以上の基準点の基準三次元座標を含む施工形状を取得する。詳しくは、被覆材12の表面の三次元座標および基準マーカー13の表面の三次元座標を含む施工形状を取得する。例えば、図2a、図2bの施工形状10は、被覆材12の三次元座標および4つの基準マーカー13の表面の三次元座標(基準三次元座標)を含む。
 「施工形状の取得」とは、例えば、対象面の三次元形状を三次元座標の集合によって取得することをいう。例えば、三次元計測装置等で対象面をスキャンした点群データが挙げられる。
The second step is to obtain a construction shape including the three-dimensional coordinates of the surface of the covering material and the reference three-dimensional coordinates of three or more reference points whose distances from the target surface are known and are substantially the same. Specifically, the construction shape including the three-dimensional coordinates of the surface of the covering material 12 and the three-dimensional coordinates of the surface of the reference marker 13 is acquired. For example, the construction shape 10 of FIGS. 2a and 2b includes the three-dimensional coordinates of the covering material 12 and the three-dimensional coordinates of the surfaces of the four reference markers 13 (reference three-dimensional coordinates).
“Acquisition of construction shape” means acquisition of the three-dimensional shape of the target surface by a set of three-dimensional coordinates, for example. For example, point cloud data obtained by scanning the target surface with a three-dimensional measuring device or the like can be mentioned.
 三次元計測装置としては、三次元スキャナーやステレオカメラ等の三次元計測装置で取得する。三次元スキャナーは、対象面にレーザー光を当てて、その反射光によって対象面の三次元形状を算出するもの(いわゆるLIDAR方式)や照射した光が反射して返ってくるまでの時間で距離を計測するもの(TOF方式)等がある。一方、ステレオカメラは、2台のカメラによって撮像した対象面の画像から三角測量の原理で三次元形状を算出するものであり、2台のカメラ画像のマッチング精度を高めるために別途プロジェクターで計測用パターンを投影する手法や2台のカメラのうち片方をパターン光を投影するプロジェクターに置き換えた手法も存在する(いわゆるアクティブステレオ法)。計測精度、計測速度およびコストを考慮し適切な装置を選択すればよいが、対象面がある屋内の間取りは、建築物によって様々であるため、精度が比較的安定しているLIDAR方式の三次元スキャナーが好ましい。一方で、現場でスキャナーを設置する煩雑さを考慮すると、広い対象面を一度に撮像できるアクティブステレオ方式のハンディスキャナーが好ましい。
 また、施工形状には対象の色情報が含むことが好ましい。例えば、三次元計測にカラーカメラを用いる場合は、三次元座標と同時にカラー画像も取得することができ、色情報を付加した点群データを生成できる。施工形状の色情報に基づいて基準マーカーや被覆材領域を認識することができる。
As the three-dimensional measuring device, it is acquired by a three-dimensional measuring device such as a three-dimensional scanner or a stereo camera. A three-dimensional scanner irradiates a target surface with laser light and calculates the three-dimensional shape of the target surface based on the reflected light (so-called LIDAR method), and measures the distance by the time it takes for the irradiated light to be reflected and returned. There is something to measure (TOF method). On the other hand, the stereo camera calculates the three-dimensional shape from the images of the target surface captured by the two cameras based on the principle of triangular measurement, and is separately measured by a projector in order to improve the matching accuracy of the images of the two cameras. There is also a method of projecting a pattern or a method of replacing one of the two cameras with a projector that projects pattern light (so-called active stereo method). Although it is sufficient to select an appropriate device in consideration of measurement accuracy, measurement speed, and cost, the floor plan of the room with the target surface varies depending on the building, so the accuracy is relatively stable. A scanner is preferred. On the other hand, considering the complexity of installing a scanner on site, an active stereo type handy scanner capable of capturing a wide target surface at a time is preferable.
Further, it is preferable that the construction shape includes target color information. For example, when a color camera is used for three-dimensional measurement, a color image can be acquired at the same time as the three-dimensional coordinates, and point cloud data to which color information is added can be generated. The reference marker and the covering material area can be recognized based on the color information of the construction shape.
 第3工程は、仮想平面を算出する。詳しくは、基準マーカー13(基準三次元座標)に基づいて、対象面を対象面に対して垂直方向に所定の距離だけ平行移動させた仮想平面Sを施工形状内に算出する。なお、基準三次元座標に基づいて対象面を算出してもよい。 ③ In the third step, a virtual plane is calculated. Specifically, based on the reference marker 13 (reference three-dimensional coordinates), the virtual plane S obtained by translating the target surface in parallel with the target surface by a predetermined distance in the vertical direction is calculated within the construction shape. The target surface may be calculated based on the reference three-dimensional coordinates.
 図2cは、仮想平面Sを算出した施工形状10aである。仮想平面Sの算出方法は、対象面(壁11)から所定の距離に離れた4つの基準マーカー13を用いる。
 具体的には、まず施工形状の中から色や形状の特徴に基づいて4つの基準マーカーを認識する。例えば、赤色の基準マーカーを用いた場合は、施工形状から赤色の領域を基準マーカーとして認識することができる。このような認識は、作業者が手動で画面上の基準マーカーの位置を指示してもよく、コンピューターの処理部に自動的に認識させてもよい。
 次に認識した4つの基準マーカーから3点以上の基準三次元座標を抽出する。例えば、各基準マーカーの重心座標をそれぞれ基準三次元座標としてもよい。必ずしも4つの基準マーカー全てを用いる必要はなく、1つの基準マーカー上から複数の基準三次元座標を抽出してもよい。次に、抽出した3点以上の基準三次元座標に基づいて平面S1を推定する。このとき、三次元計測装置の計測誤差や、基準マーカーの対象面に対する傾き等の影響で、各基準三次元座標は厳密には同一平面上には乗らないことが予想される。そこで、複数の基準三次元座標に対して平面をフィッティングすればよい。これには既知の手法を用いることができる。例えば、最小二乗法で複数の基準三次元座標に対して最小二乗平面を求めればよい。この平面S1は、壁11と平行であり、かつ、所定の距離Lだけ離れている。この平面S1を、対象面を対象面に対して垂直方向に所定の距離だけ平行移動させた位置および大きさまで拡大させることによって仮想平面Sを算出する。仮想平面Sは、対象面から所定の基準厚さだけ離れた位置に算出してもよい。このとき被覆材が基準厚さ通りに施工されていれば、被覆材表面は仮想平面Sと一致する。
FIG. 2c is a construction shape 10a in which the virtual plane S is calculated. The calculation method of the virtual plane S uses four reference markers 13 separated from the target surface (wall 11) at a predetermined distance.
Specifically, first, four reference markers are recognized from the construction shapes based on the characteristics of the color and shape. For example, when a red reference marker is used, the red region can be recognized as a reference marker from the construction shape. For such recognition, the operator may manually indicate the position of the reference marker on the screen, or the processing unit of the computer may automatically recognize the position.
Next, three or more reference three-dimensional coordinates are extracted from the recognized four reference markers. For example, the barycentric coordinates of each reference marker may be the reference three-dimensional coordinates. It is not always necessary to use all four reference markers, and a plurality of reference three-dimensional coordinates may be extracted from one reference marker. Next, the plane S1 is estimated based on the extracted three or more reference three-dimensional coordinates. At this time, it is expected that the respective reference three-dimensional coordinates will not strictly be on the same plane due to the measurement error of the three-dimensional measuring device and the influence of the inclination of the reference marker with respect to the target surface. Therefore, the plane may be fitted to the plurality of reference three-dimensional coordinates. Known techniques can be used for this. For example, the least squares method may be used to obtain the least squares plane for a plurality of reference three-dimensional coordinates. This plane S1 is parallel to the wall 11 and is separated by a predetermined distance L. The virtual plane S is calculated by expanding the plane S1 to a position and size obtained by translating the target plane in the direction perpendicular to the target plane by a predetermined distance. The virtual plane S may be calculated at a position separated from the target surface by a predetermined reference thickness. At this time, if the covering material is constructed according to the reference thickness, the surface of the covering material coincides with the virtual plane S.
 第4工程は、被覆材の厚さを算出する。詳しくは、仮想平面を算出した施工形状において、被覆材の表面の三次元座標と基準三次元座標に基づいて算出された仮想平面に基づいて被覆材の厚さを算出する。
 具体的には、対象面に対する垂直線と交差する被覆材の表面の点および仮想平面の点の距離を算出し、対象面に対する仮想平面の距離Lを考慮して当該被覆材の表面の点の厚さを算出する。つまり、図2cに示すように、対象面に対する垂直線V1と交差する被覆材の表面の点C1と、それに対応する仮想平面の点T1の距離がZ1であり、点C1が仮想平面Sに覆われている場合、被覆材の点C1の厚さは、L-Z1となる。一方、対象面に対する垂直線と交差する被覆材の表面の点C2と、それに対応する仮想平面の点T2の距離がZ2であり、点C2が仮想平面Sから突出している場合、被覆材の点C2の厚さは、L+Z2となる(図示せず)。この方式で被覆材の全領域における厚さを算出することができる。このような計算は、被覆材の表面の点群座標および仮想表面の点群座標を減算して求めてもよく、点群からメッシュに変換して面同士の計算によって差分を計算してもよい。
The fourth step is to calculate the thickness of the covering material. Specifically, in the construction shape for which the virtual plane is calculated, the thickness of the covering material is calculated based on the virtual plane calculated based on the three-dimensional coordinates of the surface of the covering material and the reference three-dimensional coordinates.
Specifically, the distances between the points on the surface of the covering material and the points on the virtual plane that intersect the vertical line with respect to the target surface are calculated, and the distance L on the virtual plane with respect to the target surface is taken into consideration to determine the points on the surface of the covering material. Calculate the thickness. That is, as shown in FIG. 2c, the distance between the point C1 on the surface of the covering material intersecting the vertical line V1 with respect to the target surface and the corresponding point T1 on the virtual plane is Z1, and the point C1 covers the virtual plane S. If so, the thickness of the point C1 of the covering material is LZ1. On the other hand, when the distance between the point C2 on the surface of the covering material that intersects the vertical line with respect to the target surface and the point T2 on the corresponding virtual plane is Z2, and the point C2 protrudes from the virtual plane S, the point of the covering material. The thickness of C2 is L + Z2 (not shown). With this method, the thickness of the covering material in the entire region can be calculated. Such a calculation may be obtained by subtracting the point cloud coordinates of the surface of the covering material and the point cloud coordinates of the virtual surface, or the difference may be calculated by converting the point cloud to a mesh and calculating the faces. ..
 第5工程は、被覆材画像を表示する。詳しくは、被覆材の表面を表示した画像であって、被覆材の厚さの分布を色または濃淡で示した被覆材画像を算出し、表示する。
 被覆材の表面を表示した画像としては、三次元的に表現したパースペクティブ画像や、施工形状を所定の平面(例えば、対象面と平行な平面)に投影した二次元画像が挙げられる。
In the fifth step, the covering material image is displayed. More specifically, it is an image showing the surface of the covering material, and a covering material image showing the distribution of the thickness of the covering material in color or shading is calculated and displayed.
Examples of the image displaying the surface of the covering material include a perspective image expressed three-dimensionally and a two-dimensional image obtained by projecting the construction shape on a predetermined plane (for example, a plane parallel to the target surface).
 第6工程は、被覆材画像に基づいて仕上げ処理が必要かを判断する。詳しくは、被覆材画像に基づいて、被覆材の厚さが所定の範囲から外れている施工不良箇所の有無を確認し、施工不良箇所がある場合、仕上げ処理が必要と判断し、施工不良箇所が無い場合は、仕上げ処理が不必要と判断する。またその被覆材の部位が所定の基準厚さからどれだけ厚いか、または、薄いかを算出し、厚さが所定の範囲内かどうかで判定する。被覆材を断熱材とする場合、その施工基準の一例としては、基準厚さ30mmに対して-0mm~+20mmの範囲である(基準より薄い部分は不良、厚い部分は20mmまで許容する)。より厳しく-0mm~+5mmの範囲と設定することもできる。例えば、第5工程の被覆材画像において、施工不良箇所を色または濃淡で示して表示してもよい(施工不良判定画像)。また例えば、被覆材画像において、引き出し線でその部位を特定し、その部位が所定値からどれだけずれているかの数値を示してもよい。このように施工不良箇所を特定し、かつ、その不良度合を明確にすることにより、第7工程の仕上げ処理を行いやすい。
 そして、仕上げ処理が必要であると判定した場合、第7工程に行き、仕上げ処理が不必要であると判定した場合、第8工程に行く。
In the sixth step, it is determined whether the finishing process is necessary based on the image of the covering material. Specifically, based on the covering material image, it is confirmed whether there is a construction defective part where the thickness of the covering material is out of the predetermined range, and if there is a construction defective part, it is judged that finishing treatment is necessary, and the construction defective part is determined. If not, it is judged that the finishing process is unnecessary. Further, it is calculated how thick or thin the part of the covering material is from a predetermined reference thickness, and it is determined whether or not the thickness is within a predetermined range. When the covering material is a heat insulating material, an example of the construction standard is a range of −0 mm to +20 mm with respect to the standard thickness of 30 mm (a portion thinner than the standard is defective, and a thick portion is allowed up to 20 mm). It can be set more strictly in the range of −0 mm to +5 mm. For example, in the covering material image of the fifth step, the defective construction portion may be displayed in color or shade (construction defectiveness determination image). Further, for example, in the covering material image, the portion may be specified by a lead line, and a numerical value indicating how much the portion deviates from a predetermined value may be indicated. In this way, by specifying the defective location and clarifying the degree of failure, it is easy to perform the finishing process in the seventh step.
Then, when it is determined that the finishing process is necessary, the process goes to the seventh step, and when it is determined that the finishing process is unnecessary, the process goes to the eighth step.
 第7工程は、仕上げ処理が必要であると判断した場合、仕上げ処理を行う。つまり、第6工程において、仕上げ処理が必要であると判断された場合、仕上げ処理が必要である部位に、被覆材の厚さが所定の範囲となるように仕上げ処理を行う。詳しくは、所定の範囲より厚い部分についてはその余剰分を切削し、所定の範囲より薄い部分については追加で吹き付けたり、塗布したりする。なお、仕上げ処理を行った後は、第2工程に戻り、その施工形状を取得する。
 その後、第6工程において、仕上げ処理が不必要となるまで第2工程から第7工程を繰り返す。
A 7th process performs a finishing process, when it determines that a finishing process is required. That is, in the sixth step, when it is determined that the finishing process is necessary, the finishing process is performed on the portion requiring the finishing process so that the thickness of the covering material falls within the predetermined range. Specifically, the surplus is cut for a portion thicker than a predetermined range, and additional spraying or coating is applied to a portion thinner than a predetermined range. In addition, after performing the finishing process, the process returns to the second step to acquire the construction shape.
Then, in the sixth step, the second to seventh steps are repeated until the finishing process is unnecessary.
 第8工程は、仕上げ処理が必要でないと判断した場合、被覆材の表面の三次元形状および被覆材の厚さ、特に、被覆材画像と、対象面と関連付けてデータベースとして記憶させる。つまり、第6工程において、仕上げ処理が必要でないと判断された場合、被覆材の施工を完了し、そのデータを保存する。例えば、102号室の東側の壁等のように対象面の位置情報や識別情報と、被覆材画像とを関連付けて記憶させておくことにより、対象面(壁)毎に管理するデータベースのデータとすることができる。また、建築物の3DCADデータが存在する場合は、当該3DCADデータに関連付けて記憶することが好ましい。特に、近年提唱されているBIM(Building Information Modeling)と関連付けて記憶することでより効率的な工程管理・品質管理が可能である。特に、ビルや集合住宅のように対象面が多数ある場合、管理しやすい。なお、仕上げ前の三次元形状も一緒に保存してもよい。これにより、作業の過程を追跡することができる。
 なお、これらのデータは、例えば、パスワードでセキュリティを設定し編集不可の電子ファイルとして保存するのが好ましい。特に、タイムスタンプを付与して非改ざん証明および時刻証明を行った電子ファイルとするのが好ましい。このように編集不可の電子ファイルとすることにより、データの客観性を保つことができる。
In the eighth step, when it is determined that the finishing process is not necessary, the three-dimensional shape of the surface of the covering material and the thickness of the covering material, in particular, the covering material image and the target surface are stored as a database. That is, in the sixth step, when it is determined that the finishing process is not necessary, the construction of the covering material is completed and the data is saved. For example, by storing the position information and identification information of the target surface in association with the covering material image, such as the wall on the east side of Room 102, the data of the database managed for each target surface (wall) can be obtained. be able to. Moreover, when 3D CAD data of the building exists, it is preferable to store the 3D CAD data in association with the 3D CAD data. In particular, more efficient process control/quality control is possible by storing the BIM (Building Information Modeling) that has been proposed in recent years in association with the BIM (Building Information Modeling). In particular, it is easy to manage when there are many target surfaces such as buildings and apartments. The three-dimensional shape before finishing may be stored together. This makes it possible to track the work process.
Note that these data are preferably stored as an electronic file that cannot be edited with security set with a password, for example. In particular, it is preferable that the electronic file is a non-falsification proof and a time proof by adding a time stamp. By making the electronic file non-editable in this way, the objectivity of the data can be maintained.
 このように本実施形態の被覆材の厚さ計測方法は、基準三次元座標に基づいて対象面を対象面に対して垂直方向に所定の距離だけ平行移動させた仮想平面を施工形状内に算出し、被覆材の表面と仮想平面とから被覆材の厚さを算出しているため、ピン等を刺しながら被覆材の厚さを計測することなく、被覆材の施工後、1回の計測で、被覆材全体の厚さがわかる。また被覆材の仕上げ処理も簡単である。特に、被覆材画像とすることにより、仕上げ処理の場所の特定が簡単になる。
 この厚さ計測方法を用いた被覆材の施工方法は、作業者の熟練度に限らず、均一な品質の被覆材を提供することができる。
As described above, the method for measuring the thickness of the covering material according to the present embodiment calculates a virtual plane in which the target surface is translated in the vertical direction with respect to the target surface by a predetermined distance based on the reference three-dimensional coordinates within the construction shape. However, since the thickness of the covering material is calculated from the surface of the covering material and the virtual plane, the thickness of the covering material is not measured while piercing a pin etc. , The total thickness of the covering material is known. Further, the finishing treatment of the covering material is also easy. Particularly, by using the covering material image, the location of the finishing process can be easily specified.
The method of constructing the covering material using this thickness measuring method is not limited to the skill level of the operator, and can provide a covering material of uniform quality.
 基準マーカーを用いた第1の実施形態の被覆材の厚さ計測方法は、上記に限定されるものではない。
 例えば、基準マーカーを設置する工程(第1工程)において、被覆材上に基準マーカーを設置しているが、被覆材の近傍に基準マーカーを設置してもよい。例えば、被覆材の周辺の柱に基準マーカーを設置してもよい。どこに基準マーカーを設置するかは、対象面に応じて適宜決めることができる。
 また被覆材画像を作成する工程(第5工程)において、厚さを色または濃淡で示した被覆材画像を挙げているが、厚さによる色または濃淡を設けない被覆材の投影画像あるいは三次元画像(パースペクティブ画像)としてもよい。また第5工程において、画像だけを表示するのではなく、対象面における位置データと、被覆材の厚さデータとを関連付けた表を表示してもよい。
The method for measuring the thickness of the covering material of the first embodiment using the reference marker is not limited to the above.
For example, in the step of installing the reference marker (first step), the reference marker is installed on the covering material, but the reference marker may be installed in the vicinity of the covering material. For example, a reference marker may be placed on a pillar around the covering material. Where to place the reference marker can be appropriately determined according to the target surface.
Further, in the step of creating a covering material image (fifth step), a covering material image in which the thickness is shown by color or shading is given, but a projected image or three-dimensional of the covering material in which no color or shading is provided depending on the thickness. It may be an image (perspective image). Further, in the fifth step, not only the image is displayed, but also a table in which the position data on the target surface and the thickness data of the covering material are associated with each other may be displayed.
 他に、被覆材を施工する前において、対象面の水分率を計測し、その水分率を被覆材の厚さ、特に、被覆材画像と関連付けて記憶させてもよい。硬質ウレタンフォームは、その発泡剤に水が含まれているため、対象面(壁面)に多く水分が含まれていると、反応のバランスが崩れて断熱材としての品質が低下することがある。そのため、断熱材のデータと共に施工前の壁面の水分率を記憶させておくことにより、より詳細なデータベースを構築することができる。水分率の計測には、既存の高周波式水分計「株式会社ケツト科学研究所社製HI-520-2」等を用いることができる。
 また、被覆材を施工する前において、対象面の温度分布を、サーモカメラ等を用いて計測し、その温度分布を被覆材の表面の三次元形状および被覆材の厚さ、特に、被覆材画像と関連付けて記憶させてもよい。硬質ウレタンフォームは、吹付け面の温度が品質に影響することがあるため、品質管理の観点から温度分布と厚さの関係を記憶しておくことが好ましい。この際、サーモカメラで取得した2次元の温度画像を、基準マーカーあるいは構造物に基づいて被覆材の表面の三次元形状にマッピングしてもよい。
 さらに、被覆材の施工の際、吹き付け条件(2液式の硬質ウレタンフォームの場合、2液の混合圧力、混合温度)を連続して取得し、その吹き付け条件を被覆材の表面の三次元形状および被覆材の厚さ、特に、被覆材画像と関連付けて記憶させてもよい。硬質ウレタンフォームは、スプレー条件によって品質が大きく変化するため、断熱材の三次元データと共に施工前のスプレー条件を記憶させておくことにより、品質管理上好ましく、詳細なデータベースを構築することができる。
 その他にも施工時の室内の環境情報(温度、湿度等)を取得し、その環境情報を被覆材の表面の三次元形状および被覆材の厚さ、特に、被覆材画像と関連付けて記憶させてもよい。
Alternatively, before the covering material is applied, the moisture content of the target surface may be measured and the moisture content may be stored in association with the thickness of the coating material, particularly the coating material image. Since the foaming agent of rigid urethane foam contains water, if the target surface (wall surface) contains a large amount of water, the reaction balance may be lost and the quality as a heat insulating material may deteriorate. Therefore, by storing the moisture content of the wall surface before construction together with the data of the heat insulating material, a more detailed database can be constructed. For the measurement of the water content, an existing high-frequency water meter “HI-520-2 manufactured by Kett Scientific Research Institute Co., Ltd.” or the like can be used.
In addition, before applying the coating material, the temperature distribution of the target surface is measured using a thermo camera or the like, and the temperature distribution is measured by the three-dimensional shape of the surface of the coating material and the thickness of the coating material, particularly the coating material image. It may be stored in association with. Since the temperature of the sprayed surface of the rigid urethane foam may affect the quality, it is preferable to memorize the relationship between the temperature distribution and the thickness from the viewpoint of quality control. At this time, the two-dimensional temperature image acquired by the thermo camera may be mapped to the three-dimensional shape of the surface of the covering material based on the reference marker or the structure.
Further, when the coating material is applied, the spraying conditions (in the case of a two-component rigid urethane foam, the mixing pressure and the mixing temperature of the two liquids) are continuously acquired, and the spraying conditions are set to the three-dimensional shape of the surface of the coating material. And the thickness of the dressing, in particular, may be stored in association with the dressing image. Since the quality of rigid urethane foam changes greatly depending on the spray conditions, it is preferable in terms of quality control and a detailed database can be constructed by storing the spray conditions before construction together with the three-dimensional data of the heat insulating material.
In addition, the indoor environmental information (temperature, humidity, etc.) at the time of construction is acquired, and the environmental information is stored in association with the three-dimensional shape of the surface of the covering material and the thickness of the covering material, especially the covering material image. May be good.
 次に、図3のフローチャートを参照して、厚さ計測方法の第2の実施形態について説明する。この実施形態は、基準マーカーを設置することなく行うものである。
 図3のフローチャートに示すように、施工形状を取得する工程(第1A工程)と、仮想平面を算出する工程(第2A工程)と、被覆材の厚さを算出する工程(第3A工程)と、被覆材画像を表示する工程(第4A工程)と、被覆材画像に基づいて仕上げ処理が必要かを判断する工程(第5A工程)と、仕上げ処理が必要であると判断した場合、仕上げ処理を行う工程(第6A工程)と、仕上げ処理が必要でないと判断した場合、被覆材の三次元データを対象面と関連付けて記憶させる工程(第7A工程)とを有する。
 なお、第3A工程から第7A工程は、図1の実施形態の第4工程から第8工程と実質的に同じである。
Next, a second embodiment of the thickness measuring method will be described with reference to the flowchart of FIG. This embodiment is performed without installing a reference marker.
As shown in the flowchart of FIG. 3, a step of acquiring the construction shape (step 1A), a step of calculating a virtual plane (step 2A), and a step of calculating the thickness of the covering material (step 3A). , A step of displaying a covering material image (4A step), a step of determining whether a finishing process is necessary based on the covering material image (5A step), and a finishing process when it is determined that a finishing process is necessary. And a step (seventh step A) of storing the three-dimensional data of the covering material in association with the target surface when it is determined that the finishing process is not necessary.
It should be noted that steps 3A to 7A are substantially the same as steps 4 to 8 of the embodiment of FIG.
 第1A工程は、施工形状を取得する。この実施形態において、施工形状は、被覆材および対象面に隣接もしくは近傍に位置した構造物の表面の三次元座標を含むものである。ここで構造物とは、対象面と平行な面を含む構造物である。そして、構造物の表面とは、その対象面と平行な面を含んだものをいう。
 構造物としては、例えば、対象面の壁面と同室に位置した柱、サッシ、敷居、回り縁、幅木、梁材等の構造物、または、床、天井、壁の境界部、配管、ドア、窓、換気口等の開口部、配電ボックスの特徴的な形状を有する構造物が挙げられる。また、駐車場床面の防水施工の場合は、パラペット等の立ち上がり部や、柱等の構造物を基準点として用いることができる。
 例えば、図4の施工形状10は、被覆材12と、対象面と平行な面S2を有する柱Pとを含んでいる。
1st process A acquires a construction shape. In this embodiment, the construction shape includes the three-dimensional coordinates of the surface of the structure located adjacent to or near the covering material and the target surface. Here, the structure is a structure including a surface parallel to the target surface. The surface of the structure includes a surface parallel to the target surface.
The structure includes, for example, a structure such as a pillar, a sash, a threshold, a peripheral edge, a skirting board, or a beam material located in the same room as the wall surface of the target surface, or a floor, a ceiling, a wall boundary, a pipe, a door, or a window. , An opening such as a ventilation port, and a structure having a characteristic shape of a power distribution box. In addition, in the case of waterproofing the floor surface of the parking lot, a rising portion such as a parapet or a structure such as a pillar can be used as a reference point.
For example, the construction shape 10 in FIG. 4 includes the covering material 12 and the pillar P having the surface S2 parallel to the target surface.
 第2A工程は、仮想平面を算出する。詳しくは、構造物の対象面と平行な面上の任意の3点の三次元座標を取得し、基準三次元座標とする。ここでは柱Pの平面S2上から図示しない3点を選択し、基準三次元座標とする。平面S2は、既知である柱Pの寸法から、対象面からの距離Lが既知であるものとする。S2上の基準三次元座標に基づいて、対象面を対象面に対して垂直方向に所定の距離だけ平行移動させた仮想平面Sを施工形状内に算出する。図4の点線は、仮想平面Sである。つまり、構造物(柱P)において、対象面と平行な面S2を、対象面を対象面と同じ大きさまで拡大させるとともに、平面方向に平行移動させることによって仮想平面Sを施工形状内に算出する。なお、施工形状が点群データではなく、ポリゴンメッシュで表現されている場合、3点の基準三次元座標を取得する代わりに対象面と平行な面を1つ選択すればよいが、結局、これは選択した面を規定する3点の基準三次元座標を選択していることと同じである。 Step 2A calculates a virtual plane. Specifically, the three-dimensional coordinates of arbitrary three points on the plane parallel to the target surface of the structure are acquired and used as the reference three-dimensional coordinates. Here, three points (not shown) are selected from the plane S2 of the pillar P and set as the reference three-dimensional coordinates. It is assumed that the plane S2 has a known distance L from the target surface based on the known dimension of the pillar P. Based on the reference three-dimensional coordinates on S2, a virtual plane S obtained by translating the target surface in the direction perpendicular to the target surface by a predetermined distance is calculated within the construction shape. The dotted line in FIG. 4 is the virtual plane S. That is, in the structure (pillar P), the virtual plane S is calculated within the construction shape by enlarging the surface S2 parallel to the target surface to the same size as the target surface and translating it in the plane direction. .. If the construction shape is represented by a polygon mesh rather than point cloud data, one plane parallel to the target plane should be selected instead of acquiring the three-dimensional reference three-dimensional coordinates. Is the same as selecting three reference three-dimensional coordinates that define the selected surface.
 この第2の実施形態の厚さ計測方法でも、第1の実施形態と同様に、対象面を対象面に対して垂直方向に所定の距離だけ平行移動させた仮想平面を施工形状内に算出することができるため、被覆材の施工後、1回の計測で、被覆材全体の厚さを確認することができる。この厚さ計測方法を用いた被覆材の施工方法も、第1の実施形態と同様に、作業者の熟練度に限らず、均一な品質の被覆材を提供することができる。 Also in the thickness measuring method of the second embodiment, as in the first embodiment, a virtual plane obtained by translating the target surface in the vertical direction with respect to the target surface by a predetermined distance is calculated within the construction shape. Therefore, it is possible to confirm the total thickness of the covering material with one measurement after the covering material is applied. Similarly to the first embodiment, the method of applying a coating material using this thickness measuring method can provide a coating material of uniform quality, not limited to the skill level of the operator.
 次に、被覆材の厚さ計測方法の第3の実施形態について説明する。
 第1および第2の実施形態が厚さ計測方法では、対象面からの距離が既知で等しい3点以上の三次元基準座標に基づいて仮想平面を算出した。これらの点は、対象面からの距離が等しい等距離点であると同時に、対象面からの距離が既知である基準点でもあった。
 本実施形態では、対象面からの距離が等しいが未知である3点以上の等距離点の三次元座標と、対象面からの距離が既知である1点以上の基準点の基準三次元座標に基づいて仮想平面を算出する。
 本実施形態のフローチャートを図9に示す。第4B工程から第8B工程は、図1の第4工程から第8工程と実質的に同じである。
Next, a third embodiment of the method for measuring the thickness of the covering material will be described.
In the thickness measuring method in which the first and second embodiments are the thickness measuring methods, the virtual plane is calculated based on the three-dimensional reference coordinates of three or more points whose distances from the target surface are known and equal. These points were not only equidistant points having the same distance from the target surface but also reference points having a known distance from the target surface.
In the present embodiment, three-dimensional coordinates of three or more equidistant points that are equal in distance from the target surface but are unknown and reference three-dimensional coordinates of one or more reference points whose distance from the target surface are known are used. Based on this, a virtual plane is calculated.
A flowchart of this embodiment is shown in FIG. Steps 4B to 8B are substantially the same as steps 4 to 8 in FIG.
 第1B工程において、被覆材上に基準マーカーを設置する。基準マーカーは第1実施形態と同じものを用いることができる。ただし、設置する基準マーカーは1つでよく、当該基準マーカー上に1つの基準三次元座標が設定されていればよい。 In step 1B, set a reference marker on the covering material. The same reference marker as in the first embodiment can be used. However, only one reference marker needs to be installed, and one reference three-dimensional coordinate may be set on the reference marker.
 第2B工程において、施工形状を取得する。この実施形態において、施工形状は、被覆材および対象面に隣接もしくは近傍に位置した構造物の表面の三次元座標や、上記基準マーカーに設定された基準三次元座標を含むものである。第2実施形態と同様に、ここで構造物とは対象面と平行な面を含む構造物であり、構造物の表面とは対象面と平行なその面をいう。構造物の例も第2実施形態と同じである。
 例えば、図10の施工形状10bは、被覆材12と、1つの基準マーカー13と、対象面と平行な面S2を有する柱Pとを含んでいる。
In step 2B, the construction shape is acquired. In this embodiment, the construction shape includes the three-dimensional coordinates of the surface of the structure located adjacent to or in the vicinity of the covering material and the target surface, and the reference three-dimensional coordinates set in the reference marker. Similar to the second embodiment, here, the structure is a structure including a surface parallel to the target surface, and the surface of the structure is the surface parallel to the target surface. The example of the structure is also the same as that of the second embodiment.
For example, the construction shape 10b of FIG. 10 includes a covering material 12, one reference marker 13, and a pillar P having a surface S2 parallel to the target surface.
 第3B工程において、仮想平面を算出する。具体的には、構造物の対象面と平行な面上の任意の3点を等距離点として、その三次元座標を取得する。図10では、柱Pの平面S2上から図示しない3点を等距離点として選択する。S2上の等距離点の三次元座標に基づいて対象面に平行な平面を算出し、当該平面上に基準マーカー13上の基準点が乗る位置まで当該平面を平行移動させて、仮想平面Sを施工形状内に算出する。図10に点線で示したのが仮想平面Sである。 Calculating a virtual plane in step 3B. Specifically, the three-dimensional coordinates of any three points on the plane parallel to the target plane of the structure are acquired as equidistant points. In FIG. 10, three points (not shown) on the plane S2 of the pillar P are selected as equidistant points. A plane parallel to the target surface is calculated based on the three-dimensional coordinates of equidistant points on S2, and the plane is translated to a position where the reference point on the reference marker 13 is on the plane, and the virtual plane S is Calculate within the construction shape. A virtual plane S is shown by a dotted line in FIG.
 この第3の実施形態の厚さ計測方法でも、第1の実施形態と同様に、対象面を垂直な方向に所定の距離だけ平行移動させた仮想平面を施工形状内に算出することができるため、被覆材の施工後、1回の計測で、被覆材全体の厚さを確認することができる。この厚さ計測方法を用いた被覆材の施工方法も、第1の実施形態と同様に、作業者の熟練度に限らず、均一な品質の被覆材を提供することができる。 Also in the thickness measuring method of the third embodiment, as in the first embodiment, a virtual plane obtained by translating the target surface in the vertical direction by a predetermined distance can be calculated within the construction shape. After the coating material is applied, the total thickness of the coating material can be confirmed with one measurement. Similar to the first embodiment, the method of constructing the covering material using this thickness measuring method can also provide a covering material of uniform quality regardless of the skill level of the operator.
 次に、本発明の被覆材の厚さを計測するシステム(以下、厚さ計測システムとする。)の第1の実施形態について説明する。図5の計測システム20は、三次元計測装置21と、制御部22と、基準マーカー23と、表示部24とを備えている。三次元計測装置21は、対象面に施工した被覆材12の表面の三次元形状を含む施工形状を計測する。この厚さ計測システム20は、図1の厚さ計測方法に用いることができる。そして、基準マーカー23は、図1の厚さ計測方法に用いられた基準マーカー13と実質的に同じものである。 Next, a first embodiment of a system for measuring the thickness of the coating material of the present invention (hereinafter referred to as a thickness measurement system) will be described. The measurement system 20 of FIG. 5 includes a three-dimensional measurement device 21, a control unit 22, a reference marker 23, and a display unit 24. The three-dimensional measuring device 21 measures a construction shape including the three-dimensional shape of the surface of the covering material 12 applied to the target surface. The thickness measuring system 20 can be used in the thickness measuring method of FIG. The reference marker 23 is substantially the same as the reference marker 13 used in the thickness measuring method of FIG.
 三次元計測装置21は、レーザー光を発光する発光部21aと、被覆材で反射したレーザー光を受光する受光部21bと、演算部(図示せず)とを備えた三次元スキャナーである。三次元計測装置21は、図1の計測方法に用いられた三次元計測装置と実質的に同じものであり、被覆材の表面の三次元形状を計測できる装置であれば特に限定されない。 The three-dimensional measuring device 21 is a three-dimensional scanner including a light emitting unit 21a that emits a laser beam, a light receiving unit 21b that receives the laser beam reflected by the covering material, and a calculation unit (not shown). The three-dimensional measuring device 21 is substantially the same as the three-dimensional measuring device used in the measuring method of FIG. 1, and is not particularly limited as long as it can measure the three-dimensional shape of the surface of the covering material.
 制御部22は、記憶部26と、被覆材の厚さを算出するデータ処理部27とを備えている。
 記憶部26は、三次元計測装置21が計測した被覆材の表面の三次元形状を含む施工形状データを記憶する。また後述するようにデータ処理部27によって算出される仮想平面データおよび被覆材の厚さデータを記憶する。そして、被覆材の表面の三次元データおよび被覆材の厚さデータ、特に、被覆材画像と対象面とを関連付けて記憶する。
 なお、施工時の気温、湿度等の環境情報や、スプレーのスプレー条件(2液式の硬質ウレタンフォームの混合圧力、温度)や、対象面の水分率を計測したデータを被覆材画像を関連付けて記憶させてもよい。
 なお、これらのデータは、例えば、パスワードでセキュリティを設定し編集不可の電子ファイルとして保存するのが好ましい。特に、タイムスタンプを付与して非改ざん証明および時刻証明を行った電子ファイルとするのが好ましい。また記憶部26自体をパスワード等でロックし、特別な権限以外のものは書換えができないようにしてもよい。
 記憶部26に記憶させたデータは、パスワード等によって設定された特別な権限を有する者によって、CD、DVD等のディスク状の記憶媒体や、USBやメモリーカード等の記憶媒体に記憶させてもよい。特に、記憶媒体としては、CD-RやDVD-Rなどのデータを一回だけ書き込みが可能なディスク状の記憶媒体や、改ざん防止機能付きのUSBやメモリーカード等の記憶媒体が好ましい。
The control unit 22 includes a storage unit 26 and a data processing unit 27 that calculates the thickness of the covering material.
The storage unit 26 stores construction shape data including the three-dimensional shape of the surface of the covering material measured by the three-dimensional measuring device 21. The virtual plane data and the thickness data of the covering material calculated by the data processing unit 27 are stored as described later. Then, the three-dimensional data of the surface of the covering material and the thickness data of the covering material, in particular, the covering material image and the target surface are stored in association with each other.
In addition, environmental information such as temperature and humidity at the time of construction, spray conditions (mixing pressure and temperature of two-component rigid urethane foam), and data obtained by measuring the moisture content of the target surface are associated with the coating material image. You may memorize it.
Note that these data are preferably stored as an electronic file that cannot be edited with security set with a password, for example. In particular, it is preferable that the electronic file is a non-falsification proof and a time proof by adding a time stamp. Further, the storage unit 26 itself may be locked with a password or the like so that rewriting except for special authority cannot be performed.
The data stored in the storage unit 26 may be stored in a disk-shaped storage medium such as a CD or DVD or a storage medium such as a USB or a memory card by a person having a special authority set by a password or the like. .. In particular, as the storage medium, a disk-shaped storage medium such as a CD-R or a DVD-R capable of writing data only once, or a storage medium such as a USB or a memory card having a tamper-proof function is preferable.
 データ処理部27は、施工形状データから色又は形状の特徴に基づいて基準マーカー23を自動的に抽出し、または、作業者が指定して抽出し、その基準マーカー23に基づいて対象面を対象面に対して垂直方向に所定の距離だけ平行移動させた仮想平面データを算出し、かつ、被覆材の表面の三次元形状データと仮想平面データとに基づいて被覆材の厚さを算出する。仮想平面データの算出は、図1の厚さ計測方法の第3工程と同じ方法で算出する。また被覆材の厚さも、図1の厚さ計測方法の第4工程と同じ方法で算出する。
 またデータ処理部27は、その施工形状データから被覆材の表面を表示した画像であって、被覆材の厚さの分布を色または濃淡で示した被覆材画像へと変換する。被覆材画像は、図1の厚さ計測方法と実質的に同じものである。
 さらにデータ処理部27は、被覆材の厚さに基づいて、被覆材の厚さが所定の範囲から外れている被覆材の部位を特定する。つまり、被覆材の厚すぎる部位、または、薄すぎる部位の施工不良の部位を自動的に示す。例えば、そのような施工不良の部位を、被覆材画像において、特別な色で表示したり、不良部位だけを抽出して表示したり、点滅させたりすることが挙げられる。また、施工不良の部位が、所定の範囲からどれ位ずれているかを示すのが好ましい。
The data processing unit 27 automatically extracts the reference marker 23 based on the color or shape feature from the construction shape data, or the operator specifies and extracts the reference marker 23, and targets the target surface based on the reference marker 23. Virtual plane data obtained by translating a predetermined distance in parallel to the surface is calculated, and the thickness of the covering material is calculated based on the three-dimensional shape data of the surface of the covering material and the virtual plane data. The virtual plane data is calculated by the same method as the third step of the thickness measuring method of FIG. Also, the thickness of the covering material is calculated by the same method as the fourth step of the thickness measuring method of FIG.
In addition, the data processing unit 27 converts the construction shape data into an image of the surface of the covering material, which is a covering material image in which the distribution of the thickness of the covering material is shown in color or shade. The dressing image is substantially the same as the thickness measuring method of FIG.
Further, the data processing unit 27 specifies the portion of the covering material in which the thickness of the covering material is out of the predetermined range based on the thickness of the covering material. That is, the portion where the covering material is too thick or the portion where the covering material is too thin is automatically indicated. For example, such a poorly constructed part may be displayed in a special color in the covering material image, or only the defective part may be extracted and displayed, or may be blinked. In addition, it is preferable to indicate how much the poorly constructed part deviates from a predetermined range.
 表示部24は、データ処理部27によって作成された被覆材画像を表示する二次元液晶モニターである。 The display unit 24 is a two-dimensional liquid crystal monitor that displays the covering material image created by the data processing unit 27.
 この計測システム20は、被覆材を施工後、基準マーカー23を被覆材に設置し、被覆材および基準マーカー23の三次元形状を含む施工形状を取得することにより、被覆材の全体の厚さを算出することができるため、施工不良な部位を簡単に突き止めることができる。また確認作業を一度で行うことができるため、作業者の手間を大幅に減少させることができる。さらに、表示部に被覆材画像として表示できるため、現場において、作業者は、施工不良の位置を簡単に、かつ、正確に確認することができる。
 また対象面と、被覆材の表面の三次元形状および被覆材の厚さを関連付けて記憶させることができるため、つまり、対象面と紐付けて被覆材のデータをまとめて保管できるため、被覆材の品質管理が簡単にできる。
 なお、この計測システム20では、制御部22の記憶部26に、被覆材の厚さ等のデータを記憶させたが、CD、DVD、USBやメモリーカード等の記憶媒体に直接記憶させるようにしてもよい。特に、CD-RやDVD-Rなどのデータを一回だけ書き込みが可能なディスク状の記憶媒体や、改ざん防止機能付きのUSBやメモリーカード等の記憶媒体に直接記憶させるようにすることにより、データの客観性を保持することができる。もちろん、直接記憶させるだけでなく一旦記憶部26に記憶させたデータを改変不可の状態で記憶媒体にコピーしたのち、記憶部26のデータを削除するようにしてもよい。
This measuring system 20 installs the reference marker 23 on the coating material after applying the coating material, and obtains the construction shape including the three-dimensional shape of the coating material and the reference marker 23 to determine the total thickness of the coating material. Since it can be calculated, it is possible to easily identify a poorly constructed part. Moreover, since the confirmation work can be performed at one time, the labor of the operator can be greatly reduced. Further, since it can be displayed as a covering material image on the display unit, the operator can easily and accurately confirm the position of the construction defect at the site.
In addition, since the target surface, the three-dimensional shape of the surface of the covering material, and the thickness of the covering material can be stored in association with each other, that is, the data of the covering material can be stored together by being linked to the target surface. Easy quality control.
In this measurement system 20, data such as the thickness of the covering material is stored in the storage unit 26 of the control unit 22, but the data is stored directly in a storage medium such as a CD, DVD, USB, or memory card. May be good. In particular, by storing data such as CD-R and DVD-R directly on a disk-shaped storage medium that can be written only once, or on a storage medium such as a USB or memory card with a tamper-proof function. The objectivity of the data can be retained. Of course, in addition to directly storing the data, the data once stored in the storage unit 26 may be copied to the storage medium in a non-modifiable state, and then the data in the storage unit 26 may be deleted.
 厚さ計測システム20では、基準マーカー23を認識し、その基準マーカー23に基づいて仮想平面データを算出させた。しかし、基準マーカー23を用いずに対象面に隣接もしくは近傍に位置した構造物の表面であって、その構造物の対象面と平行な面に基づいて仮想平面データを算出させてもよい。
 この厚さ計測システムの第2の実施形態では、データ処理部27は、施工形状データから対象面と平行な構造物の面を自動的に抽出し、または、作業者が指定して抽出し、その面に基づいて対象面を対象面に対して垂直方向に所定の距離だけ平行移動させた仮想平面データを算出することになる。その仮想平面の算出方法は、図3の厚さ計測方法の工程2Aと同じである。
 他の処理は、厚さ計測システム20と実質的に同じである。
In the thickness measurement system 20, the reference marker 23 was recognized and virtual plane data was calculated based on the reference marker 23. However, the virtual plane data may be calculated based on the surface of the structure located adjacent to or near the target surface without using the reference marker 23 and parallel to the target surface of the structure.
In the second embodiment of the thickness measuring system, the data processing unit 27 automatically extracts the surface of the structure parallel to the target surface from the construction shape data, or the operator specifies and extracts the surface. Based on that surface, virtual plane data in which the target surface is translated by a predetermined distance in the direction perpendicular to the target surface is calculated. The method of calculating the virtual plane is the same as step 2A of the thickness measuring method of FIG.
The other processes are substantially the same as those of the thickness measuring system 20.
 厚さ計測システムの第3の実施形態として、計測システム20の表示部24としてプロジェクターを用いてもよい。その場合、データ処理部27において、被覆材に設置されている基準マーカーと、投影する画像の基準マーカー(あるいは構造物の平面)との位置合わせを行い、被覆材にその厚さが表示されるようにプロジェクションマッピングを行うのが好ましい。
 このように構成することにより、作業者は、対象面に投影された画像から被覆材の施工不良の位置が特定できるため、仕上げ処理を簡単にできる。
As a third embodiment of the thickness measuring system, a projector may be used as the display unit 24 of the measuring system 20. In that case, in the data processing unit 27, the reference marker provided on the covering material is aligned with the reference marker (or the plane of the structure) of the image to be projected, and the thickness is displayed on the covering material. It is preferable to perform projection mapping as described above.
With such a configuration, the operator can identify the position of the poor construction of the covering material from the image projected on the target surface, so that the finishing process can be simplified.
 第4の実施形態である厚さ計測システム20aは、図6に示すように、三次元計測装置21と、制御部22と、基準マーカー23と、メガネ型ディスプレイ30とを備えている。そして、このメガネ型ディスプレイ30において、被覆材の表面形状が、使用者の視界における対象面とオーバーラップするように表示される。なお、三次元計測装置21、及び、記憶部26及びデータ処理部27を備えた制御部22は、図5の厚さ計測システム20と実質的に同じである。 As shown in FIG. 6, the thickness measuring system 20a according to the fourth embodiment includes a three-dimensional measuring device 21, a control unit 22, a reference marker 23, and a glasses-type display 30. Then, on the glasses-type display 30, the surface shape of the covering material is displayed so as to overlap the target surface in the field of view of the user. The three-dimensional measuring device 21 and the control unit 22 including the storage unit 26 and the data processing unit 27 are substantially the same as the thickness measuring system 20 of FIG.
 メガネ型ディスプレイ30は、レンズ状の表示部31、画像取得部32と、ディスプレイ用制御部33とを備えている。
 レンズ状の表示部31は、メガネ型ディスプレイ30を使用者の頭部に取り付けたとき、使用者の眼前に位置するようにメガネ型ディスプレイ30のフレームに固定される透明なものである。
 画像取得部32は、レンズ状の表示部31を介した使用者の眼の視界方向の情報を画像データとして取得する。例えば、表示部31近辺において、メガネ型ディスプレイ30のフレームに固定されたカメラ等が挙げられる。
The glasses-type display 30 includes a lens-shaped display unit 31, an image acquisition unit 32, and a display control unit 33.
The lens-shaped display unit 31 is transparent and fixed to the frame of the glasses-type display 30 so as to be positioned in front of the eyes of the user when the glasses-type display 30 is attached to the head of the user.
The image acquisition unit 32 acquires information on the visual field direction of the user's eye via the lens-shaped display unit 31 as image data. For example, a camera fixed to the frame of the glasses-type display 30 near the display unit 31 may be used.
 ディスプレイ用制御部33は、図示しないディスプレイ用記憶部33a及びディスプレイ用データ処理部33bとを有する。
 ディスプレイ用記憶部33aは、画像取得部32によって取得した画像データおよびデータ処理部27によって作成された被覆材画像を記憶する。また表示部31と画像データとの幾何的な関係を記憶する。例えば、画像を投影する表示部31と、画像取得部32が取得する画像データとの位置関係やサイズ比率等の関係を記憶する。
 ディスプレイ用データ処理部33bは、画像取得部32によって取得した画像データと、被覆材画像とを比較し、画像データの基準マーカーと被覆材画像の基準マーカーとがオーバーラップするように画像の変形処理や位置合わせ処理を行う。その上で、表示部31と画像データの関係に基づいて、使用者の視界における被覆材に、被覆材画像がオーバーラップするように、被覆材画像を表示部31に投影する。ディスプレイ用データ処理部33bと、データ処理部27との間のデータの通信は、有線あるいは無線でもよい。また、データ処理部27の計算をディスプレイ用データ処理部33bで行ってもよく、反対にディスプレイ用データ処理部33bの計算をデータ処理部27で行ってもよい。
The display control unit 33 has a display storage unit 33a and a display data processing unit 33b (not shown).
The display storage unit 33a stores the image data acquired by the image acquisition unit 32 and the covering material image created by the data processing unit 27. Further, the geometrical relationship between the display unit 31 and the image data is stored. For example, the relationship such as the positional relationship and the size ratio between the display unit 31 that projects the image and the image data acquired by the image acquisition unit 32 is stored.
The display data processing unit 33b compares the image data acquired by the image acquisition unit 32 with the covering material image, and deforms the image so that the reference marker of the image data and the reference marker of the covering material image overlap. And alignment processing. Then, based on the relationship between the display unit 31 and the image data, the coating material image is projected on the display unit 31 so that the coating material image overlaps the coating material in the field of view of the user. Data communication between the display data processing unit 33b and the data processing unit 27 may be wired or wireless. Further, the calculation of the data processing unit 27 may be performed by the display data processing unit 33b, and conversely, the calculation of the display data processing unit 33b may be performed by the data processing unit 27.
 このように構成されているため、作業者はメガネ型ディスプレイ30を装着するだけで、被覆材の施工不良の位置をレンズを通して確認することができ、仕上げ処理を一層簡単にできる。 With this configuration, the worker can check the position of the defective coating material through the lens by simply wearing the glasses-type display 30, and the finishing process can be further simplified.
 なお、第4の実施形態である厚さ計測システム20aにおいて、第2の実施形態の厚さ計測システムのように、基準マーカーを用いずに、データ処理部27によって、施工形状から構造物の対象面と平行な平面を自動的に抽出させ、または、作業者が指定して抽出し、その平面に基づいて対象面を対象面に対して垂直方向に所定の距離だけ平行移動させた仮想平面データを算出させてもよい。
 さらに、第4の実施形態である厚さ計測システム20aにおいて、表示部31を不透明のものにしてもよい。この場合、表示部には、画像取得部が撮影した画像及び被覆材画像を表示部に表示する。この場合も同様の効果が得られる。
In the thickness measurement system 20a according to the fourth embodiment, unlike the thickness measurement system according to the second embodiment, the data processing unit 27 does not use the reference marker to determine the target of the structure from the construction shape. Virtual plane data that is automatically extracted from the plane parallel to the plane, or specified by the operator, and the target plane is translated based on the plane in the vertical direction by a predetermined distance. May be calculated.
Further, in the thickness measuring system 20a according to the fourth embodiment, the display unit 31 may be opaque. In this case, the display unit displays the image captured by the image acquisition unit and the covering material image on the display unit. In this case, the same effect can be obtained.
 さらに、本発明の計測システムの他の実施形態として、例えば、メガネ型ディスプレイに変えてヘッドマウントディスプレイ(HMD)等のウェラブルディスプレイを用いても良い。この場合、三次元計測装置21及び制御部22も、HMDに内蔵される。
 そのようなHMDとしては、例えば、Microsoft社製のホログラフィックコンピュータである「HoloLens(登録商標)」等が挙げられる。HoloLens(登録商標)は現実の風景にコンピュータグラフィックスを重ねて投影することができる、いわゆる複合現実型のウェアラブルデバイスである。つまり、この三次元計測システムは、2Dカメラ(画像取得部)、3Dセンサ(三次元計測装置)、加速度センサ(IMU)等の各種センサ及びCPU(データ処理部及びディスプレイ用データ処理部)や記憶装置(記憶部及びディスプレイ用記憶部)等がHMDに内蔵されている。
 この操作方法は、基準マーカーを被覆材に設置し、HoloLens(登録商標)を装着し、施工後の被覆材の表面の三次元形状を含む施工形状を三次元計測装置で取得し、施工した被覆材画像をリアルタイムに計算し、作業者の視界に対して、現実の被覆材上の基準マーカーに被覆材画像の基準マーカーをオーバーラップさせるように投影する。
 このように作業者は被覆材を施工中に施工部位全体の施工結果をリアルタイムに確認することができ、被覆材の厚さが不足している施工不良箇所に対して即座に処置を行うことができる。
Further, as another embodiment of the measurement system of the present invention, for example, a wearable display such as a head-mounted display (HMD) may be used instead of the glasses-type display. In this case, the three-dimensional measuring device 21 and the control unit 22 are also built in the HMD.
Examples of such an HMD include "HoloLens (registered trademark)" which is a holographic computer manufactured by Microsoft Corporation. HoloLens® is a so-called mixed reality wearable device that can project computer graphics on top of a real landscape. That is, this three-dimensional measurement system includes various sensors such as a 2D camera (image acquisition unit), a 3D sensor (three-dimensional measurement device), an acceleration sensor (IMU), a CPU (data processing unit and data processing unit for display), and storage. A device (storage unit and display storage unit) and the like are built in the HMD.
In this operation method, a reference marker is installed on the covering material, Hololens (registered trademark) is attached, and the construction shape including the three-dimensional shape of the surface of the covering material after construction is acquired by a three-dimensional measuring device, and the applied coating is performed. The material image is calculated in real time and projected onto the operator's field of view so that the reference marker of the covering material image overlaps the reference marker on the actual covering material.
In this way, the worker can check the construction result of the entire construction site in real time during the construction of the covering material, and can immediately take measures for the defective construction site where the thickness of the covering material is insufficient. it can.
 図7の画像は、三次元計測装置(MantisVision社製ハンディ3Dスキャナ「F6 SMART」)を用いた施工形状の画像である。この壁面において、斜線部が施工された断熱材である。図7において、「リファレンス設置面1」の範囲に図8aの基準マーカーM1を設け、「リファレンス設置面2」の範囲に図8bの基準マーカーM2を設けている。なお、断熱材は、表1の硬質ウレタンフォームを吹き付けたものである。 The image in Fig. 7 is an image of the construction shape using a three-dimensional measuring device (Mantis Vision's handy 3D scanner "F6SMART"). This wall surface is a heat insulating material having a shaded portion. In FIG. 7, the reference marker M1 of FIG. 8a is provided in the range of “reference installation surface 1”, and the reference marker M2 of FIG. 8b is provided in the range of “reference installation surface 2”. The heat insulating material was sprayed with the hard urethane foam shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図8aは、断熱材上に設けられた基準マーカーM1に基づいた仮想平面に対して、断熱材の表面の三次元形状がどれだけ離れているかを示すコンター図である。図8bは、対象面に隣接された柱P上に設けられた基準マーカーM2に基づいた仮想平面に対して、断熱材の表面の三次元形状がどれだけ離れているかを示すコンター図である。
 このようにそれぞれの仮想平面に対する断熱材の厚さや凹凸が一目でわかる。そして、作業者は、この画像を足がかりに仕上げ処理を行うことができる。
 またこのように断熱材の状態を客観的なデータとして保管することができるため、施工した断熱材の品質保証としてのデータとしても最適である。
FIG. 8a is a contour diagram showing how far the three-dimensional shape of the surface of the heat insulating material is away from the virtual plane based on the reference marker M1 provided on the heat insulating material. FIG. 8b is a contour diagram showing how far the three-dimensional shape of the surface of the heat insulating material is away from the virtual plane based on the reference marker M2 provided on the pillar P adjacent to the target surface.
In this way, the thickness and unevenness of the heat insulating material for each virtual plane can be seen at a glance. Then, the worker can perform finishing processing on the basis of this image.
Further, since the state of the heat insulating material can be stored as objective data in this way, it is also optimal as data for quality assurance of the installed heat insulating material.
 10、10a、10b 施工形状; 11 壁; 12 被覆材; 13 基準マーカー; 13a ピン; 20、20a 計測システム; 21 三次元計測装置; 21a 発光部; 21b 受光部; 22 制御部; 23 基準マーカー; 24 表示部; 26 記憶部; 27 データ処理部; 30 メガネ型ディスプレイ; 31 表示部; 32 画像取得部; 33 ディスプレイ用制御部; 33a ディスプレイ用記憶部; 33b ディスプレイ用データ処理部; M1 基準マーカー; M2 基準マーカー; P 柱; S 仮想平面; S1 面; S2 面; V1 垂直線 10, 10a, 10b construction shape; 11 wall; 12 coating material; 13 reference marker; 13a pin; 20, 20a measuring system; 21 three-dimensional measuring device; 21a light emitting section; 21b light receiving section; 22b control section; 23 reference marker; 24 display unit; 26 storage unit; 27 data processing unit; 30 glasses type display; 31 display unit; 32 image acquisition unit; 33 display control unit; 33a display storage unit; 33b display data processing unit; M1 reference marker; M2 reference marker; P pillar; S virtual plane; S1 plane; S2 plane; V1 vertical line

Claims (19)

  1.  対象面に施工した被覆材の厚さを計測する方法であって、
     前記被覆材の表面の三次元座標、前記対象面からの距離が等しい3点以上の等距離点の三次元座標及び前記対象面からの距離が既知である1点以上の基準点の基準三次元座標を含む施工形状を取得する工程と、
     前記被覆材の表面の三次元座標、前記等距離点の三次元座標及び前記基準三次元座標に基づいて前記被覆材の厚さを算出する工程とを有する、
    被覆材の厚さ計測方法。
    It is a method of measuring the thickness of the covering material applied to the target surface.
    The three-dimensional coordinates of the surface of the covering material, the three-dimensional coordinates of three or more equidistant points having the same distance from the target surface, and the reference three-dimensional of one or more reference points whose distances from the target surface are known. A step of acquiring a construction shape including coordinates,
    It includes a step of calculating the thickness of the covering material based on the three-dimensional coordinates of the surface of the covering material, the three-dimensional coordinates of the equidistant point, and the reference three-dimensional coordinates.
    Method for measuring thickness of coating material.
  2.  前記等距離点の前記対象面からの距離が既知であって、前記等距離点が前記基準点でもある、
    請求項1に記載の被覆材の厚さ計測方法。
    The distance from the target surface of the equidistant point is known, and the equidistant point is also the reference point,
    The method for measuring the thickness of the coating material according to claim 1.
  3.  取得した前記等距離点の三次元座標に基づいて仮想平面を算出する工程をさらに有し、
     前記被覆材の表面の三次元座標と前記仮想平面に基づいて前記被覆材の厚さを算出する、
    請求項2に記載の被覆材の厚さ計測方法。
    It further has a step of calculating a virtual plane based on the acquired three-dimensional coordinates of the equidistant points.
    Calculate the thickness of the covering material based on the virtual plane and the three-dimensional coordinates of the surface of the covering material,
    The method for measuring the thickness of the coating material according to claim 2.
  4.  前記等距離点の前記対象面からの距離が未知であって、前記基準点が前記等距離点と異なる点である、
    請求項1に記載の被覆材の厚さ計測方法。
    The distance from the target surface of the equidistant point is unknown, the reference point is a point different from the equidistant point,
    The method for measuring the thickness of the coating material according to claim 1.
  5.  取得した前記等距離点の三次元座標と前記基準三次元座標に基づいて仮想平面を算出する工程をさらに有し、
     前記被覆材の表面の三次元座標と前記仮想平面に基づいて前記被覆材の厚さを算出する、
    請求項4に記載の被覆材の厚さ計測方法。
    Further comprising the step of calculating a virtual plane based on the acquired three-dimensional coordinates of the equidistant points and the reference three-dimensional coordinates,
    Calculate the thickness of the covering material based on the virtual plane and the three-dimensional coordinates of the surface of the covering material,
    The method for measuring the thickness of the coating material according to claim 4.
  6.  前記施工形状を取得する工程の前に、前記被覆材上または前記被覆材の近傍に基準マーカーを設置する工程を有し、
     前記基準三次元座標は、前記基準マーカー上の三次元座標である、
    請求項1から5のいずれか一項に記載の被覆材の厚さ計測方法。
    Before the step of acquiring the construction shape, there is a step of installing a reference marker on the coating material or in the vicinity of the coating material,
    The reference three-dimensional coordinates are three-dimensional coordinates on the reference marker,
    The method for measuring the thickness of the coating material according to claim 1.
  7.  前記基準マーカーが一方向に延びるピンを有しており、
     前記基準マーカーを設置する工程が、前記ピンの先端が前記対象面に当接するように前記ピンを前記被覆材に挿通する工程である、
    請求項6に記載の被覆材の厚さ計測方法。
    The reference marker has a pin extending in one direction,
    The step of installing the reference marker is a step of inserting the pin into the covering material so that the tip of the pin abuts on the target surface.
    The method for measuring the thickness of the coating material according to claim 6.
  8.  前記等距離点は、前記被覆材及び前記対象面に隣接もしくは近傍の構造物の表面上の点である、
    請求項1から5のいずれか一項に記載の被覆材の厚さ計測方法。
    The equidistant points are points on the surface of a structure adjacent to or in the vicinity of the covering material and the target surface,
    The method for measuring the thickness of the coating material according to claim 1.
  9.  前記被覆材の厚さの分布を色または濃淡で示した被覆材画像を表示する工程を有する、
    請求項1から8のいずれか一項に記載の被覆材の厚さ計測方法。
    A step of displaying a covering material image showing a distribution of thickness of the covering material by color or shading;
    The method for measuring the thickness of a coating material according to any one of claims 1 to 8.
  10.  前記被覆材の厚さが所定の範囲から外れている施工不良箇所の有無を判断する工程を有する、
    請求項1から9のいずれか一項に記載の被覆材の厚さ計測方法。
    There is a step of determining the presence or absence of defective construction where the thickness of the covering material is out of a predetermined range,
    The method for measuring the thickness of a covering material according to claim 1.
  11.  前記被覆材の厚さが所定の範囲から外れている施工不良箇所の有無を判断する工程と、
     前記施工不良箇所を、前記被覆材画像に表示する工程とを有する、
    請求項9に記載の被覆材の厚さ計測方法。
    A step of determining the presence or absence of a defective construction where the thickness of the covering material is out of a predetermined range,
    A step of displaying the defective construction portion on the covering material image,
    The method for measuring the thickness of the coating material according to claim 9.
  12.  前記被覆材の厚さを前記対象面と関連付けて記憶させる工程を有する、
    請求項1から11のいずれか一項に記載の被覆材の厚さ計測方法。
    A step of storing the thickness of the covering material in association with the target surface,
    The method for measuring the thickness of a coating material according to claim 1.
  13.  前記被覆材を施工する前に、前記対象面の水分率を計測する工程と、
     前記水分率を前記被覆材の厚さと関連付けて記憶させる工程とを有する、
    請求項12に記載の被覆材の厚さ計測方法。
    Before applying the coating material, a step of measuring the moisture content of the target surface,
    Storing the moisture content in association with the thickness of the coating material,
    The thickness measuring method according to claim 12.
  14.  前記被覆材を施工する前に、前記対象面の温度分布を測定する工程と、
     前記温度分布を前記被覆材の厚さと関連付けて記憶させる工程とを有する、
    請求項12または13に記載の被覆材の厚さ計測方法。
    Before applying the covering material, the step of measuring the temperature distribution of the target surface and
    It has a step of storing the temperature distribution in association with the thickness of the coating material.
    The method for measuring the thickness of a coating material according to claim 12 or 13.
  15.  前記被覆材は吹き付けウレタンフォーム断熱材である、
    請求項1から14のいずれか一項に記載の被覆材の厚さ計測方法。
    The coating is a blown urethane foam insulation,
    The method for measuring the thickness of a coating material according to claim 1.
  16.  前記被覆材の吹き付け条件を取得する工程と、
     前記吹き付け条件を前記被覆材の厚さと関連付けて記憶させる工程とを有する、
    請求項15に記載の被覆材の厚さ計測方法。
    A step of acquiring a spraying condition of the covering material,
    Storing the spraying condition in association with the thickness of the covering material,
    The method for measuring the thickness of the covering material according to claim 15.
  17.  対象面に施工した被覆材の厚さを計測するシステムであって、
     三次元計測装置と、
     データ処理部とを備え、
     前記三次元計測装置は、前記被覆材の表面の三次元座標、前記対象面からの距離が等しい3点以上の等距離点の三次元座標及び前記対象面からの距離が既知である1点以上の基準点の基準三次元座標を含む施工形状を取得し、
     前記データ処理部は、前記施工形状に基づいて前記被覆材の厚さを算出する、
    被覆材の厚さ計測システム。
    A system for measuring the thickness of the covering material applied to the target surface,
    Three-dimensional measuring device,
    With a data processing unit,
    The three-dimensional measuring device has three-dimensional coordinates of the surface of the covering material, three-dimensional coordinates of three or more equidistant points having the same distance from the target surface, and one or more points where the distance from the target surface is known. Obtain the construction shape including the reference three-dimensional coordinates of the reference point of
    The data processing unit calculates the thickness of the covering material based on the construction shape,
    Coating thickness measurement system.
  18.  前記被覆材上または前記被覆材の近傍に設置され、前記基準三次元座標を与える基準マーカーをさらに備えており、
     前記データ処理部は、前記施工形状から色又は形状の特徴に基づいて前記基準マーカーを認識する、
    請求項17に記載の被覆材の厚さ計測システム。
    Installed on or near the coating material, further comprising a reference marker that gives the reference three-dimensional coordinates,
    The data processing unit recognizes the reference marker from the construction shape based on color or shape characteristics,
    The thickness measuring system of the coating material according to claim 17.
  19.  対象面に被覆材を施工する方法であって、
     前記対象面に前記被覆材を施工する工程と、
     前記被覆材の表面の三次元座標、前記対象面からの距離が等しい3点以上の等距離点の三次元座標及び前記対象面からの距離が既知である1点以上の基準点の基準三次元座標を取得する工程と、
     前記被覆材の表面の三次元座標、前記等距離点の三次元座標及び前記基準三次元座標に基づいて前記被覆材の厚さを算出する工程と、
     前記被覆材の厚さが所定の範囲から外れている施工不良箇所の有無を判断する工程とを有する、
    被覆材の施工方法。
    A method of applying a covering material to a target surface,
    A step of applying the covering material on the target surface;
    The three-dimensional coordinates of the surface of the covering material, the three-dimensional coordinates of three or more equidistant points having the same distance from the target surface, and the reference three-dimensional of one or more reference points whose distances from the target surface are known. A step of obtaining coordinates,
    A step of calculating the thickness of the covering material based on the three-dimensional coordinates of the surface of the covering material, the three-dimensional coordinates of the equidistant point, and the reference three-dimensional coordinates.
    And a step of determining the presence or absence of a defective construction where the thickness of the covering material is out of a predetermined range,
    Construction method of covering material.
PCT/JP2020/004333 2019-03-05 2020-02-05 Method for measuring thickness of coating material, system for measuring thickness of coating material, and method for constructing coating material WO2020179336A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021503476A JPWO2020179336A1 (en) 2019-03-05 2020-02-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-039920 2019-03-05
JP2019039920 2019-03-05

Publications (1)

Publication Number Publication Date
WO2020179336A1 true WO2020179336A1 (en) 2020-09-10

Family

ID=72336887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004333 WO2020179336A1 (en) 2019-03-05 2020-02-05 Method for measuring thickness of coating material, system for measuring thickness of coating material, and method for constructing coating material

Country Status (2)

Country Link
JP (1) JPWO2020179336A1 (en)
WO (1) WO2020179336A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739709A (en) * 2021-09-08 2021-12-03 中冶长天国际工程有限责任公司 Online detection method and online detection system for thickness of sintering material layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055626A (en) * 1998-08-06 2000-02-25 Nanotemu:Kk Plate thickness measuring method and device therefor
JP2003147581A (en) * 2001-11-14 2003-05-21 Daido Steel Co Ltd Method of manufacturing coating material and manufacturing facility
US20060009929A1 (en) * 2004-07-06 2006-01-12 Boyette Roger L Jr In-service insulated tank certification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055626A (en) * 1998-08-06 2000-02-25 Nanotemu:Kk Plate thickness measuring method and device therefor
JP2003147581A (en) * 2001-11-14 2003-05-21 Daido Steel Co Ltd Method of manufacturing coating material and manufacturing facility
US20060009929A1 (en) * 2004-07-06 2006-01-12 Boyette Roger L Jr In-service insulated tank certification

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739709A (en) * 2021-09-08 2021-12-03 中冶长天国际工程有限责任公司 Online detection method and online detection system for thickness of sintering material layer

Also Published As

Publication number Publication date
JPWO2020179336A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
US11525270B2 (en) Automated drywall planning system and method
Mill et al. Combined 3D building surveying techniques–terrestrial laser scanning (TLS) and total station surveying for BIM data management purposes
US8081815B2 (en) Marker arrangement information measuring apparatus and method
EP3639218A1 (en) Method and system for generating an adaptive projected reality in construction sites
CA2823273C (en) Measuring appliance comprising an automatic representation-changing functionality
CA2703423C (en) Pitch determination systems and methods for aerial roof estimation
CN110857591B (en) Measuring and/or marking device, method and system for determining the installation area of a device
KR101455726B1 (en) Surveying method and Surveying Instrument
JP6671852B2 (en) Information setting system and simulation system
US10890447B2 (en) Device, system and method for displaying measurement gaps
US11348322B1 (en) Tracking an ongoing construction by using fiducial markers
WO2020179336A1 (en) Method for measuring thickness of coating material, system for measuring thickness of coating material, and method for constructing coating material
JP7477945B2 (en) METHOD FOR MEASURING THREE-DIMENSIONAL SHAPE OF COVERING MATERIAL AND MEASURING SYSTEM FOR THREE-DIMENSIONAL SHAPE OF COVERING MATERIAL
US11494985B2 (en) System and method for mapping an interior space
JP2021152497A (en) Covering material thickness measurement method, covering material thickness measurement system, and covering material construction method
Shih et al. Using point cloud to inspect the construction quality of wall finish
CN114882171A (en) 3D scanning method based on BIM, storage medium and computer equipment
WO2022098252A1 (en) Method for 3d visualization of real estate objects using virtual reality technology
JP2021152309A (en) Evaluation method of heat insulation material and evaluation system of heat insulation material
CN112711790A (en) Automatic positioning control method for construction interval
JP7288769B2 (en) Insulation thickness control system and server
JP2022091630A (en) Method for measuring thickness of coating layer
JP2022106184A (en) Measurement reference body and method of measuring coating material thickness
JP2024022226A (en) Thickness measurement method, measurement device and measurement program
Pham et al. Marker-Based Augmented Reality Framework for Checking the Installation Status of Onsite Components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503476

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765584

Country of ref document: EP

Kind code of ref document: A1