WO2020179258A1 - Soil and/or groundwater cleaning method - Google Patents

Soil and/or groundwater cleaning method Download PDF

Info

Publication number
WO2020179258A1
WO2020179258A1 PCT/JP2020/002082 JP2020002082W WO2020179258A1 WO 2020179258 A1 WO2020179258 A1 WO 2020179258A1 JP 2020002082 W JP2020002082 W JP 2020002082W WO 2020179258 A1 WO2020179258 A1 WO 2020179258A1
Authority
WO
WIPO (PCT)
Prior art keywords
groundwater
soil
orp
heating means
controlled
Prior art date
Application number
PCT/JP2020/002082
Other languages
French (fr)
Japanese (ja)
Inventor
渉 田村
徳也 奥津
剛 塩谷
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2020179258A1 publication Critical patent/WO2020179258A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used

Definitions

  • the present invention relates to a method for purifying soil and/or groundwater.
  • Patent Documents 1 to 3 As a method for purifying soil and groundwater contaminated with harmful substances, purification technology (bioremediation) that decomposes and removes harmful substances in soil and groundwater using microorganisms, and in-situ chemistry that adds an oxidant to the ground There is an oxidation method (Patent Documents 1 to 3).
  • Patent Document 1 in a biostimulation method in which anaerobic microorganisms are injected into the ground, in order to improve the resolution of VOC, the energization of a heater inserted in a well is controlled to control soil and groundwater 35. It is described to heat below °C.
  • Patent Document 2 describes that groundwater is heated to about 20 to 35° C. in biostimulation or bioaugmentation.
  • Patent Document 3 describes that in the in-situ chemical oxidation method in which persulfate is added to the ground, the persulfate is added so as to be 10 mg/L or more at the end of the reaction region (end of the purification range). Has been done.
  • the present invention provides a method for purifying contaminated soil and groundwater by biostimulation method, bioaugmentation method, in-situ chemical oxidation method, etc.
  • the purpose is to control.
  • the gist of the soil and/or groundwater purification method of the present invention is as follows.
  • temperature sensors or ORP meters are provided at three or more locations within the purification target range, and the detection temperature or ORP meter of the temperature sensor is provided.
  • a method for purifying soil and / or groundwater which comprises controlling a soil and / or groundwater heating means or a chemical injection means so that the detection ORP of the above is within a predetermined range.
  • VOC concentration in the purification target range and at least one of the activities of anaerobic microorganisms are measured, and the heating means or the drug injection means is controlled based on the measurement results [1] to The method for purifying soil and/or groundwater according to any one of [3].
  • a soil and/or groundwater purification method for purifying soil and/or groundwater by adding an oxidant temperature sensors or ORP meters are provided at three or more locations within the range to be purified, and the detection temperature or ORP of the temperature sensor is provided.
  • a method for purifying soil and / or groundwater which comprises controlling a means for heating soil and / or groundwater or a means for adding an oxidizing agent so that the detection ORP of the meter falls within a predetermined range.
  • the soil and/or groundwater purification method of the present invention it is possible to appropriately heat the soil and/or groundwater over a wide range of purification range, to inject a chemical or to add an oxidizing agent, and It will be purified efficiently.
  • the present invention purifies the purification target range contaminated with organic substances by bioremediation or in-situ chemical oxidation method.
  • the temperature of soil and/or groundwater is preferably 25 to 30°C, or the detected ORP of the ORP meter does not rise (that is, the same value is maintained or a value on the negative side of the same).
  • the nutrient solution for activating anaerobic microorganisms to soil and/or groundwater, or a degrading bacterial culture solution such as anaerobic microorganisms is injected into the range to be purified, or soil and/or groundwater. Is heated by the heating means.
  • Examples of the above-mentioned organic substances as pollutants include benzene, 1,4-dioxane and the like in addition to organic chlorine compounds such as chlorinated ethylene.
  • Examples of chlorinated ethylene include tetrachlorethylene (PCE), trichlorethylene (TCE), 1,2-dichloroethylene (1,2-DCE), cis-1,2-dichloroethylene (cis-DCE), and trans-1,2-dichloroethylene ( Trans-DCE), 1,1-dichloroethylene (1,1-DCE), chloroethylene (VC) and dechlorination intermediates thereof and the like are exemplified.
  • sugars such as glucose, starch, acetic acid and citric acid or salts thereof, methanol, ethanol, peptone, yeast extract, as well as biodegradable polymers such as polylactic acid, triglycerides, and fatty acids are preferable, Particularly, acetic acid, citric acid or a salt thereof is suitable.
  • chlorinated ethylene degrading bacteria examples include Dehalococcoides bacteria having chlorinated ethylene degrading activity.
  • a liquid containing an oxidizing agent such as sodium persulfate is injected into the purification target range, and the temperature of the soil and / or groundwater is preferably 30 to 60 ° C., or the detection ORP of the ORP meter. Soil and / or groundwater is heated by heating means or the amount of oxidant added is controlled so that the value does not decrease (that is, the same value is maintained or is on the positive side).
  • the heating means an electric heater arranged in the ground, a hot water pipe, a steam blowing pipe for blowing steam into the ground, a hot water injection pipe, a power supply device to the ground, etc. are exemplified.
  • temperature sensors or ORP meters are provided at three or more places in the purification target range, and the temperature detected by each temperature sensor or the ORP detected by the ORP meter is controlled to fall within the above range.
  • FIG. 1 and 2 are a plan view of a purification target range for explaining the method of the present invention and a schematic view showing an example of a temperature control system.
  • heaters 1 are provided as heating means at a plurality of purification target ranges A. is set up.
  • each heater 1 is inserted from the ground surface to a predetermined depth in the ground. The energization of the heater 1 is controlled by the controller 2.
  • Temperature sensors 3 for measuring the underground temperature are installed at three or more points in the purification target range A, and the detected temperature is input to the controller 2, and the detected temperature of each temperature sensor 3 or its average value is within the range.
  • the energization of each heater 1 is controlled so that
  • ORP meters that measure the ORP (oxidation-reduction potential) in the ground may be installed at three or more locations in the purification target range A.
  • the ORP meter may be installed at the same location as each temperature sensor 3.
  • the heater 1 is controlled so that the detected ORP of each ORP meter falls within a predetermined range, and the injection of nutrients, degrading bacteria or oxidizing agents is controlled.
  • Control based on ORP is performed as follows, for example.
  • the ORP changes to the positive side as the activity of the anaerobic microorganisms decreases, so the heater 1 is controlled so that the ORP does not increase.
  • the underground temperature is raised to change the ORP to the negative side to increase the activity of anaerobic microorganisms.
  • the ORP decreases with the decomposition of the oxidant, so the heater 1 and the amount of the oxidant added are controlled so that the ORP does not decrease.
  • the temperature and the activity of anaerobic microorganisms and the decomposition activity of oxidants may be investigated in advance using the contaminated soil in the field, and the basic data may be used for control during purification.
  • the VOC concentration in the purification target range A, 16SrDNA of the degrading bacterium, etc. may be continuously or periodically measured to control the injection of the nutrient, the degrading bacterium, or the oxidizing agent.
  • Nutrients, degrading bacteria, oxidizing agents, etc. are injected into the ground in the form of an aqueous solution or dispersion by an injection well or an injection pipe (not shown).
  • the injection location is preferably one or more locations on the upstream side in the groundwater flow direction.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Soil Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

This soil and/or groundwater cleaning method for cleaning soil and/or groundwater by means of bioremediation or oxidant addition is characterized by comprising: providing temperature sensors 3 at three or more locations within a cleaning range; and controlling a soil and/or groundwater heating means or oxidant addition amount in such a manner that the detection temperatures from the temperature sensors 3 fall within a predetermined range.

Description

土壌及び/又は地下水の浄化方法Soil and/or groundwater purification method
 本発明は、土壌及び/又は地下水の浄化方法に関する。 The present invention relates to a method for purifying soil and/or groundwater.
 有害物質で汚染された土壌や地下水を浄化する方法として、微生物を利用して土壌や地下水中の有害物質を分解除去する浄化技術(バイオレメディエーション)や、酸化剤を地中に添加する原位置化学酸化法がある(特許文献1~3)。 As a method for purifying soil and groundwater contaminated with harmful substances, purification technology (bioremediation) that decomposes and removes harmful substances in soil and groundwater using microorganisms, and in-situ chemistry that adds an oxidant to the ground There is an oxidation method (Patent Documents 1 to 3).
 特許文献1には、地中に嫌気性微生物を注入するバイオスティミュレーション法において、VOCの分解能を向上させるために、井戸に挿入されたヒータへの通電を制御して、土壌、地下水を35℃未満に加熱することが記載されている。 In Patent Document 1, in a biostimulation method in which anaerobic microorganisms are injected into the ground, in order to improve the resolution of VOC, the energization of a heater inserted in a well is controlled to control soil and groundwater 35. It is described to heat below °C.
 特許文献2には、バイオスティミュレーション又はバイオオーギュメンテーションにおいて、20~35℃程度に地下水を加温することが記載されている。 Patent Document 2 describes that groundwater is heated to about 20 to 35° C. in biostimulation or bioaugmentation.
 特許文献3には、過硫酸塩を地中に添加する原位置化学酸化法において、反応領域末端(浄化範囲の末端)において、10mg/L以上となるように過硫酸塩を添加することが記載されている。 Patent Document 3 describes that in the in-situ chemical oxidation method in which persulfate is added to the ground, the persulfate is added so as to be 10 mg/L or more at the end of the reaction region (end of the purification range). Has been done.
特開2015-24401号公報JP, 2005-24401, A 特開2009-90183号公報JP, 2009-90183, A 特開2005-34806号公報JP 2005-34806 A
 本発明は、バイオスティミュレーション法、バイオオーギュメンテーション法、原位置化学酸化法などにより、汚染土壌、地下水を浄化する方法において、土壌及び/又は地下水の温度や酸化剤の添加量を適切に制御することを目的とする。 The present invention provides a method for purifying contaminated soil and groundwater by biostimulation method, bioaugmentation method, in-situ chemical oxidation method, etc. The purpose is to control.
 本発明の土壌及び/又は地下水の浄化方法の要旨は、次の通りである。 The gist of the soil and/or groundwater purification method of the present invention is as follows.
[1] 土壌及び/又は地下水をバイオレメディエーションによって浄化する土壌及び/又は地下水の浄化方法において、浄化対象範囲内の3ヶ所以上に温度センサ又はORP計を設け、該温度センサの検出温度又はORP計の検出ORPが所定範囲となるように土壌及び/又は地下水の加熱手段又は薬剤注入手段を制御することを特徴とする土壌及び/又は地下水の浄化方法。 [1] In the soil and / or groundwater purification method for purifying soil and / or groundwater by bioremediation, temperature sensors or ORP meters are provided at three or more locations within the purification target range, and the detection temperature or ORP meter of the temperature sensor is provided. A method for purifying soil and / or groundwater, which comprises controlling a soil and / or groundwater heating means or a chemical injection means so that the detection ORP of the above is within a predetermined range.
[2] 前記温度センサの検出温度が25~30℃となるように前記加熱手段又は薬剤注入手段を制御することを特徴とする[1]の土壌及び/又は地下水の浄化方法。 [2] The method for purifying soil and / or groundwater according to [1], wherein the heating means or the chemical injection means is controlled so that the detection temperature of the temperature sensor is 25 to 30 ° C.
[3] 前記ORP計の検出ORPが上昇しないように前記加熱手段又は薬剤注入手段を制御することを特徴とする[1]の土壌及び/又は地下水の浄化方法。 [3] The method for purifying soil and / or groundwater according to [1], wherein the heating means or the drug injection means is controlled so that the detection ORP of the ORP meter does not rise.
[4] 前記浄化対象範囲のVOC濃度及び嫌気性微生物の活性の少なくとも1つを測定し、さらにこの測定結果に基づいて前記加熱手段又は薬剤注入手段を制御することを特徴とする[1]~[3]のいずれかの土壌及び/又は地下水の浄化方法。 [4] The VOC concentration in the purification target range and at least one of the activities of anaerobic microorganisms are measured, and the heating means or the drug injection means is controlled based on the measurement results [1] to The method for purifying soil and/or groundwater according to any one of [3].
[5] 前記薬剤は、栄養剤又は分解菌培養液であることを特徴とする[1]~[4]のいずれかの土壌及び/又は地下水の浄化方法。 [5] The method for purifying soil and / or groundwater according to any one of [1] to [4], wherein the drug is a nutrient or a culture solution for degrading bacteria.
[6] 土壌及び/又は地下水を酸化剤添加によって浄化する土壌及び/又は地下水の浄化方法において、浄化対象範囲内の3ヶ所以上に温度センサ又はORP計を設け、該温度センサの検出温度又はORP計の検出ORPが所定範囲となるように土壌及び/又は地下水の加熱手段又は酸化剤添加手段を制御することを特徴とする土壌及び/又は地下水の浄化方法。 [6] In a soil and/or groundwater purification method for purifying soil and/or groundwater by adding an oxidant, temperature sensors or ORP meters are provided at three or more locations within the range to be purified, and the detection temperature or ORP of the temperature sensor is provided. A method for purifying soil and / or groundwater, which comprises controlling a means for heating soil and / or groundwater or a means for adding an oxidizing agent so that the detection ORP of the meter falls within a predetermined range.
[7] 前記温度センサの検出温度が30~60℃となるように前記加熱手段又は酸化剤添加手段を制御することを特徴とする[6]の土壌及び/又は地下水の浄化方法。 [7] The method for purifying soil and/or groundwater according to [6], wherein the heating means or the oxidizing agent adding means is controlled so that the temperature detected by the temperature sensor is 30 to 60°C.
[8] 前記ORP計の検出ORPが低下しないように前記加熱手段又は酸化剤添加手段を制御することを特徴とする[6]の土壌及び/又は地下水の浄化方法。 [8] The method for purifying soil and / or groundwater according to [6], wherein the heating means or the oxidizing agent adding means is controlled so that the detection ORP of the ORP meter does not decrease.
[9] 前記浄化対象範囲のVOC濃度を測定し、さらにこの測定結果に基づいて前記加熱手段又は酸化剤添加手段を制御することを特徴とする[6]~[8]のいずれかの土壌及び/又は地下水の浄化方法。 [9] The soil of any one of [6] to [8], characterized in that the VOC concentration in the purification target range is measured, and the heating means or oxidant addition means is controlled based on the measurement result. / Or a method of purifying groundwater.
 本発明の土壌及び/又は地下水の浄化方法によると、浄化対象範囲の広い範囲にわたって土壌及び/又は地下水を適切に加熱したり、薬剤注入又は酸化剤添加することができ、土壌及び/又は地下水が効率よく浄化されるようになる。 According to the soil and/or groundwater purification method of the present invention, it is possible to appropriately heat the soil and/or groundwater over a wide range of purification range, to inject a chemical or to add an oxidizing agent, and It will be purified efficiently.
浄化対象範囲の平面図である。It is a top view of the purification target range. 加熱システムの構成図である。It is a block diagram of a heating system.
 以下、本発明についてさらに詳細に説明する。 The present invention will be described in more detail below.
 本発明は、有機物質で汚染された浄化対象範囲をバイオレメディエーション又は原位置化学酸化法によって浄化する。 The present invention purifies the purification target range contaminated with organic substances by bioremediation or in-situ chemical oxidation method.
 バイオレメディエーションによる場合、土壌及び/又は地下水の温度が好ましくは25~30℃となるか、又はORP計の検出ORPが上昇しないように(即ち、同一値を維持するか、又はそれよりもマイナス側となるように)、土壌及び/又は地下水に対し嫌気性微生物を活性化させるための栄養剤や、嫌気性微生物などの分解菌培養液を浄化対象範囲に注入するか、又は土壌及び/又は地下水を加熱手段によって加熱する。 In the case of bioremediation, the temperature of soil and/or groundwater is preferably 25 to 30°C, or the detected ORP of the ORP meter does not rise (that is, the same value is maintained or a value on the negative side of the same). The nutrient solution for activating anaerobic microorganisms to soil and/or groundwater, or a degrading bacterial culture solution such as anaerobic microorganisms is injected into the range to be purified, or soil and/or groundwater. Is heated by the heating means.
 汚染物質としての上記有機物質としては、塩素化エチレン等の有機塩素化合物の他に、ベンゼンや1,4-ジオキサン等が例示される。塩素化エチレンとしては、テトラクロロエチレン(PCE)、トリクロロエチレン(TCE)、1,2-ジクロロエチレン(1,2-DCE)、シス-1,2-ジクロロエチレン(cis-DCE)、トランス-1,2-ジクロロエチレン(trans-DCE)、1,1-ジクロロエチレン(1,1-DCE)、クロロエチレン(VC)およびこれらの脱塩素化中間体などが例示される。 Examples of the above-mentioned organic substances as pollutants include benzene, 1,4-dioxane and the like in addition to organic chlorine compounds such as chlorinated ethylene. Examples of chlorinated ethylene include tetrachlorethylene (PCE), trichlorethylene (TCE), 1,2-dichloroethylene (1,2-DCE), cis-1,2-dichloroethylene (cis-DCE), and trans-1,2-dichloroethylene ( Trans-DCE), 1,1-dichloroethylene (1,1-DCE), chloroethylene (VC) and dechlorination intermediates thereof and the like are exemplified.
 栄養剤としては、グルコース等の糖類、でんぷん、酢酸やクエン酸又はその塩、メタノール、エタノール、ペプトン、酵母エキスのほか、ポリ乳酸等の生分解性ポリマー、トリグリセリド、脂肪酸等が好適であるが、特に酢酸やクエン酸又はその塩が好適である。 As the nutritional supplement, sugars such as glucose, starch, acetic acid and citric acid or salts thereof, methanol, ethanol, peptone, yeast extract, as well as biodegradable polymers such as polylactic acid, triglycerides, and fatty acids are preferable, Particularly, acetic acid, citric acid or a salt thereof is suitable.
 塩素化エチレンの分解菌としては、塩素化エチレン分解活性を有するデハロコッコイデス属細菌などが例示される。 Examples of chlorinated ethylene degrading bacteria include Dehalococcoides bacteria having chlorinated ethylene degrading activity.
 原位置化学酸化法による場合、過硫酸ナトリウムなどの酸化剤を含む液を浄化対象範囲に注入し、土壌及び/又は地下水の温度が好ましくは30~60℃となるか、又はORP計の検出ORPが低下しないように(即ち、同一値を維持するか又はそれよりもプラス側となるように)、土壌及び/又は地下水を加熱手段によって加熱するか、又は酸化剤添加量を制御する。 In the case of the in-situ chemical oxidation method, a liquid containing an oxidizing agent such as sodium persulfate is injected into the purification target range, and the temperature of the soil and / or groundwater is preferably 30 to 60 ° C., or the detection ORP of the ORP meter. Soil and / or groundwater is heated by heating means or the amount of oxidant added is controlled so that the value does not decrease (that is, the same value is maintained or is on the positive side).
 加熱手段としては、地中に配設された電気ヒータ、温水パイプのほか、地中へ蒸気を吹き込む蒸気吹込パイプ、温水注入パイプや、地中への通電装置などが例示される。 As the heating means, an electric heater arranged in the ground, a hot water pipe, a steam blowing pipe for blowing steam into the ground, a hot water injection pipe, a power supply device to the ground, etc. are exemplified.
 本発明では、浄化対象範囲の3ヶ所以上に温度センサ又はORP計を設け、各温度センサの検出温度又はORP計の検出ORPが前記範囲となるように制御する。 In the present invention, temperature sensors or ORP meters are provided at three or more places in the purification target range, and the temperature detected by each temperature sensor or the ORP detected by the ORP meter is controlled to fall within the above range.
 図1,2は、本発明方法を説明する浄化対象範囲の平面図及び温度制御システムの一例を示す模式図であり、図1の通り、浄化対象範囲Aの複数個所に加熱手段としてヒータ1が設置されている。図2の通り、各ヒータ1は地表から地中の所定深さまで差し込まれている。ヒータ1への通電は、制御器2によって制御される。 1 and 2 are a plan view of a purification target range for explaining the method of the present invention and a schematic view showing an example of a temperature control system. As shown in FIG. 1, heaters 1 are provided as heating means at a plurality of purification target ranges A. is set up. As shown in FIG. 2, each heater 1 is inserted from the ground surface to a predetermined depth in the ground. The energization of the heater 1 is controlled by the controller 2.
 浄化対象範囲Aの3ヶ所以上において、地中温度を測定する温度センサ3が設置されており、その検出温度が制御器2に入力され、各温度センサ3の検出温度又はその平均値が前記範囲となるように各ヒータ1への通電が制御される。 Temperature sensors 3 for measuring the underground temperature are installed at three or more points in the purification target range A, and the detected temperature is input to the controller 2, and the detected temperature of each temperature sensor 3 or its average value is within the range. The energization of each heater 1 is controlled so that
 温度センサ3の他に、又は温度センサ3と共に、地中のORP(酸化還元電位)を測定するORP計を浄化対象範囲Aの3ヶ所以上に設置するようにしてもよい。ORP計は各温度センサ3と同一箇所に設置されてもよい。各ORP計の検出ORPが所定範囲となるように、ヒータ1を制御したり、栄養剤、分解菌あるいは酸化剤の注入を制御する。 In addition to the temperature sensor 3, or together with the temperature sensor 3, ORP meters that measure the ORP (oxidation-reduction potential) in the ground may be installed at three or more locations in the purification target range A. The ORP meter may be installed at the same location as each temperature sensor 3. The heater 1 is controlled so that the detected ORP of each ORP meter falls within a predetermined range, and the injection of nutrients, degrading bacteria or oxidizing agents is controlled.
 ORPに基づく制御は、例えば次のようにして行われる。嫌気性微生物を利用した浄化の場合、嫌気性微生物の活性低下に伴いORPはプラス側に変化するため、ORPが上昇しないようにヒータ1を制御する。例えば、地中温度を上げてORPをマイナス側へ変化させて、嫌気性微生物の活性を上昇させる。また、酸化剤を用いた浄化では、酸化剤の分解に伴いORPが低下するため、ORPが低下しないようにヒータ1や酸化剤添加量を制御する。 Control based on ORP is performed as follows, for example. In the case of purification using anaerobic microorganisms, the ORP changes to the positive side as the activity of the anaerobic microorganisms decreases, so the heater 1 is controlled so that the ORP does not increase. For example, the underground temperature is raised to change the ORP to the negative side to increase the activity of anaerobic microorganisms. Further, in the purification using an oxidant, the ORP decreases with the decomposition of the oxidant, so the heater 1 and the amount of the oxidant added are controlled so that the ORP does not decrease.
 予め現地の汚染土壌を用いて、温度と嫌気性微生物の活性や酸化剤の分解活性を調べ、それを基礎データとして浄化時の制御に利用してもよい。 The temperature and the activity of anaerobic microorganisms and the decomposition activity of oxidants may be investigated in advance using the contaminated soil in the field, and the basic data may be used for control during purification.
 浄化対象範囲AのVOC濃度や、分解菌の16SrDNAなどを連続的又は定期的に測定し、栄養剤、分解菌或いは酸化剤の注入を制御するようにしてもよい。 The VOC concentration in the purification target range A, 16SrDNA of the degrading bacterium, etc. may be continuously or periodically measured to control the injection of the nutrient, the degrading bacterium, or the oxidizing agent.
 栄養剤、分解菌、酸化剤などは、水溶液又は分散液の形態で注入井又は注入パイプ(図示略)によって地中に注入される。注入箇所は、地下水流れ方向の上流側の1又は2以上の箇所が好ましい。 Nutrients, degrading bacteria, oxidizing agents, etc. are injected into the ground in the form of an aqueous solution or dispersion by an injection well or an injection pipe (not shown). The injection location is preferably one or more locations on the upstream side in the groundwater flow direction.
 温度センサ3やORPをnヶ所(n≧3)に設置する場合、浄化対象範囲Aをn個に等分に区画し、各区画にそれぞれ温度センサやORP計を設置することが好ましい。 When installing the temperature sensor 3 or ORP in n places (n≧3), it is preferable to divide the purification target range A into n equal parts, and install the temperature sensor or ORP meter in each partition.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2019年3月5日付で出願された日本特許出願2019-039680に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the intent and scope of the invention.
This application is based on Japanese Patent Application No. 2019-039680 filed on March 5, 2019, which is incorporated by reference in its entirety.
 1 ヒータ
 2 制御器
 3 温度センサ
1 heater 2 controller 3 temperature sensor

Claims (9)

  1.  土壌及び/又は地下水をバイオレメディエーションによって浄化する土壌及び/又は地下水の浄化方法において、
     浄化対象範囲内の3ヶ所以上に温度センサ又はORP計を設け、該温度センサの検出温度又はORP計の検出ORPが所定範囲となるように土壌及び/又は地下水の加熱手段又は薬剤注入手段を制御することを特徴とする土壌及び/又は地下水の浄化方法。
    A method for purifying soil and/or groundwater by bioremediation, comprising:
    Temperature sensors or ORP meters are provided at three or more locations within the purification target range, and the soil and / or groundwater heating means or chemical injection means are controlled so that the detection temperature of the temperature sensor or the detection ORP of the ORP meter falls within a predetermined range. A method for purifying soil and / or groundwater, which comprises doing so.
  2.  前記温度センサの検出温度が25~30℃となるように前記加熱手段又は薬剤注入手段を制御することを特徴とする請求項1の土壌及び/又は地下水の浄化方法。 The method for purifying soil and / or groundwater according to claim 1, wherein the heating means or the drug injection means is controlled so that the detection temperature of the temperature sensor is 25 to 30 ° C.
  3.  前記ORP計の検出ORPが上昇しないように前記加熱手段又は薬剤注入手段を制御することを特徴とする請求項1の土壌及び/又は地下水の浄化方法。 The method for purifying soil and / or groundwater according to claim 1, wherein the heating means or the drug injection means is controlled so that the detection ORP of the ORP meter does not rise.
  4.  前記浄化対象範囲のVOC濃度及び嫌気性微生物の活性の少なくとも1つを測定し、さらにこの測定結果に基づいて前記加熱手段又は薬剤注入手段を制御することを特徴とする請求項1~3のいずれかの土壌及び/又は地下水の浄化方法。 4. The method according to claim 1, wherein at least one of the VOC concentration in the purification target range and the activity of the anaerobic microorganism is measured, and the heating means or the drug injection means is controlled based on the measurement result. Method for purifying the soil and/or groundwater.
  5.  前記薬剤は、栄養剤又は分解菌培養液であることを特徴とする請求項1~4のいずれかの土壌及び/又は地下水の浄化方法。 The method for purifying soil and/or groundwater according to any one of claims 1 to 4, wherein the drug is a nutrient or a culture solution of a degrading bacterium.
  6.  土壌及び/又は地下水を酸化剤添加によって浄化する土壌及び/又は地下水の浄化方法において、
     浄化対象範囲内の3ヶ所以上に温度センサ又はORP計を設け、該温度センサの検出温度又はORP計の検出ORPが所定範囲となるように土壌及び/又は地下水の加熱手段又は酸化剤添加手段を制御することを特徴とする土壌及び/又は地下水の浄化方法。
    A method for purifying soil and/or groundwater by adding an oxidant to the soil and/or groundwater,
    Temperature sensors or ORP meters are provided at three or more locations within the purification target range, and soil and / or groundwater heating means or oxidant addition means are provided so that the temperature detected by the temperature sensor or the detection ORP of the ORP meter falls within a predetermined range. A method for purifying soil and / or groundwater, which comprises controlling.
  7.  前記温度センサの検出温度が30~60℃となるように前記加熱手段又は酸化剤添加手段を制御することを特徴とする請求項6の土壌及び/又は地下水の浄化方法。 The method for purifying soil and / or groundwater according to claim 6, wherein the heating means or the oxidizing agent adding means is controlled so that the detection temperature of the temperature sensor is 30 to 60 ° C.
  8.  前記ORP計の検出ORPが低下しないように前記加熱手段又は酸化剤添加手段を制御することを特徴とする請求項6の土壌及び/又は地下水の浄化方法。 The method for purifying soil and / or groundwater according to claim 6, wherein the heating means or the oxidizing agent adding means is controlled so that the detection ORP of the ORP meter does not decrease.
  9.  前記浄化対象範囲のVOC濃度を測定し、さらにこの測定結果に基づいて前記加熱手段又は酸化剤添加手段を制御することを特徴とする請求項6~8のいずれかの土壌及び/又は地下水の浄化方法。 9. The soil and/or groundwater purification according to claim 6, wherein the VOC concentration in the purification target range is measured, and the heating means or the oxidizing agent addition means is controlled based on the measurement result. Method.
PCT/JP2020/002082 2019-03-05 2020-01-22 Soil and/or groundwater cleaning method WO2020179258A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-039680 2019-03-05
JP2019039680A JP2020142175A (en) 2019-03-05 2019-03-05 Cleaning method of soil and/or underground water

Publications (1)

Publication Number Publication Date
WO2020179258A1 true WO2020179258A1 (en) 2020-09-10

Family

ID=72336966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002082 WO2020179258A1 (en) 2019-03-05 2020-01-22 Soil and/or groundwater cleaning method

Country Status (2)

Country Link
JP (1) JP2020142175A (en)
WO (1) WO2020179258A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300056A (en) * 2002-04-10 2003-10-21 Kurita Water Ind Ltd Method of purifying organic halogen compound- contaminated soil
JP2007260509A (en) * 2006-03-27 2007-10-11 Nippon Oil Corp Organic compound removing method
JP2008272530A (en) * 2006-06-21 2008-11-13 Matsushita Electric Ind Co Ltd Polluted soil decontaminating method
WO2018043508A1 (en) * 2016-08-31 2018-03-08 株式会社竹中工務店 Contaminated soil cleaning system
JP2019030845A (en) * 2017-08-08 2019-02-28 株式会社竹中工務店 Purification determination method for determining whether soil contaminated by harmful substance with microorganism at original position or not

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3540433T3 (en) * 2016-11-14 2024-01-03 Takenaka Corporation Method for estimating concentration of soil injection agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300056A (en) * 2002-04-10 2003-10-21 Kurita Water Ind Ltd Method of purifying organic halogen compound- contaminated soil
JP2007260509A (en) * 2006-03-27 2007-10-11 Nippon Oil Corp Organic compound removing method
JP2008272530A (en) * 2006-06-21 2008-11-13 Matsushita Electric Ind Co Ltd Polluted soil decontaminating method
WO2018043508A1 (en) * 2016-08-31 2018-03-08 株式会社竹中工務店 Contaminated soil cleaning system
JP2019030845A (en) * 2017-08-08 2019-02-28 株式会社竹中工務店 Purification determination method for determining whether soil contaminated by harmful substance with microorganism at original position or not

Also Published As

Publication number Publication date
JP2020142175A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
Yadav et al. Biodegradation of chlorpyrifos by Pseudomonas sp. in a continuous packed bed bioreactor
Chung et al. Bioreduction of trichloroethene using a hydrogen-based membrane biofilm reactor
CN112547782B (en) Low-energy-consumption soil organic pollutant in-situ treatment method and system
Verdini et al. Relative contribution of set cathode potential and external mass transport on TCE dechlorination in a continuous-flow bioelectrochemical reactor
Miao et al. Profiling microbial community structures and functions in bioremediation strategies for treating 1, 4-dioxane-contaminated groundwater
Mohan et al. Azo dye remediation in periodic discontinuous batch mode operation: evaluation of metabolic shifts of the biocatalyst under aerobic, anaerobic and anoxic conditions
Shukla et al. Bio-filtration of trichloroethylene using diazotrophic bacterial community
Mariner et al. Characterisation of an attenuation system for the remediation of Mn (II) contaminated waters
Kwon et al. Simultaneous biodegradation of carbon tetrachloride and trichloroethylene in a coupled anaerobic/aerobic biobarrier
WO2020179258A1 (en) Soil and/or groundwater cleaning method
Yamamoto et al. Field test of on-site treatment of 1, 4-dioxane-contaminated groundwater using Pseudonocardia sp. D17
Frascari et al. Chloroform degradation by butane-grown cells of Rhodococcus aetherovorans BCP1
Marsolek et al. Effect of substrate characteristics on microbial community structure, function, resistance, and resilience; application to coupled photocatalytic-biological treatment
Wang et al. Degradation of nicosulfuron by a novel isolated bacterial strain Klebsiella sp. Y1: condition optimization, kinetics and degradation pathway
KR100824809B1 (en) Frp combine purifying tank
Azadpour‐Keeley et al. Monitored natural attenuation of contaminants in the subsurface: Processes
De Marines et al. Degradation of 1, 2-dichloroethane in real polluted groundwater by using enriched bacterial consortia in aerobic and anaerobic laboratory-scale conditions
Keller et al. Monitoring of the effects of a temporally limited heat stress on microbial communities in a shallow aquifer
Choi et al. Effect of total dissolved solids injection on microbial diversity and activity determined by 16S rRNA gene based pyrosequencing and oxygen uptake rate analysis
JP4835486B2 (en) Soil and groundwater purification methods
JP5668916B2 (en) Soil and groundwater purification methods
EP3260425B1 (en) Aeration control in waste water treatment by monitoring nitrification by-products
Shi et al. VSS degradation kinetics in high temperature aerobic digestion and microbial community characteristics
Frascari et al. Chloroform aerobic cometabolic biodegradation in a continuous‐flow reactor: Model calibration by means of the Gauss‐Newton method
JP2022105425A (en) Method for purifying contaminated soil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20767098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20767098

Country of ref document: EP

Kind code of ref document: A1