WO2020179106A1 - Power generation element and method of manufacturing power generation element - Google Patents

Power generation element and method of manufacturing power generation element Download PDF

Info

Publication number
WO2020179106A1
WO2020179106A1 PCT/JP2019/034164 JP2019034164W WO2020179106A1 WO 2020179106 A1 WO2020179106 A1 WO 2020179106A1 JP 2019034164 W JP2019034164 W JP 2019034164W WO 2020179106 A1 WO2020179106 A1 WO 2020179106A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal layer
power generation
generation element
shirasu balloon
Prior art date
Application number
PCT/JP2019/034164
Other languages
French (fr)
Japanese (ja)
Inventor
孝仁 前山
Original Assignee
株式会社Messa
孝仁 前山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Messa, 孝仁 前山 filed Critical 株式会社Messa
Publication of WO2020179106A1 publication Critical patent/WO2020179106A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/12Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with flat electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/26Cells without oxidising active material, e.g. Volta cells

Definitions

  • the present invention relates to a power generation element and a method for manufacturing the power generation element. More specifically, the present invention relates to a power generation element that does not require charging by an external voltage and can improve power generation efficiency while being compact and lightweight, and a method for manufacturing the power generation element.
  • Lithium-ion batteries are generally composed of a positive electrode in which a positive electrode active material or the like is applied to both sides of a positive electrode current collector using a binder, and a negative electrode in which a negative electrode active material or the like is applied to both sides of a negative electrode current collector using a binder. It has a configuration in which it is connected via an electrolyte layer and housed in a battery exterior material. For example, in Patent Document 1, 19 positive electrodes and 20 negative electrodes are alternately laminated via an electrolyte layer, lithium having a laminated structure. Ion batteries are described.
  • Patent Document 2 discloses a power supply device that charges a secondary battery with electricity generated by a power generation element and uses it as auxiliary energy. Specifically, the electricity generated by the piezoelectric element is charged into a secondary battery or a capacitor, and this electric energy is used as auxiliary energy for the power supply battery of the mobile terminal, so that it can be used for a long time in the mobile terminal. The use is realized.
  • the operating principle of the capacitor is not a chemical reaction but a charge is stored by electrostatic adsorption of ions in the electrolytic solution, so that it has excellent internal resistance and durability, while self-discharge due to diffusion of adsorbed ions is fast. Therefore, the accumulated charge disappears immediately. Therefore, if the power generation by the energy harvesting element is intermittent and the power generation interval can be long, the discharge from the power storage device may not function.
  • lithium-ion batteries and capacitors described above have a limited service life depending on the application and method of use, but they will always reach the end of their life.
  • lithium-ion batteries installed in hybrid vehicles and electric vehicles will eventually become used batteries. Be discarded.
  • valuable metals contained in each component may be collected and recycled as resources, but most are discarded as industrial waste with a large environmental load.
  • Patent Document 3 discloses a power generation element that is manufactured from volcanic ash containing a large amount of static electricity and does not require disposal. Specifically, a conductive water-containing powder composed of activated carbon, fullerene, nanotubes, etc., is charged into a static electricity generating member generated by processing volcanic ash, and then filled into a cylindrical container having insulation and airtightness, and then By connecting an anode electrode and a cathode electrode for extracting electricity to both ends, it is possible to extract a large amount of electricity in spite of its small size.
  • Patent Document 4 discloses a power generation element using Shirasu, which is a volcanic ejecta, as a power generation element that also does not require disposal treatment. Specifically, an aqueous solution subjected to an appropriate amount of high-frequency magnetic field treatment was kneaded into powdered shirasu to form a clay-like molded product, and the molded product was sandwiched between a metal cathode and an anode to form an alternately laminated structure. It is a thing. According to the power generation element disclosed in Patent Document 4, the static electricity possessed by Shirasu can be taken out as an electric current so that it can be used as a power supply device.
  • Shirasu which is a volcanic ejecta
  • Patent Document 4 is similar to the invention of Patent Document 3, focusing on the fact that the static electricity contained in the shirasu can be taken out as an electric current by using specially processed water. However, also in the invention according to Patent Document 4, it is necessary to add an aqueous solution subjected to high-frequency magnetic field treatment containing negative ions each time as the amount of extracted current decreases.
  • shirasu balloon hollow glass spheres obtained by firing, expanding and expanding shirasu at a high temperature of approximately 1000° C.
  • shirasu balloon hollow glass spheres obtained by firing, expanding and expanding shirasu at a high temperature of approximately 1000° C.
  • a power generating element composed of a laminated structure in which a shirasu balloon is sandwiched by metals having different ionization tendencies to stably take out an electric current for a long time without requiring a specially processed aqueous solution. I found that you can.
  • the present invention has been devised in view of the above points, and provides a power generation element that does not require charging by an external voltage, is compact and lightweight, and can improve power generation efficiency, and a method for manufacturing the power generation element.
  • the purpose is to do.
  • the power generation element according to the present invention contains at least one metal selected from the group consisting of magnesium, aluminum, titanium, zinc, chromium, iron, nickel and lead, and has a thickness of 30 ⁇ m or more.
  • a first metal layer which is, is laminated on the first metal layer includes a shirasu balloon, and a shirasu balloon layer having a thickness of 30 ⁇ m or more and containing water, and is laminated on the shirasu balloon layer,
  • the first metal layer containing a predetermined type of metal, for example, when a metal having a relatively large ionization tendency is used as the first metal layer, the first metal layer leaves electrons while leaving electrons. A large amount of negative ions are absorbed by the Shirasu balloon layer described later.
  • the negative ion component of the first metal layer can be taken into the Shirasu balloon layer as described above.
  • a large number of micropores (balloon holes) are formed in the Shirasu balloon by firing, more negative ions can be taken into the balloon holes.
  • the first metal layer and the second metal layer By conducting the metal layer of the above, the electrons generated in the first metal layer move to the second metal layer. As a result, electric energy can be generated by the current flowing between the first metal layer and the second metal layer.
  • the first metal layer is a layer made of at least one metal selected from the group consisting of magnesium, aluminum, titanium, zinc, chromium, iron, nickel and lead, it has a relatively large ionization tendency.
  • the metal By arranging the metal as the first metal layer, more negative ions are absorbed by the silas balloon layer, so that the efficiency of generating electric energy can be increased.
  • the second metal layer is a layer made of at least one metal selected from the group consisting of gold, silver, copper, and platinum, a metal having an ionization tendency smaller than that of the first metal layer is used.
  • the first metal layer and the second metal layer are close to each other, the first metal layer and the second metal layer are electrically connected to each other, so that negative ions generated in the first metal layer are generated in the intermediate layer.
  • a phenomenon may occur in which the metal is not incorporated into the silas balloon layer.
  • by interposing an insulating layer between the first metal layer and the Shirasu balloon layer it becomes possible to solve such a problem and stably generate electric energy.
  • the thickness of the first metal layer is about 30 ⁇ m or more, stable electric energy can be generated. If the thickness of the first metal layer is a thin film having a thickness of less than about 30 ⁇ m, the amount of negative ions generated in the first metal layer is small, and thus the amount of generated electric energy is small.
  • the thickness of the Shirasu balloon layer is about 30 ⁇ m or more, stable electric energy can be generated.
  • the thickness of the shirasu balloon layer is less than 30 ⁇ m, the surface area of the balloon hole becomes relatively small, and it is impossible to absorb all the negative ions released from the first metal layer. The amount of electrical energy produced is reduced.
  • the thickness of the second metal layer is about 50 ⁇ m or more, stable electric energy can be generated.
  • the second metal layer is a thin film having a thickness of less than 50 ⁇ m, the amount of electrons received from the first metal layer is small, so that the amount of generated electric energy is small.
  • the method for producing a power generation element includes a step of forming a shirasu balloon layer containing shirasu balloon and having a thickness of 30 ⁇ m or more and containing water; Laminating on one surface a first metal layer having a thickness of 30 ⁇ m or more, containing at least one metal selected from the group consisting of magnesium, aluminum, titanium, zinc, chromium, iron, nickel, and lead.
  • a second metal layer which is a layer made of at least one metal selected from the group consisting of gold, silver, copper, and platinum, and has a thickness of 50 ⁇ m or more, is laminated on the other surface of the shirasu balloon layer. And a step of performing.
  • a thin film including a shirasu balloon in which many fine holes (balloon holes) are formed by firing the shirasu A shaped shirasu balloon layer can be produced.
  • a large amount of negative ions released from the first metal layer can be taken into the balloon hole, so that electric energy can be stably generated.
  • the thin-film-shaped first metal layer on one surface of the thin-film silas balloon layer, for example, magnesium, aluminum, titanium, which are metals having a relatively large ionization tendency
  • a layer made of at least one metal selected from the group consisting of zinc, chromium, iron, nickel, and lead as the first metal layer, more negative ions are absorbed by the silas balloon layer. The efficiency of generating electrical energy can be increased.
  • the silas balloon layer is sandwiched between the first metal layer and the second metal layer. Therefore, the power generation element as a whole can be miniaturized.
  • the first metal Since the number of electrons moving from the layer to the second metal layer is increased, larger electric energy can be extracted.
  • the step of laminating the first metal layer when there is a step of laminating an insulating layer made of an insulating material on one surface of the thin-film silas balloon layer, for example, Even when the second metal layer is formed of a thin thin film, it is possible to stably generate electric energy.
  • the first metal layer and the second metal layer are close to each other, the first metal layer and the second metal layer are electrically connected to each other, so that the negative ions generated in the first metal layer are generated.
  • interposing an insulating layer between the first metal layer and the Shirasu balloon layer solves such a problem and stabilizes the operation. It is possible to continuously generate electrical energy.
  • the power generating element and the method for manufacturing the power generating element according to the present invention do not require charging by an external voltage, and while being small and lightweight, the power generating efficiency can be improved.
  • the power generation element 10 includes a first metal layer 11, an insulating layer 12 laminated on the first metal layer 11, a shirasu balloon layer 13 laminated on the insulating layer 12, and a shirasu balloon. It is composed of a second metal layer 14 laminated on the layer 13.
  • the insulating layer 12 is not always an essential component. However, as will be described later, since the first metal layer 11 and the second metal layer 14 are in close positional relationship with each other, the Shirasu balloon layer in which the negative ions generated in the first metal layer 11 are in the intermediate layer. The phenomenon that it is not taken into 13 may occur. For this reason, the negative ions generated in the first metal layer 11 are efficiently taken into the intermediate layer, the shirasu balloon layer 13, and the insulating layer 12 is also provided in order to stably generate electric energy. Is preferred.
  • the first metal layer 11 is a thin film having a thickness of about 30 ⁇ m, and has a higher ionization energy of hydrogen, for example, and is a metal that is easily immersed in water or an acid. Is selected.
  • the type of the first metal layer 11 does not necessarily have to be magnesium.
  • any kind of metal may be used as long as it is a metal having a higher ionization energy than hydrogen and is easily attacked by water or an acid.
  • at least one metal selected from aluminum, titanium, zinc, chromium, iron, nickel, lead and the like may be used.
  • the thickness of the first metal layer 11 does not necessarily need to be about 30 ⁇ m. However, as a result of repeated studies by the inventor, if the thickness of the first metal layer 11 is less than 30 ⁇ m, stable electrical energy cannot be generated. It is considered that this is because when the first metal layer 11 has a thin film shape of less than 30 ⁇ m, the amount of negative ions generated in the first metal layer 11 decreases.
  • the thickness of the first metal layer 11 is set to about 30 ⁇ m or more, electric energy is stably generated, and even if the thickness width of the first metal layer 11 is changed in the range of, for example, 30 ⁇ m or more. It was confirmed that there was no big difference in the amount of electric energy generated. Therefore, the thickness of the first metal layer 11 is preferably about 30 ⁇ m or more, and more preferably about 30 ⁇ m, which is the lower limit critical value from the viewpoint of miniaturization and weight reduction.
  • the insulating layer 12 is a thin film having a thickness of about 100 ⁇ m, and is made of, for example, one material selected from polyvinyl chloride as a synthetic resin material, synthetic rubber, polyethylene, polyester, epoxy, silicone and the like. ..
  • the insulating material of the insulating layer 12 does not necessarily have to be a synthetic resin material.
  • it may be made of a natural material such as paraffin, sulfur, air or glass.
  • a synthetic resin material is preferable.
  • the insulating layer 12 does not necessarily have to have a thickness of about 100 ⁇ m. However, as a result of repeated studies by the inventor, if the thickness of the insulating layer 12 is less than 100 ⁇ m, the first metal layer 11 and the second metal layer 14 become conductive, and stable electric energy is generated. It was confirmed that it was not possible.
  • the thickness of the insulating layer 12 is approximately 100 ⁇ m or more, electrical energy is stably generated, and even if the thickness width of the insulating layer 12 is changed in the range of 100 ⁇ m or more, the amount of electrical energy generated is generated. It was confirmed that there was no big difference in. Therefore, the thickness of the insulating layer 12 is preferably about 100 ⁇ m or more, and more preferably about 100 ⁇ m, which is the lower limit critical value from the viewpoint of size reduction and weight reduction.
  • the shirasu balloon layer 13 is a thin film having a thickness of about 30 ⁇ m.
  • the shirasu balloon layer 13 is a shirasu balloon, which is a foam obtained by rapidly heating shirasu at a high temperature of about 1000° C., in the form of a thin film.
  • the foam structure of the shirasu balloon is generally formed by simultaneous softening of the glassy material contained in the shirasu and evaporation of water of crystallization contained therein under a high temperature environment.
  • the Shirasu balloon layer 13 is mixed with tap water in a predetermined amount (about 1 to 2 drops with a dropper) so that a certain amount of water is contained.
  • a predetermined amount about 1 to 2 drops with a dropper
  • the shirasu balloon layer 13 does not necessarily have to have a thickness of about 30 ⁇ m.
  • the thickness of the shirasu balloon layer 13 is less than 30 ⁇ m, the surface area of the balloon hole becomes relatively small, and all the negative ions released from the first metal layer 11 are discharged. It was confirmed that stable electric energy could not be generated because it could not be absorbed.
  • the thickness of the shirasu balloon layer 13 is preferably about 30 ⁇ m or more, and more preferably about 30 ⁇ m, which is the lower limit critical value from the viewpoint of reduction in size and weight.
  • tap water is not necessarily required as the aqueous solution mixed with the shirasu balloon layer 13. Since the shirasu balloon layer 13 may contain a certain amount of water, the type of the aqueous solution is not particularly limited.
  • the shirasu balloon layer 13 does not necessarily have to be composed of shirasu balloons only.
  • a silas balloon may be used as a main raw material, and a predetermined amount of volcanic ash, silus, and other impurities may be contained.
  • the second metal layer 14 is a thin film having a thickness of about 50 ⁇ m, and has a lower ionization tendency than, for example, a metal having a lower ionization energy of hydrogen (that is, a metal material selected for the first metal layer 11).
  • a metal having a lower ionization energy of hydrogen that is, a metal material selected for the first metal layer 11.
  • copper is selected in the embodiment of the present invention.
  • the type of the second metal layer 14 does not necessarily have to be copper.
  • any type of metal may be used as long as it has a lower ionization energy than hydrogen, and for example, in addition to copper, at least one selected from gold, silver, copper, platinum, and the like. May be a metal.
  • the thickness of the second metal layer 14 does not necessarily have to be about 50 ⁇ m. However, as a result of repeated studies by the inventor, when the thickness of the second metal layer 14 is less than 50 ⁇ m, stable generation of electric energy was not possible. It is considered that this is because the amount of electrons received from the first metal layer 11 decreases when the second metal layer 14 has a thin film shape of less than 50 ⁇ m.
  • the thickness of the second metal layer 14 is set to about 50 ⁇ m or more, electric energy is stably generated, and even if the thickness width of the second metal layer 14 is changed in the range of, for example, 50 ⁇ m or more. It was confirmed that there was no big difference in the amount of electric energy generated. Therefore, the thickness of the second metal layer 14 is preferably about 50 ⁇ m or more, and more preferably about 50 ⁇ m, which is the lower limit critical value from the viewpoint of size reduction and weight reduction.
  • a resistor having a predetermined size is connected between the first metal layer 11 and the second metal layer 14, and the current ( Table 1 shows the measurement results of mA) and voltage (V).
  • Table 1 shows the measurement results of mA) and voltage (V).
  • water of about 1 to 2 drops of a dropper was supplied to the power generation element 10 every day.
  • Comparative Example 1 the voltage began to show a negative value 48 hours after the start of measurement. It can be inferred that this is because a backflow phenomenon of electrons from the second metal layer 14 toward the first metal layer 11 occurs due to the saturation of the power generation element.
  • Comparative Example 2 it was confirmed that a large amount of electric energy was generated instantaneously, but the amount of electric energy to be output became unstable with the passage of time. It was confirmed that it is not suitable for continuous use.
  • FIG. 2 is a diagram showing an application example using the power generation element 10 according to the embodiment of the present invention.
  • the first metal layer 11 that is the negative electrode of the power generation element 10 and the second metal layer 14 that is the positive electrode of the power generation element 10 ′ are connected by the conductive wire 30. Further, the second metal layer 14 that is the positive electrode of the power generation element 10 and the first metal layer 11 that is the negative electrode of the power generation element 10 ′ are connected to terminals 20 for extracting current, respectively. As a result, it is possible to exhibit twice the power generation performance as compared with the single power generation element 10. Similarly, in order to further improve the power generation performance, it is possible to connect three or more power generation elements 10 in series.
  • an insulating layer 12 made of an insulating material and having a thickness of about 100 ⁇ m is prepared in advance (step 1).
  • the shirasu is rapidly heated in a heating device (not shown) at a temperature of about 1000° C. for about 1 to 3 minutes to form a shirasu balloon (step 2).
  • a mixture of the shirasu balloon produced in step 2 and an aqueous solution is applied to one surface side of the insulating layer 12 prepared in advance so as to have a thickness of about 30 ⁇ m to form the shirasu balloon layer 13. (Step 3).
  • a magnesium material is applied to the other surface side of the insulating layer 12 in a thin film having a thickness of about 30 ⁇ m to form the first metal layer 11 (step 4).
  • a copper material is applied on the shirasu balloon layer 13 in a thin film having a thickness of about 50 ⁇ m to form the second metal layer 14 (step 5).
  • the power generating element 10 including the laminated structure of the first metal layer 11, the insulating layer 12, the shirasu balloon layer 13, and the second metal layer 14 is completed.
  • the manufacturing procedure of steps 1 to 5 described above can be appropriately changed.
  • the insulating layer 12 may be applied to the shirasu balloon layer 13.
  • the power generation element and the method for manufacturing the power generation element according to the present invention do not require charging by an external voltage, and can improve power generation efficiency while being small and lightweight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

[Problem] The purpose of the present invention is to provide: a power generation element which does not need to be charged by an external voltage, and can improve power generation efficiency while being reduced in size and weight; and a method of manufacturing a power generation element. [Solution] The power generation element 10 comprises: a first metal layer 11; a Shirasu balloon layer 13 laminated on the first metal layer 11; and a second metal layer 14 that is laminated on the Shirasu balloon layer 13 and has a lower ionization tendency than the first metal layer 11. Negative ions emitted from the first metal layer 11 are introduced into the Shirasu balloon layer 13, and a current flows as electrons move from the first metal layer 11 to the second metal layer 14, so that electric energy can be extracted from the power generation element 10.

Description

発電素子、及び発電素子の製造方法Power generation element and method of manufacturing power generation element
 本発明は、発電素子、及び発電素子の製造方法に関する。詳しくは、外部電圧による充電を必要とせず、小型軽量でありながら発電効率を高めることができる発電素子、及び発電素子の製造方法に係るものである。 The present invention relates to a power generation element and a method for manufacturing the power generation element. More specifically, the present invention relates to a power generation element that does not require charging by an external voltage and can improve power generation efficiency while being compact and lightweight, and a method for manufacturing the power generation element.
 近年、携帯電話やスマートフォン、ノート型パーソナルコンピュータ等の携帯情報端末に代表される電気機器の需要は急速に高まりをみせており、今後、さらに成長が期待される分野の一つとなっている。そして、このような電気機器の普及に伴い、駆動源である蓄電装置の研究開発も盛んに行われている。また、地球環境の問題や石油資源の問題への関心の高まりからハイブリッド車(HEV)、電気自動車(EV)、又はプラグインハイブリッド車(PHEV)等の次世代クリーンエネルギー自動車が注目されるなど、今後も様々な用途において蓄電装置の重要性が増している。 Demand for electrical equipment, represented by mobile information terminals such as mobile phones, smartphones, and notebook personal computers, has risen rapidly in recent years, and this is one of the fields where further growth is expected in the future. With the spread of such electric devices, research and development of a power storage device, which is a drive source, has been actively conducted. In addition, due to growing concern about global environmental issues and petroleum resource issues, next-generation clean energy vehicles such as hybrid vehicles (HEV), electric vehicles (EV), and plug-in hybrid vehicles (PHEV) are receiving attention. In the future, the importance of power storage devices will continue to increase in various applications.
 一般に蓄電装置としては、これまで鉛蓄電池やニッケルカドミウム電池などが用いられてきたが、環境配慮型社会の要求からこのような有害重金属を含有する蓄電池に対する規制も次第に強まりつつある。また、小型の携帯情報端末の普及によって、利用エネルギーの高密度化、高電圧化、高出力化、長寿命化、小型軽量化、低価格化等の要求が一層高まり、新たな蓄電装置として、リチウムイオン電池、電気二重層キャパシタ、及びリチウムイオンキャパシタ等が開発され普及している。 Generally, lead storage batteries and nickel-cadmium batteries have been used as power storage devices, but regulations on storage batteries containing such harmful heavy metals are gradually increasing due to the demands of an environmentally friendly society. Further, with the spread of small portable information terminals, the demand for higher density of use energy, higher voltage, higher output, longer life, smaller size, lighter weight, lower price, etc. is further increased, and as a new power storage device, Lithium ion batteries, electric double layer capacitors, lithium ion capacitors, etc. have been developed and are in widespread use.
 リチウムイオン電池は、一般に、バインダを用いて正極活物質等を正極集電体の両面に塗布した正極と、バインダを用いて負極活物質等を負極集電体の両面に塗布した負極とが、電解質層を介して接続され、電池外装材に収納された構成となっており、例えば特許文献1には、正極19枚と負極20枚を、電解質層を介して交互に積層した積層構造のリチウムイオン電池が記載されている。 Lithium-ion batteries are generally composed of a positive electrode in which a positive electrode active material or the like is applied to both sides of a positive electrode current collector using a binder, and a negative electrode in which a negative electrode active material or the like is applied to both sides of a negative electrode current collector using a binder. It has a configuration in which it is connected via an electrolyte layer and housed in a battery exterior material. For example, in Patent Document 1, 19 positive electrodes and 20 negative electrodes are alternately laminated via an electrolyte layer, lithium having a laminated structure. Ion batteries are described.
 また、特許文献2には、発電素子により発電した電気を二次電池に充電し、補助エネルギーとして利用する電源装置が開示されている。具体的には、圧電素子で発電した電気を二次電池やコンデンサ(キャパシタ)へ充電し、この電気エネルギーを携帯端末機の電源電池の補助エネルギーとして利用することで、携帯端末機の長時間の利用を実現している。 Further, Patent Document 2 discloses a power supply device that charges a secondary battery with electricity generated by a power generation element and uses it as auxiliary energy. Specifically, the electricity generated by the piezoelectric element is charged into a secondary battery or a capacitor, and this electric energy is used as auxiliary energy for the power supply battery of the mobile terminal, so that it can be used for a long time in the mobile terminal. The use is realized.
 ところで、リチウムイオン電池は、その動作原理が化学反応(ファラデー反応)を利用したものであるため、エネルギー密度に優れる一方で、内部抵抗が高くかつ耐久性が悪いという欠点がある。そのため、リチウムイオン電池を使用した機器においては、内部抵抗による損失が大きく、環境発電素子で発電した微小な電力を効率よく充電することが困難である。また、充放電の繰返しや高温使用環境に対する耐久性が低いため一定時間の経過毎の取り換え等のメンテナンスの手間が生じる。 By the way, since the operation principle of the lithium-ion battery utilizes a chemical reaction (Faraday reaction), it has the drawbacks of high energy density, high internal resistance, and poor durability. Therefore, in a device using a lithium ion battery, the loss due to the internal resistance is large, and it is difficult to efficiently charge the minute electric power generated by the energy harvesting element. In addition, since the durability against repeated charging and discharging and the high temperature usage environment is low, maintenance work such as replacement at regular intervals is required.
 また、キャパシタは、動作原理が化学反応ではなく、電解液中のイオンの静電吸着により電荷を蓄えるものであるため、内部抵抗や耐久性に優れる一方で、吸着イオンの拡散による自己放電が早いため、蓄積した電荷がすぐに消滅してしまう。そのため、環境発電素子による発電が断続的なものであり発電間隔が長くなりうる場合には、蓄電装置からの放電が機能しない可能性がある。 Further, the operating principle of the capacitor is not a chemical reaction but a charge is stored by electrostatic adsorption of ions in the electrolytic solution, so that it has excellent internal resistance and durability, while self-discharge due to diffusion of adsorbed ions is fast. Therefore, the accumulated charge disappears immediately. Therefore, if the power generation by the energy harvesting element is intermittent and the power generation interval can be long, the discharge from the power storage device may not function.
 さらに、前記したリチウムイオン電池やキャパシタは、用途や使用方法により耐用年数に差があるものの、必ず寿命を迎え、例えばハイブリッド自動車や電気自動車に搭載されたリチウムイオン電池は、いずれは使用済み電池として廃棄される。この使用済みのリチウムイオン電池の廃棄処理に際しては、各部材に含まれる有価金属を回収して、資源としてリサイクルすることも行われるが、大半が環境負荷の大きい産業廃棄物として廃棄されているという実情がある。そのため、近年においては環境負荷の低い蓄電装置の開発が望まれている。 Furthermore, the lithium-ion batteries and capacitors described above have a limited service life depending on the application and method of use, but they will always reach the end of their life.For example, lithium-ion batteries installed in hybrid vehicles and electric vehicles will eventually become used batteries. Be discarded. At the time of disposal of this used lithium-ion battery, valuable metals contained in each component may be collected and recycled as resources, but most are discarded as industrial waste with a large environmental load. There is a reality. Therefore, in recent years, development of a power storage device having a low environmental load has been desired.
 この点、特許文献3には、静電気を多く含有する火山灰により製造し、廃棄処理を必要としない発電素子が開示されている。具体的には、火山灰を加工して生成した静電気生成部材に活性炭、フラーレン、ナノチューブ等よりなる導電性含水粉体を、絶縁性、気密性のある筒状の容器に充填した後、該容器の両端に電気を取り出すためのアノード電極とカソード電極を接続することで、小型でありながら大量の電気を取り出すことを実現している。 In this regard, Patent Document 3 discloses a power generation element that is manufactured from volcanic ash containing a large amount of static electricity and does not require disposal. Specifically, a conductive water-containing powder composed of activated carbon, fullerene, nanotubes, etc., is charged into a static electricity generating member generated by processing volcanic ash, and then filled into a cylindrical container having insulation and airtightness, and then By connecting an anode electrode and a cathode electrode for extracting electricity to both ends, it is possible to extract a large amount of electricity in spite of its small size.
 さらに、特許文献4には、同じく廃棄処理を必要としない発電素子として、火山噴出物であるシラスを使用した発電素子が開示されている。具体的には、粉末状のシラスに適量の高周波磁場処理を施した水溶液を練り込んで粘土状の成型物とし、該成型物を金属製カソードとアノード間に挟んで、交互に積層構造としたものである。この特許文献4に開示の発電素子によると、シラスが有している静電気を電流として取り出すことで、電源装置として使用することが可能なものとなっている。 Further, Patent Document 4 discloses a power generation element using Shirasu, which is a volcanic ejecta, as a power generation element that also does not require disposal treatment. Specifically, an aqueous solution subjected to an appropriate amount of high-frequency magnetic field treatment was kneaded into powdered shirasu to form a clay-like molded product, and the molded product was sandwiched between a metal cathode and an anode to form an alternately laminated structure. It is a thing. According to the power generation element disclosed in Patent Document 4, the static electricity possessed by Shirasu can be taken out as an electric current so that it can be used as a power supply device.
特開2009―272048号公報JP, 2009-272048, A 特開2002―171341号公報Japanese Unexamined Patent Publication No. 2002-171341 特表2005-502180号公報Japanese Patent Publication No. 2005-502180 特開2002-42826号公報Japanese Patent Laid-Open No. 2002-42826
 以上の特許文献3、及び特許文献4に係る発明によれば、発電素子の主な材料として火山灰、及びシラスを使用してなるものであるため、特別な廃棄を必要としないことから、無公害でクリーンな発電素子を実現している。 According to the above-mentioned inventions according to Patent Document 3 and Patent Document 4, since volcanic ash and shirasu are used as the main materials of the power generation element, no special disposal is required and therefore no pollution. Achieves a clean power generation element.
 一方で、特許文献3に係る発明においては、火山灰に含まれるアロフェンのもつイオン交換性に着目し、火山灰にマイナスイオン水溶液を含浸させて静電気生成部材とし、該静電気生成部材で生成された静電気を電流として取り出しているため、蓄積されている静電気の量が少なくなれば、その都度マイナスイオン水溶液を添加する必要がある。 On the other hand, in the invention according to Patent Document 3, paying attention to the ion exchange property of allophane contained in volcanic ash, the volcanic ash is impregnated with a negative ion aqueous solution to form a static electricity generating member, and the static electricity generated by the static electricity generating member is removed. Since it is taken out as an electric current, it is necessary to add a negative ion aqueous solution each time the amount of accumulated static electricity decreases.
 また、マイナスイオン水溶液の生成に際しては、例えば水道水を利用する場合、水道水に含まれる分子クラスタを小さくしてマイナスイオン化する必要があるが、一般的にはセラミックスチップ、あるいはトルマリン等の特殊な物質を使用する必要があり、さらにはその製造工程も複雑であることから、十分な量のマイナスイオン水溶液を確保することが困難である。 When tap water is used to generate the negative ion aqueous solution, it is necessary to reduce the molecular clusters contained in the tap water to make it negatively ionized, but in general, special tips such as ceramic chips or tourmaline are used. Since it is necessary to use a substance and the manufacturing process thereof is complicated, it is difficult to secure a sufficient amount of an aqueous negative ion solution.
 さらに発明者が検討した結果では、火山灰にはケイ素、アルミニウムなどの元素、ガス成分であるフッ素、塩素などのハロゲン元素や硫黄などの他に、銅、亜鉛、カドミニウム、水銀などの微量金属元素が含まれていることが知られているが、これら不純物質の存在により、一時的には大きな発電が可能であるものの持続性が短く、頻繁にマイナスイオン水溶液を添加しなければならないという課題を有している。 Furthermore, the results of the study by the inventor show that, in addition to elements such as silicon and aluminum, halogen elements such as fluorine and chlorine which are gas components and sulfur, trace metal elements such as copper, zinc, cadmium, and mercury are contained in volcanic ash. It is known that these impurities are contained, but due to the presence of these impurities, it is possible to temporarily generate a large amount of electricity, but the sustainability is short, and there is the problem that a negative ion aqueous solution must be added frequently. doing.
 また、特許文献4に係る発明については、特許文献3に係る発明と同じく、シラスに含有される静電気を、特殊加工を施した水を利用すること電流として取り出すことができることに着目したものであるが、この特許文献4に係る発明においても、取り出される電流の量が減少するに伴い、その都度、マイナスイオンを含んだ高周波磁場処理を施した水溶液を添加する必要がある。 Further, the invention of Patent Document 4 is similar to the invention of Patent Document 3, focusing on the fact that the static electricity contained in the shirasu can be taken out as an electric current by using specially processed water. However, also in the invention according to Patent Document 4, it is necessary to add an aqueous solution subjected to high-frequency magnetic field treatment containing negative ions each time as the amount of extracted current decreases.
 そのため、特許文献4に係る発明においても、特許文献3に係る発明と同様に、十分な量の水溶液を確保することが困難であるとともに、また、その水溶液の生成に際しても、多くの工数を必要として、発電素子のランニングコストも非常に高いものとなっている。 Therefore, in the invention of Patent Document 4, as in the invention of Patent Document 3, it is difficult to secure a sufficient amount of an aqueous solution, and a large number of man-hours are required to generate the aqueous solution. As a result, the running cost of the power generation element is also very high.
 本発明者は、前記の課題を解決するために検討を行ったところ、シラスを略1000℃の高温下で焼成して発泡、膨張させた中空ガラス球状体(以下、「シラスバルーン」という。)には、多量のマイナスイオンを取り込む性質があることを見出した。そして、係る知見に基づいて、イオン化傾向の異なる金属でシラスバルーンを挟持した積層構造体からなる発電素子により、特殊加工をした水溶液を必要とすることなく、電流を長時間にわたって安定的に取り出すことができることを見出した。 The present inventor has conducted investigations to solve the above-mentioned problems. As a result, hollow glass spheres (hereinafter referred to as “shirasu balloon”) obtained by firing, expanding and expanding shirasu at a high temperature of approximately 1000° C. Have been found to have a property of incorporating a large amount of negative ions. Based on such knowledge, a power generating element composed of a laminated structure in which a shirasu balloon is sandwiched by metals having different ionization tendencies to stably take out an electric current for a long time without requiring a specially processed aqueous solution. I found that you can.
 本発明は、以上の点に鑑みて創案されたものであって、外部電圧による充電を必要とせず、小型軽量でありながら発電効率を高めることができる発電素子、及び発電素子の製造方法を提供することを目的とするものである。 The present invention has been devised in view of the above points, and provides a power generation element that does not require charging by an external voltage, is compact and lightweight, and can improve power generation efficiency, and a method for manufacturing the power generation element. The purpose is to do.
 前記の目的を達成するために、本発明に係る発電素子は、マグネシウム、アルミニウム、チタン、亜鉛、クロム、鉄、ニッケル、鉛からなる群より選択される少なくとも一種の金属を含み、30μm以上の厚みである第1の金属層と、該第1の金属層上に積層され、シラスバルーンを含み、30μm以上の厚みであって水分を含有するシラスバルーン層と、該シラスバルーン層上に積層され、金、銀、銅、及び白金からなる群より選択される少なくとも一種の金属からなる層であって、50μm以上の厚みである第2の金属層とを備える。 In order to achieve the above object, the power generation element according to the present invention contains at least one metal selected from the group consisting of magnesium, aluminum, titanium, zinc, chromium, iron, nickel and lead, and has a thickness of 30 μm or more. A first metal layer which is, is laminated on the first metal layer, includes a shirasu balloon, and a shirasu balloon layer having a thickness of 30 μm or more and containing water, and is laminated on the shirasu balloon layer, A layer made of at least one metal selected from the group consisting of gold, silver, copper, and platinum, and a second metal layer having a thickness of 50 μm or more.
 ここで、所定の種類の金属を含む第1の金属層を備えることにより、例えば、イオン化傾向の比較的大きい金属を第1の金属層として用いると、該第1の金属層は電子を残しつつ、後述するシラスバルーン層に大量のマイナスイオンが吸収される。 Here, by providing the first metal layer containing a predetermined type of metal, for example, when a metal having a relatively large ionization tendency is used as the first metal layer, the first metal layer leaves electrons while leaving electrons. A large amount of negative ions are absorbed by the Shirasu balloon layer described later.
 また、第1の金属層上に積層され、シラスバルーンを含むシラスバルーン層を備えることにより、前述の通り、第1の金属層のマイナスイオン成分をシラスバルーン層内に取り込むことができる。このとき、シラスバルーンは、焼成により多数の微細孔(バルーンホール)が形成されるため、係るバルーンホール内に、より多くのマイナスイオンを取り込むことができる。 Further, by providing the Shirasu balloon layer which is laminated on the first metal layer and contains the Shirasu balloon, the negative ion component of the first metal layer can be taken into the Shirasu balloon layer as described above. At this time, since a large number of micropores (balloon holes) are formed in the Shirasu balloon by firing, more negative ions can be taken into the balloon holes.
 また、シラスバルーン層上に積層され、第1の金属層に含まれる金属よりもイオン化傾向が小さい所定の種類の金属を含む第2の金属層を備えることにより、第1の金属層と第2の金属層を導通させることで、第1の金属層で生成された電子が第2の金属層に移動する。その結果、第1の金属層と第2の金属層間に電流が流れることにより、電気エネルギーを生成することができる。 Further, by providing a second metal layer that is laminated on the shirasu balloon layer and contains a predetermined type of metal that has a smaller ionization tendency than the metal contained in the first metal layer, the first metal layer and the second metal layer By conducting the metal layer of the above, the electrons generated in the first metal layer move to the second metal layer. As a result, electric energy can be generated by the current flowing between the first metal layer and the second metal layer.
 また、第1の金属層は、マグネシウム、アルミニウム、チタン、亜鉛、クロム、鉄、ニッケル、鉛からなる群より選択される少なくとも一種の金属からなる層である場合には、比較的イオン化傾向の大きい金属を第1の金属層として配置することで、より多くのマイナスイオンがシラスバルーン層に吸収されることにより、電気エネルギーの生成効率を高めることができる。 When the first metal layer is a layer made of at least one metal selected from the group consisting of magnesium, aluminum, titanium, zinc, chromium, iron, nickel and lead, it has a relatively large ionization tendency. By arranging the metal as the first metal layer, more negative ions are absorbed by the silas balloon layer, so that the efficiency of generating electric energy can be increased.
 また、第2の金属層は、金、銀、銅、及び白金からなる群より選択される少なくとも一種の金属からなる層である場合には、第1の金属層よりもイオン化傾向が小さい金属を第2の金属層として配置することで、第1の金属層から第2の金属層へ移動する電子の数が増えるため、より大きな電気エネルギーを取り出すことができる。 When the second metal layer is a layer made of at least one metal selected from the group consisting of gold, silver, copper, and platinum, a metal having an ionization tendency smaller than that of the first metal layer is used. By arranging the second metal layer as the second metal layer, the number of electrons moving from the first metal layer to the second metal layer increases, so that larger electric energy can be taken out.
 また、第1の金属層とシラスバルーン層の間には絶縁層が介装されている場合には、第1の金属層と第2の金属層が薄い薄膜状からなる場合においても、安定して電気エネルギーを生成することが可能となる。 In addition, when an insulating layer is interposed between the first metal layer and the shirasu balloon layer, it is stable even when the first metal layer and the second metal layer are thin thin films. It becomes possible to generate electric energy.
 即ち、第1の金属層と第2の金属層が近接している場合、第1の金属層と第2の金属層が導通することにより、第1の金属層で発生したマイナスイオンが中間層にあるシラスバルーン層に取り込まれないという現象が起こり得る。この点、第1の金属層とシラスバルーン層の間に絶縁層を介装することで、このような問題を解決し、安定して電気エネルギーを生成することが可能となる。 That is, when the first metal layer and the second metal layer are close to each other, the first metal layer and the second metal layer are electrically connected to each other, so that negative ions generated in the first metal layer are generated in the intermediate layer. A phenomenon may occur in which the metal is not incorporated into the silas balloon layer. In this regard, by interposing an insulating layer between the first metal layer and the Shirasu balloon layer, it becomes possible to solve such a problem and stably generate electric energy.
 また、第1の金属層の厚みが略30μm以上である場合には、安定した電気エネルギーの生成が可能となる。なお、第1の金属層の厚みとして略30μm未満の薄膜状とすると、第1の金属層で生成されるマイナスイオン量が少なくなるため、生成される電気エネルギーの量が少なくなる。 Further, when the thickness of the first metal layer is about 30 μm or more, stable electric energy can be generated. If the thickness of the first metal layer is a thin film having a thickness of less than about 30 μm, the amount of negative ions generated in the first metal layer is small, and thus the amount of generated electric energy is small.
 また、シラスバルーン層の厚みが略30μm以上である場合には、安定した電気エネルギーの生成が可能となる。なお、シラスバルーン層の厚みとして、30μm未満の薄膜状とすると、バルーンホールの表面積が相対的に小さくなり、第1の金属層から放出されるマイナスイオンの全てを吸収することができないため、生成される電気エネルギーの量が少なくなる。 Further, when the thickness of the Shirasu balloon layer is about 30 μm or more, stable electric energy can be generated. When the thickness of the shirasu balloon layer is less than 30 μm, the surface area of the balloon hole becomes relatively small, and it is impossible to absorb all the negative ions released from the first metal layer. The amount of electrical energy produced is reduced.
 また、第2の金属層の厚みが略50μm以上である場合には、安定した電気エネルギーの生成が可能となる。なお、第2の金属層を50μm未満の薄膜状とすると、第1の金属層から受け取る電子の量が少なくなるため、生成される電気エネルギーの量が少なくなる。 Further, when the thickness of the second metal layer is about 50 μm or more, stable electric energy can be generated. Note that when the second metal layer is a thin film having a thickness of less than 50 μm, the amount of electrons received from the first metal layer is small, so that the amount of generated electric energy is small.
 前記の目的を達成するために、本発明に係る発電素子の製造方法は、シラスバルーンを含み、30μm以上の厚みであって水分を含有するシラスバルーン層を生成する工程と、前記シラスバルーン層の一の面に、マグネシウム、アルミニウム、チタン、亜鉛、クロム、鉄、ニッケル、鉛からなる群より選択される少なくとも一種の金属を含み、30μm以上の厚みである第1の金属層を積層する工程と、前記シラスバルーン層の他の面に、金、銀、銅、及び白金からなる群より選択される少なくとも一種の金属からなる層であって、50μm以上の厚みである第2の金属層を積層する工程とを備える。 In order to achieve the above-mentioned object, the method for producing a power generation element according to the present invention includes a step of forming a shirasu balloon layer containing shirasu balloon and having a thickness of 30 μm or more and containing water; Laminating on one surface a first metal layer having a thickness of 30 μm or more, containing at least one metal selected from the group consisting of magnesium, aluminum, titanium, zinc, chromium, iron, nickel, and lead. A second metal layer, which is a layer made of at least one metal selected from the group consisting of gold, silver, copper, and platinum, and has a thickness of 50 μm or more, is laminated on the other surface of the shirasu balloon layer. And a step of performing.
 ここで、シラスバルーンを含み、水分を含有する薄膜状のシラスバルーン層を生成する工程を備えることにより、シラスを焼成することにより多数の微細孔(バルーンホール)が形成されたシラスバルーンを含む薄膜状のシラスバルーン層を生成することができる。これにより、第1の金属層から放出されたマイナスイオンを、バルーンホール内に大量に取り込むことができるため、安定して電気エネルギーを生成することができる。 Here, by including a step of forming a thin film-like shirasu balloon layer containing a shirasu balloon, a thin film including a shirasu balloon in which many fine holes (balloon holes) are formed by firing the shirasu A shaped shirasu balloon layer can be produced. As a result, a large amount of negative ions released from the first metal layer can be taken into the balloon hole, so that electric energy can be stably generated.
 また、薄膜状としたシラスバルーン層の一の面に、薄膜状とした第1の金属層を積層する工程を備えることにより、例えば、イオン化傾向が比較的大きい金属であるマグネシウム、アルミニウム、チタン、亜鉛、クロム、鉄、ニッケル、鉛からなる群より選択される少なくとも一種の金属からなる層を第1の金属層として用いるとで、より多くのマイナスイオンがシラスバルーン層に吸収されることにより、電気エネルギーの生成効率を高めることができる。 Further, by providing a step of laminating the thin-film-shaped first metal layer on one surface of the thin-film silas balloon layer, for example, magnesium, aluminum, titanium, which are metals having a relatively large ionization tendency, By using a layer made of at least one metal selected from the group consisting of zinc, chromium, iron, nickel, and lead as the first metal layer, more negative ions are absorbed by the silas balloon layer. The efficiency of generating electrical energy can be increased.
 また、シラスバルーン層の他の面に、薄膜状とした第2の金属層を積層する工程を備えることにより、シラスバルーン層が第1の金属層と第2の金属層により挟持された積層構造となり、発電素子全体として小型化することができる。 Further, by providing a step of laminating a thin-film second metal layer on the other surface of the silas balloon layer, the silas balloon layer is sandwiched between the first metal layer and the second metal layer. Therefore, the power generation element as a whole can be miniaturized.
 さらに、例えば、イオン化傾向が比較的小さい金属である金、銀、銅、及び白金からなる群より選択される少なくとも一種の金属からなる層を第2の金属層として用いることで、第1の金属層から第2の金属層へ移動する電子の数が増えるため、より大きな電気エネルギーを取り出すことができる。 Further, for example, by using a layer made of at least one metal selected from the group consisting of gold, silver, copper, and platinum, which are metals having a relatively low ionization tendency, as the second metal layer, the first metal Since the number of electrons moving from the layer to the second metal layer is increased, larger electric energy can be extracted.
 また、第1の金属層を積層する工程の前に、薄膜状としたシラスバルーン層の一の面に絶縁物質からなる絶縁層を積層する工程を有する場合には、例えば第1の金属層と第2の金属層が薄い薄膜状からなる場合においても、安定して電気エネルギーを生成することが可能となる。 In addition, before the step of laminating the first metal layer, when there is a step of laminating an insulating layer made of an insulating material on one surface of the thin-film silas balloon layer, for example, Even when the second metal layer is formed of a thin thin film, it is possible to stably generate electric energy.
 即ち、第1の金属層と第2の金属層が近接している場合には、第1の金属層と第2の金属層が導通することにより、第1の金属層で発生したマイナスイオンが中間層にあるシラスバルーン層に取り込まれないという現象が起こり得るが、第1の金属層とシラスバルーン層の間に絶縁層を介装することで、このような問題を解決し、安定して継続的に電気エネルギーを生成することが可能となる。 That is, when the first metal layer and the second metal layer are close to each other, the first metal layer and the second metal layer are electrically connected to each other, so that the negative ions generated in the first metal layer are generated. Although the phenomenon that it is not taken into the Shirasu balloon layer in the intermediate layer may occur, interposing an insulating layer between the first metal layer and the Shirasu balloon layer solves such a problem and stabilizes the operation. It is possible to continuously generate electrical energy.
 本発明に係る発電素子、及び発電素子の製造方法は、外部電圧による充電を必要とせず、小型軽量でありながら発電効率を高めることができるものとなっている。 The power generating element and the method for manufacturing the power generating element according to the present invention do not require charging by an external voltage, and while being small and lightweight, the power generating efficiency can be improved.
本発明の実施形態に係る発電素子を概略的に示した断面図である。It is sectional drawing which showed roughly the electric power generation element which concerns on embodiment of this invention. 本発明の実施形態に係る発電素子を用いた応用例を示す図である。It is a figure which shows the application example using the power generation element which concerns on embodiment of this invention.
 以下、本発明の実施の形態について、図面を参酌しながら説明し、本発明の理解に供する。以下、本発明の実施例に係る発電素子10の詳細な説明である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings to help understand the present invention. The following is a detailed description of the power generation element 10 according to the embodiment of the present invention.
 [発電素子]
 まず、本発明の実施例に係る発電素子10の構成について図1に基づいて説明する。発電素子10は、図1に示すように、第1の金属層11、第1の金属層11上に積層された絶縁層12、絶縁層12上に積層されたシラスバルーン層13、及びシラスバルーン層13上に積層された第2の金属層14から構成されている。
[Power generation element]
First, the configuration of the power generation element 10 according to the embodiment of the present invention will be described based on FIG. As shown in FIG. 1, the power generation element 10 includes a first metal layer 11, an insulating layer 12 laminated on the first metal layer 11, a shirasu balloon layer 13 laminated on the insulating layer 12, and a shirasu balloon. It is composed of a second metal layer 14 laminated on the layer 13.
 ここで、必ずしも、絶縁層12は必須の構成ではない。但し、後述する通り、第1の金属層11、及び第2の金属層14はそれぞれ近接した位置関係にあることから、第1の金属層11で発生したマイナスイオンが中間層にあるシラスバルーン層13に取り込まれないという現象が起こり得る。そのため、第1の金属層11で発生したマイナスイオンを中間層であるシラスバルーン層13に効率的に取り込まれるようにして、電気エネルギーを安定的に生成するためにも絶縁層12は有していることが好ましい。 Here, the insulating layer 12 is not always an essential component. However, as will be described later, since the first metal layer 11 and the second metal layer 14 are in close positional relationship with each other, the Shirasu balloon layer in which the negative ions generated in the first metal layer 11 are in the intermediate layer. The phenomenon that it is not taken into 13 may occur. For this reason, the negative ions generated in the first metal layer 11 are efficiently taken into the intermediate layer, the shirasu balloon layer 13, and the insulating layer 12 is also provided in order to stably generate electric energy. Is preferred.
 [第1の金属層]
 第1の金属層11は、その厚みが略30μm程度の薄膜状であり、例えば水素のイオン化エネルギーよりも高く、水、又は酸に容易に浸される金属として、本発明の実施例においてはマグネシウムが選択される。
[First metal layer]
The first metal layer 11 is a thin film having a thickness of about 30 μm, and has a higher ionization energy of hydrogen, for example, and is a metal that is easily immersed in water or an acid. Is selected.
 ここで、必ずしも、第1の金属層11の種類としてマグネシウムである必要がない。前述の通り、水素のイオン化エネルギーよりも高く、水、又は酸に容易に侵される金属であれば、どのような種類の金属であってもよい。例えば、マグネシウムの他にも、アルミニウム、チタン、亜鉛、クロム、鉄、ニッケル、鉛等から選ばれる少なくとも1種の金属であってもよい。 Here, the type of the first metal layer 11 does not necessarily have to be magnesium. As described above, any kind of metal may be used as long as it is a metal having a higher ionization energy than hydrogen and is easily attacked by water or an acid. For example, in addition to magnesium, at least one metal selected from aluminum, titanium, zinc, chromium, iron, nickel, lead and the like may be used.
 また、必ずしも、第1の金属層11は、その厚みが略30μm程度である必要はない。但し、発明者が検討を繰り返した結果では、第1の金属層11の厚みとして、30μm未満の場合、安定した電気エネルギーの生成ができなかった。これは、第1の金属層11を30μm未満の薄膜状とすると、第1の金属層11で生成されるマイナスイオン量が少なくなることに起因するものと考えられる。 Also, the thickness of the first metal layer 11 does not necessarily need to be about 30 μm. However, as a result of repeated studies by the inventor, if the thickness of the first metal layer 11 is less than 30 μm, stable electrical energy cannot be generated. It is considered that this is because when the first metal layer 11 has a thin film shape of less than 30 μm, the amount of negative ions generated in the first metal layer 11 decreases.
 一方、第1の金属層11の厚みを略30μm以上とした場合では、安定して電気エネルギーが生成されるとともに、例えば30μm以上の範囲において第1の金属層11の厚み幅を変更したとしても、生成される電気エネルギーの量に大きな違いはないことが確認できた。そのため、第1の金属層11の厚みとしては、略30μm以上であることが好ましく、より好ましくは、小型軽量化の観点からも下限の臨界値である略30μmであることが好ましい。 On the other hand, when the thickness of the first metal layer 11 is set to about 30 μm or more, electric energy is stably generated, and even if the thickness width of the first metal layer 11 is changed in the range of, for example, 30 μm or more. It was confirmed that there was no big difference in the amount of electric energy generated. Therefore, the thickness of the first metal layer 11 is preferably about 30 μm or more, and more preferably about 30 μm, which is the lower limit critical value from the viewpoint of miniaturization and weight reduction.
 [絶縁層]
 絶縁層12は、その厚みが略100μm程度の薄膜状であり、例えば合成樹脂材料としてのポリ塩化ビニル、合成ゴム、ポリエチレン、ポリエステル、エポキシ、シリコーン等から選択される一の材料から構成されている。
[Insulation layer]
The insulating layer 12 is a thin film having a thickness of about 100 μm, and is made of, for example, one material selected from polyvinyl chloride as a synthetic resin material, synthetic rubber, polyethylene, polyester, epoxy, silicone and the like. ..
 ここで、必ずしも、絶縁層12の絶縁材料として合成樹脂材料である必要はない。例えばパラフィン、硫黄、空気、ガラス等の天然材料より構成されてもよい。但し、ある程度薄膜状に構成することができて、かつ絶縁性、及び耐熱性を向上させるとともに、小型軽量化を図るという観点からでは、合成樹脂材料から構成されることが好ましい。 Here, the insulating material of the insulating layer 12 does not necessarily have to be a synthetic resin material. For example, it may be made of a natural material such as paraffin, sulfur, air or glass. However, from the viewpoint of being able to be formed into a thin film to some extent, improving the insulating property and heat resistance, and reducing the size and weight, a synthetic resin material is preferable.
 また、必ずしも、絶縁層12は、その厚みが略100μm程度ある必要はない。但し、発明者が検討を繰り返した結果では、絶縁層12の厚みとして、100μm未満の場合、第1の金属層11と第2の金属層14が導通してしまい、安定した電気エネルギーを生成することができないことが確認された。 Also, the insulating layer 12 does not necessarily have to have a thickness of about 100 μm. However, as a result of repeated studies by the inventor, if the thickness of the insulating layer 12 is less than 100 μm, the first metal layer 11 and the second metal layer 14 become conductive, and stable electric energy is generated. It was confirmed that it was not possible.
 一方、絶縁層12の厚みとして略100μm以上とすると、安定して電気エネルギーが生成されるとともに、例えば100μm以上の範囲において絶縁層12の厚み幅を変更したとしても、生成される電気エネルギーの量に大きな違いはないことが確認できた。そのため、絶縁層12の厚みとしては、略100μm以上であることが好ましく、より好ましくは、小型軽量化の観点からも、その下限の臨界値である略100μmであることが好ましい。 On the other hand, when the thickness of the insulating layer 12 is approximately 100 μm or more, electrical energy is stably generated, and even if the thickness width of the insulating layer 12 is changed in the range of 100 μm or more, the amount of electrical energy generated is generated. It was confirmed that there was no big difference in. Therefore, the thickness of the insulating layer 12 is preferably about 100 μm or more, and more preferably about 100 μm, which is the lower limit critical value from the viewpoint of size reduction and weight reduction.
 [シラスバルーン層]
 シラスバルーン層13は、その厚みが略30μm程度の薄膜状である。シラスバルーン層13は、シラスを略1000℃の高温下で急速加熱することによって得られた発泡体であるシラスバルーンを薄膜状としたものである。このシラスバルーンの発泡体構造は、一般的には高温環境下において、シラスに含まれるガラス質の軟化と内部に包含している結晶水の蒸発が同時に起こることにより形成されるものである。
[Shirasu balloon layer]
The shirasu balloon layer 13 is a thin film having a thickness of about 30 μm. The shirasu balloon layer 13 is a shirasu balloon, which is a foam obtained by rapidly heating shirasu at a high temperature of about 1000° C., in the form of a thin film. The foam structure of the shirasu balloon is generally formed by simultaneous softening of the glassy material contained in the shirasu and evaporation of water of crystallization contained therein under a high temperature environment.
 シラスバルーン層13には、一定の水分が含有されるように、水道水が所定量(スポイドで1~2滴程度)の割合で混合される。このようにシラスバルーン層13に水分が含有されることで、水分子を媒介として、第1の金属層11から発生したマイナスイオンをシラスバルーン層13に形成されたバルーンホール内に取り込むことが可能となる。 The Shirasu balloon layer 13 is mixed with tap water in a predetermined amount (about 1 to 2 drops with a dropper) so that a certain amount of water is contained. By containing water in the Shirasu balloon layer 13 in this way, negative ions generated from the first metal layer 11 can be taken into the balloon hole formed in the Shirasu balloon layer 13 via water molecules. Becomes
 ここで、必ずしも、シラスバルーン層13は、その厚みが略30μm程度である必要はない。但し、発明者が検討を繰り返した結果では、シラスバルーン層13の厚みとして、30μm未満の場合、バルーンホールの表面積が相対的に小さくなり、第1の金属層11から放出されるマイナスイオンの全てを吸収することができないため、安定した電気エネルギーを生成することができないことが確認された。 Here, the shirasu balloon layer 13 does not necessarily have to have a thickness of about 30 μm. However, as a result of repeated studies by the inventor, when the thickness of the shirasu balloon layer 13 is less than 30 μm, the surface area of the balloon hole becomes relatively small, and all the negative ions released from the first metal layer 11 are discharged. It was confirmed that stable electric energy could not be generated because it could not be absorbed.
 一方、シラスバルーン層13の厚みとして略30μm以上とすると、安定して電気エネルギーが生成されるとともに、例えば、30μm以上の範囲において絶縁層12の厚み幅を変更したとしても、生成される電気エネルギー量に大きな違いはないことが確認できた。そのためシラスバルーン層13の厚みとしては、略30μm以上であることが好ましく、より好ましくは、小型軽量化の観点からも下限の臨界値である略30μmであることが好ましい。 On the other hand, when the thickness of the shirasu balloon layer 13 is about 30 μm or more, electric energy is stably generated, and even if the thickness width of the insulating layer 12 is changed within the range of 30 μm or more, the generated electric energy is generated. It was confirmed that there was no big difference in the amount. Therefore, the thickness of the shirasu balloon layer 13 is preferably about 30 μm or more, and more preferably about 30 μm, which is the lower limit critical value from the viewpoint of reduction in size and weight.
 また、必ずしも、シラスバルーン層13に混合される水溶液としては水道水である必要はない。シラスバルーン層13は、一定の水分量を含有すればよいため、水溶液の種類は特に限定されるものではない。 Also, tap water is not necessarily required as the aqueous solution mixed with the shirasu balloon layer 13. Since the shirasu balloon layer 13 may contain a certain amount of water, the type of the aqueous solution is not particularly limited.
 また、必ずしも、シラスバルーン層13はシラスバルーンのみから構成されている必要はない。例えば、シラスバルーンを主原料として、所定量の火山灰、シラス等、その他の不純物を含有していてもよい。 Also, the shirasu balloon layer 13 does not necessarily have to be composed of shirasu balloons only. For example, a silas balloon may be used as a main raw material, and a predetermined amount of volcanic ash, silus, and other impurities may be contained.
 [第2の金属層]
 第2の金属層14は、その厚みが略50μm程度の薄膜状であり、例えば水素のイオン化エネルギーよりも低い金属(即ち、第1の金属層11で選択される金属材料よりもイオン化傾向が低い金属)として、本発明の実施例においては銅が選択される。
[Second metal layer]
The second metal layer 14 is a thin film having a thickness of about 50 μm, and has a lower ionization tendency than, for example, a metal having a lower ionization energy of hydrogen (that is, a metal material selected for the first metal layer 11). As the metal), copper is selected in the embodiment of the present invention.
 ここで、必ずしも、第2の金属層14の種類として銅である必要がない。前述の通り、水素のイオン化エネルギーよりも低い金属であれば、どのような種類の金属であってもよく、例えば、銅の他にも金、銀、銅、及び白金等から選ばれる少なくとも1種の金属であってもよい。 Here, the type of the second metal layer 14 does not necessarily have to be copper. As described above, any type of metal may be used as long as it has a lower ionization energy than hydrogen, and for example, in addition to copper, at least one selected from gold, silver, copper, platinum, and the like. May be a metal.
 また、必ずしも、第2の金属層14は、その厚みが略50μm程度である必要はない。但し、発明者が検討を繰り返した結果では、第2の金属層14の厚みとして、50μm未満の場合、安定した電気エネルギーの生成ができなかった。これは、第2の金属層14を50μm未満の薄膜状とすると、第1の金属層11から受け取る電子の量が少なくなることに起因するものと考えられる。 Further, the thickness of the second metal layer 14 does not necessarily have to be about 50 μm. However, as a result of repeated studies by the inventor, when the thickness of the second metal layer 14 is less than 50 μm, stable generation of electric energy was not possible. It is considered that this is because the amount of electrons received from the first metal layer 11 decreases when the second metal layer 14 has a thin film shape of less than 50 μm.
 一方、第2の金属層14の厚みを略50μm以上とした場合では、安定して電気エネルギーが生成されるとともに、例えば50μm以上の範囲において第2の金属層14の厚み幅を変更したとしても、生成される電気エネルギーの量に大きな違いはないことが確認できた。そのため、第2の金属層14の厚みとしては、略50μm以上であることが好ましく、より好ましくは、小型軽量化の観点からも下限の臨界値である略50μmであることが好ましい。 On the other hand, when the thickness of the second metal layer 14 is set to about 50 μm or more, electric energy is stably generated, and even if the thickness width of the second metal layer 14 is changed in the range of, for example, 50 μm or more. It was confirmed that there was no big difference in the amount of electric energy generated. Therefore, the thickness of the second metal layer 14 is preferably about 50 μm or more, and more preferably about 50 μm, which is the lower limit critical value from the viewpoint of size reduction and weight reduction.
 以上のように構成をされた実施例に係る発電素子10に対して、電気エネルギーの生成効率を比較するために、以下のような比較例に係る発電素子を生成した。 In order to compare the generation efficiency of electric energy with the power generation element 10 according to the example configured as described above, the power generation element according to the following comparative example was generated.
 [比較例1]
 前記の実施例に対して、シラスバルーン層13に代えて、焼成処理をしないシラスを薄膜状として用いた。
[Comparative Example 1]
In place of the shirasu balloon layer 13 in the above-described examples, shirasu which is not subjected to the firing treatment is used as a thin film.
 [比較例2]
 前記の実施例に対して、シラスバルーン層13に代えて、火山灰を薄膜状として用いた。
[Comparative Example 2]
In place of the Shirasu balloon layer 13 in the above-mentioned example, volcanic ash was used as a thin film.
 [比較例3]
 前記の実施例に対して、シラスバルーン層13に代えて、土を薄膜状として用いた。
[Comparative Example 3]
In contrast to the above example, soil was used as a thin film instead of the Shirasu balloon layer 13.
 以上の実施例、及び比較例1乃至比較例3に係る発電素子10について、第1の金属層11と第2の金属層14の間に所定の大きさの抵抗器を接続して、電流(mA)、及び電圧(V)を測定した結果を表1に示す。なお、実施例、及び比較例1乃至比較例3については、発電素子10に対して1日毎にスポイド1~2滴程度の水分を供給するようにした。 Regarding the power generation elements 10 according to the above-described examples and Comparative Examples 1 to 3, a resistor having a predetermined size is connected between the first metal layer 11 and the second metal layer 14, and the current ( Table 1 shows the measurement results of mA) and voltage (V). In Examples and Comparative Examples 1 to 3, water of about 1 to 2 drops of a dropper was supplied to the power generation element 10 every day.
 [表1]
Figure JPOXMLDOC01-appb-I000001
[Table 1]
Figure JPOXMLDOC01-appb-I000001
 表1に示すように、実施例に係る発電素子10においては、時間経過とともに、出力される電気エネルギーの生成能力は劣化するものの、平均すると全期間を通じて安定した電気エネルギーを継続的に出力できることが確認できた。 As shown in Table 1, in the power generation element 10 according to the example, although the generation capacity of the output electric energy deteriorates with the passage of time, it is possible to continuously output stable electric energy over the entire period on average. It could be confirmed.
 一方、比較例1においては、計測開始から48時間後には、電圧がマイナス値を示すようになった。これは、発電素子が飽和状態になることにより、第2の金属層14から第1の金属層11に向けて電子の逆流現象が起こっているものと推測できる。 On the other hand, in Comparative Example 1, the voltage began to show a negative value 48 hours after the start of measurement. It can be inferred that this is because a backflow phenomenon of electrons from the second metal layer 14 toward the first metal layer 11 occurs due to the saturation of the power generation element.
 また、比較例2においては、瞬間的には大きな電気エネルギーの発生が確認できたが、時間経過とともに、出力される電気エネルギー量が不安定となることから、比較例2においては、長時間の継続的な使用には不向きであることが確認できた。 Further, in Comparative Example 2, it was confirmed that a large amount of electric energy was generated instantaneously, but the amount of electric energy to be output became unstable with the passage of time. It was confirmed that it is not suitable for continuous use.
 なお、比較例3においては、48時間経過後から電気エネルギーの出力がされずに、発電素子としての機能が失われた。 In Comparative Example 3, the function as a power generation element was lost because the electric energy was not output after 48 hours had passed.
 以上の実験結果から、本発明の実施例に係る発電素子10の優位性を確認することができる。 From the above experimental results, the superiority of the power generation element 10 according to the example of the present invention can be confirmed.
 [本発明の応用例]
 図2は、本発明の実施例に係る発電素子10を用いた応用例を示す図である。2つの発電素子10、10´を準備し、絶縁層12を介してそれぞれの発電素子10、10´を直列的に接続することで、大容量化が可能なものとなる。
[Application example of the present invention]
FIG. 2 is a diagram showing an application example using the power generation element 10 according to the embodiment of the present invention. By preparing two power generating elements 10 and 10 ′ and connecting the power generating elements 10 and 10 ′ in series via the insulating layer 12, it is possible to increase the capacity.
 即ち、発電素子10の負極である第1の金属層11と、発電素子10´の正極である第2の金属層14を導電線30で接続する。また、発電素子10の正極である第2の金属層14と、発電素子10´の負極である第1の金属層11には、それぞれ電流を取出すための端子20を接続したものである。これにより、単体の発電素子10に比べて2倍の発電性能を発揮することが可能となる。なお、さらなる発電性能の向上を図る場合には、同様に、3個以上の発電素子10を直列に接続することも可能である。 That is, the first metal layer 11 that is the negative electrode of the power generation element 10 and the second metal layer 14 that is the positive electrode of the power generation element 10 ′ are connected by the conductive wire 30. Further, the second metal layer 14 that is the positive electrode of the power generation element 10 and the first metal layer 11 that is the negative electrode of the power generation element 10 ′ are connected to terminals 20 for extracting current, respectively. As a result, it is possible to exhibit twice the power generation performance as compared with the single power generation element 10. Similarly, in order to further improve the power generation performance, it is possible to connect three or more power generation elements 10 in series.
 [発電素子の製造方法]
 次に、本発明の実施例に係る発電素子10の製造方法について説明する。
[Method of manufacturing power generation element]
Next, a method for manufacturing the power generation element 10 according to the embodiment of the present invention will be described.
 まず、予め、絶縁性素材からなり、略100μm程度の厚さの薄膜状とした絶縁層12を準備する(ステップ1)。次にシラスを加熱装置(図示しない)において略1000℃の温度条件のもとで、略1~3分程度で急速加熱を行い、シラスバルーンを生成する(ステップ2)。 First, an insulating layer 12 made of an insulating material and having a thickness of about 100 μm is prepared in advance (step 1). Next, the shirasu is rapidly heated in a heating device (not shown) at a temperature of about 1000° C. for about 1 to 3 minutes to form a shirasu balloon (step 2).
 予め準備しておいた絶縁層12の一の面側に、ステップ2で生成したシラスバルーンに水溶液を混合したものを略30μm程度の厚さとなるように塗布して、シラスバルーン層13を生成する(ステップ3)。 A mixture of the shirasu balloon produced in step 2 and an aqueous solution is applied to one surface side of the insulating layer 12 prepared in advance so as to have a thickness of about 30 μm to form the shirasu balloon layer 13. (Step 3).
 絶縁層12の他の面側には、マグネシウム素材を略30μmの厚さとなる薄膜状に塗布して、第1の金属層11を生成する(ステップ4)。 A magnesium material is applied to the other surface side of the insulating layer 12 in a thin film having a thickness of about 30 μm to form the first metal layer 11 (step 4).
 また、シラスバルーン層13上には、銅素材を略50μmの厚さとなる薄膜状に塗布して第2の金属層14を生成する(ステップ5)。 Further, a copper material is applied on the shirasu balloon layer 13 in a thin film having a thickness of about 50 μm to form the second metal layer 14 (step 5).
 以上により、第1の金属層11、絶縁層12、シラスバルーン層13、及び第2の金属層14の積層構造体よりなる発電素子10が完成する。なお、前述のステップ1乃至ステップ5の製造手順は、適宜変更することが可能である。例えば、シラスバルーン層13に絶縁層12を塗布するようにしてもよい。 As described above, the power generating element 10 including the laminated structure of the first metal layer 11, the insulating layer 12, the shirasu balloon layer 13, and the second metal layer 14 is completed. The manufacturing procedure of steps 1 to 5 described above can be appropriately changed. For example, the insulating layer 12 may be applied to the shirasu balloon layer 13.
 以上、本発明に係る発電素子、及び発電素子の製造方法は、外部電圧による充電を必要とせず、小型軽量でありながら発電効率を高めることができる。 As described above, the power generation element and the method for manufacturing the power generation element according to the present invention do not require charging by an external voltage, and can improve power generation efficiency while being small and lightweight.
  10   発電素子
  11   第1の金属層
  12   絶縁層
  13   シラスバルーン層
  14   第2の金属層
  20   端子
  30   導電線
10 Power Generation Element 11 First Metal Layer 12 Insulating Layer 13 Shirasu Balloon Layer 14 Second Metal Layer 20 Terminal 30 Conductive Wire

Claims (4)

  1.  マグネシウム、アルミニウム、チタン、亜鉛、クロム、鉄、ニッケル、鉛からなる群より選択される少なくとも一種の金属を含み、30μm以上の厚みである第1の金属層と、
     該第1の金属層上に積層され、シラスバルーンを含み、30μm以上の厚みであって水分を含有するシラスバルーン層と、
     該シラスバルーン層上に積層され、金、銀、銅、及び白金からなる群より選択される少なくとも一種の金属からなる層であって、50μm以上の厚みである第2の金属層と、を備える
     発電素子。
    A first metal layer containing at least one metal selected from the group consisting of magnesium, aluminum, titanium, zinc, chromium, iron, nickel and lead and having a thickness of 30 μm or more;
    A shirasu balloon layer laminated on the first metal layer, containing a shirasu balloon, having a thickness of 30 μm or more, and containing water;
    A layer made of at least one metal selected from the group consisting of gold, silver, copper, and platinum, which is laminated on the shirasu balloon layer and has a thickness of 50 μm or more; Power generation element.
  2.  前記第1の金属層と前記シラスバルーン層の間には、100μm以上の厚みである絶縁層が介装されている
     請求項1に記載の発電素子。
    The power generation element according to claim 1, wherein an insulating layer having a thickness of 100 μm or more is interposed between the first metal layer and the shirasu balloon layer.
  3.  シラスバルーンを含み、30μm以上の厚みであって水分を含有するシラスバルーン層を生成する工程と、
     前記シラスバルーン層の一の面に、マグネシウム、アルミニウム、チタン、亜鉛、クロム、鉄、ニッケル、鉛からなる群より選択される少なくとも一種の金属を含み、30μm以上の厚みである第1の金属層を積層する工程と、
     前記シラスバルーン層の他の面に、金、銀、銅、及び白金からなる群より選択される少なくとも一種の金属からなる層であって、50μm以上の厚みである第2の金属層を積層する工程と、を備える
     発電素子の製造方法。
    A step of forming a shirasu balloon layer containing shirasu balloon and having a thickness of 30 μm or more and containing water;
    A first metal layer containing at least one metal selected from the group consisting of magnesium, aluminum, titanium, zinc, chromium, iron, nickel and lead on one surface of the shirasu balloon layer and having a thickness of 30 μm or more. Stacking the
    A second metal layer having a thickness of 50 μm or more, which is a layer made of at least one metal selected from the group consisting of gold, silver, copper, and platinum, is laminated on the other surface of the shirasu balloon layer. A method of manufacturing a power generation element, comprising:
  4.  前記第1の金属層を積層する工程の前に、前記シラスバルーン層の一の面に、絶縁物質からなり、100μm以上の厚みである絶縁層を積層する工程を有し、
     前記第1の金属層を積層する工程は、
     前記絶縁層上に前記第1の金属層を積層する
     請求項3に記載の発電素子の製造方法。
    Before the step of laminating the first metal layer, there is a step of laminating an insulating layer made of an insulating material and having a thickness of 100 μm or more on one surface of the silas balloon layer,
    The step of laminating the first metal layer includes
    The method for manufacturing a power generation element according to claim 3, wherein the first metal layer is laminated on the insulating layer.
PCT/JP2019/034164 2019-03-01 2019-08-30 Power generation element and method of manufacturing power generation element WO2020179106A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-037859 2019-03-01
JP2019037859A JP6547082B1 (en) 2019-03-01 2019-03-01 Power generation element, and method of manufacturing power generation element

Publications (1)

Publication Number Publication Date
WO2020179106A1 true WO2020179106A1 (en) 2020-09-10

Family

ID=67297615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034164 WO2020179106A1 (en) 2019-03-01 2019-08-30 Power generation element and method of manufacturing power generation element

Country Status (2)

Country Link
JP (1) JP6547082B1 (en)
WO (1) WO2020179106A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033425A (en) * 1973-08-02 1975-03-31
US5116701A (en) * 1991-02-22 1992-05-26 Eveready Battery Company, Inc. Microporous separator composed of microspheres secured to an electrode strip
JP2002042826A (en) * 2000-07-25 2002-02-08 Masanori Shirotani Generator element using shirasu and its manufacturing method
JP2004282809A (en) * 2003-03-12 2004-10-07 Toshio Yoshikawa Ac power supply generation controller
JP2005502180A (en) * 2001-08-28 2005-01-20 正法 城谷 Power generation element manufacturing method using volcanic ash, battery manufacturing method using volcanic ash, battery using volcanic ash, and battery control device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033425A (en) * 1973-08-02 1975-03-31
US5116701A (en) * 1991-02-22 1992-05-26 Eveready Battery Company, Inc. Microporous separator composed of microspheres secured to an electrode strip
JP2002042826A (en) * 2000-07-25 2002-02-08 Masanori Shirotani Generator element using shirasu and its manufacturing method
JP2005502180A (en) * 2001-08-28 2005-01-20 正法 城谷 Power generation element manufacturing method using volcanic ash, battery manufacturing method using volcanic ash, battery using volcanic ash, and battery control device therefor
JP2004282809A (en) * 2003-03-12 2004-10-07 Toshio Yoshikawa Ac power supply generation controller

Also Published As

Publication number Publication date
JP6547082B1 (en) 2019-07-17
JP2020140942A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
JP6622802B2 (en) Silicon secondary battery
WO2020179106A1 (en) Power generation element and method of manufacturing power generation element
CN111937225B (en) Cylindrical secondary battery having piezoelectric element and thermoelectric element
KR101368226B1 (en) Electrode structure comprising the electrode materialand secondary battery comprising the electrodestructure
JP2012230806A (en) Power generation element
JP2005223155A (en) Electrochemical device and electrode member
KR101383250B1 (en) Electrode structure comprising the electrode materialand secondary battery comprising the electrodestructure
KR101396792B1 (en) Electrode structure comprising the electrode materialand secondary battery comprising the electrodestructure
KR101374783B1 (en) Electrode structure comprising the electrode materialand secondary battery comprising the electrodestructure
KR20130118087A (en) Electrode material for lithium secondary battery,electrode structure comprising the electrode materialand secondary battery comprising the electrodestructure
KR20130118420A (en) Electrode material for lithium secondary battery,electrode structure comprising the electrode materialand secondary battery comprising the electrodestructure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918014

Country of ref document: EP

Kind code of ref document: A1