WO2020179063A1 - Machine learning device, numerical control device, abnormality estimation device, and machine tool control system - Google Patents

Machine learning device, numerical control device, abnormality estimation device, and machine tool control system Download PDF

Info

Publication number
WO2020179063A1
WO2020179063A1 PCT/JP2019/009157 JP2019009157W WO2020179063A1 WO 2020179063 A1 WO2020179063 A1 WO 2020179063A1 JP 2019009157 W JP2019009157 W JP 2019009157W WO 2020179063 A1 WO2020179063 A1 WO 2020179063A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
machine
estimation
abnormality
machine learning
Prior art date
Application number
PCT/JP2019/009157
Other languages
French (fr)
Japanese (ja)
Inventor
恵介 山中
和行 佐藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980093506.2A priority Critical patent/CN113498497A/en
Priority to JP2019541391A priority patent/JP6608102B1/en
Priority to PCT/JP2019/009157 priority patent/WO2020179063A1/en
Priority to DE112019006825.3T priority patent/DE112019006825T5/en
Publication of WO2020179063A1 publication Critical patent/WO2020179063A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition

Definitions

  • the present invention relates to a machine learning device, a numerical control device, an abnormality estimating device, and a machine tool control system capable of estimating an abnormality of a machine tool controlled by a numerical control device.
  • a machine tool that uses a tool to process an object to be machined, when the actuator, such as a servomotor or spindle motor, is subjected to a load, the numerical control device will perform operations such as "overload,” “overspeed deviation,” “overheat. It has the function of notifying the abnormality of the machine and stopping the machining. When the abnormality of the machine tool is notified, it is necessary to review the processing conditions and try the processing many times, which requires labor and time.
  • the actuator such as a servomotor or spindle motor
  • Patent Document 1 discloses a machine learning device that observes electric energy, temperature, load, etc. of an electric motor as state variables and learns an operation command to a motor that avoids a machine tool abnormality.
  • Patent Document 1 learns the operation command by observing the operation status of the electric motor as a state variable.
  • the abnormality of the machine tool that is, the operation status of the electric motor depends not only on the operation command but also on the tool status of the machine tool.
  • the state of the tool of the machine tool varies depending on the elapsed time from the start of use and the usage situation, but depending on the state of the tool, whether or not an abnormality occurs may change. Therefore, the above-mentioned conventional technique has a problem in that the learning accuracy of the abnormality occurrence condition of the machine tool is reduced, and it is difficult to accurately estimate whether or not the abnormality has occurred.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a machine learning device capable of improving the learning accuracy of an abnormality occurrence condition of a machine tool.
  • the present invention is a machine learning device that learns an abnormality occurrence condition of a machine tool that processes a workpiece, and tool life information indicating the life of the tool, A machining condition of the machine tool, a state observing unit that observes the condition variable as a state variable, and a learning unit that learns the abnormality generating condition according to a data set created based on the state variable and the presence/absence of notification of abnormality of the machine tool. It is characterized by being provided.
  • the machine learning device has an effect that it is possible to improve the learning accuracy of the abnormality occurrence condition of the machine tool.
  • FIG. 1 is a diagram showing dedicated hardware for realizing the functions of a machine learning device, a numerical control device, and an abnormality estimation device according to the first and second embodiments of the present invention.
  • FIG. 3 is a diagram showing a configuration of a control circuit for realizing the functions of the machine learning device, the numerical control device, and the abnormality estimating device according to the first and second embodiments of the present invention.
  • a machine learning device, a numerical control device, an abnormality estimation device, and a machine tool control system according to the embodiment of the present invention will be described below in detail with reference to the drawings.
  • the present invention is not limited to this embodiment.
  • FIG. 1 is a diagram showing a configuration of a machine learning system 100 according to a first embodiment of the present invention.
  • the machine learning system 100 includes a machine learning device 1, a machine tool 2, a numerical controller 3, and an HMI (Human Machine Interface) 4.
  • HMI Human Machine Interface
  • the machine learning device 1 is a device that learns an abnormality occurrence condition that is a condition for causing an abnormality of the machine tool 2. Since the machine learning device 1 determines that an abnormality has occurred by using the presence or absence of the abnormality notification, it can be said that the machine learning device 1 is an apparatus that learns an abnormality notification condition that is a condition for notifying the abnormality of the machine tool 2.
  • the machine tool 2 is a device that processes an object to be machined by changing the position of a tool.
  • the numerical control device 3 is a device that numerically controls the machine tool 2.
  • the HMI4 is an input / output device for exchanging information between humans and machines. The user can use the HMI 4 to input the processing conditions of the machine tool 2 into the numerical controller 3.
  • the machine tool 2 has a drive unit 21 and a detection unit 22.
  • the drive unit 21 has a function of changing the position of the tool, and includes, for example, an actuator such as a servo motor or a spindle motor, a control unit that controls the actuator according to a command from the numerical control device 3, and the like.
  • the detection unit 22 has a function of detecting the state of the machine tool 2.
  • the state of the machine tool 2 detected by the detection unit 22 is, for example, the temperature of the machine tool 2.
  • the temperature of the machine tool 2 includes the temperature of the servo motor and the temperature of the spindle motor included in the machine tool 2.
  • the detection unit 22 outputs the detected information to the numerical control device 3.
  • the drive unit 21 stops when the numerical control device 3 outputs an abnormality notification.
  • the drive unit 21 outputs information indicating the presence / absence of an abnormality notification to the machine learning device 1.
  • the numerical control device 3 receives, as processing conditions, information input by the user using the HMI 4 and information detected by the detection unit 22.
  • the numerical control device 3 numerically controls the machine tool 2 according to a numerical control program based on the received machining conditions.
  • the information input from the HMI 4 includes, for example, information indicating the property of the workpiece and information indicating the operating state of the machine tool 2.
  • the information indicating the property of the processing target is, for example, the material of the processing target.
  • the information indicating the operating state of the machine tool 2 is, for example, the depth of cut, which is the information indicating the movement amount of the tool, the feed speed of the servo motor, and the rotation speed of the spindle motor.
  • the numerical control device 3 has tool life information indicating the type of tool mounted on the machine tool 2 and the life of each tool.
  • the tool life information is information indicating the tool life such as the number of times the tool is used and the usage time.
  • the machine learning device 1 performs machine learning based on the tool life information. Therefore, the numerical control device 3 outputs tool life information and machining conditions to the machine learning device 1.
  • the numerical control device 3 uses the information input using the HMI 4 and the information output by the detection unit 22 as the processing conditions, but the numerical control device 3 analyzes the analysis results such as the control program and parameters. It may be processing conditions.
  • the numerical controller 3 has information input using an input device such as the HMI 4, information detected by the detection unit 22 provided in the machine tool 2, and a control program for controlling the machine tool 2.
  • the processing condition including at least one of the information acquired from and is output.
  • the machine learning device 1 follows a data set created based on a combination of a state observation unit 11 that observes tool life information and machining conditions output by the numerical control device 3 as state variables, and a combination of the state variables and whether or not there is an abnormality notification. And a learning unit 12 that learns the abnormality occurrence condition of the machine tool 2.
  • the data set is data in which the state variable and the presence/absence of the abnormality notification are associated with each other.
  • the elements to observe as state variables are the elements related to the occurrence of anomaly notification. For example, in order to prevent the motor from overheating, an abnormality notification is output when the temperature of the motor exceeds a preset threshold value. Further, when the object to be processed is a hard material, the load on the motor increases. Even when the depth of cut is large or the feed speed of the servo motor or the rotation speed of the spindle motor is high, the load on the motor increases. Further, when the tool mounted on the machine tool 2 is in a worn state, the load on the motor may increase even under the same machining conditions, and an abnormality notification may occur. For this reason, it is important to observe the wear state of the tool. In the present embodiment, the wear state of the tool is determined using the tool life information. It can be inferred that a tool with a short tool life has a large amount of wear.
  • the machine learning device 1 is a device separate from the numerical control device 3 in FIG. 1, but the numerical control device 3 may include the machine learning device 1 therein. Further, the machine learning device 1 may exist on the cloud server.
  • the learning unit 12 learns the abnormality occurrence condition of the machine tool 2 by so-called supervised learning according to, for example, a neural network model.
  • supervised learning refers to a model in which a large set of certain input and result data sets are given to the machine learning device 1 to learn the characteristics of those data sets and to estimate the result from the input.
  • a neural network is composed of an input layer composed of multiple neurons, an intermediate layer composed of multiple neurons, and an output layer composed of multiple neurons.
  • the intermediate layer is also called a hidden layer, and may be one layer or two or more layers.
  • FIG. 2 is a diagram showing a three-layer neural network model that can be used by the learning unit 12 shown in FIG.
  • the values are multiplied by the weight W1 (w11-w116) and input to the intermediate layers Y1-Y2.
  • the values of the intermediate layers Y1-Y2 are multiplied by the weight W2 (w21-w22) and output from the output layer Z1. This output result changes depending on the values of the weights W1 and W2.
  • the neural network uses the so-called supervised learning to detect abnormalities in accordance with a data set created based on a combination of machining conditions and tool life information observed by the state observation unit 11 and presence/absence of abnormality notification. Learn the occurrence conditions.
  • the neural network performs learning by adjusting the weights W1 and W2 so that the processing conditions and tool life information are input to the input layer and the result output from the output layer approaches whether or not there is an abnormality notification.
  • the learning unit 12 can also learn the abnormal occurrence condition by so-called unsupervised learning.
  • the unsupervised learning is to give only a large amount of input data to the machine learning device 1 to learn what distribution the input data has, and to give the corresponding input data without learning the corresponding teacher output data. It is a method of learning a device that performs compression, classification, shaping, and so on.
  • unsupervised learning the features in a dataset can be clustered into similar ones.
  • the learning unit 12 can realize the prediction of the output by using the clustering result and assigning the output so as to optimize the clustering result by setting some reference.
  • semi-supervised learning is also a method called semi-supervised learning as an intermediate problem setting between supervised learning and unsupervised learning. In the semi-supervised learning, there is only a part of input and output data sets, and in other cases, learning is performed using only input data.
  • the learning unit 12 can use deep learning for learning the extraction of the feature amount itself, or can use other known methods such as genetic programming, functional logic programming, and support vector machine.
  • the machine learning device 1 acquires information such as machining conditions and tool life information from the single numerical control device 3, but the present embodiment is not limited to this example.
  • the state observation unit 11 may observe the information acquired from the plurality of numerical control devices 3 as state variables, and the learning unit 12 may learn the abnormality occurrence condition based on the data sets for the plurality of numerical control devices 3. ..
  • the learning unit 12 may acquire a data set from a plurality of numerical control devices 3 used at the same site, or may acquire a data set from a plurality of numerical control devices 3 operating independently at different sites. You may.
  • the numerical control device 3 for which the data set is to be acquired can be added in the middle or can be removed from the target in the middle.
  • the machine learning device 1 that has learned the abnormality occurrence condition is attached to a different numerical control device 3, and the machine tool 2 to be controlled by this numerical control device 3
  • the learning result can be updated by re-learning the abnormal condition.
  • the machine learning device 1 uses the tool life information indicating the life of the tool as a state variable. Then, the abnormality occurrence condition of the machine tool 2 is learned according to the data set created based on the state variable and the presence or absence of the abnormality notification. By adopting such a configuration, it becomes possible to improve the learning accuracy of the abnormality occurrence condition as compared with the case where the tool life information is not used.
  • FIG. 3 is a diagram showing a configuration of a control system 200 of the machine tool 2 according to the second exemplary embodiment of the present invention.
  • the control system 200 has a function of controlling the machine tool 2 by using the learning result of the machine learning system 100 described in the first embodiment. Specifically, in addition to the configuration of the machine learning system 100, the control system 200 determines that the machine tool 2 has an abnormality based on the learning result of the machine learning device 1 and the processing conditions of the processing process to be executed. It has an abnormality estimation device 5 for estimating whether or not it occurs.
  • the description of the same configuration as that of the first embodiment will be omitted, and the portions different from the first embodiment will be mainly described.
  • the abnormality estimating device 5 presupposes the tool life indicated by the input tool life information based on the learning result of the machine learning device 1 before actually operating the machine tool 2, and performs the machining under the input machining conditions. It is estimated whether or not an abnormality occurs when the machine 2 is operated.
  • the abnormality estimation device 5 outputs the estimation result to the HMI 4 and notifies the user.
  • FIG. 4 is a diagram showing a functional configuration of the abnormality estimation device 5 shown in FIG.
  • the abnormality estimation device 5 includes a learning result acquisition unit 51, an estimation condition acquisition unit 52, an estimation unit 53, and a notification unit 54.
  • the learning result acquisition unit 51 acquires the learning result of the abnormality occurrence condition of the machine tool 2 from the learning unit 12 of the machine learning device 1. For example, the learning result acquisition unit 51 may acquire the learning result every time the learning result of the learning unit 12 is updated, or may periodically acquire the learning result.
  • the learning result acquisition unit 51 outputs the acquired learning result to the estimation unit 53.
  • the speculative condition acquisition unit 52 acquires, from the numerical control device 3, speculative conditions regarding whether or not an abnormality has occurred in the machine tool 2, including machining conditions of the machine tool 2 and tool life information.
  • the estimation condition acquisition unit 52 outputs the acquired estimation conditions to the estimation unit 53.
  • the estimating unit 53 estimates whether or not an abnormality has occurred in the machine tool 2 based on the learning result of the abnormality occurrence condition and the estimation condition.
  • the estimation unit 53 outputs the estimation result to the notification unit 54.
  • the notification unit 54 notifies the user of the estimation result. Specifically, the notification unit 54 can notify the user of the estimation result by outputting the estimation result to the HMI 4 and displaying the estimation result on the HMI 4.
  • FIG. 5 is a diagram showing an example of the display screen 60 output by the HMI 4 shown in FIG.
  • the display screen 60 shows whether or not an abnormality occurs in the machine tool 2 when the machining condition input area 61 that receives an input of the machining condition of the machine tool 2 and the machining condition displayed in the machining condition input area 61 are used.
  • An estimation result display area 62 for displaying an estimation result indicating the, and a machining start button 63 which is an operation unit for instructing the start of machining using the machining condition displayed in the machining condition input area 61.
  • FIG. 6 is a flowchart for explaining the operation of the control system 200 shown in FIG.
  • the user of the control system 200 inputs the processing conditions of the machine tool 2 using the display screen 60 of the HMI 4 (step S101).
  • the numerical control device 3 inputs the processing condition and tool life information to the abnormality estimating device 5 (step S102).
  • the estimating unit 53 of the abnormality estimating device 5 estimates whether or not the abnormality of the machine tool 2 is notified based on the input machining conditions and tool life information (step S103). It is assumed that the abnormality estimation device 5 has acquired the learning result from the machine learning device 1 in advance and performs the estimation process of step S103 based on the acquired learning result. The estimation unit 53 outputs the estimation result to the notification unit 54.
  • the HMI 4 notifies the user by displaying the estimation result (step S104).
  • the numerical control device 3 determines whether or not the machining conditions have been changed (step S105). For example, when notifying the user of the estimation result by displaying the estimation result in the estimation result display area 62 of the display screen 60 shown in FIG. 5, the user changes the processing condition displayed in the processing condition input area 61.
  • the processing condition can be changed by inputting Alternatively, the user can instruct the start of processing by operating the processing start button 63 on the display screen 60.
  • step S105 Yes
  • the process is repeated from step S101.
  • step S105: No that is, when the machining start button 63 is operated in the example of the display screen 60
  • the numerical control device 3 starts the numerical control, so that the machine tool 2 operates as follows.
  • the processing is executed (step S106).
  • the numerical control device 3 and the drive unit 21 of the machine tool 2 input the machining result as training data to the learning unit 12 (step S107). Specifically, as described in the first embodiment, the machining conditions when the machine tool 2 is actually operated, the tool life information, and the presence/absence of the abnormality notification are input to the machine learning device 1.
  • the machining conditions of the machine tool 2 are appropriate in advance based on the learning result of the machine learning device 1, that is, the machine tool. It is possible to actually drive the machine tool 2 after confirming that the machining conditions are such that no abnormality occurs in No. 2.
  • the machine learning device 1 learns the abnormality occurrence condition based on the tool life information, it is possible to accurately estimate whether or not an abnormality occurs in the machine tool 2 by using a highly accurate learning result. It becomes possible to do.
  • the functions of the machine learning device 1, the numerical control device 3, and the abnormality estimation device 5 are realized by processing circuits. These processing circuits may be realized by dedicated hardware, or may be control circuits using a CPU (Central Processing Unit).
  • CPU Central Processing Unit
  • FIG. 7 is a diagram showing dedicated hardware for realizing the functions of the machine learning device 1, the numerical control device 3, and the abnormality estimation device 5 according to the first and second embodiments of the present invention.
  • the processing circuit 90 is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
  • this control circuit is, for example, the control circuit 91 having the configuration shown in FIG.
  • FIG. 8 is a diagram showing a configuration of a control circuit 91 for realizing the functions of the machine learning device 1, the numerical control device 3, and the abnormality estimating device 5 according to the first and second embodiments of the present invention.
  • the control circuit 91 includes a processor 92 and a memory 93.
  • the processor 92 is a CPU and is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the memory 93 is, for example, a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), and an EEPROM (registered trademark) (Electrically EPROM), Magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs (Digital Versatile Disk), etc.
  • a RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable ROM), and an EEPROM (registered trademark) (Electrically EPROM), Magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs (Digital Versatile Disk), etc.
  • the control circuit 91 When the above processing circuit is realized by the control circuit 91, it is realized by the processor 92 reading and executing a program stored in the memory 93 and corresponding to the processing of each component.
  • the memory 93 is also used as a temporary memory in each process executed by the processor 92.
  • the machine learning device 1 according to the first and second embodiments may be built in the numerical control device 3 or may exist on the cloud server.
  • the abnormality estimation device 5 of the second embodiment is different from the numerical control device 3 and the machine learning device 1 in the above, it is the same as at least one of the numerical control device 3 and the machine learning device 1. May be realized on the above device. Further, the abnormality estimation device 5 may exist on the cloud server.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

This machine learning device (1), which learns an abnormality generation condition of a machining tool for processing an object to be processed, is characterized by comprising: a state observation unit (11) that observes, as state variables, tool service life information indicating the service life of a tool and machining conditions of the machining tool (2); and a learning unit (12) that learns the abnormality generation condition according to a data set which is created on the basis of the state variables and presence/absence of a notification regarding the abnormality of the machining tool (2).

Description

機械学習装置、数値制御装置、異常推測装置および工作機械の制御システムMachine learning device, numerical control device, abnormality estimation device, and machine tool control system
 本発明は、数値制御装置により制御される工作機械の異常を推測することが可能な機械学習装置、数値制御装置、異常推測装置および工作機械の制御システムに関する。 The present invention relates to a machine learning device, a numerical control device, an abnormality estimating device, and a machine tool control system capable of estimating an abnormality of a machine tool controlled by a numerical control device.
 工具を使用して加工対象物を加工する工作機械は、サーボモータ、主軸モータといったアクチュエータに負荷がかかる加工を行ったとき、数値制御装置が「過負荷」「速度偏差過大」「オーバヒート」など工作機械の異常を通知して、加工を停止する機能を有する。工作機械の異常が通知された場合、加工条件を見直して、何度も加工処理を試行する必要があり、労力と時間とを要していた。 A machine tool that uses a tool to process an object to be machined, when the actuator, such as a servomotor or spindle motor, is subjected to a load, the numerical control device will perform operations such as "overload," "overspeed deviation," "overheat. It has the function of notifying the abnormality of the machine and stopping the machining. When the abnormality of the machine tool is notified, it is necessary to review the processing conditions and try the processing many times, which requires labor and time.
 特許文献1には、電動機の電力量、温度、負荷等を状態変数として観測し、工作機械の異常を回避するようなモータへの動作指令を学習する機械学習装置が開示されている。 Patent Document 1 discloses a machine learning device that observes electric energy, temperature, load, etc. of an electric motor as state variables and learns an operation command to a motor that avoids a machine tool abnormality.
特開2017-64837号公報JP, 2017-64837, A
 特許文献1に記載の技術は、電動機の動作状況を状態変数として観測することで動作指令を学習している。しかしながら、工作機械の異常、すなわち電動機の動作状況は動作指令だけではなく、工作機械の工具の状態にも依存する。工作機械の工具の状態は、使用を始めてからの経過時間や使用状況などによって異なるが、この工具の状態によって異常が発生するか否かが変わる場合がある。このため、上記従来の技術では、工作機械の異常発生条件の学習精度が低下し、異常の発生有無を精度よく推測することは困難であるという問題があった。 The technology described in Patent Document 1 learns the operation command by observing the operation status of the electric motor as a state variable. However, the abnormality of the machine tool, that is, the operation status of the electric motor depends not only on the operation command but also on the tool status of the machine tool. The state of the tool of the machine tool varies depending on the elapsed time from the start of use and the usage situation, but depending on the state of the tool, whether or not an abnormality occurs may change. Therefore, the above-mentioned conventional technique has a problem in that the learning accuracy of the abnormality occurrence condition of the machine tool is reduced, and it is difficult to accurately estimate whether or not the abnormality has occurred.
 本発明は、上記に鑑みてなされたものであって、工作機械の異常発生条件の学習精度を向上させることが可能な機械学習装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a machine learning device capable of improving the learning accuracy of an abnormality occurrence condition of a machine tool.
 上述した課題を解決し、目的を達成するために、本発明は、加工対象物を加工する工作機械の異常発生条件を学習する機械学習装置であって、工具の寿命を示す工具寿命情報と、工作機械の加工条件と、を状態変数として観測する状態観測部と、状態変数と工作機械の異常の通知有無とに基づいて作成されるデータセットに従って、異常発生条件を学習する学習部と、を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the present invention is a machine learning device that learns an abnormality occurrence condition of a machine tool that processes a workpiece, and tool life information indicating the life of the tool, A machining condition of the machine tool, a state observing unit that observes the condition variable as a state variable, and a learning unit that learns the abnormality generating condition according to a data set created based on the state variable and the presence/absence of notification of abnormality of the machine tool. It is characterized by being provided.
 本発明にかかる機械学習装置は、工作機械の異常発生条件の学習精度を向上させることが可能であるという効果を奏する。 The machine learning device according to the present invention has an effect that it is possible to improve the learning accuracy of the abnormality occurrence condition of the machine tool.
本発明の実施の形態1にかかる機械学習システムの構成を示す図The figure which shows the structure of the machine learning system concerning Embodiment 1 of this invention. 図1に示す学習部が使用可能な3層のニューラルネットワークモデルを示す図The figure which shows the three-layer neural network model which the learning part shown in FIG. 1 can use. 本発明の実施の形態2にかかる工作機械の制御システムの構成を示す図The figure which shows the structure of the control system of the machine tool concerning Embodiment 2 of this invention. 図3に示す異常推測装置の機能構成を示す図The figure which shows the function structure of the abnormality estimation apparatus shown in FIG. 図3に示すHMIが出力する表示画面の一例を示す図The figure which shows an example of the display screen which HMI shown in FIG. 3 outputs. 図3に示す制御システムの動作を説明するためのフローチャートFlowchart for explaining the operation of the control system shown in FIG. 本発明の実施の形態1~2にかかる機械学習装置、数値制御装置、および異常推測装置の機能を実現するための専用のハードウェアを示す図FIG. 1 is a diagram showing dedicated hardware for realizing the functions of a machine learning device, a numerical control device, and an abnormality estimation device according to the first and second embodiments of the present invention. 本発明の実施の形態1~2にかかる機械学習装置、数値制御装置、および異常推測装置の機能を実現するための制御回路の構成を示す図FIG. 3 is a diagram showing a configuration of a control circuit for realizing the functions of the machine learning device, the numerical control device, and the abnormality estimating device according to the first and second embodiments of the present invention.
 以下に、本発明の実施の形態にかかる機械学習装置、数値制御装置、異常推測装置および工作機械の制御システムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 A machine learning device, a numerical control device, an abnormality estimation device, and a machine tool control system according to the embodiment of the present invention will be described below in detail with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、本発明の実施の形態1にかかる機械学習システム100の構成を示す図である。機械学習システム100は、機械学習装置1と、工作機械2と、数値制御装置3と、HMI(Human Machine Interface)4とを有する。
Embodiment 1.
FIG. 1 is a diagram showing a configuration of a machine learning system 100 according to a first embodiment of the present invention. The machine learning system 100 includes a machine learning device 1, a machine tool 2, a numerical controller 3, and an HMI (Human Machine Interface) 4.
 機械学習装置1は、工作機械2の異常が発生する条件である異常発生条件を学習する装置である。機械学習装置1は、異常が発生したことを異常通知の有無を用いて判断するため、工作機械2の異常が通知される条件である異常通知条件を学習する装置であるともいえる。工作機械2は、工具の位置を変化させることで加工対象物を加工する装置である。数値制御装置3は、工作機械2を数値制御する装置である。HMI4は、人間と機械とが情報をやりとりするための入出力装置である。使用者は、HMI4を使用して数値制御装置3に工作機械2の加工条件を入力することができる。 The machine learning device 1 is a device that learns an abnormality occurrence condition that is a condition for causing an abnormality of the machine tool 2. Since the machine learning device 1 determines that an abnormality has occurred by using the presence or absence of the abnormality notification, it can be said that the machine learning device 1 is an apparatus that learns an abnormality notification condition that is a condition for notifying the abnormality of the machine tool 2. The machine tool 2 is a device that processes an object to be machined by changing the position of a tool. The numerical control device 3 is a device that numerically controls the machine tool 2. The HMI4 is an input / output device for exchanging information between humans and machines. The user can use the HMI 4 to input the processing conditions of the machine tool 2 into the numerical controller 3.
 工作機械2は、駆動部21と、検知部22とを有する。駆動部21は、工具の位置を変化させる機能を有し、例えば、サーボモータ、主軸モータなどのアクチュエータ、数値制御装置3からの指令に従ってアクチュエータを制御する制御部などを含む。検知部22は、工作機械2の状態を検知する機能を有する。検知部22が検知する工作機械2の状態は、例えば、工作機械2の温度である。工作機械2の温度は、工作機械2に含まれるサーボモータの温度、主軸モータの温度が含まれる。検知部22は、検知した情報を数値制御装置3に出力する。 The machine tool 2 has a drive unit 21 and a detection unit 22. The drive unit 21 has a function of changing the position of the tool, and includes, for example, an actuator such as a servo motor or a spindle motor, a control unit that controls the actuator according to a command from the numerical control device 3, and the like. The detection unit 22 has a function of detecting the state of the machine tool 2. The state of the machine tool 2 detected by the detection unit 22 is, for example, the temperature of the machine tool 2. The temperature of the machine tool 2 includes the temperature of the servo motor and the temperature of the spindle motor included in the machine tool 2. The detection unit 22 outputs the detected information to the numerical control device 3.
 数値制御装置3は、工作機械2の検知部22から出力される情報に基づいて、サーボモータ、主軸モータなどの「過負荷」「速度偏差過大」「オーバヒート」などの状態を検出した場合、サーボアラームと呼ばれる異常通知を使用者に出力して工作機械2を停止させることがある。駆動部21は、数値制御装置3が異常通知を出力すると、停止する。駆動部21は、異常通知の有無を示す情報を機械学習装置1に出力する。 When the numerical controller 3 detects a state such as “overload”, “excessive speed deviation”, or “overheat” of the servo motor, the spindle motor, or the like, based on the information output from the detection unit 22 of the machine tool 2, An abnormality notification called an alarm may be output to the user to stop the machine tool 2. The drive unit 21 stops when the numerical control device 3 outputs an abnormality notification. The drive unit 21 outputs information indicating the presence / absence of an abnormality notification to the machine learning device 1.
 数値制御装置3は、HMI4を用いて使用者が入力する情報と、検知部22が検知する情報とを加工条件として受け付ける。数値制御装置3は、受け付けた加工条件に基づいて、数値制御プログラムに従って工作機械2を数値制御する。ここで、HMI4から入力される情報は、例えば、加工対象物の性質を示す情報と、工作機械2の動作状態を示す情報とを含む。加工対象物の性質を示す情報は、例えば、加工対象物の材質である。工作機械2の動作状態を示す情報は、例えば、工具の移動量を示す情報である切込み量、サーボモータの送り速度、主軸モータの回転速度である。 The numerical control device 3 receives, as processing conditions, information input by the user using the HMI 4 and information detected by the detection unit 22. The numerical control device 3 numerically controls the machine tool 2 according to a numerical control program based on the received machining conditions. Here, the information input from the HMI 4 includes, for example, information indicating the property of the workpiece and information indicating the operating state of the machine tool 2. The information indicating the property of the processing target is, for example, the material of the processing target. The information indicating the operating state of the machine tool 2 is, for example, the depth of cut, which is the information indicating the movement amount of the tool, the feed speed of the servo motor, and the rotation speed of the spindle motor.
 加工対象物の材質、切込み量といった加工条件が同じ場合であっても、工具の摩耗状態によって、サーボモータ、主軸モータへの負荷が増大し、異常通知が出力される場合がある。数値制御装置3は、工作機械2に搭載される工具の種類と、各工具の寿命とを示す工具寿命情報を有している。工具寿命情報は、工具の使用回数、使用時間といった工具の寿命を示す情報である。本実施の形態では、機械学習装置1は、工具寿命情報に基づいて、機械学習を行う。このため、数値制御装置3は、工具寿命情報と、加工条件とを機械学習装置1に出力する。なお、ここでは数値制御装置3は、HMI4を用いて入力された情報と、検知部22が出力する情報とを加工条件としたが、数値制御装置3は、制御プログラム、パラメータなどの解析結果を加工条件としてもよい。言い換えると、数値制御装置3は、HMI4のような入力装置を用いて入力される情報と、工作機械2に設けられた検知部22が検知する情報と、工作機械2を制御するための制御プログラムから取得される情報とのうち少なくとも1つを含む加工条件を出力する。 Even if the processing conditions such as the material of the object to be machined and the depth of cut are the same, the load on the servo motor and spindle motor may increase due to the wear state of the tool, and an error notification may be output. The numerical control device 3 has tool life information indicating the type of tool mounted on the machine tool 2 and the life of each tool. The tool life information is information indicating the tool life such as the number of times the tool is used and the usage time. In the present embodiment, the machine learning device 1 performs machine learning based on the tool life information. Therefore, the numerical control device 3 outputs tool life information and machining conditions to the machine learning device 1. Note that here, the numerical control device 3 uses the information input using the HMI 4 and the information output by the detection unit 22 as the processing conditions, but the numerical control device 3 analyzes the analysis results such as the control program and parameters. It may be processing conditions. In other words, the numerical controller 3 has information input using an input device such as the HMI 4, information detected by the detection unit 22 provided in the machine tool 2, and a control program for controlling the machine tool 2. The processing condition including at least one of the information acquired from and is output.
 機械学習装置1は、数値制御装置3が出力する工具寿命情報および加工条件を状態変数として観測する状態観測部11と、状態変数と異常の通知有無との組み合わせに基づいて作成されるデータセットに従って、工作機械2の異常発生条件を学習する学習部12とを有する。ここでデータセットとは、状態変数および異常通知の有無を互いに関連付けたデータである。 The machine learning device 1 follows a data set created based on a combination of a state observation unit 11 that observes tool life information and machining conditions output by the numerical control device 3 as state variables, and a combination of the state variables and whether or not there is an abnormality notification. And a learning unit 12 that learns the abnormality occurrence condition of the machine tool 2. Here, the data set is data in which the state variable and the presence/absence of the abnormality notification are associated with each other.
 状態変数として観測する要素は、異常通知の発生に関係する要素である。例えば、モータがオーバヒートするのを防ぐために、モータの温度が事前に設定した閾値を超えると、異常通知が出力される。また、加工対象物が固い材質の場合、モータの負荷が高くなる。切込み量が大きかったり、サーボモータの送り速度や主軸モータの回転速度が速かったりする場合にも、モータの負荷が高くなる。さらに、工作機械2に搭載される工具が摩耗した状態である場合、同じ加工条件であってもモータへの負荷が上がり、異常通知が発生する場合がある。このため、工具の摩耗状態を観測することは重要である。本実施の形態では、工具の摩耗状態は、工具寿命情報を用いて判断する。工具寿命が短い工具は摩耗量が大きいと推測することができる。 ㆍThe elements to observe as state variables are the elements related to the occurrence of anomaly notification. For example, in order to prevent the motor from overheating, an abnormality notification is output when the temperature of the motor exceeds a preset threshold value. Further, when the object to be processed is a hard material, the load on the motor increases. Even when the depth of cut is large or the feed speed of the servo motor or the rotation speed of the spindle motor is high, the load on the motor increases. Further, when the tool mounted on the machine tool 2 is in a worn state, the load on the motor may increase even under the same machining conditions, and an abnormality notification may occur. For this reason, it is important to observe the wear state of the tool. In the present embodiment, the wear state of the tool is determined using the tool life information. It can be inferred that a tool with a short tool life has a large amount of wear.
 なお、機械学習装置1は、図1では数値制御装置3と別体の装置となっているが、数値制御装置3が機械学習装置1を内蔵していてもよい。また機械学習装置1は、クラウドサーバ上に存在していてもよい。 The machine learning device 1 is a device separate from the numerical control device 3 in FIG. 1, but the numerical control device 3 may include the machine learning device 1 therein. Further, the machine learning device 1 may exist on the cloud server.
 学習部12は、例えば、ニューラルネットワークモデルに従って、いわゆる教師あり学習により、工作機械2の異常発生条件を学習する。ここで、教師あり学習とは、ある入力と結果のデータの組を大量に機械学習装置1に与えることで、それらのデータセットにある特徴を学習し、入力から結果を推定するモデルをいう。 The learning unit 12 learns the abnormality occurrence condition of the machine tool 2 by so-called supervised learning according to, for example, a neural network model. Here, supervised learning refers to a model in which a large set of certain input and result data sets are given to the machine learning device 1 to learn the characteristics of those data sets and to estimate the result from the input.
 ニューラルネットワークは、複数のニューロンからなる入力層、複数のニューロンからなる中間層、および複数のニューロンからなる出力層で構成される。中間層は、隠れ層とも呼ばれ、1層であってもよいし、2層以上であってもよい。 A neural network is composed of an input layer composed of multiple neurons, an intermediate layer composed of multiple neurons, and an output layer composed of multiple neurons. The intermediate layer is also called a hidden layer, and may be one layer or two or more layers.
 図2は、図1に示す学習部12が使用可能な3層のニューラルネットワークモデルを示す図である。このモデルでは、複数の入力が入力層X1-X8に入力されると、その値に重みW1(w11-w116)を乗算して中間層Y1-Y2に入力される。中間層Y1-Y2の値に重みW2(w21-w22)を乗算して出力層Z1から出力される。この出力結果は、重みW1,W2の値によって変わる。 FIG. 2 is a diagram showing a three-layer neural network model that can be used by the learning unit 12 shown in FIG. In this model, when a plurality of inputs are input to the input layers X1-X8, the values are multiplied by the weight W1 (w11-w116) and input to the intermediate layers Y1-Y2. The values of the intermediate layers Y1-Y2 are multiplied by the weight W2 (w21-w22) and output from the output layer Z1. This output result changes depending on the values of the weights W1 and W2.
 本実施の形態では、ニューラルネットワークは、状態観測部11によって観測される加工条件および工具寿命情報と、異常通知の有無との組み合わせに基づいて作成されるデータセットに従って、いわゆる教師あり学習により、異常発生条件を学習する。 In the present embodiment, the neural network uses the so-called supervised learning to detect abnormalities in accordance with a data set created based on a combination of machining conditions and tool life information observed by the state observation unit 11 and presence/absence of abnormality notification. Learn the occurrence conditions.
 つまり、ニューラルネットワークは、入力層に加工条件および工具寿命情報を入力して出力層から出力された結果が、異常通知の有無に近づくように重みW1,W2を調整することで学習を行う。 In other words, the neural network performs learning by adjusting the weights W1 and W2 so that the processing conditions and tool life information are input to the input layer and the result output from the output layer approaches whether or not there is an abnormality notification.
 また、学習部12は、いわゆる教師なし学習によって、異常発生条件を学習することもできる。教師なし学習とは、入力データのみを大量に機械学習装置1に与えることで、入力データがどのような分布をしているか学習し、対応する教師出力データを与えなくても、入力データに対して圧縮、分類、整形などを行う装置を学習する方法である。教師なし学習では、データセットにある特徴を似たもの同士にクラスタリングすることができる。学習部12は、クラスタリング結果を使って、何らかの基準を設けてクラスタリング結果を最適にするような出力の割り当てを行うことで、出力の予測を実現することができる。また、教師あり学習と教師なし学習の中間的な問題設定として、半教師あり学習と呼ばれるものもある。半教師あり学習は、一部のみ入力と出力のデータの組が存在し、それ以外は入力のみのデータを用いて学習を行う。 In addition, the learning unit 12 can also learn the abnormal occurrence condition by so-called unsupervised learning. The unsupervised learning is to give only a large amount of input data to the machine learning device 1 to learn what distribution the input data has, and to give the corresponding input data without learning the corresponding teacher output data. It is a method of learning a device that performs compression, classification, shaping, and so on. In unsupervised learning, the features in a dataset can be clustered into similar ones. The learning unit 12 can realize the prediction of the output by using the clustering result and assigning the output so as to optimize the clustering result by setting some reference. There is also a method called semi-supervised learning as an intermediate problem setting between supervised learning and unsupervised learning. In the semi-supervised learning, there is only a part of input and output data sets, and in other cases, learning is performed using only input data.
 学習部12は、特徴量そのものの抽出を学習する深層学習(Deep Learning)を用いることもでき、他の公知の方法、例えば遺伝的プログラミング、機能論理プログラミング、サポートベクターマシンなどを用いることもできる。 The learning unit 12 can use deep learning for learning the extraction of the feature amount itself, or can use other known methods such as genetic programming, functional logic programming, and support vector machine.
 なお図1に示す例では、機械学習装置1は、1台の数値制御装置3から加工条件、工具寿命情報といった情報を取得することとしたが、本実施の形態はかかる例に限定されない。状態観測部11は、複数の数値制御装置3から取得した情報を状態変数として観測し、学習部12は、複数の数値制御装置3に対するデータセットに基づいて、異常発生条件を学習してもよい。ここで学習部12は、同一の現場で使用される複数の数値制御装置3からデータセットを取得してもよいし、異なる現場で独立して稼働する複数の数値制御装置3からデータセットを取得してもよい。さらに、データセットを取得する対象の数値制御装置3を途中から追加することもできるし、途中で対象から除去することもできる。また、ある数値制御装置3の制御対象の工作機械2について、異常発生条件を学習した機械学習装置1を、異なる数値制御装置3に取り付けて、この数値制御装置3の制御対象の工作機械2について、異常発生条件を再学習して学習結果を更新することもできる。 Note that in the example shown in FIG. 1, the machine learning device 1 acquires information such as machining conditions and tool life information from the single numerical control device 3, but the present embodiment is not limited to this example. The state observation unit 11 may observe the information acquired from the plurality of numerical control devices 3 as state variables, and the learning unit 12 may learn the abnormality occurrence condition based on the data sets for the plurality of numerical control devices 3. .. Here, the learning unit 12 may acquire a data set from a plurality of numerical control devices 3 used at the same site, or may acquire a data set from a plurality of numerical control devices 3 operating independently at different sites. You may. Further, the numerical control device 3 for which the data set is to be acquired can be added in the middle or can be removed from the target in the middle. Further, with respect to the machine tool 2 to be controlled by a certain numerical control device 3, the machine learning device 1 that has learned the abnormality occurrence condition is attached to a different numerical control device 3, and the machine tool 2 to be controlled by this numerical control device 3 The learning result can be updated by re-learning the abnormal condition.
 以上説明したように、本発明の実施の形態1にかかる機械学習システム100によれば、機械学習装置1は、工作機械2の加工条件に加えて、工具の寿命を示す工具寿命情報を状態変数として観測し、状態変数と異常通知の有無とに基づいて作成されるデータセットに従って、工作機械2の異常発生条件を学習する。このような構成をとることによって、工具寿命情報を使用しない場合と比較して、異常発生条件の学習精度を向上させることが可能になる。 As described above, according to the machine learning system 100 according to the first embodiment of the present invention, in addition to the machining conditions of the machine tool 2, the machine learning device 1 uses the tool life information indicating the life of the tool as a state variable. Then, the abnormality occurrence condition of the machine tool 2 is learned according to the data set created based on the state variable and the presence or absence of the abnormality notification. By adopting such a configuration, it becomes possible to improve the learning accuracy of the abnormality occurrence condition as compared with the case where the tool life information is not used.
実施の形態2.
 図3は、本発明の実施の形態2にかかる工作機械2の制御システム200の構成を示す図である。制御システム200は、実施の形態1で説明した機械学習システム100の学習結果を用いて、工作機械2を制御する機能を有する。具体的には、制御システム200は、機械学習システム100の構成に加えて、機械学習装置1の学習結果と、これから実行しようとする加工処理の加工条件とに基づいて、工作機械2に異常が発生するか否かを推測する異常推測装置5を有する。以下、実施の形態1と同様の構成については説明を省略し、実施の形態1と異なる部分について主に説明する。
Embodiment 2.
FIG. 3 is a diagram showing a configuration of a control system 200 of the machine tool 2 according to the second exemplary embodiment of the present invention. The control system 200 has a function of controlling the machine tool 2 by using the learning result of the machine learning system 100 described in the first embodiment. Specifically, in addition to the configuration of the machine learning system 100, the control system 200 determines that the machine tool 2 has an abnormality based on the learning result of the machine learning device 1 and the processing conditions of the processing process to be executed. It has an abnormality estimation device 5 for estimating whether or not it occurs. Hereinafter, the description of the same configuration as that of the first embodiment will be omitted, and the portions different from the first embodiment will be mainly described.
 異常推測装置5は、工作機械2を実際に動作させる前に、機械学習装置1の学習結果に基づいて、入力された工具寿命情報が示す工具の寿命を前提とし、入力された加工条件で工作機械2を動作させた場合に、異常が発生するか否かを推測する。異常推測装置5は、推測結果をHMI4に出力し、使用者に通知させる。 The abnormality estimating device 5 presupposes the tool life indicated by the input tool life information based on the learning result of the machine learning device 1 before actually operating the machine tool 2, and performs the machining under the input machining conditions. It is estimated whether or not an abnormality occurs when the machine 2 is operated. The abnormality estimation device 5 outputs the estimation result to the HMI 4 and notifies the user.
 図4は、図3に示す異常推測装置5の機能構成を示す図である。異常推測装置5は、学習結果取得部51と、推測条件取得部52と、推測部53と、通知部54とを有する。学習結果取得部51は、機械学習装置1の学習部12から工作機械2の異常発生条件の学習結果を取得する。例えば、学習結果取得部51は、学習部12の学習結果が更新される度に、学習結果を取得してもよいし、定期的に学習結果を取得してもよい。学習結果取得部51は、取得した学習結果を推測部53に出力する。 FIG. 4 is a diagram showing a functional configuration of the abnormality estimation device 5 shown in FIG. The abnormality estimation device 5 includes a learning result acquisition unit 51, an estimation condition acquisition unit 52, an estimation unit 53, and a notification unit 54. The learning result acquisition unit 51 acquires the learning result of the abnormality occurrence condition of the machine tool 2 from the learning unit 12 of the machine learning device 1. For example, the learning result acquisition unit 51 may acquire the learning result every time the learning result of the learning unit 12 is updated, or may periodically acquire the learning result. The learning result acquisition unit 51 outputs the acquired learning result to the estimation unit 53.
 推測条件取得部52は、数値制御装置3から工作機械2の加工条件と工具寿命情報とを含む、工作機械2の異常の発生有無の推測条件を取得する。推測条件取得部52は、取得した推測条件を推測部53に出力する。 The speculative condition acquisition unit 52 acquires, from the numerical control device 3, speculative conditions regarding whether or not an abnormality has occurred in the machine tool 2, including machining conditions of the machine tool 2 and tool life information. The estimation condition acquisition unit 52 outputs the acquired estimation conditions to the estimation unit 53.
 推測部53は、異常発生条件の学習結果と、推測条件とに基づいて、工作機械2の異常の発生有無を推測する。推測部53は、推測結果を通知部54に出力する。通知部54は、推測結果を使用者に通知する。具体的には、通知部54は、HMI4に推測結果を出力して、HMI4に推測結果を表示させることで、推測結果を使用者に通知することができる。 The estimating unit 53 estimates whether or not an abnormality has occurred in the machine tool 2 based on the learning result of the abnormality occurrence condition and the estimation condition. The estimation unit 53 outputs the estimation result to the notification unit 54. The notification unit 54 notifies the user of the estimation result. Specifically, the notification unit 54 can notify the user of the estimation result by outputting the estimation result to the HMI 4 and displaying the estimation result on the HMI 4.
 図5は、図3に示すHMI4が出力する表示画面60の一例を示す図である。表示画面60は、工作機械2の加工条件の入力を受け付ける加工条件入力領域61と、加工条件入力領域61に表示された加工条件を使用した場合に、工作機械2に異常が発生するか否かを示す推測結果を表示するための推測結果表示領域62と、加工条件入力領域61に表示された加工条件を使用した加工の開始を指示するための操作部である加工開始ボタン63とを含む。HMI4が表示する表示画面60を用いることで、使用者は、加工条件を入力し、入力した加工条件を使用した場合に、工作機械2に異常が生じるか否かの推測結果を、実際に工作機械2を動かすことなく知ることが可能になる。そして、使用者は、推測結果によって異常が発生しないと推測される加工条件を用いて、実際の加工を開始させることができる。 FIG. 5 is a diagram showing an example of the display screen 60 output by the HMI 4 shown in FIG. The display screen 60 shows whether or not an abnormality occurs in the machine tool 2 when the machining condition input area 61 that receives an input of the machining condition of the machine tool 2 and the machining condition displayed in the machining condition input area 61 are used. An estimation result display area 62 for displaying an estimation result indicating the, and a machining start button 63 which is an operation unit for instructing the start of machining using the machining condition displayed in the machining condition input area 61. By using the display screen 60 displayed by the HMI 4, the user inputs the processing conditions, and when the input processing conditions are used, the estimated result of whether or not an abnormality occurs in the machine tool 2 is actually machined. It becomes possible to know without moving the machine 2. Then, the user can start the actual processing by using the processing condition that the abnormality is estimated to cause no abnormality.
 図6は、図3に示す制御システム200の動作を説明するためのフローチャートである。制御システム200の使用者は、HMI4の表示画面60を用いて、工作機械2の加工条件を入力する(ステップS101)。表示画面60の加工条件入力領域61に加工条件が入力されると、数値制御装置3から加工条件および工具寿命情報を異常推測装置5に入力する(ステップS102)。 FIG. 6 is a flowchart for explaining the operation of the control system 200 shown in FIG. The user of the control system 200 inputs the processing conditions of the machine tool 2 using the display screen 60 of the HMI 4 (step S101). When the processing condition is input to the processing condition input area 61 of the display screen 60, the numerical control device 3 inputs the processing condition and tool life information to the abnormality estimating device 5 (step S102).
 異常推測装置5の推測部53は、入力された加工条件および工具寿命情報に基づいて、工作機械2の異常が通知されるか否かを推測する(ステップS103)。なお、異常推測装置5は、予め機械学習装置1から学習結果を取得しており、取得した学習結果に基づいて、ステップS103の推測処理を行うものとする。推測部53は、推測結果を通知部54に出力する。 The estimating unit 53 of the abnormality estimating device 5 estimates whether or not the abnormality of the machine tool 2 is notified based on the input machining conditions and tool life information (step S103). It is assumed that the abnormality estimation device 5 has acquired the learning result from the machine learning device 1 in advance and performs the estimation process of step S103 based on the acquired learning result. The estimation unit 53 outputs the estimation result to the notification unit 54.
 異常推測装置5の通知部54が推測結果をHMI4に出力すると、HMI4は、推測結果を表示することで使用者に通知する(ステップS104)。数値制御装置3は、加工条件が変更されたか否かを判断する(ステップS105)。例えば、図5に示す表示画面60の推測結果表示領域62に推測結果を表示することで使用者に推測結果を通知する場合、使用者は、加工条件入力領域61に表示された加工条件を変更する入力を行うことで、加工条件を変更することができる。或いは使用者は、表示画面60の加工開始ボタン63を操作することで、加工の開始を指示することもできる。 When the notification unit 54 of the abnormality estimation device 5 outputs the estimation result to the HMI 4, the HMI 4 notifies the user by displaying the estimation result (step S104). The numerical control device 3 determines whether or not the machining conditions have been changed (step S105). For example, when notifying the user of the estimation result by displaying the estimation result in the estimation result display area 62 of the display screen 60 shown in FIG. 5, the user changes the processing condition displayed in the processing condition input area 61. The processing condition can be changed by inputting Alternatively, the user can instruct the start of processing by operating the processing start button 63 on the display screen 60.
 加工条件が変更された場合(ステップS105:Yes)、ステップS101から処理が繰り返される。加工条件が変更されない場合(ステップS105:No)、つまり、表示画面60の例では、加工開始ボタン63が操作された場合、数値制御装置3が数値制御を開始することで、工作機械2は、加工処理を実行する(ステップS106)。 If the processing conditions are changed (step S105: Yes), the process is repeated from step S101. When the machining conditions are not changed (step S105: No), that is, when the machining start button 63 is operated in the example of the display screen 60, the numerical control device 3 starts the numerical control, so that the machine tool 2 operates as follows. The processing is executed (step S106).
 加工処理が実行されると、数値制御装置3および工作機械2の駆動部21は、加工結果を訓練データとして学習部12に入力する(ステップS107)。具体的には、実施の形態1で説明したように、実際に工作機械2を動作させたときの加工条件、工具寿命情報および異常通知の有無が機械学習装置1に入力される。 When the machining process is executed, the numerical control device 3 and the drive unit 21 of the machine tool 2 input the machining result as training data to the learning unit 12 (step S107). Specifically, as described in the first embodiment, the machining conditions when the machine tool 2 is actually operated, the tool life information, and the presence/absence of the abnormality notification are input to the machine learning device 1.
 以上説明したように、本発明の実施の形態2にかかる制御システム200によれば、機械学習装置1の学習結果に基づいて、事前に工作機械2の加工条件が適切である、つまり、工作機械2に異常が発生しない加工条件であることを確認した後に、実際に工作機械2を駆動させることが可能になる。ここで、機械学習装置1は、工具寿命情報に基づいて異常発生条件を学習しているため、精度の高い学習結果を使用して、工作機械2に異常が発生するか否かを精度よく推測することが可能になる。 As described above, according to the control system 200 according to the second embodiment of the present invention, the machining conditions of the machine tool 2 are appropriate in advance based on the learning result of the machine learning device 1, that is, the machine tool. It is possible to actually drive the machine tool 2 after confirming that the machining conditions are such that no abnormality occurs in No. 2. Here, since the machine learning device 1 learns the abnormality occurrence condition based on the tool life information, it is possible to accurately estimate whether or not an abnormality occurs in the machine tool 2 by using a highly accurate learning result. It becomes possible to do.
 このように、異常通知の有無の推測結果を加工処理の実行前に使用者に通知することで、最適な加工条件の特定作業が容易になる。また、実際に使用する加工条件を決定するまでの時間を短縮することができる。 In this way, by notifying the user of the estimated result of whether or not there is an abnormality notification before executing the processing, it becomes easy to specify the optimum processing conditions. In addition, it is possible to shorten the time until the processing conditions actually used are determined.
 続いて、本発明の実施の形態1~2にかかる機械学習装置1、数値制御装置3、および異常推測装置5の機能を実現するためのハードウェア構成について説明する。機械学習装置1、数値制御装置3、および異常推測装置5の各機能は、処理回路により実現される。これらの処理回路は、専用のハードウェアにより実現されてもよいし、CPU(Central Processing Unit)を用いた制御回路であってもよい。 Next, a hardware configuration for realizing the functions of the machine learning device 1, the numerical control device 3, and the abnormality estimation device 5 according to the first and second embodiments of the present invention will be described. The functions of the machine learning device 1, the numerical control device 3, and the abnormality estimation device 5 are realized by processing circuits. These processing circuits may be realized by dedicated hardware, or may be control circuits using a CPU (Central Processing Unit).
 上記の処理回路が、専用のハードウェアにより実現される場合、これらは、図7に示す処理回路90により実現される。図7は、本発明の実施の形態1~2にかかる機械学習装置1、数値制御装置3、および異常推測装置5の機能を実現するための専用のハードウェアを示す図である。処理回路90は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものである。 When the above processing circuits are realized by dedicated hardware, these are realized by the processing circuit 90 shown in FIG. 7. FIG. 7 is a diagram showing dedicated hardware for realizing the functions of the machine learning device 1, the numerical control device 3, and the abnormality estimation device 5 according to the first and second embodiments of the present invention. The processing circuit 90 is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
 上記の処理回路が、CPUを用いた制御回路で実現される場合、この制御回路は例えば図8に示す構成の制御回路91である。図8は、本発明の実施の形態1~2にかかる機械学習装置1、数値制御装置3、および異常推測装置5の機能を実現するための制御回路91の構成を示す図である。図8に示すように、制御回路91は、プロセッサ92と、メモリ93とを備える。プロセッサ92は、CPUであり、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)などとも呼ばれる。メモリ93は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)などである。 When the above processing circuit is realized by a control circuit using a CPU, this control circuit is, for example, the control circuit 91 having the configuration shown in FIG. FIG. 8 is a diagram showing a configuration of a control circuit 91 for realizing the functions of the machine learning device 1, the numerical control device 3, and the abnormality estimating device 5 according to the first and second embodiments of the present invention. As shown in FIG. 8, the control circuit 91 includes a processor 92 and a memory 93. The processor 92 is a CPU and is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like. The memory 93 is, for example, a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), and an EEPROM (registered trademark) (Electrically EPROM), Magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs (Digital Versatile Disk), etc.
 上記の処理回路が制御回路91により実現される場合、プロセッサ92がメモリ93に記憶された、各構成要素の処理に対応するプログラムを読み出して実行することにより実現される。また、メモリ93は、プロセッサ92が実行する各処理における一時メモリとしても使用される。 When the above processing circuit is realized by the control circuit 91, it is realized by the processor 92 reading and executing a program stored in the memory 93 and corresponding to the processing of each component. The memory 93 is also used as a temporary memory in each process executed by the processor 92.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations described in the above embodiments are examples of the content of the present invention, and can be combined with another known technique, and the configurations of the configurations are not deviated from the scope not departing from the gist of the present invention. It is also possible to omit or change the part.
 例えば、上記の実施の形態1および2の機械学習装置1は、数値制御装置3に内蔵されてもよいし、クラウドサーバ上に存在してもよい。また、上記実施の形態2の異常推測装置5は、上記では、数値制御装置3および機械学習装置1と異なる装置であることとしたが、数値制御装置3および機械学習装置1の少なくとも一方と同一の装置上で実現されてもよい。また異常推測装置5は、クラウドサーバ上に存在してもよい。 For example, the machine learning device 1 according to the first and second embodiments may be built in the numerical control device 3 or may exist on the cloud server. Further, although the abnormality estimation device 5 of the second embodiment is different from the numerical control device 3 and the machine learning device 1 in the above, it is the same as at least one of the numerical control device 3 and the machine learning device 1. May be realized on the above device. Further, the abnormality estimation device 5 may exist on the cloud server.
 1 機械学習装置、2 工作機械、3 数値制御装置、4 HMI、5 異常推測装置、11 状態観測部、12 学習部、21 駆動部、22 検知部、51 学習結果取得部、52 推測条件取得部、53 推測部、54 通知部、60 表示画面、61 加工条件入力領域、62 推測結果表示領域、63 加工開始ボタン、90 処理回路、91 制御回路、92 プロセッサ、93 メモリ、100 機械学習システム、200 制御システム。 1 machine learning device, 2 machine tools, 3 numerical control device, 4 HMI, 5 abnormality estimation device, 11 state observation unit, 12 learning unit, 21 driving unit, 22 detection unit, 51 learning result acquisition unit, 52 inference condition acquisition unit , 53 estimation section, 54 notification section, 60 display screen, 61 processing condition input area, 62 estimation result display area, 63 processing start button, 90 processing circuit, 91 control circuit, 92 processor, 93 memory, 100 machine learning system, 200 Control system.

Claims (10)

  1.  加工対象物を加工する工作機械の異常発生条件を学習する機械学習装置であって、
     工具の寿命を示す工具寿命情報と、前記工作機械の加工条件と、を状態変数として観測する状態観測部と、
     前記状態変数と前記工作機械の異常の通知有無とに基づいて作成されるデータセットに従って、前記異常発生条件を学習する学習部と、
     を備えることを特徴とする機械学習装置。
    It is a machine learning device that learns the abnormal occurrence conditions of machine tools that process objects to be machined.
    A state observer that observes tool life information indicating the life of a tool and machining conditions of the machine tool as state variables.
    A learning unit that learns the abnormality occurrence condition according to a data set created based on the state variable and the presence/absence of notification of abnormality of the machine tool,
    A machine learning device comprising:
  2.  前記加工条件は、前記加工対象物の性質を示す情報と、前記工作機械の動作状態を示す情報と、前記工具の種類を示す情報とのうち少なくとも1つを含むことを特徴とする請求項1に記載の機械学習装置。 The machining condition includes at least one of information indicating a property of the machining object, information indicating an operation state of the machine tool, and information indicating a type of the tool. The machine learning device described in.
  3.  前記工作機械の動作状態を示す情報は、前記工具の移動量を示す情報と、前記工作機械に備わるサーボモータの送り速度と、前記工作機械の温度とのうち少なくとも1つを含むことを特徴とする請求項2に記載の機械学習装置。 The information indicating the operation state of the machine tool includes at least one of information indicating the amount of movement of the tool, a feed speed of a servo motor provided in the machine tool, and a temperature of the machine tool. The machine learning device according to claim 2.
  4.  前記状態観測部は、前記工作機械を数値制御する数値制御装置から前記工具寿命情報を取得することを特徴とする請求項1から3のいずれか1項に記載の機械学習装置。 The machine learning device according to any one of claims 1 to 3, wherein the state observing unit acquires the tool life information from a numerical control device that numerically controls the machine tool.
  5.  前記工具寿命情報は、前記工具の使用回数および使用時間から算出されることを特徴とする請求項1から4のいずれか1項に記載の機械学習装置。 The machine learning device according to any one of claims 1 to 4, wherein the tool life information is calculated from the number of times of use and the time of use of the tool.
  6.  前記加工条件は、入力装置を用いて入力される情報と、前記工作機械に設けられた検知部が検知する情報と、前記工作機械を制御するための制御プログラムから取得される情報とのうち少なくとも1つを含むことを特徴とする請求項1から5のいずれか1項に記載の機械学習装置。 The processing condition is at least one of information input using an input device, information detected by a detection unit provided in the machine tool, and information acquired from a control program for controlling the machine tool. 6. The machine learning device according to claim 1, wherein the machine learning device includes one.
  7.  前記加工条件および前記工具寿命情報を含む推測条件と、前記異常発生条件の学習結果とに基づいて、前記工作機械の異常が発生するか否かを推測する推測部と、
     前記推測部の推測結果を通知する通知部と、
     をさらに備えることを特徴とする請求項1から6のいずれか1項に記載の機械学習装置。
    An estimation unit that estimates whether or not an abnormality of the machine tool will occur, based on an estimation condition that includes the machining condition and the tool life information, and a learning result of the abnormality occurrence condition,
    A notification unit for notifying the estimation result of the estimation unit,
    The machine learning apparatus according to any one of claims 1 to 6, further comprising.
  8.  請求項1から7のいずれか1項に記載の機械学習装置を備えることを特徴とする数値制御装置。 A numerical control device comprising the machine learning device according to any one of claims 1 to 7.
  9.  請求項1から7のいずれか1項に記載の機械学習装置から前記異常発生条件の学習結果を取得する学習結果取得部と、
     前記加工条件および前記工具寿命情報を含む推測条件を取得する推測条件取得部と、
     前記推測条件と、前記学習結果とに基づいて、前記工作機械の異常が発生するか否かを推測する推測部と、
     前記推測部の推測結果を通知する通知部と、
     を備えることを特徴とする異常推測装置。
    A learning result acquisition unit that acquires the learning result of the abnormality occurrence condition from the machine learning device according to any one of claims 1 to 7,
    An estimation condition acquisition unit that acquires estimation conditions including the machining conditions and tool life information,
    An estimation unit that estimates whether or not an abnormality occurs in the machine tool based on the estimation conditions and the learning result.
    A notification unit that notifies the estimation result of the estimation unit,
    An anomaly estimation device comprising:
  10.  請求項1から7のいずれか1項に記載の機械学習装置と、
     請求項9に記載の異常推測装置と、
     前記加工条件の入力を受け付ける加工条件入力領域と、前記異常推測装置の推測結果を表示する推測結果表示領域と、加工の開始を指示するための操作部と、を含む表示画面を出力する出力装置と、
     を備えることを特徴とする工作機械の制御システム。
    The machine learning device according to any one of claims 1 to 7.
    An abnormality estimation device according to claim 9;
    An output device for outputting a display screen including a processing condition input area for receiving the input of the processing condition, an estimation result display area for displaying an estimation result of the abnormality estimation device, and an operation unit for instructing the start of processing. When,
    A control system for machine tools, comprising:
PCT/JP2019/009157 2019-03-07 2019-03-07 Machine learning device, numerical control device, abnormality estimation device, and machine tool control system WO2020179063A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980093506.2A CN113498497A (en) 2019-03-07 2019-03-07 Machine learning device, numerical control device, abnormality estimation device, and control system for machine tool
JP2019541391A JP6608102B1 (en) 2019-03-07 2019-03-07 Machine learning device, numerical control device, abnormality estimation device, and machine tool control system
PCT/JP2019/009157 WO2020179063A1 (en) 2019-03-07 2019-03-07 Machine learning device, numerical control device, abnormality estimation device, and machine tool control system
DE112019006825.3T DE112019006825T5 (en) 2019-03-07 2019-03-07 Machine learning device, numerical control unit, failure prediction device and control system for machine tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/009157 WO2020179063A1 (en) 2019-03-07 2019-03-07 Machine learning device, numerical control device, abnormality estimation device, and machine tool control system

Publications (1)

Publication Number Publication Date
WO2020179063A1 true WO2020179063A1 (en) 2020-09-10

Family

ID=68613369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009157 WO2020179063A1 (en) 2019-03-07 2019-03-07 Machine learning device, numerical control device, abnormality estimation device, and machine tool control system

Country Status (4)

Country Link
JP (1) JP6608102B1 (en)
CN (1) CN113498497A (en)
DE (1) DE112019006825T5 (en)
WO (1) WO2020179063A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130407A (en) * 2002-10-08 2004-04-30 Fanuc Ltd Apparatus for detecting or predicting tool breakage
JP2017188030A (en) * 2016-04-08 2017-10-12 ファナック株式会社 Machine learning device for learning failure prediction of main axis or motor driving main axis and machine learning method, and failure prediction device having machine learning device and failure prediction system
JP2017220111A (en) * 2016-06-09 2017-12-14 ファナック株式会社 Mechanical learning tool for learning threshold of abnormal load detection, numerical value control device and mechanical learning method
JP2018041208A (en) * 2016-09-06 2018-03-15 ファナック株式会社 Numerical controller
JP2018156151A (en) * 2017-03-15 2018-10-04 ファナック株式会社 Abnormality detecting apparatus and machine learning device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073300B (en) * 2010-12-28 2013-04-17 华中科技大学 Tool wear monitoring system capable of realizing self-learning in numerical control machining state
US9727049B2 (en) * 2012-09-04 2017-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. Qualitative fault detection and classification system for tool condition monitoring and associated methods
JP6063016B1 (en) 2015-09-29 2017-01-18 ファナック株式会社 Machine learning method and machine learning device for learning operation command for electric motor, and machine tool provided with the machine learning device
JP6235543B2 (en) * 2015-09-30 2017-11-22 ファナック株式会社 Machine learning device, motor control device, processing machine, and machine learning method for optimizing cycle processing time of processing machine
JP6474456B2 (en) * 2017-05-16 2019-02-27 ファナック株式会社 Machine learning apparatus, servo control system, and machine learning method
CN107738140B (en) * 2017-09-30 2020-05-19 深圳吉兰丁智能科技有限公司 Method and system for monitoring state of cutter and processing equipment
CN108536938A (en) * 2018-03-29 2018-09-14 上海交通大学 A kind of machine tool life prediction system and prediction technique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130407A (en) * 2002-10-08 2004-04-30 Fanuc Ltd Apparatus for detecting or predicting tool breakage
JP2017188030A (en) * 2016-04-08 2017-10-12 ファナック株式会社 Machine learning device for learning failure prediction of main axis or motor driving main axis and machine learning method, and failure prediction device having machine learning device and failure prediction system
JP2017220111A (en) * 2016-06-09 2017-12-14 ファナック株式会社 Mechanical learning tool for learning threshold of abnormal load detection, numerical value control device and mechanical learning method
JP2018041208A (en) * 2016-09-06 2018-03-15 ファナック株式会社 Numerical controller
JP2018156151A (en) * 2017-03-15 2018-10-04 ファナック株式会社 Abnormality detecting apparatus and machine learning device

Also Published As

Publication number Publication date
DE112019006825T5 (en) 2021-10-28
JPWO2020179063A1 (en) 2021-03-11
JP6608102B1 (en) 2019-11-20
CN113498497A (en) 2021-10-12

Similar Documents

Publication Publication Date Title
JP6386520B2 (en) Numerical control device and machine learning device
US10082771B2 (en) Machine learning method and machine learning apparatus learning operating command to electric motor and machine tool including machine learning apparatus
CN107491038B (en) Machine learning machine, numerical control device, and machine learning method for learning threshold value for abnormal load detection
CN109581962B (en) Numerical control system
JP6936178B2 (en) Anomaly detection device
EP3171239B2 (en) Predictive monitoring and diagnostics system and method
JP6572265B2 (en) Control device and machine learning device
JP6959278B2 (en) Chatter vibration judgment device, machine learning device and system
JP6802213B2 (en) Tool selection device and machine learning device
JP6434246B2 (en) Numerical control device with machine abnormality history analysis support function
CN109613886B (en) Thermal displacement correction system
JP2019067136A (en) Numerical control system
CN109753019A (en) control device and machine learning device
CN108693829B (en) Control device
JP7101131B2 (en) Numerical control system
CN110196573B (en) Abnormal factor determination device
WO2020261581A1 (en) Numerical control device, machine learning device, and numerical control method
KR20180099790A (en) How to operate robots and robots
JP6603272B2 (en) Information collecting apparatus and information collecting method
US20220382253A1 (en) Machining program conversion device, numerical control device, and machining program conversion method
JP2019150932A (en) Collison position estimation device and machine learning device
WO2020179063A1 (en) Machine learning device, numerical control device, abnormality estimation device, and machine tool control system
US20190154548A1 (en) Machine diagnostic method and diagnostic system thereof
US20230065613A1 (en) Numerical control device
WO2021241352A1 (en) Tool diagnostic device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019541391

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918355

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19918355

Country of ref document: EP

Kind code of ref document: A1