WO2020178948A1 - Vacuum bag and method for manufacturing vacuum bag - Google Patents

Vacuum bag and method for manufacturing vacuum bag Download PDF

Info

Publication number
WO2020178948A1
WO2020178948A1 PCT/JP2019/008399 JP2019008399W WO2020178948A1 WO 2020178948 A1 WO2020178948 A1 WO 2020178948A1 JP 2019008399 W JP2019008399 W JP 2019008399W WO 2020178948 A1 WO2020178948 A1 WO 2020178948A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
vacuum bag
synthetic rubber
fiber
reinforced plastic
Prior art date
Application number
PCT/JP2019/008399
Other languages
French (fr)
Japanese (ja)
Inventor
豊久 内尾
Original Assignee
日本飛行機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本飛行機株式会社 filed Critical 日本飛行機株式会社
Priority to JP2019547335A priority Critical patent/JP6625300B1/en
Priority to PCT/JP2019/008399 priority patent/WO2020178948A1/en
Publication of WO2020178948A1 publication Critical patent/WO2020178948A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • B29C43/12Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using bags surrounding the moulding material or using membranes contacting the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding

Definitions

  • the present invention relates to a vacuum bag used when heat and pressure molding a fiber reinforced plastic laminate.
  • CFRP Carbon Fiber Reinforced Plastics
  • CFRP Carbon Fiber Reinforced Plastics
  • glass fiber, quartz glass fiber, and aramid fiber may be used.
  • a prepreg sheet laminated body is laminated on a jig stand and shaped into a product shape.
  • the prepreg sheet is formed by impregnating a reinforcing material such as carbon fiber with an uncured thermosetting resin, and is formed into a sheet shape.
  • Unsaturated polyester, epoxy resin, phenol resin, etc. are used as the thermosetting resin.
  • the shaped fiber-reinforced plastic laminate is bagged together with the jig table, evacuated, conveyed to an autoclave device, and heated and pressed. As a result, the resin is cured and the fiber-reinforced plastic laminate is molded. Demold the product each time.
  • thermoplastic resin such as polyamide resin or polypropylene resin may be used instead of the thermosetting resin.
  • the thermoplastic resin is softened by heating and then solidified by cooling.
  • a vacuum bag is used for evacuation (Patent Document 1).
  • the vacuum bag uses a polymer film such as nylon or a diaphragm made of a silicon material.
  • the vacuum bag is discarded after each heating/pressurizing step, and a new vacuum bag is used in the next heating/pressing step. As a result, it is reflected in the product manufacturing cost. Further, the disposal cost is also reflected in the product manufacturing cost.
  • a reusable vacuum bag has been proposed.
  • Currently available vacuum bags include a metal frame that supports the diaphragm.
  • the vacuum bag having a metal frame has the following problems.
  • the manufacturing process is complicated because it goes through multiple processes such as bonding the diaphragm to the metal frame.
  • members such as aircraft and automobiles have complicated shapes such as free-form surfaces.
  • the details of the free-form surface will be described later.
  • the jig base must also have a free-form surface, and the frame must also support the free-form surface.
  • the processing is not easy. The manufacturing process becomes more complicated.
  • the present invention is intended to solve the above problems, and an object thereof is to provide a reusable vacuum bag that is lightweight, has excellent workability, and is easy to manufacture.
  • the present invention which solves the above-mentioned problems, is a vacuum bag used for vacuuming a fiber sheet laminated on a jig stand.
  • a diaphragm made of a silicon-based material that covers the fiber sheet, a frame that supports the diaphragm, and a seal provided on the lower surface of the frame along the frame are provided, and the frame has a fiber-reinforced plastic.
  • Light weight as the frame has fiber reinforced plastic. As a result, the work of attaching and detaching the vacuum bag is easy and the workability is excellent.
  • the portion of the frame made of fiber reinforced plastic is covered with non-silicon synthetic rubber, and the curing temperature range of the synthetic rubber and the curing temperature range of the resin used for the fiber reinforced plastic overlap.
  • Non-silicon synthetic rubber has a high affinity with fiber reinforced plastics.
  • the fiber-reinforced plastic and synthetic rubber of the frame are integrally molded by heat and pressure molding. Further, in the same step, the synthetic rubber and the diaphragm are bonded. That is, it is easy to manufacture.
  • fibers are arranged in one direction in the longitudinal direction of the frame in the part made of fiber reinforced plastic of the frame.
  • the straightness of the fiber can counter the external force.
  • the portion of the frame made of fiber reinforced plastic is interposed between the first layer and the second layer in which the fibers are arranged in one direction of the frame longitudinal direction, and the first layer and the second layer, A third layer in which the fibers have a woven structure is laminated to be formed.
  • the jig base has a free curved surface
  • the frame has a shape corresponding to the free curved surface of the jig base.
  • the present invention that solves the above problems is a vacuum bag manufacturing method.
  • the vacuum bag includes a diaphragm made of a silicon-based material that covers a fiber sheet for a product, a frame that supports the diaphragm, and a seal that is provided on the lower surface of the frame along the frame, and the frame is fiber-reinforced. It is formed by covering a portion made of plastic with a non-silicon synthetic rubber.
  • a first non-silicon synthetic rubber sheet, a plurality of fiber sheets for a prepreg-shaped frame, a second non-silicon synthetic rubber sheet, an adhesive film, and a diaphragm are laminated in this order on a jig stand to form a laminate,
  • the laminate is heated and pressurized in a vacuum state by covering it with another vacuum bag, and integrally molded.
  • the reusable vacuum bag according to the present invention is easily manufactured by integral molding using an autoclave device used for manufacturing a product, through a process similar to that of manufacturing a product.
  • the reusable vacuum bag according to the present invention is lightweight and has excellent workability.
  • the reusable vacuum bag according to the present invention is easily manufactured by integral molding.
  • FIG. 1 is a partial cross-sectional perspective view showing a schematic configuration of the vacuum bag 10.
  • the vacuum bag 10 is composed of a diaphragm 11, a frame 12 (partially sectional view), and a seal 13 (see FIG. 2).
  • the diaphragm 11 covers the fiber-reinforced plastic laminate before molding.
  • the frame 12 is bonded to the peripheral edge of the diaphragm 11 to support the diaphragm 11. Details will be described later separately.
  • the seal 13 is provided on the lower surface of the frame 12 along the frame 12. At the time of evacuation, it is elastically deformed to ensure the sealing property between the surface of the jig base 30 and the vacuum bag 10.
  • the diaphragm 11 and the seal 13 may be equivalent to those of the conventional technology. That is, the vacuum bag 10 of the present embodiment is characterized in that the frame 12 has a fiber reinforced plastic.
  • the frame 12 is made of fiber reinforced plastic.
  • the fiber reinforced plastic is obtained by laminating prepreg sheets and heat-pressing them.
  • FIG. 3 is a schematic view of the laminated structure 20 of the prepreg sheet of the frame 12.
  • the laminated structure 20 includes a first layer 21 that is a first prepreg sheet, a second layer 22 that is a second prepreg sheet, and a third layer 23 that is a third prepreg sheet.
  • Each of the layers 21 to 23 includes a case where a single prepreg sheet is formed and a case where a plurality of prepreg sheets are laminated and formed.
  • the fibers are arranged in the frame longitudinal direction unidirection (UD).
  • the fibers can maximize linearity with respect to external force.
  • the fibers rise and fall in the vertical direction, so that the straightness cannot be exhibited. There is a risk that the counterforce will be dispersed.
  • the fibers are arranged in the longitudinal and transverse directions and have a woven structure, for example, plain weave (PW).
  • the third layer (PW layer) 23 is interposed between the first layer 21 (UD layer) and the second layer 22 (UD layer).
  • the laminated structure 20 has a sandwich structure.
  • a plain weave is given as a representative example of the woven structure, but the present invention is not limited to this.
  • the laminated structure 20 of the present embodiment has a sandwich structure of UD layer-PW layer-UD layer, but may have a sandwich structure of PW-UD-PW. Further, only the UD layer may be used.
  • thermosetting resin of the prepreg is thermoset at about 180° C. ( ⁇ 20° C.) due to the relationship with the curing temperature range of synthetic rubber (detailed separately). Further, the thermosetting resin preferably has a heat resistance of about 200 ° C. ( ⁇ 20 ° C.).
  • an epoxy resin EP, a cyanate ester resin, a bismaleimide resin, a benzoxazine resin, etc. are assumed.
  • the fiber-reinforced plastic part 20 of the frame 12 is preferably covered with a thermosetting non-silicon synthetic rubber 26.
  • the non-silicon synthetic rubber may contain a small amount of silicon component to the extent that the physical properties are not affected.
  • the curing temperature it is preferable to heat cure in the autoclave device used for product manufacturing.
  • it is preferably thermoset at about 180 ° C. ( ⁇ 20 ° C.). Further, it is preferable to have heat resistance of about 200 ° C. ( ⁇ 20 ° C.).
  • the air pad rubber is an uncured non-silicon synthetic rubber, is heated to 176° C., is pressurized to 0.6 MPa, is hardened in about 2 hours, and has heat resistance of 204° C.
  • synthetic rubbers with high heat resistance include acrylic rubbers ACM, ANM, ethylene vinyl acetate rubber EVA, epichlorohydrin rubber CO, ECO.
  • the curing temperature range of the synthetic rubber 26 and the curing temperature range of the laminated structure 20 thermosetting resin overlap.
  • the synthetic rubber 26 is thermoset at about 180° C. ( ⁇ 20° C.)
  • the thermosetting resin 20 is also thermoset at about 180° C. ( ⁇ 20° C.).
  • the diaphragm 11 is made of a silicon-based material, it has a poor affinity with the frame 12 including the fiber-reinforced plastic laminated structure 20 and has a problem in adhesion.
  • the interposition of the synthetic rubber 26 between the diaphragm 11 and the laminated structure 20 improves the adhesiveness.
  • the reusable vacuum bag 10 is assumed to be repeatedly heated and pressurized in the autoclave device.
  • the synthetic rubber 26 protects the laminated structure 20 against repeated heat and pressure from the outside, and reduces deterioration of the laminated structure 20.
  • Synthetic rubber 26 has elasticity. At the time of evacuation, the seal 13 and the seal 13 are elastically deformed to ensure the sealability.
  • FIG. 4 is an explanatory diagram of a method of manufacturing the vacuum bag 10.
  • the uncured synthetic rubber sheet 27, the prepreg first layer 21, the prepreg third layer 23, the prepreg second layer 22, the uncured synthetic rubber sheet 28, the adhesive film 29, and the diaphragm 11 are laminated in this order on the jig base 30.
  • the uncured synthetic rubber sheets 27 and 28 have a size larger than the prepreg layers 21 to 23.
  • the uncured synthetic rubber sheets 27 and 28 sandwich and include the prepreg layers 21 to 23.
  • ⁇ Tow is arranged on all sides of the laminated structure 20 so that the laminated structure 20 can communicate with the outside of the synthetic rubber coating.
  • the uncured vacuum bag 10 is bagged together with the jig base 30 by a vacuum bag, conveyed to an autoclave device, and heated and pressed.
  • the vacuum bag used when manufacturing the vacuum bag may be a conventional technique.
  • thermosetting resin of the synthetic rubber 26 and the curing temperature range of the laminated structure 20 thermosetting resin overlap (approximately the same). Therefore, the synthetic rubber 26 and the thermosetting resin of the laminated structure 20 are heated by the autoclave device so as to reach the curing temperature or higher.
  • the temperature was reduced to 180°C by heating, 0.6 MPa by pressurization, maintained for about 2 hours, and lowered in temperature.
  • synthetic rubber is semi-cured (commonly called B stage), but it cures at about 180°C.
  • the thermosetting resin of the laminated structure 20 which is not cured at room temperature is also cured at about 180°C.
  • the uncured synthetic rubber sheets 27 and 28 become the synthetic rubber 26.
  • the organic solvent gas generated from the thermosetting resin of the laminated structure 20 during heating is discharged outside the synthetic rubber coating through the tow.
  • the synthetic rubber 26 remains cured and the thermosetting resin of the laminated structure 20 remains cured even when the temperature is lowered or reduced.
  • the synthetic rubber 26 has a good affinity with the thermosetting resin of the laminated structure 20. Further, the synthetic rubber 26 has a good affinity with the silicon-based material 11.
  • the laminated structure 20, the synthetic rubber 26 and the diaphragm 11 are integrally molded while adhering.
  • the diaphragm 11 is subjected to secondary vulcanization (low-molecular-weight siloxane volatilization treatment) in a series of heating and pressurization.
  • the vacuum bag 10 can be integrally molded by using the autoclave device used for manufacturing the product, through a process similar to the manufacturing of the product. That is, it can be easily manufactured.
  • the ease of manufacturing the vacuum bag 10 becomes remarkable (detailed separately).
  • thermosetting resin such as an epoxy resin
  • thermoplastic resin may be used.
  • the thermoplastic resin is softened by heating but solidified by cooling.
  • FIG. 5 is a diagram for explaining each state in the product manufacturing process. A prototype model of the vacuum bag 10 is shown.
  • Fig. 5 shows the state before construction.
  • the jig base 30 is described.
  • the middle part of FIG. 5 shows a state in which prepreg sheets are laminated and an uncured fiber-reinforced plastic laminate (uncured laminate) is shaped.
  • FIG. 5 shows a state in which the uncured laminate is covered with the jig base 30 by the vacuum bag 10 and bagging is performed.
  • FIG. 6 shows an example of a heating/pressurizing profile in the autoclave device.
  • the horizontal axis is time. However, this is an example and the present application is not limited to this.
  • the temperature is maintained at about 180°C ( ⁇ 20°C) for several tens of minutes to several hours and maintained for several hours (second heating stage).
  • second heating stage For example, in the case of an epoxy resin, curing starts at over 160°C. Then, the pressure is reduced to 60° C. or lower again for about 1 hour, and depressurization is started.
  • the product is removed from the autoclave together with the jig table 30 and the product is demolded. Demolding also includes removing the vacuum bag 10 from the jig base 30.
  • the frame 12 of the vacuum bag 10 is lightweight because it is made of fiber reinforced plastic. Therefore, the work of attaching and detaching the vacuum bag 10 is easy and the workability is excellent.
  • the frame 12 of the vacuum bag 10 is covered with synthetic rubber, and the synthetic rubber 26, together with the seal 13, is appropriately elastically deformed during evacuation. This ensures hermeticity. As a result, the problem of evacuation is reduced. Workability is also excellent in this respect.
  • the frame 12 has a shape corresponding to the free curved surface of the jig base 30.
  • the present application is not limited to the case where the jig base 30 already exists or has a free curved surface (may include a new installation, a flat surface, or a simple curved surface), but the jig base 30 may already exist or is free. In the case of having a curved surface, the effect of the present application becomes remarkable.
  • -A free-form surface is a curved surface that is set by setting some intersections and curvatures in space and interpolating each intersection with a higher-order equation. It is different from a simple curved surface that can be expressed by a simple mathematical formula such as a sphere or a cylindrical surface.
  • the jig base used for the prototype model shown in FIG. 5 has a free-form surface.
  • the frame 12 has a shape corresponding to the free curved surface of the jig base 30.
  • the vacuum bag of the present application (particularly the frame 12) is manufactured on the existing jig table having a free curved surface, it necessarily follows the free curved surface shape of the existing jig table. Therefore, detailed examination at the design stage is unnecessary, and the product can be manufactured accurately even without design data of the free-form surface.
  • the jig base has a free-form surface
  • the vacuum bag of the present application since the vacuum bag of the present application is manufactured with high accuracy, it adheres to the free curved surface. Further, in the vacuum bag of the present application, the synthetic rubber 26 is also elastically deformed as appropriate. Also in this respect, the sealing property is high.
  • a semi-preg containing a thermoplastic resin that softens at a relatively high temperature (for example, 180 to 220° C.) may be used.
  • the relatively high temperature means a high temperature as compared with the heating profile at the time of manufacturing the product (see FIG. 6).
  • polycarbonate resin PC nylon 6 resin (polyamide) PA6, polyetherimide resin PEI, polyethylene terephthalate resin PET, polyphenylene sulfide resin PPS, polyetheretherketone resin PEEK, and the like are assumed.
  • the temperature is slightly higher than the heating temperature of the manufacturing method of the embodiment of the present application.
  • the autoclave is used to heat the thermoplastic resin of the laminated structure 20 to the softening temperature or higher.
  • the temperature was reduced to 200°C by heating and 0.6 MPa by pressurization, maintained for about 2 hours, and lowered in temperature and decompressed.
  • thermoplastic resin of the laminated structure 20 is softened at, for example, 200 ° C. and solidified by lowering the temperature.
  • the vacuum bag 10 can be integrally molded by using the autoclave device used for manufacturing the product, through a process similar to the manufacturing of the product. That is, it can be easily manufactured.
  • the usage method of the modified example is the same as the usage method of the embodiment of the present application.
  • the softening temperature of the thermoplastic resin of the laminated structure 20 is relatively high. In other words, it does not soften at the temperature in the heating and pressurizing profile (FIG. 6) in the product manufacturing process, and maintains the solidified state.
  • the frame 12 of the present application is covered with synthetic rubber 26 to protect the laminated structure 20.
  • the vacuum bag 10 of the modified example can be reused.
  • Vacuum Bag 11 Diaphragm 12 Frame 13 Seal 20 Laminated Structure 21 Laminated First Layer (UD Layer) 22 Laminated second layer (UD layer) 23 Layered Third Layer (PW Layer) 26 Synthetic Rubber Cover 27 Synthetic Rubber Sheet 28 Synthetic Rubber Sheet 29 Adhesive Film 30 Jig Stand

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

Provided is a vacuum bag which is lightweight, has excellent workability, and can be easily manufactured and reused. This vacuum bag 10 is composed of a diaphragm 11, a frame 12, and a seal 13. The frame 12 is composed of a fiber-reinforced plastic laminate structure 20. The fiber-reinforced plastic laminate structure 20 is covered with a non-silicon-based thermosetting synthetic rubber 26. The curing temperature region of the synthetic rubber 26 and the curing temperature region of the thermosetting resin of the laminate structure 20 overlap each other. Consequently, the synthetic rubber 26 and the laminate structure 20 are molded in one body. In the same step, the synthetic rubber 16 is adhered to the silicon-based diaphragm 11. That is, the vacuum bag 10 is easily manufactured by one-body molding. In particular, when a jig base 30 has a free surface, the effect of easy manufacture becomes remarkable.

Description

真空バッグおよび真空バッグの製造方法Vacuum bag and method of manufacturing vacuum bag
 本発明は、繊維強化プラスチック積層体を加熱加圧成形する際に用いる真空バッグに関する。 The present invention relates to a vacuum bag used when heat and pressure molding a fiber reinforced plastic laminate.
 近年、炭素繊維強化プラスチック(CFRP)(Carbon Fiber Reinforced Plastics)などの繊維強化プラスチックが注目されている。軽量・高強度という特徴を生かして、航空機や自動車などの材料として様々な産業分野に適用されている。なお、ガラス繊維や石英ガラス繊維やアラミド繊維を用いることもある。 In recent years, fiber reinforced plastics such as carbon fiber reinforced plastic (CFRP) (Carbon Fiber Reinforced Plastics) have been receiving attention. Utilizing the features of light weight and high strength, it is applied to various industrial fields as a material for aircraft and automobiles. In addition, glass fiber, quartz glass fiber, and aramid fiber may be used.
 繊維強化プラスチック積層体の成形方法の一例について簡単に説明する。治具台上にプリプレグシート積層体を積層して製品形状に賦形する。プリプレグシートは、炭素繊維等の補強材に未硬化の熱硬化性樹脂を含浸させたものでありシート状に形成されている。 A brief explanation will be given of an example of a method for forming a fiber-reinforced plastic laminate. A prepreg sheet laminated body is laminated on a jig stand and shaped into a product shape. The prepreg sheet is formed by impregnating a reinforcing material such as carbon fiber with an uncured thermosetting resin, and is formed into a sheet shape.
 熱硬化性樹脂として、不飽和ポリエステル、エポキシ樹脂、フェノール樹脂等が用いられる。 Unsaturated polyester, epoxy resin, phenol resin, etc. are used as the thermosetting resin.
 さらに、賦形された繊維強化プラスチック積層体を治具台とともにバギングして真空引きし、オートクレーブ装置に搬送し、加熱加圧する。これにより樹脂が硬化し繊維強化プラスチック積層体が成形される。その度、製品を脱型する。 Furthermore, the shaped fiber-reinforced plastic laminate is bagged together with the jig table, evacuated, conveyed to an autoclave device, and heated and pressed. As a result, the resin is cured and the fiber-reinforced plastic laminate is molded. Demold the product each time.
 なお、熱硬化性樹脂に代えてポリアミド樹脂やポリプロピレン樹脂等の熱可塑性樹脂を用いることもある。熱可塑性樹脂は加熱により軟化し、その後冷却により固化する。 Note that thermoplastic resin such as polyamide resin or polypropylene resin may be used instead of the thermosetting resin. The thermoplastic resin is softened by heating and then solidified by cooling.
 真空引きには真空バッグが用いられる(特許文献1)。真空バッグはナイロンなどのポリマーフィルムやシリコン系材料からなるダイアフラムが用いられる。 A vacuum bag is used for evacuation (Patent Document 1). The vacuum bag uses a polymer film such as nylon or a diaphragm made of a silicon material.
特表平8-506534号公報Tokuyohei 8-506534
 一般に、真空バックは加熱加圧成形工程終了毎に廃棄され、次の加熱加圧成形工程では新規の真空バックを用いる。その結果、製品製造コストに反映される。また、廃棄コストも製品製造コストに反映される。 Generally, the vacuum bag is discarded after each heating/pressurizing step, and a new vacuum bag is used in the next heating/pressing step. As a result, it is reflected in the product manufacturing cost. Further, the disposal cost is also reflected in the product manufacturing cost.
 これに対し、再使用可能な真空バックが提案されている。現在、市販されている真空バックはダイアフラムを支持する金属製フレームを備える。しかしながら、金属製フレームを有する真空バックには、以下のような課題がある。 On the other hand, a reusable vacuum bag has been proposed. Currently available vacuum bags include a metal frame that supports the diaphragm. However, the vacuum bag having a metal frame has the following problems.
 一般に、航空機や自動車などの部材は大型であり、これに伴い真空バックも大型化すると、金属製フレームの重量も増加する。その結果、真空バックの脱着等の作業性が低下する。すなわち、重量および作業性に係る課題がある。 Generally, members such as airplanes and automobiles are large, and if the vacuum bag also increases in size, the weight of the metal frame also increases. As a result, workability such as attachment / detachment of the vacuum bag is reduced. That is, there are problems related to weight and workability.
 また、金属製フレームを製造したのち、金属製フレームにダイアフラムを接着するといった、複数の工程を経ており、製造工程が複雑である。 Also, after the metal frame is manufactured, the manufacturing process is complicated because it goes through multiple processes such as bonding the diaphragm to the metal frame.
 ところで、航空機や自動車などの部材は、自由曲面のような複雑な形状を有する。自由曲面の詳細については別途後述する。 By the way, members such as aircraft and automobiles have complicated shapes such as free-form surfaces. The details of the free-form surface will be described later.
 製品が自由曲面を有すれば、これに対応して、治具台も自由曲面を有し、フレームも自由曲面に対応する必要がある。金属を加工して自由曲面のような複雑なフレーム形状とすることは可能であるが、加工は容易ではない。製造工程が更に複雑となる。 If the product has a free-form surface, the jig base must also have a free-form surface, and the frame must also support the free-form surface. Although it is possible to process a metal into a complicated frame shape such as a free-form surface, the processing is not easy. The manufacturing process becomes more complicated.
 真空バック製造工程が複雑化すると、製品コストに影響を与える。このように、製造容易性に係る課題があった。 If the vacuum bag manufacturing process becomes complicated, it will affect the product cost. As described above, there is a problem related to the ease of manufacturing.
 本発明は上記課題を解決するものであり、軽量で作業性に優れ、製造容易な再使用可能な真空バックを提供することを目的とする。 The present invention is intended to solve the above problems, and an object thereof is to provide a reusable vacuum bag that is lightweight, has excellent workability, and is easy to manufacture.
 上記課題を解決する本発明は、治具台上に積層された繊維シートを真空引きする際に用いられる真空バッグである。前記繊維シートを覆うシリコン系材料からなるダイアフラムと、前記ダイアフラムを支持するフレームと、前記フレームの下面にフレームに沿って設けられるシールと、を備え、前記フレームは、繊維強化プラスチックを有する。 The present invention, which solves the above-mentioned problems, is a vacuum bag used for vacuuming a fiber sheet laminated on a jig stand. A diaphragm made of a silicon-based material that covers the fiber sheet, a frame that supports the diaphragm, and a seal provided on the lower surface of the frame along the frame are provided, and the frame has a fiber-reinforced plastic.
 フレームが繊維強化プラスチックを有することにより軽量である。その結果、真空バッグの脱着作業が容易であり、作業性に優れる。 Light weight as the frame has fiber reinforced plastic. As a result, the work of attaching and detaching the vacuum bag is easy and the workability is excellent.
 好ましくは、前記フレームの繊維強化プラスチックからなる部分は、非シリコン系の合成ゴムにより被覆され、前記合成ゴムの硬化温度域と前記繊維強化プラスチックに用いる樹脂の硬化温度域とが重なる。 Preferably, the portion of the frame made of fiber reinforced plastic is covered with non-silicon synthetic rubber, and the curing temperature range of the synthetic rubber and the curing temperature range of the resin used for the fiber reinforced plastic overlap.
 非シリコン系合成ゴムは、繊維強化プラスチックとの親和性が高い。加熱加圧成形により、フレームの繊維強化プラスチックと合成ゴムとが一体成形される。また同工程において合成ゴムとダイアフラムが接着する。すなわち製造容易である。  Non-silicon synthetic rubber has a high affinity with fiber reinforced plastics. The fiber-reinforced plastic and synthetic rubber of the frame are integrally molded by heat and pressure molding. Further, in the same step, the synthetic rubber and the diaphragm are bonded. That is, it is easy to manufacture.
 好ましくは、前記フレームの繊維強化プラスチックからなる部分は、フレーム長手方向一方向に繊維が配置されている。 Preferably, fibers are arranged in one direction in the longitudinal direction of the frame in the part made of fiber reinforced plastic of the frame.
 これにより、繊維の直進性が外力に対抗できる。 As a result, the straightness of the fiber can counter the external force.
 好ましくは、前記フレームの繊維強化プラスチックからなる部分は、フレーム長手方向一方向に繊維が配置されている第1層および第2層と、前記第1層および第2層との間に介在し、繊維が織物構造されている第3層とが、積層されて形成されている。 Preferably, the portion of the frame made of fiber reinforced plastic is interposed between the first layer and the second layer in which the fibers are arranged in one direction of the frame longitudinal direction, and the first layer and the second layer, A third layer in which the fibers have a woven structure is laminated to be formed.
 このようなサンドイッチ構造により、繊維の直進性が外力に対抗するとともに、織物構造が歪発生やクラック発生を抑制する。 With such a sandwich structure, the straightness of the fibers resists external force and the fabric structure suppresses strain and cracks.
 好ましくは、前記治具台は自由曲面を有し、前記フレームは、前記治具台の自由曲面に対応した形状を有する。 Preferably, the jig base has a free curved surface, and the frame has a shape corresponding to the free curved surface of the jig base.
 治具台が自由表面を有する場合、製造容易に係る効果が顕著となる。 If the jig base has a free surface, the effect of facilitating manufacturing becomes remarkable.
 上記課題を解決する本発明は、真空バッグ製造方法である。真空バッグは、製品用の繊維シートを覆うシリコン系材料からなるダイアフラムと、前記ダイアフラムを支持するフレームと、前記フレームの下面にフレームに沿って設けられるシールと、を備え、前記フレームは、繊維強化プラスチックからなる部分を非シリコン系の合成ゴムにより被覆して形成される。治具台上に、第1非シリコン系合成ゴムシート、プレプレグ状のフレーム用の複数の繊維シート、第2非シリコン系合成ゴムシート、接着フィルム、ダイアフラムの順に積層し、積層体を形成し、別の真空バッグにて被覆し真空状態で、上記積層体を加温加圧し、一体成型する。 The present invention that solves the above problems is a vacuum bag manufacturing method. The vacuum bag includes a diaphragm made of a silicon-based material that covers a fiber sheet for a product, a frame that supports the diaphragm, and a seal that is provided on the lower surface of the frame along the frame, and the frame is fiber-reinforced. It is formed by covering a portion made of plastic with a non-silicon synthetic rubber. A first non-silicon synthetic rubber sheet, a plurality of fiber sheets for a prepreg-shaped frame, a second non-silicon synthetic rubber sheet, an adhesive film, and a diaphragm are laminated in this order on a jig stand to form a laminate, The laminate is heated and pressurized in a vacuum state by covering it with another vacuum bag, and integrally molded.
 本発明にかかる再使用可能な真空バッグは、製品製造に用いるオートクレーブ装置を用いて、製品製造と類似した工程を経て、一体成形により製造容易である。 The reusable vacuum bag according to the present invention is easily manufactured by integral molding using an autoclave device used for manufacturing a product, through a process similar to that of manufacturing a product.
 本発明にかかる再使用可能な真空バッグは、軽量であり、作業性に優れる。 The reusable vacuum bag according to the present invention is lightweight and has excellent workability.
 本発明にかかる再使用可能な真空バッグは、一体成形により製造容易である。 The reusable vacuum bag according to the present invention is easily manufactured by integral molding.
真空バッグ概要図Vacuum bag schematic diagram 真空バッグ詳細図Detail of vacuum bag 積層構造詳細構成図Detailed structure of laminated structure 真空バッグ製造方法説明図Vacuum bag manufacturing method explanatory drawing 真空バッグ使用方法説明図Illustration of how to use the vacuum bag オートクレーブ装置における加熱加圧プロファイルHeating and pressurizing profile in autoclave equipment
 ~真空バッグ構成~
 図1は、真空バッグ10の概略構成を示す部分断面斜視図である。真空バッグ10は、ダイアフラム11と、フレーム12(一部断面表示)と、シール13(図2参照)とから構成される。
-Vacuum bag configuration-
FIG. 1 is a partial cross-sectional perspective view showing a schematic configuration of the vacuum bag 10. The vacuum bag 10 is composed of a diaphragm 11, a frame 12 (partially sectional view), and a seal 13 (see FIG. 2).
 ダイアフラム11は、成形前の繊維強化プラスチック積層体を覆うものである。シリコン系材料よりなる。シリコン系材料同等の延伸性、柔軟性及び耐熱性があれば他の材料でも良い。 The diaphragm 11 covers the fiber-reinforced plastic laminate before molding. Made of silicon material. Other materials may be used as long as they have the same stretchability, flexibility and heat resistance as silicon-based materials.
 フレーム12は、ダイアフラム11の周縁部に接着され、ダイアフラム11を支持する。詳細については別途後述する。 The frame 12 is bonded to the peripheral edge of the diaphragm 11 to support the diaphragm 11. Details will be described later separately.
 シール13は、フレーム12の下面にフレーム12に沿って設けられる。真空引きの際には、弾性変形することにより、治具台30表面と真空バッグ10との密封性を確実にする。 The seal 13 is provided on the lower surface of the frame 12 along the frame 12. At the time of evacuation, it is elastically deformed to ensure the sealing property between the surface of the jig base 30 and the vacuum bag 10.
 ダイアフラム11およびシール13は従来技術同等のものを転用してもよい。すなわち、本実施形態の真空バッグ10では、フレーム12が繊維強化プラスチックを有することを特徴とする。 The diaphragm 11 and the seal 13 may be equivalent to those of the conventional technology. That is, the vacuum bag 10 of the present embodiment is characterized in that the frame 12 has a fiber reinforced plastic.
 ~繊維強化プラスチック~
 フレーム12は繊維強化プラスチックよりなる。繊維強化プラスチックはプリプレグシートが積層され、加熱加圧成形されたものである。
-Fiber reinforced plastic-
The frame 12 is made of fiber reinforced plastic. The fiber reinforced plastic is obtained by laminating prepreg sheets and heat-pressing them.
 図3はフレーム12のプリプレグシートの積層構造20の模式図である。 FIG. 3 is a schematic view of the laminated structure 20 of the prepreg sheet of the frame 12.
 積層構造20は、第1プリプレグシートである第1層21と、第2プリプレグシートである第2層22と、第3プリプレグシートである第3層23とを含む。なお、各層21~23は、一枚のプリプレグシートにより形成される場合、複数のプリプレグシートが積層され形成されている場合を含む。 The laminated structure 20 includes a first layer 21 that is a first prepreg sheet, a second layer 22 that is a second prepreg sheet, and a third layer 23 that is a third prepreg sheet. Each of the layers 21 to 23 includes a case where a single prepreg sheet is formed and a case where a plurality of prepreg sheets are laminated and formed.
 第1層21と第2層22では、繊維がフレーム長手方向一方向(unidirection)(UD)に配置されている。 In the first layer 21 and the second layer 22, the fibers are arranged in the frame longitudinal direction unidirection (UD).
 第1層21と第2層22では、織構造でないことにより、外力に対し、繊維が直線性を最大限に発揮できる。なお、織物構造であると、繊維が上下方向に浮き沈みするため、直進性を発揮できない。対抗力が分散してしまうおそれがある。 Since the first layer 21 and the second layer 22 do not have a woven structure, the fibers can maximize linearity with respect to external force. In the case of the woven structure, the fibers rise and fall in the vertical direction, so that the straightness cannot be exhibited. There is a risk that the counterforce will be dispersed.
 第3層23では、繊維が縦横方向に配置され、織物構造、例えば、平織(plain weave)(PW)されている。第3層(PW層)23は、第1層21(UD層)と第2層22(UD層)との間に介挿されている。積層構造20はサンドイッチ構造を有する。なお、織物構造の代表例として平織を挙げたがこれに限定されない。 In the third layer 23, the fibers are arranged in the longitudinal and transverse directions and have a woven structure, for example, plain weave (PW). The third layer (PW layer) 23 is interposed between the first layer 21 (UD layer) and the second layer 22 (UD layer). The laminated structure 20 has a sandwich structure. A plain weave is given as a representative example of the woven structure, but the present invention is not limited to this.
 織物構造を介在させることにより、第1層21と第2層22での歪を抑制し、クラック発生を抑制する。 By interposing a woven structure, the strain in the first layer 21 and the second layer 22 is suppressed, and the generation of cracks is suppressed.
 なお、本実施形態の積層構造20は、UD層-PW層-UD層のサンドイッチ構造であるのに対し、PW-UD-PWのサンドイッチ構造としてもよい。また、UD層のみでもよい。 The laminated structure 20 of the present embodiment has a sandwich structure of UD layer-PW layer-UD layer, but may have a sandwich structure of PW-UD-PW. Further, only the UD layer may be used.
 プリプレグの熱硬化性樹脂は、合成ゴムの硬化温度域との関係性(別途詳述)等により、180℃(±20℃)程度で熱硬化することが好ましい。さらに、熱硬化性樹脂は、200℃(±20℃)程度の耐熱性を有することが好ましい。具体例として、エポキシ樹脂EP、シアネートエステル樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂等を想定する。 It is preferable that the thermosetting resin of the prepreg is thermoset at about 180° C. (±20° C.) due to the relationship with the curing temperature range of synthetic rubber (detailed separately). Further, the thermosetting resin preferably has a heat resistance of about 200 ° C. (± 20 ° C.). As a specific example, an epoxy resin EP, a cyanate ester resin, a bismaleimide resin, a benzoxazine resin, etc. are assumed.
 ~合成ゴム被覆~
 フレーム12の繊維強化プラスチックからなる部分20は、熱硬化する非シリコン系の合成ゴム26により被覆されることが好ましい。ただし、非シリコン系の合成ゴムには、物性に影響しない程度に微量のシリコン成分を含む場合もある。
-Synthetic rubber coating-
The fiber-reinforced plastic part 20 of the frame 12 is preferably covered with a thermosetting non-silicon synthetic rubber 26. However, the non-silicon synthetic rubber may contain a small amount of silicon component to the extent that the physical properties are not affected.
 硬化温度については、製品製造に用いるオートクレーブ装置において、熱硬化することが好ましい。たとえば、180℃(±20℃)程度で熱硬化することが好ましい。さらに、200℃(±20℃)程度の耐熱性を有することが好ましい。 Regarding the curing temperature, it is preferable to heat cure in the autoclave device used for product manufacturing. For example, it is preferably thermoset at about 180 ° C. (± 20 ° C.). Further, it is preferable to have heat resistance of about 200 ° C. (± 20 ° C.).
 試作モデルでは、エアテックインターナショナル社の製品名「エアパッドゴム」を用いた。エアパッドゴムは、未硬化非シリコン系の合成ゴムであり、加熱により176℃とし、加圧により0.6MPaとし、約2時間で硬化し、204℃の耐熱性を有する。 In the prototype model, the product name "Air Pad Rubber" of Airtech International Co., Ltd. was used. The air pad rubber is an uncured non-silicon synthetic rubber, is heated to 176° C., is pressurized to 0.6 MPa, is hardened in about 2 hours, and has heat resistance of 204° C.
 なお、高い耐熱性を有する合成ゴムとして、アクリルゴムACM,ANM、エチレン酢酸ビニルゴムEVA、エピクロルヒドリンゴムCO,ECOなどがある。 Note that synthetic rubbers with high heat resistance include acrylic rubbers ACM, ANM, ethylene vinyl acetate rubber EVA, epichlorohydrin rubber CO, ECO.
 合成ゴム26の硬化温度域と積層構造20熱硬化性樹脂の硬化温度域とは重なることが好ましい。例えば、合成ゴム26は180℃(±20℃)程度で熱硬化するのに対し、熱硬化性樹脂20も180℃(±20℃)程度で熱硬化する。 It is preferable that the curing temperature range of the synthetic rubber 26 and the curing temperature range of the laminated structure 20 thermosetting resin overlap. For example, the synthetic rubber 26 is thermoset at about 180° C. (±20° C.), while the thermosetting resin 20 is also thermoset at about 180° C. (±20° C.).
 合成ゴム被覆による効果について説明する。 Explain the effect of synthetic rubber coating.
 ダイアフラム11はシリコン系材料よりなるが、繊維強化プラスチック積層構造20を含むフレーム12との親和性がよくなく、接着性に課題がある。ダイアフラム11と積層構造20の間に合成ゴム26が介在することにより、接着性が向上する。 Although the diaphragm 11 is made of a silicon-based material, it has a poor affinity with the frame 12 including the fiber-reinforced plastic laminated structure 20 and has a problem in adhesion. The interposition of the synthetic rubber 26 between the diaphragm 11 and the laminated structure 20 improves the adhesiveness.
 再使用可能な真空バッグ10は、オートクレーブ装置において繰り返し加温加圧されることを想定している。合成ゴム26が外部からの繰り返しの加熱加圧に対し積層構造20を保護し、積層構造20の劣化を軽減する。 The reusable vacuum bag 10 is assumed to be repeatedly heated and pressurized in the autoclave device. The synthetic rubber 26 protects the laminated structure 20 against repeated heat and pressure from the outside, and reduces deterioration of the laminated structure 20.
 合成ゴム26は弾性を有する。真空引きの際には、シール13とともに適度な弾性変形することにより、密封性を確実にする。 Synthetic rubber 26 has elasticity. At the time of evacuation, the seal 13 and the seal 13 are elastically deformed to ensure the sealability.
 ~真空バッグ製造方法~
 真空バッグ10の製造方法は、製品としての繊維強化プラスチック積層体の製造方法と類似している。図4は、真空バッグ10の製造方法説明図である。
-Vacuum bag manufacturing method-
The manufacturing method of the vacuum bag 10 is similar to the manufacturing method of the fiber-reinforced plastic laminate as a product. FIG. 4 is an explanatory diagram of a method of manufacturing the vacuum bag 10.
 治具台30上に、未硬化合成ゴムシート27、プリプレグ第1層21、プリプレグ第3層23、プリプレグ第2層22、未硬化合成ゴムシート28、接着フィルム29、ダイアフラム11の順に積層する。未硬化合成ゴムシート27、28はプリプレグ各層21~23より一回り大きな寸法を有する。未硬化合成ゴムシート27、28はプリプレグ各層21~23を挟み込み包含する。 The uncured synthetic rubber sheet 27, the prepreg first layer 21, the prepreg third layer 23, the prepreg second layer 22, the uncured synthetic rubber sheet 28, the adhesive film 29, and the diaphragm 11 are laminated in this order on the jig base 30. The uncured synthetic rubber sheets 27 and 28 have a size larger than the prepreg layers 21 to 23. The uncured synthetic rubber sheets 27 and 28 sandwich and include the prepreg layers 21 to 23.
 積層構造20が合成ゴム被覆外と連通可能となるように、積層構造20の四方にトウ(TOW)を配設する。 ▽Tow (TOW) is arranged on all sides of the laminated structure 20 so that the laminated structure 20 can communicate with the outside of the synthetic rubber coating.
 積層完了後、未硬化の真空バッグ10を治具台30とともに真空バックによりバギングし、オートクレーブ装置に搬送し、加熱加圧する。真空バッグ製造時に用いる真空バッグは従来技術でもよい。 After the stacking is completed, the uncured vacuum bag 10 is bagged together with the jig base 30 by a vacuum bag, conveyed to an autoclave device, and heated and pressed. The vacuum bag used when manufacturing the vacuum bag may be a conventional technique.
 このとき、合成ゴム26の熱硬化性樹脂の硬化温度域と、積層構造20熱硬化性樹脂の硬化温度域とは重なる(おおよそ同じ)。したがって、オートクレーブ装置にて合成ゴム26および積層構造20の熱硬化性樹脂の硬化温度以上になる様に加熱する。 At this time, the curing temperature range of the thermosetting resin of the synthetic rubber 26 and the curing temperature range of the laminated structure 20 thermosetting resin overlap (approximately the same). Therefore, the synthetic rubber 26 and the thermosetting resin of the laminated structure 20 are heated by the autoclave device so as to reach the curing temperature or higher.
 試作モデルでは、加熱により180℃とし、加圧により0.6MPaとし、約2時間維持し、降温減圧させた。 In the prototype model, the temperature was reduced to 180°C by heating, 0.6 MPa by pressurization, maintained for about 2 hours, and lowered in temperature.
 常温において合成ゴムは半硬化(通称Bステージ)であるが、およそ180℃程度で硬化する。常温未硬化の積層構造20の熱硬化性樹脂もおよそ180℃程度で硬化する。未硬化合成ゴムシート27、28は合成ゴム26となる。 ▽At normal temperature, synthetic rubber is semi-cured (commonly called B stage), but it cures at about 180°C. The thermosetting resin of the laminated structure 20 which is not cured at room temperature is also cured at about 180°C. The uncured synthetic rubber sheets 27 and 28 become the synthetic rubber 26.
 加熱時に積層構造20の熱硬化性樹脂から発生する有機溶剤ガスは、トウを介して合成ゴム被覆外に排出される。 The organic solvent gas generated from the thermosetting resin of the laminated structure 20 during heating is discharged outside the synthetic rubber coating through the tow.
 降温、減圧しても、合成ゴム26は硬化したままであり、積層構造20の熱硬化性樹脂は硬化したままである。 The synthetic rubber 26 remains cured and the thermosetting resin of the laminated structure 20 remains cured even when the temperature is lowered or reduced.
 合成ゴム26は積層構造20の熱硬化性樹脂との親和性がよい。また、合成ゴム26はシリコン系材料11とも親和性がよい。 The synthetic rubber 26 has a good affinity with the thermosetting resin of the laminated structure 20. Further, the synthetic rubber 26 has a good affinity with the silicon-based material 11.
 一連の加熱加圧により、積層構造20と合成ゴム26とダイアフラム11とが接着しながら一体成形される。なお、一連の加熱加圧において、ダイアフラム11は二次加硫(低分子量シロキサン揮発処理)される。 By a series of heating and pressing, the laminated structure 20, the synthetic rubber 26 and the diaphragm 11 are integrally molded while adhering. The diaphragm 11 is subjected to secondary vulcanization (low-molecular-weight siloxane volatilization treatment) in a series of heating and pressurization.
 以上のように、製品製造に用いるオートクレーブ装置を用いて、製品製造と類似した工程を経て、真空バッグ10を一体成形することができる。すなわち、容易に製造できる。 As described above, the vacuum bag 10 can be integrally molded by using the autoclave device used for manufacturing the product, through a process similar to the manufacturing of the product. That is, it can be easily manufactured.
 特に治具台30が既存である場合や自由曲面を有する場合には、上記真空バッグ10の製造容易性は顕著になる(別途詳述)。 Especially, when the jig base 30 is existing or has a free curved surface, the ease of manufacturing the vacuum bag 10 becomes remarkable (detailed separately).
 シール13を別途成形し、フレーム12の下面にフレーム12に沿って接着する。フレーム12は合成ゴム26により被覆されているために容易に接着する。 Separately mold the seal 13 and adhere it to the lower surface of the frame 12 along the frame 12. Since the frame 12 is covered with the synthetic rubber 26, it easily adheres.
 ~真空バッグ使用方法(製品製造)~ -How to use the vacuum bag (product manufacturing)-
 なお、製品に用いるFRPはエポキシ樹脂等、熱硬化性樹脂であることを前提として以下説明するが、熱可塑性樹脂を用いてもよい。熱可塑性樹脂は加熱により軟化するが、冷却により固化する。 Note that the FRP used in the product will be described below on the assumption that it is a thermosetting resin such as an epoxy resin, but a thermoplastic resin may be used. The thermoplastic resin is softened by heating but solidified by cooling.
 図5は、製品製造工程における各状態を説明する図面である。真空バッグ10の試作モデルが図示されている。 FIG. 5 is a diagram for explaining each state in the product manufacturing process. A prototype model of the vacuum bag 10 is shown.
 図5上段は、施工前の状態である。治具台30が記載されている。 The upper part of Fig. 5 shows the state before construction. The jig base 30 is described.
 図5中段は、プリプレグシートを積層し、未硬化の繊維強化プラスチック積層体(未硬化積層体)を賦形した状態である。 The middle part of FIG. 5 shows a state in which prepreg sheets are laminated and an uncured fiber-reinforced plastic laminate (uncured laminate) is shaped.
 図5下段は、真空バッグ10により未硬化積層体を治具台30とともに覆い、バギングした状態である。 The lower part of FIG. 5 shows a state in which the uncured laminate is covered with the jig base 30 by the vacuum bag 10 and bagging is performed.
 その後、オートクレーブ装置に搬送し、加熱加圧プロファイル(図6)に基づいて加熱加圧する。 After that, it is transferred to the autoclave device and heated and pressed based on the heating and pressing profile (Fig. 6).
 図6は、オートクレーブ装置における加熱加圧プロファイル例である。横軸は時間である。ただし、一例であり本願はこれに限定されない。 FIG. 6 shows an example of a heating/pressurizing profile in the autoclave device. The horizontal axis is time. However, this is an example and the present application is not limited to this.
 まず、真空バッグ内を-0.1MPaに減圧する。減圧状態で加熱を開始する。さらに、減圧を維持しつつ、加圧を開始する。加圧を増しながら減圧状態を徐々に大気圧に戻す。このときの温度を120℃(±10℃)程度とする(第1加熱段階)。また、0.3MPaまで加圧する。 First, reduce the pressure inside the vacuum bag to -0.1 MPa. Start heating under reduced pressure. Further, pressurization is started while maintaining the reduced pressure. The depressurized state is gradually returned to atmospheric pressure while increasing the pressure. The temperature at this time is about 120 ° C. (± 10 ° C.) (first heating step). Further, the pressure is increased to 0.3 MPa.
 さらに、数十分~数時間かけて、180℃(±20℃)程度とし、数時間維持する(第2加熱段階)。たとえばエポキシ樹脂の場合160℃超にて硬化が開始する。その後、また1時間程度かけて60℃以下まで冷却し、除圧を始める。 Furthermore, the temperature is maintained at about 180°C (±20°C) for several tens of minutes to several hours and maintained for several hours (second heating stage). For example, in the case of an epoxy resin, curing starts at over 160°C. Then, the pressure is reduced to 60° C. or lower again for about 1 hour, and depressurization is started.
 これにより樹脂が硬化し繊維強化プラスチック積層体(製品)が成形される。治具台30とともにオートクレーブ装置から搬出し、製品を脱型する。脱型には真空バッグ10を治具台30から取り外すことも含む。 This will cure the resin and mold the fiber-reinforced plastic laminate (product). The product is removed from the autoclave together with the jig table 30 and the product is demolded. Demolding also includes removing the vacuum bag 10 from the jig base 30.
 真空バッグ10のフレーム12は、繊維強化プラスチックからなるため、軽量である。したがって、真空バッグ10の脱着作業が容易であり、作業性に優れる。 The frame 12 of the vacuum bag 10 is lightweight because it is made of fiber reinforced plastic. Therefore, the work of attaching and detaching the vacuum bag 10 is easy and the workability is excellent.
 真空バッグ10のフレーム12は、合成ゴム被覆されており、真空引きの際には、合成ゴム26はシール13とともに適度な弾性変形する。これにより密封性を確実にする。その結果、真空引きの不具合が軽減される。この点でも作業性に優れる。 The frame 12 of the vacuum bag 10 is covered with synthetic rubber, and the synthetic rubber 26, together with the seal 13, is appropriately elastically deformed during evacuation. This ensures hermeticity. As a result, the problem of evacuation is reduced. Workability is also excellent in this respect.
 特に治具台30が既存である場合や自由曲面を有する場合には、上記真空バッグ10の優れた作業性は顕著になる(別途詳述)。図1の例では、フレーム12は、治具台30の自由曲面に対応した形状を有する。 Particularly, when the jig base 30 is existing or has a free-form surface, the workability of the vacuum bag 10 is remarkable (detailed separately). In the example of FIG. 1, the frame 12 has a shape corresponding to the free curved surface of the jig base 30.
 ~治具台~
 本願は、治具台30が既存である場合や自由曲面を有する場合に限定されるものではない(新設や平面や単純曲面を含んでもよい)が、治具台30が既存である場合や自由曲面を有する場合には、本願効果が顕著となる。
~ Jig stand ~
The present application is not limited to the case where the jig base 30 already exists or has a free curved surface (may include a new installation, a flat surface, or a simple curved surface), but the jig base 30 may already exist or is free. In the case of having a curved surface, the effect of the present application becomes remarkable.
 自由曲面とは、空間に交点と曲率をいくつか設定し、高次方程式でそれぞれの交点を補間して表現される曲面である。球体や円柱面などのように単純な数式で表わすことのできる単純曲面とは異なる。 -A free-form surface is a curved surface that is set by setting some intersections and curvatures in space and interpolating each intersection with a higher-order equation. It is different from a simple curved surface that can be expressed by a simple mathematical formula such as a sphere or a cylindrical surface.
 なお、航空機や自動車など工業製品は自由曲面を有する。図5に示す試作モデルに用いた治具台は、自由曲面を有する。また、図1の例では、フレーム12は、治具台30の自由曲面に対応した形状を有する。 Industrial products such as aircraft and automobiles have free-form surfaces. The jig base used for the prototype model shown in FIG. 5 has a free-form surface. Further, in the example of FIG. 1, the frame 12 has a shape corresponding to the free curved surface of the jig base 30.
 自由曲面に対応するように、数値データに基づいて真空バッグを詳細に設計することは手間がかかる。既存治具台の場合、自由曲面の設計データを確認できず、計測により再取得する場合もあり得る。 -It takes time and effort to design a vacuum bag in detail based on numerical data so as to correspond to a free-form surface. In the case of an existing jig table, the design data of the free-form surface cannot be confirmed, and it may be acquired again by measurement.
 本願真空バッグ(特にフレーム12)は、自由曲面を有する既存治具台上において製造するため、必然的に既存治具台の自由曲面形状に追従する。したがって、設計段階の詳細な検討は不要となり、また、自由曲面の設計データがなくても精度よく製造可能である。 Since the vacuum bag of the present application (particularly the frame 12) is manufactured on the existing jig table having a free curved surface, it necessarily follows the free curved surface shape of the existing jig table. Therefore, detailed examination at the design stage is unnecessary, and the product can be manufactured accurately even without design data of the free-form surface.
 また、治具台が自由曲面を有する場合、真空引きの際、真空バックとの間に隙間ができるおそれがある。これに対し、本願真空バッグは精度よく製造されているため、自由曲面に密着する。また、本願真空バッグは合成ゴム26も適宜弾性変形する。この点でも密封性が高い。 Also, if the jig base has a free-form surface, there may be a gap between it and the vacuum bag when vacuuming. On the other hand, since the vacuum bag of the present application is manufactured with high accuracy, it adheres to the free curved surface. Further, in the vacuum bag of the present application, the synthetic rubber 26 is also elastically deformed as appropriate. Also in this respect, the sealing property is high.
 ~変形例~
 積層構造20において、熱硬化性樹脂を含むプリプレグに代えて、変形例として、比較的高温(たとえば180~220℃)で軟化する熱可塑性樹脂を含むセミプレグを用いてもよい。比較的高温とは、製品製造時の加熱プロファイル(図6参照)と比較して高温を意味する。具体例として、ポリカーボネート樹脂PC、ナイロン6樹脂(ポリアミド)PA6、ポリエーテルイミド樹脂PEI、ポリエチレンテレフタラート樹脂PET、ポリフェニレンサルファイド樹脂PPS、ポリエーテルエーテルケトン樹脂PEEKなどを想定する。
~Modification~
In the laminated structure 20, instead of the prepreg containing the thermosetting resin, as a modified example, a semi-preg containing a thermoplastic resin that softens at a relatively high temperature (for example, 180 to 220° C.) may be used. The relatively high temperature means a high temperature as compared with the heating profile at the time of manufacturing the product (see FIG. 6). As specific examples, polycarbonate resin PC, nylon 6 resin (polyamide) PA6, polyetherimide resin PEI, polyethylene terephthalate resin PET, polyphenylene sulfide resin PPS, polyetheretherketone resin PEEK, and the like are assumed.
 変形例の製造方法では、本願実施形態製造方法の加熱温度より、若干高温とする。つまり、オートクレーブ装置にて積層構造20の熱可塑性樹脂の軟化温度以上になる様に加熱する。 In the manufacturing method of the modified example, the temperature is slightly higher than the heating temperature of the manufacturing method of the embodiment of the present application. In other words, the autoclave is used to heat the thermoplastic resin of the laminated structure 20 to the softening temperature or higher.
 試作モデルでは、加熱により200℃とし、加圧により0.6MPaとし、約2時間維持し、降温減圧させた。 In the prototype model, the temperature was reduced to 200°C by heating and 0.6 MPa by pressurization, maintained for about 2 hours, and lowered in temperature and decompressed.
 常温において合成ゴムは半硬化(通称Bステージ)であるが、およそ180℃程度で硬化する。積層構造20の熱可塑性樹脂はたとえば200℃で軟化し、降温により固化する。一連の加熱加圧により、積層構造20と合成ゴム26とダイアフラム11とが接着しながら一体成形される。 ▽At normal temperature, synthetic rubber is semi-cured (commonly called B stage), but it cures at about 180°C. The thermoplastic resin of the laminated structure 20 is softened at, for example, 200 ° C. and solidified by lowering the temperature. By a series of heating and pressing, the laminated structure 20, the synthetic rubber 26, and the diaphragm 11 are integrally molded while being bonded.
 以上のように、製品製造に用いるオートクレーブ装置を用いて、製品製造と類似した工程を経て、真空バッグ10を一体成形することができる。すなわち、容易に製造できる。 As described above, the vacuum bag 10 can be integrally molded by using the autoclave device used for manufacturing the product, through a process similar to the manufacturing of the product. That is, it can be easily manufactured.
 変形例の使用方法は本願実施形態使用方法と同様である。積層構造20の熱可塑性樹脂の軟化温度は比較的高温である。言い換えると、製品製造工程の加熱加圧プロファイル(図6)における温度では軟化せず、固化状態を維持している。 The usage method of the modified example is the same as the usage method of the embodiment of the present application. The softening temperature of the thermoplastic resin of the laminated structure 20 is relatively high. In other words, it does not soften at the temperature in the heating and pressurizing profile (FIG. 6) in the product manufacturing process, and maintains the solidified state.
 さらに、本願フレーム12は合成ゴム26により被覆されており、積層構造20を保護している。 Furthermore, the frame 12 of the present application is covered with synthetic rubber 26 to protect the laminated structure 20.
 これらより、オートクレーブ装置による繰り返しの加温加圧に耐えることができる。すなわち、変形例の真空バッグ10も再使用可能である。 From these, it is possible to withstand repeated heating and pressurization by the autoclave device. That is, the vacuum bag 10 of the modified example can be reused.
 10 真空バッグ
 11 ダイアフラム
 12 フレーム
 13 シール
 20 積層構造
 21 積層第1層(UD層)
 22 積層第2層(UD層)
 23 積層第3層(PW層)
 26 合成ゴム被覆
 27 合成ゴムシート
 28 合成ゴムシート
 29 接着フィルム
 30 治具台
10 Vacuum Bag 11 Diaphragm 12 Frame 13 Seal 20 Laminated Structure 21 Laminated First Layer (UD Layer)
22 Laminated second layer (UD layer)
23 Layered Third Layer (PW Layer)
26 Synthetic Rubber Cover 27 Synthetic Rubber Sheet 28 Synthetic Rubber Sheet 29 Adhesive Film 30 Jig Stand

Claims (6)

  1.  治具台上に積層された繊維シートを真空引きする際に用いられる真空バッグであって、
     前記繊維シートを覆うシリコン系材料からなるダイアフラムと、
     前記ダイアフラムを支持するフレームと、
     前記フレームの下面にフレームに沿って設けられるシールと、
     を備え、
     前記フレームは、繊維強化プラスチックを有する
     ことを特徴とする真空バッグ。
    A vacuum bag used when vacuuming a fiber sheet laminated on a jig stand,
    A diaphragm made of a silicon-based material that covers the fiber sheet,
    A frame that supports the diaphragm,
    A seal provided along the frame on the lower surface of the frame,
    Equipped with
    The vacuum bag, wherein the frame has a fiber reinforced plastic.
  2.  前記フレームの繊維強化プラスチックからなる部分は、非シリコン系の合成ゴムにより被覆され、
     前記合成ゴムの硬化温度域と前記繊維強化プラスチックに用いる樹脂の硬化温度域とが重なる
     ことを特徴とする請求項1記載の真空バッグ。
    The part of the frame made of fiber reinforced plastic is coated with non-silicon synthetic rubber.
    The vacuum bag according to claim 1, wherein a curing temperature range of the synthetic rubber and a curing temperature range of a resin used for the fiber reinforced plastic overlap each other.
  3.  前記フレームの繊維強化プラスチックからなる部分は、フレーム長手方向一方向に繊維が配置されている
     ことを特徴とする請求項1または2記載の真空バッグ。
    The vacuum bag according to claim 1 or 2, wherein fibers are arranged in one direction of a longitudinal direction of the frame in a portion of the frame made of fiber reinforced plastic.
  4.  前記フレームの繊維強化プラスチックからなる部分は、
     フレーム長手方向一方向に繊維が配置されている第1層および第2層と、
     前記第1層および第2層との間に介在し、繊維が織物構造とされている第3層とが、
     積層されて形成されている
     ことを特徴とする請求項1または2記載の真空バッグ。
    The part of the frame made of fiber reinforced plastic is
    A first layer and a second layer in which fibers are arranged in one direction in the longitudinal direction of the frame;
    A third layer which is interposed between the first layer and the second layer and has a fiber in a woven structure,
    The vacuum bag according to claim 1 or 2, wherein the vacuum bag is formed by stacking layers.
  5.  前記治具台は自由曲面を有し、
     前記フレームは、前記治具台の自由曲面に対応した形状を有する
     ことを特徴とする真空バッグ。
    The jig base has a free-form surface,
    The vacuum bag, wherein the frame has a shape corresponding to a free curved surface of the jig base.
  6.  製品用の繊維シートを覆うシリコン系材料からなるダイアフラムと、
     前記ダイアフラムを支持するフレームと、
     前記フレームの下面にフレームに沿って設けられるシールと、
     を備え、
     前記フレームは、繊維強化プラスチックからなる部分を非シリコン系の合成ゴムにより被覆して形成される
    真空バッグの製造方法であって、
     治具台上に、第1非シリコン系合成ゴムシート、プレプレグ状のフレーム用の複数の繊維シート、第2非シリコン系合成ゴムシート、接着フィルム、ダイアフラムの順に積層し、積層体を形成し、
     別の真空バッグにて被覆し真空状態で、上記積層体を加温加圧し、一体成型する
     ことを特徴とする真空バッグの製造方法。
    A diaphragm made of silicon-based material that covers the fiber sheet for products,
    A frame that supports the diaphragm,
    A seal provided along the frame on the lower surface of the frame,
    Equipped with
    The frame is a method of manufacturing a vacuum bag, which is formed by coating a portion made of fiber reinforced plastic with a non-silicon synthetic rubber,
    A first non-silicon synthetic rubber sheet, a plurality of fiber sheets for a prepreg-shaped frame, a second non-silicon synthetic rubber sheet, an adhesive film, and a diaphragm are laminated in this order on a jig stand to form a laminate,
    A method for manufacturing a vacuum bag, comprising coating with another vacuum bag, heating and pressurizing the above-mentioned laminated body in a vacuum state, and integrally molding.
PCT/JP2019/008399 2019-03-04 2019-03-04 Vacuum bag and method for manufacturing vacuum bag WO2020178948A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019547335A JP6625300B1 (en) 2019-03-04 2019-03-04 Vacuum bag and method of manufacturing vacuum bag
PCT/JP2019/008399 WO2020178948A1 (en) 2019-03-04 2019-03-04 Vacuum bag and method for manufacturing vacuum bag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008399 WO2020178948A1 (en) 2019-03-04 2019-03-04 Vacuum bag and method for manufacturing vacuum bag

Publications (1)

Publication Number Publication Date
WO2020178948A1 true WO2020178948A1 (en) 2020-09-10

Family

ID=69100991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008399 WO2020178948A1 (en) 2019-03-04 2019-03-04 Vacuum bag and method for manufacturing vacuum bag

Country Status (2)

Country Link
JP (1) JP6625300B1 (en)
WO (1) WO2020178948A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112793186A (en) * 2020-12-15 2021-05-14 中国商用飞机有限责任公司北京民用飞机技术研究中心 Method for preventing poor glue or pin holes on surface of non-autoclave vacuum bag forming composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681651A (en) * 1986-08-07 1987-07-21 Lockheed Corporation Vacuum bag sealing system
JP2013078937A (en) * 2011-08-26 2013-05-02 Boeing Co:The Integrally stiffened, reusable vacuum bag, and method of making the same
JP2018111256A (en) * 2017-01-12 2018-07-19 日本飛行機株式会社 Frame and vacuum drawing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775811A (en) * 1980-10-30 1982-05-12 Tachikawa Spring Co Ltd Metal mold for molding plastic sheet frame
JPH071486A (en) * 1993-06-17 1995-01-06 Mitsui Toatsu Chem Inc Method and apparatus for molding molding material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681651A (en) * 1986-08-07 1987-07-21 Lockheed Corporation Vacuum bag sealing system
JP2013078937A (en) * 2011-08-26 2013-05-02 Boeing Co:The Integrally stiffened, reusable vacuum bag, and method of making the same
JP2018111256A (en) * 2017-01-12 2018-07-19 日本飛行機株式会社 Frame and vacuum drawing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112793186A (en) * 2020-12-15 2021-05-14 中国商用飞机有限责任公司北京民用飞机技术研究中心 Method for preventing poor glue or pin holes on surface of non-autoclave vacuum bag forming composite material

Also Published As

Publication number Publication date
JP6625300B1 (en) 2019-12-25
JPWO2020178948A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
US5527414A (en) Method for high pressure co-cure molding of lightweight honeycomb core composite articles having ramped surfaces utilizing low density, stabilized ramped honeycomb cores
EP2565005B1 (en) Integrally stiffened, reusable vacuum bag and method of making the same
JP6659749B2 (en) Composite tool with vacuum integrity and method of manufacturing the same
US6739861B2 (en) High pressure co-cure of lightweight core composite article utilizing a core having a plurality of protruding pins
US10016949B2 (en) Method of moulding a charge
JPH10146898A (en) Molding of fiber reinforced composite material
US20080210372A1 (en) Composite article debulking process
EP3181339B1 (en) Bonding device and bonding method
WO2008086022A1 (en) Multi-function vacuum bag for composite part manuacture
EP0904929A1 (en) Method for forming a caul plate during moulding of a part
EP2594388A1 (en) Method for producing resin matrix composite material
WO2020178948A1 (en) Vacuum bag and method for manufacturing vacuum bag
JP6570160B1 (en) Pressure pad, pressure pad manufacturing method, and honeycomb core sandwich structure manufacturing method
EP1775109B1 (en) Composite moulding method and apparatus with a vacuum bag
US20160129676A1 (en) Fiber-reinforced plastic, air rectification cover for elevator and process for manufacturing fiber-reinforced plastic
WO2020178949A1 (en) Jig stand
IL119236A (en) High pressure co-cure molding process for fabricating a composite article

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019547335

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917592

Country of ref document: EP

Kind code of ref document: A1