WO2020178891A1 - Motor drive device and refrigeration cycle application device - Google Patents

Motor drive device and refrigeration cycle application device Download PDF

Info

Publication number
WO2020178891A1
WO2020178891A1 PCT/JP2019/008046 JP2019008046W WO2020178891A1 WO 2020178891 A1 WO2020178891 A1 WO 2020178891A1 JP 2019008046 W JP2019008046 W JP 2019008046W WO 2020178891 A1 WO2020178891 A1 WO 2020178891A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current
inverter
phase
value
Prior art date
Application number
PCT/JP2019/008046
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 植村
和徳 畠山
裕一 清水
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021503247A priority Critical patent/JP7150137B2/en
Priority to PCT/JP2019/008046 priority patent/WO2020178891A1/en
Publication of WO2020178891A1 publication Critical patent/WO2020178891A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors

Definitions

  • the present invention relates to a motor drive device and a refrigeration cycle application device.
  • Patent Document 1 a plurality of actuators (for example, motors) are connected in parallel to one drive unit, and the drive unit is controlled so that a drive signal capable of driving the plurality of actuators is generated.
  • actuators for example, motors
  • the drive unit is controlled so that a drive signal capable of driving the plurality of actuators is generated.
  • Patent Document 1 drives a plurality of actuators by one drive means, consideration is given to ensuring robustness to the operating environment of the plurality of actuators connected in parallel. Has not been done.
  • the motors connected in parallel have the same specifications, if the temperature inside the motor differs depending on the environment in which they are installed, for example, the induced voltage determined by the electric resistance value of the stator windings and the permanent magnet magnetic flux of the rotor Variations occur in motor constants such as constants or inductance values.
  • the temperature dependence of the phase resistance of the motor constants will be described.
  • the temperature dependence of the electrical resistivity ⁇ is represented by the following formula (1). Since the temperature coefficient ⁇ in the formula (1) is larger than “0”, the phase resistance changes depending on the temperature rise. It is known to grow. Even if the motor currents are the same, if the phase resistance increases, the Joule loss in the winding increases, and the internal temperature of the motor rises. Then, the motor phase resistance is further increased and the internal temperature is further increased.
  • the induced voltage constant ⁇ f is a parameter that depends on the magnetic flux density of the permanent magnet of the rotor, but the magnetic flux density of the permanent magnet also depends on the temperature. Although the temperature coefficient varies depending on the material of the permanent magnet, the magnetic flux density basically decreases as the temperature rises. Therefore, the induced voltage constant ⁇ f is a parameter that decreases as the temperature rises, but when the motor output torque ⁇ m is constant, the current value tends to increase from the following equation (2). Therefore, from the motor output torque ⁇ m and the induced voltage constant ⁇ f , the Joule loss due to the winding resistance increases as the temperature rises. Therefore, the same tendency as the above-mentioned temperature coefficient of motor phase resistance is obtained.
  • the motor constants of the motors connected in parallel are different, and the voltage output from the inverter is common to each motor. Even if the current minimum advance angle control satisfying the equation (3) is applied to one of the existing motors, the other motors will operate at an operating point different from the minimum current point. Since the internal temperature is stable in a state where heat generation and heat dissipation are balanced by the heat dissipation capacity (eg, thermal resistance to air) or heat capacity of the motor, the increase/decrease tendency of the motor current is similarly stabilized by a certain constant internal temperature balance. However, in each of the motors connected in parallel, an imbalance occurs in the electric current and the internal temperature. In this case, in the motor having the highest internal temperature, there is a possibility of approaching or exceeding the limit temperature of the insulating material of the winding, which makes it difficult to secure reliability as a motor drive device.
  • the heat dissipation capacity eg, thermal resistance to air
  • the motor drive device is connected to a first motor and a second motor having a permanent magnet in a rotor, and is connected to an inverter that drives the first motor and the second motor, and the first motor.
  • a first motor current which is a flowing motor current
  • a current detecting unit which detects a second motor current, which is a motor current flowing through the second motor, and wherein the inverter is one of the first motor and the second motor.
  • the first motor and the second motor are driven so that the current value of the motor current flowing through the control target motor, which is the motor having the larger current value, becomes smaller.
  • FIG. 1 It is a circuit diagram which shows schematic the motor drive device which concerns on Embodiment 1 and 2. It is a functional block diagram which shows the structure of the control part in Embodiments 1 and 2.
  • (A) to (c) are diagrams showing the operation of the PWM signal generation unit of FIG. It is a graph which shows the current value of the motor current of the 1st motor, and the current value of the motor current of the 2nd motor. It is a flowchart which shows operation
  • It is a circuit block diagram of the heat pump apparatus which concerns on Embodiment 3. It is a Moriel diagram about the state of the refrigerant of the heat pump apparatus shown in FIG.
  • FIG. 1 is a circuit diagram schematically showing a motor drive device 100 according to the first embodiment.
  • the motor drive device 100 is for driving the first motor 41 and the second motor 42.
  • the 1st motor 41 and the 2nd motor 42 are permanent magnet synchronous motors which have a permanent magnet in a rotor.
  • the illustrated motor drive device 100 includes a rectifier 2, a smoothing unit 3, an inverter 4, an inverter current detection unit 5, a motor current detection unit 6, an input voltage detection unit 7, a connection switching unit 8, and a control unit. And 10.
  • the rectifier 2 rectifies the AC power from the AC power supply 1 to generate DC power.
  • the smoothing portion 3 is composed of a capacitor or the like, smoothes the DC power from the rectifier 2, and supplies it to the inverter 4.
  • the AC power supply 1 is a single-phase power supply in the example of FIG. 2, but may be a three-phase power supply. If the AC power supply 1 is three-phase, a three-phase rectifier is also used as the rectifier 2.
  • an aluminum electrolytic capacitor having a large capacitance is generally used, but a film capacitor having a long life may be used. Further, a capacitor having a small electrostatic capacity may be used to suppress the harmonic current of the current flowing through the AC power supply 1.
  • a reactor (not shown) may be inserted between the AC power supply 1 and the smoothing portion 3 in order to suppress the harmonic current or improve the power factor.
  • the inverter 4 receives the voltage of the smoothing unit 3 as an input and outputs three-phase AC power with variable frequency and voltage value.
  • a first motor 41 and a second motor 42 are connected in parallel to the output of the inverter 4, and the inverter 4 drives the first motor 41 and the second motor 42. Specifically, the inverter 4 drives the first motor 41 and the second motor 42 by applying a three-phase AC voltage to the first motor 41 and the second motor 42.
  • the inverter 4 generates a three-phase AC voltage by switching the DC voltage with a plurality of switching elements.
  • Each of the plurality of switching elements is preferably a semiconductor switching element.
  • the semiconductor switching element constituting the inverter 4 an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) is often used.
  • a freewheeling diode (not shown) may be connected in parallel with the semiconductor switching element for the purpose of suppressing surge voltage due to switching of the semiconductor switching element. You may use the parasitic diode of a semiconductor switching element as a free wheeling diode. In the case of a MOSFET, it is possible to realize the same function as that of a free wheeling diode by turning on the MOSFET at the timing of circulation.
  • the material constituting the semiconductor switching element is not limited to silicon Si, and wide bandgap semiconductors such as silicon carbide SiC, gallium nitride GaN, gallium oxide Ga 2 O 3 , and diamond can be used. By using a semiconductor, low loss and high speed switching can be realized.
  • the connection switching unit 8 switches the connection state between at least one of the first motor 41 and the second motor 42 and the inverter 4 between connection and disconnection.
  • the connection switching unit 8 includes three opening/closing units 9 in the illustrated example.
  • the opening/closing unit 9 can connect or disconnect the second motor 42 and the inverter 4, and by opening/closing the opening/closing unit 9, it is possible to switch the number of motors to be operated at the same time.
  • an electromagnetic contactor such as a mechanical relay or a contactor may be used instead of the semiconductor switching element. In short, any one may be used as long as it has a similar function. Similar to the above, the semiconductor switching element can realize low loss and high speed switching by using a wide band gap semiconductor.
  • connection switching unit 8 is provided between the second motor 42 and the inverter 4, but the first embodiment is not limited to such an example. Although not shown, a connection switching unit may be provided between the first motor 41 and the inverter 4. Further, a connection switching unit may be provided both between the second motor 42 and the inverter 4 and between the first motor 41 and the inverter 4.
  • connection switching unit 8 may be provided between each of all the motors and the inverter 4.
  • a connection switching unit similar to the connection switching unit 8 may be provided between the inverter 4 and only some of the motors.
  • the inverter current detector 5 detects the current flowing through the inverter 4.
  • the inverter current detector 5 the resistance R u, each into three switching elements of the lower arm of inverter 4 connected in series, R v, the voltage across V Ru of R w, V Rv, the V Rw based on, inverter current i U_all a current of the three phases of the inverter 4, i v_all, i w_all are obtained, respectively.
  • the motor current detector 6 detects the current of the first motor 41.
  • the motor current detection unit 6 includes three current transformers that respectively detect the phase currents iu_m , iv_m , and iw_m that are the currents of the three phases.
  • the inverter current detection unit 5 and the motor current detection unit 6 constitute a current detection unit that detects the motor current flowing through the first motor 41 and the second motor 42.
  • the motor current flowing through the first motor 41 is also referred to as a first motor current
  • the motor current flowing through the second motor 42 is also referred to as a second motor current.
  • the input voltage detection unit 7 detects the DC bus voltage V dc , which is the input voltage of the inverter 4.
  • the control unit 10 is based on the current value of the current detected by the inverter current detection unit 5, the current value of the current detected by the motor current detection unit 6, and the voltage value of the voltage detected by the input voltage detection unit 7. , And outputs a signal for operating the inverter 4.
  • the inverter current detection unit 5 detects the current of each of the three phases of the inverter 4 by the three resistors connected in series with the switching element of the lower arm of the inverter 4, but instead The current of each of the three phases of the inverter 4 may be detected by a resistor connected between the common connection point of the switching elements of the lower arm and the negative electrode of the smoothing unit 3.
  • a motor current detection unit that detects the current of the second motor 42 may be provided.
  • the motor current detection unit 6 and the motor current detection unit that detects the current of the second motor 42 constitute a current detection unit that detects the motor current flowing through the first motor 41 and the second motor 42.
  • a Hall element may be used for detecting the motor current, and a configuration for calculating the current value from the voltage across the resistor may be used.
  • a current transformer, a Hall element, or the like may be used instead of the configuration in which the current value is calculated from the voltage across the resistor.
  • the control unit 10 can be realized by a processing circuit.
  • the processing circuit may be configured by dedicated hardware, may be configured by software, or may be configured by a combination of hardware and software.
  • the control unit 10 is configured with a microcomputer including a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and the like.
  • FIG. 2 is a functional block diagram showing the configuration of the control unit 10.
  • the control unit 10 includes an operation command unit 11, a subtraction unit 12, coordinate conversion units 13m and 13l, speed estimation units 14m and 14l, integration units 15m and 15l, and a motor control unit 16. It has a pulsation compensation control unit 17, a coordinate conversion unit 18, a PWM signal generation unit 19, and an advance angle correction unit 20.
  • the operation command unit 11 generates and outputs a motor rotation speed command value ⁇ m * .
  • the operation command unit 11 also generates and outputs a switching control signal S w for controlling the connection switching unit 8.
  • the subtraction unit 12 subtracts the phase currents i u_m , i v_m , and i w_m of the first motor 41 from the phase currents i u_all , i v_all , and i w_all of the inverter 4 detected by the inverter current detection unit 5 to generate the second current.
  • the phase currents iu_sl , iv_sl , and iw_sl of the motor 42 are obtained .
  • the coordinate conversion unit 13 m coordinates the phase currents i u_m , iv_m , and i w_m of the first motor 41 from the stationary three-phase coordinate system to the rotating two-phase coordinate system by using the phase estimation value ⁇ m of the first motor 41 described later. After conversion, the dq axis currents i d_m and i q_m of the first motor 41 are obtained . It can be said that the estimated phase value ⁇ m is a magnetic pole position estimated value of the first motor 41.
  • Coordinate conversion unit 13l the phase current i U_sl of the second motor 42 using the phase estimate theta sl of the second motor 42 described later, i V_sl, coordinates the rotation two-phase coordinate system i W_sl from the stationary three-phase coordinate system The conversion is performed to obtain the dq-axis currents i d — sl and i q — sl of the second motor 42. It can be said that the phase estimated value ⁇ sl is a magnetic pole position estimated value of the second motor 42.
  • the first velocity estimation unit 14m obtains the rotation speed estimation value ⁇ m of the first motor 41 based on the dq axis currents i d_m and i q_m and the dq axis voltage command values v d * and v q * described later.
  • the second velocity estimation unit 14l sets the rotation speed estimation value ⁇ sl of the second motor 42 based on the dq axis currents i d_sl and i q_sl and the dq axis voltage command values v d * and v q * described later.
  • the integrator 15m integrates the rotation speed estimation value ⁇ m of the first motor 41 to obtain the phase estimation value ⁇ m of the first motor 41.
  • the integrating unit 15l obtains the phase estimated value ⁇ sl of the second motor 42 by integrating the rotation speed estimated value ⁇ sl of the second motor 42.
  • the method shown in Japanese Patent No. 4672236 can be used, but any method can be used as long as the rotation speed and the phase can be estimated. May be.
  • a method of directly detecting the rotation speed or the phase may be used.
  • the motor control unit 16 is based on the dq-axis currents i d_m and i q_m of the first motor 41, the estimated rotation speed ⁇ m of the first motor 41, and the pulsation compensation current command value isl * described later. Axis voltage command values v d * and v q * are calculated.
  • the coordinate conversion unit 18 is based on the phase estimation value ⁇ m of the first motor 41, the dq-axis voltage command values v d * and v q *, and the advance angle correction value ⁇ 'from the advance angle correction unit 20 described later.
  • the applied voltage phase ⁇ v is obtained.
  • the coordinate conversion unit 18 converts the dq-axis voltage command values v d * and v q * from the rotating two-phase coordinate system to the stationary three-phase coordinate system based on the applied voltage phase ⁇ v , and the stationary three-phase coordinates.
  • the voltage command values v u * , v v * , v w * on the system are obtained.
  • the applied voltage phase ⁇ v is the lead phase angle ⁇ f obtained by the following equation (4) from, for example, the dq axis voltage command values v d * and v q * and the advance angle correction value ⁇ '. It is obtained by adding to the estimated phase value ⁇ m of the motor 41.
  • phase estimation value ⁇ m An example of the phase estimation value ⁇ m , the lead phase angle ⁇ f , and the applied voltage phase ⁇ v is shown in FIG. 3A, and the voltage command values v u * , v v * , v w obtained by the coordinate conversion unit 18.
  • * An example of * is shown in FIG.
  • the PWM signal generation unit 19 has the input voltage V dc and the voltage command values v u * , v v * , v w *, and the PWM signals UP, VP, WP, UN, VN, WN shown in FIG. 3 (c). To generate.
  • the PWM signals UP, VP, WP, UN, VN, WN are supplied to the inverter 4 and used for controlling the switching elements.
  • the inverter 4 is provided with a drive circuit (not shown) that generates drive signals for driving the switching elements of the corresponding arms based on the PWM signals UP, VP, WP, UN, VN, WN.
  • the inverter 4 By controlling ON/OFF of the switching element of the inverter 4 based on the PWM signals UP, VP, WP, UN, VN, WN, the inverter 4 outputs a three-phase AC voltage with variable frequency and voltage value. , And can be applied to the first motor 41 and the second motor 42.
  • the voltage command values v u * , v v * , and v w * are sine waves in the example shown in FIG. 3 (b), but the voltage command values may be superposed with third harmonics.
  • the waveform may be any as long as it is possible to drive the first motor 41 and the second motor 42.
  • the motor control unit 16 is configured to generate a voltage command based only on the dq-axis currents i d_m , i q_m and the estimated rotation speed ⁇ m of the first motor 41, the first motor 41 is appropriately controlled.
  • the second motor 42 only operates according to the voltage command value generated for the first motor 41, and is in a state where it is not directly controlled.
  • the first motor 41 and the second motor 42 operate in a state in which the phase estimated value ⁇ m and the phase estimated value ⁇ sl are accompanied by an error, and the error is particularly remarkable in the low speed range. If an error occurs, current pulsation of the second motor 42 will occur, and there is a risk of loss of step due to out-of-step of the second motor 42 and heat generation due to excessive current. Further, the circuit may be cut off in response to the excessive current, the motor may stop, and the load cannot be driven.
  • the pulsation compensation control unit 17 is provided to solve such a problem, and includes the q-axis current i q_sl of the second motor 42, the phase estimated value ⁇ m of the first motor 41, and the second motor. Using the phase estimated value ⁇ sl of 42, the pulsation compensation current command value isl * for suppressing the current pulsation of the second motor 42 is output.
  • the pulsation compensation current command value isl * determines the phase relationship between the first motor 41 and the second motor 42 from the phase estimated value ⁇ m of the first motor 41 and the phase estimated value ⁇ sl of the second motor 42.
  • the pulsation of the q-axis current i q_sl corresponding to the torque current of the second motor 42 is determined based on the determination result.
  • the motor control unit 16 performs a proportional integration calculation on the deviation between the rotation speed command value ⁇ m * of the first motor 41 and the rotation speed estimated value ⁇ m of the first motor 41, and q of the first motor 41.
  • the axis current command value Iq_m * is obtained.
  • the d-axis current of the first motor 41 is an exciting current component, and by changing the value, it is possible to control the current phase and drive the first motor 41 with a stronger magnetic flux or a weaker magnetic flux.
  • the pulsation compensation current command value i sl * mentioned above by reflecting the d-axis current command value I D_M of the first motor 41 *, to control the current phase, thereby suppressing the pulsation It is possible to
  • the motor control unit 16 determines the dq-axis voltage command based on the dq-axis current command values I d_m * and I q_m * calculated as described above and the dq-axis currents i d_m and i q_m calculated by the coordinate conversion unit 13 m. The values v d * and v q * are obtained.
  • the d-axis current command value I d_m * and the d-axis current id_m are proportionally integrated to obtain the d-axis voltage command value v d *
  • the q-axis current command value I q_m * and the q-axis The q-axis voltage command value v q * is obtained by performing a proportional-plus-integral calculation on the deviation from the current i q_m .
  • the motor control unit 16 and the pulsation compensation control unit 17 may have any configuration as long as the same functions can be realized.
  • Advance angle correction unit 20 the phase current i u_M of the first motor 41, i v_m, and i w_m, the phase current i U_sl of the second motor 42, i v_sl, as input and i W_sl, advance correction value beta ' Is output.
  • the lead angle correction unit 20 determines that the second motor 42
  • the lead angle correction value ⁇ ′ is specified so that the current value becomes small.
  • the motor current of the second motor 42 tends to decrease, but the first motor 41 moves to an operating point different from the current minimum point due to variations in motor constants. The current tends to increase.
  • the lead angle correction unit 20 sequentially calculates the current lead angle correction value ⁇ ′ so that the current value of the first motor 41 and the current value of the second motor 42 match.
  • the Joule loss in each motor is made uniform, and the internal temperature of each motor is also made uniform. Therefore, imbalance of the internal temperature of the motor can be suppressed, and excessive heat generation in one motor can be suppressed.
  • FIG. 5 is a flowchart showing the operation of the advance angle correction unit 20.
  • the advance angle correction unit 20 determines whether or not the current value of the motor current flowing through the first motor 41 is equal to the current value of the motor current flowing through the second motor 42 (S10).
  • the process proceeds to step S11 and the motor current of the first motor 41
  • the process proceeds to step S12.
  • the lead angle correction unit 20 may use any of the U-phase, V-phase, and W-phase as the motor current, and regarding the format of the current value, the peak value may be used, and the execution value may be used. May be used. However, in the first motor 41 and the second motor 42, the phases and types of currents to be compared are the same.
  • step S11 the advance angle correction unit 20 does not correct the advance angle.
  • the lead angle correction unit 20 sets the lead angle correction value ⁇ ′ to “0”.
  • the first motor 41 and the second motor 42 are driven at the operating point that is the minimum current point of the first motor 41.
  • step S12 the lead angle correction unit 20 determines whether or not the current value of the motor current flowing through the first motor 41 is larger than the current value of the motor current flowing through the second motor 42.
  • the process proceeds to step S13, and the current of the motor current of the first motor 41.
  • the process proceeds to step S14.
  • step S13 the lead angle correction unit 20 determines the first motor 41 as the control target motor. Then, the process proceeds to step S15.
  • step S14 since the current value of the motor current flowing through the second motor 42 is larger than the current value of the motor current flowing through the first motor 41, the advance angle correction unit 20 controls the second motor 42. Determine as a motor. Then, the process proceeds to step S15.
  • step S15 the advance angle correction unit 20 specifies the advance angle correction value ⁇ 'so that the current value of the motor current flowing through the controlled target motor becomes small.
  • the lead angle correction unit 20 may specify the lead angle correction value ⁇ ′ by using a search method such as a hill climbing method. Specifically, the advance angle correction unit 20 confirms the increase or decrease in the current value of the motor current with respect to the operation of the advance angle correction value ⁇ ′ from the current value of the motor current and the advance angle correction value ⁇ ′ in the past control cycle. Then, the advance angle correction value ⁇ ′ may be specified so that the current value of the motor current of the control target motor tends to decrease. It should be noted that the lead angle correction unit 20 does not have to use the above-described exploratory method as long as the lead angle correction value ⁇ ′ with which the current value of the motor current of the control target motor tends to decrease is obtained.
  • the coordinate conversion unit 18 determines the lead phase angle ⁇ f obtained by the above equation (4) as the phase estimated value ⁇ m of the first motor 41. To calculate the applied voltage phase ⁇ v .
  • FIG. 6 is a vector diagram for explaining the advance angle correction value ⁇ 'and the advance phase angle ⁇ f . tan -1 (v q_m * / v d_m * ) determines the declination of the d-axis voltage command value v d_m * and the q-axis voltage command value v q_m * output by the inverter 4 in order to control the first motor 41. It represents.
  • FIG. 6 shows a case where the position estimated value ⁇ sl of the second motor 42 has a lag phase with respect to the rotation position estimated value ⁇ m of the first motor 41.
  • the advance angle that minimizes the current is virtually defined as tan ⁇ 1 (v q_sl * /v d_sl * ).
  • the advance angle is tan -1 (v q_m * / v d_m * ) at which the first motor 41 has the minimum current advance angle, the advance is excessive with respect to the second motor 42.
  • the current value of the motor current of the second motor 42 becomes larger than the current value of the motor current of the first motor 41.
  • the lead angle correction value ⁇ ′ is specified on the delay side with respect to the lead angle tan ⁇ 1 (v q_m * /v d_m * ).
  • the inverter 4 operates when the current value of the motor current flowing through the first motor 41 is different from the current value of the motor current flowing through the second motor 42.
  • the first motor 41 and the second motor 42 are driven so that the current value of the motor current flowing through the control target motor, which is the motor having the larger current value, becomes smaller. be able to.
  • control unit 10 controls the inverter 4 so that the current value of the motor current flowing through the controlled motor is reduced by changing the phase of the three-phase AC voltage output from the inverter 4. Specifically, the control unit 10 flows to the controlled target motor by correcting the lead phase angle in the applied voltage phase for calculating the voltage command value used to generate the PWM signal output to the inverter 4. The current value of the motor current is reduced.
  • FIG. 7 an operation example of the first motor 41 and the second motor 42 will be described with reference to FIG. 7.
  • the opening/closing unit 9 of the connection switching unit 8 is turned off to drive only the first motor 41, and then the inverter 4 is once stopped. Then, the case where the opening/closing section 9 of the connection switching section 8 is turned on and the inverter 4 is started will be described.
  • the control unit 10 controls so that the current flowing through each motor becomes uniform. As a result, the Joule loss generated in the first motor 41 and the second motor 42 can be made uniform, and excessive heat generation inside the motor can be suppressed.
  • the first embodiment it is possible to correct the imbalance of the motor current between the first motor 41 and the second motor 42 connected in parallel, and suppress the imbalance. Therefore, since the imbalance of Joule loss due to the motor current can be suppressed, the heat generation of the motor and the imbalance of the internal temperature of the motor can be suppressed.
  • the motor drive device 200 includes a rectifier 2, a smoothing unit 3, an inverter 4, an inverter current detection unit 5, a motor current detection unit 6, and an input.
  • the voltage detection unit 7, the connection switching unit 8, and the control unit 21 are provided.
  • the rectifier 2, the smoothing unit 3, the inverter 4, the inverter current detection unit 5, the motor current detection unit 6, the input voltage detection unit 7, and the connection switching unit 8 of the motor drive device 200 according to the second embodiment are the first embodiment. It is the same as the rectifier 2, the smoothing unit 3, the inverter 4, the inverter current detection unit 5, the motor current detection unit 6, the input voltage detection unit 7, and the connection switching unit 8 of the motor drive device 100 according to 1.
  • the control unit 21 in the second embodiment includes an operation command unit 11, a subtraction unit 12, coordinate conversion units 13m and 13l, speed estimation units 14m and 14l, and an integration unit 15m. , 15l, a motor control unit 16, a pulsation compensation control unit 17, a coordinate conversion unit 18, a PWM signal generation unit 19, and an advance angle correction unit 22.
  • the coordinate conversion unit 18 and the PWM signal generation unit 19 are the operation command unit 11, the subtraction unit 12, the coordinate conversion unit 13m, 13l, the speed estimation unit 14m, 14l, the integration unit 15m, 15l of the control unit 10 in the first embodiment.
  • the lead angle correction unit 22 performs substantially the same processing as the lead angle correction unit 20 in the first embodiment, but the criterion for determining that the lead angle correction is not performed is the lead angle correction unit 20 in the first embodiment. Different.
  • the advance correction value ⁇ ' is generated so that the current values of the motor currents of the first motor 41 and the second motor 42 match.
  • the current values of the motor currents of the first motor 41 and the second motor 42 are completely reduced. Is difficult to match. Therefore, the allowable value of the difference between the current values of the motor currents of the first motor 41 and the second motor 42 will be described below.
  • the Electrical Appliance and Material Safety Law stipulates the internal temperature, which is a maximum of 165 ° C.
  • the imbalance of the current value of the motor current in other words, the difference in the current value of the motor current between the motors will be described.
  • the coefficient K ⁇ is generally in the vicinity of ⁇ 0.2 to ⁇ 0.1% / ° C.
  • the lead angle correction unit 22 in the second embodiment determines that the difference between the current value of the motor current of the first motor 41 and the current value of the motor current of the second motor 42 is the first value in step S10 of FIG.
  • the process proceeds to step S11, and when it exceeds 33%, the process proceeds to step S12.
  • the control unit 21 sets the difference between the current value of the motor current flowing through the first motor 41 and the current value of the motor current flowing through the second motor 42 within a predetermined range.
  • the internal temperature of the first motor 41 and the first The internal temperature of the two motors 42 can be kept within a predetermined temperature range.
  • FIG. 8 is a circuit configuration diagram of the heat pump device 900 according to the third embodiment.
  • FIG. 9 is a Mollier diagram for the refrigerant state of the heat pump device 900 shown in FIG.
  • the horizontal axis represents the specific enthalpy and the vertical axis represents the refrigerant pressure.
  • a compressor 901, a heat exchanger 902, an expansion mechanism 903, a receiver 904, an internal heat exchanger 905, an expansion mechanism 906, and a heat exchanger 907 are sequentially connected by piping, and a refrigerant Is provided with a main refrigerant circuit 908.
  • a four-way valve 909 is provided on the discharge side of the compressor 901 so that the circulation direction of the refrigerant can be switched.
  • the heat exchanger 907 has a first portion 907a and a second portion 907b, valves (not shown) are connected to these, and the flow of the refrigerant is controlled according to the load of the heat pump device 900. For example, when the load of the heat pump device 900 is relatively large, the refrigerant flows through both the first portion 907a and the second portion 907b, and when the load of the heat pump device 900 is relatively small, the first portion 907a and the second portion 907a. Refrigerant is flowed only to one of the portions 907b, for example, only to the first portion 907a.
  • the first portion 907a and the second portion 907b are provided with fans 910a and 910b corresponding to the respective portions in the vicinity thereof.
  • the fans 910a and 910b are driven by separate motors.
  • the first motor 41 and the second motor 42 described in the first or second embodiment are used to drive the fans 910a and 910b, respectively.
  • the fan 910a is also referred to as a first fan
  • the fan 910b is also referred to as a second fan.
  • the heat pump device 900 includes an injection circuit 912 that connects between the receiver 904 and the internal heat exchanger 905 to the injection pipe of the compressor 901 by piping.
  • An expansion mechanism 911 and an internal heat exchanger 905 are connected to the injection circuit 912.
  • a water circuit 913 through which water circulates is connected to the heat exchanger 902.
  • the water circuit 913 is connected to a water-using device such as a water heater, a radiator, or a radiator such as floor heating.
  • the heat pump device 900 during the heating operation will be described.
  • the four-way valve 909 is set in the solid line direction.
  • the heating operation includes not only heating used for air conditioning but also heating of water for hot water supply.
  • the gas-phase refrigerant (high temperature and high pressure in the compressor 901) (point 1 in FIG. 9) is discharged from the compressor 901 and is heat-exchanged and liquefied in the heat exchanger 902 which is a condenser and a radiator (FIG. 9). Point 2). At this time, the heat radiated from the refrigerant warms the water circulating in the water circuit 913 and is used for heating or hot water supply.
  • the liquid-phase refrigerant liquefied by the heat exchanger 902 is decompressed by the expansion mechanism 903 and becomes a gas-liquid two-phase state (point 3 in FIG. 9).
  • the refrigerant in the gas-liquid two-phase state in the expansion mechanism 903 is heat-exchanged with the refrigerant sucked into the compressor 901 by the receiver 904, cooled, and liquefied (point 4 in FIG. 9).
  • the liquid-phase refrigerant liquefied by the receiver 904 branches into the main refrigerant circuit 908 and the injection circuit 912 and flows.
  • the liquid-phase refrigerant flowing through the main refrigerant circuit 908 is further cooled by exchanging heat with the refrigerant flowing through the injection circuit 912, which has been decompressed by the expansion mechanism 911 and is in a gas-liquid two-phase state, by the internal heat exchanger 905 (FIG. 9). Point 5).
  • the liquid-phase refrigerant cooled by the internal heat exchanger 905 is decompressed by the expansion mechanism 906 and becomes a gas-liquid two-phase state (point 6 in FIG. 9).
  • the refrigerant in the gas-liquid two-phase state in the expansion mechanism 906 is heat-exchanged with the outside air in the heat exchanger 907 serving as an evaporator and heated (point 7 in FIG. 9). Then, the refrigerant heated by the heat exchanger 907 is further heated by the receiver 904 (point 8 in FIG. 9) and drawn into the compressor 901.
  • the refrigerant flowing through the injection circuit 912 is decompressed by the expansion mechanism 911 (point 9 in FIG. 9) and heat-exchanged by the internal heat exchanger 905 (point 10 in FIG. 9).
  • the gas-liquid two-phase refrigerant (injection refrigerant) that has been heat-exchanged in the internal heat exchanger 905 flows into the compressor 901 from the injection pipe of the compressor 901 in the gas-liquid two-phase state.
  • the refrigerant sucked from the main refrigerant circuit 908 (point 8 in FIG. 9) is compressed and heated to an intermediate pressure (point 11 in FIG. 9).
  • the injection refrigerant (point 10 in FIG. 9) merges with the refrigerant (point 11 in FIG. 9) compressed and heated to the intermediate pressure, and the temperature drops (point 12 in FIG. 9).
  • the refrigerant whose temperature has dropped (point 12 in FIG. 9) is further compressed and heated to become high temperature and high pressure, and is discharged (point 1 in FIG. 9).
  • the opening degree of the expansion mechanism 911 is fully closed. That is, when the injection operation is performed, the opening degree of the expansion mechanism 911 is larger than a certain value, but when the injection operation is not performed, the opening degree of the expansion mechanism 911 is made smaller than the certain value described above. .. As a result, the refrigerant does not flow into the injection pipe of the compressor 901.
  • the opening degree of the expansion mechanism 911 is electronically controlled by a control unit configured by a microcomputer or the like.
  • This cooling operation includes not only cooling used for air conditioning but also cooling of water or freezing of food.
  • the gas-phase refrigerant (high temperature and high pressure in the compressor 901) (point 1 in FIG. 9) is discharged from the compressor 901 and is heat-exchanged and liquefied in the heat exchanger 907 which is a condenser and a radiator (FIG. 9 ).
  • Point 2 The liquid-phase refrigerant liquefied by the heat exchanger 907 is decompressed by the expansion mechanism 906 to be in a gas-liquid two-phase state (point 3 in FIG. 9).
  • the refrigerant in the gas-liquid two-phase state by the expansion mechanism 906 is heat-exchanged by the internal heat exchanger 905, cooled and liquefied (point 4 in FIG. 9).
  • the refrigerant that has become a gas-liquid two-phase state in the expansion mechanism 906 and the liquid-phase refrigerant that has been liquefied in the internal heat exchanger 905 are decompressed in the expansion mechanism 911 to become a gas-liquid two-phase state.
  • Heat is exchanged with the refrigerant (point 9 in FIG. 9).
  • the liquid-phase refrigerant (point 4 in FIG. 9) that has undergone heat exchange in the internal heat exchanger 905 branches into the main refrigerant circuit 908 and the injection circuit 912 and flows.
  • the liquid-phase refrigerant flowing through the main refrigerant circuit 908 is heat-exchanged with the refrigerant sucked into the compressor 901 by the receiver 904 and further cooled (point 5 in FIG. 9).
  • the liquid-phase refrigerant cooled by the receiver 904 is decompressed by the expansion mechanism 903 and becomes a gas-liquid two-phase state (point 6 in FIG. 9).
  • the refrigerant in the gas-liquid two-phase state by the expansion mechanism 903 is heat-exchanged by the heat exchanger 902, which is an evaporator, and is heated (point 7 in FIG. 9).
  • the refrigerant absorbs heat, so that the water circulating in the water circuit 913 is cooled and used for cooling, cooling, freezing, or the like. Then, the refrigerant heated by the heat exchanger 902 is further heated by the receiver 904 (point 8 in FIG. 9) and drawn into the compressor 901.
  • the refrigerant flowing through the injection circuit 912 is depressurized by the expansion mechanism 911 (point 9 in FIG. 9) and heat exchanged by the internal heat exchanger 905 (point 10 in FIG. 9) as described above.
  • the gas-liquid two-phase refrigerant (injection refrigerant) that has undergone heat exchange in the internal heat exchanger 905 flows from the injection pipe of the compressor 901 in the gas-liquid two-phase state.
  • the compression operation in the compressor 901 is the same as that during the heating operation.
  • the opening degree of the expansion mechanism 911 is fully closed to prevent the refrigerant from flowing into the injection pipe of the compressor 901, as in the heating operation.
  • the heat exchanger 902 is described as a heat exchanger such as a plate heat exchanger that exchanges heat between the refrigerant and the water circulating in the water circuit 913.
  • the heat exchanger 902 is not limited to this, and may be a heat exchanger that exchanges heat between the refrigerant and air.
  • the water circuit 913 may not be a circuit in which water circulates, but a circuit in which another fluid circulates.
  • the heat exchanger 907 has the first portion 907a and the second portion 907b, but it is conceivable that the heat exchanger 902 has two portions instead of or in addition to it.
  • the heat exchanger 902 is for exchanging heat between the refrigerant and the air
  • the two parts may each have a fan, and these fans may be driven by separate motors. ..
  • the compressor 901 has a first part (first compression mechanism) and a second part (first part). It is also conceivable to adopt a configuration having two compression mechanisms). In that case, when the load of the heat pump device 900 is relatively large, both the first portion and the second portion perform a compression operation, and when the load of the heat pump device 900 is relatively small, one of the first portion and the second portion. Only, for example, only the first part is controlled to perform the compression operation.
  • the first and second parts of the compressor 901 are provided with separate motors for driving them.
  • the first motor 41 and the second motor 42 described in the first or second embodiment are used to drive the first portion and the second portion, respectively.
  • At least one of the heat exchangers 902 and 907 has two parts and two fans are provided for at least one of the heat exchangers 902 and 907 has been described above.
  • a configuration having a portion of is also conceivable.
  • at least one of the heat exchangers 902 and 907 may have a plurality of parts, a fan is provided corresponding to each part, and a motor is provided corresponding to each fan.
  • the compressor 901 may have a plurality of parts, and a configuration in which a motor is provided corresponding to each part is conceivable. In such a case, it is possible to drive the plurality of motors 41 and 42 with one inverter 4 by using the motor drive devices 100 and 200 described in the first or second embodiment.
  • a plurality of motors 41 and 42 are used by using one inverter 4. Since it is possible to drive the 42, it is possible to reduce the cost and size and weight. Further, by increasing the size of the heat exchangers 902 and 907 by the amount of miniaturization, the heat exchange efficiency is further increased, and it is possible to improve the efficiency.
  • connection switching unit 8 since it is possible to adjust the number of motors to be driven by operating the connection switching unit 8, for example, when performing light load operation, only the first motor 41 is operated and overload is performed. When operating, by operating two motors, the first motor 41 and the second motor 42, it is possible to operate only the minimum necessary number of motors, which can contribute to higher efficiency. ..
  • the first to third embodiments described above are merely examples, and it is possible to combine them with other publicly known techniques, and it is possible to make changes such as omitting a part.
  • the motor drive devices 100 and 200 according to the first and second embodiments can be applied to, for example, the heat pump device 900 according to the third embodiment, but a plurality of permanent magnets are synchronized. It can be applied to any application as long as the motor is driven at the same rotation speed.
  • the motor drive devices 100 and 200 described in the first and second embodiments it is possible to suppress the current imbalance between the motors 41 and 42 that are connected in parallel.
  • the drive reliability of the motors 41 and 42 can be improved.
  • control units 10 and 21 change the phase of the three-phase AC voltage output from the inverter 4, it is possible to easily suppress the current imbalance between the motors 41 and 42 that are connected in parallel.
  • control units 10 and 21 since the control units 10 and 21 only have to correct the lead phase angle in the applied voltage phase for calculating the voltage command value used to generate the PWM signal output to the inverter 4, the control target is easily controlled. The current value of the motor current flowing through the motor can be reduced.
  • the control unit 10 differs between the current value of the motor current of the first motor 41 and the current value of the motor current of the second motor 42, the current value of the motor current flowing through the motor to be controlled in the inverter 4 becomes smaller.
  • the PWM signal to the inverter 4 the first motor 41 and the second motor 42 can be driven so as to have the same motor constant.
  • the control unit 21 causes the inverter 4 to flow to the control target motor.
  • the control unit 21 By giving a PWM signal to the inverter 4 so that the current value of the motor current becomes small, it is possible to prevent the controlled motor from being frequently switched between the first motor 41 and the second motor 42. ..
  • the first motor 41 and the second motor 41 and the second motor 41 are provided with a connection switching unit 8 for switching the connection state between at least one motor of the first motor 41 and the second motor 42 and the inverter 4 between connection and disconnection.
  • the number of motors to be driven can be changed according to the load state of the motor 42.
  • connection switching unit 8 By configuring the connection switching unit 8 with a wide band gap semiconductor, low loss and high speed switching can be realized.
  • connection switching unit 8 is composed of an electromagnetic contactor, so that low cost can be realized.
  • the motor drive device 100 or 200 according to the first or second embodiment to a refrigeration cycle application device, it is possible to improve drive reliability of motors connected in parallel in a heat pump, an air conditioner, or the like.
  • 100, 200 motor drive device 1 AC power supply, 2 rectifier, 3 smoothing part, 4 inverter, 5 inverter current detection part, 6 motor current detection part, 7 input voltage detection part, 8 connection switching part, 9 switching part, 10, 21 control unit, 11 operation command unit, 12 subtraction unit, 13m, 13l coordinate conversion unit, 14m, 14l speed estimation unit, 15m, 15l integration unit, 16 motor control unit, 17 pulsation compensation control unit, 18 coordinate conversion unit, 19 PWM signal generation unit, 20, 22 advance angle correction unit, 41 first motor, 42 second motor, 900 heat pump device, 901 compressor, 902 heat exchanger, 903 expansion mechanism, 904 receiver, 905 internal heat exchanger, 906 Expansion mechanism, 907 heat exchanger, 907a 1st part, 907b 2nd part, 908 main rectifier circuit, 909 four-way valve, 910a, 910b fan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

This motor drive device is provided with: an inverter (4) connected to a first motor (41) and a second motor (42) which have a permanent magnet in a rotor and driving the first motor (41) and the second motor (42); and current detection units (5, 6) for detecting a first motor current that is the motor current flowing through the first motor (41) and a second motor current that is the motor current flowing through the second motor (42). The inverter (4) drives the first motor (41) and the second motor (42) so that the current value of the motor current flowing through a motor to be controlled becomes small, said motor to be controlled being a motor having a larger current value between the first motor (41) and the second motor (42).

Description

モータ駆動装置及び冷凍サイクル適用機器Motor drive device and refrigeration cycle application equipment
 本発明は、モータ駆動装置及び冷凍サイクル適用機器に関する。 The present invention relates to a motor drive device and a refrigeration cycle application device.
 従来から、単一のインバータ装置にて2台以上のPMSM(Permanent Magnet Synchronous Moror)を駆動することが行われている。 Conventionally, a single inverter device has been used to drive two or more PMSMs (Permanent Magnet Synchronous Motors).
 例えば、特許文献1には、複数のアクチュエータ(例えば、モータ)を一つの駆動手段に対して並列に接続し、複数のアクチュエータを駆動可能な駆動信号が生成されるように、駆動手段を制御する技術が記載されている。 For example, in Patent Document 1, a plurality of actuators (for example, motors) are connected in parallel to one drive unit, and the drive unit is controlled so that a drive signal capable of driving the plurality of actuators is generated. The technology is described.
特開2008-148415号公報JP, 2008-148415, A
 しかしながら、特許文献1に記載された技術は、複数のアクチュエータを一つの駆動手段で駆動しているが、並列で接続されている複数のアクチュエータの動作環境に対するロバスト性を確保することに関しては、考慮がなされていない。 However, although the technique described in Patent Document 1 drives a plurality of actuators by one drive means, consideration is given to ensuring robustness to the operating environment of the plurality of actuators connected in parallel. Has not been done.
 例えば、並列に接続されるモータが同一仕様であったとしても、設置される環境等によりモータ内部の温度が異なる場合、例えば、ステータ巻線の電気抵抗値、ロータの永久磁石磁束から決まる誘起電圧定数又はインダクタンス値等のモータ定数にバラツキが発生する。 For example, even if the motors connected in parallel have the same specifications, if the temperature inside the motor differs depending on the environment in which they are installed, for example, the induced voltage determined by the electric resistance value of the stator windings and the permanent magnet magnetic flux of the rotor Variations occur in motor constants such as constants or inductance values.
 ここで、モータ定数のうち相抵抗の温度依存性に関して説明する。
 電気抵抗率ρの温度依存性は、下記の式(1)で表されており、式(1)における温度係数αは、「0」より大きい数値を取るため、温度上昇に応じて相抵抗が大きくなることが知られている。仮にモータ電流が同一電流であったとしても、相抵抗が大きくなると、巻線でのジュール損失は大きくなり、モータの内部温度が上昇することとなる。するとモータ相抵抗は更に大きくなり、内部温度が更に上昇することとなる。
Figure JPOXMLDOC01-appb-M000001
Here, the temperature dependence of the phase resistance of the motor constants will be described.
The temperature dependence of the electrical resistivity ρ is represented by the following formula (1). Since the temperature coefficient α in the formula (1) is larger than “0”, the phase resistance changes depending on the temperature rise. It is known to grow. Even if the motor currents are the same, if the phase resistance increases, the Joule loss in the winding increases, and the internal temperature of the motor rises. Then, the motor phase resistance is further increased and the internal temperature is further increased.
Figure JPOXMLDOC01-appb-M000001
 次に、モータ定数のうち、誘起電圧定数の温度依存性に関して説明する。
 モータが出力するトルクは、一般的に、下記の式(2)に示されるようになることが知られている。ここで、誘起電圧定数Φは、ロータの永久磁石の磁束密度に依存したパラメータであるが、永久磁石の磁束密度にも温度依存性がある。永久磁石の材料により、温度係数が異なるが、基本的に高温になるにつれて、磁束密度が低下する。従って、誘起電圧定数Φは、高温になるにつれて低下するパラメータであるが、モータ出力トルクτを一定とした場合、下記の式(2)より電流値が増加する傾向となる。そのため、モータ出力トルクτと、誘起電圧定数Φとから、高温になるにつれて、巻線抵抗によるジュール損失が増加する。このため、前述のモータ相抵抗温度係数と同様な傾向になる。
Figure JPOXMLDOC01-appb-M000002
Next, of the motor constants, the temperature dependence of the induced voltage constant will be described.
It is known that the torque output by the motor is generally represented by the following equation (2). Here, the induced voltage constant Φ f is a parameter that depends on the magnetic flux density of the permanent magnet of the rotor, but the magnetic flux density of the permanent magnet also depends on the temperature. Although the temperature coefficient varies depending on the material of the permanent magnet, the magnetic flux density basically decreases as the temperature rises. Therefore, the induced voltage constant Φ f is a parameter that decreases as the temperature rises, but when the motor output torque τ m is constant, the current value tends to increase from the following equation (2). Therefore, from the motor output torque τ m and the induced voltage constant Φ f , the Joule loss due to the winding resistance increases as the temperature rises. Therefore, the same tendency as the above-mentioned temperature coefficient of motor phase resistance is obtained.
Figure JPOXMLDOC01-appb-M000002
 ここまで、モータ定数の温度依存性という一般的事象に関して説明してきたが、この事象を特許文献1にて提示されている技術に対して当てはめて説明する。
 一つの駆動手段(例えば、インバータ)に対して並列に接続されるアクチュエータ(例えば、モータ)の設置環境が異なり、モータ毎に駆動前の内部温度が異なる状態を説明する。
 モータ電流が最小となる電流進角βは、一般的に、下記の式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
Up to this point, the general phenomenon of the temperature dependence of the motor constant has been described, but this phenomenon will be described by applying it to the technique presented in Patent Document 1.
A state in which the installation environment of an actuator (for example, a motor) connected in parallel to one driving means (for example, an inverter) is different and the internal temperature before driving is different for each motor will be described.
The current advance angle β 0 that minimizes the motor current is generally expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
 しかしながら、モータ定数の温度依存性より、並列接続されるモータの各々におけるモータ定数が異なる点、またインバータから出力される電圧は各モータに対して共通である点を考慮すると、仮に並列接続されているモータのうち1台に対して式(3)を満たす電流最小進角制御を適用しても、他のモータに対しては最小電流点とは異なる動作点で動作することとなる。モータの放熱能力(例えば、空気に対する熱抵抗)又は熱容量により、発熱と放熱とがバランスした状態で内部温度は安定するため、ある一定の内部温度バランスによりモータ電流の増減傾向は同様に安定する。しかしながら、並列接続されるモータの各々において、電流及び内部温度にアンバランスが発生することとなる。この場合、内部温度が最も高くなるモータにおいては、巻線の絶縁材の限界温度に近接もしくは超過する可能性があり、モータ駆動装置としての信頼性確保が困難となる。 However, considering the temperature dependence of the motor constants, the motor constants of the motors connected in parallel are different, and the voltage output from the inverter is common to each motor. Even if the current minimum advance angle control satisfying the equation (3) is applied to one of the existing motors, the other motors will operate at an operating point different from the minimum current point. Since the internal temperature is stable in a state where heat generation and heat dissipation are balanced by the heat dissipation capacity (eg, thermal resistance to air) or heat capacity of the motor, the increase/decrease tendency of the motor current is similarly stabilized by a certain constant internal temperature balance. However, in each of the motors connected in parallel, an imbalance occurs in the electric current and the internal temperature. In this case, in the motor having the highest internal temperature, there is a possibility of approaching or exceeding the limit temperature of the insulating material of the winding, which makes it difficult to secure reliability as a motor drive device.
 そこで、本発明の一又は複数の態様は、一つのインバータに対して並列に接続されるモータの駆動信頼性を高めることを目的とする。 Therefore, it is an object of one or more aspects of the present invention to improve drive reliability of a motor connected in parallel to one inverter.
 本発明の一態様に係るモータ駆動装置は、回転子に永久磁石を有する第1モータ及び第2モータに接続され、前記第1モータ及び前記第2モータを駆動するインバータと、前記第1モータに流れるモータ電流である第1モータ電流及び前記第2モータに流れるモータ電流である第2モータ電流を検出する電流検出部と、を備え、前記インバータは、前記第1モータ及び前記第2モータの内、電流値の大きい方のモータである制御対象モータに流れるモータ電流の電流値が小さくなるように、前記第1モータ及び前記第2モータを駆動することを特徴とする。 The motor drive device according to one aspect of the present invention is connected to a first motor and a second motor having a permanent magnet in a rotor, and is connected to an inverter that drives the first motor and the second motor, and the first motor. A first motor current, which is a flowing motor current, and a current detecting unit, which detects a second motor current, which is a motor current flowing through the second motor, and wherein the inverter is one of the first motor and the second motor. The first motor and the second motor are driven so that the current value of the motor current flowing through the control target motor, which is the motor having the larger current value, becomes smaller.
 本発明の一又は複数の態様によれば、一つのインバータに対して並列に接続されるモータの駆動信頼性を高めることができる。 According to one or more aspects of the present invention, it is possible to improve the drive reliability of the motors connected in parallel to one inverter.
実施の形態1及び2に係るモータ駆動装置を概略的に示す回路図である。It is a circuit diagram which shows schematic the motor drive device which concerns on Embodiment 1 and 2. 実施の形態1及び2における制御部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the control part in Embodiments 1 and 2. (a)~(c)は、図2のPWM信号生成部の動作を表す図である。(A) to (c) are diagrams showing the operation of the PWM signal generation unit of FIG. 第1モータのモータ電流の電流値と、第2モータのモータ電流の電流値とを示すグラフである。It is a graph which shows the current value of the motor current of the 1st motor, and the current value of the motor current of the 2nd motor. 進角補正部での動作を示すフローチャートである。It is a flowchart which shows operation|movement in an advance angle correction|amendment part. 進角補正値及び進み位相角を説明するためのベクトル図である。It is a vector figure for demonstrating advance angle correction value and advance phase angle. 第1モータ及び第2モータの動作例について説明する。An operation example of the first motor and the second motor will be described. 実施の形態3に係るヒートポンプ装置の回路構成図である。It is a circuit block diagram of the heat pump apparatus which concerns on Embodiment 3. 図8に示すヒートポンプ装置の冷媒の状態についてのモリエル線図である。It is a Moriel diagram about the state of the refrigerant of the heat pump apparatus shown in FIG.
 以下に添付図面を参照し、実施の形態に係るモータ駆動装置及びそれを備えた冷凍サイクル適用機器について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。 A motor drive device according to an embodiment and a refrigeration cycle application device including the same will be described below with reference to the accompanying drawings. The present invention is not limited to the embodiments described below.
実施の形態1.
 図1は、実施の形態1に係るモータ駆動装置100を概略的に示す回路図である。
 このモータ駆動装置100は、第1モータ41及び第2モータ42を駆動するためのものである。ここでは、第1モータ41及び第2モータ42は、回転子に永久磁石を有する永久磁石同期モータである。
Embodiment 1.
FIG. 1 is a circuit diagram schematically showing a motor drive device 100 according to the first embodiment.
The motor drive device 100 is for driving the first motor 41 and the second motor 42. Here, the 1st motor 41 and the 2nd motor 42 are permanent magnet synchronous motors which have a permanent magnet in a rotor.
 図示のモータ駆動装置100は、整流器2と、平滑部3と、インバータ4と、インバータ電流検出部5と、モータ電流検出部6と、入力電圧検出部7と、接続切替部8と、制御部10とを備える。 The illustrated motor drive device 100 includes a rectifier 2, a smoothing unit 3, an inverter 4, an inverter current detection unit 5, a motor current detection unit 6, an input voltage detection unit 7, a connection switching unit 8, and a control unit. And 10.
 整流器2は、交流電源1からの交流電力を整流して直流電力を生成する。
 平滑部3は、コンデンサ等で構成され、整流器2からの直流電力を平滑してインバータ4に供給する。
The rectifier 2 rectifies the AC power from the AC power supply 1 to generate DC power.
The smoothing portion 3 is composed of a capacitor or the like, smoothes the DC power from the rectifier 2, and supplies it to the inverter 4.
 なお、交流電源1は、図2の例では単相であるが、三相電源でもよい。交流電源1が三相であれば、整流器2としても三相の整流器が用いられる。 The AC power supply 1 is a single-phase power supply in the example of FIG. 2, but may be a three-phase power supply. If the AC power supply 1 is three-phase, a three-phase rectifier is also used as the rectifier 2.
 平滑部3のコンデンサとしては、一般的には静電容量の大きなアルミ電解コンデンサを用いることが多いが、長寿命であるフィルムコンデンサを用いてもよい。さらに静電容量の小さなコンデンサを用いることで、交流電源1に流れる電流の高調波電流を抑制するよう構成してもよい。 As the capacitor of the smoothing portion 3, an aluminum electrolytic capacitor having a large capacitance is generally used, but a film capacitor having a long life may be used. Further, a capacitor having a small electrostatic capacity may be used to suppress the harmonic current of the current flowing through the AC power supply 1.
 また、交流電源1から平滑部3までの間に高調波電流の抑制或いは力率の改善のためにリアクトル(図示せず)を挿入してもよい。 Further, a reactor (not shown) may be inserted between the AC power supply 1 and the smoothing portion 3 in order to suppress the harmonic current or improve the power factor.
 インバータ4は、平滑部3の電圧を入力とし、周波数及び電圧値が可変の三相交流電力を出力する。
 インバータ4の出力には、第1モータ41と、第2モータ42とが並列に接続されており、インバータ4は、第1モータ41及び第2モータ42を駆動する。具体的には、インバータ4は、第1モータ41及び第2モータ42に三相交流電圧を印加することで、第1モータ41及び第2モータ42を駆動する。
The inverter 4 receives the voltage of the smoothing unit 3 as an input and outputs three-phase AC power with variable frequency and voltage value.
A first motor 41 and a second motor 42 are connected in parallel to the output of the inverter 4, and the inverter 4 drives the first motor 41 and the second motor 42. Specifically, the inverter 4 drives the first motor 41 and the second motor 42 by applying a three-phase AC voltage to the first motor 41 and the second motor 42.
 インバータ4は、複数のスイッチング素子により直流電圧をスイッチングすることで三相交流電圧を生成する。複数のスイッチング素子の各々は、半導体スイッチング素子であることが望ましい。ここで、インバータ4を構成する半導体スイッチング素子としては、IGBT(Insulated Gate Bipolar Transistor)、又はMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を用いることが多い。 The inverter 4 generates a three-phase AC voltage by switching the DC voltage with a plurality of switching elements. Each of the plurality of switching elements is preferably a semiconductor switching element. Here, as the semiconductor switching element constituting the inverter 4, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) is often used.
 なお、半導体スイッチング素子のスイッチングによるサージ電圧を抑制する目的で環流ダイオード(図示せず)を半導体スイッチング素子に並列に接続した構成としてもよい。
 半導体スイッチング素子の寄生ダイオードを還流ダイオードとして用いてもよい。MOSFETの場合は環流のタイミングでMOSFETをON状態とすることにより還流ダイオードと同様の機能を実現することが可能である。
A freewheeling diode (not shown) may be connected in parallel with the semiconductor switching element for the purpose of suppressing surge voltage due to switching of the semiconductor switching element.
You may use the parasitic diode of a semiconductor switching element as a free wheeling diode. In the case of a MOSFET, it is possible to realize the same function as that of a free wheeling diode by turning on the MOSFET at the timing of circulation.
 半導体スイッチング素子を構成する材料は、ケイ素Siに限定されず、ワイドバンドギャップ半導体である炭化ケイ素SiC、窒化ガリウムGaN、酸化ガリウムGa、ダイヤモンド等を用いることが可能であり、ワイドバンドギャップ半導体を用いることで、低損失化及び高速スイッチング化を実現することが可能となる。 The material constituting the semiconductor switching element is not limited to silicon Si, and wide bandgap semiconductors such as silicon carbide SiC, gallium nitride GaN, gallium oxide Ga 2 O 3 , and diamond can be used. By using a semiconductor, low loss and high speed switching can be realized.
 接続切替部8は、第1モータ41及び第2モータ42の内の少なくとも1台のモータとインバータ4との接続状態を、接続及び切断との間で切り替える。
 接続切替部8は、図示の例では三つの開閉部9から成る。開閉部9は、第2モータ42と、インバータ4とを接続したり切り離したりすることが可能であり、開閉部9の開閉により同時に運転されるモータの台数を切替えることができる。
 開閉部9としては、半導体スイッチング素子の代わりに、機械的なリレー、コンタクタ等の電磁接触器が用いられてもよい。要するに、同様の機能を有するものであれば何が用いられてもよい。半導体スイッチング素子は、上記と同様に、ワイドバンドギャップ半導体を用いることで、低損失化及び高速スイッチング化を実現することが可能となる。
The connection switching unit 8 switches the connection state between at least one of the first motor 41 and the second motor 42 and the inverter 4 between connection and disconnection.
The connection switching unit 8 includes three opening/closing units 9 in the illustrated example. The opening/closing unit 9 can connect or disconnect the second motor 42 and the inverter 4, and by opening/closing the opening/closing unit 9, it is possible to switch the number of motors to be operated at the same time.
As the opening/closing unit 9, an electromagnetic contactor such as a mechanical relay or a contactor may be used instead of the semiconductor switching element. In short, any one may be used as long as it has a similar function. Similar to the above, the semiconductor switching element can realize low loss and high speed switching by using a wide band gap semiconductor.
 図示の例では、第2モータ42とインバータ4との間に接続切替部8が設けられているが、実施の形態1は、このような例に限定されない。
 図示してはいないが、第1モータ41とインバータ4との間に接続切替部が設けられてもよい。また、第2モータ42とインバータ4との間、及び、第1モータ41とインバータ4との間の両方に接続切替部が設けられてもよい。
In the illustrated example, the connection switching unit 8 is provided between the second motor 42 and the inverter 4, but the first embodiment is not limited to such an example.
Although not shown, a connection switching unit may be provided between the first motor 41 and the inverter 4. Further, a connection switching unit may be provided both between the second motor 42 and the inverter 4 and between the first motor 41 and the inverter 4.
 図示の例では、インバータ4に2台のモータが接続されているが、3台以上のモータがインバータ4に接続されていてもよい。3台以上のモータをインバータ4に接続する場合、接続切替部8と同様の接続切替部を全てのモータの各々とインバータ4の間に設けてもよい。代わりに、一部のモータに対してのみ、インバータ4との間に接続切替部8と同様の接続切替部が設けられてもよい。 In the illustrated example, two motors are connected to the inverter 4, but three or more motors may be connected to the inverter 4. When connecting three or more motors to the inverter 4, a connection switching unit similar to the connection switching unit 8 may be provided between each of all the motors and the inverter 4. Alternatively, a connection switching unit similar to the connection switching unit 8 may be provided between the inverter 4 and only some of the motors.
 インバータ電流検出部5は、インバータ4に流れる電流を検出する。図示の例では、インバータ電流検出部5は、インバータ4の三つの下アームのスイッチング素子にそれぞれ直列に接続された抵抗R、R、Rの両端電圧VRu、VRv、VRwに基づいて、インバータ4の三つの相の電流であるインバータ電流iu_all、iv_all、iw_allがそれぞれ求められる。 The inverter current detector 5 detects the current flowing through the inverter 4. In the illustrated example, the inverter current detector 5, the resistance R u, each into three switching elements of the lower arm of inverter 4 connected in series, R v, the voltage across V Ru of R w, V Rv, the V Rw based on, inverter current i U_all a current of the three phases of the inverter 4, i v_all, i w_all are obtained, respectively.
 モータ電流検出部6は、第1モータ41の電流を検出する。モータ電流検出部6は、三つの相の電流である相電流iu_m、iv_m、iw_mをそれぞれ検出する三つのカレントトランスを含む。
 後述するように、インバータ電流検出部5及びモータ電流検出部6により、第1モータ41及び第2モータ42に流れるモータ電流を検出する電流検出部が構成される。なお、第1モータ41に流れるモータ電流を第1モータ電流、第2モータ42に流れるモータ電流を第2モータ電流ともいう。
The motor current detector 6 detects the current of the first motor 41. The motor current detection unit 6 includes three current transformers that respectively detect the phase currents iu_m , iv_m , and iw_m that are the currents of the three phases.
As will be described later, the inverter current detection unit 5 and the motor current detection unit 6 constitute a current detection unit that detects the motor current flowing through the first motor 41 and the second motor 42. The motor current flowing through the first motor 41 is also referred to as a first motor current, and the motor current flowing through the second motor 42 is also referred to as a second motor current.
 入力電圧検出部7は、インバータ4の入力電圧である直流母線電圧Vdcを検出する。 The input voltage detection unit 7 detects the DC bus voltage V dc , which is the input voltage of the inverter 4.
 制御部10は、インバータ電流検出部5で検出された電流の電流値、モータ電流検出部6で検出された電流の電流値、及び入力電圧検出部7で検出された電圧の電圧値に基づいて、インバータ4を動作させるための信号を出力する。 The control unit 10 is based on the current value of the current detected by the inverter current detection unit 5, the current value of the current detected by the motor current detection unit 6, and the voltage value of the voltage detected by the input voltage detection unit 7. , And outputs a signal for operating the inverter 4.
 なお、上記の例では、インバータ電流検出部5が、インバータ4の下アームのスイッチング素子に直列に接続された三つの抵抗により、インバータ4の三つの相のそれぞれの電流を検出するが、代わりに、下アームのスイッチング素子の共通接続点と平滑部3の負側電極との間に接続された抵抗により、インバータ4の三つの相のそれぞれの電流を検出するものであってもよい。 In the above example, the inverter current detection unit 5 detects the current of each of the three phases of the inverter 4 by the three resistors connected in series with the switching element of the lower arm of the inverter 4, but instead The current of each of the three phases of the inverter 4 may be detected by a resistor connected between the common connection point of the switching elements of the lower arm and the negative electrode of the smoothing unit 3.
 また、第1モータ41の電流を検出するモータ電流検出部6に加えて、第2モータ42の電流を検出するモータ電流検出部が設けられてもよい。この場合、モータ電流検出部6及び第2モータ42の電流を検出するモータ電流検出部により、第1モータ41及び第2モータ42に流れるモータ電流を検出する電流検出部が構成される。 Further, in addition to the motor current detection unit 6 that detects the current of the first motor 41, a motor current detection unit that detects the current of the second motor 42 may be provided. In this case, the motor current detection unit 6 and the motor current detection unit that detects the current of the second motor 42 constitute a current detection unit that detects the motor current flowing through the first motor 41 and the second motor 42.
 モータの電流の検出には、カレントトランスを用いる代わりに、ホール素子が用いられてもよく、抵抗の両端電圧から電流値を算出する構成が用いられてもよい。
 同様に、インバータ電流の検出には、抵抗の両端電圧から電流値を算出する構成の代わりに、カレントトランス、ホール素子等が用いられてもよい。
Instead of using the current transformer, a Hall element may be used for detecting the motor current, and a configuration for calculating the current value from the voltage across the resistor may be used.
Similarly, for detecting the inverter current, a current transformer, a Hall element, or the like may be used instead of the configuration in which the current value is calculated from the voltage across the resistor.
 制御部10は、処理回路で実現可能である。処理回路は、専用のハードウェアで構成されていてもよく、ソフトウェアで構成されていてもよく、ハードウェアとソフトウェアとの組合せで構成されていてもよい。ソフトウェアで構成される場合、制御部10は、CPU(Central Processing Unit)を備えたマイクロコンピュータ、DSP(Digital Signal Processor)等で構成される。 The control unit 10 can be realized by a processing circuit. The processing circuit may be configured by dedicated hardware, may be configured by software, or may be configured by a combination of hardware and software. When configured with software, the control unit 10 is configured with a microcomputer including a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and the like.
 図2は制御部10の構成を示す機能ブロック図である。
 図示のように、制御部10は、運転指令部11と、減算部12と、座標変換部13m、13lと、速度推定部14m、14lと、積分部15m、15lと、モータ制御部16と、脈動補償制御部17と、座標変換部18と、PWM信号生成部19と、進角補正部20とを有する。
FIG. 2 is a functional block diagram showing the configuration of the control unit 10.
As shown in the figure, the control unit 10 includes an operation command unit 11, a subtraction unit 12, coordinate conversion units 13m and 13l, speed estimation units 14m and 14l, integration units 15m and 15l, and a motor control unit 16. It has a pulsation compensation control unit 17, a coordinate conversion unit 18, a PWM signal generation unit 19, and an advance angle correction unit 20.
 運転指令部11は、モータの回転数指令値ω を生成して出力する。また、運転指令部11は、接続切替部8を制御するための切替制御信号Sを生成して出力する。 The operation command unit 11 generates and outputs a motor rotation speed command value ω m * . The operation command unit 11 also generates and outputs a switching control signal S w for controlling the connection switching unit 8.
 減算部12は、インバータ電流検出部5で検出されたインバータ4の相電流iu_all、iv_all、iw_allから第1モータ41の相電流iu_m、iv_m、iw_mを減算することで第2モータ42の相電流iu_sl、iv_sl、iw_slを求める。
 これは、第1モータ41の相電流iu_m、iv_m、iw_mと、第2モータ42の相電流iu_sl、iv_sl、iw_slとの和がインバータの相電流iu_all、iv_all、iw_allに等しいという関係を利用したものである。
The subtraction unit 12 subtracts the phase currents i u_m , i v_m , and i w_m of the first motor 41 from the phase currents i u_all , i v_all , and i w_all of the inverter 4 detected by the inverter current detection unit 5 to generate the second current. The phase currents iu_sl , iv_sl , and iw_sl of the motor 42 are obtained .
This is the phase current i u_M of the first motor 41, i v_m, i w_m and phase currents i U_sl of the second motor 42, i v_sl, i w_sl the sum inverter phase currents i U_all of, i v_all, i It uses the relationship of being equal to w_all .
 座標変換部13mは、後述の第1モータ41の位相推定値θを用いて第1モータ41の相電流iu_m、iv_m、iw_mを静止三相座標系から回転二相座標系に座標変換して、第1モータ41のdq軸電流id_m、iq_mを求める。位相推定値θは、第1モータ41の磁極位置推定値であるともいえる。 The coordinate conversion unit 13 m coordinates the phase currents i u_m , iv_m , and i w_m of the first motor 41 from the stationary three-phase coordinate system to the rotating two-phase coordinate system by using the phase estimation value θ m of the first motor 41 described later. After conversion, the dq axis currents i d_m and i q_m of the first motor 41 are obtained . It can be said that the estimated phase value θ m is a magnetic pole position estimated value of the first motor 41.
 座標変換部13lは、後述の第2モータ42の位相推定値θslを用いて第2モータ42の相電流iu_sl、iv_sl、iw_slを静止三相座標系から回転二相座標系に座標変換して第2モータ42のdq軸電流id_sl、iq_slを求める。位相推定値θslは、第2モータ42の磁極位置推定値であるともいえる。 Coordinate conversion unit 13l the phase current i U_sl of the second motor 42 using the phase estimate theta sl of the second motor 42 described later, i V_sl, coordinates the rotation two-phase coordinate system i W_sl from the stationary three-phase coordinate system The conversion is performed to obtain the dq-axis currents i d — sl and i q — sl of the second motor 42. It can be said that the phase estimated value θ sl is a magnetic pole position estimated value of the second motor 42.
 第1速度推定部14mは、dq軸電流id_m、iq_m及び後述のdq軸電圧指令値v 、v に基づいて、第1モータ41の回転数推定値ωを求める。
 同様に、第2速度推定部14lは、dq軸電流id_sl、iq_sl及び後述のdq軸電圧指令値v 、v に基づいて、第2モータ42の回転数推定値ωslを求める。
The first velocity estimation unit 14m obtains the rotation speed estimation value ω m of the first motor 41 based on the dq axis currents i d_m and i q_m and the dq axis voltage command values v d * and v q * described later.
Similarly, the second velocity estimation unit 14l sets the rotation speed estimation value ω sl of the second motor 42 based on the dq axis currents i d_sl and i q_sl and the dq axis voltage command values v d * and v q * described later. Ask.
 積分部15mは、第1モータ41の回転数推定値ωを積分することで、第1モータ41の位相推定値θを求める。
 同様に、積分部15lは、第2モータ42の回転数推定値ωslを積分することで、第2モータ42の位相推定値θslを求める。
The integrator 15m integrates the rotation speed estimation value ω m of the first motor 41 to obtain the phase estimation value θ m of the first motor 41.
Similarly, the integrating unit 15l obtains the phase estimated value θ sl of the second motor 42 by integrating the rotation speed estimated value ω sl of the second motor 42.
 なお、回転数及び位相の推定には、例えば特許第4672236号明細書に示されている方法を用いることができるが、回転数及び位相が推定可能な方法であればどのような方法が用いられてもよい。また、回転数又は位相を直接検出する方法が用いられてもよい。 For the estimation of the rotation speed and the phase, for example, the method shown in Japanese Patent No. 4672236 can be used, but any method can be used as long as the rotation speed and the phase can be estimated. May be. Alternatively, a method of directly detecting the rotation speed or the phase may be used.
 モータ制御部16は、第1モータ41のdq軸電流id_m、iq_mと、第1モータ41の回転数推定値ωと、後述の脈動補償電流指令値isl とに基づいて、dq軸電圧指令値v 、v を算出する。 The motor control unit 16 is based on the dq-axis currents i d_m and i q_m of the first motor 41, the estimated rotation speed ω m of the first motor 41, and the pulsation compensation current command value isl * described later. Axis voltage command values v d * and v q * are calculated.
 座標変換部18は、第1モータ41の位相推定値θと、dq軸電圧指令値v 、v と、後述する進角補正部20からの進角補正値β’とから、印加電圧位相θを求める。そして、座標変換部18は、印加電圧位相θに基づき、dq軸電圧指令値v 、v を回転二相座標系から静止三相座標系に座標変換して、静止三相座標系上の電圧指令値v 、v 、v を求める。 The coordinate conversion unit 18 is based on the phase estimation value θ m of the first motor 41, the dq-axis voltage command values v d * and v q *, and the advance angle correction value β'from the advance angle correction unit 20 described later. The applied voltage phase θ v is obtained. Then, the coordinate conversion unit 18 converts the dq-axis voltage command values v d * and v q * from the rotating two-phase coordinate system to the stationary three-phase coordinate system based on the applied voltage phase θ v , and the stationary three-phase coordinates. The voltage command values v u * , v v * , v w * on the system are obtained.
 印加電圧位相θは、例えば、dq軸電圧指令値v 、v と、進角補正値β’とから、下記の式(4)により得られる進み位相角θを、第1モータ41の位相推定値θに加算することで得られる。
Figure JPOXMLDOC01-appb-M000004
The applied voltage phase θ v is the lead phase angle θ f obtained by the following equation (4) from, for example, the dq axis voltage command values v d * and v q * and the advance angle correction value β'. It is obtained by adding to the estimated phase value θ m of the motor 41.
Figure JPOXMLDOC01-appb-M000004
 位相推定値θ、進み位相角θ、及び印加電圧位相θの例が図3(a)に示され、座標変換部18で求められる電圧指令値v 、v 、v の例が図3(b)に示されている。 An example of the phase estimation value θ m , the lead phase angle θ f , and the applied voltage phase θ v is shown in FIG. 3A, and the voltage command values v u * , v v * , v w obtained by the coordinate conversion unit 18. An example of * is shown in FIG.
 PWM信号生成部19は、入力電圧Vdcと、電圧指令値v 、v 、v とから図3(c)に示されるPWM信号UP、VP、WP、UN、VN、WNを生成する。
 PWM信号UP、VP、WP、UN、VN、WNは、インバータ4に供給され、スイッチング素子の制御に用いられる。
The PWM signal generation unit 19 has the input voltage V dc and the voltage command values v u * , v v * , v w *, and the PWM signals UP, VP, WP, UN, VN, WN shown in FIG. 3 (c). To generate.
The PWM signals UP, VP, WP, UN, VN, WN are supplied to the inverter 4 and used for controlling the switching elements.
 インバータ4には、PWM信号UP、VP、WP、UN、VN、WNに基づいて、それぞれ対応するアームのスイッチング素子を駆動する駆動信号を生成する、図示しない駆動回路が設けられている。 The inverter 4 is provided with a drive circuit (not shown) that generates drive signals for driving the switching elements of the corresponding arms based on the PWM signals UP, VP, WP, UN, VN, WN.
 上記のPWM信号UP、VP、WP、UN、VN、WNに基づいてインバータ4のスイッチング素子のON/OFFを制御することで、インバータ4から周波数及び電圧値が可変の三相交流電圧を出力させ、第1モータ41及び第2モータ42に印加することができる。 By controlling ON/OFF of the switching element of the inverter 4 based on the PWM signals UP, VP, WP, UN, VN, WN, the inverter 4 outputs a three-phase AC voltage with variable frequency and voltage value. , And can be applied to the first motor 41 and the second motor 42.
 電圧指令値v 、v 、v は、図3(b)に示される例では正弦波であるが、電圧指令値は、三次高調波を重畳させたものであってもよく、第1モータ41及び第2モータ42を駆動することが可能であればどのような波形のものであってもよい。 The voltage command values v u * , v v * , and v w * are sine waves in the example shown in FIG. 3 (b), but the voltage command values may be superposed with third harmonics. , The waveform may be any as long as it is possible to drive the first motor 41 and the second motor 42.
 モータ制御部16が、dq軸電流id_m、iq_m及び第1モータ41の回転数推定値ωのみに基づいて電圧指令を生成する構成であるとすれば、第1モータ41が適切に制御される一方、第2モータ42は、第1モータ41のために生成された電圧指令値に応じて動作するだけであり、直接的には制御されていない状態にある。 If the motor control unit 16 is configured to generate a voltage command based only on the dq-axis currents i d_m , i q_m and the estimated rotation speed ω m of the first motor 41, the first motor 41 is appropriately controlled. On the other hand, the second motor 42 only operates according to the voltage command value generated for the first motor 41, and is in a state where it is not directly controlled.
 そのため、第1モータ41及び第2モータ42は、位相推定値θ及び位相推定値θslに誤差を伴う状態で動作し、特に低速域で誤差が顕著に現れる。
 誤差が発生すると第2モータ42の電流脈動が発生し、第2モータ42の脱調、過大電流による発熱による損失悪化のおそれがある。さらに、過大電流に応じて回路遮断が行われて、モータが停止し、負荷の駆動ができなくなるおそれがある。
Therefore, the first motor 41 and the second motor 42 operate in a state in which the phase estimated value θ m and the phase estimated value θ sl are accompanied by an error, and the error is particularly remarkable in the low speed range.
If an error occurs, current pulsation of the second motor 42 will occur, and there is a risk of loss of step due to out-of-step of the second motor 42 and heat generation due to excessive current. Further, the circuit may be cut off in response to the excessive current, the motor may stop, and the load cannot be driven.
 脈動補償制御部17は、このような問題を解決するために設けられたものであり、第2モータ42のq軸電流iq_slと、第1モータ41の位相推定値θと、第2モータ42の位相推定値θslとを用いて、第2モータ42の電流脈動を抑制するための脈動補償電流指令値isl を出力する。 The pulsation compensation control unit 17 is provided to solve such a problem, and includes the q-axis current i q_sl of the second motor 42, the phase estimated value θ m of the first motor 41, and the second motor. Using the phase estimated value θ sl of 42, the pulsation compensation current command value isl * for suppressing the current pulsation of the second motor 42 is output.
 脈動補償電流指令値isl は、第1モータ41の位相推定値θと、第2モータ42の位相推定値θslとから、第1モータ41と第2モータ42との位相関係を判定し、その判定結果に基づいて、第2モータ42のトルク電流に該当するq軸電流iq_slの脈動を抑制するように定められる。 The pulsation compensation current command value isl * determines the phase relationship between the first motor 41 and the second motor 42 from the phase estimated value θ m of the first motor 41 and the phase estimated value θ sl of the second motor 42. The pulsation of the q-axis current i q_sl corresponding to the torque current of the second motor 42 is determined based on the determination result.
 モータ制御部16は、第1モータ41の回転数指令値ω と、第1モータ41の回転数推定値ωとの偏差に対して比例積分演算を行って、第1モータ41のq軸電流指令値Iq_m を求める。 The motor control unit 16 performs a proportional integration calculation on the deviation between the rotation speed command value ω m * of the first motor 41 and the rotation speed estimated value ω m of the first motor 41, and q of the first motor 41. The axis current command value Iq_m * is obtained.
 一方、第1モータ41のd軸電流は、励磁電流成分であり、その値を変化させることで、電流位相を制御すること、及び第1モータ41を強め磁束又は弱め磁束で駆動させることが可能となる。その特性を利用し、先に述べた脈動補償電流指令値isl を、第1モータ41のd軸電流指令値Id_m に反映させることで、電流位相を制御し、これにより脈動の抑制を図ることが可能である。 On the other hand, the d-axis current of the first motor 41 is an exciting current component, and by changing the value, it is possible to control the current phase and drive the first motor 41 with a stronger magnetic flux or a weaker magnetic flux. Becomes Using the characteristics, the pulsation compensation current command value i sl * mentioned above, by reflecting the d-axis current command value I D_M of the first motor 41 *, to control the current phase, thereby suppressing the pulsation It is possible to
 モータ制御部16は、上記のようにして求めたdq軸電流指令値Id_m 、Iq_m と、座標変換部13mで求めたdq軸電流id_m、iq_mとに基づいてdq軸電圧指令値v 、v を求める。即ち、d軸電流指令値Id_m とd軸電流id_mとの偏差に対して比例積分演算を行ってd軸電圧指令値v を求め、q軸電流指令値Iq_m とq軸電流iq_mとの偏差に対して比例積分演算を行ってq軸電圧指令値v を求める。 The motor control unit 16 determines the dq-axis voltage command based on the dq-axis current command values I d_m * and I q_m * calculated as described above and the dq-axis currents i d_m and i q_m calculated by the coordinate conversion unit 13 m. The values v d * and v q * are obtained. That is, the d-axis current command value I d_m * and the d-axis current id_m are proportionally integrated to obtain the d-axis voltage command value v d * , and the q-axis current command value I q_m * and the q-axis The q-axis voltage command value v q * is obtained by performing a proportional-plus-integral calculation on the deviation from the current i q_m .
 なお、モータ制御部16及び脈動補償制御部17については同様の機能を実現可能であれば、どのような構成のものであってもよい。 The motor control unit 16 and the pulsation compensation control unit 17 may have any configuration as long as the same functions can be realized.
 以上のような制御を行うことで、第1モータ41と第2モータ42とを、第2モータ42に脈動が生じないように、1台のインバータ4で駆動することが可能となる。 By performing the control as described above, it becomes possible to drive the first motor 41 and the second motor 42 with one inverter 4 so that the pulsation does not occur in the second motor 42.
 進角補正部20は、第1モータ41の相電流iu_m、iv_m、iw_mと、第2モータ42の相電流iu_sl、iv_sl、iw_slとを入力とし、進角補正値β’を出力する。 Advance angle correction unit 20, the phase current i u_M of the first motor 41, i v_m, and i w_m, the phase current i U_sl of the second motor 42, i v_sl, as input and i W_sl, advance correction value beta ' Is output.
 ここで、第1モータ41と、第2モータ42とが同一仕様であり、これらの内部温度が異なる場合、言い換えると、これらのモータ定数が異なる場合における進角補正部20の動作に関して、図4を参照しながら説明する。 Here, regarding the operation of the advance angle correction unit 20 when the first motor 41 and the second motor 42 have the same specifications and their internal temperatures are different, in other words, when their motor constants are different, FIG. Will be described with reference to.
 図4に示されているように、第1モータ41のモータ電流の電流値に対して、第2モータ42のモータ電流の電流値が大きい場合、進角補正部20は、第2モータ42の電流値が小さくなるように、進角補正値β’を特定する。これにより、第2モータ42のモータ電流が低下傾向となるが、第1モータ41では、モータ定数のバラツキにより電流最小点とは異なる動作点に移動することとなるため、第1モータ41のモータ電流は、増加傾向となる。 As shown in FIG. 4, when the current value of the motor current of the second motor 42 is larger than the current value of the motor current of the first motor 41, the lead angle correction unit 20 determines that the second motor 42 The lead angle correction value β′ is specified so that the current value becomes small. As a result, the motor current of the second motor 42 tends to decrease, but the first motor 41 moves to an operating point different from the current minimum point due to variations in motor constants. The current tends to increase.
 進角補正部20は、第1モータ41の電流値と、第2モータ42の電流値とが一致するように電流進角補正値β’を逐次計算する。これにより、各モータにおけるジュール損失が均一化されるため、各モータの内部温度も均一化されることとなる。従って、モータの内部温度のアンバランスを抑制することができ、一方のモータにおける過剰発熱を抑制することができる。 The lead angle correction unit 20 sequentially calculates the current lead angle correction value β′ so that the current value of the first motor 41 and the current value of the second motor 42 match. As a result, the Joule loss in each motor is made uniform, and the internal temperature of each motor is also made uniform. Therefore, imbalance of the internal temperature of the motor can be suppressed, and excessive heat generation in one motor can be suppressed.
 図5は、進角補正部20での動作を示すフローチャートである。
 まず、進角補正部20は、第1モータ41に流れるモータ電流の電流値が、第2モータ42に流れるモータ電流の電流値と等しいか否かを判断する(S10)。第1モータ41に流れるモータ電流の電流値が、第2モータ42に流れるモータ電流の電流値と等しい場合(S10でYse)には、処理はステップS11に進み、第1モータ41のモータ電流の電流値が、第2モータ42のモータ電流の電流値と異なる場合(S10でNo)には、処理はステップS12に進む。
 ここで、進角補正部20は、モータ電流として、U相、V相及びW相の何れの相を用いてもよく、また、電流値の形式についても、ピーク値を用いても、実行値を用いてもよい。但し、第1モータ41及び第2モータ42において、比較する電流の相及び形式は、同一とする。
FIG. 5 is a flowchart showing the operation of the advance angle correction unit 20.
First, the advance angle correction unit 20 determines whether or not the current value of the motor current flowing through the first motor 41 is equal to the current value of the motor current flowing through the second motor 42 (S10). When the current value of the motor current flowing through the first motor 41 is equal to the current value of the motor current flowing through the second motor 42 (Yse in S10), the process proceeds to step S11 and the motor current of the first motor 41 When the current value is different from the motor current value of the second motor 42 (No in S10), the process proceeds to step S12.
Here, the lead angle correction unit 20 may use any of the U-phase, V-phase, and W-phase as the motor current, and regarding the format of the current value, the peak value may be used, and the execution value may be used. May be used. However, in the first motor 41 and the second motor 42, the phases and types of currents to be compared are the same.
 ステップS11では、進角補正部20は、進角の補正を行わない。言い換えると、進角補正部20は、進角補正値β’を「0」とする。この場合、例えば、第1モータ41の電流最小点となる動作点において、第1モータ41及び第2モータ42が駆動される。 In step S11, the advance angle correction unit 20 does not correct the advance angle. In other words, the lead angle correction unit 20 sets the lead angle correction value β′ to “0”. In this case, for example, the first motor 41 and the second motor 42 are driven at the operating point that is the minimum current point of the first motor 41.
 ステップS12では、進角補正部20は、第1モータ41に流れるモータ電流の電流値が、第2モータ42に流れるモータ電流の電流値よりも大きいか否かを判断する。第1モータ41のモータ電流の電流値が、第2モータ42のモータ電流の電流値よりも大きい場合(S12でYes)には、処理はステップS13に進み、第1モータ41のモータ電流の電流値が、第2モータ42のモータ電流の電流値よりも大きくない場合(S12でNo)には、処理はステップS14に進む。 In step S12, the lead angle correction unit 20 determines whether or not the current value of the motor current flowing through the first motor 41 is larger than the current value of the motor current flowing through the second motor 42. When the current value of the motor current of the first motor 41 is larger than the current value of the motor current of the second motor 42 (Yes in S12), the process proceeds to step S13, and the current of the motor current of the first motor 41. When the value is not larger than the current value of the motor current of the second motor 42 (No in S12), the process proceeds to step S14.
 ステップS13では、進角補正部20は、第1モータ41を制御対象モータとして決定する。そして、処理はステップS15に進む。 In step S13, the lead angle correction unit 20 determines the first motor 41 as the control target motor. Then, the process proceeds to step S15.
 ステップS14では、第2モータ42に流れるモータ電流の電流値が、第1モータ41に流れるモータ電流の電流値よりも大きくなっているため、進角補正部20は、第2モータ42を制御対象モータとして決定する。そして、処理はステップS15に進む。 In step S14, since the current value of the motor current flowing through the second motor 42 is larger than the current value of the motor current flowing through the first motor 41, the advance angle correction unit 20 controls the second motor 42. Determine as a motor. Then, the process proceeds to step S15.
 ステップS15では、進角補正部20は、制御対象モータに流れるモータ電流の電流値が小さくなるように、進角補正値β’を特定する。 In step S15, the advance angle correction unit 20 specifies the advance angle correction value β'so that the current value of the motor current flowing through the controlled target motor becomes small.
 進角補正部20は、例えば、山登り法のような探索的手法を用いて、進角補正値β’を特定すればよい。具体的には、進角補正部20は、過去の制御周期でのモータ電流の電流値及び進角補正値β’から、進角補正値β’の操作に対するモータ電流の電流値の増減を確認し、制御対象モータのモータ電流の電流値が低下傾向となるような進角補正値β’を特定すればよい。
 なお、進角補正部20は、制御対象モータのモータ電流の電流値が低下傾向となる進角補正値β’が得られれば、以上のような探索的手法を用いなくてもよい。
The lead angle correction unit 20 may specify the lead angle correction value β′ by using a search method such as a hill climbing method. Specifically, the advance angle correction unit 20 confirms the increase or decrease in the current value of the motor current with respect to the operation of the advance angle correction value β′ from the current value of the motor current and the advance angle correction value β′ in the past control cycle. Then, the advance angle correction value β′ may be specified so that the current value of the motor current of the control target motor tends to decrease.
It should be noted that the lead angle correction unit 20 does not have to use the above-described exploratory method as long as the lead angle correction value β′ with which the current value of the motor current of the control target motor tends to decrease is obtained.
 以上のようにして、進角補正値β’が決定されると、座標変換部18は、上記の式(4)により得られる進み位相角θを、第1モータ41の位相推定値θに加算することで、印加電圧位相θを算出する。 When the lead angle correction value β′ is determined as described above, the coordinate conversion unit 18 determines the lead phase angle θ f obtained by the above equation (4) as the phase estimated value θ m of the first motor 41. To calculate the applied voltage phase θ v .
 図6は、進角補正値β’及び進み位相角θfを説明するためのベクトル図である。
 tan-1(vq_m /vd_m )は、第1モータ41を制御するために、インバータ4が出力するd軸電圧指令値vd_m 及びq軸電圧指令値vq_m の偏角を表している。
 図6は、第1モータ41の回転位置推定値θに対して、第2モータ42の位置推定値θslが遅れ位相である場合を表している。
FIG. 6 is a vector diagram for explaining the advance angle correction value β'and the advance phase angle θ f .
tan -1 (v q_m * / v d_m * ) determines the declination of the d-axis voltage command value v d_m * and the q-axis voltage command value v q_m * output by the inverter 4 in order to control the first motor 41. It represents.
FIG. 6 shows a case where the position estimated value θ sl of the second motor 42 has a lag phase with respect to the rotation position estimated value θ m of the first motor 41.
 ここで、第2モータ42に対して制御を行う場合、電流最小となる進角をtan-1(vq_sl /vd_sl )として仮想的に定義する。進角を第1モータ41が電流最小進角となるtan-1(vq_m /vd_m )とした場合には、第2モータ42に対しては進みすぎの状態となる。このときに、第2モータ42のモータ電流の電流値は、第1モータ41のモータ電流の電流値よりも大きくなる。 Here, when controlling the second motor 42, the advance angle that minimizes the current is virtually defined as tan −1 (v q_sl * /v d_sl * ). When the advance angle is tan -1 (v q_m * / v d_m * ) at which the first motor 41 has the minimum current advance angle, the advance is excessive with respect to the second motor 42. At this time, the current value of the motor current of the second motor 42 becomes larger than the current value of the motor current of the first motor 41.
 そのため、第1モータ41及び第2モータ42のそれぞれに流れる電流の大小関係に応じて進角補正値β’を操作することにより、モータ間の電流アンバランスを抑制することが可能となる。図6に示されている場合では、進角となるtan-1(vq_m /vd_m )に対して、遅れ側に進角補正値β’が特定される。 Therefore, it is possible to suppress the current imbalance between the motors by operating the advance correction value β′ according to the magnitude relation of the currents flowing through the first motor 41 and the second motor 42. In the case shown in FIG. 6, the lead angle correction value β′ is specified on the delay side with respect to the lead angle tan −1 (v q_m * /v d_m * ).
 以上のように、図5に示されているフローチャートによれば、インバータ4は、第1モータ41に流れるモータ電流の電流値と、第2モータ42に流れるモータ電流の電流値とが異なる場合に、第1モータ41及び第2モータ42の内、電流値の大きい方のモータである制御対象モータに流れるモータ電流の電流値が小さくなるように、第1モータ41及び第2モータ42を駆動することができる。 As described above, according to the flowchart shown in FIG. 5, the inverter 4 operates when the current value of the motor current flowing through the first motor 41 is different from the current value of the motor current flowing through the second motor 42. Of the first motor 41 and the second motor 42, the first motor 41 and the second motor 42 are driven so that the current value of the motor current flowing through the control target motor, which is the motor having the larger current value, becomes smaller. be able to.
 ここでは、制御部10は、インバータ4から出力させる三相交流電圧の位相を変えることで、制御対象モータに流れるモータ電流の電流値が小さくなるように、インバータ4を制御している。具体的には、制御部10は、インバータ4に出力するPWM信号を生成するために用いられる電圧指令値を算出するための印加電圧位相における進み位相角を補正することで、制御対象モータに流れるモータ電流の電流値が小さくなるようにしている。 Here, the control unit 10 controls the inverter 4 so that the current value of the motor current flowing through the controlled motor is reduced by changing the phase of the three-phase AC voltage output from the inverter 4. Specifically, the control unit 10 flows to the controlled target motor by correcting the lead phase angle in the applied voltage phase for calculating the voltage command value used to generate the PWM signal output to the inverter 4. The current value of the motor current is reduced.
 次に、図7を用いて、第1モータ41及び第2モータ42の動作例について説明する。
 例えば、図7に示されているように、接続切替部8の開閉部9をOFFにすることで、第1モータ41のみを駆動させた後、一度インバータ4を停止する。そして、接続切替部8の開閉部9をONにして、インバータ4を起動した場合について説明する。
Next, an operation example of the first motor 41 and the second motor 42 will be described with reference to FIG. 7.
For example, as shown in FIG. 7, the opening/closing unit 9 of the connection switching unit 8 is turned off to drive only the first motor 41, and then the inverter 4 is once stopped. Then, the case where the opening/closing section 9 of the connection switching section 8 is turned on and the inverter 4 is started will be described.
 図7のような動作の場合、タイミングAにおいて、第1モータ41はその前まで駆動していたが、第2モータ42は停止していたため、第2モータ42の内部温度は、第1モータ41の内部温度よりも低いと想定される。言い換えると、第1モータ41と、第2モータ42とで、モータ定数が温度特性により実質的に異なる状態になっている。 In the case of the operation as shown in FIG. 7, at timing A, the first motor 41 was driven up to that point, but the second motor 42 was stopped. Therefore, the internal temperature of the second motor 42 is equal to the first motor 41. Is assumed to be lower than the internal temperature of. In other words, the motor constants of the first motor 41 and the second motor 42 are substantially different depending on the temperature characteristics.
 このような状態で、タイミングA以降に第1モータ41及び第2モータ42を駆動させると、上述のように、第1モータ41と第2モータ42とにおける電流最小となる位相が異なるため、モータに流れる電流にアンバランスが発生することとなる。ここで、上述のように、制御部10は、各モータに流れる電流が均一になるように制御する。これにより、第1モータ41及び第2モータ42において発生するジュール損失を均一化することができ、モータ内部の過剰発熱を抑制することが可能となる。 If the first motor 41 and the second motor 42 are driven after the timing A in such a state, the phases of the first motor 41 and the second motor 42 that minimize the current are different as described above. An imbalance will occur in the current flowing through. Here, as described above, the control unit 10 controls so that the current flowing through each motor becomes uniform. As a result, the Joule loss generated in the first motor 41 and the second motor 42 can be made uniform, and excessive heat generation inside the motor can be suppressed.
 以上のように、実施の形態1によれば、並列に接続された第1モータ41及び第2モータ42の間におけるモータ電流のアンバランスを補正して、そのアンバランスを抑制することができる。従って、モータ電流によるジュール損のアンバランスを抑制することができるため、モータの発熱及びモータの内部温度のアンバランスを抑制することができる。 As described above, according to the first embodiment, it is possible to correct the imbalance of the motor current between the first motor 41 and the second motor 42 connected in parallel, and suppress the imbalance. Therefore, since the imbalance of Joule loss due to the motor current can be suppressed, the heat generation of the motor and the imbalance of the internal temperature of the motor can be suppressed.
実施の形態2.
 図1に示されているように、実施の形態2に係るモータ駆動装置200は、整流器2と、平滑部3と、インバータ4と、インバータ電流検出部5と、モータ電流検出部6と、入力電圧検出部7と、接続切替部8と、制御部21とを備える。
 実施の形態2に係るモータ駆動装置200の、整流器2、平滑部3、インバータ4、インバータ電流検出部5、モータ電流検出部6、入力電圧検出部7及び接続切替部8は、実施の形態1に係るモータ駆動装置100の、整流器2、平滑部3、インバータ4、インバータ電流検出部5、モータ電流検出部6、入力電圧検出部7及び接続切替部8と同様である。
Embodiment 2.
As shown in FIG. 1, the motor drive device 200 according to the second embodiment includes a rectifier 2, a smoothing unit 3, an inverter 4, an inverter current detection unit 5, a motor current detection unit 6, and an input. The voltage detection unit 7, the connection switching unit 8, and the control unit 21 are provided.
The rectifier 2, the smoothing unit 3, the inverter 4, the inverter current detection unit 5, the motor current detection unit 6, the input voltage detection unit 7, and the connection switching unit 8 of the motor drive device 200 according to the second embodiment are the first embodiment. It is the same as the rectifier 2, the smoothing unit 3, the inverter 4, the inverter current detection unit 5, the motor current detection unit 6, the input voltage detection unit 7, and the connection switching unit 8 of the motor drive device 100 according to 1.
 図2に示されているように、実施の形態2における制御部21は、運転指令部11と、減算部12と、座標変換部13m、13lと、速度推定部14m、14lと、積分部15m、15lと、モータ制御部16と、脈動補償制御部17と、座標変換部18と、PWM信号生成部19と、進角補正部22とを有する。
 実施の形態2における制御部21の、運転指令部11、減算部12、座標変換部13m、13l、速度推定部14m、14l、積分部15m、15l、モータ制御部16、脈動補償制御部17、座標変換部18及びPWM信号生成部19は、実施の形態1における制御部10の、運転指令部11、減算部12、座標変換部13m、13l、速度推定部14m、14l、積分部15m、15l、モータ制御部16、脈動補償制御部17、座標変換部18及びPWM信号生成部19と同様である。
As shown in FIG. 2, the control unit 21 in the second embodiment includes an operation command unit 11, a subtraction unit 12, coordinate conversion units 13m and 13l, speed estimation units 14m and 14l, and an integration unit 15m. , 15l, a motor control unit 16, a pulsation compensation control unit 17, a coordinate conversion unit 18, a PWM signal generation unit 19, and an advance angle correction unit 22.
The operation command unit 11, the subtraction unit 12, the coordinate conversion unit 13m, 13l, the speed estimation unit 14m, 14l, the integration unit 15m, 15l, the motor control unit 16, the pulsation compensation control unit 17, and the control unit 21 of the second embodiment. The coordinate conversion unit 18 and the PWM signal generation unit 19 are the operation command unit 11, the subtraction unit 12, the coordinate conversion unit 13m, 13l, the speed estimation unit 14m, 14l, the integration unit 15m, 15l of the control unit 10 in the first embodiment. The same as the motor controller 16, the pulsation compensation controller 17, the coordinate converter 18, and the PWM signal generator 19.
 進角補正部22は、実施の形態1における進角補正部20とほぼ同様の処理を行うが、進角の補正を行わないと判断する基準が、実施の形態1における進角補正部20と異なっている。 The lead angle correction unit 22 performs substantially the same processing as the lead angle correction unit 20 in the first embodiment, but the criterion for determining that the lead angle correction is not performed is the lead angle correction unit 20 in the first embodiment. Different.
 実施の形態1では、第1モータ41及び第2モータ42のモータ電流の電流値が一致するように、進角補正値β’が生成されている。しかしながら、例えば、インバータ電流検出部5又はモータ電流検出部6等の検出回路におけるバラツキ等を考慮すると、現実の条件下においては、第1モータ41及び第2モータ42のモータ電流の電流値を完全に一致させることは困難である。そのため、第1モータ41及び第2モータ42のモータ電流の電流値の差分の許容値に関して以下に説明する。 In the first embodiment, the advance correction value β'is generated so that the current values of the motor currents of the first motor 41 and the second motor 42 match. However, in consideration of variations in the detection circuits such as the inverter current detection unit 5 and the motor current detection unit 6, for example, under actual conditions, the current values of the motor currents of the first motor 41 and the second motor 42 are completely reduced. Is difficult to match. Therefore, the allowable value of the difference between the current values of the motor currents of the first motor 41 and the second motor 42 will be described below.
 モータ巻線に用いられる絶縁材の種別に応じて、例えば、電気用品安全法にて内部温度が規定されており、最大165℃とされている。但し、実施の形態1では、モータの内部温度を直接的に測定していないため、モータ電流の電流値のアンバランス、言い換えると、モータ間におけるモータ電流の電流値の差分に置き換えて説明する。 Depending on the type of insulating material used for the motor winding, for example, the Electrical Appliance and Material Safety Law stipulates the internal temperature, which is a maximum of 165 ° C. However, in the first embodiment, since the internal temperature of the motor is not directly measured, the imbalance of the current value of the motor current, in other words, the difference in the current value of the motor current between the motors will be described.
 仮に、第1モータ41の内部温度及び第2モータ42の内部温度が、均一に165℃となった場合、ロータに配置される永久磁石の磁束密度が低下し、その温度に応じた磁束密度低下係数KΦは、一般的に-0.2~-0.1%/℃近傍であることが知られている。 If the internal temperature of the first motor 41 and the internal temperature of the second motor 42 are uniformly 165 ° C., the magnetic flux density of the permanent magnets arranged in the rotor decreases, and the magnetic flux density decreases according to the temperature. It is known that the coefficient K Φ is generally in the vicinity of −0.2 to −0.1% / ° C.
 KΦ=-0.2%/℃、磁石温度T=165℃とした場合、永久磁石の磁束密度低下率=-0.2×165=33%となる。
 永久磁石の磁束密度が33%低下することは、モータ定数における誘起電圧定数Φが33%低下することと同義である。このため、上記の式(2)より、必要トルクを出力する際における必要電流は、約33%増加することとなる。従って、一つの指標としては、モータ電流のアンバランス量を33%以下とすることで、モータ内部の温度を165℃以下に保つことが可能である。
When K Φ = −0.2% / ° C. and magnet temperature T = 165 ° C., the rate of decrease in magnetic flux density of the permanent magnet = −0.2 × 165 = 33%.
A 33% decrease in the magnetic flux density of the permanent magnet is synonymous with a 33% decrease in the induced voltage constant Φ f in the motor constant. Therefore, from the above equation (2), the required current when outputting the required torque is increased by about 33%. Therefore, as one index, it is possible to keep the temperature inside the motor at 165° C. or lower by setting the unbalance amount of the motor current to 33% or lower.
 このため、実施の形態2における進角補正部22は、図5のステップS10において、第1モータ41のモータ電流の電流値と、第2モータ42のモータ電流の電流値との差分が、第1モータ41のモータ電流の電流値に対して、33%以下である場合には、処理をステップS11に進め、それが33%を超えた場合に処理をステップS12に進めるようにする。 Therefore, the lead angle correction unit 22 in the second embodiment determines that the difference between the current value of the motor current of the first motor 41 and the current value of the motor current of the second motor 42 is the first value in step S10 of FIG. When the current value of the motor current of the one motor 41 is 33% or less, the process proceeds to step S11, and when it exceeds 33%, the process proceeds to step S12.
 以上のように、実施の形態2によれば、制御部21は、第1モータ41に流れるモータ電流の電流値及び第2モータ42に流れるモータ電流の電流値の差分が、予め定められた範囲を超えた場合に、インバータ4に、制御対象モータに流れるモータ電流の電流値が小さくなるように、第1モータ41及び第2モータ42を駆動させることで、第1モータ41の内部温度及び第2モータ42の内部温度を予め定められた温度範囲に収めることができるようになる。 As described above, according to the second embodiment, the control unit 21 sets the difference between the current value of the motor current flowing through the first motor 41 and the current value of the motor current flowing through the second motor 42 within a predetermined range. By driving the first motor 41 and the second motor 42 so that the current value of the motor current flowing through the controlled motor becomes smaller when the above value is exceeded, the internal temperature of the first motor 41 and the first The internal temperature of the two motors 42 can be kept within a predetermined temperature range.
実施の形態3.
 実施の形態3では、冷凍サイクル適用機器としてのヒートポンプ装置の回路構成の一例について説明する。
 図8は、実施の形態3に係るヒートポンプ装置900の回路構成図である。
 図9は、図8に示すヒートポンプ装置900の冷媒の状態についてのモリエル線図である。図9において、横軸は比エンタルピ、縦軸は冷媒圧力を示す。
Embodiment 3.
In the third embodiment, an example of a circuit configuration of a heat pump device as a refrigeration cycle application device will be described.
FIG. 8 is a circuit configuration diagram of the heat pump device 900 according to the third embodiment.
FIG. 9 is a Mollier diagram for the refrigerant state of the heat pump device 900 shown in FIG. In FIG. 9, the horizontal axis represents the specific enthalpy and the vertical axis represents the refrigerant pressure.
 ヒートポンプ装置900は、圧縮機901と、熱交換器902と、膨張機構903と、レシーバ904と、内部熱交換器905と、膨張機構906と、熱交換器907とが配管により順次接続され、冷媒が循環する主冷媒回路908を備える。なお、主冷媒回路908において、圧縮機901の吐出側には、四方弁909が設けられ、冷媒の循環方向が切り替え可能となっている。 In the heat pump device 900, a compressor 901, a heat exchanger 902, an expansion mechanism 903, a receiver 904, an internal heat exchanger 905, an expansion mechanism 906, and a heat exchanger 907 are sequentially connected by piping, and a refrigerant Is provided with a main refrigerant circuit 908. In the main refrigerant circuit 908, a four-way valve 909 is provided on the discharge side of the compressor 901 so that the circulation direction of the refrigerant can be switched.
 熱交換器907は、第1部分907a及び第2部分907bを有し、これらには図示しない弁が接続されており、ヒートポンプ装置900の負荷に応じて冷媒の流れが制御される。例えば、ヒートポンプ装置900の負荷が比較的大きいときは、第1部分907a及び第2部分907bの双方に冷媒が流され、ヒートポンプ装置900の負荷が比較的小さいときは、第1部分907a及び第2部分907bの一方のみ、例えば、第1部分907aにのみ冷媒が流される。 The heat exchanger 907 has a first portion 907a and a second portion 907b, valves (not shown) are connected to these, and the flow of the refrigerant is controlled according to the load of the heat pump device 900. For example, when the load of the heat pump device 900 is relatively large, the refrigerant flows through both the first portion 907a and the second portion 907b, and when the load of the heat pump device 900 is relatively small, the first portion 907a and the second portion 907a. Refrigerant is flowed only to one of the portions 907b, for example, only to the first portion 907a.
 第1部分907a及び第2部分907bには、それらの近傍に、それぞれの部分に対応してファン910a及びファン910bが設けられている。ファン910a及びファン910bは、それぞれ別個のモータによって駆動される。例えば、実施の形態1又は2で説明した第1モータ41及び第2モータ42がそれぞれファン910a及びファン910bの駆動に用いられる。ファン910aを第1ファン、ファン910bを第2ファンともいう。 The first portion 907a and the second portion 907b are provided with fans 910a and 910b corresponding to the respective portions in the vicinity thereof. The fans 910a and 910b are driven by separate motors. For example, the first motor 41 and the second motor 42 described in the first or second embodiment are used to drive the fans 910a and 910b, respectively. The fan 910a is also referred to as a first fan, and the fan 910b is also referred to as a second fan.
 さらに、ヒートポンプ装置900は、レシーバ904と、内部熱交換器905との間から、圧縮機901のインジェクションパイプまでを配管により繋ぐインジェクション回路912を備える。インジェクション回路912には、膨張機構911及び内部熱交換器905が接続される。 Further, the heat pump device 900 includes an injection circuit 912 that connects between the receiver 904 and the internal heat exchanger 905 to the injection pipe of the compressor 901 by piping. An expansion mechanism 911 and an internal heat exchanger 905 are connected to the injection circuit 912.
 熱交換器902には、水が循環する水回路913が接続される。なお、水回路913には、給湯器、ラジエータ、床暖房等の放熱器等の水を利用する装置が接続される。 A water circuit 913 through which water circulates is connected to the heat exchanger 902. Note that the water circuit 913 is connected to a water-using device such as a water heater, a radiator, or a radiator such as floor heating.
 まず、ヒートポンプ装置900の暖房運転時の動作について説明する。暖房運転時には、四方弁909は、実線方向に設定される。なお、この暖房運転は、空調で使われる暖房だけでなく、給湯のための水の加熱をも含む。 First, the operation of the heat pump device 900 during the heating operation will be described. During the heating operation, the four-way valve 909 is set in the solid line direction. The heating operation includes not only heating used for air conditioning but also heating of water for hot water supply.
 圧縮機901で高温高圧となった気相冷媒(図9の点1)は、圧縮機901から吐出され、凝縮器であり放熱器となる熱交換器902で熱交換されて液化する(図9の点2)。このとき、冷媒から放熱された熱により、水回路913を循環する水が温められ、暖房又は給湯等に利用される。 The gas-phase refrigerant (high temperature and high pressure in the compressor 901) (point 1 in FIG. 9) is discharged from the compressor 901 and is heat-exchanged and liquefied in the heat exchanger 902 which is a condenser and a radiator (FIG. 9). Point 2). At this time, the heat radiated from the refrigerant warms the water circulating in the water circuit 913 and is used for heating or hot water supply.
 熱交換器902で液化された液相冷媒は、膨張機構903で減圧され、気液二相状態になる(図9の点3)。膨張機構903で気液二相状態になった冷媒は、レシーバ904で圧縮機901へ吸入される冷媒と熱交換され、冷却されて液化される(図9の点4)。レシーバ904で液化された液相冷媒は、主冷媒回路908と、インジェクション回路912とに分岐して流れる。 The liquid-phase refrigerant liquefied by the heat exchanger 902 is decompressed by the expansion mechanism 903 and becomes a gas-liquid two-phase state (point 3 in FIG. 9). The refrigerant in the gas-liquid two-phase state in the expansion mechanism 903 is heat-exchanged with the refrigerant sucked into the compressor 901 by the receiver 904, cooled, and liquefied (point 4 in FIG. 9). The liquid-phase refrigerant liquefied by the receiver 904 branches into the main refrigerant circuit 908 and the injection circuit 912 and flows.
 主冷媒回路908を流れる液相冷媒は、膨張機構911で減圧され気液二相状態となったインジェクション回路912を流れる冷媒と内部熱交換器905で熱交換されて、さらに冷却される(図9の点5)。内部熱交換器905で冷却された液相冷媒は、膨張機構906で減圧されて気液二相状態になる(図9の点6)。膨張機構906で気液二相状態になった冷媒は、蒸発器となる熱交換器907で外気と熱交換され、加熱される(図9の点7)。
 そして、熱交換器907で加熱された冷媒は、レシーバ904でさらに加熱され(図9の点8)、圧縮機901に吸入される。
The liquid-phase refrigerant flowing through the main refrigerant circuit 908 is further cooled by exchanging heat with the refrigerant flowing through the injection circuit 912, which has been decompressed by the expansion mechanism 911 and is in a gas-liquid two-phase state, by the internal heat exchanger 905 (FIG. 9). Point 5). The liquid-phase refrigerant cooled by the internal heat exchanger 905 is decompressed by the expansion mechanism 906 and becomes a gas-liquid two-phase state (point 6 in FIG. 9). The refrigerant in the gas-liquid two-phase state in the expansion mechanism 906 is heat-exchanged with the outside air in the heat exchanger 907 serving as an evaporator and heated (point 7 in FIG. 9).
Then, the refrigerant heated by the heat exchanger 907 is further heated by the receiver 904 (point 8 in FIG. 9) and drawn into the compressor 901.
 一方、インジェクション回路912を流れる冷媒は、上述したように、膨張機構911で減圧されて(図9の点9)、内部熱交換器905で熱交換される(図9の点10)。内部熱交換器905で熱交換された気液二相状態の冷媒(インジェクション冷媒)は、気液二相状態のまま圧縮機901のインジェクションパイプから圧縮機901内へ流入する。 On the other hand, as described above, the refrigerant flowing through the injection circuit 912 is decompressed by the expansion mechanism 911 (point 9 in FIG. 9) and heat-exchanged by the internal heat exchanger 905 (point 10 in FIG. 9). The gas-liquid two-phase refrigerant (injection refrigerant) that has been heat-exchanged in the internal heat exchanger 905 flows into the compressor 901 from the injection pipe of the compressor 901 in the gas-liquid two-phase state.
 圧縮機901では、主冷媒回路908から吸入された冷媒(図9の点8)が、中間圧まで圧縮、加熱される(図9の点11)。
 中間圧まで圧縮、加熱された冷媒(図9の点11)に、インジェクション冷媒(図9の点10)が合流して、温度が低下する(図9の点12)。
 そして、温度が低下した冷媒(図9の点12)が、さらに圧縮、加熱され高温高圧となり、吐出される(図9の点1)。
In the compressor 901, the refrigerant sucked from the main refrigerant circuit 908 (point 8 in FIG. 9) is compressed and heated to an intermediate pressure (point 11 in FIG. 9).
The injection refrigerant (point 10 in FIG. 9) merges with the refrigerant (point 11 in FIG. 9) compressed and heated to the intermediate pressure, and the temperature drops (point 12 in FIG. 9).
Then, the refrigerant whose temperature has dropped (point 12 in FIG. 9) is further compressed and heated to become high temperature and high pressure, and is discharged (point 1 in FIG. 9).
 なお、インジェクション運転を行わない場合には、膨張機構911の開度を全閉にする。つまり、インジェクション運転を行う場合には、膨張機構911の開度がある値よりも大きくなっているが、インジェクション運転を行わない場合には、膨張機構911の開度を上記のある値より小さくする。これにより、圧縮機901のインジェクションパイプへ冷媒が流入しない。
 ここで、膨張機構911の開度は、マイクロコンピュータ等で構成された制御部により電子制御される。
When the injection operation is not performed, the opening degree of the expansion mechanism 911 is fully closed. That is, when the injection operation is performed, the opening degree of the expansion mechanism 911 is larger than a certain value, but when the injection operation is not performed, the opening degree of the expansion mechanism 911 is made smaller than the certain value described above. .. As a result, the refrigerant does not flow into the injection pipe of the compressor 901.
Here, the opening degree of the expansion mechanism 911 is electronically controlled by a control unit configured by a microcomputer or the like.
 次に、ヒートポンプ装置900の冷房運転時の動作について説明する。冷房運転時には、四方弁909は、破線方向に設定される。なお、この冷房運転は、空調で使われる冷房だけでなく、水の冷却又は食品の冷凍等をも含む。 Next, the operation of the heat pump device 900 during the cooling operation will be described. During the cooling operation, the four-way valve 909 is set in the broken line direction. This cooling operation includes not only cooling used for air conditioning but also cooling of water or freezing of food.
 圧縮機901で高温高圧となった気相冷媒(図9の点1)は、圧縮機901から吐出され、凝縮器であり放熱器となる熱交換器907で熱交換されて液化する(図9の点2)。熱交換器907で液化された液相冷媒は、膨張機構906で減圧され、気液二相状態になる(図9の点3)。膨張機構906で気液二相状態になった冷媒は、内部熱交換器905で熱交換され、冷却され液化される(図9の点4)。内部熱交換器905では、膨張機構906で気液二相状態になった冷媒と、内部熱交換器905で液化された液相冷媒を膨張機構911で減圧させて気液二相状態になった冷媒(図9の点9)とを熱交換させている。内部熱交換器905で熱交換された液相冷媒(図9の点4)は、主冷媒回路908と、インジェクション回路912とに分岐して流れる。 The gas-phase refrigerant (high temperature and high pressure in the compressor 901) (point 1 in FIG. 9) is discharged from the compressor 901 and is heat-exchanged and liquefied in the heat exchanger 907 which is a condenser and a radiator (FIG. 9 ). Point 2). The liquid-phase refrigerant liquefied by the heat exchanger 907 is decompressed by the expansion mechanism 906 to be in a gas-liquid two-phase state (point 3 in FIG. 9). The refrigerant in the gas-liquid two-phase state by the expansion mechanism 906 is heat-exchanged by the internal heat exchanger 905, cooled and liquefied (point 4 in FIG. 9). In the internal heat exchanger 905, the refrigerant that has become a gas-liquid two-phase state in the expansion mechanism 906 and the liquid-phase refrigerant that has been liquefied in the internal heat exchanger 905 are decompressed in the expansion mechanism 911 to become a gas-liquid two-phase state. Heat is exchanged with the refrigerant (point 9 in FIG. 9). The liquid-phase refrigerant (point 4 in FIG. 9) that has undergone heat exchange in the internal heat exchanger 905 branches into the main refrigerant circuit 908 and the injection circuit 912 and flows.
 主冷媒回路908を流れる液相冷媒は、レシーバ904で圧縮機901に吸入される冷媒と熱交換されて、さらに冷却される(図9の点5)。レシーバ904で冷却された液相冷媒は、膨張機構903で減圧されて気液二相状態になる(図9の点6)。膨張機構903で気液二相状態になった冷媒は、蒸発器となる熱交換器902で熱交換され、加熱される(図9の点7)。このとき、冷媒が吸熱することにより、水回路913を循環する水が冷やされ、冷房、冷却又は冷凍等に利用される。
 そして、熱交換器902で加熱された冷媒は、レシーバ904でさらに加熱され(図9の点8)、圧縮機901に吸入される。
The liquid-phase refrigerant flowing through the main refrigerant circuit 908 is heat-exchanged with the refrigerant sucked into the compressor 901 by the receiver 904 and further cooled (point 5 in FIG. 9). The liquid-phase refrigerant cooled by the receiver 904 is decompressed by the expansion mechanism 903 and becomes a gas-liquid two-phase state (point 6 in FIG. 9). The refrigerant in the gas-liquid two-phase state by the expansion mechanism 903 is heat-exchanged by the heat exchanger 902, which is an evaporator, and is heated (point 7 in FIG. 9). At this time, the refrigerant absorbs heat, so that the water circulating in the water circuit 913 is cooled and used for cooling, cooling, freezing, or the like.
Then, the refrigerant heated by the heat exchanger 902 is further heated by the receiver 904 (point 8 in FIG. 9) and drawn into the compressor 901.
 一方、インジェクション回路912を流れる冷媒は、上述したように、膨張機構911で減圧されて(図9の点9)、内部熱交換器905で熱交換される(図9の点10)。内部熱交換器905で熱交換された気液二相状態の冷媒(インジェクション冷媒)は、気液二相状態のまま圧縮機901のインジェクションパイプから流入する。
 圧縮機901内での圧縮動作については、暖房運転時と同様である。
On the other hand, the refrigerant flowing through the injection circuit 912 is depressurized by the expansion mechanism 911 (point 9 in FIG. 9) and heat exchanged by the internal heat exchanger 905 (point 10 in FIG. 9) as described above. The gas-liquid two-phase refrigerant (injection refrigerant) that has undergone heat exchange in the internal heat exchanger 905 flows from the injection pipe of the compressor 901 in the gas-liquid two-phase state.
The compression operation in the compressor 901 is the same as that during the heating operation.
 なお、インジェクション運転を行わない際には、暖房運転時と同様に、膨張機構911の開度を全閉にして、圧縮機901のインジェクションパイプへ冷媒が流入しないようにする。 When the injection operation is not performed, the opening degree of the expansion mechanism 911 is fully closed to prevent the refrigerant from flowing into the injection pipe of the compressor 901, as in the heating operation.
 また、上記の例では、熱交換器902は、冷媒と、水回路913を循環する水とを熱交換させるプレート式熱交換器のような熱交換器であるとして説明した。熱交換器902は、これに限らず、冷媒と空気とを熱交換させるものであってもよい。
 また、水回路913は、水が循環する回路ではなく、他の流体が循環する回路であってもよい。
Further, in the above example, the heat exchanger 902 is described as a heat exchanger such as a plate heat exchanger that exchanges heat between the refrigerant and the water circulating in the water circuit 913. The heat exchanger 902 is not limited to this, and may be a heat exchanger that exchanges heat between the refrigerant and air.
Further, the water circuit 913 may not be a circuit in which water circulates, but a circuit in which another fluid circulates.
 上記の例では、熱交換器907が第1部分907a及び第2部分907bを有するが、代わりに、又はそれに加えて、熱交換器902が2つの部分を有する構成とすることも考えられる。そして、熱交換器902が冷媒と空気とを熱交換させるものである場合、上記の2つの部分がそれぞれファンを有し、これらのファンが別個のモータで駆動される構成とされることもある。 In the above example, the heat exchanger 907 has the first portion 907a and the second portion 907b, but it is conceivable that the heat exchanger 902 has two portions instead of or in addition to it. When the heat exchanger 902 is for exchanging heat between the refrigerant and the air, the two parts may each have a fan, and these fans may be driven by separate motors. ..
 以上、熱交換器902又は熱交換器907が2つの部分を有する構成について説明したが、代わりに、又はそれに加えて、圧縮機901が第1部分(第1圧縮機構)及び第2部分(第2圧縮機構)を有する構成とすることも考えられる。その場合、ヒートポンプ装置900の負荷が比較的大きいときには、第1部分及び第2部分の双方が圧縮動作を行い、ヒートポンプ装置900の負荷が比較的小さいときは、第1部分及び第2部分の一方のみ、例えば、第1部分のみが圧縮動作を行うように制御される。 The configuration in which the heat exchanger 902 or the heat exchanger 907 has two parts has been described above. However, instead of or in addition to this, the compressor 901 has a first part (first compression mechanism) and a second part (first part). It is also conceivable to adopt a configuration having two compression mechanisms). In that case, when the load of the heat pump device 900 is relatively large, both the first portion and the second portion perform a compression operation, and when the load of the heat pump device 900 is relatively small, one of the first portion and the second portion. Only, for example, only the first part is controlled to perform the compression operation.
 このような構成の場合、圧縮機901の第1部分及び第2部分には、それらを駆動する別個のモータが設けられる。例えば、実施の形態1又は2で説明した第1モータ41及び第2モータ42がそれぞれ第1部分及び第2部分の駆動に用いられる。 In such a configuration, the first and second parts of the compressor 901 are provided with separate motors for driving them. For example, the first motor 41 and the second motor 42 described in the first or second embodiment are used to drive the first portion and the second portion, respectively.
 以上、熱交換器902及び907の少なくとも一方が2つの部分を有し、熱交換器902及び907の少なくとも一方に対しファンが2台設けられている場合について述べたが、熱交換器が3以上の部分を有する構成も考えられる。一般化して言えば、熱交換器902及び907の少なくとも一方は複数の部分を有することがあり、それぞれの部分に対応してファンが設けられ、それぞれのファンに対応してモータが設けられている構成が考えられる。そのような場合、実施の形態1又は2で説明したモータ駆動装置100、200を用いることで、複数のモータ41、42を1台のインバータ4で駆動することが可能である。 The case where at least one of the heat exchangers 902 and 907 has two parts and two fans are provided for at least one of the heat exchangers 902 and 907 has been described above. A configuration having a portion of is also conceivable. Generally speaking, at least one of the heat exchangers 902 and 907 may have a plurality of parts, a fan is provided corresponding to each part, and a motor is provided corresponding to each fan. Possible configurations. In such a case, it is possible to drive the plurality of motors 41 and 42 with one inverter 4 by using the motor drive devices 100 and 200 described in the first or second embodiment.
 また、圧縮機901が2つの部分を有する場合について述べたが、圧縮機901が3以上の部分を有する構成も考えられる。一般化して言えば、圧縮機901は複数の部分を有することがあり、それぞれの部分に対応してモータが設けられている構成が考えられる。そのような場合、実施の形態1又は2で説明したモータ駆動装置100、200を用いることで、複数のモータ41、42を1台のインバータ4で駆動することが可能である。 Moreover, although the case where the compressor 901 has two parts has been described, a configuration in which the compressor 901 has three or more parts is also conceivable. Generally speaking, the compressor 901 may have a plurality of parts, and a configuration in which a motor is provided corresponding to each part is conceivable. In such a case, it is possible to drive the plurality of motors 41 and 42 with one inverter 4 by using the motor drive devices 100 and 200 described in the first or second embodiment.
 以上のように、実施の形態3によれば、圧縮機901又はファン910a、910bを駆動するために複数のモータ41、42がある場合に、1台のインバータ4を用いて複数のモータ41、42を駆動することが可能となるため、低コスト化及び小型軽量化を図ることが可能となる。また、小型化した分、熱交換器902、907をサイズアップさせることにより、さらに熱交換効率が上がり、高効率化を図ることも可能となる。 As described above, according to the third embodiment, when there are a plurality of motors 41 and 42 for driving the compressor 901 or the fans 910a and 910b, a plurality of motors 41 and 42 are used by using one inverter 4. Since it is possible to drive the 42, it is possible to reduce the cost and size and weight. Further, by increasing the size of the heat exchangers 902 and 907 by the amount of miniaturization, the heat exchange efficiency is further increased, and it is possible to improve the efficiency.
 また、接続切替部8を操作することにより駆動するモータの台数を調整することが可能となるため、例えば、軽負荷運転を行っている場合には、第1モータ41のみ運転を行い、過負荷運転を行う場合には第1モータ41と第2モータ42の二台を運転させることで、必要最小限の台数のみ運転を行うことが可能となり、さらに高効率化に寄与することが可能である。 Further, since it is possible to adjust the number of motors to be driven by operating the connection switching unit 8, for example, when performing light load operation, only the first motor 41 is operated and overload is performed. When operating, by operating two motors, the first motor 41 and the second motor 42, it is possible to operate only the minimum necessary number of motors, which can contribute to higher efficiency. ..
 実施の形態1又は2に記載されたモータ駆動装置100、200を、圧縮機901の駆動用モータに適用した場合には、脱調のおそれがなくなるため、安定した冷媒の圧縮運転を継続することができる。さらに、電流脈動による振動の抑制が可能となるため、騒音の低減だけでなく主冷媒回路908を構成する配管等の振動による破損を抑制することができる。 When the motor drive device 100 or 200 described in the first or second embodiment is applied to the drive motor of the compressor 901, there is no risk of step-out, and therefore a stable refrigerant compression operation is continued. You can Further, since vibration due to current pulsation can be suppressed, not only noise can be reduced, but also damage due to vibration of the piping or the like constituting the main refrigerant circuit 908 can be suppressed.
 さらに、実施の形態1又は2に記載されたモータ駆動装置100、200を、ファン910a、910bの駆動用モータに適用した場合には、脱調のおそれがなくなるため、安定した熱交換を継続することができる。さらに、電流脈動による振動の抑制が可能となるだけでなく、二台のファン910a、910bの速度差に起因した差音の発生を防止できるため、騒音を低減させることが可能となる。 Furthermore, when the motor drive device 100, 200 described in the first or second embodiment is applied to the drive motor for the fans 910a, 910b, there is no risk of step-out, so stable heat exchange is continued. be able to. Further, not only vibration due to current pulsation can be suppressed, but also generation of a difference sound due to a speed difference between the two fans 910a and 910b can be prevented, so that noise can be reduced.
 なお、以上に記載された実施の形態1~3は、一例であり、別の公知の技術と組み合わせることも可能であるし、一部を省略する等の変更を行うこともできる。 The first to third embodiments described above are merely examples, and it is possible to combine them with other publicly known techniques, and it is possible to make changes such as omitting a part.
 以上のように、実施の形態1及び2に記載のモータ駆動装置100、200は、例えば、実施の形態3に記載されているヒートポンプ装置900に適用することができるが、複数台の永久磁石同期モータを同一回転数で駆動する用途であれば、どのような用途にも適用可能である。 As described above, the motor drive devices 100 and 200 according to the first and second embodiments can be applied to, for example, the heat pump device 900 according to the third embodiment, but a plurality of permanent magnets are synchronized. It can be applied to any application as long as the motor is driven at the same rotation speed.
 以上のように、実施の形態1及び2に記載のモータ駆動装置100、200によれば、並列接続されるモータ41、42間の電流のアンバランスを抑制することができるため、並列に接続されるモータ41、42の駆動信頼性を高めることができる。 As described above, according to the motor drive devices 100 and 200 described in the first and second embodiments, it is possible to suppress the current imbalance between the motors 41 and 42 that are connected in parallel. The drive reliability of the motors 41 and 42 can be improved.
 制御部10、21が、インバータ4から出力される三相交流電圧の位相を変えることで、容易に並列接続されるモータ41、42間の電流のアンバランスを抑制することができる。
 ここで、制御部10、21は、インバータ4に出力するPWM信号を生成するために用いられる電圧指令値を算出するための印加電圧位相における進み位相角を補正すればよいため、容易に制御対象モータに流れるモータ電流の電流値を小さくすることができる。
Since the control units 10 and 21 change the phase of the three-phase AC voltage output from the inverter 4, it is possible to easily suppress the current imbalance between the motors 41 and 42 that are connected in parallel.
Here, since the control units 10 and 21 only have to correct the lead phase angle in the applied voltage phase for calculating the voltage command value used to generate the PWM signal output to the inverter 4, the control target is easily controlled. The current value of the motor current flowing through the motor can be reduced.
 なお、インバータ4を構成する複数のスイッチング素子の各々は、ワイドバンドギャップ半導体を用いることで、低損失化及び高速スイッチング化を実現することが可能となる。 By using a wide bandgap semiconductor for each of the plurality of switching elements that make up the inverter 4, low loss and high speed switching can be realized.
 制御部10が、第1モータ41のモータ電流の電流値と、第2モータ42のモータ電流の電流値とが異なる場合に、インバータ4に、制御対象モータに流れるモータ電流の電流値が小さくなるようにPWM信号をインバータ4に与えることで、第1モータ41及び第2モータ42を同じモータ定数となるように、駆動させることができる。 When the control unit 10 differs between the current value of the motor current of the first motor 41 and the current value of the motor current of the second motor 42, the current value of the motor current flowing through the motor to be controlled in the inverter 4 becomes smaller. By thus applying the PWM signal to the inverter 4, the first motor 41 and the second motor 42 can be driven so as to have the same motor constant.
 制御部21が、第1モータ41のモータ電流の電流値及び第2モータ42のモータ電流の電流値の差分が、予め定められた範囲を超えた場合に、インバータ4に、制御対象モータに流れるモータ電流の電流値が小さくなるようにPWM信号をインバータ4に与えることで、制御対象モータが、第1モータ41及び第2モータ42の間で、頻繁に切り替わってしまうことを防止することができる。 When the difference between the current value of the motor current of the first motor 41 and the current value of the motor current of the second motor 42 exceeds a predetermined range, the control unit 21 causes the inverter 4 to flow to the control target motor. By giving a PWM signal to the inverter 4 so that the current value of the motor current becomes small, it is possible to prevent the controlled motor from being frequently switched between the first motor 41 and the second motor 42. ..
 第1モータ41及び第2モータ42の内の少なくとも1台のモータとインバータ4との接続状態を、接続及び切断との間で切り替える接続切替部8を備えることで、第1モータ41及び第2モータ42の負荷状態に応じて、駆動するモータの数を変えることができる。 The first motor 41 and the second motor 41 and the second motor 41 are provided with a connection switching unit 8 for switching the connection state between at least one motor of the first motor 41 and the second motor 42 and the inverter 4 between connection and disconnection. The number of motors to be driven can be changed according to the load state of the motor 42.
 接続切替部8は、ワイドバンドギャップ半導体で構成することで、低損失化及び高速スイッチング化を実現することが可能となる。 By configuring the connection switching unit 8 with a wide band gap semiconductor, low loss and high speed switching can be realized.
 接続切替部8は、電磁接触器で構成されることで、低コストを実現することができる。 The connection switching unit 8 is composed of an electromagnetic contactor, so that low cost can be realized.
 実施の形態1又は2に係るモータ駆動装置100、200を冷凍サイクル適用機器に適用することで、ヒートポンプ又は空調機等において、並列に接続されるモータの駆動信頼性を高めることができる。 By applying the motor drive device 100 or 200 according to the first or second embodiment to a refrigeration cycle application device, it is possible to improve drive reliability of motors connected in parallel in a heat pump, an air conditioner, or the like.
 100,200 モータ駆動装置、 1 交流電源、 2 整流器、 3 平滑部、 4 インバータ、 5 インバータ電流検出部、 6 モータ電流検出部、 7 入力電圧検出部、 8 接続切替部、 9 開閉部、 10,21 制御部、 11 運転指令部、 12 減算部、 13m,13l 座標変換部、 14m,14l 速度推定部、 15m,15l 積分部、 16 モータ制御部、 17 脈動補償制御部、 18 座標変換部、 19 PWM信号生成部、 20,22 進角補正部、 41 第1モータ、 42 第2モータ、 900 ヒートポンプ装置、 901 圧縮機、 902 熱交換器、 903 膨張機構、 904 レシーバ、 905 内部熱交換器、 906 膨張機構、 907 熱交換器、 907a 第1部分、 907b 第2部分、 908 主冷媒回路、 909 四方弁、 910a,910b ファン。 100, 200 motor drive device, 1 AC power supply, 2 rectifier, 3 smoothing part, 4 inverter, 5 inverter current detection part, 6 motor current detection part, 7 input voltage detection part, 8 connection switching part, 9 switching part, 10, 21 control unit, 11 operation command unit, 12 subtraction unit, 13m, 13l coordinate conversion unit, 14m, 14l speed estimation unit, 15m, 15l integration unit, 16 motor control unit, 17 pulsation compensation control unit, 18 coordinate conversion unit, 19 PWM signal generation unit, 20, 22 advance angle correction unit, 41 first motor, 42 second motor, 900 heat pump device, 901 compressor, 902 heat exchanger, 903 expansion mechanism, 904 receiver, 905 internal heat exchanger, 906 Expansion mechanism, 907 heat exchanger, 907a 1st part, 907b 2nd part, 908 main rectifier circuit, 909 four-way valve, 910a, 910b fan.

Claims (13)

  1.  回転子に永久磁石を有する第1モータ及び第2モータに接続され、前記第1モータ及び前記第2モータを駆動するインバータと、
     前記第1モータに流れるモータ電流である第1モータ電流及び前記第2モータに流れるモータ電流である第2モータ電流を検出する電流検出部と、を備え、
     前記インバータは、前記第1モータ及び前記第2モータの内、電流値の大きい方のモータである制御対象モータに流れるモータ電流の電流値が小さくなるように、前記第1モータ及び前記第2モータを駆動すること
     を特徴とするモータ駆動装置。
    An inverter that is connected to a first motor and a second motor having permanent magnets on a rotor and drives the first motor and the second motor;
    A current detection unit for detecting a first motor current, which is a motor current flowing through the first motor, and a second motor current, which is a motor current flowing through the second motor, is provided.
    The inverter includes the first motor and the second motor so that a current value of a motor current flowing through a control target motor, which is a motor having a larger current value among the first motor and the second motor, becomes smaller. A motor drive device for driving a motor.
  2.  前記インバータを制御する制御部をさらに備え、
     前記インバータは、前記第1モータ及び前記第2モータに三相交流電圧を印加することで、前記第1モータ及び前記第2モータを駆動し、
     前記制御部は、前記三相交流電圧の位相を変えることで、前記制御対象モータに流れるモータ電流の電流値が小さくなるように、前記インバータを制御すること
     を特徴とする請求項1に記載のモータ駆動装置。
    Further comprising a control unit for controlling the inverter,
    The inverter drives the first motor and the second motor by applying a three-phase AC voltage to the first motor and the second motor,
    The control unit controls the inverter so that the current value of the motor current flowing through the control target motor is reduced by changing the phase of the three-phase AC voltage. Motor drive device.
  3.  前記インバータは、複数のスイッチング素子により直流電圧をスイッチングすることで、前記三相交流電圧を生成し、
     前記制御部は、前記複数のスイッチング素子をオン又はオフにするPWM(Pulse Width Modulation)信号を前記インバータに与えることで、前記インバータを制御し、
     前記制御部は、前記PWM信号を生成するために用いられる電圧指令値を算出するための印加電圧位相における進み位相角を補正することで、前記制御対象モータに流れるモータ電流の電流値が小さくなるようにすること
     を特徴とする請求項2に記載のモータ駆動装置。
    The inverter generates the three-phase AC voltage by switching the DC voltage with a plurality of switching elements.
    The control unit controls the inverter by giving a PWM (Pulse Width Modulation) signal for turning on or off the plurality of switching elements to the inverter,
    The control unit corrects the lead phase angle in the applied voltage phase for calculating the voltage command value used to generate the PWM signal, so that the current value of the motor current flowing through the control target motor becomes small. The motor drive device according to claim 2, wherein:
  4.  前記スイッチング素子は、ワイドバンドギャップ半導体で構成されること
     を特徴とする請求項3に記載のモータ駆動装置。
    The motor drive device according to claim 3, wherein the switching element is composed of a wide bandgap semiconductor.
  5.  前記制御部は、前記第1モータ電流の電流値と、前記第2モータ電流の電流値とが異なる場合に、前記インバータに、前記制御対象モータに流れるモータ電流の電流値が小さくなるように、前記第1モータ及び前記第2モータを駆動させること
     を特徴とする請求項2から4の何れか一項に記載のモータ駆動装置。
    When the current value of the first motor current and the current value of the second motor current are different, the control unit causes the inverter to reduce the current value of the motor current flowing to the control target motor. The motor drive device according to any one of claims 2 to 4, wherein the first motor and the second motor are driven.
  6.  前記制御部は、前記第1モータ電流の電流値及び前記第2モータ電流の電流値の差分が、予め定められた範囲を超えた場合に、前記インバータに、前記制御対象モータに流れるモータ電流の電流値が小さくなるように、前記第1モータ及び前記第2モータを駆動させること
     を特徴とする請求項2から4の何れか一項に記載のモータ駆動装置。
    When the difference between the current value of the first motor current and the current value of the second motor current exceeds a predetermined range, the control unit causes the inverter to control the motor current flowing to the control target motor. The motor drive device according to any one of claims 2 to 4, wherein the first motor and the second motor are driven so that a current value becomes small.
  7.  前記第1モータ及び前記第2モータの内の少なくとも1台のモータと前記インバータとの接続状態を、接続及び切断との間で切り替える接続切替部をさらに備えること
     を特徴とする請求項1から6の何れか一項に記載のモータ駆動装置。
    The connection switching part which switches the connection state of at least 1 motor of the said 1st motor and the said 2nd motor, and the said inverter between connection and disconnection is further provided. The motor drive device according to claim 1.
  8.  前記接続切替部はワイドバンドギャップ半導体で構成されること
     を特徴とする請求項7に記載のモータ駆動装置。
    The motor drive device according to claim 7, wherein the connection switching unit is made of a wide bandgap semiconductor.
  9.  前記接続切替部は電磁接触器で構成されること
     を特徴とする請求項7に記載のモータ駆動装置。
    The motor drive device according to claim 7, wherein the connection switching unit is composed of an electromagnetic contactor.
  10.  請求項1から9の何れか一項に記載のモータ駆動装置を備える冷凍サイクル適用機器。 A refrigeration cycle application device comprising the motor drive device according to any one of claims 1 to 9.
  11.  前記冷凍サイクル適用機器の熱交換器が第1部分及び第2部分を有し、
     前記第1モータは前記第1部分に対応して設けられており、
     前記第2モータは前記第2部分に対応して設けられており、
     前記冷凍サイクル適用機器の負荷に応じて、前記第1部分及び第2部分のうちの熱交換動作を行う部分が切り替えられ、
     前記第1モータは、前記第1部分が熱交換動作を行うときに前記インバータにより駆動され、
     前記第2モータは、前記第2部分が熱交換動作を行うときに前記インバータにより駆動されること
     を特徴とする請求項10に記載の冷凍サイクル適用機器。
    The heat exchanger of the refrigeration cycle application device has a first portion and a second portion,
    The first motor is provided corresponding to the first portion,
    The second motor is provided corresponding to the second portion,
    Depending on the load of the refrigeration cycle application device, the part of the first part and the second part that performs the heat exchange operation is switched,
    The first motor is driven by the inverter when the first portion performs a heat exchange operation,
    The refrigeration cycle application device according to claim 10, wherein the second motor is driven by the inverter when the second portion performs a heat exchange operation.
  12.  前記第1モータは、前記第1部分に対応して設けられている第1ファンを回転させるために用いられ、
     前記第2モータは、前記第2部分に対応して設けられている第2ファンを回転させるために用いられること
     を特徴とする請求項11に記載の冷凍サイクル適用機器。
    The first motor is used to rotate a first fan provided corresponding to the first portion,
    The refrigeration cycle application device according to claim 11, wherein the second motor is used to rotate a second fan provided corresponding to the second portion.
  13.  前記冷凍サイクル適用機器の圧縮機が第1部分及び第2部分を有し、
     前記第1モータが前記第1部分に対応して設けられており、
     前記第2モータが前記第2部分に対応して設けられており、
     前記冷凍サイクル適用機器の負荷に応じて、前記第1部分及び前記第2部分のうちの圧縮動作を行う部分が切り替えられ、
     前記第1モータは、前記第1部分が圧縮動作を行うときに前記インバータにより駆動され、
     前記第2モータは、前記第2部分が圧縮動作を行うときに前記インバータにより駆動されること
     を特徴とする請求項10に記載の冷凍サイクル適用機器。
    The compressor of the refrigeration cycle application device has a first part and a second part,
    The first motor is provided corresponding to the first portion,
    The second motor is provided corresponding to the second portion,
    Depending on the load of the refrigeration cycle application device, a portion of the first portion and the second portion that performs a compression operation is switched,
    The first motor is driven by the inverter when the first portion performs a compression operation,
    The refrigeration cycle application device according to claim 10, wherein the second motor is driven by the inverter when the second portion performs a compression operation.
PCT/JP2019/008046 2019-03-01 2019-03-01 Motor drive device and refrigeration cycle application device WO2020178891A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021503247A JP7150137B2 (en) 2019-03-01 2019-03-01 Motor drive device and refrigeration cycle application equipment
PCT/JP2019/008046 WO2020178891A1 (en) 2019-03-01 2019-03-01 Motor drive device and refrigeration cycle application device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008046 WO2020178891A1 (en) 2019-03-01 2019-03-01 Motor drive device and refrigeration cycle application device

Publications (1)

Publication Number Publication Date
WO2020178891A1 true WO2020178891A1 (en) 2020-09-10

Family

ID=72338155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008046 WO2020178891A1 (en) 2019-03-01 2019-03-01 Motor drive device and refrigeration cycle application device

Country Status (2)

Country Link
JP (1) JP7150137B2 (en)
WO (1) WO2020178891A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340794A (en) * 1989-07-06 1991-02-21 Mitsubishi Electric Corp Controller for induction motor
JP2000270595A (en) * 1999-01-11 2000-09-29 Fanuc Ltd Servo controller
JP2006029761A (en) * 2004-06-15 2006-02-02 Toshiba Corp Refrigerator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166294A (en) * 1998-11-25 2000-06-16 Topre Corp Group operation control method and system of synchronous motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340794A (en) * 1989-07-06 1991-02-21 Mitsubishi Electric Corp Controller for induction motor
JP2000270595A (en) * 1999-01-11 2000-09-29 Fanuc Ltd Servo controller
JP2006029761A (en) * 2004-06-15 2006-02-02 Toshiba Corp Refrigerator

Also Published As

Publication number Publication date
JPWO2020178891A1 (en) 2021-09-30
JP7150137B2 (en) 2022-10-07

Similar Documents

Publication Publication Date Title
US9746216B2 (en) Heat pump device, heat pump system, air conditioner, and freezer
US9543887B2 (en) Heat pump device, heat pump system, and method for controlling three-phase inverter
JP7105961B2 (en) Motor drive device and refrigeration cycle application equipment
US20130291578A1 (en) Heat pump device, heat pump system, and method for controlling three-phase inverter
JP7114705B2 (en) Motor drive device and refrigeration cycle application equipment
JP6963104B2 (en) Outdoor unit and refrigeration cycle equipment
US11711040B2 (en) Motor driving apparatus and refrigeration cycle equipment
WO2014049867A1 (en) Heat pump device, air-conditioner, and refrigerator
JP6309173B2 (en) Motor drive device, heat pump device using the motor drive device, refrigeration air conditioner, and blower
JP6929434B2 (en) Motor drive device and refrigeration cycle applicable equipment
JP6480859B2 (en) Heat pump device, air conditioner and refrigerator
WO2020178891A1 (en) Motor drive device and refrigeration cycle application device
US11264924B2 (en) Motor driving apparatus and refrigeration cycle equipment
JP6925527B2 (en) Motor drive device, motor drive device control device, motor drive device control method, and air conditioner
WO2022180746A1 (en) Electric motor drive device and refrigeration cycle application device
WO2023162106A1 (en) Motor drive device and refrigeration cycle device
JP2024078907A (en) Motor drive device, electrical constant measurement method, and refrigeration equipment
JP2024088980A (en) Motor drive control device, motor device, refrigeration/air-conditioning machine, fan device, and drive control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917832

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503247

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917832

Country of ref document: EP

Kind code of ref document: A1