WO2020177757A1 - Integrated power regulator and method - Google Patents

Integrated power regulator and method Download PDF

Info

Publication number
WO2020177757A1
WO2020177757A1 PCT/CN2020/078111 CN2020078111W WO2020177757A1 WO 2020177757 A1 WO2020177757 A1 WO 2020177757A1 CN 2020078111 W CN2020078111 W CN 2020078111W WO 2020177757 A1 WO2020177757 A1 WO 2020177757A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
power
regulator
conversion module
cells
Prior art date
Application number
PCT/CN2020/078111
Other languages
French (fr)
Inventor
Heping Dai
Peng Zou
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP20767041.5A priority Critical patent/EP3914986A4/en
Priority to CN202080010949.3A priority patent/CN113424127B/en
Publication of WO2020177757A1 publication Critical patent/WO2020177757A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to an integrated power regulator and method, and, in particular embodiments, to an M ⁇ N-phase integrated power regulator for converting energy in high current applications.
  • AI artificial intelligence
  • the AI based computing machines may be implemented as graphical processing units (GPU) .
  • the graphical processing units allow for performance gains through parallel computations. As the computing power of the graphical processing units has increased, the demand for electrical power has continued to rise.
  • a direct-to-chip power architecture In order to efficiently power low-voltage, high current loads (e.g., graphical processing units) , a direct-to-chip power architecture has been employed.
  • the input of the direct-to-chip power architecture is a 48-Volt distribution bus.
  • the output of the direct-to-chip power architecture is an IC voltage as low as 0.45 V.
  • the current flowing through the direct-to-chip power architecture is up to 1000 A.
  • the inductor of the direct-to-chip power architecture has to endure high current stress.
  • Integrated voltage regulators can achieve high efficiency for high current applications.
  • a typical integrated voltage regulator comprises a plurality of step-down power converters operating in different phases, thereby achieving fast transient responses, accurate voltage regulation and smaller output voltage ripples.
  • the efficiency of the integrated voltage regulator drops significantly due to the switching losses associated with the large number of switching elements operating at a high switching frequency.
  • the light load efficiency is very important. As such, it would be desirable to have an integrated regulator capable of achieving high efficiency under a variety of operating conditions.
  • an apparatus comprises a plurality of power modules connected in parallel between a positive terminal and a negative terminal of a power source.
  • Each power module of the plurality of power modules comprises a plurality of power conversion cells connected in parallel between the positive terminal and the negative terminal of the power source.
  • a first power conversion cell and a second power conversion cell of the plurality of power conversion cells are configured to operate in two different operating phases.
  • a third power conversion cell and a fourth power conversion cell of the plurality of power conversion cells are configured to operate in a same operating phase.
  • the plurality of power modules is configured to operate in different operating phases in an interleaved manner, and the plurality of power conversion cells of a same power module is controlled by same gate drive signals.
  • the plurality of power conversion modules is configured to operate in a same operating phase, and the plurality of power conversion cells of a same power module is configured to operate in an interleaved manner.
  • a first power conversion module and a second power conversion module are configured to operate in two different operating phases in an interleaved manner, and wherein the first power conversion cell and the second power conversion cell are in the first power conversion module and the second power conversion module respectively.
  • the third power conversion cell and the fourth power conversion cell are in a same power conversion module.
  • the first power conversion cell and the second power conversion cell are in a same power conversion module having a plurality power conversion cells operating in a plurality of operating phases.
  • a first power conversion module and a second power conversion module are configured to operate in a same operating phase, and wherein the third power conversion cell and the fourth power conversion cell are in the first power conversion module and the second power conversion module respectively.
  • At least two inductors of the plurality of power conversion cells are magnetically coupled to each other. In alternative embodiments, all inductors of the plurality of power conversion cells are magnetically coupled to each other.
  • a method comprises configuring M ⁇ N power conversion cells of a power regulator to operate in N operating phases.
  • N and M are predetermined integers greater than or equal to 2.
  • the power regulator comprises N power conversion modules connected in parallel between a positive terminal and a negative terminal of a power source.
  • Each power conversion module of the N power conversion modules comprises M power conversion cells connected in parallel between the positive terminal and the negative terminal of the power source.
  • the N power conversion modules are configured to operate in the N operating phases in an interleaved manner.
  • the M power conversion cells are controlled by same gate drive signals.
  • the method comprises during the light load operation, disabling one power conversion cell from each power conversion module to reduce the switching losses while maintaining the ripple reduction.
  • the method further comprises during the light load operation, disabling one power conversion module to reduce the switching losses while improving the ripple reduction.
  • the power regulator comprises M power conversion modules connected in parallel between a positive terminal and a negative terminal of a power source.
  • Each power conversion module of the M power conversion modules comprises N power conversion cells connected in parallel between the positive terminal and the negative terminal of the power source.
  • the M power modules are configured to operate in a same operating phase, and the N power conversion cells of each power conversion module are configured to operate in in the N operating phases in an interleaved manner.
  • the method comprises during the light load operation, disabling one power conversion module to reduce the switching losses while maintaining the ripple reduction.
  • the method further comprises during the light load operation, disabling one power conversion cell to reduce the switching losses while improving the ripple reduction.
  • a method comprises configuring M ⁇ N power conversion cells of a power regulator to operate in N operating phases.
  • the power regulator is connected between a power source and a load, and N and M are predetermined integers greater than or equal to 2.
  • N and M are predetermined integers greater than or equal to 2.
  • the power regulator comprises N power conversion modules connected in parallel between a positive terminal and a negative terminal of the power source.
  • Each power conversion module of the N power conversion modules comprises M power conversion cells connected in parallel between the positive terminal and the negative terminal of the power source.
  • the N power conversion modules are configured to operate in the N operating phases in an interleaved manner, and the M power conversion cells are controlled by same gate drive signals.
  • a time delay of T/N is placed between gate drive signals of two adjacent power conversion modules.
  • T is a switching cycle of the power regulator. The method comprises during the load transient, dynamically reducing the time delay between two adjacent power conversion modules to improve the transient response performance.
  • An advantage of an embodiment of the present disclosure is an M ⁇ N integrated power regulator for improving the efficiency, reliability and cost of a power conversion system in high current applications.
  • Figure 1 illustrates a block diagram of an integrated power regulator in accordance with various embodiments of the present disclosure
  • Figure 2 illustrates a block diagram of a power conversion module shown in Figure 1 in accordance with various embodiments of the present disclosure
  • FIG. 3 illustrates a schematic diagram of the power conversion module shown in Figure 2 in accordance with various embodiments of the present disclosure
  • FIG. 4 illustrates a schematic diagram of another power conversion module in accordance with various embodiments of the present disclosure
  • Figure 5 illustrates a schematic diagram of yet another power conversion module in accordance with various embodiments of the present disclosure
  • Figure 6 illustrates a first control scheme applied to the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure
  • Figure 7 illustrates a second control scheme applied to the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure
  • Figure 8 illustrates a flow chart of a method for controlling the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure
  • Figure 9 illustrates a flow chart of another method for controlling the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure
  • Figure 10 illustrates a third control scheme applied to the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure
  • Figure 11 illustrates a fourth control scheme applied to the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure
  • Figure 12 illustrates a flow chart of yet another method for controlling the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure
  • Figure 13 illustrates a flow chart of yet another method for controlling the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure
  • Figure 14 illustrates a block diagram of another integrated power regulator in accordance with various embodiments of the present disclosure
  • FIG. 15 illustrates another integrated power regulator in accordance with various embodiments of the present disclosure
  • Figure 16 illustrates a 3 ⁇ 3 integrated power regulator in accordance with various embodiments of the present disclosure.
  • Figure 17 illustrates a 4 ⁇ 6 integrated power regulator in accordance with various embodiments of the present disclosure.
  • FIG. 1 illustrates a block diagram of an integrated power regulator in accordance with various embodiments of the present disclosure.
  • the integrated power regulator 100 is connected between a power source 150 and a load 160.
  • the integrated power regulator 100 is a step-down power conversion system converting energy from the power source 150 to a low voltage and high current load (e.g., load 160) .
  • the positive terminal of the power source 150 is denoted by VIN+.
  • the negative terminal of the power source 150 is denoted by VIN-.
  • the output of the integrated power regulator 100 is denoted by VOUT.
  • the power source 150 is implemented as a 48-Volt direct current distribution bus.
  • the power source 150 may be implemented as other suitable dc power sources such as a solar panel, an energy storage unit, a battery pack, a power converter converting energy from the utility line, a power generator, a renewable power source, any combinations thereof and the like.
  • the load 160 may be a processor such as a central processing unit (CPU) , a graphics processing unit (GPU) , an application-specific integrated circuit (ASIC) , any combinations thereof and the like.
  • the load 160 may be a plurality of downstream power converters.
  • the integrated power regulator 100 comprises N power conversion modules connected in parallel between VIN+ and VIN-as shown in Figure 1.
  • N is a predetermined integer greater than or equal to 2.
  • Each power conversion module comprises M power conversion cells.
  • M is a predetermined integer greater than or equal to 2. The detailed structure of the power conversion cells will be described below with respect to Figures 2-3.
  • a first power conversion module 111 has a first input terminal connected to VIN+, a second input terminal connected to VIN-and an output terminal connected to VOUT.
  • a second power conversion module 112 and an Nth power conversion module 113 has a first input terminal connected to VIN+, a second input terminal connected to VIN-and an output terminal connected to VOUT.
  • each of the N power conversion modules comprises M power conversion cells connected in parallel.
  • Each power conversion cell is a step-down power converter such as a buck switching converter.
  • the step-down power converter comprises a high-side switch, a low-side switch and an inductor.
  • the conducting periods of the high-side switches of the M power conversion cells are equal.
  • the duty cycle D of the integrated power regulator 100 is defined as the conducting period of a high-side switch divided by a switching cycle of the integrated power regulator 100.
  • capacitor (capacitors) between VIN+ and VIN-can be added into each power conversion cell or power conversion module, and a capacitor (capacitors) between VOUT and VIN-can be added into each power conversion cell or power conversion module to reduce noise and/or improve dynamic response performance.
  • the current flowing through the integrated power regulator 100 is distributed evenly among the N power conversion modules shown in Figure 1. Furthermore, the current flowing through each power conversion module is distributed evenly among the inductors of the M power conversion cells. In other words, the average current flowing through the inductor of each power conversion cell is equal to the average load current divided by M ⁇ N.
  • the N power conversion modules may be configured to operate in N different operating phases.
  • the power conversion cells of each power conversion module are trigged by the same gate drive signals.
  • a switching cycle is divided into N equal periods. Each period is a time delay between two adjacent operating phases.
  • the N power conversion modules of Figure 1 are configured to operate in N operating phases. Each power conversion module is configured to operate in a corresponding operating phase.
  • the turn-on edges of two adjacent power conversion modules e.g., power conversion modules 111 and 112 are separated by a time delay of T/N.
  • the N power conversion modules of Figure 1 are configured to operate in N operating phases, each of which is dynamically adjustable.
  • the turn-on edges of two adjacent power conversion modules are separated by a time delay less than T/N.
  • Such a reduced time delay helps to improve the transient response performance of the integrated power regulator 100.
  • the integrated power regulator can control M ⁇ N power conversion cells through N sets of interleaving control schemes.
  • Such a control system configuration helps to simplify the control system design of the integrated power regulator 100.
  • the N power conversion modules may be configured to operate in a same operating phase.
  • the power conversion cells of each power conversion module are configured to operate in M different operating phases.
  • a switching cycle is divided into M equal periods. Each period is a time delay between two adjacent operating phases.
  • the M power conversion cells of each power conversion module are configured to operate in M operating phases. Each power conversion cell is configured to operate in a corresponding operating phase.
  • the turn-on edges of two adjacent power conversion cells are separated by a time delay of T/M.
  • the M power conversion cells are configured to operate in M operating phases, each of which is dynamically adjustable. For example, under a load transient, the turn-on edges of two adjacent power conversion cells are separated by a time delay less than T/M. Such a reduced time delay helps to improve the transient response performance of the integrated power regulator 100.
  • the N power conversion modules may be configured to operate in N different operating phases.
  • the turn-on edges of two adjacent power conversion modules e.g., power conversion modules 111 and 112 are separated by a time delay of T/N.
  • the power conversion cells of each power conversion module are configured to operate in M different operating phases.
  • the turn-on edges of two adjacent power conversion cells are separated by a time delay of T/ (M ⁇ N) .
  • the N power conversion modules of Figure 1 are configured to operate in N operating phases, each of which is dynamically adjustable.
  • the M power conversion cells are configured to operate in M operating phases, each of which is dynamically adjustable. Such adjustable time delays helps to improve the transient response performance of the integrated power regulator 100.
  • FIG. 2 illustrates a block diagram of a power conversion module shown in Figure 1 in accordance with various embodiments of the present disclosure.
  • the first power conversion module 111 is used as an example to illustrate the structure of the plurality of power conversion modules shown in Figure 1.
  • the first power conversion module 111 comprises a first power conversion cell 211, a second power conversion cell 212 and an Mth power conversion cell 213.
  • the first power conversion cell 211 has a first input terminal connected to VIN+, a second input terminal connected to VIN-and an output terminal connected to VOUT.
  • a second power conversion cell 212 and the Mth power conversion cell 213 has a first input terminal connected to VIN+, a second input terminal connected to VIN-and an output terminal connected to VOUT.
  • the detailed schematic diagram of the power conversion cells shown in Figure 2 will be described below with respect to Figure 3.
  • Figure 3 illustrates a schematic diagram of the power conversion module shown in Figure 2 in accordance with various embodiments of the present disclosure.
  • the first power conversion cell 211, the second power conversion cell 212 and the Mth power converter cell 213 have a similar schematic structure.
  • the schematic diagram of the first power conversion cell 211 is discussed in detail below.
  • the first power conversion cell 211 comprises a high-side switch SH11, a low-side switch SL11 and an inductor L11.
  • the high-side switch SH11 and the low-side switch SL11 are connected in series between VIN+ and VIN-.
  • the inductor L11 is connected between a common node of SH11 and SL11, and VOUT.
  • the switches of the power conversion cells of Figure 3 are able to achieve zero voltage switching (ZVS) .
  • ZVS zero voltage switching
  • the current flowing through the inductor of each cell varies from a positive value to zero and further goes negative to achieve ZVS.
  • the ZVS operation helps to achieve higher efficiency and lower electromagnetic interference (EMI) .
  • EMI electromagnetic interference
  • the switches of Figure 3 may be metal oxide semiconductor field-effect transistor (MOSFET) devices.
  • the switching element can be any controllable switches such as insulated gate bipolar transistor (IGBT) devices, integrated gate commutated thyristor (IGCT) devices, gate turn-off thyristor (GTO) devices, silicon controlled rectifier (SCR) devices, junction gate field-effect transistor (JFET) devices, MOS controlled thyristor (MCT) devices and the like.
  • the switches may be implemented as gallium nitride (GaN) based semiconductor devices, silicon carbide (SiC) based semiconductor devices and the like.
  • FIG. 3 shows the switches SH11-SH1M and SL11-SL1M are implemented as single n-type transistors, a person skilled in the art would recognize there may be many variations, modifications and alternatives. For example, depending on different applications and design needs, at least some of the switches SH11-SH1M and SL11-SL1M may be implemented as p-type transistors. Furthermore, each switch shown in Figure 3 may be implemented as a plurality of switches connected in parallel. Moreover, a capacitor may be connected in parallel with one switch to achieve zero voltage switching (ZVS) /zero current switching (ZCS) .
  • ZVS zero voltage switching
  • ZCS zero current switching
  • FIG 4 illustrates a schematic diagram of another power conversion module in accordance with various embodiments of the present disclosure.
  • the power conversion module shown in Figure 4 is similar to the power conversion module shown in Figure 3 except that at least two inductors (e.g., L11 and L12) of the M power conversion cells are magnetically coupled to each other.
  • at least two inductors e.g., L11 and L12
  • the magnetic coupling used in Figure 4 is selected purely for demonstration purposes and are not intended to limit the various embodiments of the present disclosure to any particular magnetic coupling configurations.
  • the at least two inductors of the M power conversion cells may be magnetically coupled to one or more inductors of an adjacent power module, thereby reducing the size of the magnetic components.
  • the coupled inductors of the N power modules may be magnetically coupled to each other.
  • FIG. 5 illustrates a schematic diagram of yet another power conversion module in accordance with various embodiments of the present disclosure.
  • the power conversion module shown in Figure 5 is similar to the power conversion module shown in Figure 4 except that all inductors (e.g., L11-L1M) of the M power conversion cells are magnetically coupled to each other.
  • all inductors e.g., L11-L1M
  • the magnetic coupling used in Figure 5 is selected purely for demonstration purposes and are not intended to limit the various embodiments of the present disclosure to any particular magnetic coupling configurations.
  • the M inductors of the M power conversion cells may be magnetically coupled to one or more inductors of an adjacent power module, thereby reducing the size of the magnetic components.
  • the coupled inductors of the N power modules may be magnetically coupled to each other.
  • Figure 6 illustrates a first control scheme applied to the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure.
  • the N power conversion modules of the integrated power regulator are configured to operate in N different operating phases.
  • Each power conversion module comprises M power conversion cells.
  • the M power conversion cells of a same power module are configured to operate in a same operating phase. In other words, the leading edges of the M power conversion cells are triggered simultaneously or almost simultaneously.
  • the high-side switches of the M power conversion cells are controlled by a same high-side gate drive signal.
  • the low-side switches of the M power conversion cells are controlled by a same low-side gate drive signal.
  • a switching cycle of the integrated power regulator 100 is divided into N equal portions.
  • the leading edge of the high-side switches of the first power conversion module 111 is trigged at the beginning of the switching period.
  • the leading edge of the high-side switches of the second power conversion module 112 is trigged at T/N as shown in Figure 6.
  • the leading edge of the high-side switches of the Nth power conversion module 113 is trigged at T ⁇ (N-1) /N.
  • T ⁇ (N-1) /N there is a time delay or a phase shift between two adjacent power conversion modules.
  • the time delay or the phase shift is equal to T/N.
  • Figure 7 illustrates a second control scheme applied to the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure.
  • the system configuration of the integrated power regulator shown in Figure 7 is similar to that shown in Figure 6 except that the time delay between two adjacent power conversion modules is dynamically adjustable.
  • the N power conversion modules of the integrated power regulator are configured to operate in N different operating phases. In response to the N different operating phases, a switching cycle of the integrated power regulator is divided into N portions.
  • the leading edge of the high-side switches of the first power conversion module 111 is trigged at the beginning of the switching period.
  • the leading edge of the high-side switches of the second power conversion module 112 is trigged at a ⁇ T, where a is a predetermined parameter in a range from 0 to 1.
  • the leading edge of the high-side switches of the Nth power conversion module 113 is trigged at b ⁇ T, where b is predetermined parameter in a range from 0 to 1. In some embodiments, b is greater than a.
  • the time delay (e.g., a ⁇ T) between two adjacent power conversion modules (e.g., power conversion modules 111 and 112) is dynamically adjustable. For example, at a time instant between 0 and a ⁇ T, a load transient is applied to the integrated power regulator 100. In order to achieve better load transient response performance, the high-side switches of the second power conversion module 112 are turned on immediately. In other words, the time delay between the first power conversion module 111 and the second power conversion module 112 is reduced so as to trigger the turn-on of the high-side switches of the second power conversion module 112 immediately after detecting the load transient.
  • Figure 8 illustrates a flow chart of a method for controlling the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure.
  • This flowchart shown in Figure 8 is merely an example, which should not unduly limit the scope of the claims.
  • One of ordinary skill in the art would recognize many variations, alternatives, and modifications. For example, various steps illustrated in Figure 8 may be added, removed, replaced, rearranged and repeated.
  • the integrated power regulator 100 comprises N power conversion modules connected in parallel between a positive terminal and a negative terminal of a power source.
  • Each power module of the N power modules comprises M power conversion cells connected in parallel between the positive terminal and the negative terminal of the power source.
  • the N power modules are configured to operate in the N operating phases in an interleaved manner, and the M power conversion cells are controlled by same gate drive signals.
  • a first sensing device is configured to detect an output voltage of the integrated power regulator.
  • a second sensing device is configured to detect a load current of the integrated power regulator.
  • step 804 in response to a light load operation, one power conversion cell of each power module is disabled. As a result of disabling one power conversion cell from each power module, the switching losses of the integrated power regulator is reduced accordingly.
  • disabling one or a plurality of power conversion cells to improve the light load efficiency may be alternatively referred to as cell shedding.
  • the cell shedding technique helps to boost the light load efficiency through turning off one or a plurality of power conversion cells. By turning off the plurality of power conversion cells, the power consumption of switching the MOSFETs is saved for every power conversion cell that is disabled.
  • control method described at step 804 may be applied again to disable additional power conversion cells.
  • a power conversion module (having one active power conversion cell and M-1 inactive power conversion cells) may be disabled to further reduce the switching losses.
  • the total number of power conversion modules is reduced from N to N-1.
  • additional power conversion modules are disabled accordingly.
  • the inactive power conversion cells are enabled to reduce conduction losses.
  • Figure 9 illustrates a flow chart of another method for controlling the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure.
  • This flowchart shown in Figure 9 is merely an example, which should not unduly limit the scope of the claims.
  • One of ordinary skill in the art would recognize many variations, alternatives, and modifications. For example, various steps illustrated in Figure 9 may be added, removed, replaced, rearranged and repeated.
  • a first sensing device is configured to detect an output voltage of the integrated power regulator.
  • a second sensing device is configured to detect a load current of the integrated power regulator.
  • one power conversion module is disabled when the integrated power regulator operates at a particular duty cycle.
  • the switching losses of the integrated power regulator is reduced accordingly.
  • the integrated power regulator is a 3 ⁇ 3 integrated power regulator.
  • the integrated power regulator operates a 50%duty cycle.
  • a power conversion module is disabled.
  • the total number of the operating phases is reduced from 3 to 2.
  • an integrated power regulator having two operating phases in an interleaved manner is able to fully cancel the output current ripple.
  • a power conversion module is disabled first. As the load further drops, the control method described above with respect to Figure 8 is applicable to the remaining two power conversion modules.
  • the inactive power conversion module is enabled to reduce conduction losses.
  • Figure 10 illustrates a third control scheme applied to the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure.
  • the N power conversion modules of the integrated power regulator are configured to operate in a same operating phase.
  • the leading edges of the first power conversion cells of the N power conversion modules are triggered simultaneously or almost simultaneously.
  • the high-side switches the first power conversion cells of the N power conversion modules are controlled by a same high-side gate drive signal.
  • the low-side switches of the first power conversion cells of the N power conversion modules are controlled by a same low-side gate drive signal.
  • Each power conversion module comprises M power conversion cells.
  • the M power conversion cells of a same power module are configured to operate in M different operating phases.
  • a switching cycle of the integrated power regulator is divided into M equal portions.
  • the leading edge of the high-side switch of the first power conversion cell 211 is trigged at the beginning of the switching period.
  • the leading edge of the high-side switch of the second power conversion cell 212 is trigged at T/M.
  • the leading edge of the high-side switch of the Mth power conversion cell 213 is trigged at T ⁇ (M-1) /M.
  • Figure 11 illustrates a fourth control scheme applied to the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure.
  • the system configuration of the integrated power regulator shown in Figure 11 is similar to that shown in Figure 10 except that the time delay between two adjacent power conversion cells is dynamically adjustable.
  • the M power conversion cells of the first power conversion module 111 are configured to operate in M different operating phases. In response to the M different operating phases, a switching cycle of the integrated power regulator is divided into M portions.
  • the leading edge of the high-side switches of the first power conversion cell 211 is trigged at the beginning of the switching period.
  • the leading edge of the high-side switches of the second power conversion cell 212 is trigged at c ⁇ T, where c is predetermined parameter in a range from 0 to 1.
  • the leading edge of the high-side switches of the Mth power conversion cell 213 is trigged at d ⁇ T, where d is predetermined parameter in a range from 0 to 1. In some embodiments, d is greater than c.
  • the time delay (e.g., c ⁇ T) between two adjacent power conversion cells is dynamically adjustable. For example, at a time instant between 0 and c ⁇ T, a load transient is applied to the integrated power regulator 100. In order to achieve better load transient response performance, the high-side switch of the second power conversion cell 212 is turned on immediately. In other words, the time delay between the first power conversion cell 211 and the second power conversion cell 212 is reduced so as to trigger the turn-on of the high-side switch of the second power conversion cell 212 immediately after detecting the load transient.
  • Figure 12 illustrates a flow chart of yet another method for controlling the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure.
  • This flowchart shown in Figure 12 is merely an example, which should not unduly limit the scope of the claims.
  • One of ordinary skill in the art would recognize many variations, alternatives, and modifications. For example, various steps illustrated in Figure 12 may be added, removed, replaced, rearranged and repeated.
  • the integrated power regulator 100 comprises N power conversion modules connected in parallel between a positive terminal and a negative terminal of a power source.
  • Each power module of the N power modules comprises M power conversion cells connected in parallel between the positive terminal and the negative terminal of the power source.
  • the N power modules are configured to operate in a same operating phase, and the M power conversion cells operate in M different operating phases in an interleaved manner.
  • a first sensing device is configured to detect an output voltage of the integrated power regulator.
  • a second sensing device is configured to detect a load current of the integrated power regulator.
  • one power conversion module is disabled. As a result of disabling one power conversion module, the switching losses of the integrated power regulator is reduced accordingly.
  • the disabled power conversion module has no impact on the interleaving operation of the integrated power regulator.
  • control method described at step 1204 may be applied again to disable additional power conversion modules. After the number of the power conversion modules is reduced from N to 1, a power conversion cell of the remaining power conversion module is disabled to further reduce the switching losses. As a result, the total number of power conversion cells is reduced from M to M-1. After the load further drops, additional power conversion cells are disabled accordingly. At an ultra-light load operation, there may be only one active power conversion cell converting energy from the power source to the load.
  • the inactive power conversion cells and/or power conversion modules are enabled to reduce conduction losses.
  • Figure 13 illustrates a flow chart of yet another method for controlling the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure.
  • This flowchart shown in Figure 13 is merely an example, which should not unduly limit the scope of the claims.
  • One of ordinary skill in the art would recognize many variations, alternatives, and modifications. For example, various steps illustrated in Figure 13 may be added, removed, replaced, rearranged and repeated.
  • a first sensing device is configured to detect an output voltage of the integrated power regulator.
  • a second sensing device is configured to detect a load current of the integrated power regulator.
  • one power conversion cell is disabled when the integrated power regulator operates at a particular duty cycle.
  • the switching losses of the integrated power regulator is reduced accordingly.
  • the integrated power regulator is a 3 ⁇ 3 integrated power regulator.
  • the three power conversion modules operate in a same phase.
  • the three power conversion cells of each power conversion module operate in three different phases in an interleaved manner.
  • the integrated power regulator operates a 50%duty cycle.
  • one power conversion cell of each power conversion module is disabled.
  • the total number of the operating phases of each power conversion module is reduced from 3 to 2.
  • an integrated power regulator having two operating phases in an interleaved manner is able to fully cancel the output current ripple.
  • a power conversion cell is disabled first.
  • the inactive power conversion cells are enabled to reduce conduction losses.
  • Figure 14 illustrates a block diagram of another integrated power regulator in accordance with various embodiments of the present disclosure.
  • the power conversion module shown in Figure 14 is similar to the power conversion module shown in Figure 1 except that the number of power conversion cells in each power module is not fixed.
  • the first power conversion module 111 comprises M power conversion cells.
  • the second power conversion module 112 comprises 2 ⁇ M power conversion cells.
  • the Nth power conversion module 113 comprises N ⁇ M power conversion cells.
  • the number of power conversion cells in each power conversion module shown in Figure 14 is merely an example. Depending on different applications and design needs, the number of power conversion cells in each power conversion module may vary accordingly. It should be noted that the control schemes described above with respect to Figures 1-13 are applicable to the integrated power regulator shown in Figure 14.
  • Figure 15 illustrates another integrated power regulator in accordance with various embodiments of the present disclosure.
  • the integrated power regulator shown in Figure 15 is similar to the integrated power regulator shown in Figures 1-3 except that both the power conversion modules and the power conversion cells operate in an interleaved manner.
  • both the power conversion modules and the power conversion cells are interleaved. There is a time delay of T/N between two adjacent power conversion modules. Likewise, there is a time delay of T/ (N ⁇ M) between two adjacent power conversion cells.
  • Figure 16 illustrates a 3 ⁇ 3 integrated power regulator in accordance with various embodiments of the present disclosure.
  • the integrated power regulator shown in Figure 16 is similar to the integrated power regulator shown in Figures 1-3, and hence is not discussed again to avoid repetition.
  • the three power conversion modules 111, 112 and 113 operate in three different operating phases.
  • Each power conversion module (e.g., power conversion module 111) comprises three power conversion cells.
  • the first power conversion module 111 comprises a first power conversion cell 211, a second power conversion cell 212 and a third power conversion cell 213.
  • the three power conversion cells of the same power conversion module operate in a same operating phase.
  • the high-side switches of the three power conversion cells are controlled by a same high-side gate drive signal.
  • the low-side switches of the three power conversion cells are controlled by a same low-side gate drive signal.
  • Table 1 shows comparison results between a conventional 3-phase integrated regulator and the 3 ⁇ 3 integrated power regulator shown in Figure 16.
  • both the conventional 3-phase integrated regulator and the 3 ⁇ 3 integrated power regulator operate at a duty cycle of 50%.
  • the three power conversion modules of the conventional 3-phase integrated regulator operate in three different phases in an interleaved manner. Each power conversion module of the conventional 3-phase integrated regulator is considered as a power conversion cell for comparison purposes.
  • the three power conversion modules 111, 112 and 113 of the 3 ⁇ 3 integrated power regulator operate in three different operating phases.
  • the three power conversion cells of each power conversion module of the 3 ⁇ 3 integrated power regulator operate in a same operating phase.
  • the interleaved power conversion modules are able to adjust the phase shift to obtain an appropriate system configuration after one or more power modules are disabled. For example, after one power conversion module is disabled, the remaining power conversion modules are able to adjust the phase shift so as to achieve a 2-phase interleaved operation. At a 50%duty cycle, such a 2-phase interleaved operation helps to cancel the output current/voltage ripples. Likewise, the interleaved power conversion cells are able to adjust the phase shift to obtain an appropriate system configuration after one or more power conversion cells are disabled.
  • the inductance of the power conversion cell of the 3 ⁇ 3 integrated power regulator is three times greater than the inductance of the power conversion cell of the conventional 3-phase integrated regulator so that the equivalent inductance per module or per phase is the same for the conventional 3-phase integrated regulator and the 3-module 3 ⁇ 3 integrated power regulator.
  • the current ripple of each power conversion module of the conventional 3-phase integrated regulator is as large as the current ripple of each power conversion module of the 3 ⁇ 3 integrated power regulator.
  • the current ripple of each power conversion cell of the 3 ⁇ 3 integrated power regulator is one-third as large as the current ripple of the power conversion cell of the conventional 3-phase integrated regulator.
  • the total output current ripple of the conventional 3-phase integrated regulator is as large as the total output current ripple of the 3 ⁇ 3 integrated power regulator.
  • the current ripple per power conversion module of the 3 ⁇ 3 integrated power regulator is equal to 2 ⁇ (1-D) ⁇ Vo/ (fs ⁇ 3 ⁇ L) , where fs and Vo are the switching frequency and the output voltage of the 3 ⁇ 3 integrated power regulator respectively.
  • the current ripple equation above can be simplified as Vo/ (3 ⁇ fs ⁇ L) as shown in Table 1.
  • the total output current ripple of the 3 ⁇ 3 integrated power regulator is equal to Vo/ (9 ⁇ fs ⁇ L) due to the interleaving operation.
  • the conventional 3-phase integrated regulator becomes a 2-phase integrated regulator after dropping one power conversion module.
  • the total output current ripple of the 2-phase integrated regulator is equal to zero as shown in Table 1.
  • the conventional 3-phase integrated regulator In the light load operation mode, in order to further reduce the switching losses, two power conversion cells are dropped from each power conversion module of the 3 ⁇ 3 integrated power regulator.
  • the 3 ⁇ 3 integrated power regulator still maintains the three-phase interleaving operation.
  • two power conversion modules are dropped to reduce the switching losses.
  • the current ripple per power conversion module of the 3 ⁇ 3 integrated power regulator is equal to Vo/ (6 ⁇ fs ⁇ L) as shown in Table 1.
  • the total output current ripple of the 3 ⁇ 3 integrated power regulator is equal to Vo/ (18 ⁇ fs ⁇ L) due to the interleaving operation.
  • the conventional 3-phase integrated regulator becomes a single phase integrated regulator after dropping two power conversion modules. At a 50%duty cycle, the total output current ripple of the single phase integrated regulator is equal to Vo/ (2 ⁇ fs ⁇ L) as shown in Table 1.
  • the total output current ripple of the 3 ⁇ 3 integrated power regulator is significantly reduced after dropping one or more power conversion cells. If the power conversion system requires same output current or voltage ripples under different operating conditions, the switching frequency of the 3 ⁇ 3 integrated power regulator can be reduced accordingly after the power conversion cells have been dropped. The reduced switching frequency can further reduce the switching power losses of the 3 ⁇ 3 integrated power regulator.
  • Table 1 One advantageous feature shown in Table 1 is the power conversion cells in each power conversion module can be dropped without changing the interleaved operation to achieve power loss reduction. As a result, the integrated power regulator can achieve both power saving in the light load operation and output voltage ripple cancellation/reduction.
  • Table 2 shows the current ripples of the 3 ⁇ 3 integrated power regulator after one or more power conversion modules or power conversion cells have been dropped.
  • the current ripples of the normal operation shown in Table 2 are similar to those shown in Table 1, and hence are not discussed again herein.
  • one power conversion module is dropped.
  • the 3 ⁇ 3 integrated power regulator becomes a 2-phase integrated regulator.
  • the total output current ripple of the 3 ⁇ 3 integrated power regulator (2-phase integrated regulator) is equal to zero as shown in Table 2.
  • one power conversion cell is dropped from each remaining active power conversion module of the 3 ⁇ 3 integrated power regulator.
  • the total output current ripple of the 3 ⁇ 3 integrated power regulator (two active power conversion modules, each of which has two power conversion cells) is equal to zero as shown in Table 2.
  • two power conversion cells are dropped from each remaining active power conversion module of the 3 ⁇ 3 integrated power regulator.
  • the total output current ripple of the 3 ⁇ 3 integrated power regulator (two active power conversion modules, each of which has one power conversion cell) is equal to zero as shown in Table 2.
  • one more power conversion module is dropped to reduce the switching losses.
  • the 3 ⁇ 3 integrated power regulator becomes a single phase integrated regulator.
  • the remaining power conversion module comprises one active power conversion cell.
  • the total output current ripple of the 3 ⁇ 3 integrated power regulator is equal to Vo/ (6 ⁇ fs ⁇ L) as shown in Table 2.
  • Figure 17 illustrates a 4 ⁇ 6 integrated power regulator in accordance with various embodiments of the present disclosure.
  • the integrated power regulator shown in Figure 17 is similar to the integrated power regulator shown in Figures 1-3, and hence is not discussed again to avoid repetition.
  • the six power conversion modules 111-116 operate in six different operating phases.
  • Each power conversion module (e.g., power conversion module 111) comprises four power conversion cells.
  • the first power conversion module 111 comprises power conversion cells 211-214.
  • the four power conversion cells of the same power conversion module operate in a same operating phase.
  • the high-side switches of the four power conversion cells are controlled by a same high-side gate drive signal.
  • the low-side switches of the four power conversion cells are controlled by a same low-side gate drive signal.
  • Table 3 shows comparison results between a conventional 6-phase integrated regulator and the 4 ⁇ 6 integrated power regulator shown in Figure 17.
  • both the conventional 6-phase integrated regulator and the 4 ⁇ 6 integrated power regulator operate at a duty cycle of 50%.
  • the six power conversion modules of the conventional 6-phase integrated regulator operate in six different phases in an interleaved manner. Each power conversion module of the conventional 6-phase integrated regulator is considered as a power conversion cell for comparison purposes.
  • the six power conversion modules 111-116 of the 4 ⁇ 6 integrated power regulator operate in six different operating phases.
  • the four power conversion cells of each power conversion module of the 4 ⁇ 6 integrated power regulator operate in a same operating phase.
  • the interleaved power conversion modules are able to adjust the phase shift to obtain an appropriate system configuration after one or more power modules are disabled. For example, after one power conversion module is disabled, the remaining power conversion modules are able to adjust the phase shift so as to achieve a 5-phase interleaved operation. Likewise, the interleaved power conversion cells are able to adjust the phase shift to obtain an appropriate system configuration after one or more power conversion cells are disabled.
  • the inductance of the power conversion cell of the 4 ⁇ 6 integrated power regulator is four times greater than the inductance of the power conversion cell of the conventional 6-phase integrated regulator to have the same equivalent inductor per module.
  • the current ripple of each power conversion module of the conventional 6-phase integrated regulator is as large as the current ripple of each power conversion module of the 4 ⁇ 6 integrated power regulator.
  • the current ripple of each power conversion cell of the 4 ⁇ 6 integrated power regulator is one-fourth as large as the current ripple of the power conversion cell of the conventional 6-phase integrated regulator. Both the 4 ⁇ 6 integrated power regulator and the conventional 6-phase integrated regulator can achieve ripple cancellation.
  • one power conversion cell is dropped from each power conversion module of the 4 ⁇ 6 integrated power regulator.
  • the 4 ⁇ 6 integrated power regulator still maintains the six-phase interleaving operation.
  • one power conversion module is dropped to reduce the switching losses.
  • the current ripple per power conversion module of the 4 ⁇ 6 integrated power regulator is equal to 3 ⁇ Vo/ (8 ⁇ fs ⁇ L) .
  • the total output current ripple of the 4 ⁇ 6 integrated power regulator is equal to zero due to the ripple cancellation described above.
  • the conventional 6-phase integrated regulator becomes a 5-phase integrated regulator after dropping one power conversion module.
  • the current ripple of the conventional 6-phase integrated regulator is equal to Vo/ (10 ⁇ fs ⁇ L) as shown in Table 3.
  • the current ripple per power conversion module of the 4 ⁇ 6 integrated power regulator is equal to Vo/ (4 ⁇ fs ⁇ L) as shown in Table 3.
  • the total output current ripple of the 4 ⁇ 6 integrated power regulator is equal to zero due to the ripple cancellation described above.
  • the conventional 6-phase integrated regulator becomes a 4-phase integrated regulator after dropping two power conversion modules. At a 50%duty cycle, the total output current ripple of the conventional 6-phase integrated regulator is equal to zero as shown in Table 3.
  • the 4 ⁇ 6 integrated power regulator still maintains the six-phase interleaving operation.
  • three power conversion modules are dropped to reduce the switching losses.
  • the current ripple per power conversion module of the 4 ⁇ 6 integrated power regulator is equal to Vo/ (8 ⁇ fs ⁇ L) as shown in Table 3.
  • the total output current ripple of the 4 ⁇ 6 integrated power regulator is equal to zero due to the ripple cancellation described above.
  • the conventional 6-phase integrated regulator becomes a 3-phase integrated regulator after dropping three power conversion modules.
  • the total output current ripple of the conventional 6-phase integrated regulator is equal to Vo/ (6 ⁇ fs ⁇ L) as shown in Table 3.

Abstract

An integrated power regulator comprises a plurality of power modules connected in parallel between a positive terminal and a negative terminal of a power source. Each power module of the plurality of power modules comprises a plurality of power conversion cells connected in parallel between the positive terminal and the negative terminal of the power source. A first power conversion cell and a second power conversion cell of the plurality of power conversion cells are configured to operate in two different operating phases. A third power conversion cell and a fourth power conversion cell of the plurality of power conversion cells are configured to operate in a same operating phase.

Description

Integrated Power Regulator and Method TECHNICAL FIELD
The present disclosure relates to an integrated power regulator and method, and, in particular embodiments, to an M×N-phase integrated power regulator for converting energy in high current applications.
BACKGROUND
As technologies further advance, artificial intelligence (AI) has emerged as an effective alternative to further improve the capability of the computing technology. AI based computing machines exhibit human intelligence such as perceiving, learning, reasoning and solving problems.
The AI based computing machines may be implemented as graphical processing units (GPU) . The graphical processing units allow for performance gains through parallel computations. As the computing power of the graphical processing units has increased, the demand for electrical power has continued to rise.
In order to efficiently power low-voltage, high current loads (e.g., graphical processing units) , a direct-to-chip power architecture has been employed. For example, the input of the direct-to-chip power architecture is a 48-Volt distribution bus. The output of the direct-to-chip power architecture is an IC voltage as low as 0.45 V. The current flowing through the direct-to-chip power architecture is up to 1000 A. In the direct-to-chip power architecture, the inductor of the direct-to-chip power architecture has to endure high current stress.
Integrated voltage regulators can achieve high efficiency for high current applications. A typical integrated voltage regulator comprises a plurality of step-down power converters operating in different phases, thereby achieving fast transient responses, accurate voltage regulation and smaller output voltage ripples. Under a light load operation, the efficiency of the integrated voltage regulator drops significantly due to the switching losses associated with the large number of switching elements operating at a high switching frequency.
In some applications such as portable devices (e.g., smart phones and laptops) , the light load efficiency is very important. As such, it would be desirable to have an integrated regulator capable of achieving high efficiency under a variety of operating conditions.
SUMMARY
These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by preferred embodiments of the present disclosure which provide an integrator power regulator for improving light load efficiency.
In accordance with an embodiment, an apparatus comprises a plurality of power modules connected in parallel between a positive terminal and a negative terminal of a power source. Each power module of the plurality of power modules comprises a plurality of power conversion cells connected in parallel between the positive terminal and the negative terminal of the power source. A first power conversion cell and a second power conversion cell of the plurality of power conversion cells are configured to operate in two different operating phases. A third power conversion cell and a fourth power conversion cell of the plurality of power conversion cells are configured to operate in a same operating phase.
In some embodiments, the plurality of power modules is configured to operate in different operating phases in an interleaved manner, and the plurality of power conversion cells of a same power module is controlled by same gate drive signals. In alternative embodiments, the plurality of power conversion modules is configured to operate in a same operating phase, and the plurality of power conversion cells of a same power module is configured to operate in an interleaved manner.
In some embodiments, a first power conversion module and a second power conversion module are configured to operate in two different operating phases in an interleaved manner, and wherein the first power conversion cell and the second power conversion cell are in the first power conversion module and the second power conversion module respectively. The third power conversion cell and the fourth power conversion cell are in a same power conversion module.
In some embodiments, the first power conversion cell and the second power conversion cell are in a same power conversion module having a plurality power conversion cells operating in a plurality of operating phases. A first power conversion module and a second power conversion module are configured to operate in a same operating phase, and wherein the third power conversion cell and the fourth power conversion cell are in the first power conversion module and the second power conversion module respectively.
In some embodiments, at least two inductors of the plurality of power conversion cells are magnetically coupled to each other. In alternative embodiments, all inductors of the plurality of power conversion cells are magnetically coupled to each other.
In accordance with another embodiment, a method comprises configuring M×N power conversion cells of a power regulator to operate in N operating phases. N and M are predetermined integers greater than or equal to 2. During a light load operation, disabling a plurality of power conversion cells to reduce switching losses while maintaining ripple reduction.
In some embodiments, the power regulator comprises N power conversion modules connected in parallel between a positive terminal and a negative terminal of a power source. Each power conversion module of the N power conversion modules comprises M power conversion  cells connected in parallel between the positive terminal and the negative terminal of the power source. The N power conversion modules are configured to operate in the N operating phases in an interleaved manner. The M power conversion cells are controlled by same gate drive signals. The method comprises during the light load operation, disabling one power conversion cell from each power conversion module to reduce the switching losses while maintaining the ripple reduction. The method further comprises during the light load operation, disabling one power conversion module to reduce the switching losses while improving the ripple reduction.
In some embodiments, the power regulator comprises M power conversion modules connected in parallel between a positive terminal and a negative terminal of a power source. Each power conversion module of the M power conversion modules comprises N power conversion cells connected in parallel between the positive terminal and the negative terminal of the power source. The M power modules are configured to operate in a same operating phase, and the N power conversion cells of each power conversion module are configured to operate in in the N operating phases in an interleaved manner. The method comprises during the light load operation, disabling one power conversion module to reduce the switching losses while maintaining the ripple reduction. The method further comprises during the light load operation, disabling one power conversion cell to reduce the switching losses while improving the ripple reduction.
In accordance with yet another embodiment, a method comprises configuring M×N power conversion cells of a power regulator to operate in N operating phases. The power regulator is connected between a power source and a load, and N and M are predetermined integers greater than or equal to 2. During a light load operation, disabling a plurality of power conversion cells to reduce switching losses while maintaining ripple reduction, and during a load transient, dynamically adjusting the N operating phases to improve transient response performance.
In some embodiments, the power regulator comprises N power conversion modules connected in parallel between a positive terminal and a negative terminal of the power source. Each power conversion module of the N power conversion modules comprises M power conversion cells connected in parallel between the positive terminal and the negative terminal of the power source. The N power conversion modules are configured to operate in the N operating phases in an interleaved manner, and the M power conversion cells are controlled by same gate drive signals. A time delay of T/N is placed between gate drive signals of two adjacent power conversion modules. T is a switching cycle of the power regulator. The method comprises during the load transient, dynamically reducing the time delay between two adjacent power conversion modules to improve the transient response performance.
An advantage of an embodiment of the present disclosure is an M×N integrated power regulator for improving the efficiency, reliability and cost of a power conversion system in high current applications.
The foregoing has outlined rather broadly the features and technical advantages of the present disclosure in order that the detailed description of the disclosure that follows may be better understood. Additional features and advantages of the disclosure will be described hereinafter which form the subject of the claims of the disclosure. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the disclosure as set forth in the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Figure 1 illustrates a block diagram of an integrated power regulator in accordance with various embodiments of the present disclosure;
Figure 2 illustrates a block diagram of a power conversion module shown in Figure 1 in accordance with various embodiments of the present disclosure;
Figure 3 illustrates a schematic diagram of the power conversion module shown in Figure 2 in accordance with various embodiments of the present disclosure;
Figure 4 illustrates a schematic diagram of another power conversion module in accordance with various embodiments of the present disclosure;
Figure 5 illustrates a schematic diagram of yet another power conversion module in accordance with various embodiments of the present disclosure;
Figure 6 illustrates a first control scheme applied to the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure;
Figure 7 illustrates a second control scheme applied to the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure;
Figure 8 illustrates a flow chart of a method for controlling the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure;
Figure 9 illustrates a flow chart of another method for controlling the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure;
Figure 10 illustrates a third control scheme applied to the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure;
Figure 11 illustrates a fourth control scheme applied to the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure;
Figure 12 illustrates a flow chart of yet another method for controlling the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure;
Figure 13 illustrates a flow chart of yet another method for controlling the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure;
Figure 14 illustrates a block diagram of another integrated power regulator in accordance with various embodiments of the present disclosure;
Figure 15 illustrates another integrated power regulator in accordance with various embodiments of the present disclosure;
Figure 16 illustrates a 3×3 integrated power regulator in accordance with various embodiments of the present disclosure; and
Figure 17 illustrates a 4×6 integrated power regulator in accordance with various embodiments of the present disclosure.
Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the various embodiments and are not necessarily drawn to scale.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present disclosure provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the disclosure, and do not limit the scope of the disclosure.
The present disclosure will be described with respect to preferred embodiments in a specific context, namely an M×N-phase integrated power regulator for converting energy in high current applications. The present disclosure may also be applied, however, to a variety of power regulators. Hereinafter, various embodiments will be explained in detail with reference to the accompanying drawings.
Figure 1 illustrates a block diagram of an integrated power regulator in accordance with various embodiments of the present disclosure. The integrated power regulator 100 is connected  between a power source 150 and a load 160. The integrated power regulator 100 is a step-down power conversion system converting energy from the power source 150 to a low voltage and high current load (e.g., load 160) . As shown in Figure 1, the positive terminal of the power source 150 is denoted by VIN+. The negative terminal of the power source 150 is denoted by VIN-. The output of the integrated power regulator 100 is denoted by VOUT.
In some embodiments, the power source 150 is implemented as a 48-Volt direct current distribution bus. Alternatively, the power source 150 may be implemented as other suitable dc power sources such as a solar panel, an energy storage unit, a battery pack, a power converter converting energy from the utility line, a power generator, a renewable power source, any combinations thereof and the like.
The load 160 may be a processor such as a central processing unit (CPU) , a graphics processing unit (GPU) , an application-specific integrated circuit (ASIC) , any combinations thereof and the like. Alternatively, the load 160 may be a plurality of downstream power converters.
The integrated power regulator 100 comprises N power conversion modules connected in parallel between VIN+ and VIN-as shown in Figure 1. N is a predetermined integer greater than or equal to 2. Each power conversion module comprises M power conversion cells. M is a predetermined integer greater than or equal to 2. The detailed structure of the power conversion cells will be described below with respect to Figures 2-3.
As shown in Figure 1, a first power conversion module 111 has a first input terminal connected to VIN+, a second input terminal connected to VIN-and an output terminal connected to VOUT. Likewise, a second power conversion module 112 and an Nth power conversion module 113 has a first input terminal connected to VIN+, a second input terminal connected to VIN-and an output terminal connected to VOUT.
In some embodiments, each of the N power conversion modules comprises M power conversion cells connected in parallel. Each power conversion cell is a step-down power converter such as a buck switching converter. The step-down power converter comprises a high-side switch, a low-side switch and an inductor. In some embodiments, the conducting periods of the high-side switches of the M power conversion cells are equal. The duty cycle D of the integrated power regulator 100 is defined as the conducting period of a high-side switch divided by a switching cycle of the integrated power regulator 100.
It should be noted a capacitor (capacitors) between VIN+ and VIN-can be added into each power conversion cell or power conversion module, and a capacitor (capacitors) between VOUT and VIN-can be added into each power conversion cell or power conversion module to reduce noise and/or improve dynamic response performance.
In operation, the current flowing through the integrated power regulator 100 is distributed evenly among the N power conversion modules shown in Figure 1. Furthermore, the current flowing through each power conversion module is distributed evenly among the inductors of the M power conversion cells. In other words, the average current flowing through the inductor of each power conversion cell is equal to the average load current divided by M×N.
In operation, the N power conversion modules may be configured to operate in N different operating phases. The power conversion cells of each power conversion module are trigged by the same gate drive signals. In some embodiments, a switching cycle is divided into N equal periods. Each period is a time delay between two adjacent operating phases. The N power conversion modules of Figure 1 are configured to operate in N operating phases. Each power conversion module is configured to operate in a corresponding operating phase. The turn-on edges of two adjacent power conversion modules (e.g., power conversion modules 111 and 112) are separated by a time delay of T/N. In alternative embodiments, the N power conversion modules of Figure 1 are configured to operate in N operating phases, each of which is dynamically adjustable. For example, under a load transient, the turn-on edges of two adjacent power conversion modules (e.g., power conversion modules 111 and 112) are separated by a time delay less than T/N. Such a reduced time delay helps to improve the transient response performance of the integrated power regulator 100.
One advantageous feature of having the M×N integrated regulator described above is the integrated power regulator can control M×N power conversion cells through N sets of interleaving control schemes. Such a control system configuration helps to simplify the control system design of the integrated power regulator 100.
In operation, the N power conversion modules may be configured to operate in a same operating phase. The power conversion cells of each power conversion module are configured to operate in M different operating phases. In some embodiments, a switching cycle is divided into M equal periods. Each period is a time delay between two adjacent operating phases. The M power conversion cells of each power conversion module are configured to operate in M operating phases. Each power conversion cell is configured to operate in a corresponding operating phase. The turn-on edges of two adjacent power conversion cells are separated by a time delay of T/M. In alternative embodiments, the M power conversion cells are configured to operate in M operating phases, each of which is dynamically adjustable. For example, under a load transient, the turn-on edges of two adjacent power conversion cells are separated by a time delay less than T/M. Such a reduced time delay helps to improve the transient response performance of the integrated power regulator 100.
In operation, the N power conversion modules may be configured to operate in N different operating phases. The turn-on edges of two adjacent power conversion modules (e.g., power conversion modules 111 and 112) are separated by a time delay of T/N. The power conversion cells of each power conversion module are configured to operate in M different operating phases. The turn-on edges of two adjacent power conversion cells are separated by a time delay of T/ (M·N) . In alternative embodiments, the N power conversion modules of Figure 1 are configured to operate in N operating phases, each of which is dynamically adjustable. Likewise, the M power conversion cells are configured to operate in M operating phases, each of which is dynamically adjustable. Such adjustable time delays helps to improve the transient response performance of the integrated power regulator 100.
Figure 2 illustrates a block diagram of a power conversion module shown in Figure 1 in accordance with various embodiments of the present disclosure. The first power conversion module 111 is used as an example to illustrate the structure of the plurality of power conversion modules shown in Figure 1. The first power conversion module 111 comprises a first power conversion cell 211, a second power conversion cell 212 and an Mth power conversion cell 213. As shown in Figure 2, the first power conversion cell 211 has a first input terminal connected to VIN+, a second input terminal connected to VIN-and an output terminal connected to VOUT. Likewise, a second power conversion cell 212 and the Mth power conversion cell 213 has a first input terminal connected to VIN+, a second input terminal connected to VIN-and an output terminal connected to VOUT. The detailed schematic diagram of the power conversion cells shown in Figure 2 will be described below with respect to Figure 3.
Figure 3 illustrates a schematic diagram of the power conversion module shown in Figure 2 in accordance with various embodiments of the present disclosure. As shown in Figure 3, the first power conversion cell 211, the second power conversion cell 212 and the Mth power converter cell 213 have a similar schematic structure. For simplicity, only the schematic diagram of the first power conversion cell 211 is discussed in detail below.
As shown in Figure 3, the first power conversion cell 211 comprises a high-side switch SH11, a low-side switch SL11 and an inductor L11. The high-side switch SH11 and the low-side switch SL11 are connected in series between VIN+ and VIN-. The inductor L11 is connected between a common node of SH11 and SL11, and VOUT.
In operation, the switches of the power conversion cells of Figure 3 are able to achieve zero voltage switching (ZVS) . In each switching cycle, the current flowing through the inductor of each cell varies from a positive value to zero and further goes negative to achieve ZVS. The ZVS operation helps to achieve higher efficiency and lower electromagnetic interference (EMI) .
In accordance with an embodiment, the switches of Figure 3 (e.g., switches SH11-SH1M and SL11-SL1M) may be metal oxide semiconductor field-effect transistor (MOSFET) devices. Alternatively, the switching element can be any controllable switches such as insulated gate bipolar transistor (IGBT) devices, integrated gate commutated thyristor (IGCT) devices, gate turn-off thyristor (GTO) devices, silicon controlled rectifier (SCR) devices, junction gate field-effect transistor (JFET) devices, MOS controlled thyristor (MCT) devices and the like. Furthermore, the switches may be implemented as gallium nitride (GaN) based semiconductor devices, silicon carbide (SiC) based semiconductor devices and the like.
It should be noted while Figure 3 shows the switches SH11-SH1M and SL11-SL1M are implemented as single n-type transistors, a person skilled in the art would recognize there may be many variations, modifications and alternatives. For example, depending on different applications and design needs, at least some of the switches SH11-SH1M and SL11-SL1M may be implemented as p-type transistors. Furthermore, each switch shown in Figure 3 may be implemented as a plurality of switches connected in parallel. Moreover, a capacitor may be connected in parallel with one switch to achieve zero voltage switching (ZVS) /zero current switching (ZCS) .
Figure 4 illustrates a schematic diagram of another power conversion module in accordance with various embodiments of the present disclosure. The power conversion module shown in Figure 4 is similar to the power conversion module shown in Figure 3 except that at least two inductors (e.g., L11 and L12) of the M power conversion cells are magnetically coupled to each other.
It should be noted that the magnetic coupling used in Figure 4 is selected purely for demonstration purposes and are not intended to limit the various embodiments of the present disclosure to any particular magnetic coupling configurations. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. For example, the at least two inductors of the M power conversion cells may be magnetically coupled to one or more inductors of an adjacent power module, thereby reducing the size of the magnetic components. Furthermore, the coupled inductors of the N power modules may be magnetically coupled to each other.
Figure 5 illustrates a schematic diagram of yet another power conversion module in accordance with various embodiments of the present disclosure. The power conversion module shown in Figure 5 is similar to the power conversion module shown in Figure 4 except that all inductors (e.g., L11-L1M) of the M power conversion cells are magnetically coupled to each other.
It should be noted that the magnetic coupling used in Figure 5 is selected purely for demonstration purposes and are not intended to limit the various embodiments of the present  disclosure to any particular magnetic coupling configurations. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. For example, the M inductors of the M power conversion cells may be magnetically coupled to one or more inductors of an adjacent power module, thereby reducing the size of the magnetic components. Furthermore, the coupled inductors of the N power modules may be magnetically coupled to each other.
Figure 6 illustrates a first control scheme applied to the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure. In some embodiments, the N power conversion modules of the integrated power regulator are configured to operate in N different operating phases. Each power conversion module comprises M power conversion cells. The M power conversion cells of a same power module are configured to operate in a same operating phase. In other words, the leading edges of the M power conversion cells are triggered simultaneously or almost simultaneously. For example, the high-side switches of the M power conversion cells are controlled by a same high-side gate drive signal. Likewise, the low-side switches of the M power conversion cells are controlled by a same low-side gate drive signal.
In response to the N different operating phases, a switching cycle of the integrated power regulator 100 is divided into N equal portions. The leading edge of the high-side switches of the first power conversion module 111 is trigged at the beginning of the switching period. The leading edge of the high-side switches of the second power conversion module 112 is trigged at T/N as shown in Figure 6. The leading edge of the high-side switches of the Nth power conversion module 113 is trigged at T· (N-1) /N. In other words, there is a time delay or a phase shift between two adjacent power conversion modules. The time delay or the phase shift is equal to T/N.
Figure 7 illustrates a second control scheme applied to the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure. The system configuration of the integrated power regulator shown in Figure 7 is similar to that shown in Figure 6 except that the time delay between two adjacent power conversion modules is dynamically adjustable.
In some embodiments, the N power conversion modules of the integrated power regulator are configured to operate in N different operating phases. In response to the N different operating phases, a switching cycle of the integrated power regulator is divided into N portions. The leading edge of the high-side switches of the first power conversion module 111 is trigged at the beginning of the switching period. The leading edge of the high-side switches of the second power conversion module 112 is trigged at a·T, where a is a predetermined parameter in a range from 0 to 1. The leading edge of the high-side switches of the Nth power conversion module 113  is trigged at b·T, where b is predetermined parameter in a range from 0 to 1. In some embodiments, b is greater than a.
During a load transient, the time delay (e.g., a·T) between two adjacent power conversion modules (e.g., power conversion modules 111 and 112) is dynamically adjustable. For example, at a time instant between 0 and a·T, a load transient is applied to the integrated power regulator 100. In order to achieve better load transient response performance, the high-side switches of the second power conversion module 112 are turned on immediately. In other words, the time delay between the first power conversion module 111 and the second power conversion module 112 is reduced so as to trigger the turn-on of the high-side switches of the second power conversion module 112 immediately after detecting the load transient.
Figure 8 illustrates a flow chart of a method for controlling the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure. This flowchart shown in Figure 8 is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. For example, various steps illustrated in Figure 8 may be added, removed, replaced, rearranged and repeated.
Referring back to Figure 1, the integrated power regulator 100 comprises N power conversion modules connected in parallel between a positive terminal and a negative terminal of a power source. Each power module of the N power modules comprises M power conversion cells connected in parallel between the positive terminal and the negative terminal of the power source. In some embodiments, the N power modules are configured to operate in the N operating phases in an interleaved manner, and the M power conversion cells are controlled by same gate drive signals.
At step 802, a first sensing device is configured to detect an output voltage of the integrated power regulator. A second sensing device is configured to detect a load current of the integrated power regulator.
At step 804, in response to a light load operation, one power conversion cell of each power module is disabled. As a result of disabling one power conversion cell from each power module, the switching losses of the integrated power regulator is reduced accordingly.
It should be noted that disabling one or a plurality of power conversion cells to improve the light load efficiency may be alternatively referred to as cell shedding. The cell shedding technique helps to boost the light load efficiency through turning off one or a plurality of power conversion cells. By turning off the plurality of power conversion cells, the power consumption of switching the MOSFETs is saved for every power conversion cell that is disabled.
It should further be noted that the control method described at step 804 may be applied again to disable additional power conversion cells. After the number of the power conversion cells is reduced from M to 1, a power conversion module (having one active power conversion cell and M-1 inactive power conversion cells) may be disabled to further reduce the switching losses. As a result, the total number of power conversion modules is reduced from N to N-1. After the load further drops, additional power conversion modules are disabled accordingly. At an ultra-light load operation, there may be only one active power conversion cell converting energy between the power source and the load.
At step 806, after the integrated power regulator leaves the light load operation, the inactive power conversion cells are enabled to reduce conduction losses.
Figure 9 illustrates a flow chart of another method for controlling the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure. This flowchart shown in Figure 9 is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. For example, various steps illustrated in Figure 9 may be added, removed, replaced, rearranged and repeated.
At step 902, a first sensing device is configured to detect an output voltage of the integrated power regulator. A second sensing device is configured to detect a load current of the integrated power regulator.
At step 904, in response to a light load operation, one power conversion module is disabled when the integrated power regulator operates at a particular duty cycle. As a result of disabling one power module, the switching losses of the integrated power regulator is reduced accordingly. For example, the integrated power regulator is a 3×3 integrated power regulator. At a particular input/output voltage ratio, the integrated power regulator operates a 50%duty cycle. When the integrated power regulator enters into the light load operation, a power conversion module is disabled. As a result of disabling one power conversion module, the total number of the operating phases is reduced from 3 to 2. For a 50%duty cycle, an integrated power regulator having two operating phases in an interleaved manner is able to fully cancel the output current ripple. As such, during the light load operation, a power conversion module is disabled first. As the load further drops, the control method described above with respect to Figure 8 is applicable to the remaining two power conversion modules.
At step 906, after the integrated power regulator leaves the light load operation, the inactive power conversion module is enabled to reduce conduction losses.
Figure 10 illustrates a third control scheme applied to the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure. In some  embodiments, the N power conversion modules of the integrated power regulator are configured to operate in a same operating phase. In other words, the leading edges of the first power conversion cells of the N power conversion modules are triggered simultaneously or almost simultaneously. For example, the high-side switches the first power conversion cells of the N power conversion modules are controlled by a same high-side gate drive signal. The low-side switches of the first power conversion cells of the N power conversion modules are controlled by a same low-side gate drive signal.
Each power conversion module comprises M power conversion cells. The M power conversion cells of a same power module are configured to operate in M different operating phases. In response to the M different operating phases, a switching cycle of the integrated power regulator is divided into M equal portions. The leading edge of the high-side switch of the first power conversion cell 211 is trigged at the beginning of the switching period. The leading edge of the high-side switch of the second power conversion cell 212 is trigged at T/M. The leading edge of the high-side switch of the Mth power conversion cell 213 is trigged at T· (M-1) /M.
Figure 11 illustrates a fourth control scheme applied to the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure. The system configuration of the integrated power regulator shown in Figure 11 is similar to that shown in Figure 10 except that the time delay between two adjacent power conversion cells is dynamically adjustable.
In some embodiments, the M power conversion cells of the first power conversion module 111 are configured to operate in M different operating phases. In response to the M different operating phases, a switching cycle of the integrated power regulator is divided into M portions. The leading edge of the high-side switches of the first power conversion cell 211 is trigged at the beginning of the switching period. The leading edge of the high-side switches of the second power conversion cell 212 is trigged at c·T, where c is predetermined parameter in a range from 0 to 1. The leading edge of the high-side switches of the Mth power conversion cell 213 is trigged at d·T, where d is predetermined parameter in a range from 0 to 1. In some embodiments, d is greater than c.
During a load transient, the time delay (e.g., c·T) between two adjacent power conversion cells (e.g., power conversion cells 211 and 212) is dynamically adjustable. For example, at a time instant between 0 and c·T, a load transient is applied to the integrated power regulator 100. In order to achieve better load transient response performance, the high-side switch of the second power conversion cell 212 is turned on immediately. In other words, the time delay between the first power conversion cell 211 and the second power conversion cell 212 is reduced so as to  trigger the turn-on of the high-side switch of the second power conversion cell 212 immediately after detecting the load transient.
Figure 12 illustrates a flow chart of yet another method for controlling the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure. This flowchart shown in Figure 12 is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. For example, various steps illustrated in Figure 12 may be added, removed, replaced, rearranged and repeated.
Referring back to Figure 1, the integrated power regulator 100 comprises N power conversion modules connected in parallel between a positive terminal and a negative terminal of a power source. Each power module of the N power modules comprises M power conversion cells connected in parallel between the positive terminal and the negative terminal of the power source. In some embodiments, the N power modules are configured to operate in a same operating phase, and the M power conversion cells operate in M different operating phases in an interleaved manner.
At step 1202, a first sensing device is configured to detect an output voltage of the integrated power regulator. A second sensing device is configured to detect a load current of the integrated power regulator.
At step 1204, in response to a light load operation, one power conversion module is disabled. As a result of disabling one power conversion module, the switching losses of the integrated power regulator is reduced accordingly. The disabled power conversion module has no impact on the interleaving operation of the integrated power regulator.
It should be noted that the control method described at step 1204 may be applied again to disable additional power conversion modules. After the number of the power conversion modules is reduced from N to 1, a power conversion cell of the remaining power conversion module is disabled to further reduce the switching losses. As a result, the total number of power conversion cells is reduced from M to M-1. After the load further drops, additional power conversion cells are disabled accordingly. At an ultra-light load operation, there may be only one active power conversion cell converting energy from the power source to the load.
At step 1206, after the integrated power regulator leaves the light load operation, the inactive power conversion cells and/or power conversion modules are enabled to reduce conduction losses.
Figure 13 illustrates a flow chart of yet another method for controlling the integrated power regulator shown in Figure 1 in accordance with various embodiments of the present disclosure. This flowchart shown in Figure 13 is merely an example, which should not unduly  limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. For example, various steps illustrated in Figure 13 may be added, removed, replaced, rearranged and repeated.
At step 1302, a first sensing device is configured to detect an output voltage of the integrated power regulator. A second sensing device is configured to detect a load current of the integrated power regulator.
At step 1304, in response to a light load operation, one power conversion cell is disabled when the integrated power regulator operates at a particular duty cycle. As a result of disabling one power conversion cell, the switching losses of the integrated power regulator is reduced accordingly. For example, the integrated power regulator is a 3×3 integrated power regulator. The three power conversion modules operate in a same phase. The three power conversion cells of each power conversion module operate in three different phases in an interleaved manner. At a particular input/output voltage ratio, the integrated power regulator operates a 50%duty cycle. When the integrated power regulator enters into the light load operation, one power conversion cell of each power conversion module is disabled. As a result of disabling one power conversion module, the total number of the operating phases of each power conversion module is reduced from 3 to 2. For a 50%duty cycle, an integrated power regulator having two operating phases in an interleaved manner is able to fully cancel the output current ripple. As such, during the light load operation, a power conversion cell is disabled first. By using this control scheme, the ripple cancellation can be achieved.
At step 1306, after the integrated power regulator leaves the light load operation, the inactive power conversion cells are enabled to reduce conduction losses.
Figure 14 illustrates a block diagram of another integrated power regulator in accordance with various embodiments of the present disclosure. The power conversion module shown in Figure 14 is similar to the power conversion module shown in Figure 1 except that the number of power conversion cells in each power module is not fixed. In some embodiments, the first power conversion module 111 comprises M power conversion cells. The second power conversion module 112 comprises 2·M power conversion cells. The Nth power conversion module 113 comprises N·M power conversion cells. The number of power conversion cells in each power conversion module shown in Figure 14 is merely an example. Depending on different applications and design needs, the number of power conversion cells in each power conversion module may vary accordingly. It should be noted that the control schemes described above with respect to Figures 1-13 are applicable to the integrated power regulator shown in Figure 14.
Figure 15 illustrates another integrated power regulator in accordance with various embodiments of the present disclosure. The integrated power regulator shown in Figure 15 is  similar to the integrated power regulator shown in Figures 1-3 except that both the power conversion modules and the power conversion cells operate in an interleaved manner.
As shown in Figure 15, both the power conversion modules and the power conversion cells are interleaved. There is a time delay of T/N between two adjacent power conversion modules. Likewise, there is a time delay of T/ (N·M) between two adjacent power conversion cells.
Figure 16 illustrates a 3×3 integrated power regulator in accordance with various embodiments of the present disclosure. The integrated power regulator shown in Figure 16 is similar to the integrated power regulator shown in Figures 1-3, and hence is not discussed again to avoid repetition.
In some embodiments, the three  power conversion modules  111, 112 and 113 operate in three different operating phases. Each power conversion module (e.g., power conversion module 111) comprises three power conversion cells. As shown in Figure 16, the first power conversion module 111 comprises a first power conversion cell 211, a second power conversion cell 212 and a third power conversion cell 213. The three power conversion cells of the same power conversion module operate in a same operating phase. In other words, the high-side switches of the three power conversion cells are controlled by a same high-side gate drive signal. Likewise, the low-side switches of the three power conversion cells are controlled by a same low-side gate drive signal.
Table 1 shows comparison results between a conventional 3-phase integrated regulator and the 3×3 integrated power regulator shown in Figure 16. In some embodiments, both the conventional 3-phase integrated regulator and the 3×3 integrated power regulator operate at a duty cycle of 50%. The three power conversion modules of the conventional 3-phase integrated regulator operate in three different phases in an interleaved manner. Each power conversion module of the conventional 3-phase integrated regulator is considered as a power conversion cell for comparison purposes. The three  power conversion modules  111, 112 and 113 of the 3×3 integrated power regulator operate in three different operating phases. The three power conversion cells of each power conversion module of the 3×3 integrated power regulator operate in a same operating phase.
It should be noted that the interleaved power conversion modules are able to adjust the phase shift to obtain an appropriate system configuration after one or more power modules are disabled. For example, after one power conversion module is disabled, the remaining power conversion modules are able to adjust the phase shift so as to achieve a 2-phase interleaved operation. At a 50%duty cycle, such a 2-phase interleaved operation helps to cancel the output current/voltage ripples. Likewise, the interleaved power conversion cells are able to adjust the  phase shift to obtain an appropriate system configuration after one or more power conversion cells are disabled.
Figure PCTCN2020078111-appb-000001
Figure PCTCN2020078111-appb-000002
Table 1
As shown in Table 1, the inductance of the power conversion cell of the 3×3 integrated power regulator is three times greater than the inductance of the power conversion cell of the conventional 3-phase integrated regulator so that the equivalent inductance per module or per phase is the same for the conventional 3-phase integrated regulator and the 3-module 3×3 integrated power regulator.
In a normal operation mode, the current ripple of each power conversion module of the conventional 3-phase integrated regulator is as large as the current ripple of each power conversion module of the 3×3 integrated power regulator. The current ripple of each power conversion cell of the 3×3 integrated power regulator is one-third as large as the current ripple of the power conversion cell of the conventional 3-phase integrated regulator. The total output current ripple of the conventional 3-phase integrated regulator is as large as the total output current ripple of the 3×3 integrated power regulator.
In a light load operation mode, in order to reduce switching losses, one power conversion cell is dropped from each power conversion module of the 3×3 integrated power regulator. The 3×3 integrated power regulator still maintains the three-phase interleaving operation. For the conventional 3-phase integrated regulator, one power conversion module is dropped to reduce the switching losses. As shown in Table 1, the current ripple per power conversion module of the 3×3 integrated power regulator is equal to 2· (1-D) ·Vo/ (fs·3·L) , where fs and Vo are the switching frequency and the output voltage of the 3×3 integrated power regulator respectively. The current ripple equation above can be simplified as Vo/ (3·fs·L) as shown in Table 1. The total output current ripple of the 3×3 integrated power regulator is equal to Vo/ (9·fs·L) due to the interleaving operation. In contrast, the conventional 3-phase integrated regulator becomes a 2-phase integrated regulator after dropping one power conversion module. At a 50%duty cycle, the total output current ripple of the 2-phase integrated regulator is equal to zero as shown in Table 1.
In the light load operation mode, in order to further reduce the switching losses, two power conversion cells are dropped from each power conversion module of the 3×3 integrated power regulator. The 3×3 integrated power regulator still maintains the three-phase interleaving operation. For the conventional 3-phase integrated regulator, two power conversion modules are dropped to reduce the switching losses. As shown in Table 1, the current ripple per power  conversion module of the 3×3 integrated power regulator is equal to Vo/ (6·fs·L) as shown in Table 1. The total output current ripple of the 3×3 integrated power regulator is equal to Vo/ (18·fs·L) due to the interleaving operation. In contrast, the conventional 3-phase integrated regulator becomes a single phase integrated regulator after dropping two power conversion modules. At a 50%duty cycle, the total output current ripple of the single phase integrated regulator is equal to Vo/ (2·fs·L) as shown in Table 1.
As shown in Table 1, the total output current ripple of the 3×3 integrated power regulator is significantly reduced after dropping one or more power conversion cells. If the power conversion system requires same output current or voltage ripples under different operating conditions, the switching frequency of the 3×3 integrated power regulator can be reduced accordingly after the power conversion cells have been dropped. The reduced switching frequency can further reduce the switching power losses of the 3×3 integrated power regulator.
One advantageous feature shown in Table 1 is the power conversion cells in each power conversion module can be dropped without changing the interleaved operation to achieve power loss reduction. As a result, the integrated power regulator can achieve both power saving in the light load operation and output voltage ripple cancellation/reduction.
Table 2 shows the current ripples of the 3×3 integrated power regulator after one or more power conversion modules or power conversion cells have been dropped.
Figure PCTCN2020078111-appb-000003
Figure PCTCN2020078111-appb-000004
Table 2
The current ripples of the normal operation shown in Table 2 are similar to those shown in Table 1, and hence are not discussed again herein. In response to a light load operation mode, one power conversion module is dropped. As a result of dropping one power conversion module, the 3×3 integrated power regulator becomes a 2-phase integrated regulator. At a 50%duty cycle, the total output current ripple of the 3×3 integrated power regulator (2-phase integrated regulator) is equal to zero as shown in Table 2.
In order to further reduce the switching losses, one power conversion cell is dropped from each remaining active power conversion module of the 3×3 integrated power regulator. The total output current ripple of the 3×3 integrated power regulator (two active power conversion modules, each of which has two power conversion cells) is equal to zero as shown in Table 2. Furthermore, two power conversion cells are dropped from each remaining active power conversion module of  the 3×3 integrated power regulator. The total output current ripple of the 3×3 integrated power regulator (two active power conversion modules, each of which has one power conversion cell) is equal to zero as shown in Table 2. Moreover, one more power conversion module is dropped to reduce the switching losses. The 3×3 integrated power regulator becomes a single phase integrated regulator. The remaining power conversion module comprises one active power conversion cell. The total output current ripple of the 3×3 integrated power regulator is equal to Vo/ (6·fs·L) as shown in Table 2.
Figure 17 illustrates a 4×6 integrated power regulator in accordance with various embodiments of the present disclosure. The integrated power regulator shown in Figure 17 is similar to the integrated power regulator shown in Figures 1-3, and hence is not discussed again to avoid repetition.
In some embodiments, the six power conversion modules 111-116 operate in six different operating phases. Each power conversion module (e.g., power conversion module 111) comprises four power conversion cells. As shown in Figure 17, the first power conversion module 111 comprises power conversion cells 211-214. The four power conversion cells of the same power conversion module operate in a same operating phase. In other words, the high-side switches of the four power conversion cells are controlled by a same high-side gate drive signal. Likewise, the low-side switches of the four power conversion cells are controlled by a same low-side gate drive signal.
Table 3 shows comparison results between a conventional 6-phase integrated regulator and the 4×6 integrated power regulator shown in Figure 17. In some embodiments, both the conventional 6-phase integrated regulator and the 4×6 integrated power regulator operate at a duty cycle of 50%. The six power conversion modules of the conventional 6-phase integrated regulator operate in six different phases in an interleaved manner. Each power conversion module of the conventional 6-phase integrated regulator is considered as a power conversion cell for comparison purposes. The six power conversion modules 111-116 of the 4×6 integrated power regulator operate in six different operating phases. The four power conversion cells of each power conversion module of the 4×6 integrated power regulator operate in a same operating phase.
It should be noted that the interleaved power conversion modules are able to adjust the phase shift to obtain an appropriate system configuration after one or more power modules are disabled. For example, after one power conversion module is disabled, the remaining power conversion modules are able to adjust the phase shift so as to achieve a 5-phase interleaved operation. Likewise, the interleaved power conversion cells are able to adjust the phase shift to obtain an appropriate system configuration after one or more power conversion cells are disabled.
Figure PCTCN2020078111-appb-000005
Figure PCTCN2020078111-appb-000006
Table 3
As shown in Table 3, the inductance of the power conversion cell of the 4×6 integrated power regulator is four times greater than the inductance of the power conversion cell of the conventional 6-phase integrated regulator to have the same equivalent inductor per module.
In a normal operation mode, the current ripple of each power conversion module of the conventional 6-phase integrated regulator is as large as the current ripple of each power conversion module of the 4×6 integrated power regulator. The current ripple of each power conversion cell of the 4×6 integrated power regulator is one-fourth as large as the current ripple of the power conversion cell of the conventional 6-phase integrated regulator. Both the 4×6 integrated power regulator and the conventional 6-phase integrated regulator can achieve ripple cancellation.
In a light load operation mode, in order to reduce switching losses, one power conversion cell is dropped from each power conversion module of the 4×6 integrated power regulator. The 4×6 integrated power regulator still maintains the six-phase interleaving operation. For the conventional 6-phase integrated regulator, one power conversion module is dropped to reduce the switching losses. As shown in Table 3, the current ripple per power conversion module of the 4×6 integrated power regulator is equal to 3·Vo/ (8·fs·L) . The total output current ripple of the 4×6 integrated power regulator is equal to zero due to the ripple cancellation described above. In contrast, the conventional 6-phase integrated regulator becomes a 5-phase integrated regulator after dropping one power conversion module. The current ripple of the conventional 6-phase integrated regulator is equal to Vo/ (10·fs·L) as shown in Table 3.
In the light load operation mode, in order to further reduce the switching losses, two power conversion cells are dropped from each power conversion module of the 4×6 integrated  power regulator. The 4×6 integrated power regulator still maintains the six-phase interleaving operation. For the conventional 6-phase integrated regulator, two power conversion modules are dropped to reduce the switching losses. As shown in Table 3, the current ripple per power conversion module of the 4×6 integrated power regulator is equal to Vo/ (4·fs·L) as shown in Table 3. The total output current ripple of the 4×6 integrated power regulator is equal to zero due to the ripple cancellation described above. In contrast, the conventional 6-phase integrated regulator becomes a 4-phase integrated regulator after dropping two power conversion modules. At a 50%duty cycle, the total output current ripple of the conventional 6-phase integrated regulator is equal to zero as shown in Table 3.
Furthermore, three power conversion cells are dropped from each power conversion module of the 4×6 integrated power regulator. The 4×6 integrated power regulator still maintains the six-phase interleaving operation. For the conventional 6-phase integrated regulator, three power conversion modules are dropped to reduce the switching losses. As shown in Table 3, the current ripple per power conversion module of the 4×6 integrated power regulator is equal to Vo/ (8·fs·L) as shown in Table 3. The total output current ripple of the 4×6 integrated power regulator is equal to zero due to the ripple cancellation described above. In contrast, the conventional 6-phase integrated regulator becomes a 3-phase integrated regulator after dropping three power conversion modules. The total output current ripple of the conventional 6-phase integrated regulator is equal to Vo/ (6·fs·L) as shown in Table 3.
Although embodiments of the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims.
Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps. The specification and drawings are, accordingly, to be regarded simply as an illustration of the disclosure as defined by the appended claims, and are contemplated to cover any and all modifications, variations, combinations or equivalents that fall within the scope of the present disclosure.

Claims (20)

  1. An apparatus comprising:
    a plurality of power conversion modules connected in parallel between a positive terminal and a negative terminal of a power source, each power conversion module of the plurality of power conversion modules comprises a plurality of power conversion cells connected in parallel between the positive terminal and the negative terminal of the power source, and wherein:
    a first power conversion cell and a second power conversion cell are configured to operate in two different operating phases; and
    a third power conversion cell and a fourth power conversion cell are configured to operate in a same operating phase.
  2. The apparatus of claim 1, wherein:
    the plurality of power modules is configured to operate in different operating phases in an interleaved manner; and
    the plurality of power conversion cells of a same power module is controlled by same gate drive signals.
  3. The apparatus of claim 1, wherein:
    the plurality of power conversion modules is configured to operate in a same operating phase; and
    the plurality of power conversion cells of a same power module is configured to operate in an interleaved manner.
  4. The apparatus of any one of claims 1-3, wherein:
    each of the plurality of power conversion cells is implemented as a step-down power converter comprising a high-side switch, a low-side switch and an inductor, and wherein the high-side switch and the low-side switch are connected in series between the positive terminal and the negative terminal of the power source, and the inductor is connected to a common node of the high-side switch and the low-side switch.
  5. The apparatus of any one of claims 1-4, wherein:
    a first power conversion module and a second power conversion module are configured to operate in two different operating phases in an interleaved manner, and wherein the first power conversion cell and the second power conversion cell are in the first power conversion module and the second power conversion module respectively; and
    the third power conversion cell and the fourth power conversion cell are in a same power conversion module.
  6. The apparatus of any one of claims 1-4, wherein:
    the first power conversion cell and the second power conversion cell are in a same power conversion module having a plurality power conversion cells operating in a plurality of operating phases; and
    a first power conversion module and a second power conversion module are configured to operate in a same operating phase, and wherein the third power conversion cell and the fourth power conversion cell are in the first power conversion module and the second power conversion module respectively.
  7. The apparatus of any one of claims 1-6, wherein:
    each of the plurality of power conversion cells comprises an inductor, and wherein at least two inductors of the plurality of power conversion cells are magnetically coupled to each other.
  8. The apparatus of any one of claims 1-6, wherein:
    each of the plurality of power conversion cells comprises an inductor, and wherein all inductors of the plurality of power conversion cells are magnetically coupled to each other.
  9. The apparatus of any one of claims 1-6, wherein:
    a first power conversion module comprises a plurality of first power conversion cells, each of which comprises an inductor; and
    a second power conversion module comprises a plurality of second power conversion cells, each of which comprises an inductor, and wherein at least one inductor of the first power conversion module is magnetically coupled to at least one inductor of the second power conversion module.
  10. The apparatus of any one of claims 1-6, wherein:
    a first power conversion module comprises a plurality of first power conversion cells, each of which comprises an inductor; and
    a second power conversion module comprises a plurality of second power conversion cells, each of which comprises an inductor, and wherein all inductors of the first power conversion module are magnetically coupled to all inductors of the second power conversion module.
  11. A method comprising:
    configuring M×N power conversion cells of a power regulator to operate in N operating phases, wherein N and M are predetermined integers greater than or equal to 2; and
    during a light load operation, disabling a plurality of power conversion cells to reduce switching losses while maintaining ripple reduction.
  12. The method of claim 11, wherein:
    the power regulator comprises N power conversion modules connected in parallel between a positive terminal and a negative terminal of a power source, and wherein each power conversion module of the N power conversion modules comprises M power conversion cells connected in parallel between the positive terminal and the negative terminal of the power source, and wherein:
    the N power conversion modules are configured to operate in the N operating phases in an interleaved manner; and
    the M power conversion cells are controlled by same gate drive signals.
  13. The method of any one of claims 11-12, further comprising:
    during the light load operation, disabling one power conversion cell from each power conversion module to reduce the switching losses while maintaining the ripple reduction.
  14. The method of any one of claims 11-12, further comprising:
    during the light load operation, disabling one power conversion module to reduce the switching losses while improving the ripple reduction.
  15. The method of claim 11, wherein:
    the power regulator comprises M power conversion modules connected in parallel between a positive terminal and a negative terminal of a power source, and wherein each power conversion module of the M power conversion modules comprises N power conversion cells connected in parallel between the positive terminal and the negative terminal of the power source, and wherein the M power modules are configured to operate in a same operating phase, and the N power conversion cells of each power conversion module are configured to operate in in the N operating phases in an interleaved manner.
  16. The method of claim 15, further comprising:
    during the light load operation, disabling one power conversion module to reduce the switching losses while maintaining the ripple reduction.
  17. The method of claim 15, further comprising:
    during the light load operation, disabling one power conversion cell to reduce the switching losses while improving the ripple reduction.
  18. A method comprising:
    configuring M×N power conversion cells of a power regulator to operate in N operating phases, wherein the power regulator is connected between a power source and a load, and N and M are predetermined integers greater than or equal to 2;
    during a light load operation, disabling a plurality of power conversion cells to reduce switching losses while maintaining ripple reduction; and
    during a load transient, dynamically adjusting the N operating phases to improve transient response performance.
  19. The method of claim 18, wherein:
    the power regulator comprises N power conversion modules connected in parallel between a positive terminal and a negative terminal of the power source, and wherein each power conversion module of the N power conversion modules comprises M power conversion cells connected in parallel between the positive terminal and the negative terminal of the power source, and wherein the N power conversion modules are configured to operate in the N operating phases in an interleaved manner, and the M power conversion cells are controlled by same gate drive signals, and wherein a time delay of T/N is placed between gate drive signals of two adjacent power conversion modules, and wherein T is a switching cycle of the power regulator.
  20. The method of any one of claims 18-19, further comprising:
    during the load transient, dynamically reducing the time delay between two adjacent power conversion modules to improve the transient response performance.
PCT/CN2020/078111 2019-03-06 2020-03-06 Integrated power regulator and method WO2020177757A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20767041.5A EP3914986A4 (en) 2019-03-06 2020-03-06 Integrated power regulator and method
CN202080010949.3A CN113424127B (en) 2019-03-06 2020-03-06 Integrated power regulator and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962814629P 2019-03-06 2019-03-06
US62/814,629 2019-03-06

Publications (1)

Publication Number Publication Date
WO2020177757A1 true WO2020177757A1 (en) 2020-09-10

Family

ID=72338382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078111 WO2020177757A1 (en) 2019-03-06 2020-03-06 Integrated power regulator and method

Country Status (3)

Country Link
EP (1) EP3914986A4 (en)
CN (1) CN113424127B (en)
WO (1) WO2020177757A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080238392A1 (en) * 2007-03-28 2008-10-02 Intersil Americas Inc. Controller and driver communication for switching regulators
CN101345491A (en) * 2008-05-30 2009-01-14 华硕电脑股份有限公司 Frequency conversion multi-phase voltage regulator and its control method
US20100194361A1 (en) 2009-02-05 2010-08-05 Peter Thomas Hardman Asymmetric topology to boost low load efficiency in multi-phase switch-mode power conversion
CN102904424A (en) * 2011-07-29 2013-01-30 英飞凌科技奥地利有限公司 Switching regulator with increased light load efficiency
US20150015219A1 (en) * 2013-04-15 2015-01-15 Rohm Co., Ltd Dc/dc converter
WO2015108613A1 (en) 2014-01-15 2015-07-23 Abb Technology Ag Interleaved multi-channel, multi-level, multi-quadrant dc-dc converters
US20150277460A1 (en) 2014-04-01 2015-10-01 Virginia Tech Intellectual Properties, Inc. Hybrid Interleaving Structure with Adaptive Phase Locked Loop for Variable Frequency Controlled Switching Converter
CN108809054A (en) * 2017-04-28 2018-11-13 英飞凌科技奥地利有限公司 Multi-phase regulator and its control method, digitial controller and electronic unit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8963521B2 (en) * 2007-06-08 2015-02-24 Intersil Americas LLC Power supply with a magnetically uncoupled phase and an odd number of magnetically coupled phases, and control for a power supply with magnetically coupled and magnetically uncoupled phases
CN101409506B (en) * 2008-08-11 2013-03-20 华硕电脑股份有限公司 Multi-phase voltage regulator and control method thereof
CN101944852B (en) * 2009-07-07 2013-03-27 台达电子工业股份有限公司 Multiphase switch power supply switching circuit
GB2483317B (en) * 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
CN204290756U (en) * 2014-12-31 2015-04-22 中电博瑞技术(北京)有限公司 Based on the AC/DC translation circuit that power device mixing is in parallel
CN108880247B (en) * 2017-05-16 2021-09-07 马克西姆综合产品公司 DC-to-DC converter supporting continuous conduction mode, and associated method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080238392A1 (en) * 2007-03-28 2008-10-02 Intersil Americas Inc. Controller and driver communication for switching regulators
CN101345491A (en) * 2008-05-30 2009-01-14 华硕电脑股份有限公司 Frequency conversion multi-phase voltage regulator and its control method
US20100194361A1 (en) 2009-02-05 2010-08-05 Peter Thomas Hardman Asymmetric topology to boost low load efficiency in multi-phase switch-mode power conversion
CN102904424A (en) * 2011-07-29 2013-01-30 英飞凌科技奥地利有限公司 Switching regulator with increased light load efficiency
US20150015219A1 (en) * 2013-04-15 2015-01-15 Rohm Co., Ltd Dc/dc converter
WO2015108613A1 (en) 2014-01-15 2015-07-23 Abb Technology Ag Interleaved multi-channel, multi-level, multi-quadrant dc-dc converters
US20150277460A1 (en) 2014-04-01 2015-10-01 Virginia Tech Intellectual Properties, Inc. Hybrid Interleaving Structure with Adaptive Phase Locked Loop for Variable Frequency Controlled Switching Converter
CN108809054A (en) * 2017-04-28 2018-11-13 英飞凌科技奥地利有限公司 Multi-phase regulator and its control method, digitial controller and electronic unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3914986A4

Also Published As

Publication number Publication date
EP3914986A4 (en) 2022-03-09
CN113424127A (en) 2021-09-21
EP3914986A1 (en) 2021-12-01
CN113424127B (en) 2023-01-06

Similar Documents

Publication Publication Date Title
US10938322B2 (en) Soft switching inverter device and method
Shanthi et al. Non-isolated n-stage high step-up DC-DC converter for low voltage DC source integration
Zhu et al. Coat circuits for DC–DC converters to improve voltage conversion ratio
US9548668B2 (en) Hybrid power converter and method
US9806601B2 (en) Boost converter and method
US9479075B2 (en) Multilevel converter system
Hwu et al. An expandable two-phase interleaved ultrahigh step-down converter with automatic current balance
US20130301314A1 (en) Multilevel Inverter Device and Method
US20120057387A1 (en) Hybrid switch for resonant power converters
US11451151B1 (en) Hybrid power conversion system and control method
US20150244284A1 (en) Soft Switching Inverter
US11742758B2 (en) Boost converter and control method
US20220376625A1 (en) Hybrid Power Conversion System and Control Method
JP7270139B2 (en) DC/DC converter
Huber et al. Monolithic bidirectional power transistors
Khalili et al. Fully soft-switched non-isolated high step-down DC–DC converter with reduced voltage stress and expanding capability
Zhu et al. High transformer utilization ratio and high voltage conversion gain flyback converter for photovoltaic application
WO2020177757A1 (en) Integrated power regulator and method
US11817770B2 (en) Hybrid power conversion system and control method
CN113261189B (en) Hybrid power converter and method
Baharlou et al. Nonisolated High-Step-Down DC–DC Converters With Low Component Count and Voltage Stress
Mohan et al. Switched inductor based transformerless boost inverter
Urabe et al. A novel tapped-inductor buck converter for home DC power supply system
Ishwarya et al. Investigations on multiphase modified interleaved buck converters for high step down voltage
KR20190101066A (en) Snubber Circuit for Solar Generation System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20767041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020767041

Country of ref document: EP

Effective date: 20210825

NENP Non-entry into the national phase

Ref country code: DE