WO2020177265A1 - 一种有机发光显示装置及其形成方法 - Google Patents

一种有机发光显示装置及其形成方法 Download PDF

Info

Publication number
WO2020177265A1
WO2020177265A1 PCT/CN2019/096804 CN2019096804W WO2020177265A1 WO 2020177265 A1 WO2020177265 A1 WO 2020177265A1 CN 2019096804 W CN2019096804 W CN 2019096804W WO 2020177265 A1 WO2020177265 A1 WO 2020177265A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display device
organic light
emitting display
film layer
Prior art date
Application number
PCT/CN2019/096804
Other languages
English (en)
French (fr)
Inventor
居宇涵
曾章和
Original Assignee
上海视涯信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910170613.2A external-priority patent/CN110164921B/zh
Priority claimed from CN201910170606.2A external-priority patent/CN110165062B/zh
Application filed by 上海视涯信息科技有限公司 filed Critical 上海视涯信息科技有限公司
Publication of WO2020177265A1 publication Critical patent/WO2020177265A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/82Interconnections, e.g. terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to the field of display technology, in particular to an organic light-emitting display device, and also to a method for forming the organic light-emitting display device.
  • the working principle of an organic light-emitting display device is to load a certain voltage between the anode and the cathode to drive the organic light-emitting layer to emit light to perform display.
  • the organic light emitting display device includes a plurality of pixel units, the anode of each pixel unit is individually controlled by a pixel circuit located thereunder, and the cathodes of each pixel unit are connected together.
  • the organic light-emitting layer between the anode and the cathode is formed by evaporating organic materials using an open mask, and the organic light-emitting layers of each pixel unit are also connected together, as shown in FIG. 1.
  • Figure 1 shows two pixel units U1 and U2.
  • Each pixel unit includes an anode 11 arranged on a substrate 10, a pixel definition layer 12 arranged on the upper layer of the anode 11 and located between the pixel units U1 and U2.
  • the definition layer 12 has a gentle slope shape due to the etching process.
  • the hole injection layer 13, the hole transport layer 14, and the electron blocking layer 15 are all located between the pixel unit regions It is a connected connection structure.
  • the organic light-emitting layer 19 disposed in the area of each pixel unit, the hole blocking layer 16 disposed on the organic light-emitting layer 19, the electron transport layer 17 disposed on the hole blocking layer 16, the cathode disposed on the electron transport layer 17 18.
  • the cathode 18 is a connected connection structure between the pixel unit regions. Under the structure of the organic light emitting display device shown in FIG. 1, display crosstalk between the pixel units U1 and U2 will occur, that is, when the pixel unit U1 has a display signal, part of the display current is transferred to the pixel unit U2, mainly because The current in the film with high carrier mobility in the organic light-emitting layer leaks to the adjacent pixel unit, so that the pixel unit U2 cannot display a predetermined pixel gray scale, which greatly affects the display effect of the organic light-emitting display device .
  • Some solutions in the prior art change the structure of the pixel definition layer, set the pixel definition layer to have a chamfer of 90 degrees or more on the bottom and sides, and use organic light-emitting layers with poor coverage Characteristic, let the organic light-emitting layer break at the chamfer when forming the film.
  • the present invention provides an organic light-emitting display device, including a substrate, pixel units arranged on the substrate and spaced apart, each of the pixel units includes a lower electrode arranged on the substrate; and arranged on the lower electrode
  • the organic film layer includes at least one first film layer, and the first film layers of the plurality of pixel units are connected to each other; an upper electrode provided on the organic film layer, the multiple The upper electrodes of the two display units are connected to each other; a thin-film encapsulation layer disposed on the upper electrode; the first film layer contains first atoms, and in the first film layer, corresponding to the spacer area The concentration of the first atoms in is greater than the concentration of atoms in the region corresponding to the lower electrode.
  • the present invention also provides a method for forming an organic light emitting display device, including:
  • Step 1 Provide a substrate
  • Step 2 forming a plurality of lower electrodes arranged at intervals on the substrate;
  • Step 3 forming an organic film layer on the lower electrode, the organic film layer is connected to each other among a plurality of pixel units; the multi-layer organic film layer includes at least one first film layer;
  • Step 4 forming an upper electrode on the organic film layer, and the upper electrodes of the plurality of pixel units are connected to each other;
  • Step 5 forming a first thin film encapsulation layer on the upper electrode
  • Step 6 Form a patterned photoresist layer on the first thin film encapsulation layer, the photoresist layer covers the first thin film encapsulation layer in the area where the lower electrode is located and exposes the first thin film encapsulation layer in the spacer area ;
  • Step 7 Perform ion implantation on the at least one first film layer using the photoresist layer as a mask.
  • the above-mentioned organic light-emitting display device and the method for forming the above-mentioned organic light-emitting display device provided by the present invention can reduce the carrier mobility of the film layer in the interval region by ion implanting the common organic film layer with high carrier mobility, thereby avoiding or Reduce the leakage of carriers between adjacent pixel units through the layer, and avoid poor light leakage crosstalk between adjacent pixel units.
  • the present invention further provides an organic light emitting display device, comprising: a substrate, an insulating layer provided on the substrate, a plurality of pixel units arranged on the insulating layer and arranged at intervals, each of the pixel units includes The lower electrode on the insulating layer exposes the insulating layer between adjacent lower electrodes; the angle between the bottom surface of the lower electrode close to the substrate and the side surface of the lower electrode is less than 90 degrees; An organic film layer disposed on the lower electrode, the organic film layer contacts and covers the lower electrodes of the plurality of pixel units, and the insulating layer is exposed between the lower electrodes; the organic film layer includes At least one first film layer, the first film layers of the plurality of pixel units are connected to each other; an upper electrode disposed on the organic film layer, the upper electrodes of the plurality of pixel units are connected to each other; A thin film encapsulation layer on the upper electrode; in the first film layer, the carrier mobility in the region corresponding to the spacer is smaller than the carrier mobility in the region
  • the present invention further provides an organic light emitting display device, including: a substrate, an insulating layer provided on the substrate, a plurality of pixel units arranged on the insulating layer and arranged at intervals, each of the pixel units includes The lower electrode on the insulating layer exposes the insulating layer between adjacent lower electrodes; the angle between the bottom surface of the lower electrode close to the substrate and the side surface of the lower electrode is less than 90 degrees; An organic film layer disposed on the lower electrode, the organic film layer contacts and covers the lower electrodes of the plurality of pixel units, and the insulating layer is exposed between the lower electrodes; the organic film layer includes At least one first film layer, the first film layers of the plurality of pixel units are connected to each other; an upper electrode disposed on the organic film layer, the upper electrodes of the plurality of pixel units are connected to each other; The thin film encapsulation layer on the upper electrode; the first film layer contains first atoms, and in the first film layer, the concentration of the first atoms in the
  • the present invention also provides a method for forming an organic light emitting display device, including:
  • Step 1 Provide a substrate, and form an insulating layer on the substrate;
  • Step 2 A plurality of lower electrodes arranged at intervals are formed on the insulating layer, and the insulating layer is exposed between the adjacent lower electrodes; the lower electrode is close to the bottom surface of the substrate and the bottom of the lower electrode.
  • the angle between the sides is less than 90 degrees;
  • Step 3 An organic film layer is formed on the lower electrode, the organic film layer contacts and covers the plurality of lower electrodes and the insulating layer is exposed between the lower electrodes; the organic film layer contains at least A first film layer, the first film layer is connected to each other among a plurality of pixel units;
  • Step 4 forming an upper electrode on the organic light-emitting layer, and the upper electrodes of the plurality of pixel units are connected to each other;
  • Step 5 forming a first thin film encapsulation layer on the upper electrode
  • Step 6 Form a patterned photoresist layer on the first thin film encapsulation layer, the photoresist layer covers the first thin film encapsulation layer in the area where the lower electrode is located and exposes the first thin film encapsulation layer in the spacer area ;
  • Step 7 Perform ion implantation on the at least one first film layer in the organic film layer using the photoresist layer as a mask.
  • the above-mentioned organic light-emitting display device and the method for forming the above-mentioned organic light-emitting display device provided by the present invention are not provided with a pixel definition layer, which can greatly reduce the area of the non-light-emitting region between pixel units;
  • the electrode is set to a structure where the angle between the bottom surface and the side surface is less than 90 degrees, which can ensure that the organic film layer formed above the lower electrode and the upper electrode formed above the organic film layer can be uniformly and continuously formed, which prevents the upper electrode from being
  • the disconnection between the pixel units ensures the transmission of the upper electrode signal between the pixel units.
  • the material of the reflective electrode layer of the bottom electrode is Al, and Al reacts with water and oxygen in the organic film layer to generate aluminum oxide, which has stable chemical properties and can protect the bottom electrode.
  • the organic light-emitting display device provided by the present invention is a silicon-based miniature organic light-emitting display device without a pixel definition layer, which reduces the width of the pixel unit interval, reduces the "screen effect", and provides a better near-eye viewing experience.
  • FIG. 1 is a schematic diagram of an organic light emitting display device in the prior art
  • FIG. 2 is a schematic top view of the structure of the organic light emitting display device provided by the first embodiment of the present invention
  • Figure 3 is a schematic diagram along the XX' section in Figure 2;
  • FIG. 4 is a schematic flowchart of a method for forming an organic light-emitting display device according to Embodiment 2 of the present invention.
  • 5 to 11 are schematic diagrams of the film structure of the organic light emitting display device in different process steps
  • FIG. 12 is a schematic top view of the structure of the organic light emitting display device according to the third embodiment of the present invention.
  • Fig. 13 is a schematic diagram of the XX' section in Fig. 12;
  • FIG. 14 is a schematic diagram of a cross-sectional structure of an organic light-emitting display device provided by the fourth embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a method for forming an organic light-emitting display device provided by Embodiment 5 of the present invention.
  • 16 to 22 are schematic diagrams of the film structure of the organic light emitting display device in different process steps.
  • FIG. 2 is a schematic top view of the structure of the organic light emitting display device provided by the first embodiment of the present invention
  • FIG. 3 is a schematic view along the XX′ section in FIG. 2.
  • the organic light-emitting display device provided by the embodiment of the present invention includes a substrate 20.
  • the substrate 20 includes a display area 201 and a peripheral area 202 surrounding the display area 201.
  • a plurality of pixel units 203 arranged at intervals are arranged in the display area 201, and a flexible circuit board 204 may also be arranged in the peripheral area 202 for transmitting driving signals.
  • each pixel unit 202 includes a bottom electrode 21 disposed on the substrate 20, and a gap region B is formed between adjacent bottom electrodes 21.
  • the substrate 20 further includes a driving layer (not shown).
  • the driving layer includes a plurality of driving structures, and each driving structure corresponds to a pixel unit 202 to provide a driving signal to the lower electrode 21.
  • a pixel definition layer (not shown) may also be provided on the upper layer of the lower electrode 21, and the pixel definition layer is used to define the position of each pixel unit.
  • An organic film layer 22 is provided on the bottom electrode 21 of the organic light emitting display device.
  • the organic film layer 22 is a multilayer film structure, including, for example, a hole injection layer, a hole transport layer, an electron blocking layer, an organic light-emitting layer, a hole blocking layer, an electron transport layer, etc., for example, the organic light emitting display device is a plurality of OLEDs In the tandem structure, adjacent OLED cells are also provided with a charge generation layer.
  • the organic film layer 22 includes at least one first film layer 221, and the first film layers 221 of the plurality of pixel units 202 are connected to each other, that is, for the plurality of pixel units 202 of the organic light emitting display device, the first film layer 221 is the common film layer.
  • An upper electrode 23 is further provided on the upper layer of the organic film layer 22, and the upper electrodes 23 of the plurality of pixel units 202 are connected to each other to form a layered structure.
  • the lower electrode 21 may be an anode or a cathode
  • the upper electrode 23 may be an anode or a cathode.
  • the upper electrode 23 is a cathode
  • the lower electrode 21 is a cathode
  • the upper electrode 23 is an anode.
  • the first film layer 221 contains a kind of first atoms, and the concentration of the first atoms in the spacer region B is greater than the concentration of the first atoms in the corresponding lower electrode region A.
  • the first film layer 221 may be a hole transport layer, a hole injection layer or a charge generation layer.
  • the hole transport layer, the hole injection layer or the charge generation layer is a film layer with high carrier mobility.
  • the first is injected into the spacer region B by ion injection. Atoms, can reduce the carrier mobility of the first film 221 in the spacer region B, thereby avoiding or reducing the leakage of carriers between adjacent pixel units through the film, and avoiding light leakage crosstalk between adjacent pixel units bad.
  • the concentration of the first atom decreases.
  • the atomic weight of the first atom is less than or equal to the atomic weight of Ar atoms.
  • the first atom is an H, He, B, C, N, O, F, Si, P, S, Cl or Ar atom.
  • the organic light emitting display device provided by the present invention is a silicon-based micro organic light emitting display device.
  • the silicon-based miniature organic light-emitting display device is based on a monocrystalline silicon wafer and uses IC process technology to form a display drive circuit, which can provide higher resolution, and the area can be as small as a coin. It can be used for AR (Augmented Reality, augmented reality technology). ) And VR (Virtual Reality, virtual reality) such miniature display technologies.
  • the interval between the pixel units of the organic light emitting display device provided by the present invention is 0.1-2 microns.
  • the organic light-emitting display device provided by the present invention can reduce the carrier mobility of the first film layer 221 in the spacer region B, thereby avoiding or reducing the leakage of carriers between adjacent pixel units through the film layer.
  • the organic light emitting display device provided by the present invention may not be provided with the pixel definition layer, so that the distance between adjacent pixel units is greatly reduced to a minimum of 0.1 microns.
  • Embodiments of the present invention also provide a method for forming the above-mentioned organic light-emitting display device.
  • Fig. 4 is a schematic process flow diagram of the forming method
  • Figs. 5 to 11 are schematic views of the film structure of the organic light-emitting display device in different process steps.
  • a substrate 20 is provided.
  • the substrate 20 may be a glass substrate, a flexible substrate, or a semiconductor silicon substrate, etc., and a driving layer, such as a pixel driving circuit, a data driving circuit, or a scanning driving circuit, is also formed on the substrate 20.
  • a driving layer such as a pixel driving circuit, a data driving circuit, or a scanning driving circuit
  • step 2 is performed to form a plurality of lower electrodes 21 arranged at intervals on the substrate 20.
  • Each bottom electrode 21 is connected to a corresponding driving structure of a driving layer, such as a bottom electrode signal output terminal of a pixel driving circuit, and outputs the bottom electrode signal to the corresponding bottom electrode 21.
  • the bottom electrode 21 may be a multilayer structure, for example, including a first electrode layer and a second electrode layer sequentially formed on the substrate 20.
  • the first electrode layer is a reflective electrode layer, and the material may be Ag, Au, Mo, Al, etc. Highly reflective metal; the second electrode layer is an optical adjustment layer, and the material can be ITO, IZO, etc.
  • the function of the first electrode layer is to reflect the light emitted by the organic light emitting layer, and the function of the second electrode layer is to adjust and enhance the intensity of light corresponding to the desired color.
  • the lower electrode 21 may be an anode or a cathode.
  • a pixel definition layer may be formed on the upper layer of the lower electrode 21.
  • the pixel definition layer is located in the space between adjacent lower electrodes 21 and also covers the edge portion of the lower electrode 21.
  • the pixel definition layer has a gentle slope structure, which facilitates the formation of a smooth, uniform and continuous structure of the subsequent organic film layer.
  • step 3 forming an organic film layer 22 on the lower electrode 21, the organic film layer 22 includes at least one first film layer 221, the first film layer 221 between the plurality of pixel units connection.
  • the method of forming the first film layer 221 is to use an open mask to vaporize the organic material to form a film.
  • the shielding area in the open mask corresponds to the non-display area 202 around the substrate 20, and the transparent area corresponds to the gap area B between the lower electrode 22 and the lower electrode 22 of the display area 201. Therefore, the first film layer 221 is formed in multiple
  • the pixel units are connected to each other, that is, for multiple pixel units of the organic light emitting display device, the first film layer 221 is a common film layer.
  • the organic film layer 22 is a multilayer film structure, such as a hole injection layer, a hole transport layer, an electron blocking layer, an organic light-emitting layer, a hole blocking layer, an electron transport layer, etc., for example, the organic light emitting display device is a plurality of OLEDs In the tandem structure, adjacent OLED cells are also provided with a charge generation layer.
  • the first film layer 221 may be a hole transport layer, a hole injection layer or a charge generation layer.
  • the hole transport layer, the hole injection layer or the charge generation layer is a film layer with high carrier mobility.
  • step 4 forming an upper electrode 23 on the organic film layer 22, the upper electrodes 23 of a plurality of pixel units are connected to each other to form a film structure on the entire surface.
  • the upper electrode 23 may be an anode or a cathode.
  • the upper electrode 23 is a cathode; when the lower electrode 21 is a cathode, the upper electrode 23 is an anode.
  • the upper electrode 23 formed thereon adheres to the shape of the organic film layer 22, and can also form a continuous and uniform film surface, ensuring that the upper electrode signal can be Transmission within the pixel unit.
  • step 5 is performed: forming a first thin film encapsulation layer 24 on the upper electrode 23.
  • the first thin film encapsulation layer 24 can be a single-layer structure or a multi-layer structure, and the material of each layer can be an inorganic material or an organic material, preferably an inorganic material layer, an organic material layer, and an inorganic material layer.
  • the function of the first thin film encapsulation layer 24 is to isolate the organic film layer 22 from external moisture and oxygen, thereby improving the reliability of the organic display panel.
  • the method for forming the first thin-film encapsulation layer 24 may be ALD (atomic layer deposition), CVD (chemical vapor deposition, chemical vapor deposition), or PVD (Physical Vapor Deposition, physical vapor deposition).
  • the present invention provides that the first thin film encapsulation layer 24 is formed first to protect the organic film layer 22. , And then proceed to the subsequent ion implantation process. Since the ions of the subsequent ion implantation process have to penetrate the first thin-film encapsulation layer 24, in order to reduce the energy of ion penetration, preferably, the thickness of the first thin-film encapsulation layer 24 is less than 10 microns, and more preferably, the first The thickness of the thin film encapsulation layer 24 is less than 1 micron.
  • step 6 is performed: a patterned photoresist layer 25 is formed on the first thin film encapsulation layer 24, and the photoresist layer 25 covers and exposes the first thin film encapsulation layer 24 in the region A where the lower electrode 21 is located The first thin film encapsulation layer 24 of the space B area.
  • step 7 is performed: ion implanting the at least one first film layer 221 using the patterned photoresist layer 25 as a mask.
  • step 7 the substrate after step 6 is put into the ion implantation equipment, and the ions generated by the ion source are accelerated and projected to the surface of the first film layer 221 at a high speed.
  • the first film layer 221 is blocked by the photoresist layer 25, and the first film layer 221 corresponding to the spacer area B is not blocked by the photoresist layer 25, and ions will enter the first film layer 221 corresponding to the spacer area B.
  • the ions When the ions enter the surface of the first film layer 221 corresponding to the spacer area B, they collide with the atoms in the first film layer 221 of the spacer area B, physically destroying the original organic molecular structure in the first film layer 221.
  • the ion implantation process uses chemically active elements, such as O or F atoms, which will also chemically react with the organic materials in the first film layer 221 to chemically destroy the materials in the first film layer 221.
  • the carrier mobility of the first film layer 221 in the spacer region B is lower than that of the first film layer in the region A corresponding to the lower electrode 21
  • the carrier mobility of 221 can prevent or reduce the leakage of carriers between adjacent pixel units through the first film 221, and avoid light leakage between adjacent pixel units.
  • atoms with lighter atomic weight are selected, preferably with a molecular weight less than or equal to that of Ar atoms, preferably H, He, B, C, N, O, F, Si, P, S, Cl or Ar can be selected.
  • Atoms, etc. can reduce the energy of ion implantation.
  • the concentration of ion implantation is 1 ⁇ 10 13 to 1 ⁇ 10 16 atoms/per square centimeter.
  • the organic light-emitting display device includes multiple first film layers, and step 7 can be repeated multiple times to perform ion implantation processes on the multiple first film layers.
  • the hole transport layer and the void in the OLED device Both the hole injection layer and the charge generation layer are subjected to ion implantation to reduce the carrier mobility of the above-mentioned film layers in the interval area, which can be based on the layer position, thickness, and film material of the organic film layer where the first film layer is located.
  • different injection energies are selected, generally between 10 and 1000 kiloelectron volts.
  • the first film layer 221 contains a type of first atom, and the concentration of the first atom in the corresponding interval region B is greater than the concentration of the first atom in the region A corresponding to the power down 21.
  • the concentration of the first atoms decreases from a direction away from the substrate 20 to a direction closer to the substrate 20.
  • the first film layer 221 in the spacer region B using a gas containing O atoms to ion implant the first film layer 221 in the spacer region B, although the organic material of the first film layer 221 originally contains O atoms, after the ion implantation process, the first film layer 221 in the spacer region B
  • the content of O atoms in a film layer 221 is greater than the content of O atoms in the region A corresponding to the lower electrode 21.
  • the energy of the injected atoms in the first film layer 221 decreases.
  • the number of atoms reaching below the first film layer 221 is less than the number of atoms reaching above the first film layer 221. Therefore, from the direction away from the substrate 20 to the direction close to the substrate 20 , The concentration of the first atom will decrease.
  • the appearance of the first film layer 221 after the ion implantation process does not change, but the first atom concentration in the interval area B can be detected and compared with the atom concentration in the area A, or the first film layer in the interval area B can be detected 221 From the direction away from the substrate 20 to the direction close to the substrate 20, the change of the concentration of the first atoms can confirm whether the ion implantation process is performed on the first film layer.
  • step 8 and step 9 may be included after step 7.
  • the photoresist layer 25 after step 7 is removed.
  • the photoresist layer 25 may be removed using a dry etching process or a wet etching process.
  • the photoresist layer 25 is removed using a dry etching process and then a wet etching process.
  • the photoresist layer 25 is dry-etched using oxygen plasma gas, and the organic matter and oxygen in the photoresist layer 25 react to generate CO 2 , SO 2 , H 2 O and other substances that are volatilized and removed; because the photoresist layer 25 Ion implantation receives a lot of energy and is heated and hardened, resulting in molecular chain cross-linking, which cannot be removed cleanly by the dry etching process, and then the wet etching process is used to dissolve and remove the residual organic matter. By using the dry etching process and then the wet etching process, the photoresist layer 25 can be removed cleanly without residue.
  • the first thin-film encapsulation layer 24 is baked again at a temperature of less than 150 degrees Celsius to volatilize the residual solvent and gas.
  • Step 9 forming a second film encapsulation layer on the 24 layers of the first film encapsulation.
  • the first thin film package 24 is implanted with ions during the ion implantation process, and has been in contact with water vapor and oxygen during the photoresist formation process and the photoresist layer removal process, and its encapsulation capability has been weakened.
  • form a second thin-film encapsulation layer on the 24 layers of the first thin-film encapsulation In order to further strengthen the organic film layer Protect, form a second thin-film encapsulation layer on the 24 layers of the first thin-film encapsulation.
  • the second film encapsulation layer can be a single-layer structure or a multi-layer structure, and the material of each layer can be an inorganic material or an organic material, preferably an inorganic material layer, an organic material layer, and an inorganic material layer overlapped
  • the method for forming the second thin-film encapsulation layer may be ALD (atomic layer deposition), CVD (chemical vapor deposition), or PVD (Physical Vapor Deposition).
  • the organic light-emitting display device and the method for forming the organic light-emitting display device provided by the above-mentioned embodiments of the present invention can reduce the carrier mobility of the film layer in the interval region by ion implanting the organic film layer with high carrier mobility, thereby avoiding Or reduce the leakage of carriers between adjacent pixel units through this layer, and avoid poor light leakage crosstalk between adjacent pixel units.
  • FIG. 12 is a schematic top view of the structure of an organic light emitting display device provided by the third embodiment of the present invention
  • FIG. 13 is a schematic view of the cross-section XX′ in FIG. 12.
  • the organic light emitting display device provided by the implementation of the present invention includes a substrate 20 including a display area 201 and a peripheral area 202 surrounding the display area 201.
  • a plurality of pixel units 22 arranged at intervals are arranged in the display area 201, and a flexible circuit board 203 may be arranged in the peripheral area 202 for transmitting driving signals.
  • An insulating layer 21 is provided on the substrate 20, and the pixel units 22 on the display area 201 are provided on the insulating layer 21.
  • Each pixel unit 22 includes a lower electrode 23 provided on the insulating layer 21.
  • the insulating layer 21 is exposed in the space B between the electrodes 23.
  • the angle ⁇ between the bottom surface S1 of the bottom electrode 23 close to the substrate 20 and the side surface S2 of the bottom electrode 13 is less than 90 degrees, preferably between 60 degrees and 30 degrees.
  • An organic film layer 24 is provided on the lower electrode 23 of the organic light emitting display device.
  • the organic film layer 24 contacts and covers the lower electrodes 23 of the plurality of pixel units 22, and the organic film layer 24 also contacts and covers between adjacent lower electrodes 23.
  • the insulating layer 21 is exposed.
  • An upper electrode 25 is further provided on the upper layer of the organic film layer 24, and the upper electrodes 25 of the plurality of pixel units 22 are interconnected to form a layered structure. Because the structure of the bottom electrode 23 is close to the bottom surface S1 of the substrate 20 and the side surface S2 of the bottom electrode 13 and the angle ⁇ is less than 90 degrees, that is, the bottom electrode 23 has a gentle slope structure.
  • the organic film layer 24 When the organic film layer 24 is formed on the bottom electrode 23, it will be formed Uniform and continuous film surface, when the upper electrode 25 is formed on the organic film layer 24, it will adhere to the structure of the organic film layer 24 and form a uniform and continuous film surface, which ensures the transmission of the upper electrode signal between each pixel unit .
  • a thin film encapsulation layer 26 covering the upper electrode 25 is provided on the upper layer of the upper electrode 25.
  • the lower electrode 23 may be an anode or a cathode
  • the upper electrode 25 may be an anode or a cathode.
  • the upper electrode 25 is a cathode
  • the lower electrode 23 is a cathode
  • the upper electrode 25 is an anode.
  • the organic film layer 24 is a multilayer film structure, such as a hole injection layer, a hole transport layer, an electron blocking layer, the hole injection layer, the hole transport layer, the electron blocking layer, the organic light emitting layer, the hole blocking layer,
  • the electron transport layer, etc. such as an organic light-emitting display device has a tandem structure of multiple OLED units, and a charge generation layer is also provided in adjacent OLED units.
  • the organic film layer 24 includes at least one first film layer 241, and the first film layers 241 of the plurality of pixel units 22 are connected to each other, that is, for the plurality of pixel units 22, the first film layer 241 is a common layer.
  • the carrier mobility in the corresponding spacer region B is lower than the carrier mobility in the region A corresponding to the lower electrode 23.
  • the first film layer 241 may be a hole transport layer, a hole injection layer, or a charge generation layer.
  • the hole transport layer, the hole injection layer or the charge generation layer is a film layer with high carrier mobility.
  • the carrier mobility in the spacer region B is set to be less than the corresponding
  • the carrier mobility in the area A of the lower electrode 23 can prevent or reduce the leakage of carriers between adjacent pixel units through this layer, and avoid light leakage between adjacent pixel units.
  • the interval between the pixel units 22 is 0.1-2 microns.
  • the organic light emitting display device provided by the present invention is not provided with a pixel definition layer.
  • the pixel defining layer 12 is arranged between adjacent anodes 11 to define the position of each pixel unit and form a gentle slope structure so that the organic film layer formed thereon can be uniform Film formation.
  • the pixel definition layer is also used to form a chamfer to prevent the organic film layer on it from being broken.
  • the pixel definition layer 12 occupies a larger aperture ratio.
  • the width of the pixel definition layer 12 is between 2 and 5 microns.
  • the organic light-emitting display device provided by the present invention is not provided with a pixel defining layer, the area of the non-light-emitting area between the pixel units can be greatly reduced, and the interval between the pixel units 22 can be reduced to between 0.1-2 microns; the invention provides In the organic light emitting display device, the bottom electrode is set to a structure where the angle between the bottom surface and the side surface is less than 90 degrees, which can ensure that the organic film layer formed above the bottom electrode and the top electrode formed above the organic film layer can be uniformly and continuously formed. This prevents the upper electrode from being disconnected between the pixel units, and ensures the transmission of the upper electrode signal between the pixel units.
  • the lower electrode 23 includes a reflective electrode layer, and the material of the reflective electrode layer is Al.
  • the bottom electrode 23 is in direct contact with the organic film layer 24, and Al is used as the reflective electrode layer material in the bottom electrode 23.
  • Al reacts with water and oxygen in the organic film layer 24 to form alumina.
  • the chemical properties of alumina are stable and can protect the bottom electrode 23. .
  • the organic light emitting display device provided by the present invention is a silicon-based micro organic light emitting display device.
  • the silicon-based miniature organic light-emitting display device is based on a monocrystalline silicon wafer and uses IC process technology to form a display drive circuit, which can provide higher resolution, and the area can be as small as a coin. It can be used for AR (Augmented Reality, augmented reality technology). ) And VR (Virtual Reality, virtual reality) such miniature display technologies. Due to the extremely small pixel size in the microdisplay technology, it is necessary to use an optical module to display near the eye.
  • the pixel unit is a small and individually lit element, and the space between the pixel units does not emit light. The user can easily perceive the unlit space between the pixel units, just like watching the picture through a screen window.
  • the silicon-based micro organic light-emitting display device provided by the present invention is not provided with a pixel definition layer, which reduces the width of the pixel unit interval, can reduce the "screen window effect", and provides a better near-eye viewing experience.
  • the organic film layer 34 includes at least one first film In the layer 341, the first film layer 341 contains a first atom, and the concentration of the first atom in the corresponding interval region B is greater than the concentration of the first atom in the region corresponding to the power down 323.
  • the concentration of the first atoms decreases.
  • the atomic weight of the first atom is less than or equal to the atomic weight of Ar atoms.
  • the first atom is an H, He, B, C, N, O, F, Si, P, S, Cl or Ar atom.
  • the fourth embodiment also provides a method for forming the above-mentioned organic light-emitting display device.
  • FIG. 15 is a schematic diagram of the process steps of the forming method
  • FIGS. 16 to 22 are schematic diagrams of the film structure of the organic light-emitting display device in different process steps.
  • step 1 of the method for forming an organic light emitting display device a substrate 30 is provided, and an insulating layer 31 is formed on the substrate 30.
  • the substrate 30 may be a glass substrate, a flexible substrate, or a semiconductor silicon substrate.
  • a driving layer such as a pixel driving circuit, a data driving circuit, or a scanning driving circuit, may also be formed on the substrate 30 and between the insulating layer 31.
  • a via hole may also be formed in the insulating layer 31 to transmit the signal of the pixel driving circuit to the lower electrode formed subsequently.
  • step 2 is performed to form a plurality of lower electrodes 32 spaced apart on the insulating layer 31, and the insulating layer 31 is exposed between adjacent lower electrodes 32; the lower electrode 32 is close to the bottom surface S1 of the substrate 30
  • the included angle with the side surface S2 of the lower electrode 32 is less than 90 degrees.
  • the lower electrode 32 may be a multilayer structure, for example, including a first electrode layer and a second electrode layer formed on the insulating layer 31 in sequence.
  • the first electrode layer is a reflective electrode layer, and the material may be Ag, Au, Mo, and Al. Contour reflective metal is preferably Al;
  • the second electrode layer is an optical adjustment layer, and the material can be ITO, IZO, etc.
  • the first electrode layer functions to reflect the light emitted by the organic light emitting layer
  • the second electrode layer functions to adjust and enhance the intensity of light corresponding to the desired color.
  • the bottom surface S1 of the bottom electrode 32 close to the substrate 30 and the side surface S2 of the bottom electrode 32 are between 60 degrees and 30 degrees.
  • the lower electrode 32 may be an anode or a cathode.
  • step 3 forming an organic film layer 33 on the lower electrode 32, the organic film layer 33 contacts and covers the plurality of lower electrodes 32, and the insulating layer 31 is exposed between the lower electrodes 32; the organic film layer 33 It includes at least one first film layer 331, and the first film layer 331 is connected to each other among a plurality of pixel units.
  • the method for forming the first film layer 331 is to use an open mask to vaporize and deposit organic materials into a film.
  • the shielding area in the open mask corresponds to the non-display area around the substrate 30, and the transparent area corresponds to the insulating layer 31 exposed between the lower electrode 32 and the lower electrode 32, so the first film layer 331 will form contact and cover the lower electrode 32 and the lower electrode 32.
  • the organic film layer 33 is a multilayer film structure, such as a hole injection layer, a hole transport layer, an electron blocking layer, an organic light emitting layer, a hole blocking layer, an electron transport layer, etc., for example, the organic light emitting display device is a plurality of OLEDs In the tandem structure, adjacent OLED cells are also provided with a charge generation layer.
  • the first film layer 331 may be a hole transport layer, a hole injection layer or a charge generation layer.
  • step 4 forming an upper electrode 34 on the multilayer organic light-emitting layer 33, and the upper electrodes 34 of a plurality of pixel units are connected to each other to form a film structure on the entire surface.
  • the upper electrode 34 may be an anode or a cathode.
  • the upper electrode 34 is a cathode; when the lower electrode 32 is a cathode, the upper electrode 34 is an anode.
  • the upper electrode 34 formed thereon adheres to the shape of the organic film layer 33 and can also form a continuous and uniform film surface, ensuring that the upper electrode signal can be Transmission within the pixel unit.
  • step 5 is performed: forming a first thin film encapsulation layer 35 on the upper electrode 34.
  • the first thin-film encapsulation layer 35 can be a single-layer structure or a multi-layer structure, and the material of each layer can be an inorganic material or an organic material, preferably an inorganic material layer, an organic material layer, and an inorganic material layer.
  • the function of the first thin-film encapsulation layer 35 is to isolate the organic film layer from external water vapor and oxygen, thereby improving the reliability of the organic display panel.
  • the method for forming the first thin-film encapsulation layer 35 may be ALD (atomic layer deposition), CVD (chemical vapor deposition, chemical vapor deposition), or PVD (Physical Vapor Deposition, physical vapor deposition).
  • the function of the first film encapsulation layer 35 is to prevent external moisture and oxygen from damaging the organic film layer. Since the photoresist is to be formed on the organic film layer 33 and cleaned and removed later, it is all carried out in an environment with water vapor and oxygen. Therefore, the present invention provides that the first thin film encapsulation layer 35 is formed first to protect the organic film layer 33. , And then proceed to the subsequent ion implantation process. Since the ions of the subsequent ion implantation process have to penetrate the first thin film encapsulation layer 35, in order to reduce the energy of ion penetration, preferably, the thickness of the first thin film encapsulation layer 35 is less than 10 micrometers. Preferably, the first thin film encapsulation layer 35 The thickness of layer 35 is less than 1 micron.
  • step 6 is performed: a patterned photoresist layer 36 is formed on the first thin film encapsulation layer 35, and the photoresist layer 36 covers and exposes the first thin film encapsulation layer 35 in the region A where the lower electrode 32 is located The first thin-film encapsulation layer 35 of the spacer area B.
  • step 7 is performed: ion implanting at least one first film layer 331 in the organic film layer using the patterned photoresist layer 36 as a mask.
  • step 7 the substrate after step 6 is put into the ion implantation equipment, and the ions generated by the ion source are accelerated and projected to the surface of the first film layer 331 at a high speed.
  • the first film layer 331 is shielded by the photoresist layer 36, and the first film layer 331 corresponding to the spacer region B is not shielded by the photoresist layer 36, and ions will enter the first film layer 331 corresponding to the spacer region B.
  • the ions When the ions enter the surface of the first film layer 331 corresponding to the spacer region B, they collide with the atoms in the first film layer 331 of the spacer region B, physically destroying the original organic molecular structure in the first film layer 331.
  • the ion implantation process uses chemically active elements, such as O or F atoms, which will also chemically react with the organic materials in the first film layer 331 to chemically destroy the materials in the first film layer 331.
  • the carrier mobility of the first film layer 331 in the spacer region B is lower than that of the first film layer in the region A corresponding to the lower electrode 32
  • the carrier mobility of 331 can prevent or reduce the leakage of carriers between adjacent pixel units through the layer, and avoid light leakage between adjacent pixel units.
  • atoms with lighter atomic weight are selected, preferably atoms with a molecular weight less than or equal to Ar, preferably H, He, B, C, N, O, F, Si, P, S, Cl or Ar atoms, etc. , Can reduce the energy of ion implantation.
  • the concentration of ion implantation is 1 ⁇ 10 13 to 1 ⁇ 10 16 atoms/per square centimeter.
  • the organic light emitting display device includes a plurality of first film layers, and step 7 may be repeated multiple times to perform ion implantation on the plurality of first film layers.
  • the ion implantation process may be performed according to the organic film layer where the first film layer 331 is located. In the layer position, thickness, film material and other properties and the atoms used, different injection energies are selected, generally between 10 and 1000 kiloelectron volts.
  • the first film layer 331 contains a kind of first atom, and the concentration of the first atom in the corresponding interval region B is greater than the concentration of the first atom in the region A corresponding to the power down 32. Moreover, in the spacer region B corresponding to the first film layer 331, the concentration of the first atoms decreases from a direction away from the substrate 30 to a direction closer to the substrate 30.
  • a gas containing O atoms is used to ion implant the first film layer 331 in the spacer region B.
  • the organic material of the first film layer 331 originally contains O atoms
  • the first film layer 331 in the spacer region B The content of O atoms in one layer 331 is greater than the content of O atoms in the region A corresponding to the lower electrode 32.
  • the energy of the injected atoms decreases in the first film layer 331.
  • the number of atoms reaching below the first film layer 331 is less than the number of atoms reaching above the first film layer 331, so from the direction away from the substrate 30 to the direction close to the substrate 30 , The concentration of the first atom will decrease.
  • the appearance of the first film layer 331 after the ion implantation process has not changed, but the first atom concentration in the interval region B can be detected and compared with the atom concentration in the region A, or the first film layer in the interval region B can be detected 331 From the direction away from the substrate 30 to the direction close to the substrate 30, the change of the concentration of the first atoms can confirm whether the ion implantation process is performed on the first film layer.
  • step 8 and step 9 may be included after step 7.
  • step 8 the photoresist layer 36 after step 7 is removed.
  • the photoresist layer 36 may be removed using a dry etching process or a wet etching process.
  • the photoresist layer 36 is removed using a dry etching process and then a wet etching process.
  • the photoresist layer 36 is dry-etched using oxygen plasma gas, and the organic matter and oxygen in the photoresist layer 36 react to generate CO 2 , SO 2 , H 2 O and other substances that are volatilized and removed; because the photoresist layer 36 After ion implantation receives a lot of energy, it will be heated and hardened, resulting in molecular chain cross-linking, which cannot be removed by the dry etching process, and then the wet etching process is used to dissolve and remove the residual organic matter. By using the dry etching process and then the wet etching process, the photoresist layer 36 can be removed cleanly without residue.
  • the first thin-film encapsulation layer 35 is baked at a temperature of less than 150 degrees Celsius to volatilize the residual solvent and gas.
  • Step 9 forming a second thin film packaging layer on the 36 first thin film packaging layer.
  • the first thin film package 36 is implanted with ions in the ion implantation process, and has been in contact with water vapor and oxygen in the photoresist forming process and the photoresist layer removal process, and its packaging ability has been weakened.
  • the organic film layer Protect form a second thin-film encapsulation layer on the 24 layers of the first thin-film encapsulation.
  • the second film encapsulation layer can be a single-layer structure or a multi-layer structure, and the material of each layer can be an inorganic material or an organic material, and preferably an inorganic material layer, an organic material layer, and an inorganic material layer are overlapped
  • the method for forming the second thin-film encapsulation layer may be ALD (atomic layer deposition), CVD (chemical vapor deposition, chemical vapor deposition), or PVD (Physical Vapor Deposition, physical vapor deposition).
  • the above-mentioned organic light-emitting display device and its forming method provided by the present invention are not provided with a pixel definition layer, which can greatly reduce the area of the non-light-emitting area between pixel units, and can reduce the interval between pixel units to Between 0.1 and 2 microns;
  • the bottom electrode is set to a structure where the angle between the bottom surface and the side surface is less than 90 degrees, which can ensure that the organic film layer formed above the bottom electrode and the organic film layer are formed
  • the upper electrode can be uniformly and continuously formed into a film, which prevents the upper electrode from being disconnected between the pixel units, and ensures the transmission of the upper electrode signal between the pixel units.
  • the material of the reflective electrode layer of the bottom electrode is Al, and Al reacts with water and oxygen in the organic film layer to generate aluminum oxide, which has stable chemical properties and can protect the bottom electrode.
  • the organic light-emitting display device provided by the present invention is a silicon-based miniature organic light-emitting display device.
  • the silicon-based micro organic light-emitting display device provided by the present invention is not provided with a pixel definition layer, which reduces the width of the pixel unit interval, can reduce the "screen window effect", and provides a better near-eye viewing experience.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种有机发光显示装置,包括基板,设置在所述基板上并间隔排列的多个像素单元,每个所述像素单元包括设置于所述基板上的下电极;设置在所述下电极上的有机膜层,所述有机膜层中包含至少一个第一膜层,所述多个像素单元的所述第一膜层相互连接;设置在所述有机膜层上的上电极,所述多个显示单元的所述上电极相互连接;设置在所述上电极上的薄膜封装层;所述第一膜层内含有第一原子,并且在所述第一膜层内,对应所述间隔区域内的第一原子的浓度大于对应所述下电极区域内原子浓度。本发明提供上述有机发光显示装置的形成方法。本发明提供的有机发光显示装置及其形成方法,利用离子注入工艺可以降低作为公共膜层的第一膜层发生漏流的风险。

Description

一种有机发光显示装置及其形成方法 技术领域
本发明涉及显示技术领域,尤其涉及一种有机发光显示装置,还涉及一种有机发光显示装置的形成方法。
背景技术
有机发光显示装置(Organic Light-Emitting Display)的工作原理是在阳极和阴极之间加载一定的电压驱动有机发光层发光进而进行显示。有机发光显示装置包括多个像素单元,每个像素单元的阳极是通过位于其下的像素电路单独控制的,各像素单元的阴极是连接在一起的。阳极和阴极之间的有机发光层是使用开放式掩膜板(Open mask)将有机材料蒸镀形成的,各像素单元的有机发光层也是连接在一起的,如图1。图1示出了两个像素单元U1和U2,每个像素单元包括设置于基板10上的阳极11,设置于阳极11上层并位于各像素单元U1、U2之间的像素定义层12,该像素定义层12由于刻蚀工艺而形成缓坡状的形态。形成在像素定义层12上的空穴注入层13、空穴传输层14、电子阻挡层15,该空穴注入层13、空穴传输层14、电子阻挡层15都是在各像素单元区域间为相连的连接结构。设置在各像素单元区域内的有机发光层19,设置在有机发光层19上的空穴阻挡层16,设置在空穴阻挡层16上的电子传输层17,设置在电子传输层17上的阴极18,阴极18在各像素单元区域间为相连的连接结构。在图1所示的有机发光显示装置结构下,会发生像素单元U1和U2之间的显示串扰,即当像素单元U1有显示信号时,部分显示电流被传输到了像素单元U2处,主要是因为该有机发光层中具有高载流子迁移率的膜层中的电流泄漏到相邻的像素单元,使得像素单元U2不能显示预定的像素灰阶,这使得有机发光显示装置 的显示效果大受影响。
现有技术中的一些解决方案,如CN107863365、US9502480、CN103779470等,改变像素定义层的结构,将像素定义层设置为其底面和侧面为等于或者大于90度倒角,利用有机发光层覆盖性差的特点,让有机发光层成膜时在倒角处断开。还有CN103311268、CN103891408等提供的方案是将阳极设置为其底面和侧面为等于或者大于90度倒角,让有机发光层成膜时在阳极的倒角处断开。但以上方案的制程难度大,膜层厚度和倒角的设置要求精度很高,否则容易出现因倒角较小,有机膜层并未断开,仍然出现串扰现象;或者,因倒角角度过大,不但有机发光膜层断开,位于其上的阴极层也断开了,造成阴极电位无法传输,有机发光显示装置无法工作。在上述方案的基础上,有的改进方案为了保证阴极电位的传递,会在相邻的像素单元之间设置信号连接结构,将阴极和位于有机膜层下方的阴极信号衬垫连接,但这样会占用开口率。
发明内容
本发明提供一种有机发光显示装置,包括基板,设置在所述基板上并间隔排列的像素单元,每个所述像素单元包括设置于所述基板上的下电极;设置在所述下电极上的有机膜层,所述有机膜层中包含至少一个第一膜层,所述多个像素单元的所述第一膜层相互连接;设置在所述有机膜层上的上电极,所述多个显示单元的所述上电极相互连接;设置在所述上电极上的薄膜封装层;所述第一膜层内含有第一原子,并且在所述第一膜层内,对应所述间隔区域内的第一原子的浓度大于对应所述下电极区域内原子浓度。
本发明还一种有机发光显示装置的形成方法,包括:
步骤1:提供一基板;
步骤2:在所述基板上形成多个间隔排列的下电极;
步骤3:在所述下电极上形成有机膜层,所述有机膜层在多个像素单元 之间相互连接;所述多层有机膜层中包含至少一个第一膜层;
步骤4:在所述有机膜层上形成上电极,所述多个像素单元的所述上电极相互连接;
步骤5:在所述上电极上形成第一薄膜封装层;
步骤6:在所述第一薄膜封装层上形成图案化的光刻胶层,所述光刻胶层覆盖所述下电极所在区域的第一薄膜封装层并暴露间隔区域的第一薄膜封装层;
步骤7:以所述光刻胶层为掩膜对所述至少一个第一膜层进行离子注入。
本发明提供的上述有机发光显示装置及其形成方法,通过对载流子迁移率高的公共有机膜层进行离子注入,可降低其在间隔区域的膜层的载流子迁移率,从而避免或者降低经该层发生相邻像素单元间的载流子的泄漏,避免相邻像素单元间的漏光串扰不良。
本发明再提供一种有机发光显示装置,包括:基板,设置在所述基板上的绝缘层,设置在所述绝缘层上并间隔排列的多个像素单元,每个所述像素单元包括设置于所述绝缘层上的下电极,在相邻的所述下电极之间暴露出所述绝缘层;所述下电极靠近所述基板的底面和所述下电极的侧面的夹角小于90度;设置在所述下电极上的有机膜层,所述有机膜层接触并覆盖所述多个像素单元的下电极以及所述下电极之间暴露出所述绝缘层;所述有机膜层中包含至少一个第一膜层,所述多个像素单元的所述第一膜层相互连接;设置在所述有机膜层上的上电极,所述多个像素单元的所述上电极相互连接;设置在所述上电极上的薄膜封装层;在所述第一膜层内,对应所述间隔区域内的载流子迁移率小于对应所述下电极区域内载流子迁移率。
本发明又提供一种有机发光显示装置,包括:基板,设置在所述基板上的绝缘层,设置在所述绝缘层上并间隔排列的多个像素单元,每个所述像素单元包括设置于所述绝缘层上的下电极,在相邻的所述下电极之间暴露出所述绝缘层;所述下电极靠近所述基板的底面和所述下电极的侧面的夹角小于 90度;设置在所述下电极上的有机膜层,所述有机膜层接触并覆盖所述多个像素单元的下电极以及所述下电极之间暴露出所述绝缘层;所述有机膜层中包含至少一个第一膜层,所述多个像素单元的所述第一膜层相互连接;设置在所述有机膜层上的上电极,所述多个像素单元的所述上电极相互连接;设置在所述上电极上的薄膜封装层;所述第一膜层内含有第一原子,并且在所述第一膜层内,对应所述间隔区域内的第一原子的浓度大于对应所述下电极区域内第一原子的浓度。
本发明又提供一种有机发光显示装置的形成方法,包括:
步骤1:提供一基板,在所述基板上形成一绝缘层;
步骤2:在所述绝缘层上形成多个间隔排列的下电极,相邻的所述下电极之间暴露出所述绝缘层;所述下电极靠近所述基板的底面和所述下电极的侧面的夹角小于90度;
步骤3:在所述下电极上形成有机膜层,所述有机膜层接触并覆盖所述多个下电极以及所述下电极之间暴露出所述绝缘层;所述有机膜层中包含至少一个第一膜层,所述第一膜层在多个像素单元之间相互连接;
步骤4:在所述有机发光层上形成上电极,所述多个像素单元的所述上电极相互连接;
步骤5:在所述上电极上形成第一薄膜封装层;
步骤6:在所述第一薄膜封装层上形成图案化的光刻胶层,所述光刻胶层覆盖所述下电极所在区域的第一薄膜封装层并暴露间隔区域的第一薄膜封装层;
步骤7:以所述光刻胶层为掩膜对所述有机膜层中所述至少一个第一膜层进行离子注入。
本发明提供的上述有机发光显示装置及其形成方法,和现有技术相比,未设置像素定义层,可大大降低像素单元之间的非发光区域面积;本发明提供的有机发光显示装置将下电极设置为底面和侧面的夹角小于90度的结构, 可以保证形成于下电极上方的有机膜层以及形成于有机膜层上方的上电极都能均匀而连续的成膜,避免了上电极在像素单元之间断开,保证了上电极信号在各像素单元之间的传输。下电极的反射电极层的材料为Al,Al和有机膜层中水氧反应生成氧化铝,氧化铝的化学性质稳定,可以保护下电极。本发明提供的有机发光显示装置为硅基微型有机发光显示装置,未设置像素定义层,减小了像素单元间隔的宽度,可以降低“纱窗效应”,提供更好的近眼观看感受。
附图说明
图1为现有技术中一种有机发光显示装置的示意图;
图2为本发明实施例一提供的有机发光显示装置的俯视结构示意图;
图3为沿图2中XX'截面的示意图;
图4为本发明实施例二提供的有机发光显示装置形成方法流程示意图;
图5至图11为不同工艺步骤中有机发光显示装置的膜层结构示意图;
图12为本发明实施例三提供的有机发光显示装置的俯视结构示意图;
图13为图12中XX'截面的示意图;
图14为本发明实施例四提供的有机发光显示装置的截面结构示意图;
图15为本发明实施例五提供的有机发光显示装置的形成方法的示意图;
图16至图22为不同工艺步骤中有机发光显示装置的膜层结构示意图。
具体实施方式
下面结合附图和实施方式对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施方式仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。贯穿本说明书中,相同或相似的附图标号代表相同或相似的结构、元件或流程。需要说明的是,在不冲突的情况下,本申请中的实施方式 及实施方式中的特征可以相互组合。
实施例一
图2为本发明实施例一提供的有机发光显示装置的俯视结构示意图,图3为图2中沿XX'截面的示意图。请参考图2和图3,如图所示,本发明实施方式提供的有机发光显示装置包括:基板20,基板20包括显示区域201和围绕显示区域201的周边区域202。在显示区域201中设置有多个间隔排列的像素单元203,在周边区域202还可以设置有柔性电路板204,用于传递驱动信号。
在基板20的显示区域201内设置的多个间隔排列的像素单元202中,每个像素单元202包括设置于基板20上的下电极21,在相邻的下电极21之间为间隔区域B。基板20上还包括驱动层(未示出),驱动层包括多个驱动结构,每个驱动结构对应一个像素单元202,以向下电极21提供驱动信号。在下电极21的上层还可以设置有像素定义层(未示出),像素定义层用于限定每个像素单元的位置。
有机发光显示装置的下电极21上设置有有机膜层22。有机膜层22为多层膜层结构,包括如空穴注入层、空穴传输层、电子阻挡层、有机发光层、空穴阻挡层、电子传输层等,如有机发光显示装置为多个OLED单元串联结构(tandem结构),在相邻的OLED单元还设置有电荷生成层。有机膜层22中包括至少一个第一膜层221,多个像素单元202的第一膜层221是相互连接的,也就是对于有机发光显示装置的多个像素单元202来说,第一膜层221为公共膜层。在有机膜层22的上层还设置有上电极23,多个像素单元202的上电极23相互连接形成层面结构。
可选地,下电极21可以为阳极也可以为阴极,上电极23可以为阳极也可以为阴极。当下电极21为阳极时,上电极23为阴极;当下电极21为阴极时,上电极23为阳极。
上述第一膜层221内含有一种第一原子,并且在间隔区域B内的第一原子的浓度大于对应下电极区域A内第一原子浓度。该第一膜层221可以为空穴传输层、空穴注入层或者电荷生成层。空穴传输层、空穴注入层或者电荷生成层为载流子迁移性能高的膜层。在空穴传输层、空穴注入层或者电荷生成层中的一层或者空穴传输层、空穴注入层和电荷生成层的各层中,在间隔区域B内通过离子注入的方式注入第一原子,可降低间隔区域B内第一膜层221的载流子迁移率,从而避免或者降低经该膜层发生相邻像素单元间的载流子的泄漏,避免相邻像素单元间的漏光串扰不良。
优选地,在间隔区域B对应的第一膜层221内,从远离基板20的方向至靠近基板20的方向,该第一原子的浓度递减。
优选地,该第一原子的原子量小于或等于Ar原子的原子量。进一步优选地,第一原子为H、He、B、C、N、O、F、Si、P、S、Cl或Ar原子。
可选地,本发明提供的有机发光显示装置为硅基微型有机发光显示装置。硅基微型有机发光显示装置是以单晶硅片为基底,运用IC制程技术形成显示驱动电路,可提供更高的分辨率,而面积可只有硬币大小,可用于AR(Augmented Reality,增强现实技术)和VR(Virtual Reality,虚拟现实)这类微型显示技术。
可选地,本发明提供的有机发光显示装置的像素单元之间的间隔为0.1~2微米。本发明提供的有机发光显示装置,通过可降低间隔区域B内第一膜层221的载流子迁移率从而避免或者降低经该膜层发生相邻像素单元间的载流子的泄漏,相比于现有技术通过设置像素定义层为倒角的手段,本发明提供的有机发光显示装置可以不设置像素定义层,从而相邻像素单元之间的间距大大降低,最小可到0.1微米。
实施例二
本发明实施方式还提供上述有机发光显示装置的形成方法,图4为所述 形成方法的工艺流程示意图,图5至图11为不同工艺步骤中有机发光显示装置的膜层结构示意图。
首先参考图4和图5,在有机发光显示装置的形成方法的步骤1中,提供一提供基板20。
该基板20可以为玻璃基板、柔性基板或者半导体硅基板等,在基板20之上还形成有驱动层,比如像素驱动电路、数据驱动电路或者扫描驱动电路等。
参考图5和图6,执行步骤2,在基板20上形成多个间隔排列的下电极21。每个下电极21连接至对应的一个驱动层的驱动结构,如像素驱动电路的下电极信号输出端,将下电极信号输出至对应的下电极21。
下电极21可以为多层结构,比如包括依次形成于所述基板20上的第一电极层和第二电极层,第一电极层为反射电极层,材料可以为Ag、Au、Mo及Al等高反射金属;第二电极层为光学调节层,材料可以为ITO、IZO等。在微腔有机发光显示结构中,第一电极层的作用是反射有机发光层发出的光线,第二电极层的作用是调节并增强所期望颜色对应的光的强度。
可选地,该下电极21可以为阳极也可以为阴极。
可选地,在形成下电极21后,还可以在下电极21的上层形成像素定义层,像素定义层位于相邻下电极21的间隔区域,还覆盖下电极21的边缘部分。优选地,在本发明中,像素定义层为缓坡结构,易于随后的有机膜层形成平缓均匀而连续的结构。
参考图5和图7,执行步骤3:在下电极21上形成有机膜层22,该有机膜层22中包含至少一个第一膜层221,该第一膜层221在多个像素单元之间相互连接。
形成第一膜层221的方法为使用开放式掩膜板(Open mask)对有机材料进行蒸镀成膜。Open mask中的遮挡区域对应基板20的周边非显示区域202,透过区域对应显示区域201的下电极22和及下电极22之间的间隔区域 B,因此形成的第一膜层221在多个像素单元之间是相互连接的,也就是对于有机发光显示装置的多个像素单元来说,第一膜层221为公共膜层。
有机膜层22为多层膜层结构,如包括空穴注入层、空穴传输层、电子阻挡层、有机发光层、空穴阻挡层、电子传输层等,如有机发光显示装置为多个OLED单元串联结构(tandem结构),在相邻的OLED单元还设置有电荷生成层。该第一膜层221可以为空穴传输层、空穴注入层或者电荷生成层。空穴传输层、空穴注入层或者电荷生成层为载流子迁移性能高的膜层。
参考图5和图8,执行步骤4:在该有机膜层22上形成上电极23,多个像素单元的上电极23相互连接,形成整面的膜层结构。
可选地,该上电极23可以为阳极也可以为阴极。当下电极21为阳极时,上电极23为阴极;当下电极21为阴极时,上电极23为阳极。
因为位于上电极23下层的有机膜层22成膜均匀连续,因此在其上形成的上电极23依附有机膜层22的形状,也可以形成连续均匀的膜面,保证了上电极信号可以在各个像素单元内传输。
参考图5和图9,执行步骤5:在上电极23上形成第一薄膜封装层24。
该第一薄膜封装层24可以为单层结构也可以为多层结构,其每层的材料可以为无机材料也可以为有机材料,较优的为无机材料层、有机材料层、无机材料层交叠的结构,第一薄膜封装层24的作用是将有机膜层22和外界的水汽、氧气隔绝开,提高有机显示面板的可靠性。第一薄膜封装层24形成方法可以为ALD(atomic layer deposition,原子层沉积)、CVD(chemical vapor deposition,化学气相沉积)或者PVD(Physical Vapor Deposition,物理气相沉积)等方式。
因为后续要在有机膜层22上形成光刻胶并且还要清洗去除,都是在有水汽、氧气的环境下进行的,因此本发明设置先形成第一薄膜封装层24以保护有机膜层22,再进行后续的离子注入工艺。因后续离子注入工艺的离子要穿透该第一薄膜封装层24,为降低离子穿透的能量,优选地,该第一薄膜封 装层24的厚度小于10微米,更为优选地,该第一薄膜封装层24的厚度小于1微米。
参考图5和图10,执行步骤6:在第一薄膜封装层24上形成图案化的光刻胶层25,光刻胶层25覆盖下电极21所在区域A的第一薄膜封装层24并暴露间隔区域B的第一薄膜封装层24。
参考图5和图11,执行步骤7:以该图案化的光刻胶层25为掩膜对该至少一个第一膜层221进行离子注入。
步骤7的离子注入工艺中,将完成步骤6后的基板放入离子注入设备中,离子源产生的离子经加速后高速射向第一膜层221材料的表面,因下电极21所在区域A的第一膜层221有光刻胶层25遮挡,间隔区域B对应的第一膜层221无光刻胶层25遮挡,离子会进入间隔区域B对应的第一膜层221。
当离子进入间隔区域B对应的第一膜层221表面时,与间隔区域B的第一膜层221中的原子碰撞,将第一膜层221中原有的有机分子结构进行了物理破坏,当在离子注入工艺中使用化学性质活泼的元素,比如O或F原子,其还会和第一膜层221中的有机材料发生化学反应,对第一膜层221中的材料进行化学破坏。因为间隔区域B的第一膜层221的有机材料经过离子注入工艺后被破坏掉了,间隔区域B的第一膜层221的载流子迁移率小于下电极21对应区域A的第一膜层221的载流子迁移率,可避免或者降低经该第一膜层221发生相邻像素单元间的载流子的泄漏,避免相邻像素单元间的漏光。
离子注入工艺中选用原子量较轻的原子,优选的分子量小于或等于Ar的原子的分子量,优选地可选用H、He、B、C、N、O、F、Si、P、S、Cl或Ar原子等,可降低离子注入的能量。优选地,离子注入的浓度为1×10 13~1×10 16个原子/每平方厘米。
可选地,有机发光显示装置中包括多个第一膜层,可多次重复步骤7,对多个第一膜层分别进行离子注入工艺,比如要对OLED器件中的空穴传输层、空穴注入层和电荷生成层都要进行离子注入,以降低间隔区域各上述膜 层的载流子迁移率,可根据不同第一膜层所在的有机膜层中的层位置、厚度、膜层材料不同等性质以及所使用的原子,选用不同注入能量,一般在10~1000千电子伏特之间。
经过步骤7后,第一膜层221内含有一种第一原子,对应间隔区域B内的第一原子的浓度大于对应下电21区域A内的第一原子浓度。并且,在间隔区域B对应第一膜层221内,从远离基板20的方向至靠近基板20的方向,第一原子的浓度递减。比如使用含有O原子的气体对间隔区域B内的第一膜层221进行离子注入,虽第一膜层221的有机材料中原本也含有O原子,但是经过离子注入工艺后,间隔区域B的第一膜层221中的O原子含量会大于下电极21对应区域A内的O原子含量。被注入的原子在第一膜层221中能量会递减,到达第一膜层221下方的原子比到达第一膜层221上方的原子数量少,因此从远离基板20的方向至靠近基板20的方向,第一原子的浓度会递减。在经过离子注入工艺后的第一膜层221其外观未发生变化,但是可检测比较间隔区域B内的第一原子的浓度和区域A内原子浓度,或者检测间隔区域B内的第一膜层221从远离基板20的方向至靠近基板20的方向,第一原子的浓度的变化情况,可确认是否对第一膜层进行了离子注入工艺。
进一步地,在步骤7后还可以包括步骤8和步骤9。
步骤8,去除步骤7后的光刻胶层25。可使用干刻工艺或者湿刻工艺去除光刻胶层25。优选地,先使用干刻工艺再使用湿刻工艺去除光刻胶层25。优选地,使用氧气等离子气体对光刻胶层25进行干刻,光刻胶层25中的有机物和氧反应生成CO 2、SO 2和H 2O等物质挥发去除掉;因光刻胶层25进行离子注入接受了很多能量被加热变硬,产生分子链交联,干刻工艺无法去除干净,再使用湿法刻蚀工艺,溶解去除残余的有机物。先使用干刻工艺再使用湿刻工艺的方式,可将光刻胶层25去除干净无残余。
优选地,在去除光刻胶25后,再对第一薄膜封装层24进行烘烤,烘烤温度小于150摄氏度,以挥发残余溶剂和气体。
步骤9,在第一薄膜封装24层上形成第二薄膜封装层。第一薄膜封装24在离子注入工艺中注入了离子,在形成光刻胶工艺、去除光刻胶层工艺和水汽、氧气有过接触,其封装能力有所减弱,为了进一步加强对有机膜层的保护,在第一薄膜封装24层上形成第二薄膜封装层。该第二薄膜封装层可以为单层结构也可以为多层结构,其每层的材料可以为无机材料也可以为有机材料,较优的为无机材料层、有机材料层、无机材料层交叠的结构,第二薄膜封装层形成方法可以为ALD(atomic layer deposition,原子层沉积)、CVD(chemical vapor deposition,化学气相沉积)或者PVD(Physical Vapor Deposition,物理气相沉积)等方式。
本发明上述实施例提供的有机发光显示装置及其形成方法,通过对载流子迁移率高的有机膜层进行离子注入,可降低其在间隔区域的膜层的载流子迁移率,从而避免或者降低经该层发生相邻像素单元间的载流子的泄漏,避免相邻像素单元间的漏光串扰不良。
实施例三
图12为本发明实施例三提供的有机发光显示装置的俯视结构示意图,图13为图12中沿XX'截面的示意图。请参考图12和图13,如图所示,本发明实施提供的有机发光显示装置包括:基板20,基板20包括显示区域201和围绕显示区域201的周边区域202。在显示区域201设置有多个间隔排列的像素单元22,在周边区域202还可以设置有柔性电路板203,用于传递驱动信号。
在基板20上设置有绝缘层21,显示区域201上的像素单元22是设置在该绝缘层21上的,每个像素单元22包括设置于绝缘层21上的下电极23,在相邻的下电极23之间的间隔区域B暴露出绝缘层21。下电极23靠近基板20的底面S1和下电极13的侧面S2的夹角θ小于90度,优选为60度到30度之间。
有机发光显示装置的下电极23上设置有有机膜层24,有机膜层24接触并覆盖多个像素单元22的下电极23,有机膜层24还接触并覆盖在相邻的下电极23之间暴露出绝缘层21。在有机膜层24的上层还设置有上电极25,多个像素单元22的上电极25为相互连接形成层面结构。因为下电极23的结构为靠近基板20的底面S1和下电极13的侧面S2的夹角θ小于90度,即下电极23为缓坡结构,当有机膜层24在下电极23上成膜时会形成均匀而连续的膜面,当上电极25在有机膜层24上成膜时会依附有机膜层24的结构也形成均匀而连续的膜面,保证了上电极信号在各像素单元之间的传输。在上电极25的上层设置有覆盖上电极25的薄膜封装层26。
可选地,下电极23可以为阳极也可以为阴极,上电极25可以为阳极也可以为阴极。当下电极23为阳极时,上电极25为阴极;当下电极23为阴极时,上电极25为阳极。
有机膜层24为多层膜层结构,如空穴注入层、空穴传输层、电子阻挡层,该空穴注入层、空穴传输层、电子阻挡层、有机发光层、空穴阻挡层、电子传输层等,如有机发光显示装置为多个OLED单元串联结构(tandem结构),在相邻的OLED单元还设置有电荷生成层。
有机膜层24中包含至少一个第一膜层241,多个像素单元22的第一膜层241是相互连接的,即对于多个像素单元22来说,第一膜层241是公共层。在该第一膜层241内,对应间隔区域B内的载流子迁移率小于对应下电极23的区域A内载流子迁移率。
第一膜层241可以为空穴传输层、空穴注入层或者电荷生成层。空穴传输层、空穴注入层或者电荷生成层为载流子迁移性能高的膜层。在空穴传输层、空穴注入层或者电荷生成层中的一层或者空穴传输层、空穴注入层和电荷生成层的各层中,设置间隔区域B内的载流子迁移率小于对应下电极23区域A内载流子迁移率,会避免或者降低经该层发生相邻像素单元间的载流子的漏流,避免相邻像素单元间的漏光。
可选地,像素单元22之间的间隔为0.1~2微米。
和现有技术相比,本发明提供的有机发光显示装置未设置像素定义层。可参考图1,在现有技术中,像素定义层12设置在相邻的阳极11之间,用于定义每个像素单元的位置,并且形成缓坡结构,使形成与其上的有机膜层可以均匀成膜。现有技术中,还有用像素定义层形成倒角使位于其上的有机膜层断开以防止。但是像素定义层12会占用较大的开口率,一般来说像素定义层12的宽度在2~5微米之间。本发明提供的有机发光显示装置因未设置像素定义层,可大大降低像素单元之间的非发光区域面积,可将像素单元22之间的间隔降低到0.1~2微米之间;本发明提供的有机发光显示装置将下电极设置为底面和侧面的夹角小于90度的结构,可以保证形成于下电极上方的有机膜层以及形成于有机膜层上方的上电极都能均匀而连续的成膜,避免了上电极在像素单元之间断开,保证了上电极信号在各像素单元之间的传输。
可选地,下电极23包括一反射电极层,该反射电极层的材料为Al。下电极23和有机膜层24直接接触,使用Al作为下电极23中的反射电极层材料,Al和有机膜层24中水氧反应生成氧化铝,氧化铝的化学性质稳定,可以保护下电极23。
可选地,本发明提供的有机发光显示装置为硅基微型有机发光显示装置。硅基微型有机发光显示装置是以单晶硅片为基底,运用IC制程技术形成显示驱动电路,可提供更高的分辨率,而面积可只有硬币大小,可用于AR(Augmented Reality,增强现实技术)和VR(Virtual Reality,虚拟现实)这类微型显示技术。因微显示技术中像素尺寸极小,需要借助光学模组在近眼显示,像素单元之间如果间隔较大,会造成“纱窗效应”。像素单元是小而单独点亮的元素,而像素单元之间的间隔区域是不发光的,使用者容易感知像素单元之间的不亮空间,像隔着纱窗观看画面一般。本发明提供的硅基微型有机发光显示装置,未设置像素定义层,减小了像素单元间隔的宽度,可以降低“纱窗效应”,提供更好的近眼观看感受。
实施例四
图14为本发明实施例四提供的有机发光显示装置的截面结构示意图,和实施例三相同部分不再赘述,和实施例三不同之处在于,在有机膜层34中包含至少一个第一膜层341,第一膜层341内含有一种第一原子,并且在对应间隔区域B内的第一原子的浓度大于对应下电323区域内第一原子的浓度。
优选地,在间隔区域B对应的第一膜层341内,从远离基板30的方向至靠近基板30的方向,该第一原子的浓度递减。
优选地,该第一原子的原子量小于或等于Ar原子的原子量。进一步优选地,第一原子为H、He、B、C、N、O、F、Si、P、S、Cl或Ar原子。
实施四还提供上述有机发光显示装置的形成方法,图15为所述形成方法的工艺步骤的示意图,图16至图22为不同工艺步骤中有机发光显示装置的膜层结构示意图。
首先参考图15和图16,在有机发光显示装置的形成方法的步骤1中,提供一提供基板30,该在基板30上形成一绝缘层31。
该基板30可以为玻璃基板、柔性基板或者半导体硅基板等,在基板30之上和绝缘层31之间还可以形成有驱动层,比如像素驱动电路、数据驱动电路或者扫描驱动电路等。在绝缘层31内还可以形成过孔,将像素驱动电路的信号传输至后续形成的下电极。
参考图15和图17,执行步骤2,在绝缘层31上形成多个间隔排列的下电极32,相邻的下电极32之间暴露出该绝缘层31;下电极32靠近基板30的底面S1和下电极32的侧面S2的夹角小于90度。
下电极32可以为多层结构,比如包括依次形成与所述绝缘层31上的第一电极层和第二电极层,第一电极层为反射电极层,材料可以为Ag、Au、Mo及Al等高反射金属,优选为Al;第二电极层为光学调节层,材料可以为ITO、IZO等。在微腔有机发光显示结构中,第一电极层的作用时反射有机 发光层发出的光线,第二电极层的作用是调节并增强所期望颜色对应的光的强度。
优选地,下电极32靠近基板30的底面S1和下电极32的侧面S2的为60度到30度之间。
可选地,该下电极32可以为阳极也可以为阴极。
参考图15和图18,执行步骤3:在下电极32上形成有机膜层33,该有机膜层33接触并覆盖多个下电极32以及下电极32之间暴露出绝缘层31;有机膜层33中包含至少一个第一膜层331,第一膜层331在多个像素单元之间相互连接。
形成第一膜层331的方法为使用开放式掩膜板(Open mask)将有机材料蒸镀沉积成膜。Open mask中的遮挡区域对应基板30的周边非显示区域,透过区域对应下电32和及下电极32之间暴露的绝缘层31,因此第一膜层331会形成接触并覆盖下电极32和及下电极32之间暴露出的绝缘层31的膜层结构,同时因为下电极32靠近基板30的底面S1和下电极32的侧面S2的夹角小于90度,因此第一膜层331成膜均匀连续,不会出现第一膜层331的断裂等不良。
有机膜层33为多层膜层结构,如包括空穴注入层、空穴传输层、电子阻挡层、有机发光层、空穴阻挡层、电子传输层等,如有机发光显示装置为多个OLED单元串联结构(tandem结构),在相邻的OLED单元还设置有电荷生成层。该第一膜层331可以为空穴传输层、空穴注入层或者电荷生成层。
参考图15和图19,执行步骤4:在该多层有机发光层33上形成上电极34,多个像素单元的上电极34相互连接,形成整面的膜层结构。
可选地,该上电极34可以为阳极也可以为阴极。当下电极32为阳极时,上电极34为阴极;当下电极32为阴极时,上电极34为阳极。
因为位于上电极34下层的有机膜层23成膜均匀连续,因此在其上形成的上电极34依附有机膜层33的形状,也可以形成连续均匀的膜面,保证了 上电极信号可以在各个像素单元内传输。
参考图15和图20,执行步骤5:在上电极34上形成第一薄膜封装层35。
该第一薄膜封装层35可以为单层结构也可以为多层结构,其每层的材料可以为无机材料也可以为有机材料,较优的为无机材料层、有机材料层、无机材料层交叠的结构,第一薄膜封装层35的作用是用来将有机膜层和外界的水汽、氧气隔绝开,提高有机显示面板的可靠性。第一薄膜封装层35形成方法可以为ALD(atomic layer deposition,原子层沉积)、CVD(chemical vapor deposition,化学气相沉积)或者PVD(Physical Vapor Deposition,物理气相沉积)等方式。
第一薄膜封装层35的作用是阻止外界水汽氧气对有机膜层造成损伤。因为后续要在有机膜层33上形成光刻胶并且还要清洗去除,都是在有水汽、氧气的环境下进行的,因此本发明设置先形成第一薄膜封装层35以保护有机膜层33,再进行后续的离子注入工艺。因后续离子注入工艺的离子要穿透该第一薄膜封装层35,为降低离子穿透的能量,优选地,该第一薄膜封装层35的厚度小于10微米,优选地,该第一薄膜封装层35的厚度小于1微米。
参考图15和图21,执行步骤6:在第一薄膜封装层35上形成图案化的光刻胶层36,光刻胶层36覆盖下电极32所在区域A的第一薄膜封装层35并暴露间隔区域B的第一薄膜封装层35。
参考图15和图22,执行步骤7:以该图案化的光刻胶层36为掩膜对有机膜层中的至少一个第一膜层331进行离子注入。
步骤7的离子注入工艺中,将完成步骤6后的基板放入离子注入设备中,离子源产生的离子经加速后高速射向第一膜层331材料的表面,因下电极32所在区域A的第一膜层331有光刻胶层36遮挡,间隔区域B对应的第一膜层331无光刻胶层36遮挡,离子会进入间隔区域B对应的第一膜层331。
当离子进入间隔区域B对应的第一膜层331表面时,与间隔区域B的第一膜层331中的原子碰撞,将第一膜层331中原有的有机分子结构进行了物 理破坏,当在离子注入工艺中使用化学性质活泼的元素,比如O或F原子,其还会和第一膜层331中的有机材料发生化学反应,对第一膜层331中的材料进行化学破坏。因为间隔区域B的第一膜层331的有机材料经过离子注入工艺后被破坏掉了,间隔区域B的第一膜层331的载流子迁移率小于下电极32对应区域A的第一膜层331的载流子迁移率,会避免或者降低经该层发生相邻像素单元间的载流子的泄漏,避免相邻像素单元间的漏光。
离子注入工艺中选用原子量较轻的原子,优选的分子量小于或等于Ar的原子,优选地可选用H、He、B、C、N、O、F、Si、P、S、Cl或Ar原子等,可降低离子注入的能量。优选地,离子注入的浓度为1×10 13~1×10 16个原子/每平方厘米。
可选地,有机发光显示装置中包括多个第一膜层,可多次重复步骤7,对多个第一膜层分别进行离子注入工艺,可根据不同第一膜层331所在的有机膜层中的层位置、厚度、膜层材料不同等性质以及所使用的原子,选用不同注入能量,一般在10~1000千电子伏特之间。
经过步骤7后,第一膜层331内含有一种第一原子,对应间隔区域B内的第一原子的浓度大于对应下电32区域A内的第一原子浓度。并且,在间隔区域B对应第一膜层331内,从远离基板30的方向至靠近基板30的方向,第一原子的浓度递减。比如使用含有O原子的气体对间隔区域B内的第一膜层331进行离子注入,虽第一膜层331的有机材料中原本也含有O原子,但是经过离子注入工艺后,间隔区域B的第一膜层331中的O原子含量会大于下电极32对应区域A内的O原子含量。被注入的原子在第一膜层331中能量会递减,到达第一膜层331下方的原子比到达第一膜层331上方的原子数量少,因此从远离基板30的方向至靠近基板30的方向,第一原子的浓度会递减。在经过离子注入工艺后的第一膜层331其外观未发生变化,但是可检测比较间隔区域B内的第一原子的浓度和区域A内原子浓度,或者检测间隔区域B内的第一膜层331从远离基板30的方向至靠近基板30的方向,第一 原子的浓度的变化情况,可确认是否对第一膜层进行了离子注入工艺。
进一步地,在步骤7后还可以包括步骤8和步骤9。
步骤8,去除步骤7后的光刻胶层36。可使用干刻工艺或者湿刻工艺去除光刻胶层36。优选地,先使用干刻工艺再使用湿刻工艺去除光刻胶层36。优选地,使用氧气等离子气体对光刻胶层36进行干刻,光刻胶层36中的有机物和氧反应生成CO 2、SO 2和H 2O等物质挥发去除掉;因为光刻胶层36进行离子注入接受了很多能量会被加热变硬,产生分子链交联,干刻工艺无法去除干净,再使用湿法刻蚀工艺,溶解去除残余的有机物。先使用干刻工艺再使用湿刻工艺的方式,可将光刻胶层36去除干净无残余。
优选地,在去除光刻胶36后,再对第一薄膜封装层35进行烘烤,烘烤温度小于150摄氏度,以挥发残余溶剂和气体。
步骤9,在第一薄膜封装36层上形成第二薄膜封装层。第一薄膜封装36在离子注入工艺中注入了离子,在形成光刻胶工艺、去除光刻胶层工艺和水汽、氧气有过接触,其封装能力有所减弱,为了进一步加强对有机膜层的保护,在第一薄膜封装24层上形成第二薄膜封装层。该第二薄膜封装层可以为单层结构也可以为多层结构,其每层的材料可以为无机材料也可以为有机材料,较优的为无机材料层、有机材料层、无机材料层交叠的结构,第二薄膜封装层形成方法可以为ALD(atomic layer deposition,原子层沉积)、CVD(chemical vapor deposition,化学气相沉积)或者PVD(Physical Vapor Deposition,物理气相沉积)等方式。
本发明提供的上述有机发光显示装置及其形成方法,和现有技术相比,未设置像素定义层,可大大降低像素单元之间的非发光区域面积,可将像素单元之间的间隔降低到0.1~2微米之间;本发明提供的有机发光显示装置将下电极设置为底面和侧面的夹角小于90度的结构,可以保证形成于下电极上方的有机膜层以及形成于有机膜层上方的上电极都能均匀而连续的成膜,避免了上电极在像素单元之间断开,保证了上电极信号在各像素单元之间的传 输。下电极的反射电极层的材料为Al,Al和有机膜层中水氧反应生成氧化铝,氧化铝的化学性质稳定,可以保护下电极。本发明提供的有机发光显示装置为硅基微型有机发光显示装置。本发明提供的硅基微型有机发光显示装置,未设置像素定义层,减小了像素单元间隔的宽度,可以降低“纱窗效应”,提供更好的近眼观看感受。
注意,上述仅为本发明的较佳实施方式及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施方式,对本领域技术人员来说能够进行各种明显的变化、重新调整、相互结合和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施方式对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施方式,在不脱离本发明构思的情况下,还可以包括更多其他等效实施方式,而本发明的范围由所附的权利要求范围决定。

Claims (35)

  1. 一种有机发光显示装置,其特征在于,包括:
    基板,设置在所述基板上并间隔排列的多个像素单元,每个所述像素单元包括设置于所述基板上的下电极;
    设置在所述下电极上的有机膜层,所述有机膜层中包含至少一个第一膜层,所述多个像素单元的所述第一膜层相互连接;
    设置在所述有机膜层上的上电极,所述多个像素单元的所述上电极相互连接;设置在所述上电极上的薄膜封装层;
    所述第一膜层内含有第一原子,并且在所述第一膜层内,对应所述间隔区域内的第一原子的浓度大于对应所述下电极区域内原子浓度。
  2. 如权利要求1所述的有机发光显示装置,其特征在于,在所述间隔区域对应的所述第一膜层内,从远离所述基板的方向至靠近所述基板的方向,所述第一原子的浓度递减。
  3. 如权利要求1所述的有机发光显示装置,其特征在于,所述第一原子的原子量小于或等于Ar原子的原子量。
  4. 如权利要求3所述的有机发光显示装置,其特征在于,所述第一原子为H、He、B、C、N、O、F、Si、P、S、Cl或Ar原子。
  5. 如权利要求1所述的有机发光显示装置,其特征在于,所述第一膜层为空穴传输层、空穴注入层或者电荷生成层。
  6. 如权利要求1所述的有机发光显示装置,其特征在于,所述有机膜层中包多个所述第一膜层。
  7. 如权利要求1所述有机发光显示装置,其特征在于,所述像素单元之间的间隔宽度为0.1~2微米。
  8. 如权利要求1所述有机发光显示装置,其特征在于,所述下电极包括反射电极层,所述反射电极层的材料为Al或者Ag。
  9. 如权利要求1所述有机发光显示装置,其特征在于,所述有机发光显示装 置为硅基微型有机发光显示装置。
  10. 一种有机发光显示装置的形成方法,其特征在于,包括:
    步骤1:提供一基板;
    步骤2:在所述基板上形成多个间隔排列的下电极;
    步骤3:在所述下电极上形成有机膜层,所述有机膜层中包含至少一个第一膜层,所述第一膜层在多个像素单元之间相互连接;
    步骤4:在所述有机膜层上形成上电极,所述多个像素单元的所述上电极相互连接;
    步骤5:在所述上电极上形成第一薄膜封装层;
    步骤6:在所述第一薄膜封装层上形成图案化的光刻胶层,所述光刻胶层覆盖所述下电极所在区域的第一薄膜封装层并暴露所述间隔所在区域的第一薄膜封装层;
    步骤7:以所述光刻胶层为掩膜对所述至少一个第一膜层进行离子注入。
  11. 如权利要求10所述的有机发光显示装置的形成方法,其特征在于,包括多个所述第一膜层,重复步骤7,对所述多个第一膜层分别进行离子注入。
  12. 如权利要求10所述的有机发光显示装置的形成方法,其特征在于,所述离子注入的材料为的原子量小于或等于Ar原子的原子量。
  13. 如权利要求12所述的有机发光显示装置的形成方法,其特征在于,所述离子注入的材料包括H、He、B、C、N、O、F、Si、P、S、Cl或Ar原子。
  14. 如权利要求10所述的有机发光显示装置的形成方法,其特征在于,在步骤7中,所述离子注入的浓度为1×10 13~1×10 16个原子/每平方厘米。
  15. 如权利要求10所述的有机发光显示装置的形成方法,其特征在于,所述离子注入的能量为10~1000千电子伏特。
  16. 如权利要求10所述的有机发光显示装置的形成方法,其特征在于,在步骤7之后还包括:
    步骤8:去除所述光刻胶层;
    步骤9:在所述第一薄膜封装层上形成第二薄膜封装层。
  17. 如权利要求16所述的有机发光显示装置的形成方法,其特征在于,在步骤8和步骤9之间还包括:对所述第一薄膜封装层进行烘烤。
  18. 一种有机发光显示装置,其特征在于,包括:
    基板,设置在所述基板上的绝缘层,设置在所述绝缘层上并间隔排列的多个像素单元,每个所述像素单元包括设置于所述绝缘层上的下电极,在相邻的所述下电极之间暴露出所述绝缘层;所述下电极靠近所述基板的底面和所述下电极的侧面的夹角小于90度;
    设置在所述下电极上的有机膜层,所述有机膜层接触并覆盖所述多个像素单元的下电极以及所述下电极之间暴露出所述绝缘层;所述有机膜层中包含至少一个第一膜层,所述多个像素单元的所述第一膜层相互连接;
    设置在所述有机膜层上的上电极,所述多个像素单元的所述上电极相互连接;设置在所述上电极上的薄膜封装层;
    在所述第一膜层内,对应所述间隔区域内的载流子迁移率小于对应所述下电极区域内载流子迁移率。
  19. 一种有机发光显示装置,其特征在于,包括:
    基板,设置在所述基板上的绝缘层,设置在所述绝缘层上并间隔排列的多个像素单元,每个所述像素单元包括设置于所述绝缘层上的下电极,在相邻的所述下电极之间暴露出所述绝缘层;所述下电极靠近所述基板的底面和所述下电极的侧面的夹角小于90度;
    设置在所述下电极上的有机膜层,所述有机膜层接触并覆盖所述多个像素单元的下电极以及所述下电极之间暴露出所述绝缘层;所述有机膜层中包含至少一个第一膜层,所述多个像素单元的所述第一膜层相互连接;
    设置在所述有机膜层上的上电极,所述多个像素单元的所述上电极相互连接;设置在所述上电极上的薄膜封装层;
    所述第一膜层内含有第一原子,并且在所述第一膜层内,对应所述间隔区 域内的第一原子的浓度大于对应所述下电极区域内第一原子的浓度。
  20. 如权利要求19所述的有机发光显示装置,其特征在于,在所述间隔区域对应的所述第一膜层内,从远离所述基板的方向至靠近所述基板的方向,所述第一原子的浓度递减。
  21. 如权利要求19所述的有机发光显示装置,其特征在于,所述第一原子的原子量小于或等于Ar原子的原子量。
  22. 如权利要求21所述的有机发光显示装置,其特征在于,所述第一原子为H、He、B、C、N、O、F、Si、P、S、Cl或Ar原子。
  23. 如权利要求19所述的有机发光显示装置,其特征在于,所述第一膜层为空穴传输层、空穴注入层或者电荷生成层。
  24. 如权利要求19所述的有机发光显示装置,其特征在于,所述有机膜层中包多个所述第一膜层。
  25. 如权利要求18或19所述有机发光显示装置,其特征在于,所述像素单元之间的间隔宽度为0.1~2微米。
  26. 如权利要求18或19所述有机发光显示装置,其特征在于,所述下电极的反射电极层,所述反射电极层的材料为Al。
  27. 如权利要求18或19所述有机发光显示装置,其特征在于,所述有机发光显示装置为硅基微型有机发光显示装置。
  28. 一种有机发光显示装置的形成方法,其特征在于,包括:
    步骤1:提供一基板,在所述基板上形成一绝缘层;
    步骤2:在所述绝缘层上形成多个间隔排列的下电极,相邻的所述下电极之间暴露出所述绝缘层;所述下电极靠近所述基板的底面和所述下电极的侧面的夹角小于90度;
    步骤3:在所述下电极上形成有机膜层,所述有机膜层接触并覆盖所述多个下电极以及所述下电极之间暴露出所述绝缘层;所述有机膜层中包含至少一个第一膜层,所述第一膜层在多个像素单元之间相互连接;
    步骤4:在所述有机膜层上形成上电极,所述多个像素单元的所述上电极相互连接;
    步骤5:在所述上电极上形成第一薄膜封装层;
    步骤6:在所述第一薄膜封装层上形成图案化的光刻胶层,所述光刻胶层覆盖所述下电极所在区域的第一薄膜封装层并暴露所述间隔所在区域的第一薄膜封装层;
    步骤7:以所述光刻胶层为掩膜对所述至少一个第一膜层进行离子注入。
  29. 如权利要求28所述的有机发光显示装置的形成方法,其特征在于,包括多个第一膜层,重复步骤7,对所述多个第一膜层分别进行离子注入。
  30. 如权利要求28所述的有机发光显示装置的形成方法,其特征在于,所述离子注入的材料为的原子量小于或等于Ar原子的原子量。
  31. 如权利要求30所述的有机发光显示装置的形成方法,其特征在于,所述离子注入的材料包括H、He、B、C、N、O、F、Si、P、S、Cl或Ar原子。
  32. 如权利要求28所述的有机发光显示装置的形成方法,其特征在于,在步骤7中,所述离子注入的浓度为1×10 13~1×10 16个原子/每平方厘米。
  33. 如权利要求28所述的有机发光显示装置的形成方法,其特征在于,所述离子注入的能量为10~1000千电子伏特。
  34. 如权利要求28所述的有机发光显示装置的形成方法,其特征在于,在步骤7之后还包括:
    步骤8:去除所述光刻胶层;
    步骤9:在所述第一薄膜封装层上形成第二薄膜封装层。
  35. 如权利要求34所述的有机发光显示装置的形成方法,其特征在于,在步骤8和步骤9之间还包括:对所述第一薄膜封装层进行烘烤。
PCT/CN2019/096804 2019-03-07 2019-07-19 一种有机发光显示装置及其形成方法 WO2020177265A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910170613.2 2019-03-07
CN201910170613.2A CN110164921B (zh) 2019-03-07 2019-03-07 一种有机发光显示装置及其形成方法
CN201910170606.2A CN110165062B (zh) 2019-03-07 2019-03-07 一种有机发光显示装置及其形成方法
CN201910170606.2 2019-03-07

Publications (1)

Publication Number Publication Date
WO2020177265A1 true WO2020177265A1 (zh) 2020-09-10

Family

ID=72338372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096804 WO2020177265A1 (zh) 2019-03-07 2019-07-19 一种有机发光显示装置及其形成方法

Country Status (1)

Country Link
WO (1) WO2020177265A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311268A (zh) * 2012-03-09 2013-09-18 佳能株式会社 发光装置、图像形成装置、显示装置和成像装置
US20160247861A1 (en) * 2015-02-24 2016-08-25 Samsung Display Co., Ltd. Organic light-emitting display device and method of manufacturing the same
CN110164921A (zh) * 2019-03-07 2019-08-23 上海视涯信息科技有限公司 一种有机发光显示装置及其形成方法
CN110165062A (zh) * 2019-03-07 2019-08-23 上海视涯信息科技有限公司 一种有机发光显示装置及其形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311268A (zh) * 2012-03-09 2013-09-18 佳能株式会社 发光装置、图像形成装置、显示装置和成像装置
US20160247861A1 (en) * 2015-02-24 2016-08-25 Samsung Display Co., Ltd. Organic light-emitting display device and method of manufacturing the same
CN110164921A (zh) * 2019-03-07 2019-08-23 上海视涯信息科技有限公司 一种有机发光显示装置及其形成方法
CN110165062A (zh) * 2019-03-07 2019-08-23 上海视涯信息科技有限公司 一种有机发光显示装置及其形成方法

Similar Documents

Publication Publication Date Title
US11997866B2 (en) Hermetically sealed isolated OLED pixels
US6407408B1 (en) Method for patterning devices
CN110164921B (zh) 一种有机发光显示装置及其形成方法
CN102969329B (zh) 含具有反射结构的电极的有机发光显示装置及其制造方法
US20050212419A1 (en) Encapsulating oled devices
CN104051668A (zh) 有机电致发光显示装置及其制造方法
EP1826738A1 (en) Display device and display device manufacturing method
US20100155709A1 (en) Encapsulation for an electronic thin film device
TW201427139A (zh) 顯示裝置及其製造方法
JP6318665B2 (ja) 電気光学装置、電気光学装置の製造方法、電子機器
KR20140139864A (ko) 발광 표시 장치 및 그 제조 방법
US20120268001A1 (en) Organic light-emitting display device and method of manufacturing the same
KR20160125584A (ko) 표시 장치 및 그 제조 방법
US9972667B2 (en) Display device
US6596443B2 (en) Mask for patterning devices
CN108415614A (zh) 触控显示基板及其制备方法
CN110165062B (zh) 一种有机发光显示装置及其形成方法
WO2019137133A1 (zh) 柔性显示装置及制作方法、显示设备
JP2005019401A (ja) 有機電界発光素子及びその製造方法
WO2020177265A1 (zh) 一种有机发光显示装置及其形成方法
KR20160056581A (ko) 유기발광 소자 및 이의 제조방법
KR100570998B1 (ko) 유기 전계 발광 소자 및 그 형성 방법
JP2004152738A (ja) 有機elパネルおよびその製造方法、それを用いた電気光学パネル並びに電子機器
US20170141166A1 (en) Method of manufacturing organic light-emitting display apparatus
KR20160094567A (ko) 전면 발광형 유기발광소자, 그 제조 방법 및 이를 포함하는 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918146

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19918146

Country of ref document: EP

Kind code of ref document: A1