WO2020177224A1 - Réseaux de diffraction ayant une période de structure multi-rectangulaire et dispositif d'imagerie ar - Google Patents

Réseaux de diffraction ayant une période de structure multi-rectangulaire et dispositif d'imagerie ar Download PDF

Info

Publication number
WO2020177224A1
WO2020177224A1 PCT/CN2019/088998 CN2019088998W WO2020177224A1 WO 2020177224 A1 WO2020177224 A1 WO 2020177224A1 CN 2019088998 W CN2019088998 W CN 2019088998W WO 2020177224 A1 WO2020177224 A1 WO 2020177224A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
coupling
diffraction
waveguide
imaging device
Prior art date
Application number
PCT/CN2019/088998
Other languages
English (en)
Chinese (zh)
Inventor
宋强
王景
苏鹏华
马国斌
汪涛
Original Assignee
深圳珑璟光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳珑璟光电技术有限公司 filed Critical 深圳珑璟光电技术有限公司
Publication of WO2020177224A1 publication Critical patent/WO2020177224A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant

Definitions

  • the invention relates to the technical field of diffraction gratings, in particular to a diffraction grating with multiple rectangular structural periods and an AR imaging device.
  • AR Augmented Reality
  • This technology is now more and more widely used in the security, education, medical, military, industrial, entertainment and other industries.
  • the grating waveguide solution is currently a mainstream solution for AR display, but the existing diffraction grating design solutions have many shortcomings, such as low degree of freedom, low diffraction efficiency, difficult to control diffraction uniformity, and difficulty in designing products and processing.
  • the purpose of the present invention is to provide a diffraction grating and AR imaging device with multiple rectangular structure periods, which can solve many of the above shortcomings and has the advantages of higher diffraction efficiency, higher uniformity, and easy processing.
  • a diffraction grating with multiple rectangular structure periods In each grating period, a plurality of rectangles are etched on the substrate of the diffraction grating, and the line width of each rectangle and the distance between adjacent rectangles are equal different.
  • the number of the rectangles is greater than or equal to 2.
  • the structures etched on the substrate of the diffraction grating are all the same.
  • the angle of incidence of the diffraction grating is 25°-55°.
  • TiO2 is plated on the diffraction grating.
  • the number of rectangles, the line width of the rectangles, and the distance between adjacent rectangles are all determined according to actual product requirements.
  • An AR imaging device includes an image generation part, a collimation part, a grating waveguide part, and an image imaging part;
  • the grating waveguide part includes a waveguide sheet, a coupling-in grating, and a coupling-out grating;
  • the coupling-in grating and the coupling-out grating Gratings are respectively distributed at both ends of the waveguide sheet;
  • the coupling-in grating and the coupling-out grating are both diffraction gratings with multiple rectangular structure periods;
  • the light emitted by the image generating part passes through the collimating part, exits as parallel light, and enters the coupling grating at a set angle; after being diffracted by the coupling grating, it enters the waveguide sheet, and Forward transmission in the form of total reflection, and then output through the coupling-out grating, and finally form an image in the image imaging section.
  • the grating waveguide portion includes a total of three layers of waveguide plates for transmitting R, G, and B three-color light, and the coupling grating and the coupling grating and the two ends of each layer of the waveguide plate are respectively distributed Coupling the grating.
  • the grating waveguide portion further includes an extended grating; the extended grating and the coupling-out grating are located at the same end of the waveguide sheet, and in the vertical direction, the extended grating is located between the coupling-out grating On; wherein, the extended grating is a diffraction grating with multiple rectangular structure periods.
  • the image generating part is a display screen that generates a display screen; the collimating part is an optical system composed of multiple optical lenses.
  • the invention provides a diffraction grating with multiple rectangular structure periods and an AR imaging device.
  • multiple rectangles are etched on the substrate of the diffraction grating in each grating period, and the line width of each rectangle and the distance between adjacent rectangles are different, so that the diffraction grating provided by the present invention has a higher Diffraction efficiency, high uniformity, easy processing, etc.; the present invention applies a diffraction grating with multiple rectangular structure periods to an AR imaging device to meet the requirements for AR high-definition and high-efficiency display effects.
  • Fig. 1 is a topography diagram of a common rectangular grating in the prior art
  • Figure 2 is a profile diagram of a common tilted grating in the prior art
  • Figure 2(a) is a profile view of a common tilted grating in the prior art
  • Figure 2(b) is another common tilted grating profile in the prior art Appearance map
  • FIG. 3 is a topography diagram of a diffraction grating with multiple rectangular structure periods according to an embodiment of the present invention
  • FIG. 4 is a graph showing the relationship between the incident angle of light and the diffraction efficiency of a diffraction grating according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an AR imaging device according to an embodiment of the present invention.
  • FIG. 6 is an actual simulation diagram of an AR imaging device according to an embodiment of the present invention.
  • Figure 7 is an actual illuminance diagram of an embodiment of the present invention.
  • Fig. 8 is a top view of an expanded grating on a waveguide sheet according to an embodiment of the present invention.
  • the existing diffraction grating design scheme is mainly to design the appearance of the diffraction grating into a rectangular or inclined pattern.
  • T is a period of a common grating. Since the diffraction efficiency of grating is related to wavelength and incident angle, it is obvious that the incident angle of rectangular grating has been fixed, so there is a big limitation in improving the diffraction efficiency; and although the inclined grating can change the inclination angle to make the grating diffraction efficiency reach the design However, the processing of gratings with oblique topography is more difficult and costly.
  • the present invention proposes a diffraction grating with multiple rectangular structure periods, which aims to solve the difficulty in processing and improve the diffraction efficiency of the grating.
  • each grating period a plurality of rectangles are etched on the substrate of the diffraction grating, and the line width of each rectangle and the distance between adjacent rectangles are different.
  • the structure etched on the substrate of the diffraction grating is the same. Among them, in each grating period, the number of rectangles, the line width of rectangles, and the distance between adjacent rectangles are all determined according to actual product requirements.
  • the number of rectangles is greater than or equal to 2.
  • the angle of incidence of the diffraction grating is 25°-55°.
  • TiO2 is plated on the diffraction grating.
  • T is one period of the diffraction grating with multiple rectangular structure periods provided in this embodiment.
  • the main feature of the diffraction grating provided by this embodiment is that in a grating period T, N small rectangles (N is greater than or equal to 2) are etched on the substrate, and the line width and spacing of the N small rectangles are different, such as Z1, Z3
  • the width of Z5 is different, and the width of Z2 and Z4 are different, which makes it easy to process and also has higher diffraction efficiency.
  • the design concept of this embodiment is mainly to use the vector electromagnetic diffraction theory to optimize the break points of each small rectangle with diffraction efficiency and angular uniformity as the evaluation objective, so as to meet the design requirements. Therefore, the line width and spacing of N small rectangles are determined according to actual product requirements.
  • FIG. 4 shows the relationship between the light incident angle and the diffraction efficiency of a diffraction grating designed based on the multi-rectangular structure period provided by this embodiment.
  • the diffraction grating is actually a specific form of a one-dimensional Daman grating. Due to the different incident angles of light, the diffraction efficiency of the grating will also be different. When the angle of incidence is 25°-55°, the diffraction efficiency of the diffraction grating can reach more than 77%, and the highest diffraction efficiency can reach more than 81.5%.
  • the rectangular gratings in the traditional diffraction gratings have a simple rectangular shape, which is less difficult to process.
  • the design variables are only within one period. Duty cycle, too few variables, the design space that can improve diffraction efficiency and uniformity is too small; for tilted gratings, the shape is not fixed and can be determined by the designer, and the variable that can be designed removes the space in a space In addition, there is the angle between the oblique side and the substrate.
  • the design space for improving the diffraction efficiency and uniformity is larger.
  • the oblique side has a certain angle with the substrate, so it is inclined.
  • the processing of the grating will be more difficult; while the diffraction grating with multiple rectangular structure periods described in this embodiment has a microscopic appearance perpendicular to the substrate, and the processing difficulty is relatively low.
  • the designable variables Z1, Z2, Z3, Z4, Z5). Therefore, the diffraction grating provided by this embodiment reduces the processing difficulty while improving the diffraction efficiency and uniformity.
  • the AR imaging device includes an image generation unit 1, a collimation unit 2, a grating waveguide unit 3, and an image imaging unit 4;
  • the grating waveguide unit 3 includes a waveguide sheet 31, a coupling Incoming grating 32 and outgoing grating 33;
  • Incoming grating 32 and outgoing grating 33 are respectively distributed on both ends of the waveguide plate 31, that is, the incoming grating 32 is distributed on one end of the waveguide plate 31, and the outgoing grating 33 is distributed on the waveguide plate 31 The other end;
  • the coupling-in grating 32 and the coupling-out grating 33 are diffraction gratings with multiple rectangular structural periods.
  • the light emitted by the image generating unit 1 passes through the collimating unit 2 and exits as parallel light and enters the coupling grating 32 at a set angle; after being diffracted by the coupling grating 32, it enters the waveguide sheet 31 and is in the form of total reflection It is transmitted forward, and then output through the coupling-out grating 33, and finally forms an image in the image imaging section 4.
  • the grating waveguide portion 3 includes a total of three layers of waveguide plates 31 for transmitting R, G, and B three-color light, and each A coupling-in grating 32 and a coupling-out grating 33 are respectively distributed at both ends of the layered waveguide sheet 31.
  • the parallel light enters the coupling grating 32 at a certain angle and then enters the three waveguide plates 31 of R, G, and B in three colors, and transmits forward in the form of total reflection. , And then output through the coupling out grating 33.
  • the image generating part is a display screen that generates a display image, such as Lcos, OLED, MicroOLED, etc.;
  • the collimating part is an optical system composed of multiple optical lenses.
  • the lens can be made of glass material or resin material or a combination of the two;
  • the image imaging unit 4 is Lcos.
  • FIG. 7 is a graph of the actual illuminance uniformity of the display area in this embodiment.
  • the grating waveguide section 3 also includes an expanded grating 34; as shown in FIG. 8, the expanded grating 34 and the coupling-out grating 33 are located At the same end of the same waveguide sheet 31, and in the vertical direction, the extended grating 34 is located above the outcoupling grating 33; among them, the extended grating 34 is also a diffraction grating with multiple rectangular structure periods.
  • the coupling grating 32 is an integral grating for coupling the light emitted by the image generating unit 1 into the waveguide sheet 31.
  • the light coupled into the waveguide sheet 31 follows the law of refraction and reflection on the waveguide sheet 31. Inwardly, it propagates to the extended grating 34, and the extended grating 34 performs exit pupil expansion processing on the light, which increases the field angle of the light passing through the grating, and finally the light enters the coupling-out grating 33 and is coupled out of the grating waveguide 3.
  • Both the expanded grating 34 and the out-coupling grating 33 include five regions with gradually increasing diffraction efficiency, which are used to make the brightness uniformity of the final image after the expanded output consistent.
  • the multi-rectangular structure period diffraction grating in Embodiment 2-4 is coated with a film with higher reflectivity such as TiO2 to improve the overall diffraction efficiency and uniformity of the grating.

Abstract

L'invention concerne des réseaux de diffraction qui ont une période de structure multi-rectangulaire et un dispositif d'imagerie AR, qui se rapportent au domaine technique des réseaux de diffraction, et résolvent principalement les problèmes techniques dans lesquels des réseaux de diffraction existants sont difficiles à traiter, et ont une faible uniformité, une faible efficacité de diffraction et de faibles degrés de liberté. Les réseaux de diffraction qui ont la période de structure multi-rectangulaire sont compris dans chaque période de réseau (T). Une pluralité de rectangles (Z1, Z3, Z5) sont gravés sur un substrat de chacun des réseaux de diffraction, et la largeur de ligne de chaque rectangle et pas (Z2, Z4) de rectangles adjacents est différente. Les présents réseaux de diffraction présentent les avantages d'une efficacité de diffraction relativement élevée, d'une uniformité relativement élevée, d'un traitement facile, etc. Le dispositif d'imagerie AR comprend successivement une partie de génération d'image (1), une partie de collimation (2), un réseau de couplage (32), une plaque de guide d'ondes (31), un réseau de découplage (33) et une partie d'imagerie d'image (4) selon une direction de transmission de lumière, et le réseau de couplage (32) et le réseau de découplage (33) sont des réseaux de diffraction qui ont la période de structure multi-rectangulaire. Les réseaux de diffraction qui ont la période de structure multi-rectangulaire sont appliqués dans le dispositif d'imagerie AR, qui répond à la demande pour les effets d'AR d'affichage à haute définition et à haut rendement.
PCT/CN2019/088998 2019-03-07 2019-05-29 Réseaux de diffraction ayant une période de structure multi-rectangulaire et dispositif d'imagerie ar WO2020177224A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910170912.6 2019-03-07
CN201910170912.6A CN109696717A (zh) 2019-03-07 2019-03-07 一种多矩形结构周期的衍射光栅及ar成像装置

Publications (1)

Publication Number Publication Date
WO2020177224A1 true WO2020177224A1 (fr) 2020-09-10

Family

ID=66234983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088998 WO2020177224A1 (fr) 2019-03-07 2019-05-29 Réseaux de diffraction ayant une période de structure multi-rectangulaire et dispositif d'imagerie ar

Country Status (2)

Country Link
CN (1) CN109696717A (fr)
WO (1) WO2020177224A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696717A (zh) * 2019-03-07 2019-04-30 深圳珑璟光电技术有限公司 一种多矩形结构周期的衍射光栅及ar成像装置
CN110187424B (zh) * 2019-05-05 2021-06-01 中国科学院上海光学精密机械研究所 皮米光梳、皮米光梳的制造装置和制造方法
CN110618528A (zh) * 2019-08-09 2019-12-27 成都理想境界科技有限公司 一种近眼显示装置及色彩反馈方法
CN111175869A (zh) * 2019-12-05 2020-05-19 深圳珑璟光电技术有限公司 一种用于全息显示的柔性薄膜制备方法
CN111522084A (zh) * 2020-04-22 2020-08-11 深圳珑璟光电技术有限公司 一种光栅结构及近眼显示系统
WO2022078072A1 (fr) * 2020-10-13 2022-04-21 Oppo广东移动通信有限公司 Structure de réseau de diffraction, dispositif d'imagerie et dispositif habitronique
CN114578561B (zh) * 2022-01-27 2024-03-26 东南大学 基于多层体光栅的大视场高亮度全息波导系统及制备方法
CN114185123B (zh) * 2022-02-16 2022-07-26 北京亮亮视野科技有限公司 超表面光栅、光波导和头戴式设备
CN115185029B (zh) * 2022-09-07 2023-02-17 北京驭光科技发展有限公司 光栅结构、衍射光波导以及显示设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1478205A (zh) * 2000-11-03 2004-02-25 OVD�������ķ�ɷݹ�˾ 衍射光的二元光栅结构
CN101611333A (zh) * 2006-12-08 2009-12-23 纽约市立大学研究基金会 在复合材料中控制光的器件和方法
JP5145516B2 (ja) * 2008-12-10 2013-02-20 綜研化学株式会社 波長分波光学素子およびカプラー
CN105629493A (zh) * 2016-03-16 2016-06-01 上海交通大学 复合结构双层金属光栅偏振分束器
CN106371222A (zh) * 2016-11-30 2017-02-01 苏州苏大维格光电科技股份有限公司 一种纳米透镜波导镜片和多景深三维显示装置
CN107390311A (zh) * 2017-07-11 2017-11-24 中国计量大学 一种多重周期的光子晶体纳米裂缝表面等离子体共振光栅
US20180045953A1 (en) * 2016-04-29 2018-02-15 The Board Of Trustees Of The Leland Stanford Junior University Device components formed of geometric structures
CN208314330U (zh) * 2018-02-13 2019-01-01 成都理想境界科技有限公司 一种单眼大视场近眼显示光学系统及头戴式显示设备
CN109239842A (zh) * 2017-07-11 2019-01-18 苏州苏大维格光电科技股份有限公司 一种全息波导镜片及其制备方法、及三维显示装置
CN109696717A (zh) * 2019-03-07 2019-04-30 深圳珑璟光电技术有限公司 一种多矩形结构周期的衍射光栅及ar成像装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2241926A1 (fr) * 2009-04-14 2010-10-20 BAE Systems PLC Guide d'onde optique et dispositif d'affichage
US11275244B2 (en) * 2016-01-06 2022-03-15 Vuzix Corporation Double-sided imaging light guide
EP3339936A1 (fr) * 2016-12-20 2018-06-27 Oculus VR, LLC Affichage de guide d'ondes avec petit facteur de forme, grand champ de vision et région oculaire importante
CN107092093A (zh) * 2017-06-16 2017-08-25 北京灵犀微光科技有限公司 波导显示装置
CN209624815U (zh) * 2019-03-07 2019-11-12 深圳珑璟光电技术有限公司 一种多矩形结构周期的衍射光栅及ar成像装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1478205A (zh) * 2000-11-03 2004-02-25 OVD�������ķ�ɷݹ�˾ 衍射光的二元光栅结构
CN101611333A (zh) * 2006-12-08 2009-12-23 纽约市立大学研究基金会 在复合材料中控制光的器件和方法
JP5145516B2 (ja) * 2008-12-10 2013-02-20 綜研化学株式会社 波長分波光学素子およびカプラー
CN105629493A (zh) * 2016-03-16 2016-06-01 上海交通大学 复合结构双层金属光栅偏振分束器
US20180045953A1 (en) * 2016-04-29 2018-02-15 The Board Of Trustees Of The Leland Stanford Junior University Device components formed of geometric structures
CN106371222A (zh) * 2016-11-30 2017-02-01 苏州苏大维格光电科技股份有限公司 一种纳米透镜波导镜片和多景深三维显示装置
CN107390311A (zh) * 2017-07-11 2017-11-24 中国计量大学 一种多重周期的光子晶体纳米裂缝表面等离子体共振光栅
CN109239842A (zh) * 2017-07-11 2019-01-18 苏州苏大维格光电科技股份有限公司 一种全息波导镜片及其制备方法、及三维显示装置
CN208314330U (zh) * 2018-02-13 2019-01-01 成都理想境界科技有限公司 一种单眼大视场近眼显示光学系统及头戴式显示设备
CN109696717A (zh) * 2019-03-07 2019-04-30 深圳珑璟光电技术有限公司 一种多矩形结构周期的衍射光栅及ar成像装置

Also Published As

Publication number Publication date
CN109696717A (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
WO2020177224A1 (fr) Réseaux de diffraction ayant une période de structure multi-rectangulaire et dispositif d'imagerie ar
KR102541862B1 (ko) 증강 현실 시스템을 위한 아웃커플링 격자
CN102445755B (zh) 虚像显示装置
US20200033694A1 (en) Liquid crystal lens, control method thereof, liquid crystal lens module and display device
JP2003161885A5 (fr)
CN114137649A (zh) 用于ar设备的光波导装置及其制造方法和ar设备
CN110456512B (zh) 一种基于衍射光学元件扩瞳的近眼显示系统
CN214335370U (zh) 一种实现均匀出光的波导显示结构
WO2015109707A1 (fr) Source de lumière de surface, module de rétroéclairage et dispositif d'affichage
CN212302101U (zh) 近眼显示光学设备
CN109143765A (zh) 成像结构、投影屏幕及投影系统
EP4031927A1 (fr) Dispositif optique pour coupler un champ de vision élevé de lumière incidente
CN111175971A (zh) 一种近眼光学显示系统、增强现实眼镜
CN103081134A (zh) 光源与投影型显示设备
CN209624815U (zh) 一种多矩形结构周期的衍射光栅及ar成像装置
CN215813432U (zh) 光波导结构和近眼显示器
TW201510614A (zh) 背光模組及液晶顯示器
CN105259732B (zh) 一种光束合光系统及其投影装置
US20080002257A1 (en) Polarization Recovery Plate
CN116755253A (zh) 一种光波导、显示组件及ar设备
CN218886210U (zh) 一种一维光波导、二维光波导、显示设备和汽车
CN106773323A (zh) 一种光能利用率高的背光结构
CN117148594B (zh) 一种显示组件及ar设备
CN114839713B (zh) 一种基于头盔显示的二维扩瞳全息波导结构
CN115494578B (zh) 一种光波导器件和ar设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917612

Country of ref document: EP

Kind code of ref document: A1