WO2020175630A1 - Solid-state secondary battery - Google Patents

Solid-state secondary battery Download PDF

Info

Publication number
WO2020175630A1
WO2020175630A1 PCT/JP2020/008067 JP2020008067W WO2020175630A1 WO 2020175630 A1 WO2020175630 A1 WO 2020175630A1 JP 2020008067 W JP2020008067 W JP 2020008067W WO 2020175630 A1 WO2020175630 A1 WO 2020175630A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
layer
positive electrode
negative electrode
solid
Prior art date
Application number
PCT/JP2020/008067
Other languages
French (fr)
Japanese (ja)
Inventor
泰輔 益子
田中 一正
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2020175630A1 publication Critical patent/WO2020175630A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all solid state secondary battery.
  • Lithium ion secondary batteries which are currently used for general purposes, have conventionally used an electrolyte (electrolyte solution) such as an organic solvent as a medium for moving ions.
  • electrolyte electrolyte solution
  • organic solvent organic solvent
  • Patent Document 1 discloses that a positive electrode current collector, a negative electrode current collector, a positive electrode active material, a negative electrode active material, a solid electrode which form an all-solid secondary battery by using an oxide-based solid electrolyte stable in air. It describes an all-solid-state secondary battery manufactured by a manufacturing method in which each of the densities is formed into a sheet, laminated to form a laminated body, and then fired simultaneously. At this time, 89, 01, 8, 8 and 1: are used as current collector elements.
  • Patent Document 2 describes an all-solid-state secondary battery in which, as a current collector element, O, R, or the like is used and fired in a low oxygen atmosphere. ⁇ 02020/175630 2 (: 17 2020/008067 Prior art documents)
  • Patent Document 1 International Publication No. 2007/1 35790
  • Patent Document 2 JP 2007-227362 A
  • An object of the present invention is to provide an all solid state secondary battery having good cycle characteristics.
  • the present invention provides the following means in order to solve the above problems.
  • the all-solid secondary battery according to the first aspect of the present invention includes a positive electrode layer including a positive electrode current collector and a positive electrode active material layer, a negative electrode current collector and a negative electrode active material layer.
  • a negative electrode layer including a solid electrolyte layer, and a solid electrolyte layer including a solid electrolyte, and the positive electrode layer and the negative electrode layer are alternately laminated with the solid electrolyte layer interposed therebetween to form a positive electrode current collector and the negative electrode.
  • the current collector includes a main part containing a first element as a main component and a sub-part containing a second element which is an element different from the first element.
  • 6, 8 9, 8 li, and I are elements selected from the group consisting of I, wherein the second element is 0, 1 ⁇ 1 and 8 9 , 8 li, It may be one or more elements selected from the group consisting of V, only IV!, ⁇ , “, 3 I, 06, 1_ ⁇ , and 8 ⁇ .
  • the weight ratio of the second element to the first element is in the range of 0.0002% or more and 20% or less. It may be inside. ⁇ 2020/175 630 3 (:171? 2020/008067
  • the sub-area may have a circle area conversion diameter of 0.5 or less.
  • the sub-portion may be obtained by segregating an element containing the second element in the main portion.
  • FIG. 1 is a schematic sectional view of an all solid state secondary battery according to the present embodiment.
  • Examples of the all-solid-state secondary battery include an all-solid-state lithium-ion secondary battery, an all-solid-state sodium ion secondary battery, and an all-solid magnesium-ion secondary battery.
  • an all-solid-state lithium ion secondary battery will be described as an example, but the present invention is applicable to all-solid-state secondary batteries in general.
  • Fig. 1 is an enlarged schematic cross-sectional view of a main part of the all-solid-state lithium-ion secondary battery according to the present embodiment.
  • the all-solid-state lithium-ion secondary battery shown in FIG. 1 includes a laminate having a first electrode layer, a second electrode layer, and a solid electrolyte layer.
  • one of the first electrode layer and the second electrode layer functions as a positive electrode and the other functions as a negative electrode.
  • the polarity of the electrode layer changes depending on which polarity is applied to the external terminal.
  • the first electrode layer will be described as a positive electrode layer and the second electrode layer will be described as a negative electrode layer.
  • the all-solid-state lithium-ion secondary battery 100 includes a positive electrode current collector 18 and a positive electrode active material layer.
  • Negative electrode layers 2 are provided with laminated bodies 20 that are alternately laminated with solid electrolyte layers 3 containing a solid electrolyte interposed therebetween.
  • the positive electrode layer 1 is connected to the first external terminal 6, and the negative electrode layer 2 is connected to the second external terminal 7, respectively.
  • the first external terminal 6 and the second external terminal 7 are electrical contacts with the outside.
  • the laminate 20 has a positive electrode layer 1, a negative electrode layer 2, and a solid electrolyte layer 3.
  • the positive electrode layer 1 and the negative electrode layer 2 are alternately laminated with the solid electrolyte layer 3 (more specifically, the interlayer solid electrolyte layer 38) interposed therebetween.
  • the solid electrolyte layer 3 more specifically, the interlayer solid electrolyte layer 38
  • the number of layers of the positive electrode layer 1 and the negative electrode layer 2 is not particularly limited, but the total number of the positive electrode layer 1 and the negative electrode layer 2 is generally in the range of 10 to 200 layers, and preferably 20 layers. The above is within the range of 100 layers or less.
  • the positive electrode layer 1 has a positive electrode current collector 1 and a positive electrode active material layer 1 containing a positive electrode active material.
  • the positive electrode current collector 18 includes, as main components, a main part 18 3 containing the first element and a sub part 18 s containing the second element which is an element different from the first element.
  • the negative electrode layer 2 has a negative electrode current collector 2 and a negative electrode active material layer 2 containing a negative electrode active material.
  • the negative electrode current collector 28 also has a main part that contains the first element as the main component, and a second part that contains the second element that is an element different from the first element. It consists of 2 heads.
  • the positive electrode current collector 18 and the negative electrode current collector 28 may be formed in layers. ⁇ 2020/175630 5 ⁇ (: 171-1?2020/008067
  • main portion 1 eight 3 and main portion 2 eight 3 of the negative electrode current collector 2 eight of the positive electrode current collector 1 eight includes high conductivity at least one element (first element).
  • first element for example, copper
  • copper examples include elements selected from the group consisting of nickel (1 ⁇ 11), iron (4, silver (89), gold (8), palladium (0000), and platinum ().
  • nickel are preferable in consideration of the manufacturing cost in addition to the high conductivity
  • copper is difficult to react with the positive electrode active material, the negative electrode active material and the solid electrolyte. substance may be the same or different have good.
  • main portion of the cathode current collector 1 eighth main portion 1 eight 3 and the negative electrode current collector 2 eight constituting the collector 1 eight and the anode current collector 2 eight 2 8 3 may further include metal oxides.
  • the metal oxides include: ⁇ ri ⁇ , ⁇ ri 2 ⁇ , 1 ⁇ 1 I ⁇ , 6 2 ⁇ 3 , 6 3 ⁇ 4 , 4 , etc. Is mentioned.
  • the sub-part 1 8 swatches of the positive electrode current collector 18 and the sub-part 2 8 swatches of the negative electrode current collector 2 8 are the second element which is an element different from the first element constituting the main part 18 3. including.
  • the second element is copper Nickel (1 ⁇ 1 ⁇ ), Iron (4, Silver (89), Gold (8), Palladium ( ⁇ , Platinum (), Vanadium (V), Titanium (Cho), Manganese (IV!n)) , Cobalt ( ⁇ ), zirconium ( ⁇ , silicon (3 ⁇ ), germanium ( ⁇ 6), lithium (1_ ⁇ ), and aluminum (8 ⁇ ), at least one element selected from the group consisting of
  • the “subpart” means that the concentration distribution of an element different from the first element contained as the main component of the current collector in the positive electrode current collector or the negative electrode current collector is high.
  • the positive electrode current collector 18 has a structure in which the sub-parts 18 13 are scattered, dispersed or mixed in the current collector composed of the main part 18 3 which is the main component.
  • the sub-portion 18 is generated by segregation of an element containing the second element in the current collector consisting of the main portion 18 3.
  • the negative electrode current collector 28 is the main component.
  • Sub-parts 2 8 13 are scattered, scattered, or mixed in the current collector consisting of parts 2 8 3.
  • the sub-part 2 8 s is the second part of the current collector consisting of the main part 2 8 3 . It is generated by the segregation of elements including elements
  • a part of the positive electrode current collector 18 and the negative electrode current collector 28 (the area indicated by the dotted circle) is expanded. In general, a configuration in which sub-parts are scattered, dispersed, or mixed in the current collector composed of the main part is shown.
  • the cycle characteristics of the all-solid secondary battery are improved.
  • the current collector has a sub-portion containing a second element different from the first element contained as the main component, a part having a different electron conductivity can be formed in the current collector.
  • the presence of a part with different electron conductivity in the current collector causes a difference in how the electrons are taken out, which improves the cycle characteristics of the all-solid-state secondary battery.
  • the weight ratio of the second element to the first element is preferably in the range of 0.0002 or more and 20% or less.
  • the cycle characteristics of the all-solid-state secondary battery become better. If the weight ratio of the second element to the first element is less than 0.0002%, the cycle characteristics are hardly affected. Also, if it exceeds 20%, there are too many prayers in the current collector, which may rather deteriorate the cycle characteristics.
  • the weight ratio of the second element to the first element is more preferably 15% or less, still more preferably 10% or less, and even more preferably 1% or less.
  • the weight ratio of the second element to the first element can be obtained by a known method.
  • LA- ICP-MS Spectrome try :LA- ICP-MS.
  • LA-CP-MS a single laser beam is focused and irradiated on the cross-section or surface of the current collector to evaporate/particulate, decompose and ionize in plasma, and generate ions in a mass spectrometer.
  • the first element and the second element ⁇ 2020/175 630 7 ⁇ (: 171-1? 2020/008067
  • the weight of the element can be obtained. Since the region irradiated with laser light is the target of analysis, it is possible to obtain local information from the current collector by narrowing down the spot diameter of laser light. Even when the spot diameter of the laser beam is larger than the thickness of the metal current collector, an accurate weight ratio can be obtained by comparing the weight ratios of the first metal element and the second metal element. it can.
  • the circle area calculated diameter ⁇ 1 of the sub-part 18 sq. of the positive electrode current collector 18 and the sub-part 28 sq. of the negative electrode current collector 28 is preferably 0.5 or less.
  • the maximum diameter is 0.5 or less among the “circular area conversion diameters” of the n cm sub parts thus obtained.
  • the thickness of the positive electrode current collector 18 and the negative electrode current collector 28 is not limited, but in the case of safety, it is in the range of 0.5 or more and 30 or less.
  • the positive electrode active material layer 1 is formed on one side or both sides of the positive electrode current collector 18.
  • the positive electrode layer 1, which is the uppermost layer in the stacking direction of the all-solid-state lithium-ion secondary battery 100 does not have the negative electrode layer 2 facing the stacking direction upper side. Therefore, the positive electrode active material layer 1 in the positive electrode layer 1, which is the uppermost layer of the all-solid-state lithium-ion secondary battery 100, need only be on one side on the lower side in the stacking direction. There is no.
  • the negative electrode active material layer 2 is also formed on one side or both sides of the negative electrode current collector 2, similarly to the positive electrode active material layer 1.
  • the thickness of the positive electrode active material layer 1 and the negative electrode active material layer 2 is preferably in the range of 0.5 or more and 5.0 or less. By increasing the thickness of the positive electrode active material layer 1 and the negative electrode active material layer 2 to 0.5 or more, the electric capacity of the all-solid-state lithium-ion secondary battery can be increased. ⁇ 2020/175630 8 ⁇ (: 171-1?2020/008067
  • the thickness is 5.0 or less, the diffusion distance of lithium ions is shortened, so that the internal resistance of the all-solid-state lithium-ion secondary battery can be further reduced.
  • the positive electrode active material layer 1 and the negative electrode active material layer 2 each include a positive electrode active material or a negative electrode active material that exchanges lithium ions and electrons.
  • a conductive auxiliary agent or the like may be included. It is preferable that the positive electrode active material and the negative electrode active material can efficiently insert and desorb lithium ions.
  • the active materials constituting the positive electrode active material layer 1 or the negative electrode active material layer 2 are compared, and the compound showing a more noble potential is determined as the positive electrode.
  • a compound showing a more base potential can be used as the negative electrode active material. Therefore, the active materials will be collectively described below.
  • a transition metal oxide, a transition metal composite oxide, or the like can be used as the active material.
  • Lithium cobaltate (1_ ⁇ thousand 2), lithium nickelate (1 - ⁇ 1 ⁇ 1 1 ⁇ 2), lithium manganese spinel (1 - ⁇ IV n 2 ⁇ 4), the general formula:! 1_ ⁇ 1 ⁇ 1 ⁇ ⁇ ⁇ 1 ⁇ /1 ⁇ 2 ⁇ 2 (X + V + 2 1 % 0 £ X £ 1 % 0 £ V £ 1 X 0 £ ⁇ £ 1) Lithium, a mixed metal oxide Vanadium compound (!_ ⁇ 2 0 5 ), olivine Tada Hachijo, “One or more elements selected from”, Lithium vanadium phosphate
  • the positive electrode current collector 1 and the negative electrode current collector 2 may include a positive electrode active material and a negative electrode active material, respectively.
  • the content ratio of the active material contained in each current collector is ⁇ 2020/175 639 9 (: 171-1? 2020 /008067
  • the volume ratio of the positive electrode current collector/positive electrode active material or the negative electrode current collector/negative electrode active material is preferably in the range of 90/10 to 60/40.
  • the positive electrode current collector 1 and the negative electrode current collector 2 include the positive electrode active material and the negative electrode active material, respectively, the positive electrode current collector 18 and the positive electrode active material layer 1 and the negative electrode current collector 28 and the negative electrode are formed. Adhesion with the active material layer 2 is improved.
  • solid electrolyte layer 3 has interlayer solid electrolyte layer 38 located between positive electrode active material layer 1 and negative electrode active material layer 2.
  • the solid electrolyte layer 3 is the outermost solid located outside either or both of the positive electrode layer 1 (positive electrode current collector 18) and the negative electrode layer 2 (negative electrode current collector 28) (both in FIG. 1).
  • the electrolyte layer 3 may be further provided.
  • the “outside” means a laminated body.
  • the solid electrolyte layer 3 may not have the outermost solid electrolyte layer 3, and in this case, the surfaces 58 and 5 of the laminate 20 are the positive electrode layer 1 or the negative electrode layer 2.
  • the solid electrolyte layer 3 it is preferable to use a substance having low electron conductivity and high lithium ion conductivity.
  • the solid electrolyte is, for example, ⁇ . 5 1_ ⁇ . Berobusukai preparative compounds such as 5 chome I ⁇ 3 and, 1_ ⁇ l4 Z n (060 4) 4 Rishi Con type compounds such as, G-type compound, 1_ ⁇ “ 2
  • I ⁇ 2 glass compounds such as 1-1 3 ⁇ 4 and 1_ I 3. 5 3 I_ ⁇ . 5 ⁇ . 5 ⁇ 4 and 1_ 1 2.9 ⁇ 3. 3 1 ⁇ 1 ⁇ .
  • Phosphorus, such as 46 Desirably it is at least a species selected from the group consisting of acid compounds.
  • the solid electrolyte layer 3 is preferably selected according to the active materials used for the positive electrode layer 1 and the negative electrode layer 2.
  • the solid electrolyte layer 3 is a component of the active material. ⁇ 2020/175 630 10 ⁇ (:171? 2020 /008067
  • the solid electrolyte layer 3 contains the same elements as the constituent elements of the active material, the bonding at the interface between the positive electrode active material layer 1 and the negative electrode active material layer 2 and the solid electrolyte layer 3 is strong. become. Further, the contact area at the interface between the positive electrode active material layer 1 and the negative electrode active material layer 2 and the solid electrolyte layer 3 can be widened.
  • the thickness of the inter-layer solid electrolyte layer 38 is preferably in the range of not less than 0.5 and not more than 20.
  • the thickness of the inter-layer solid electrolyte layer 38 is preferably in the range of not less than 0.5 and not more than 20.
  • the thickness of the outermost solid electrolyte layer 3 is not particularly limited, but, for example, as a guide, it is preferably 20 or more and 100 or less.
  • the thickness is 20 111 or more, the positive electrode layer 1 or the negative electrode layer 2 which is closest to the surfaces 58 and 5 of the laminate 20 is less likely to be oxidized due to the influence of the atmosphere in the firing process and has a high capacity. It becomes an all-solid-state lithium-ion secondary battery.
  • the thickness is 100 or less, the all-solid-state lithium-ion secondary battery will have sufficient moisture resistance even under the environment of high temperature and high humidity, high reliability, and high volume energy density.
  • the laminate 20 may include a solid electrolyte and may include a margin layer 4 arranged side by side with each of the positive electrode layer 1 and the negative electrode layer 2.
  • the margin layer 4 is preferably provided to eliminate the step between the inter-layer solid electrolyte layer 38 and the positive electrode layer 1, and the step between the inter-layer solid electrolyte layer 38 and the negative electrode layer 2. Therefore, the margin layer 4 has substantially the same height as the positive electrode layer 1 or the negative electrode layer 2 in the area other than the positive electrode layer 1 and the negative electrode layer 2 on the main surface of the solid electrolyte layer 3 (that is, the positive electrode layer 1 and the negative electrode layer 2). 2) to be placed side by side on each. Due to the presence of margin layer 4, solid electrolyte layer 3 and positive electrode layer 1 ⁇ 2020/175 630 1 1 ⁇ (:171? 2020 /008067
  • the solid electrolyte layer 3 and each electrode layer are highly dense, and delamination or warpage occurs due to firing of the all-solid-state battery. It gets harder.
  • the material forming the margin layer 4 is not particularly limited, but it is preferable to include a material having a heat shrinkage behavior similar to that of the solid electrolyte 3 in the firing step described later.
  • the margin layer 4 is also lithium aluminum lithium phosphate 1_ 1 1 +. ⁇ I ,7 I 2 _ ,( ⁇ 4 ) 3 (0 £ father £ 0 ⁇
  • the margin layer 4 may include a material other than the solid electrolyte, and as the material forming the margin layer 4, for example, the active material material forming the positive electrode active material 1 or the negative electrode active material layer 2 can be used. Glass material is effective in binding improvement (Snake ⁇ 2 0 3. 3 I ⁇ 2, including etc. Snake 2 ⁇ 3, Z N_ ⁇ ) and the like, such as.
  • the first external terminal 6 and the second external terminal 7 of the all-solid-state lithium ion secondary battery 100 it is preferable to use a material having high conductivity.
  • a material having high conductivity For example, silver (eight 9), gold (Hachiri), platinum (1 :), aluminum (eight ⁇ ), copper ( ⁇ Li), tin (3 n), nickel (1 ⁇ 1 ⁇ ), chromium (O O
  • the terminal may be a single layer or multiple layers.
  • the all-solid-state lithium-ion secondary battery 100 may have a protective layer (not shown) for electrically, physically and chemically protecting the laminated body 20 and terminals on the outer periphery of the laminated body 20. ..
  • the material forming the protective layer is preferably excellent in insulating property, durability, moisture resistance and environmentally safe. For example, it is preferable to use glass, ceramics, thermosetting resin, or photocurable resin.
  • the material of the protective layer may be only one kind or a combination of plural kinds.
  • the protective layer may be a single layer ⁇ 2020/175 630 12 boxes (:171? 2020 /008067
  • an organic-inorganic hybrid obtained by mixing a thermosetting resin and a ceramic powder is particularly preferable.
  • the all-solid-state lithium-ion secondary battery 100 may be manufactured by the simultaneous firing method or the sequential firing method.
  • the co-firing method is a method in which the materials forming the respective layers are laminated, and a laminated body is produced by simultaneous firing.
  • the sequential firing method is a method of sequentially producing each layer, and a firing step is performed each time each layer is produced.
  • the simultaneous baking method can reduce the work steps of the all-solid-state lithium-ion secondary battery 100. Further, when the co-firing method is used, the obtained laminated body 20 becomes denser.
  • the simultaneous firing method will be described as an example.
  • the co-firing method includes a step of forming a paste of each material constituting the laminated body 20, a step of applying a paste and drying the paste to produce a green sheet, and a step of laminating a green sheet And simultaneously firing the body.
  • the positive electrode current collector 18 constituting the laminate 20, the positive electrode active material layer 1 m, the solid electrolyte layer 3, the negative electrode active material layer 2 m, the negative electrode current collector 28, and the margin layer 4 Paste each material of.
  • the second element constituting the sub-parts 1 and 2 is the active material after firing.
  • the layer diffuses into the solid electrolyte layer and remains on the current collector, so that it cannot form a bias.
  • a current collector element powder with a large amount of segregating element for example, first, prepare a current collector element powder with a large amount of segregating element (thick coating), ⁇ 2020/175 630 13 ⁇ (:171? 2020/008067
  • the coated current collector element powder and the uncoated current collector element powder are mixed, and the coated current collector element powder and the uncoated current collector element powder are mixed depending on the size and amount of the sub-part.
  • a method of changing the ratio of the body element powder can be used.
  • the pasting method is not particularly limited.
  • a paste is obtained by mixing powder of each material with a vehicle.
  • the vehicle is a generic term for media in the liquid phase.
  • the vehicle includes a solvent and a binder.
  • the green sheet is obtained by applying the prepared paste onto a base material such as a knife (polyethylene terephthalate) in a desired order, drying it if necessary, and then peeling the base material.
  • a base material such as a knife (polyethylene terephthalate)
  • the method of applying the paste is not particularly limited. For example, known methods such as screen printing, coating, transfer, doctor blade, etc. can be used.
  • the positive electrode unit and the negative electrode unit described below can be prepared to produce the laminate.
  • a paste for solid electrolyte layer 3 is formed into a sheet shape on a knife film by a doctor blade method, and dried to form a solid electrolyte layer sheet.
  • a paste for a positive electrode active material layer 1 is printed by screen printing and dried to form a positive electrode active material layer 1.
  • the produced positive electrode active material layer 1 bottom is printed with a screen for a positive electrode current collector 18 by screen printing and dried to form a positive electrode current collector 18. Furthermore, a paste for the positive electrode active material layer 1 is printed again on the screen by screen printing and dried. Then, in the region of the solid electrolyte layer sheet other than the positive electrode layer 1, the margin layer 4 is screen-printed and dried to form the margin layer 4 having a height substantially equal to that of the positive electrode layer 1. Then, by peeling off the knife film, the positive electrode active material layer 1/positive electrode current collector 18/positive electrode active material layer is formed on the main surface of the solid electrolyte layer 3. ⁇ 2020/175 630 14 ⁇ (:171? 2020 /008067
  • a positive electrode unit is obtained in which the positive electrode layer 1 and the margin layer 4 in which the first layer is laminated in this order are formed.
  • the positive electrode unit and the negative electrode unit are alternately stacked and stacked so that one ends thereof do not coincide with each other, and a stacked body of an all-solid-state battery is manufactured.
  • the solid electrolyte layer 3 uses the outermost solid electrolyte layer 3 and the positive electrode unit or the negative electrode unit placed between them.
  • the solid electrolyte layer 3 uses the inter-layer solid electrolyte layer 38, respectively.
  • the manufacturing method is to manufacture a parallel type all-solid-state battery
  • the manufacturing method of the series-type all-solid-state battery is such that one end of the positive electrode layer 1 and one end of the negative electrode layer 2 are aligned. In other words, stacking may be performed without performing offset.
  • the produced laminates can be collectively pressed with a die press, a hot water isotropic press ⁇ ), a cold water isotropic press ( ⁇ I), a hydrostatic press, etc. to improve the adhesion. .. It is preferable to apply pressure while heating, and for example, it can be performed at 40 to 95°.
  • the produced laminated body is cut into chips using a dicing device, and then de-baked and fired to produce an all-solid-state battery laminated body.
  • the manufactured laminated body 20 is placed on a ceramic table, and, for example, in a nitrogen atmosphere.
  • a sintered body is obtained by heating to 600° to 1000° and firing.
  • the firing time is, for example, 0.1 to 3 hours. If it is a reducing atmosphere, firing may be performed in an argon atmosphere or a nitrogen-hydrogen mixed atmosphere instead of the nitrogen atmosphere.
  • a binder removal treatment can be performed as a step different from the firing step.
  • the debinding treatment is performed, for example, in a nitrogen atmosphere at a temperature in the range of 300° to 800°° for 0.1 to 10 hours. If it is a reducing atmosphere, the firing may be performed in an argon atmosphere or a nitrogen-hydrogen mixed atmosphere instead of the nitrogen atmosphere.
  • the sintered body may be placed in a cylindrical container together with an abrasive such as alumina and barrel-polished.
  • sandblast may be used for polishing. This method is preferable because only a specific portion can be removed.
  • the first external terminal 6 and the second external terminal 7 are formed so as to be in electrical contact with the positive electrode current collector 1 and the negative electrode current collector 28, respectively.
  • the positive electrode current collector 18 and the negative electrode current collector 28 exposed from the side surface of the sintered body can be formed by a known means such as a slaughter method, a diving method, or a spray coating method.
  • This paste for solid electrolyte layer was formed into a sheet by a doctor blade method using a knife film as a base material to obtain an outermost solid electrolyte layer sheet and an interlayer solid electrolyte layer sheet.
  • the outermost solid electrolyte layer sheet and the interlayer solid electrolyte layer sheet each had a thickness of 15.
  • the positive electrode active material layer paste and the negative electrode active material layer paste for a the active material 1- 1 3 2 ( ⁇ 4) 3 powder 1 0 0 parts ethylcellulose as a binder - a scan 1 5 parts solvent 6 parts by weight of dihydroterpineol was added and mixed-dispersed to prepare a positive electrode active material layer paste and a negative electrode active material layer paste.
  • V resinate which is a coating agent
  • ⁇ powder was added, followed by thorough stirring. This mixed solution was dried to remove volatile components, and further heat-treated at 200° ⁇ to obtain ⁇ powder having V coated on the surface of ⁇ powder. ⁇ The amount of V coating the surface of the powder is
  • It was set to be 0.0001 parts by weight in terms of metal with respect to 100 parts by weight.
  • the coating powder obtained in this way and !_ ⁇ 3 ⁇ 2 ( ⁇ 4 ) 3 powder were mixed in a volume ratio of 60:40, and then 100 parts by weight of this mixed powder.
  • 10 parts by weight of ethyl cellulose as a binder and 50 parts by weight of dihydroterpineol as a solvent were added, and the mixture was kneaded and dispersed in a three-necked mixture to prepare a current collector paste.
  • a positive electrode unit and a negative electrode unit were produced as follows.
  • a screen for active material was printed with a thickness of 5 by screen printing.
  • the printed paste for active material was dried at 80 ° ⁇ for 5 minutes, and the paste for current collector was printed thereon with a thickness of 5 by screen printing.
  • the printed current collector paste was dried at 80 ° for 5 minutes, and the active material paste was again printed thereon with a thickness of 5 by screen printing.
  • the printed active material paste was dried at 80 ° for 5 minutes, and then a margin layer paste was screen-printed on the area of the solid electrolyte sheet other than the electrode layer.
  • the printed margin layer paste was dried at 80 ° for 5 minutes to form a margin layer having almost the same height as the electrode layer, and then the Mending film was peeled off.
  • an electrode in which an electrode layer (a positive electrode layer or a negative electrode layer) in which an active material layer/a current collector/an active material layer are stacked in this order and a margin layer are formed on a solid electrolyte layer sheet are formed.
  • a positive electrode layer or a negative electrode layer in which an active material layer/a current collector/an active material layer are stacked in this order and a margin layer are formed on a solid electrolyte layer sheet are formed.
  • the laminated chips were simultaneously fired to obtain a laminated body 20.
  • the co-firing is carried out in a nitrogen atmosphere rather than in an air atmosphere so that the current collector metal is less than 3 and the active material !_ ⁇ 3 2 (90 4 ) 3 is not oxidized or decomposed.
  • the firing temperature was raised to 840 °C at ⁇ /hour, the temperature was maintained for 2 hours, and after cooling, it was naturally cooled.
  • a first external terminal and a second external terminal were attached to the sintered laminated body (sintered body) to fabricate an all solid state secondary battery.
  • the lead wire is attached to each of the first external terminal and the second external terminal, and the charge/discharge test is performed to measure the initial discharge capacity of the all-solid-state secondary battery and the cycle characteristics (capacity retention rate) after 100 cycles. did.
  • the measurement conditions were 20 for both the current during charging and discharging, and 1.6 V and 0 V for the final voltages during charging and discharging, respectively.
  • the results are shown in Table 1.
  • the capacity at the first discharge was defined as the initial discharge capacity.
  • the cycle characteristics (capacity retention rate) were calculated by dividing the discharge capacity at the 100th cycle by the initial discharge capacity.
  • the base material for the current collector was manufactured as follows.
  • An all-solid secondary battery was produced in the same manner as in Example 1 except that the production of the current collector base was performed as described above.
  • Table 1 shows the cycle characteristics (capacity retention rate) obtained using the all-solid-state secondary battery thus manufactured.
  • Example 1 in which the current collector had a sub portion, the cycle characteristics were significantly improved as compared with Comparative Example 1 in which the current collector had no sub portion.
  • Basts for current collectors were produced in the same manner as in Example 1 except that 9, 8, and I resinates were used. Further, an all-solid secondary battery was produced in the same manner as in Example 1 by using this current collector paste.
  • Table 2 shows the cycle characteristics (capacity retention rate) obtained using each all-solid-state secondary battery prepared in this way.
  • Example 2 V resin and a resin resinate were used as the coating agent, and the amount of V and powder coated on the surface of the powder was adjusted to 3 (100 parts by weight).
  • a current collector base was prepared in the same manner as in Example 1 except that the total metal content was adjusted to 0.0001 parts by weight. Then, in the same manner as in Example 1, an all-solid-state secondary battery ⁇ 2020/175 630 20 boxes (: 171-1?2020/008067
  • the secondary parts of the positive electrode current collector and the negative electrode current collector in the laminated body were analyzed by a 3-cylinder 1 ⁇ /1 (scanning transmission electron microscope), and the secondary parts were It has been confirmed that it includes the following.
  • Table 2 shows the cycle characteristics (capacity retention rate) obtained using the all-solid-state secondary battery manufactured in this way.
  • V resinate and IV! n resinate were used as the coating agent, and the amount of V and IV! coated on the surface of the powder was 3 (100 parts by weight).
  • a current collector paste was produced in the same manner as in Example 1 except that the total amount was 0.001 parts by weight in terms of metal. Then, an all-solid-state secondary battery was manufactured in the same manner as in Example 1. Regarding the sub-portions of the positive electrode current collector and the negative electrode current collector in the laminated body (sintered body), 3 pcs. 0 3 Analysis was performed and it was confirmed that the sub-part contained V and IV! n.
  • Table 2 shows the cycle characteristics (capacity retention rate) obtained using the all-solid-state secondary battery manufactured in this way.
  • each sub-portion is formed of two kinds of elements, V and T, whereas in Example 2-17, a sub-portion consisting of V in the current collector is used. This is an example in which sub-parts made up of gadgets are scattered, dispersed, or mixed.
  • V coating ⁇ powder uses V resinate as a resinate, and the amount of V coated on the surface of powder powder is 3 (100 parts by weight relative to 3 parts by weight).
  • the coating powder was prepared so that the amount of the coating powder was 1 part by weight, and the coating resin was a resinate, which was a resinate. It was prepared so that it would be 0.0001 parts by weight in terms of metal with respect to 100 parts by weight. ⁇ 2020/175 630 21 ⁇ (: 171-1? 2020 /008067
  • Parts and parts coating 0 powder 50 parts by weight are weighed and mixed ⁇ 3 powder! -After mixing with 3 2 ( ⁇ 4 ) 3 powder in a volume ratio of 60: 40, 100 parts by weight of this mixed powder was mixed with 10 parts by weight of ethyl cellulose as a binder. Then, 50 parts by weight of dihydroterpineol was added as a solvent, and the mixture was kneaded and dispersed in a three-necked mixture to prepare a current collector paste. Further, an all-solid-state secondary battery was manufactured in the same manner as in Example 1 using this current collector base material.
  • Table 2 shows the cycle characteristics (capacity retention rate) obtained using the all-solid-state secondary battery manufactured in this way.
  • each sub-portion is formed by two elements of V and 1 ⁇ /1 n , whereas in Example 2-18, V is contained in the current collector.
  • sub-parts and sub-parts consisting of IV! n are scattered, dispersed, or mixed.
  • V coating ⁇ powder uses V resinate as a resinate, and the amount of V coated on the surface of powder powder is 3 (100 parts by weight relative to 3 parts by weight). It was prepared so that the amount would be 1 part by weight IV!n coating ⁇ powder was used as the coating agent resinate. Using resinate, it was prepared so that the amount of IV! coated on the surface of the powder was (0.01 parts by weight in terms of metal with respect to 100 parts by weight of V. V! coating) 50 parts by weight of the re-powder and 50 parts by weight of the IV!
  • An all-solid secondary battery was prepared in the same manner as in Example 1 using the body paste.
  • _ 3 analysis of the sub-portions of the positive electrode current collector and the negative electrode current collector in the laminate (sintered body) was performed, and the sub-portion consisting of V and the sub-portion consisting of IV! It was confirmed that they were scattered or dispersed or mixed.
  • Table 2 shows the cycle characteristics (capacity retention rate) obtained using the all-solid-state secondary battery manufactured in this way.
  • V and IV! n mixed with V and G, and mixed V and IV! n have high cycle characteristics of 90% or more.
  • the secondary element is Mn, 1 ⁇ 1 and V and D! In the case of V and IV! n, it was found that the cycle characteristics were particularly high at 92% or more.
  • Example 3 _ 1 to Example 3 _ 10 the amount of V coated on the surface of powder was 0.0002, 0. 01, 0. 1 in terms of metal with respect to 100 parts by weight of 0. , 0.4, 0.8, 1, 5, 10, 10, 15 and 20 parts by weight were prepared in the same manner as in Example 1 to prepare a base current collector. Further, an all-solid secondary battery was manufactured in the same manner as in Example 1 by using this current collector paste.
  • Table 3 shows the cycle characteristics (capacity retention rate) obtained using each all-solid-state secondary battery.
  • the cycle characteristic is 92%, and the weight ratio of the secondary part is 0.001%. It was found that the cycle characteristics were high when the weight ratio of the above was 0.002% or more and 20% or less, especially when it was 0.001% or more and 0.01% or less. It was found that when the weight ratio of the auxiliary part is 15% or less, the cycle characteristics are as high as 75% or more, and when the weight ratio of the auxiliary part is 1% or less, the cycle characteristics are as high as 80% or more.
  • the circle area conversion diameter of the sub-part can be adjusted by adjusting the amount of the sub-part element (second element) coated on the powder surface.
  • the amount of V coated on the surface of the powder was (1% by weight in terms of metal, based on 3 parts by 100 parts by weight, in the same manner as in Example 1). I obtained the powder coated with V on the surface of /.
  • Table 4 shows the cycle characteristics (capacity retention rate) obtained using the fabricated all-solid-state secondary battery.
  • Example 4 — 1 uncoated ⁇ 2020/175 630 25 ⁇ (:171? 2020 /008067
  • Table 4 shows the cycle characteristics (capacity maintenance rate) obtained using each of the fabricated all-solid-state secondary batteries.
  • Example 4_2 to 4_6 the positive electrode current collector and the negative electrode current collector each in the sintered laminate (sintered body) were processed in the same manner as in Example 1. Then, we obtained 3M 1 ⁇ /1 images of each cross section and calculated the circle-area conversion diameter of each sub-part image. The maximum circle-area conversion diameter of each sub-part image was 0. 05 (50 nm), ⁇ . (
  • Example 5_1 to Example 5-6 ⁇ 2020/175 630 26 ⁇ (:171? 2020 /008067
  • Example 5 _ 1 to Example 5 _ 6 are the same as Example 1 except that the current collector metal (the main part of the current collector) was 1 ⁇ 1 and was 6, 8, 9 , 8 and 1, respectively.
  • a current collector base was prepared.
  • an all-solid secondary battery was manufactured in the same manner as in Example 1 using this current collector paste.
  • Table 5 shows the cycle characteristics (capacity retention rate) obtained using the fabricated all-solid-state secondary battery.

Abstract

This solid-state secondary battery (100) has a positive electrode layer (1) including a positive electrode current collector (1A) and a positive electrode active material layer (1B), a negative electrode layer (2) including a negative electrode current collector (2A) and a negative electrode active material layer (2B), and a solid electrolyte layer (3) containing a solid electrolyte, wherein a laminate (20) is formed through alternate lamination of the positive electrode layer (1) and the negative electrode layer (2) with the solid electrolyte layer (3) therebetween, and the positive electrode current collector (1A) and the negative electrode current collector (2A) are each formed of a main portion (1Aa, 2Aa) including a first element as a main component, and a sub portion (1Ab, 2Ab) including a second element which is an element different from the first element.

Description

\¥0 2020/175630 1 卩(:17 2020 /008067 明 細 書 \¥0 2020/175 630 1 ((17 2020/008067 Clarification
発明の名称 : 全固体二次電池 Title of invention: All-solid-state secondary battery
技術分野 Technical field
[0001 ] 本発明は、 全固体二次電池に関する。 The present invention relates to an all solid state secondary battery.
本願は、 2 0 1 9年 2月 2 7日に、 日本に出願された特願 2 0 1 9— 0 3 4 3 3 2号に基づき優先権を主張し、 その内容をここに援用する。 The present application claims priority based on Japanese Patent Application No. 20 1 9-0 3 4 3 3 2 filed in Japan on February 27, 2010, the contents of which are incorporated herein by reference.
背景技術 Background technology
[0002] 近年、 エレクトロニクス技術の発達はめざましく、 携帯電子機器の小型軽 量化、 薄型化、 多機能化が図られている。 それに伴い、 電子機器の電源とな る電池に対しては、 小型軽量化、 薄型化、 信頼性の向上が強く望まれている 。 現在、 汎用的に使用されているリチウムイオンニ次電池は、 従来から、 イ オンを移動させるための媒体として有機溶媒等の電解質 (電解液) が使用さ れている。 しかし、 上記の構成の電池では、 電解液が漏出するおそれがある [0002] In recent years, the development of electronic technology has been remarkable, and portable electronic devices have been made smaller, lighter, thinner, and have more functions. Along with this, there is a strong demand for smaller, lighter, thinner, and more reliable batteries for powering electronic devices. Lithium ion secondary batteries, which are currently used for general purposes, have conventionally used an electrolyte (electrolyte solution) such as an organic solvent as a medium for moving ions. However, in the battery with the above configuration, the electrolyte may leak out.
[0003] 電解液に用いられる有機溶媒等は可燃性物質であるため、 電池の安全性を さらに高めることが求められている。 そこで、 電池の安全性を高めるための 一つの対策は、 電解質として、 電解液に代えて、 固体電解質を用いることが 提案されている。 さらに、 電解質として固体電解質を用いるとともに、 その 他の構成要素も固体で構成されている全固体二次電池の開発が進められてい る。 [0003]Since organic solvents and the like used in the electrolytic solution are flammable substances, it is required to further improve the safety of batteries. Therefore, as one measure to improve the safety of the battery, it has been proposed to use a solid electrolyte instead of the electrolytic solution as the electrolyte. Furthermore, the development of an all-solid-state secondary battery, in which a solid electrolyte is used as the electrolyte and other components are also solid, is underway.
[0004] 特許文献 1 には、 空気中で安定な酸化物系固体電解質を用い、 全固体二次 電池を構成する正極集電体、 負極集電体、 正極活物質、 負極活物質、 固体電 解質をそれぞれシート化し、 積層して積層体を形成した後に、 同時に焼成す るという製造方法により作製される全固体二次電池が記載されている。 この 時、 集電体元素として、 八 9、 〇1、 八リ、 1:などを使用している。 [0004] Patent Document 1 discloses that a positive electrode current collector, a negative electrode current collector, a positive electrode active material, a negative electrode active material, a solid electrode which form an all-solid secondary battery by using an oxide-based solid electrolyte stable in air. It describes an all-solid-state secondary battery manufactured by a manufacturing method in which each of the densities is formed into a sheet, laminated to form a laminated body, and then fired simultaneously. At this time, 89, 01, 8, 8 and 1: are used as current collector elements.
[0005] 特許文献 2には、 集電体元素として、 〇リ、 丨などを用い、 低酸素雰囲 気化で焼成する全固体二次電池に記載している。 \¥02020/175630 2 卩(:17 2020 /008067 先行技術文献 [0005]Patent Document 2 describes an all-solid-state secondary battery in which, as a current collector element, O, R, or the like is used and fired in a low oxygen atmosphere. \¥02020/175630 2 (: 17 2020/008067 Prior art documents)
特許文献 Patent literature
[0006] 特許文献 1 :国際公開第 2007/1 35790号 [0006] Patent Document 1: International Publication No. 2007/1 35790
特許文献 2 :特開 2007 - 227362号公報 Patent Document 2: JP 2007-227362 A
発明の概要 Summary of the invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0007] しかし、 1種類の元素からなる金属もしくは 2種類以上の元素からなる合 金によって一様に構成された正極集電体、 負極集電体を用いた場合には、 サ イクル特性が悪いという課題があった。 [0007] However, when a positive electrode current collector and a negative electrode current collector that are uniformly composed of a metal composed of one element or a metal alloy composed of two or more elements are used, the cycle characteristics are poor. There was a problem.
[0008] 本発明は、 良好なサイクル特性を有する全固体二次電池を提供することを 目的とする。 An object of the present invention is to provide an all solid state secondary battery having good cycle characteristics.
課題を解決するための手段 Means for solving the problem
[0009] 本発明は、 上記課題を解決するため、 以下の手段を提供する。 [0009] The present invention provides the following means in order to solve the above problems.
[0010] (1 ) 本発明の第 1の態様に係る全固体二次電池は、 正極集電体と正極活物 質層とを含む正極層と、 負極集電体と負極活物質層とを含む負極層と、 固体 電解質を含む固体電解質層とを有し、 前記正極層及び前記負極層が固体電解 質層を介して交互に積層された積層体をなし、 前記正極集電体及び前記負極 集電体は、 主成分として、 第 1元素を含む主部と、 前記第 1元素とは異なる 元素である第 2元素を含む副部とからなる。 (1) The all-solid secondary battery according to the first aspect of the present invention includes a positive electrode layer including a positive electrode current collector and a positive electrode active material layer, a negative electrode current collector and a negative electrode active material layer. A negative electrode layer including a solid electrolyte layer, and a solid electrolyte layer including a solid electrolyte, and the positive electrode layer and the negative electrode layer are alternately laminated with the solid electrolyte layer interposed therebetween to form a positive electrode current collector and the negative electrode. The current collector includes a main part containing a first element as a main component and a sub-part containing a second element which is an element different from the first element.
[0011] (2) (1 ) に記載の全固体二次電池は、 前記第 1元素が、 〇リ、 1\! し [0011] (2) In the all-solid-state secondary battery according to (1), the first element is
6、 八 9、 八リ、 、 及び、 Iからなる群から選択された元素であり、 前記第 2元素が、 〇リ、 1\1 し 八 9、 八リ、 、
Figure imgf000004_0001
V、 丁 し IV!门、 〇〇、 「、 3 I , 06, 1_ 丨、 及び、 八 丨からなる群から選択され た 1種以上の元素であってもよい。
6, 8 9, 8 li, and I are elements selected from the group consisting of I, wherein the second element is 0, 1 \ 1 and 8 9 , 8 li,
Figure imgf000004_0001
It may be one or more elements selected from the group consisting of V, only IV!, 〇〇, “, 3 I, 06, 1_丨, and 8 丨.
[0012] (3) (1 ) 又は (2) に記載の全固体二次電池は、 前記第 1元素に対して 前記第 2元素の重量割合が、 〇. 0002%以上、 20%以下の範囲内であ つてもよい。 〇 2020/175630 3 卩(:171? 2020 /008067 [0012] (3) In the all-solid-state secondary battery according to (1) or (2), the weight ratio of the second element to the first element is in the range of 0.0002% or more and 20% or less. It may be inside. 〇 2020/175 630 3 (:171? 2020/008067
[0013] ( 4 ) ( 1 ) 〜 ( 3 ) に記載の全固体二次電池は、 前記副部の円面積換算径 が〇. 5 以下であってもよい。 ここで、 円面積換算径 とは、 3巳1\/1 像中の副部の面積を 3としたとき、 = (3/71) ( 12 ) 2で算出される。 [0013] (4) In the all-solid-state secondary battery described in (1) to (3), the sub-area may have a circle area conversion diameter of 0.5 or less. Here, the circle area conversion diameter is calculated as = (3/71) (1 , 2 , 2) 2 when the area of the sub-portion in the 3rd 1\/1 image is 3.
[0014] ( 5 ) ( 1 ) 〜 ( 4 ) に記載の全固体二次電池は、 前記副部が、 前記主部に 前記第 2元素を含む元素を偏析させることによって得られてもよい。 (5) In the all-solid-state secondary battery described in (1) to (4), the sub-portion may be obtained by segregating an element containing the second element in the main portion.
発明の効果 Effect of the invention
[0015] 本発明によれば、 良好なサイクル特性を有する全固体二次電池を提供でき る。 [0015] According to the present invention, it is possible to provide an all-solid secondary battery having good cycle characteristics.
図面の簡単な説明 Brief description of the drawings
[0016] [図 1 ]本実施形態に係る全固体二次電池の断面模式図である。 FIG. 1 is a schematic sectional view of an all solid state secondary battery according to the present embodiment.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、 本実施形態について、 図を適宜参照しながら詳細に説明する。 以下 の説明で用いる図面は、 本実施形態の特徴をわかりやすくするために便宜上 特徴となる部分を拡大して示している場合があり、 各構成要素の寸法比率な どは実際とは異なっていることがある。 Hereinafter, the present embodiment will be described in detail with reference to the drawings as appropriate. In the drawings used in the following description, in order to make the features of this embodiment easier to understand, the features may be enlarged for convenience, and the dimensional proportions of each component may differ from the actual ones. Sometimes.
以下の説明において例示される物質、 寸法等は一例であって、 本実施形態 はそれらに限定されるものではなく、 本発明の効果を奏する範囲で適宜変更 して実施することが可能である。 The substances, dimensions, and the like exemplified in the following description are examples, and the present embodiment is not limited to them, and may be appropriately modified and implemented within the range in which the effects of the present invention are exhibited.
[0018] 全固体二次電池としては、 全固体リチウムイオンニ次電池、 全固体ナトリ ウムイオンニ次電池、 全固体マグネシウムイオンニ次電池等が挙げられる。 以下、 全固体リチウムイオンニ次電池を例として説明するが、 本発明は全固 体二次電池一般に適用可能である。 [0018] Examples of the all-solid-state secondary battery include an all-solid-state lithium-ion secondary battery, an all-solid-state sodium ion secondary battery, and an all-solid magnesium-ion secondary battery. Hereinafter, an all-solid-state lithium ion secondary battery will be described as an example, but the present invention is applicable to all-solid-state secondary batteries in general.
[0019] 図 1は、 本実施形態に係る全固体リチウムイオンニ次電池の要部を拡大し た断面模式図である。 [0019] Fig. 1 is an enlarged schematic cross-sectional view of a main part of the all-solid-state lithium-ion secondary battery according to the present embodiment.
図 1 に示す全固体リチウムイオンニ次電池は、 第 1電極層と第 2電極層と 固体電解質層とを有する積層体を備える。 以下、 第 1電極層と、 第 2電極層 は、 いずれか一方が正極として機能し、 他方が負極として機能する。 電極層 の正負は、 外部端子にいずれの極性を繫ぐかによって変化する。 以下、 理解 〇 2020/175630 4 卩(:171? 2020 /008067 The all-solid-state lithium-ion secondary battery shown in FIG. 1 includes a laminate having a first electrode layer, a second electrode layer, and a solid electrolyte layer. Hereinafter, one of the first electrode layer and the second electrode layer functions as a positive electrode and the other functions as a negative electrode. The polarity of the electrode layer changes depending on which polarity is applied to the external terminal. Below, understanding 〇 2020/175630 4 卩 (:171? 2020 /008067
を容易にするために、 第 1電極層を正極層とし、 第 2電極層を負極層として 説明する。 In order to facilitate the above, the first electrode layer will be described as a positive electrode layer and the second electrode layer will be described as a negative electrode layer.
[0020] 全固体リチウムイオンニ次電池 1 0 0は、 正極集電体 1 八と正極活物質層 [0020] The all-solid-state lithium-ion secondary battery 100 includes a positive electrode current collector 18 and a positive electrode active material layer.
1 巳とを含む正極層 1 と、 負極集電体 2八と負極活物質層 2巳とを含む負極 層 2と、 固体電解質を含む固体電解質層 3と、 を有すると共に、 正極層 1及 び負極層 2が固体電解質を含む固体電解質層 3を介して交互に積層された積 層体 2 0を備えている。 1) a positive electrode layer 1 including a positive electrode layer 1, a negative electrode current collector 28 and a negative electrode active material layer 2 including a negative electrode layer 2, and a solid electrolyte layer 3 including a solid electrolyte. Negative electrode layers 2 are provided with laminated bodies 20 that are alternately laminated with solid electrolyte layers 3 containing a solid electrolyte interposed therebetween.
[0021 ] 正極層 1はそれぞれ第 1外部端子 6に接続され、 負極層 2はそれぞれ第 2 外部端子 7に接続されている。 第 1外部端子 6と第 2外部端子 7は、 外部と の電気的な接点である。 [0021] The positive electrode layer 1 is connected to the first external terminal 6, and the negative electrode layer 2 is connected to the second external terminal 7, respectively. The first external terminal 6 and the second external terminal 7 are electrical contacts with the outside.
[0022] (積層体) [0022] (Laminate)
積層体 2 0は、 正極層 1 と、 負極層 2と、 固体電解質層 3とを有する。 The laminate 20 has a positive electrode layer 1, a negative electrode layer 2, and a solid electrolyte layer 3.
[0023] 積層体 2 0において正極層 1 と負極層 2は、 固体電解質層 3 (より詳細に は層間固体電解質層 3八) を介して交互に積層されている。 正極層 1 と負極 層 2の間で固体電解質層 3を介したリチウムイオンの授受により、 全固体リ チウムイオンニ次電池 1 0 0の充放電が行われる。 In the laminated body 20, the positive electrode layer 1 and the negative electrode layer 2 are alternately laminated with the solid electrolyte layer 3 (more specifically, the interlayer solid electrolyte layer 38) interposed therebetween. By exchanging lithium ions between the positive electrode layer 1 and the negative electrode layer 2 through the solid electrolyte layer 3, the all-solid-state lithium-ion secondary battery 100 is charged and discharged.
正極層 1及び負極層 2の積層数に特に限定はないが、 正極層 1 と負極層 2 の合計数で、 一般に 1 0層以上 2 0 0層以下の範囲内にあり、 好ましくは 2 〇層以上 1 〇〇層以下の範囲内である。 The number of layers of the positive electrode layer 1 and the negative electrode layer 2 is not particularly limited, but the total number of the positive electrode layer 1 and the negative electrode layer 2 is generally in the range of 10 to 200 layers, and preferably 20 layers. The above is within the range of 100 layers or less.
[0024] (正極層及び負極層) (Positive Electrode Layer and Negative Electrode Layer)
正極層 1は、 正極集電体 1 と正極活物質を含む正極活物質層 1 巳とを有 する。 正極集電体 1 八は、 主成分として、 第 1元素を含む主部 1 八 3と、 第 1元素とは異なる元素である第 2元素を含む副部 1 八匕とからなる。 The positive electrode layer 1 has a positive electrode current collector 1 and a positive electrode active material layer 1 containing a positive electrode active material. The positive electrode current collector 18 includes, as main components, a main part 18 3 containing the first element and a sub part 18 s containing the second element which is an element different from the first element.
負極層 2は、 負極集電体 2 と、 負極活物質を含む負極活物質層 2巳とを 有する。 負極集電体 2八も正極集電体 1 八と同様に、 主成分として、 第 1元 素を含む主部 2八 3と、 第 1元素とは異なる元素である第 2元素を含む副部 2八匕とからなる。 正極集電体 1 八及び負極集電体 2八は、 層状に形成され ていてもよい。 〇 2020/175630 5 卩(:171? 2020 /008067 The negative electrode layer 2 has a negative electrode current collector 2 and a negative electrode active material layer 2 containing a negative electrode active material. Similarly to the positive electrode current collector 18, the negative electrode current collector 28 also has a main part that contains the first element as the main component, and a second part that contains the second element that is an element different from the first element. It consists of 2 heads. The positive electrode current collector 18 and the negative electrode current collector 28 may be formed in layers. 〇 2020/175630 5 卩(: 171-1?2020/008067
[0025] 正極集電体 1 八の主部 1 八 3及び負極集電体 2八の主部 2八 3は、 導電率 が高い少なくとも 1つの元素 (第 1元素) を含む。 導電性が高い第 1元素と しては、 例えば、 銅
Figure imgf000007_0001
ニッケル (1\1 1) 、 鉄 ( 4 、 銀 (八 9) 、 金 (八リ) 、 パラジウム ( 〇〇 、 及び、 プラチナ ( ) からなる群か ら選択された元素からなるものが挙げられる。 これらの金属元素のうち、 導 電性の高さに加えて、 製造コストも考慮すると、 銅、 ニッケルが好ましい。 更に、 銅は正極活物質、 負極活物質及び固体電解質と反応し難い。 正極集電 体 1 八と負極集電体 2八を構成する物質は、 同一でもよいし、 異なってもよ い。 正極集電体 1 八の主部 1 八 3及び負極集電体 2八の主部 2八 3は、 さら に金属酸化物を含んでいてもよい。 金属酸化物としては、 〇リ〇、 〇リ2〇、 1\1 I 〇、 6 23、 6 34、 〇等が挙げられる。
[0025] main portion 1 eight 3 and main portion 2 eight 3 of the negative electrode current collector 2 eight of the positive electrode current collector 1 eight includes high conductivity at least one element (first element). As the first element with high conductivity, for example, copper
Figure imgf000007_0001
Examples include elements selected from the group consisting of nickel (1\11), iron (4, silver (89), gold (8), palladium (0000), and platinum (). Among these metal elements, copper and nickel are preferable in consideration of the manufacturing cost in addition to the high conductivity Further, copper is difficult to react with the positive electrode active material, the negative electrode active material and the solid electrolyte. substance may be the same or different have good. main portion of the cathode current collector 1 eighth main portion 1 eight 3 and the negative electrode current collector 2 eight constituting the collector 1 eight and the anode current collector 2 eight 2 8 3 may further include metal oxides.The metal oxides include: 〇ri 〇, 〇ri 2 〇, 1\1 I 〇, 6 23 , 6 34 , 4 , etc. Is mentioned.
[0026] 正極集電体 1 八の副部 1 八匕及び負極集電体 2八の副部 2八匕は、 主部 1 八 3を構成する第 1元素とは異なる元素である第 2元素を含む。 [0026] The sub-part 1 8 swatches of the positive electrode current collector 18 and the sub-part 2 8 swatches of the negative electrode current collector 2 8 are the second element which is an element different from the first element constituting the main part 18 3. including.
第 2元素は、 銅
Figure imgf000007_0002
ニッケル (1\1 丨) 、 鉄 ( 4 、 銀 (八 9) 、 金 (八リ) 、 パラジウム ( 〇〇 、 プラチナ ( ) 、 バナジウム (V) 、 チタン (丁 丨) 、 マンガン (IV! n) 、 コバルト (〇〇) 、 ジルコニウム ( 〇 、 シリコン (3 丨) 、 ゲルマニウム (◦ 6) 、 リチウム (1_ 丨) 、 及び 、 アルミニウム (八 丨) からなる群から選択された 1種以上の元素である。 ここで、 本明細書において、 「副部」 とは、 正極集電体あるいは負極集電 体において、 集電体の主成分として含まれる第 1元素とは異なる元素の濃度 分布が高くなっている箇所である。 従って、 正極集電体 1 八は、 主成分であ る主部 1 八 3からなる集電体中に副部 1 八 13が点在あるいは分散あるいは混 在する構成である。 副部 1 八匕は、 主部 1 八 3からなる集電体中に第 2元素 を含む元素が偏析することによって生成される。 同様に、 負極集電体 2八は 、 主成分である主部 2八 3からなる集電体中に副部 2八 13が点在あるいは分 散あるいは混在する構成である。 副部 2八匕は、 主部 2八 3からなる集電体 中に第 2元素を含む元素が偏析することによって生成される。 図 1 において 、 正極集電体 1 八及び負極集電体 2八の一部 (点線の円で示した箇所) を拡 大して、 主部からなる集電体中に副部が点在あるいは分散あるいは混在する 構成を示した。
The second element is copper
Figure imgf000007_0002
Nickel (1\1丨), Iron (4, Silver (89), Gold (8), Palladium (○○, Platinum (), Vanadium (V), Titanium (Cho), Manganese (IV!n)) , Cobalt (○○), zirconium (○, silicon (3 丨), germanium (◦ 6), lithium (1_ 丨), and aluminum (8 丨), at least one element selected from the group consisting of Here, in the present specification, the “subpart” means that the concentration distribution of an element different from the first element contained as the main component of the current collector in the positive electrode current collector or the negative electrode current collector is high. Therefore, the positive electrode current collector 18 has a structure in which the sub-parts 18 13 are scattered, dispersed or mixed in the current collector composed of the main part 18 3 which is the main component. The sub-portion 18 is generated by segregation of an element containing the second element in the current collector consisting of the main portion 18 3. Similarly, the negative electrode current collector 28 is the main component. Sub-parts 2 8 13 are scattered, scattered, or mixed in the current collector consisting of parts 2 8 3. The sub-part 2 8 s is the second part of the current collector consisting of the main part 2 8 3 . It is generated by the segregation of elements including elements In Figure 1, a part of the positive electrode current collector 18 and the negative electrode current collector 28 (the area indicated by the dotted circle) is expanded. In general, a configuration in which sub-parts are scattered, dispersed, or mixed in the current collector composed of the main part is shown.
第 1元素として用いられる元素と、 第 2元素として用いられる元素とで共 通する元素があるが、 主部と副部とは互いに異なる元素からなるものであり 、 同じ元素からなることはない。 There is an element common to the element used as the first element and the element used as the second element, but the main part and the sub-part are made of different elements, and are not the same element.
[0027] 正極集電体及び負極集電体がかかる構成を有すると、 全固体二次電池のサ イクル特性が良好になる。 この理由は現時点では定かではないが、 以下のよ うに推測している。 集電体は主成分として含まれる第 1元素とは異なる第 2 元素を含む副部を有することにより、 集電体内では電子伝導性が異なる箇所 ができる。 集電体内で電子伝導性が異なる箇所が存在することによって、 電 子の取り出され方に差が生じるため、 全固体二次電池のサイクル特性が良好 になる。 [0027] When the positive electrode current collector and the negative electrode current collector have such a configuration, the cycle characteristics of the all-solid secondary battery are improved. The reason for this is not clear at this point, but the following assumptions are made. Since the current collector has a sub-portion containing a second element different from the first element contained as the main component, a part having a different electron conductivity can be formed in the current collector. The presence of a part with different electron conductivity in the current collector causes a difference in how the electrons are taken out, which improves the cycle characteristics of the all-solid-state secondary battery.
[0028] 正極集電体 1 A及び負極集電体 2 Aのそれぞれにおいて、 第 1元素に対し て第 2元素の重量割合が 0. 0002以上、 20 %以下の範囲内であること が好ましい。 [0028] In each of the positive electrode current collector 1A and the negative electrode current collector 2A, the weight ratio of the second element to the first element is preferably in the range of 0.0002 or more and 20% or less.
かかる構成によれば、 全固体二次電池のサイクル特性がより良好となる。 第 1元素に対して第 2元素の重量割合が 0. 0002%未満ではサイクル特 性にはほとんど影響がない。 また、 20%を超えると集電体中の偏祈が多すぎ るため、 かえってサイクル特性が悪化するものと考えられる。 第 1元素に対 する第 2元素の重量割合は、 より好ましくは 1 5%以下であり、 さらに好ま しくは 1 0 %以下であり、 なお一層好ましくは 1 %以下である。 With this configuration, the cycle characteristics of the all-solid-state secondary battery become better. If the weight ratio of the second element to the first element is less than 0.0002%, the cycle characteristics are hardly affected. Also, if it exceeds 20%, there are too many prayers in the current collector, which may rather deteriorate the cycle characteristics. The weight ratio of the second element to the first element is more preferably 15% or less, still more preferably 10% or less, and even more preferably 1% or less.
[0029] 第 1元素に対する第 2元素の重量割合は公知の方法で得ることができる。 [0029] The weight ratio of the second element to the first element can be obtained by a known method.
例えば、 レーザー照射型誘導プラズマ質量分析 (L a s e r A b l a t i o n I n d u c t i v e l y Co u p l e d P l a s m a Ma s s For example, laser irradiation induced plasma mass spectrometry (L a s e r A b l a t i o n I n d u c t i v e l y Co u p l e d P l a s m a Ma s s
S p e c t r ome t r y : LA— I C P— MS) を用いて得ることがで きる。 L A— 丨 C P—MSを用いれば、 集電体の断面あるいは表面にレーザ 一光を集光して照射し、 蒸発 ·微粒子化し、 プラズマ内で分解、 イオン化し て、 生成したイオンを質量分析計で測定することにより、 第 1元素及び第 2 〇 2020/175630 7 卩(:171? 2020 /008067 Spectrome try :LA- ICP-MS). By using LA-CP-MS, a single laser beam is focused and irradiated on the cross-section or surface of the current collector to evaporate/particulate, decompose and ionize in plasma, and generate ions in a mass spectrometer. The first element and the second element 〇 2020/175 630 7 卩(: 171-1? 2020/008067
元素の重量を得ることができる。 レーザー光が照射された領域が分析対象と なるため、 レーザー光のスポッ ト径を絞り込んで集電体からの局所的な情報 を得ることができる。 また、 レーザー光のスポッ ト径が金属集電体の厚さよ り大きい場合であっても、 第 1金属元素と第 2金属元素との重量割合を比べ ることより正確な重量割合を得ることができる。 The weight of the element can be obtained. Since the region irradiated with laser light is the target of analysis, it is possible to obtain local information from the current collector by narrowing down the spot diameter of laser light. Even when the spot diameter of the laser beam is larger than the thickness of the metal current collector, an accurate weight ratio can be obtained by comparing the weight ratios of the first metal element and the second metal element. it can.
[0030] 正極集電体 1 八の副部 1 八匕及び負極集電体 2八の副部 2八匕の円面積換 算径 ¢1は、 〇. 5 以下であることが好ましい。 [0030] The circle area calculated diameter ¢1 of the sub-part 18 sq. of the positive electrode current collector 18 and the sub-part 28 sq. of the negative electrode current collector 28 is preferably 0.5 or less.
かかる構成によれば、 全固体二次電池のサイクル特性がより良好となる。 円面積換算径が〇. 5 より大きいと集電体中の偏祈が大きすぎるため 、 かえってサイクル特性が悪化するものと考えられる。 With this configuration, the cycle characteristics of the all-solid-state secondary battery become better. If the circle area conversion diameter is larger than 0.5, the bias in the current collector is too large, which may rather deteriorate the cycle characteristics.
[0031 ] 本明細書において 「円面積換算径」 とは、 集電体の任意の所定数 n枚 (例 えば、 n = 2) の断面の電子顕微鏡 (3巳 IV!) 像を得て、 各断面の 3巳 IV!像 において任意に所定数 個 (例えば、 ^ = 2 0) の各副部の像の面積 3とし 、 ¢1 = { ^ / %) 2 2で得られたものである。 上述の通り、 こうして得ら れた n c m個の副部の 「円面積換算径」 のうち、 最大径が〇. 5 以下で あることが好ましい。 [0031] In the present specification, the "circular area conversion diameter" means to obtain an electron microscope (3M IV!) image of a cross section of an arbitrary predetermined number n of current collectors (for example, n = 2), It is obtained with ¢1 = {^ / %) 2 2 where the area of 3 images of each subpart is arbitrarily set (eg, ^ = 20) in the 3M IV! image of each cross section. .. As described above, it is preferable that the maximum diameter is 0.5 or less among the “circular area conversion diameters” of the n cm sub parts thus obtained.
[0032] 正極集電体 1 八及び負極集電体 2八の厚さは限定するものではないが、 目 安を例示すれば、 〇. 5 以上 3 0 以下の範囲にある。 [0032] The thickness of the positive electrode current collector 18 and the negative electrode current collector 28 is not limited, but in the case of safety, it is in the range of 0.5 or more and 30 or less.
[0033] 正極活物質層 1 巳は、 正極集電体 1 八の片面又は両面に形成される。 例え ば、 全固体リチウムイオンニ次電池 1 〇〇の積層方向の最上層に位置する正 極層 1 には、 積層方向上側において対向する負極層 2が無い。 そのため、 全 固体リチウムイオンニ次電池 1 0 0の最上層に位置する正極層 1 において正 極活物質層 1 巳は、 積層方向下側の片面のみにあればよいが、 両面にあって も特に問題はない。 負極活物質層 2巳も正極活物質層 1 巳と同様に、 負極集 電体 2 の片面又は両面に形成される。 正極活物質層 1 巳及び負極活物質層 2巳の厚さは、 〇. 5 以上 5 . 0 以下の範囲にあることが好ましい 。 正極活物質層 1 巳及び負極活物質層 2巳の厚さを〇. 5 以上とするこ とによって、 全固体リチウムイオンニ次電池の電気容量を高くすることでで 〇 2020/175630 8 卩(:171? 2020 /008067 The positive electrode active material layer 1 is formed on one side or both sides of the positive electrode current collector 18. For example, the positive electrode layer 1, which is the uppermost layer in the stacking direction of the all-solid-state lithium-ion secondary battery 100, does not have the negative electrode layer 2 facing the stacking direction upper side. Therefore, the positive electrode active material layer 1 in the positive electrode layer 1, which is the uppermost layer of the all-solid-state lithium-ion secondary battery 100, need only be on one side on the lower side in the stacking direction. There is no. The negative electrode active material layer 2 is also formed on one side or both sides of the negative electrode current collector 2, similarly to the positive electrode active material layer 1. The thickness of the positive electrode active material layer 1 and the negative electrode active material layer 2 is preferably in the range of 0.5 or more and 5.0 or less. By increasing the thickness of the positive electrode active material layer 1 and the negative electrode active material layer 2 to 0.5 or more, the electric capacity of the all-solid-state lithium-ion secondary battery can be increased. 〇 2020/175630 8 卩(: 171-1?2020/008067
き、 一方、 厚さを 5. 0 以下とすることによって、 リチウムイオンの拡 散距離が短くなるため、 さらに全固体リチウムイオンニ次電池の内部抵抗を 低減させることができる。 On the other hand, by setting the thickness to be 5.0 or less, the diffusion distance of lithium ions is shortened, so that the internal resistance of the all-solid-state lithium-ion secondary battery can be further reduced.
[0034] 正極活物質層 1 巳及び負極活物質層 2巳は、 それぞれリチウムイオンと電 子を授受する正極活物質または負極活物質を含む。 この他、 導電助剤等を含 んでもよい。 正極活物質及び負極活物質は、 リチウムイオンを効率的に揷入 、 脱離できることが好ましい。 [0034] The positive electrode active material layer 1 and the negative electrode active material layer 2 each include a positive electrode active material or a negative electrode active material that exchanges lithium ions and electrons. In addition to this, a conductive auxiliary agent or the like may be included. It is preferable that the positive electrode active material and the negative electrode active material can efficiently insert and desorb lithium ions.
[0035] 正極活物質層 1 巳又は負極活物質層 2巳を構成する活物質には明確な区別 がなく、 2種類の化合物の電位を比較して、 より貴な電位を示す化合物を正 極活物質として用い、 より卑な電位を示す化合物を負極活物質として用いる ことができる。 そのため、 以下、 まとめて活物質について説明する。 [0035] There is no clear distinction between the active materials constituting the positive electrode active material layer 1 or the negative electrode active material layer 2 and the potentials of the two compounds are compared, and the compound showing a more noble potential is determined as the positive electrode. A compound showing a more base potential can be used as the negative electrode active material. Therefore, the active materials will be collectively described below.
[0036] 活物質には、 遷移金属酸化物、 遷移金属複合酸化物等を用いることができ る。 例えば、 遷移金属酸化物、 遷移金属複合酸化物としては、 リチウムマン ガン複合酸化物 1_ 丨 21\/^31\/131 -33 (0. 8£a£ ^ .1\/13=〇〇、
Figure imgf000010_0001
[0036] As the active material, a transition metal oxide, a transition metal composite oxide, or the like can be used. For example, as transition metal oxides and transition metal composite oxides, lithium manganese composite oxide 1_ 丨2 1\/^ 3 1\/13 1 -33 (0.8 £a £ ^ .1\/ 1 3 = 〇〇,
Figure imgf000010_0001
) 、 コバルト酸リチウム (1_ 丨 〇〇〇2) 、 ニッケル酸リチウム (1 - 丨 1\1 1 〇 2) 、 リチウムマンガンスピネル (1 - 丨 IV! n 24) 、 一般式: 1_ 丨 1\1 丨 〇〇 1\/1门 22 ( X + V + 2 = 1 % 0 £ X £ 1 % 0 £ V £ 1 X 0 £ å £ 1) で表さ れる複合金属酸化物、 リチウムバナジウム化合物 (!_ 丨 25) 、 オリビン
Figure imgf000010_0002
丁 し 八 丨、 「より選ばれる 1種類以上の元素) 、 リン酸バナジウムリチウ
Figure imgf000010_0003
), Lithium cobaltate (1_丨thousand 2), lithium nickelate (1 -丨1 \ 1 1 〇 2), lithium manganese spinel (1 -丨IV n 24), the general formula:! 1_丨1 \1 丨 〇 〇 1 \/1 门22 (X + V + 2 = 1 % 0 £ X £ 1 % 0 £ V £ 1 X 0 £ å £ 1) Lithium, a mixed metal oxide Vanadium compound (!_ 丨2 0 5 ), olivine
Figure imgf000010_0002
Tada Hachijo, “One or more elements selected from”, Lithium vanadium phosphate
Figure imgf000010_0003
Figure imgf000010_0004
〇〇、 1\1 丨) で表される!- 丨過剰系固溶体正極、 チタン酸リチ ウム (1_ 14丁 1 512) 、 ピロリン酸化合物!- 1 1 +>6 ?27 (〇£父£
Figure imgf000010_0005
Figure imgf000010_0004
〇〇, 1\1丨) is represented! -丨 Excess solid solution positive electrode, lithium titanate (1 _ 1 4 4 1 5 0 12 ), pyrophosphate compound!- 1 1 +> ( 6 ~ 2 0 7 (○ £ father £
Figure imgf000010_0005
I +リ +▽< 1. 1) で表される複合金属酸化物等が挙げられる。 I + Li + ▽ <1.1) and other complex metal oxides.
[0037] 正極集電体 1 及び負極集電体 2 は、 それぞれ正極活物質及び負極活物 質を含んでもよい。 それぞれの集電体に含まれる活物質の含有比は、 集電体 〇 2020/175630 9 卩(:171? 2020 /008067 The positive electrode current collector 1 and the negative electrode current collector 2 may include a positive electrode active material and a negative electrode active material, respectively. The content ratio of the active material contained in each current collector is 〇 2020/175 639 9 (: 171-1? 2020 /008067
として機能する限り特に限定はされない。 例えば、 正極集電体/正極活物質 、 又は負極集電体/負極活物質が体積比率で 90/1 0から 60/40の範 囲であることが好ましい。 There is no particular limitation as long as it functions as. For example, the volume ratio of the positive electrode current collector/positive electrode active material or the negative electrode current collector/negative electrode active material is preferably in the range of 90/10 to 60/40.
[0038] 正極集電体 1 及び負極集電体 2 がそれぞれ正極活物質及び負極活物質 を含むことにより、 正極集電体 1 八と正極活物質層 1 巳及び負極集電体 2八 と負極活物質層 2巳との密着性が向上する。 [0038] Since the positive electrode current collector 1 and the negative electrode current collector 2 include the positive electrode active material and the negative electrode active material, respectively, the positive electrode current collector 18 and the positive electrode active material layer 1 and the negative electrode current collector 28 and the negative electrode are formed. Adhesion with the active material layer 2 is improved.
[0039] (固体電解質層) (0039) (Solid electrolyte layer)
図 1 に示されるように、 固体電解質層 3は、 正極活物質層 1 巳と負極活物 質層 2巳との間に位置する層間固体電解質層 3八を有する。 As shown in FIG. 1, solid electrolyte layer 3 has interlayer solid electrolyte layer 38 located between positive electrode active material layer 1 and negative electrode active material layer 2.
固体電解質層 3は、 正極層 1 (正極集電体 1 八) 及び負極層 2 (負極集電 体 2八) のいずれか一方又は両方 (図 1 においては両方) の外側に位置する 最外固体電解質層 3巳を更に有してもよい。 ここで、 「外側」 とは、 積層体 The solid electrolyte layer 3 is the outermost solid located outside either or both of the positive electrode layer 1 (positive electrode current collector 18) and the negative electrode layer 2 (negative electrode current collector 28) (both in FIG. 1). The electrolyte layer 3 may be further provided. Here, the “outside” means a laminated body.
20の表面 5八、 5巳に最も近い正極層 1あるいは負極層 2の外側を意味す る。 It means the outer side of the positive electrode layer 1 or the negative electrode layer 2 that is closest to the surface 58 of the 20 and the 5th surface.
固体電解質層 3は、 最外固体電解質層 3巳を有さなくてもよく、 この場合 、 積層体 20の表面 5八、 5巳は、 正極層 1 または負極層 2となる。 The solid electrolyte layer 3 may not have the outermost solid electrolyte layer 3, and in this case, the surfaces 58 and 5 of the laminate 20 are the positive electrode layer 1 or the negative electrode layer 2.
[0040] 固体電解質層 3には、 電子の伝導性が小さく、 リチウムイオンの伝導性が 高い物質を用いるのが好ましい。 固体電解質は、 例えば、
Figure imgf000011_0001
〇. 51_ 丨 〇. 5丁 I 〇 3などのベロブスカイ ト型化合物や、 1_ 丨 l4Z n (06044などのリシ コン型化合物、
Figure imgf000011_0002
ト型化合物、 1_ 丨 「2
[0040] For the solid electrolyte layer 3, it is preferable to use a substance having low electron conductivity and high lithium ion conductivity. The solid electrolyte is, for example,
Figure imgf000011_0001
〇. 5 1_丨〇. Berobusukai preparative compounds such as 5 chome I 〇 3 and, 1_丨l4 Z n (060 4) 4 Rishi Con type compounds such as,
Figure imgf000011_0002
G-type compound, 1_丨“ 2
( 1^ 〇 4) 3、 し I 1. 3 八 I 0 3 丁 1 I 7 ( 〇 4) 3やし ; 1. 5 八 I 0 5 ^ 6 1. 5(1^ 〇 4) 3, then I 1.3 8 I 0 3 chome 1 I 7 (〇 4) 3 palm; 1.5 8 I 0 5 ^ 6 1. 5
( 〇43などのナシコン型化合物、 !- 丨 3. 25〇6〇. 25 〇. 7534や 1_ 13 34などのチオリシコン型化合物、 1_ 1 23- 235や 1_ 1 2〇ー 25-(〇 4 ) 3, such as Nasicon-type compounds,! -...丨3 25 Rei_6_rei 2575 3 4 or 1 _ 1 3 3 4 Chiorishikon type compounds such as, 1_ 1 2 3 2 3 5 and 1_ 1 2 〇 - 25 -
3 I 〇 2などのガラス化合物、 1- 1 34や1_ I 3. 53 I〇. 5 〇. 54や 1_ 1 2. 93. 3 1\1 〇. 46などのリン酸化合物、 よりなる群から選択される少なくと も _種であることが望ましい。 3 I 〇 2 glass compounds such as 1-1 34 and 1_ I 3. 5 3 I_〇. 5 〇. 54 and 1_ 1 2.93. 3 1 \ 1 〇. Phosphorus, such as 46 Desirably it is at least a species selected from the group consisting of acid compounds.
[0041] 固体電解質層 3は、 正極層 1及び負極層 2に用いられる活物質に合わせて 選択することが好ましい。 例えば、 固体電解質層 3は、 活物質を構成する元 〇 2020/175630 10 卩(:171? 2020 /008067 [0041] The solid electrolyte layer 3 is preferably selected according to the active materials used for the positive electrode layer 1 and the negative electrode layer 2. For example, the solid electrolyte layer 3 is a component of the active material. 〇 2020/175 630 10 卩 (:171? 2020 /008067
素と同一の元素を含むことがより好ましい。 固体電解質層 3が、 活物質を構 成する元素と同一の元素を含むことで、 正極活物質層 1 巳及び負極活物質層 2巳と固体電解質層 3との界面における接合が、 強固なものになる。 また正 極活物質層 1 巳及び負極活物質層 2巳と固体電解質層 3との界面における接 触面積を広くできる。 It is more preferable to contain the same element as the element. Since the solid electrolyte layer 3 contains the same elements as the constituent elements of the active material, the bonding at the interface between the positive electrode active material layer 1 and the negative electrode active material layer 2 and the solid electrolyte layer 3 is strong. become. Further, the contact area at the interface between the positive electrode active material layer 1 and the negative electrode active material layer 2 and the solid electrolyte layer 3 can be widened.
[0042] 層間固体電解質層 3八の厚さは、 〇. 5 以上 2〇. 〇 以下の範囲 にあることが好ましい。 層間固体電解質層 3八の厚さを〇. 5 以上とす ることによって、 正極層 1 と負極層 2との短絡を確実に防止することができ 、 また厚さを 2 0 . 0 以下とすることによって、 リチウムイオンの移動 距離が短くなるため、 さらに全固体リチウムイオンニ次電池の内部抵抗を低 減させることができる。 [0042] The thickness of the inter-layer solid electrolyte layer 38 is preferably in the range of not less than 0.5 and not more than 20. By setting the thickness of the inter-layer solid electrolyte layer 38 to be 0.5 or more, it is possible to reliably prevent a short circuit between the positive electrode layer 1 and the negative electrode layer 2, and to set the thickness to 20.0 or less. As a result, the migration distance of lithium ions is shortened, and the internal resistance of the all-solid-state lithium-ion secondary battery can be further reduced.
[0043] 最外固体電解質層 3巳の厚さは、 特に制限されないが、 例えば、 目安を例 示すれば、 2 0 以上 1 0 0 以下であることが好ましい。 2 0 111以 上の厚みを有する場合、 積層体 2 0の表面 5八、 5巳に最も近い正極層 1あ るいは負極層 2が焼成工程における雰囲気の影響により酸化されにくく、 容 量が高い全固体リチウムイオンニ次電池となる。 また、 1 0 0 以下の厚 みとすれば、 高温高湿といった環境下においても十分な耐湿性が確保され信 頼性が高くかつ体積エネルギー密度が高い全固体リチウムイオンニ次電池と なる。 [0043] The thickness of the outermost solid electrolyte layer 3 is not particularly limited, but, for example, as a guide, it is preferably 20 or more and 100 or less. When the thickness is 20 111 or more, the positive electrode layer 1 or the negative electrode layer 2 which is closest to the surfaces 58 and 5 of the laminate 20 is less likely to be oxidized due to the influence of the atmosphere in the firing process and has a high capacity. It becomes an all-solid-state lithium-ion secondary battery. Further, if the thickness is 100 or less, the all-solid-state lithium-ion secondary battery will have sufficient moisture resistance even under the environment of high temperature and high humidity, high reliability, and high volume energy density.
[0044] (マージン層) [0044] (Margin layer)
積層体 2 0は、 図 1 に示すように、 固体電解質を含むと共に、 正極層 1お よび負極層 2のそれぞれに並んで配置するマージン層 4を備えてもよい。 マージン層 4は、 層間固体電解質層 3八と正極層 1 との段差、 ならびに層 間固体電解質層 3八と負極層 2との段差を解消するために設けることが好ま しい。 したがってマージン層 4は、 固体電解質層 3の主面において、 正極層 1ならびに負極層 2以外の領域に、 正極層 1 または負極層 2と略同等の高さ で (すなわち、 正極層 1および負極層 2のそれぞれに並んで配置するように ) 形成される。 マージン層 4の存在により、 固体電解質層 3と正極層 1なら 〇 2020/175630 1 1 卩(:171? 2020 /008067 As shown in FIG. 1, the laminate 20 may include a solid electrolyte and may include a margin layer 4 arranged side by side with each of the positive electrode layer 1 and the negative electrode layer 2. The margin layer 4 is preferably provided to eliminate the step between the inter-layer solid electrolyte layer 38 and the positive electrode layer 1, and the step between the inter-layer solid electrolyte layer 38 and the negative electrode layer 2. Therefore, the margin layer 4 has substantially the same height as the positive electrode layer 1 or the negative electrode layer 2 in the area other than the positive electrode layer 1 and the negative electrode layer 2 on the main surface of the solid electrolyte layer 3 (that is, the positive electrode layer 1 and the negative electrode layer 2). 2) to be placed side by side on each. Due to the presence of margin layer 4, solid electrolyte layer 3 and positive electrode layer 1 〇 2020/175 630 1 1 卩 (:171? 2020 /008067
びに固体電解質層 3と負極層 2との段差が解消されるため、 固体電解質層 3 と各電極層との緻密性が高くなり、 全固体電池の焼成による層間剥離 (デラ ミネーシヨン) や反りが生じにくくなる。 In addition, since the steps between the solid electrolyte layer 3 and the negative electrode layer 2 are eliminated, the solid electrolyte layer 3 and each electrode layer are highly dense, and delamination or warpage occurs due to firing of the all-solid-state battery. It gets harder.
[0045] マージン層 4を構成する材料は、 特に限定されないが後述する焼成工程に おいて、 固体電解質 3と熱収縮挙動が類似している材料を含むことが好まし い。 例えば、 固体電解質 3がリン酸チタンアルミニウムリチウム 1_ 丨 1 + ^ I 丁 ( 〇43 (0 £父£〇. 6) であれば、 マージン層 4もリン酸チ タンアルミニウムリチウム 1_ 1 1 + ^ I , 7 I 2 _ , ( 〇43 (0 £父£ 0 ·The material forming the margin layer 4 is not particularly limited, but it is preferable to include a material having a heat shrinkage behavior similar to that of the solid electrolyte 3 in the firing step described later. For example, if the solid electrolyte 3 is lithium aluminum aluminum phosphate 1_丨1 + ^ I D (0 4 ) 3 (0 £ father £ 0 .6), the margin layer 4 is also lithium aluminum lithium phosphate 1_ 1 1 +. ^ I ,7 I 2 _ ,( 〇 4 ) 3 (0 £ father £ 0 ·
6) を含んでいることが好ましい。 固体電解質 3とマージン層 4が同一の材 料で構成されているため熱収縮差による亀裂 (クラック) が生じにくく、 固 体電解質 3とマージン層 4の界面接合が良好となる。 また、 マージン層 4は 固体電解質以外の材料を含んでいてもよく、 マージン層 4を構成する材料と して、 例えば正極活物質 1 巳又は負極活物質層 2巳を構成する活物質材料、 焼結性改善に効果があるガラス材料 (巳 丨 2 0 3. 3 I 〇2、 巳23、 Z n〇な どを含む) などがあげられる。 6) is preferably included. Since the solid electrolyte 3 and the margin layer 4 are made of the same material, cracks due to the difference in heat shrinkage are unlikely to occur, and the solid electrolyte 3 and the margin layer 4 have good interfacial bonding. Further, the margin layer 4 may include a material other than the solid electrolyte, and as the material forming the margin layer 4, for example, the active material material forming the positive electrode active material 1 or the negative electrode active material layer 2 can be used. glass material is effective in binding improvement (Snake丨2 0 3. 3 I 〇 2, including etc. Snake 23, Z N_〇) and the like, such as.
[0046] (端子) [0046] (terminal)
全固体リチウムイオンニ次電池 1 0 0の第 1外部端子 6及び第 2外部端子 7には、 導電率が高い材料を用いることが好ましい。 例えば、 銀 (八 9) 、 金 (八リ) 、 プラチナ ( 1:) 、 アルミニウム (八 丨) 、 銅 (〇リ) 、 スズ (3 n) 、 ニッケル (1\1 丨) 、 クロム (〇 〇 を用いることができる。 端子 は、 単層でも複数層でもよい。 For the first external terminal 6 and the second external terminal 7 of the all-solid-state lithium ion secondary battery 100, it is preferable to use a material having high conductivity. For example, silver (eight 9), gold (Hachiri), platinum (1 :), aluminum (eight丨), copper (〇 Li), tin (3 n), nickel (1 \ 1丨), chromium (O O The terminal may be a single layer or multiple layers.
[0047] (保護層) [0047] (Protective layer)
全固体リチウムイオンニ次電池 1 〇〇は、 積層体 2 0や端子を電気的、 物 理的、 化学的に保護する保護層 (図示せず) を積層体 2 0の外周に有しても よい。 保護層を構成する材料としては絶縁性、 耐久性、 耐湿性に優れ、 環境 的に安全であることが好ましい。 例えば、 ガラスやセラミックス、 熱硬化性 樹脂や光硬化性樹脂を用いるのが好ましい。 保護層の材料は 1種類だけでも 良いし、 複数を併用してもよい。 また、 保護層は単層でもよいが、 複数層備 〇 2020/175630 12 卩(:171? 2020 /008067 The all-solid-state lithium-ion secondary battery 100 may have a protective layer (not shown) for electrically, physically and chemically protecting the laminated body 20 and terminals on the outer periphery of the laminated body 20. .. The material forming the protective layer is preferably excellent in insulating property, durability, moisture resistance and environmentally safe. For example, it is preferable to use glass, ceramics, thermosetting resin, or photocurable resin. The material of the protective layer may be only one kind or a combination of plural kinds. In addition, the protective layer may be a single layer 〇 2020/175 630 12 boxes (:171? 2020 /008067
えていた方が好ましい。 その中でも熱硬化性樹脂とセラミックスの粉末を混 合させた有機無機ハイブリッ トが特に好ましい。 It is preferable to have it. Among them, an organic-inorganic hybrid obtained by mixing a thermosetting resin and a ceramic powder is particularly preferable.
[0048] (全固体リチウムイオンニ次電池の製造方法) (Method for manufacturing all-solid-state lithium-ion secondary battery)
全固体リチウムイオンニ次電池 1 0 0の製造方法は、 同時焼成法を用いて もよいし、 逐次焼成法を用いてもよい。 同時焼成法は、 各層を形成する材料 を積層し、 一括焼成により積層体を作製する方法である。 逐次焼成法は、 各 層を順に作製する方法であり、 各層を作製する毎に焼成工程が入る。 同時焼 成法を用いた方が、 全固体リチウムイオンニ次電池 1 〇〇の作業工程を少な くすることができる。 また同時焼成法を用いた方が、 得られる積層体 2 0が 緻密になる。 以下、 同時焼成法を用いる場合を例に説明する。 The all-solid-state lithium-ion secondary battery 100 may be manufactured by the simultaneous firing method or the sequential firing method. The co-firing method is a method in which the materials forming the respective layers are laminated, and a laminated body is produced by simultaneous firing. The sequential firing method is a method of sequentially producing each layer, and a firing step is performed each time each layer is produced. The simultaneous baking method can reduce the work steps of the all-solid-state lithium-ion secondary battery 100. Further, when the co-firing method is used, the obtained laminated body 20 becomes denser. Hereinafter, the case of using the simultaneous firing method will be described as an example.
[0049] 同時焼成法は、 積層体 2 0を構成する各材料のペーストを作成する工程と 、 ぺーストを塗布乾燥してグリーンシートを作製する工程と、 グリーンシー 卜を積層し、 作製した積層体を同時焼成する工程とを有する。 [0049] The co-firing method includes a step of forming a paste of each material constituting the laminated body 20, a step of applying a paste and drying the paste to produce a green sheet, and a step of laminating a green sheet And simultaneously firing the body.
[0050] まず積層体 2 0を構成する正極集電体 1 八、 正極活物質層 1 巳、 固体電解 質層 3、 負極活物質層 2巳、 負極集電体 2八、 及び、 マージン層 4の各材料 をペースト化する。 [0050] First, the positive electrode current collector 18 constituting the laminate 20, the positive electrode active material layer 1 m, the solid electrolyte layer 3, the negative electrode active material layer 2 m, the negative electrode current collector 28, and the margin layer 4 Paste each material of.
[0051 ] 正極集電体 1 八及び負極集電体 2八は、 通常の方法で集電体用べーストを 作製した場合、 副部 1 及び 2 を構成する第 2元素は焼成後、 活物質 層、 固体電解質層に拡散してしまい、 集電体には残らず、 偏祈を形成するこ とができない。 [0051] When the positive electrode current collector 18 and the negative electrode current collector 28 are used to prepare a current collector base material by the usual method, the second element constituting the sub-parts 1 and 2 is the active material after firing. The layer diffuses into the solid electrolyte layer and remains on the current collector, so that it cannot form a bias.
そこで、 集電体の主部 1 八 3及び 2八 3を構成する第 1元素を含む粉末に 副部 1 八匕及び 2八匕を構成する第 2元素を含む粉末をコーティングするこ とにより、 焼成後においても、 集電体に残り、 副部 1 及び 2 を形成 する。 コーティング方法としては、 後述する実施例で用いたレジネート (有 機金属溶液) 法だけでなく、 その他の公知のコーティング手法を用いてもよ い。 Therefore, by coating the powder containing the first element forming the main parts 18 3 and 2 8 3 of the current collector with the powder containing the second element forming the sub parts 1 8 and 2 8 Even after firing, it remains on the current collector and forms sub-parts 1 and 2. As a coating method, not only the resinate (organic metal solution) method used in the examples described below, but also other known coating methods may be used.
副部の大きさや量をかえる手法として例えば、 はじめに偏析させる元素が 多量に付いた (コーティングの厚みが厚い) 集電体元素粉末を作製し、 この 〇 2020/175630 13 卩(:171? 2020 /008067 As a method of changing the size and amount of the sub-portion, for example, first, prepare a current collector element powder with a large amount of segregating element (thick coating), 〇 2020/175 630 13 卩(:171? 2020/008067
コーティングされた集電体元素粉末と、 コーティングされていない集電体元 素粉末とを混合し、 副部の大きさや量に応じて、 コーティングされた集電体 元素粉末とコーティングされていない集電体元素粉末の割合を変えるという 手法を用いることができる。 The coated current collector element powder and the uncoated current collector element powder are mixed, and the coated current collector element powder and the uncoated current collector element powder are mixed depending on the size and amount of the sub-part. A method of changing the ratio of the body element powder can be used.
[0052] ペースト化の方法は、 特に限定されない。 例えば、 ビヒクルに各材料の粉 末を混合してペーストが得られる。 ここで、 ビヒクルとは、 液相における媒 質の総称である。 ビヒクルには、 溶媒、 バインダーが含まれる。 かかる方法 により、 正極集電体 1 八用のペースト、 正極活物質層 1 巳用のペースト、 固 体電解質層 3用のペースト、 負極活物質層 2巳用のペースト、 及び、 負極集 電体 2八用のぺースト、 マージン層 4用のぺーストを作製する。 [0052] The pasting method is not particularly limited. For example, a paste is obtained by mixing powder of each material with a vehicle. Here, the vehicle is a generic term for media in the liquid phase. The vehicle includes a solvent and a binder. By such a method, the paste for the positive electrode current collector 18; the paste for the positive electrode active material layer 1; the paste for the solid electrolyte layer 3; the paste for the negative electrode active material layer 2; and the negative electrode current collector 2 Make a paste for eight and a paste for margin layer 4.
[0053] 次いで、 グリーンシートを作製する。 グリーンシートは、 作製したぺース 卜を 巳丁 (ポリエチレンテレフタラート) などの基材上に所望の順序で塗 布し、 必要に応じ乾燥させた後、 基材を剥離し、 得られる。 ペーストの塗布 方法は、 特に限定されない。 例えば、 スクリーン印刷、 塗布、 転写、 ドクタ —ブレード等の公知の方法を探用することができる。 Next, a green sheet is produced. The green sheet is obtained by applying the prepared paste onto a base material such as a knife (polyethylene terephthalate) in a desired order, drying it if necessary, and then peeling the base material. The method of applying the paste is not particularly limited. For example, known methods such as screen printing, coating, transfer, doctor blade, etc. can be used.
[0054] 積層体 2 0を作製するに際し、 以下に説明する正極ユニッ ト及び負極ユニ ッ トを準備し、 積層体を作製することができる。 When producing the laminate 20, the positive electrode unit and the negative electrode unit described below can be prepared to produce the laminate.
[0055] まず 巳丁フィルム上に固体電解質層 3用ペーストをドクターブレード法 でシート状に形成し、 乾燥して固体電解質層シートを形成する。 得られた固 体電解質層シート上に、 スクリーン印刷により正極活物質層 1 巳用べースト を印刷、 乾燥し、 正極活物質層 1 巳を形成する。 [0055] First, a paste for solid electrolyte layer 3 is formed into a sheet shape on a knife film by a doctor blade method, and dried to form a solid electrolyte layer sheet. On the obtained solid electrolyte layer sheet, a paste for a positive electrode active material layer 1 is printed by screen printing and dried to form a positive electrode active material layer 1.
[0056] 次いで、 作製された正極活物質層 1 巳上に、 スクリーン印刷により正極集 電体 1 八用べーストを印刷、 乾燥し、 正極集電体 1 八を形成する。 更にその 上に、 スクリーン印刷により正極活物質層 1 巳用ペーストを再度印刷し、 乾 燥する。 そして、 正極層 1以外の固体電解質層シートの領域に、 マージン層 4用べーストをスクリーン印刷し、 乾燥することで正極層 1 と略同等の高さ のマージン層 4を形成する。 そして、 巳丁フィルムを剥離することで、 固 体電解質層 3の主面に、 正極活物質層 1 巳/正極集電体 1 八/正極活物質層 〇 2020/175630 14 卩(:171? 2020 /008067 [0056] Next, the produced positive electrode active material layer 1 bottom is printed with a screen for a positive electrode current collector 18 by screen printing and dried to form a positive electrode current collector 18. Furthermore, a paste for the positive electrode active material layer 1 is printed again on the screen by screen printing and dried. Then, in the region of the solid electrolyte layer sheet other than the positive electrode layer 1, the margin layer 4 is screen-printed and dried to form the margin layer 4 having a height substantially equal to that of the positive electrode layer 1. Then, by peeling off the knife film, the positive electrode active material layer 1/positive electrode current collector 18/positive electrode active material layer is formed on the main surface of the solid electrolyte layer 3. 〇 2020/175 630 14 卩 (:171? 2020 /008067
1 巳がこの順で積層された正極層 1 とマージン層 4とが形成された正極ユニ ッ トが得られる。 A positive electrode unit is obtained in which the positive electrode layer 1 and the margin layer 4 in which the first layer is laminated in this order are formed.
[0057] 同様の手順にて、 固体電解質層 3の主面に、 負極活物質層 2巳/負極集電 体 2八/負極活物質層 2巳がこの順に積層された負極層 2とマージン層 4と が形成された負極ユニッ トが得られる。 [0057] By the same procedure, the negative electrode layer 2 and the margin layer in which the negative electrode active material layer 2 /negative electrode current collector 28 /negative electrode active material layer 2 were laminated in this order on the main surface of the solid electrolyte layer 3 A negative electrode unit having 4 and 4 is obtained.
[0058] そして正極ユニッ トと負極ユニッ トを交互にそれぞれの一端が一致しない ようにオフセッ トを行い積層し、 全固体電池の積層体が作製される。 なお、 積層体の積層方向の両端に配置する正極ユニッ トあるいは負極ユニッ トにつ いては、 固体電解質層 3はそれぞれ、 最外固体電解質層 3巳を用い、 その間 に配置する正極ユニッ トあるいは負極ユニッ トについては、 固体電解質層 3 はそれぞれ、 層間固体電解質層 3八を用いる。 [0058] Then, the positive electrode unit and the negative electrode unit are alternately stacked and stacked so that one ends thereof do not coincide with each other, and a stacked body of an all-solid-state battery is manufactured. Regarding the positive electrode unit or the negative electrode unit placed at both ends in the stacking direction of the stack, the solid electrolyte layer 3 uses the outermost solid electrolyte layer 3 and the positive electrode unit or the negative electrode unit placed between them. For the unit, the solid electrolyte layer 3 uses the inter-layer solid electrolyte layer 38, respectively.
[0059] 前記製造方法は、 並列型の全固体電池を作製するものであるが、 直列型の 全固体電池の製造方法は、 正極層 1の一端と負極層 2の一端とが一致するよ うに、 つまりオフセッ トを行わないで積層すれば良い。 [0059] Although the manufacturing method is to manufacture a parallel type all-solid-state battery, the manufacturing method of the series-type all-solid-state battery is such that one end of the positive electrode layer 1 and one end of the negative electrode layer 2 are aligned. In other words, stacking may be performed without performing offset.
[0060] さらに、 作製した積層体を一括して金型プレス、 温水等方圧プレス \ ) 、 冷水等方圧プレス (〇 I ) 、 静水圧プレスなどで加圧し、 密着性を 高めることができる。 加圧は加熱しながら行う方が好ましく、 例えば 4 0〜 9 5 °〇で実施することができる。 [0060] Furthermore, the produced laminates can be collectively pressed with a die press, a hot water isotropic press \), a cold water isotropic press (〇I), a hydrostatic press, etc. to improve the adhesion. .. It is preferable to apply pressure while heating, and for example, it can be performed at 40 to 95°.
[0061 ] 作製した積層体は、 ダイシング装置を用いてチップに切断し、 次いで脱バ イおよび焼成することにより全固体電池の積層体が製造される。 [0061] The produced laminated body is cut into chips using a dicing device, and then de-baked and fired to produce an all-solid-state battery laminated body.
[0062] 作製した積層体 2 0をセラミック台上に載置し、 例えば、 窒素雰囲気下で [0062] The manufactured laminated body 20 is placed on a ceramic table, and, for example, in a nitrogen atmosphere.
6 0 0 °〇〜 1 0 0 0 °〇に加熱し焼成を行うことにより焼結体を得る。 焼成時 間は、 例えば、 〇. 1〜 3時間とする。 還元雰囲気であれば、 窒素雰囲気の 代わりに、 例えば、 アルゴン雰囲気、 窒素水素混合雰囲気で焼成を行っても よい。 A sintered body is obtained by heating to 600° to 1000° and firing. The firing time is, for example, 0.1 to 3 hours. If it is a reducing atmosphere, firing may be performed in an argon atmosphere or a nitrogen-hydrogen mixed atmosphere instead of the nitrogen atmosphere.
[0063] 焼成工程の前に、 焼成工程とは別の工程として脱バインダー処理を行うこ とができる。 [0063] Before the firing step, a binder removal treatment can be performed as a step different from the firing step.
焼成前に積層体 2 0に含まれるバインダー成分を加熱分解することで、 焼 〇 2020/175630 15 卩(:171? 2020 /008067 By firing and decomposing the binder component contained in the laminate 20 before firing, firing is performed. 〇 2020/175 630 15 卩 (:171? 2020 /008067
成工程におけるバインダー成分の急激な分解を抑制することができる。 脱バ インダー処理は、 例えば、 窒素雰囲気下で 3 0 0 °〇~ 8 0 0 °〇の範囲の温度 で、 〇. 1〜 1 0時間にわたって行われる。 還元雰囲気であれば、 窒素雰囲 気の代わりに、 例えば、 アルゴン雰囲気、 窒素水素混合雰囲気で焼成を行っ てもよい。 It is possible to suppress the rapid decomposition of the binder component in the forming step. The debinding treatment is performed, for example, in a nitrogen atmosphere at a temperature in the range of 300° to 800°° for 0.1 to 10 hours. If it is a reducing atmosphere, the firing may be performed in an argon atmosphere or a nitrogen-hydrogen mixed atmosphere instead of the nitrogen atmosphere.
[0064] 焼結体をアルミナなどの研磨材とともに円筒型の容器に入れ、 バレル研磨 してもよい。 [0064] The sintered body may be placed in a cylindrical container together with an abrasive such as alumina and barrel-polished.
これにより積層体の角の面取りをすることができる。 そのほかの方法とし てサンドプラストにて研磨しても良い。 この方法では特定の部分のみを削る ことができるため好ましい。 This makes it possible to chamfer the corners of the laminate. Alternatively, sandblast may be used for polishing. This method is preferable because only a specific portion can be removed.
[0065] (端子形成) [0065] (Terminal formation)
焼結した積層体 2 0 (焼結体) に第 1外部端子 6と第 2外部端子 7をつけ る。 第 1外部端子 6及び第 2外部端子 7は、 正極集電体 1 と負極集電体 2 八にそれぞれ電気的に接触するよう形成する。 例えば、 焼結体の側面から露 出した正極集電体 1 八と負極集電体 2八に対しスバッタ法、 ディッビング法 、 スプレーコート法等の公知の手段により形成できる。 Attach the first external terminal 6 and the second external terminal 7 to the sintered laminated body 20 (sintered body). The first external terminal 6 and the second external terminal 7 are formed so as to be in electrical contact with the positive electrode current collector 1 and the negative electrode current collector 28, respectively. For example, the positive electrode current collector 18 and the negative electrode current collector 28 exposed from the side surface of the sintered body can be formed by a known means such as a slaughter method, a diving method, or a spray coating method.
所定の部分にのみ形成する場合は、 例えばテープにてマスキング等を施し てから形成する。 When forming only on a predetermined part, masking or the like is performed with tape, for example.
[0066] 以上、 本発明の実施形態について図面を参照して詳述したが、 各実施形態 における各構成及びそれらの組み合わせ等は一例であり、 本発明の趣旨から 逸脱しない範囲内で、 構成の付加、 省略、 置換、 及びその他の変更が可能で ある。 Although the embodiments of the present invention have been described in detail above with reference to the drawings, the configurations and combinations thereof in each of the embodiments are merely examples, and the configurations of the configurations are not departing from the scope of the present invention. Additions, omissions, substitutions, and other changes are possible.
実施例 Example
[0067] [実施例 1 ] [0067] [Example 1]
(固体電解質層用ペーストの作製) (Preparation of solid electrolyte layer paste)
3 八 I 〇. 3 丁 丨 7 ( 〇 4) 3の粉末 1 0 0部に対して、 溶媒として エタノール 1 0 0部、 トルエン 2 0 0部をボールミルで加えて湿式混合した 。 その後、 バインダーとしてポリビニールプチラール系バインダー 1 6部と 〇 2020/175630 16 卩(:171? 2020 /008067 Relative to trioctahedral I 〇. 3 chome丨7 (〇 4) 3 powder 1 0 0 parts ethanol 1 0 0 parts solvent were wet-mixed toluene 2 0 0 parts added in a ball mill. After that, as a binder, 1 part of polyvinyl butyral binder was added. 〇 2020/175 630 16 卩(:171? 2020/008067
、 可塑剤としてフタル酸ベンジルプチル 4 . 8部をさらに投入し、 混合して 固体電解質層ペーストとして調製した。 Then, 4.8 parts of benzylputyl phthalate was added as a plasticizer and mixed to prepare a solid electrolyte layer paste.
この固体電解質層用ぺーストをドクターブレード法で 巳丁フィルムを基 材としてシート成形し、 最外固体電解質層シート、 及び、 層間固体電解質層 シートを得た。 最外固体電解質層シート及び層間固体電解質層シートの厚さ はいずれも 1 5 とした。 This paste for solid electrolyte layer was formed into a sheet by a doctor blade method using a knife film as a base material to obtain an outermost solid electrolyte layer sheet and an interlayer solid electrolyte layer sheet. The outermost solid electrolyte layer sheet and the interlayer solid electrolyte layer sheet each had a thickness of 15.
[0068] (正極活物質層用ペーストおよび負極活物質層用ペーストの作製) (Production of Positive Electrode Active Material Layer Paste and Negative Electrode Active Material Layer Paste)
正極活物質層用ペースト及び負極活物質層用ペーストは、 活物質である 1- 1 3 2 ( 〇43の粉末 1 0 0部に対して、 バインダーとしてエチルセルロ —ス 1 5部と、 溶媒としてジヒドロターピネオール 6 5部とを加えて、 混合 -分散して正極活物質層用ペースト及び負極活物質層用べーストを作製した The positive electrode active material layer paste and the negative electrode active material layer paste for a the active material 1- 1 3 2 (〇 4) 3 powder 1 0 0 parts ethylcellulose as a binder - a scan 1 5 parts solvent 6 parts by weight of dihydroterpineol was added and mixed-dispersed to prepare a positive electrode active material layer paste and a negative electrode active material layer paste.
[0069] (正極集電体用ペーストおよび負極集電体用ペーストの作製) (Production of Positive Electrode Current Collector Paste and Negative Current Collector Paste)
コーティング剤である Vレジネートを有機溶媒中に溶解させ、 ついで〇リ 粉末を加え、 十分に撹拌した。 この混合溶液を乾燥して、 揮発成分を除去し 、 さらに 2 0 0 °〇で熱処理することにより、 〇リ粉末の表面に Vがコーティ ングされた〇リ粉末を得た。 〇リ粉末の表面をコーティングした Vの量は、 The V resinate, which is a coating agent, was dissolved in an organic solvent, and then ◯ powder was added, followed by thorough stirring. This mixed solution was dried to remove volatile components, and further heat-treated at 200° 〇 to obtain ◯ powder having V coated on the surface of ◯ powder. 〇The amount of V coating the surface of the powder is
〇リ 1 0 0重量部に対して金属換算で 0 . 0 0 1重量部となるようにした。 こ のようにして得られたコーティング〇リ粉末と !_ 丨 3 ^ 2 ( 〇43粉末とを 体積比率で 6 0 : 4 0となるように混合した後、 この混合粉末 1 0 0重量部 に対して、 バインダーとしてエチルセルロース 1 0重量部と、 溶媒としてジ ヒドロターピネオール 5 0重量部を加えて三本口ールで混練 ·分散して集電 体ペーストを作製した。 ○ It was set to be 0.0001 parts by weight in terms of metal with respect to 100 parts by weight. The coating powder obtained in this way and !_ 丨3 ^ 2 (〇 4 ) 3 powder were mixed in a volume ratio of 60:40, and then 100 parts by weight of this mixed powder. To the parts, 10 parts by weight of ethyl cellulose as a binder and 50 parts by weight of dihydroterpineol as a solvent were added, and the mixture was kneaded and dispersed in a three-necked mixture to prepare a current collector paste.
[0070] (マージン層用ぺーストの作製) [0070] (Production of paste for margin layer)
マージン層用べーストは!- 丨 3八 丨 〇. 3丁 丨 ァ ( 〇43の粉末 1 〇〇 部に対して、 バインダーとしてエチルセルロース 1 5咅6と、 溶媒としてジヒ ドロターピネオール 6 5部とを加えて、 混合 ·分散してマージン層用ぺース 卜を作製した。 〇 2020/175630 17 卩(:171? 2020 /008067 Beast for margin layer! -1 part of powder of 3 3 8 parts of 0.3 3 parts of ( 4 ) 3 to 15 parts of ethyl cellulose as a binder and 6 parts of dihydroterpineol as a solvent, and mixed. Dispersed to produce a margin layer space. 〇 2020/175 630 17 卩(:171? 2020/008067
[0071 ] (電極ユニッ トの作製) [0071] (Preparation of electrode unit)
正極ユニッ ト及び負極ユニッ トを以下の通り作製した。 A positive electrode unit and a negative electrode unit were produced as follows.
上記の固体電解質層シート上に、 スクリーン印刷により厚さ 5 で活物 質用べーストを印刷した。 次に、 印刷した活物質用べーストを 8 0 °〇で 5分 間乾燥し、 その上に、 スクリーン印刷により厚さ 5 で集電体用べースト を印刷した。 次に、 印刷した集電体用べーストを 8 0 °◦で 5分間乾燥し、 更 にその上に、 スクリーン印刷により厚さ 5 で活物質用ペーストを再度印 刷した。 印刷した活物質ペーストを 8 0 °◦で 5分間乾燥し、 次いで、 電極層 以外の固体電解質シートの領域に、 マージン層ぺーストをスクリーン印刷し た。 印刷したマージン層べーストを 8 0 °〇で 5分間乾燥し、 電極層と略同等 の高さのマージン層を形成した後、 巳丁フィルムを剥離した。 このように して、 固体電解質層シート上に、 活物質層/集電体/活物質層がこの順で積 層された電極層 (正極層又は負極層) とマージン層とが形成された電極 (正 極又は負極) ユニッ トのシートを得た。 On the above-mentioned solid electrolyte layer sheet, a screen for active material was printed with a thickness of 5 by screen printing. Next, the printed paste for active material was dried at 80 ° 〇 for 5 minutes, and the paste for current collector was printed thereon with a thickness of 5 by screen printing. Next, the printed current collector paste was dried at 80 ° for 5 minutes, and the active material paste was again printed thereon with a thickness of 5 by screen printing. The printed active material paste was dried at 80 ° for 5 minutes, and then a margin layer paste was screen-printed on the area of the solid electrolyte sheet other than the electrode layer. The printed margin layer paste was dried at 80 ° for 5 minutes to form a margin layer having almost the same height as the electrode layer, and then the Mending film was peeled off. Thus, an electrode in which an electrode layer (a positive electrode layer or a negative electrode layer) in which an active material layer/a current collector/an active material layer are stacked in this order and a margin layer are formed on a solid electrolyte layer sheet are formed. (Positive electrode or negative electrode) A unit sheet was obtained.
[0072] (積層体の作製) (Production of Laminate)
最外固体電解質層 3巳用の固体電解質層シート 5枚を重ね、 その上に電極 ユニッ ト 2 0枚 (正極ユニッ ト 1 0枚、 負極ユニッ ト 1 0枚) を、 層間固体 電解質 3八を介するようにして交互に積み重ねた。 このとき、 奇数枚目の電 極ユニッ トの集電体ペースト層が一方の端面にのみ延出し、 偶数枚目の電極 ユニッ トの集電体べースト層が反対側の端面にのみ延出するように、 各ユニ ッ トをずらして積み重ねた。 この積み重ねられたユニッ トの上に、 最外固体 電解質層 3巳用の固体電解質層シート 6枚を積み重ねた。 その後、 これを熱 圧着により成形した後、 切断して積層チップを作製した。 その後、 積層チッ プを同時焼成して積層体 2 0を得た。 同時焼成は、 集電体金属<3リ、 活物質 !_ 丨 3 2 (9 0 43が酸化、 分解しないように、 空気雰囲気中ではなく、 窒 素雰囲気中で昇温速度 2 0〇〇/時間で焼成温度 8 4 0 °◦まで昇温して、 そ の温度に 2時間保持し、 焼成後は自然冷却した。 5 sheets of solid electrolyte layer sheets for the outermost solid electrolyte layer 3 are stacked, and 20 sheets of electrode units (10 sheets of positive electrode unit, 10 sheets of negative electrode unit) and 38 sheets of inter-layer solid electrolyte layer are stacked on it. They were stacked alternately so that they were interposed. At this time, the current collector paste layer of the odd-numbered electrode unit extends only to one end surface, and the current-source paste layer of the even-numbered electrode unit extends only to the opposite end surface. As described above, each unit was staggered and stacked. Six solid electrolyte layer sheets for the outermost solid electrolyte layer 3 were stacked on the stacked unit. Then, this was molded by thermocompression bonding and then cut to produce a laminated chip. Then, the laminated chips were simultaneously fired to obtain a laminated body 20. The co-firing is carried out in a nitrogen atmosphere rather than in an air atmosphere so that the current collector metal is less than 3 and the active material !_ 丨3 2 (90 4 ) 3 is not oxidized or decomposed. The firing temperature was raised to 840 °C at ◯/hour, the temperature was maintained for 2 hours, and after cooling, it was naturally cooled.
[0073] (全固体二次電池の作製、 及び、 評価) 〇 2020/175630 18 卩(:171? 2020 /008067 (Preparation and Evaluation of All-Solid Secondary Battery) 〇 2020/175 630 18 卩 (:171? 2020 /008067
公知の方法により、 焼結した積層体 (焼結体) に第 1外部端子及び第 2外 部端子をつけて、 全固体二次電池を作製した。 By a known method, a first external terminal and a second external terminal were attached to the sintered laminated body (sintered body) to fabricate an all solid state secondary battery.
第 1外部端子及び第 2外部端子のそれぞれにリード線を取り付け、 充放電 試験を行うことで全固体二次電池の初回放電容量及び 1 0 0サイクル後のサ イクル特性 (容量維持率) を測定した。 測定条件は、 充電及び放電時の電流 はいずれも 2 0 、 充電時及び放電時の終止電圧をそれぞれ 1 . 6 V , 0 Vとした。 その結果を表 1 に示す。 なお、 1回目の放電時の容量を初回放電 容量とした。 また、 サイクル特性 (容量維持率) は、 1 〇〇サイクル目の放 電容量を初回放電容量で割って求めた。 The lead wire is attached to each of the first external terminal and the second external terminal, and the charge/discharge test is performed to measure the initial discharge capacity of the all-solid-state secondary battery and the cycle characteristics (capacity retention rate) after 100 cycles. did. The measurement conditions were 20 for both the current during charging and discharging, and 1.6 V and 0 V for the final voltages during charging and discharging, respectively. The results are shown in Table 1. The capacity at the first discharge was defined as the initial discharge capacity. The cycle characteristics (capacity retention rate) were calculated by dividing the discharge capacity at the 100th cycle by the initial discharge capacity.
結果を表 1 に示す。 The results are shown in Table 1.
[0074] 焼結した積層体 (焼結体) 中の正極集電体及び負極集電体の各 1枚につい て、
Figure imgf000020_0001
各断面の <3リ量と V量の重量割合を得た ところ、 〇リ量に対する V量の平均の重量割合は、 〇. 0 0 1 %であった。
[0074] For each one of the positive electrode current collector and the negative electrode current collector in the sintered laminate (sintered body),
Figure imgf000020_0001
When the weight ratio of <3 volume and V volume of each cross section was obtained, the average weight ratio of V volume to 0 volume was 0.001%.
[0075] 焼結した積層体 (焼結体) 中の正極集電体及び負極集電体の各 1枚につい て、 各断面の 3巳 IV!像を得て、 各 3巳 IV!像中の 2 0個の副部像の面積を出し 、 各副部像の円面積換算径を算出したところ、 4 0個の円面積換算径のうち 、 最大径は〇 1 ( 1 0 0 01) であった。 [0075] For each of the positive electrode current collector and the negative electrode current collector in the sintered laminated body (sintered body), a 3 m IV! image of each cross section was obtained, and in each 3 m IV! image, By calculating the area of 20 sub-part images of and calculating the circle area conversion diameter of each sub-part image, the maximum diameter of the 40 circle area conversion diameters is 〇 1 (100 0 01). there were.
[0076] [表 1 ] [0076] [Table 1]
Figure imgf000020_0002
Figure imgf000020_0002
[0077] [比較例 1 ] [0077] [Comparative Example 1]
集電体用べーストの作製は、 以下のように行った。 The base material for the current collector was manufactured as follows.
〇リ粉末 1 0 0重量部に対して、 金属換算で Vの量が〇. 0 0 1重量部と なるように 23を秤量し、 混合した。 このようにして得られた混合粉末と 1_ 丨 3 2 ( 〇43粉末とを体積比率で 6 0 : 4 0となるように混合した後 、 この混合粉末 1 〇〇重量部に対して、 バインダーとしてエチルセルロース 〇 2020/175630 19 卩(:171? 2020 /008067 〇 against Li powder 1 0 0 parts by weight, the amount of V in terms of metal is 0.0 0 1 Weigh 23 so that the parts by weight were mixed. The mixed powder thus obtained and 1_ 丨3 2 (〇 4 ) 3 powder were mixed in a volume ratio of 60: 40, and then, to 100 parts by weight of the mixed powder, Ethyl cellulose as binder 〇 2020/175 630 19 卩(:171? 2020/008067
1 〇重量部と、 溶媒としてジヒドロターピネオール 5 0重量部を加えて三本 口ールで混練 ·分散して集電体用ペーストを作製した。 10 parts by weight and 50 parts by weight of dihydroterpineol as a solvent were added and kneaded and dispersed in a three-necked mixture to prepare a current collector paste.
集電体用べーストの作製を以上のようにして行った以外は、 実施例 1 と同 様にして全固体二次電池を作製した。 An all-solid secondary battery was produced in the same manner as in Example 1 except that the production of the current collector base was performed as described above.
このようにして作製した全固体二次電池を用いて得られたサイクル特性 ( 容量維持率) を表 1 に示す。 Table 1 shows the cycle characteristics (capacity retention rate) obtained using the all-solid-state secondary battery thus manufactured.
[0078] 焼結した積層体 (焼結体) 中の正極集電体及び負極集電体の各 1枚につい て、 !_八一 丨 〇 一 1\/1 3を用いて、 各断面の分析を行ったところ、 〇リのみ が検出され、 Vは検出されなかった。 [0078] For each one of the positive electrode current collector and the negative electrode current collector in the sintered laminate (sintered body),! An analysis of each cross section was performed using _8 ichi ichi 1\/1 3 and found that only 〇ri was detected and V was not detected.
[0079] 焼結した積層体 (焼結体) 中の正極集電体及び負極集電体の各 1枚につい て、 各断面の 3巳 IV!像を得て、 各 3巳 IV!像を観察したところ、 副部像は確認 されなかった。 [0079] For each of the positive electrode current collector and the negative electrode current collector in the sintered laminated body (sintered body), a 3 m IV! image of each cross section was obtained, and each 3 m IV! image was obtained. Upon observation, no sub-image was confirmed.
[0080] 表 1 に示した通り、 集電体が副部を有する実施例 1は、 集電体が副部を有 しない比較例 1 に比べて、 大きくサイクル特性が向上した。 [0080] As shown in Table 1, in Example 1 in which the current collector had a sub portion, the cycle characteristics were significantly improved as compared with Comparative Example 1 in which the current collector had no sub portion.
[0081 ] [実施例 2 _ 1〜実施例 2 - 1 4 ] [0081] [Example 2_1 to Example 2-14]
実施例 2— 1〜実施例 2— 1 4では、 コーティング剤であるレジネートと
Figure imgf000021_0001
In Examples 2-1 to 2-14, the coating agent resinate and
Figure imgf000021_0001
9、 八リ、 、 I レジネートを用いた以外は実施例 1 と同様にして、 集 電体用べーストを作製した。 さらにこの集電体用べーストを用いて、 実施例 1 と同様にして全固体二次電池を作製した。 Basts for current collectors were produced in the same manner as in Example 1 except that 9, 8, and I resinates were used. Further, an all-solid secondary battery was produced in the same manner as in Example 1 by using this current collector paste.
このようにして作製した各全固体二次電池を用いて得られたサイクル特性 (容量維持率) を表 2に示す。 Table 2 shows the cycle characteristics (capacity retention rate) obtained using each all-solid-state secondary battery prepared in this way.
[0082] [実施例 2 - 1 5 ] [0082] [Example 2-15]
実施例 2 - 1 5では、 コーティング剤であるレジネートとして、 Vレジネ —卜及び丁 丨 レジネートを用い、 〇リ粉末の表面をコーティングした V及び 丁 丨の量を(3リ 1 0 0重量部に対して金属換算で総計 0 . 0 0 1重量部となる ようにした以外は実施例 1 と同様にして、 集電体用べーストを作製した。 さ らにこの集電体用べーストを用いて、 実施例 1 と同様にして全固体二次電池 〇 2020/175630 20 卩(:171? 2020 /008067 In Examples 2 to 15, V resin and a resin resinate were used as the coating agent, and the amount of V and powder coated on the surface of the powder was adjusted to 3 (100 parts by weight). On the other hand, a current collector base was prepared in the same manner as in Example 1 except that the total metal content was adjusted to 0.0001 parts by weight. Then, in the same manner as in Example 1, an all-solid-state secondary battery 〇 2020/175 630 20 boxes (: 171-1?2020/008067
を作製した。 積層体 (焼結体) 中の正極集電体及び負極集電体の副部につい て、 3丁巳1\/1 (走査透過型電子顕微鏡) による巳 0 3分析を行い、 副部が V と丁 丨 を含むことを確認した。 Was produced. The secondary parts of the positive electrode current collector and the negative electrode current collector in the laminated body (sintered body) were analyzed by a 3-cylinder 1\/1 (scanning transmission electron microscope), and the secondary parts were It has been confirmed that it includes the following.
このようにして作製した全固体二次電池を用いて得られたサイクル特性 ( 容量維持率) を表 2に示す。 Table 2 shows the cycle characteristics (capacity retention rate) obtained using the all-solid-state secondary battery manufactured in this way.
[0083] [実施例 2 - 1 6 ] [0083] [Example 2-16]
実施例 2— 1 6では同様に、 コーティング剤であるレジネートとして、 V レジネート及び IV! nレジネートを用い、 〇リ粉末の表面をコーティングした V及び IV! の量を(3リ 1 0 0重量部に対して金属換算で総計 0 . 0 0 1重量部 となるようにした以外は実施例 1 と同様にして、 集電体用べーストを作製し た。 さらにこの集電体用べーストを用いて、 実施例 1 と同様にして全固体二 次電池を作製した。 積層体 (焼結体) 中の正極集電体及び負極集電体の副部 について、 3丁巳1\/1 _巳 0 3分析を行い、 副部が Vと IV! nを含むことを確認 した。 Similarly, in Examples 2 to 16, V resinate and IV! n resinate were used as the coating agent, and the amount of V and IV! coated on the surface of the powder was 3 (100 parts by weight). On the other hand, a current collector paste was produced in the same manner as in Example 1 except that the total amount was 0.001 parts by weight in terms of metal. Then, an all-solid-state secondary battery was manufactured in the same manner as in Example 1. Regarding the sub-portions of the positive electrode current collector and the negative electrode current collector in the laminated body (sintered body), 3 pcs. 0 3 Analysis was performed and it was confirmed that the sub-part contained V and IV! n.
このようにして作製した全固体二次電池を用いて得られたサイクル特性 ( 容量維持率) を表 2に示す。 Table 2 shows the cycle characteristics (capacity retention rate) obtained using the all-solid-state secondary battery manufactured in this way.
[0084] [実施例 2 - 1 7 ] [0084] [Example 2-17]
実施例 2— 1 5は、 各副部が V及び丁 丨の 2種の元素によって形成されて いるのに対して、 実施例 2— 1 7は、 集電体中に Vからなる副部と丁 丨から なる副部とがそれぞれ、 点在あるいは分散あるいは混在している例である。 In Example 2-15, each sub-portion is formed of two kinds of elements, V and T, whereas in Example 2-17, a sub-portion consisting of V in the current collector is used. This is an example in which sub-parts made up of gadgets are scattered, dispersed, or mixed.
[0085] と丁 丨がそれぞれ〇リ粉末の表面をコーティングした Vコーティング〇 リ粉末及び丁 丨 コーティング〇リ粉末を用意した。 Vコーティング〇リ粉末 は、 コーティング剤であるレジネートとして、 Vレジネートを用い、 〇リ粉 末の表面をコーティングした Vの量を(3リ 1 0 0重量部に対して金属換算で 0 . 0 0 1重量部となるようにして作製した。 丁 丨 コーティング〇リ粉末は、 コーティング剤であるレジネートとして、 丁 丨 レジネートを用い、 〇リ粉末 の表面をコ—〒ィングした丁 丨の量を 0リ 1 0 0重量部に対して金属換算で 0 . 0 0 1重量部となるようにして作製した。 V〕ーティング〇リ粉末 5 0重 〇 2020/175630 21 卩(:171? 2020 /008067 [0085] and Ding prepared V-coated Ding powder and Ding coating Ding powder coated on the surface of the Ding powder, respectively. V coating 〇 powder uses V resinate as a resinate, and the amount of V coated on the surface of powder powder is 3 (100 parts by weight relative to 3 parts by weight). The coating powder was prepared so that the amount of the coating powder was 1 part by weight, and the coating resin was a resinate, which was a resinate. It was prepared so that it would be 0.0001 parts by weight in terms of metal with respect to 100 parts by weight. 〇 2020/175 630 21 卩 (: 171-1? 2020 /008067
量部と丁 丨 コーティング 0リ粉末 5 0重量部を秤量し、 これらの混合<3リ粉 末と!- 丨 3 2 ( 〇43粉末とを体積比率で 6 0 : 4 0となるように混合し た後、 この混合粉末 1 0 0重量部に対して、 バインダーとしてエチルセルロ —ス 1 0重量部と、 溶媒としてジヒドロターピネオール 5 0重量部を加えて 三本口ールで混練 ·分散して集電体用ペーストを作製した。 さらにこの集電 体用べーストを用いて、 実施例 1 と同様にして全固体二次電池を作製した。 積層体 (焼結体) 中の正極集電体及び負極集電体の副部について、 3丁巳 1\/1 _巳 0 3分析を行い、 Vからなる副部と丁 丨からなる副部とがそれぞれ、 点在あるいは分散あるいは混在していることを確認した。 Parts and parts coating 0 powder 50 parts by weight are weighed and mixed <3 powder! -After mixing with 3 2 (〇 4 ) 3 powder in a volume ratio of 60: 40, 100 parts by weight of this mixed powder was mixed with 10 parts by weight of ethyl cellulose as a binder. Then, 50 parts by weight of dihydroterpineol was added as a solvent, and the mixture was kneaded and dispersed in a three-necked mixture to prepare a current collector paste. Further, an all-solid-state secondary battery was manufactured in the same manner as in Example 1 using this current collector base material. Analysis was performed on the sub-portions of the positive electrode current collector and the negative electrode current collector in the laminated body (sintered body), and the analysis was performed for 3 tools 1\/1 _ _ 0 0 3. It was confirmed that and were scattered, dispersed or mixed.
このようにして作製した全固体二次電池を用いて得られたサイクル特性 ( 容量維持率) を表 2に示す。 Table 2 shows the cycle characteristics (capacity retention rate) obtained using the all-solid-state secondary battery manufactured in this way.
[0086] [実施例 2 _ 1 8 ] [0086] [Example 2 _ 18]
実施例 2— 1 6は、 各副部が V及び1\/1 nの 2種の元素によって形成されて いるのに対して、 実施例 2— 1 8は、 集電体中に Vからなる副部と IV! nから なる副部とがそれぞれ、 点在あるいは分散あるいは混在している例である。 In Example 2-16, each sub-portion is formed by two elements of V and 1\/1 n , whereas in Example 2-18, V is contained in the current collector. In this example, sub-parts and sub-parts consisting of IV! n are scattered, dispersed, or mixed.
[0087] と1\/1 nがそれぞれ〇リ粉末の表面をコーティングした Vコーティング〇 リ粉末及び IV! nコーティング〇リ粉末を用意した。 Vコーティング〇リ粉末 は、 コーティング剤であるレジネートとして、 Vレジネートを用い、 〇リ粉 末の表面をコーティングした Vの量を(3リ 1 0 0重量部に対して金属換算で 0 . 0 0 1重量部となるようにして作製した。 IV! nコーティング〇リ粉末は、 コーティング剤であるレジネートとして、
Figure imgf000023_0001
レジネートを用い、 〇リ粉末 の表面をコーティングした IV! の量を(3リ 1 0 0重量部に対して金属換算で 0 . 0 0 1重量部となるようにして作製した。 V〕ーティング〇リ粉末 5 0重 量部と IV! nコーティング 0リ粉末 5 0重量部を秤量し、 これらの混合<3リ粉 末と!- 丨 3 2 ( 〇43粉末とを体積比率で 6 0 : 4 0となるように混合し た後、 この混合粉末 1 0 0重量部に対して、 バインダーとしてエチルセルロ —ス 1 0重量部と、 溶媒としてジヒドロターピネオール 5 0重量部を加えて 三本口ールで混練 ·分散して集電体用ペーストを作製した。 さらにこの集電 〇 2020/175630 22 卩(:171? 2020 /008067
[0087] and 1\/1 n were prepared as V-coated powder and IV!n-coated powder coated with the surface of the powder. V coating 〇 powder uses V resinate as a resinate, and the amount of V coated on the surface of powder powder is 3 (100 parts by weight relative to 3 parts by weight). It was prepared so that the amount would be 1 part by weight IV!n coating ○ powder was used as the coating agent resinate.
Figure imgf000023_0001
Using resinate, it was prepared so that the amount of IV! coated on the surface of the powder was (0.01 parts by weight in terms of metal with respect to 100 parts by weight of V. V! coating) 50 parts by weight of the re-powder and 50 parts by weight of the IV! n coating were weighed out, and the mixture <3 re-powder powder and !- 3 2 (〇 4 ) 3 powder were mixed in a volume ratio of 6 0 : 40, and then mixed with 100 parts by weight of this mixed powder, add 10 parts by weight of ethyl cellulose as a binder and 50 parts by weight of dihydroterpineol as a solvent, and add three parts Kneading and dispersing with a solvent to prepare a current collector paste. 〇 2020/175 630 22 卩 (:171? 2020 /008067
体用べーストを用いて、 実施例 1 と同様にして全固体二次電池を作製した。 積層体 (焼結体) 中の正極集電体及び負極集電体の副部について、 3丁巳 IV! _巳 0 3分析を行い、 Vからなる副部と IV! nからなる副部とがそれそれ、 点在あるいは分散あるいは混在していることを確認した。 An all-solid secondary battery was prepared in the same manner as in Example 1 using the body paste. _ 3 analysis of the sub-portions of the positive electrode current collector and the negative electrode current collector in the laminate (sintered body) was performed, and the sub-portion consisting of V and the sub-portion consisting of IV! It was confirmed that they were scattered or dispersed or mixed.
このようにして作製した全固体二次電池を用いて得られたサイクル特性 ( 容量維持率) を表 2に示す。 Table 2 shows the cycle characteristics (capacity retention rate) obtained using the all-solid-state secondary battery manufactured in this way.
[0088] [表 2] [0088] [Table 2]
Figure imgf000024_0001
Figure imgf000024_0001
[0089] 表 2に示した通り、 集電体が有する副部の元素 (第 2元素) の種類によっ てサイクル特性は異なるものの、 実施例 2— 1〜 2— 1 8のいずれも、 集電 体が副部を有さない比較例 1 に比べて、 大きくサイクル特性が向上した。 こ のうち、 副部の元素が IV! 1\1 し 〇〇、 「、 0 6 , 1_ し V及び丁 1、 〇 2020/175630 23 卩(:171? 2020 /008067 [0089] As shown in Table 2, although the cycle characteristics were different depending on the type of the element (second element) of the secondary portion of the current collector, all of Examples 2-1 to 2-18 were collected. Compared to Comparative Example 1 in which the electric body does not have a sub portion, the cycle characteristics are greatly improved. Of these, the element of the sub-part is IV! 1\1 ___○, ", 0 6, ,__ V and Ding 1, 〇 2020/175 630 23 卩 (: 171? 2020 /008067
V及び IV! n、 Vと丁 丨が混在、 Vと IV! nが混在の場合はサイクル特性が 90 %以上と高く、 これらの中でも、 副部の元素が Mn、 1\1 し V及び丁 し V 及び IV! nの場合はサイクル特性が 92%以上と特に高いことがわかった。 V and IV! n, mixed with V and G, and mixed V and IV! n have high cycle characteristics of 90% or more. Among these, the secondary element is Mn, 1\1 and V and D! In the case of V and IV! n, it was found that the cycle characteristics were particularly high at 92% or more.
[0090] [実施例 3 _ 1〜実施例 3- 1 0] [0090] [Example 3 _ 1 to Example 3-10]
実施例 3 _ 1〜実施例 3 _ 1 0では、 0リ粉末の表面をコーティングした Vの量が〇リ 1 00重量部に対して、 金属換算で〇. 0002、 〇. 01、 〇. 1、 0. 4、 〇. 8、 1、 5、 1 0、 1 5、 20重量部となるようにし た以外は実施例 1 と同様にして、 集電体用べーストを作製した。 さらにこの 集電体用べーストを用いて、 実施例 1 と同様にして全固体二次電池を作製し た。 In Example 3 _ 1 to Example 3 _ 10, the amount of V coated on the surface of powder was 0.0002, 0. 01, 0. 1 in terms of metal with respect to 100 parts by weight of 0. , 0.4, 0.8, 1, 5, 10, 10, 15 and 20 parts by weight were prepared in the same manner as in Example 1 to prepare a base current collector. Further, an all-solid secondary battery was manufactured in the same manner as in Example 1 by using this current collector paste.
各実施例において、 実施例 1 と同様にして、 !_ _ I 〇 _1\/13を用いて 〇リ量と V量の重量割合を得たところ、 <3リ量に対する V量の平均重量割合 は表 3の通りであった。 In each example, as in Example 1,! _ _ I 〇 _1 \/13 was used to obtain the weight ratio of 〇li amount and V amount. The average weight ratio of V amount to <3li amount was as shown in Table 3.
各全固体二次電池を用いて得られたサイクル特性 (容量維持率) を表 3に 示す。 Table 3 shows the cycle characteristics (capacity retention rate) obtained using each all-solid-state secondary battery.
[0091] [表 3] [0091] [Table 3]
Figure imgf000025_0001
Figure imgf000025_0001
[0092] 表 3に示した通り、 実施例 3_ 1〜 3— 6のいずれも、 集電体が副部を有 さない比較例 1 に比べて、 大きくサイクル特性が向上した。 このうち、 副部 〇 2020/175630 24 卩(:171? 2020 /008067 [0092] As shown in Table 3, in all of Examples 3_1 to 3-6, the cycle characteristics were significantly improved as compared with Comparative Example 1 in which the current collector did not have a sub portion. Of these, the vice part 〇 2020/175 630 24 卩 (:171? 2020 /008067
の重量割合が〇. 〇 1 %の場合、 サイクル特性が 9 2 %であり、 副部の重量 割合が 0 . 0 0 1 %の実施例 1のサイクル特性が 9 6 %であるから、 副部の 重量割合が〇. 0 0 0 2 %以上 2 0 %以下のうち、 特に〇. 0 0 1 %以上 0 . 〇 1 %以下の場合、 サイクル特性が高いことがわかった。 副部の重量割合 が 1 5 %以下の場合、 サイクル特性が 7 5 %以上と高く、 副部の重量割合が 1 %以下の場合、 サイクル特性が 8 0 %以上とより高くなることがわかった When the weight ratio of the secondary part is 0.001%, the cycle characteristic is 92%, and the weight ratio of the secondary part is 0.001%. It was found that the cycle characteristics were high when the weight ratio of the above was 0.002% or more and 20% or less, especially when it was 0.001% or more and 0.01% or less. It was found that when the weight ratio of the auxiliary part is 15% or less, the cycle characteristics are as high as 75% or more, and when the weight ratio of the auxiliary part is 1% or less, the cycle characteristics are as high as 80% or more.
[0093] [実施例 4 _ 1 ] [Example 4 _ 1]
副部の円面積換算径の調整は、 〇リ粉末の表面にコーティングする副部元 素 (第 2元素) の量を調整することによって行うことができる。 The circle area conversion diameter of the sub-part can be adjusted by adjusting the amount of the sub-part element (second element) coated on the powder surface.
〇リ粉末の表面をコーティングした Vの量は(3リ 1 0 0重量部に対して、 金属換算で〇. 1重量部となるようにした以外は実施例 1 と同様にして、 〇リ 粉末の表面に Vがコーティングされた \/コーティング〇リ粉末を得た。 ○ The amount of V coated on the surface of the powder was (1% by weight in terms of metal, based on 3 parts by 100 parts by weight, in the same manner as in Example 1). I obtained the powder coated with V on the surface of /.
未コーティングの <3リ粉末 1 0 0重量部に対して、 Vコーティング〇リ粉 末が 1重量部となるように秤量し、 混合した後、 これらの混合 <3リ粉末と !_ 1 3 2 ( 〇43粉末とを体積比率で 6 0 : 4 0となるように混合した後、 この混合粉末 1 〇〇重量部に対して、 バインダーとしてエチルセルロース 1 〇重量部と、 溶媒としてジヒドロターピネオール 5 0重量部を加えて三本口 —ルで混練 ·分散して集電体用ペーストを作製した。 さらにこの集電体用ぺ —ストを用いて、 実施例 1 と同様にして全固体二次電池を作製した。 Weighed 100 parts by weight of uncoated <3 powder and 1 part by weight of V-coated powder, mixed and then mixed these <3 powder and !_ 1 3 2 (0 4 ) 3 powder was mixed in a volume ratio of 60: 40, and then 100 parts by weight of this mixed powder, 10 parts by weight of ethyl cellulose as a binder and 5 parts by weight of dihydroterpineol as a solvent. 0 parts by weight was added, and the mixture was kneaded and dispersed with a triple neck to prepare a current collector paste. Further, using this current collector paste, an all-solid-state secondary battery was prepared in the same manner as in Example 1.
作製した全固体二次電池を用いて得られたサイクル特性 (容量維持率) を 表 4に示す。 Table 4 shows the cycle characteristics (capacity retention rate) obtained using the fabricated all-solid-state secondary battery.
[0094] 焼結した積層体 (焼結体) 中の正極集電体及び負極集電体の各 1枚につい て、 実施例 1 と同様にして、 各断面の 3巳 IV!像を得て、 各副部像の円面積換 算径を算出したところ、 副部像の円面積換算径の最大径は〇. 〇 1 (1 0 〇〇 であった。 [0094] For each one of the positive electrode current collector and the negative electrode current collector in the sintered laminate (sintered body), in the same manner as in Example 1, a 3xIV! image of each cross section was obtained. As a result of calculating the circle area conversion diameter of each sub-image, the maximum circle-area conversion diameter of the sub-image was ◯0.01 (10000).
[0095] [実施例 4 _ 2〜実施例 4 _ 6 ] [0095] [Example 4_2 to Example 4_6]
実施例 4 _ 2〜実施例 4 _ 6では、 実施例 4— 1 において、 未コーティン 〇 2020/175630 25 卩(:171? 2020 /008067 In Examples 4 — 2 to 4 — 6, in Example 4 — 1, uncoated 〇 2020/175 630 25 卩 (:171? 2020 /008067
グの〇リ粉末 1 00重量部に対する、 Vコーティング〇リ粉末を 5、 20、 30、 50、 1 00重量部となるようにした以外は実施例 4— 1 と同様にし て、 集電体用べーストを作製した。 さらにこの集電体用べーストを用いて、 実施例 1 と同様にして全固体二次電池を作製した。 For current collector, except that the amount of V coating powder is 5, 20, 30, 50, 100 parts by weight per 100 parts by weight of Beast was prepared. Further, an all-solid secondary battery was produced in the same manner as in Example 1 by using this current collector paste.
作製した各全固体二次電池を用いて得られたサイクル特性 (容量維持率) を表 4に示す。 Table 4 shows the cycle characteristics (capacity maintenance rate) obtained using each of the fabricated all-solid-state secondary batteries.
[0096] 実施例 4 _ 2〜実施例 4 _ 6について、 焼結した積層体 (焼結体) 中の正 極集電体及び負極集電体の各 1枚について、 実施例 1 と同様にして、 各断面 の 3巳1\/1像を得て、 各副部像の円面積換算径を算出したところ、 副部像の円 面積換算径の最大径はそれぞれ、 〇. 〇 5 (50 n m) 、 〇.
Figure imgf000027_0001
[0096] Regarding Examples 4_2 to 4_6, the positive electrode current collector and the negative electrode current collector each in the sintered laminate (sintered body) were processed in the same manner as in Example 1. Then, we obtained 3M 1\/1 images of each cross section and calculated the circle-area conversion diameter of each sub-part image.The maximum circle-area conversion diameter of each sub-part image was 0. 05 (50 nm), 〇.
Figure imgf000027_0001
(
2001^ 111) 、 〇. 3 〇! (30〇 1^〇1) 、 〇. 5 (50〇 1^〇1) 、 12001^111), 〇0.3 〇! (30 〇1^〇1), 〇0.5 (50 〇1^〇1), 1
^ 111であつた。 ^ 111.
[0097] [表 4] [0097] [Table 4]
Figure imgf000027_0002
Figure imgf000027_0002
[0098] 表 4に示した通り、 実施例 4_ 1〜 4— 6のいずれも、 集電体が副部を有 さない比較例 1 に比べて、 大きくサイクル特性が向上した。 特に、 副部の円 面積換算の最大径が〇. 01 ~〇. 3 である場合にサイクル特性が より高く、 最大径が〇. 1 の実施例 1のサイクル特性が 96 %であるか ら、 最大径が〇. 05 〜〇. 2 である場合にサイクル特性がさらに 高いことがわかった。 [0098] As shown in Table 4, in all of Examples 4_1 to 4-6, the cycle characteristics were greatly improved as compared with Comparative Example 1 in which the current collector did not have a sub portion. In particular, the cycle characteristics are higher when the maximum area-converted circle area is 0.01 to 0.3, and the cycle characteristics of Example 1 with a maximum diameter of 0.1 are 96%. It was found that the cycle characteristics were even higher when the maximum diameter was 0.05 to 0.2.
[0099] [実施例 5 _ 1〜実施例 5— 6 ] 〇 2020/175630 26 卩(:171? 2020 /008067 [0099] [Example 5_1 to Example 5-6] 〇 2020/175 630 26 卩 (:171? 2020 /008067
実施例 5 _ 1〜実施例 5 _ 6はそれぞれ、 集電体金属 (集電体の主部) を 1\1 し 6、 八 9、 八リ、 、 1:とした以外は実施例 1 と同様にして、 集電体用べーストを作製した。 さらにこの集電体用べーストを用いて、 実施 例 1 と同様にして全固体二次電池を作製した。 Example 5 _ 1 to Example 5 _ 6 are the same as Example 1 except that the current collector metal (the main part of the current collector) was 1\1 and was 6, 8, 9 , 8 and 1, respectively. In the same manner, a current collector base was prepared. Further, an all-solid secondary battery was manufactured in the same manner as in Example 1 using this current collector paste.
作製した全固体二次電池を用いて得られたサイクル特性 (容量維持率) を 表 5に:^す。 Table 5 shows the cycle characteristics (capacity retention rate) obtained using the fabricated all-solid-state secondary battery.
[0100] [表 5] [0100] [Table 5]
Figure imgf000028_0001
Figure imgf000028_0001
[0101 ] 表 5に示した通り、 実施例 5 _ 1〜 5— 6のいずれも、 集電体が副部を有 さない比較例 1 に比べて、 大きくサイクル特性が向上した。 [0101] As shown in Table 5, in all of Examples 5_1 to 5-6, the cycle characteristics were significantly improved as compared with Comparative Example 1 in which the current collector did not have a sub portion.
産業上の利用可能性 Industrial availability
[0102] 本発明によれば、 良好なサイクル特性を有する全固体二次電池を提供でき る。 [0102] According to the present invention, it is possible to provide an all-solid-state secondary battery having good cycle characteristics.
符号の説明 Explanation of symbols
[0103] 1 正極層 [0103] 1 Positive electrode layer
1 八 正極集電体 1 8 Positive electrode current collector
1 八 3 主部 1 8 3 Main part
1 八匕 副部 1 Hatsune Sub-part
1 巳 正極活物質層 1 Min Positive electrode active material layer
2 負極層 2 Negative electrode layer
2八 負極集電体 2 8 Negative electrode current collector
2八 3 主部 〇 2020/175630 27 卩(:171? 2020 /008067 2 8 3 Main part 〇 2020/175 630 27 卩 (: 171? 2020 /008067
2八匕 畐〇部 2 Hatsune
2巳 負極活物質層 2 Negative electrode active material layer
3 固体電解質層 3 Solid electrolyte layer
6 第 1外部端子 6 1st external terminal
7 第 2外部端子 7 Second external terminal
2 0 積層体 20 stacks
1 0 0 全固体二次電池 100 Solid-state secondary battery

Claims

〇 2020/175630 28 卩(:171? 2020 /008067 請求の範囲 〇 2020/175 630 28 卩(:171? 2020/008067 Claims
[請求項 1 ] 正極集電体と正極活物質層とを含む正極層と、 負極集電体と負極活 物質層とを含む負極層と、 固体電解質を含む固体電解質層とを有し、 前記正極層及び前記負極層が固体電解質層を介して交互に積層され た積層体をなし、 [Claim 1] A positive electrode layer including a positive electrode current collector and a positive electrode active material layer, a negative electrode layer including a negative electrode current collector and a negative electrode active material layer, and a solid electrolyte layer including a solid electrolyte, A positive electrode layer and the negative electrode layer form a laminated body in which solid electrolyte layers are alternately laminated,
前記正極集電体及び前記負極集電体は、 主成分として、 第 1元素を 含む主部と、 前記第 1元素とは異なる元素である第 2元素を含む副部 とからなる、 全固体二次電池。 The positive electrode current collector and the negative electrode current collector each include a main part containing a first element as a main component and a sub-part containing a second element which is an element different from the first element. Next battery.
[請求項 2] 前記第 1元素は、 〇リ、 1\! し 八 9、 八リ、 、 及び、 [Claim 2] The first element is 〇ri, 1\!
Iからなる群から選択された元素であり、 An element selected from the group consisting of I,
前記第 2元素は、 〇リ、 1\1 し 八 9、 八リ、 、
Figure imgf000030_0001
V 、 丁 し
Figure imgf000030_0002
〇〇、 「、 3 I % 0 6 %
Figure imgf000030_0003
及び、 八 Iからなる 群から選択された 1種以上の元素である、 請求項 1 に記載の全固体二 次電池。
The second element is, 〇 Li, 1 \ 1 tooth eight 9, Hachiri,,
Figure imgf000030_0001
V, just
Figure imgf000030_0002
○○、「, 3 I % 0 6 %
Figure imgf000030_0003
And the all-solid secondary battery according to claim 1, which is one or more elements selected from the group consisting of 8I.
[請求項 3] 前記第 1元素に対して前記第 2元素の重量割合が、 〇. 0 0 0 2 % 以上、 2 0 %以下の範囲内である、 請求項 1又は 2に記載の全固体二 次電池。 [Claim 3] The weight ratio of the second element to the first element is within the range of 0.002% or more and 20% or less, and the total solid according to claim 1 or 2. Secondary battery.
[請求項 4] 前記副部の円面積換算径 は、 〇. 5 以下である請求項 1〜 3 のいずれか一項に記載の全固体二次電池; [Claim 4] The circle area conversion diameter of the sub-part is 0.5 or less, wherein the all-solid secondary battery according to any one of claims 1 to 3;
ここで、 円面積換算径 とは、 3巳1\/1像中の副部の面積を 3とした とき、 ¢1 = { ^ / %) ( 2) X 2で算出される。 Here, the circle area conversion diameter is calculated as ¢1 = {^ / %) ( 2 ) X 2 when the area of the sub-portion in the 3rd 1\/1 image is 3.
[請求項 5] 前記副部は、 前記主部に前記第 2元素を含む元素を偏祈させること によって得られる請求項 1〜 4のいずれか一項に記載の全固体二次電 池。 [Claim 5] The all-solid secondary battery according to any one of claims 1 to 4, wherein the sub-portion is obtained by allowing the main portion to deviate an element containing the second element.
PCT/JP2020/008067 2019-02-27 2020-02-27 Solid-state secondary battery WO2020175630A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-034332 2019-02-27
JP2019034332 2019-02-27

Publications (1)

Publication Number Publication Date
WO2020175630A1 true WO2020175630A1 (en) 2020-09-03

Family

ID=72239695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008067 WO2020175630A1 (en) 2019-02-27 2020-02-27 Solid-state secondary battery

Country Status (1)

Country Link
WO (1) WO2020175630A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156638A1 (en) * 2013-03-26 2014-10-02 古河電気工業株式会社 All-solid-state secondary battery
JP2015220110A (en) * 2014-05-19 2015-12-07 Tdk株式会社 Power storage device
WO2018181576A1 (en) * 2017-03-30 2018-10-04 Tdk株式会社 All-solid-state battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156638A1 (en) * 2013-03-26 2014-10-02 古河電気工業株式会社 All-solid-state secondary battery
JP2015220110A (en) * 2014-05-19 2015-12-07 Tdk株式会社 Power storage device
WO2018181576A1 (en) * 2017-03-30 2018-10-04 Tdk株式会社 All-solid-state battery

Similar Documents

Publication Publication Date Title
JP4728385B2 (en) Lithium ion secondary battery and manufacturing method thereof
KR101757017B1 (en) Lithium ion secondary battery and method for producing same
JP6651708B2 (en) Lithium ion secondary battery
JP6927289B2 (en) All-solid-state secondary battery
JP6492958B2 (en) Solid battery and assembled battery using the same.
JP6992803B2 (en) All-solid-state lithium-ion secondary battery
US11532812B2 (en) All-solid lithium ion secondary battery
US11349146B2 (en) All-solid lithium ion secondary battery
JP2016001595A (en) Lithium ion secondary battery
JP6623542B2 (en) Lithium ion secondary battery
US10854917B2 (en) All solid-state lithium ion secondary battery
CN109792050B (en) Active material and all-solid-state lithium ion secondary battery
US20220140386A1 (en) Solid-state secondary battery
CN113056835A (en) All-solid-state battery
WO2020111127A1 (en) All-solid-state secondary battery
JP2021027044A (en) All-solid battery
JP6992802B2 (en) All-solid-state lithium-ion secondary battery
WO2021090774A1 (en) All-solid-state battery
JPWO2018181545A1 (en) All-solid-state lithium-ion secondary battery
WO2020189599A1 (en) All-solid-state secondary battery
JP6777181B2 (en) Lithium ion secondary battery
WO2020175630A1 (en) Solid-state secondary battery
US20220059869A1 (en) All-solid-state battery
WO2018181575A1 (en) All-solid-state lithium ion secondary battery
CN113474917B (en) All-solid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP