WO2020175477A1 - Printed wiring board - Google Patents

Printed wiring board Download PDF

Info

Publication number
WO2020175477A1
WO2020175477A1 PCT/JP2020/007491 JP2020007491W WO2020175477A1 WO 2020175477 A1 WO2020175477 A1 WO 2020175477A1 JP 2020007491 W JP2020007491 W JP 2020007491W WO 2020175477 A1 WO2020175477 A1 WO 2020175477A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil pattern
wiring board
printed wiring
base film
thermal vias
Prior art date
Application number
PCT/JP2020/007491
Other languages
French (fr)
Japanese (ja)
Inventor
航 野口
Original Assignee
住友電工プリントサーキット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工プリントサーキット株式会社 filed Critical 住友電工プリントサーキット株式会社
Priority to CN202080011558.3A priority Critical patent/CN113366591A/en
Priority to JP2021502274A priority patent/JP7409599B2/en
Publication of WO2020175477A1 publication Critical patent/WO2020175477A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Definitions

  • the present disclosure relates to a printed wiring board.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 20 0 4 — 3 4 2 6 4 5
  • the present disclosure has been made under such circumstances, and an object of the present disclosure is to provide a printed wiring board capable of suppressing a change in conductor resistance of a coil pattern.
  • a printed wiring board according to the present disclosure made to solve the above problems includes an insulating base film and at least one surface side of the base film. ⁇ 2020/175477 2 ⁇ (: 170? 2020 /007491
  • a conductive pattern including a spiral coil pattern and one that is thermally connected to the coil pattern and penetrates a region of the base film where the conductive pattern is not laminated. With thermal vias. Effect of the invention
  • the printed wiring board according to the present disclosure can suppress changes in the conductor resistance of the coil pattern.
  • FIG. 1 is a schematic plan view showing a printed wiring board according to an embodiment of the present disclosure.
  • Fig. 2 is an eight-eight line partial end view of the printed wiring board of Fig. 1.
  • FIG. 3 is a schematic plan view showing a printed wiring board according to an embodiment different from the printed wiring board of FIG.
  • a printed wiring board includes an insulating base film, a conductive pattern that is laminated on at least one surface side of the base film, and includes a spiral coil pattern, the coil pattern, and the thermal pattern. And one or a plurality of thermal vias penetrating the region where the conductive/ ⁇ turn is not laminated in the base film.
  • the printed wiring board is provided with one or more thermal vias that are thermally connected to the coil pattern and penetrate the region of the base film where the conductive patterns are not laminated, when the coil pattern generates heat.
  • the heat can be released to the opposite surface side of the base film by the above-mentioned one or more thermal vias.
  • the printed wiring board can suppress changes in the conductor resistance of the coil pattern.
  • the one or more thermal vias may be formed on the inner side of the innermost circumference of the coil pattern. In this way, the above-mentioned one or more thermal vias are ⁇ 2020/175477 3 ⁇ (: 170? 2020/007491
  • the coil pattern has _ pairs of linear portions facing each other, and the plurality of thermal vias are arranged along the pair of linear portions.
  • the coil pattern has a linear portion of the _ pairs opposite, by a plurality of the thermal vias are arranged along the pair of linear portions, the wiring density of the coil pattern It is possible to easily and surely suppress the change in the conductor resistance of the coil pattern while increasing the value.
  • a plurality of dummy wirings adjacent to the outside of the coil pattern may be provided, and at least one dummy wiring may be divided. In this way, by providing a plurality of dummy wirings adjacent to the outside of the coil pattern, the strength of the printed wiring board can be increased. Further, since at least one dummy wiring is divided, it is possible to suppress the diffusion of heat in the plane direction and to more surely release the heat from the one or more thermal vias.
  • thermally connected refers to a state in which heat transfer between the two is possible with a temperature loss of 10% or less (converted to a temperature in Celsius), and the two are not in physical contact with each other. It may be in a bad state.
  • that the thermal via is thermally connected to the coil pattern means that when a current is applied to the coil pattern, heat is transferred from this coil pattern to the thermal via with a temperature loss of 10% or less. ..
  • the printed wiring board 1 in FIGS. 1 and 2 has an insulating base film 2, a conductive pattern 3 including a spiral coil pattern 3 3 laminated on at least one surface side of the base film 2, and a coil pattern. 3 Thermally connected to 3 ⁇ 2020/175477 4 ⁇ (: 170? 2020 /007491
  • the printed wiring board 1 may include an insulating layer laminated on the base film 2 and the conductive pattern 3. This insulating layer can be formed using, for example, a solder resist or a coverlay.
  • the printed wiring board 1 is provided with a plurality of thermal vias 4 that are thermally connected to the coil pattern 33 and penetrate the region of the base film 2 where the conductive pattern 3 is not laminated, the coil pattern 33 Even if heat is generated, the heat can be released to the opposite surface side of the base film 2 by the plurality of thermal vias 4. That is, the printed wiring board 1 can radiate the heat generated in the coil pattern 33 from the surface side of the base film 2 opposite to the side where the coil pattern 33 is arranged by the plurality of thermal vias 4. .. Thus, the printed wiring board 1 is to prevent the heat from staying in the region where the coil patterns 3 3 are formed, as possible out to suppress the change in conductor resistance of the coil pattern 3 3.
  • the base film 2 has a synthetic resin as a main component and has electric insulation.
  • the base film 2 is a base material layer for forming the conductive pattern 3.
  • the base film 2 may have flexibility.
  • the printed wiring board 1 is configured as a flexible printed wiring board.
  • the “main component” means a component having the largest content ratio in terms of mass, for example, a component having a content of 50 mass% or more.
  • Examples of the synthetic resin include polyimide, polyethylene terephthalate, liquid crystal polymer, and fluororesin.
  • the lower limit of the average thickness of the base film 2 is preferably 5, and more preferably 10.
  • the upper limit of the average thickness of the base film 2 is preferably 50, and more preferably 40.
  • the average thickness of base film 2 is below the above. ⁇ 2020/175477 5 ⁇ (: 170? 2020/007491
  • the insulation strength of the base film 2 may be insufficient.
  • the average thickness of the base film 2 exceeds the above upper limit, the printed wiring board 1 may be unnecessarily thick and the flexibility may be insufficient.
  • the “average thickness” means the average value of the thicknesses at arbitrary 10 points.
  • the conductive pattern 3 is a layer made of a conductor having conductivity, and includes a spiral coil pattern 33.
  • the conductive pattern 3 also includes a through hole 313 connected to the end of the coil pattern 33.
  • the coil pattern 38 is, for example, a laminate of a seed layer laminated on the base film 2 and an electroplating layer laminated on the seed layer. Further, the coil pattern 33 may be configured to have a core body composed of the seed layer and the electroplating layer, and a coating layer laminated on the outer surface of the core body by plating. Examples of the main component of the seed layer include copper, nickel, silver and the like.
  • the seed layer is formed by electroless plating, for example.
  • the seed layer may be a sintered body layer of metal particles obtained by applying ink containing metal particles on the surface of the base film 2 and sintering the metal particles. It may be a laminate of plating layers.
  • the electroplated layer is formed by electroplating. Examples of the main component of the electroplated layer include copper, nickel, silver and the like.
  • the coil pattern 33 has a pair of opposing straight line portions 30.
  • the distance between the circles 30, that is, the distance between the inner peripheral edges of the pair of conductors arranged on the innermost periphery of the pair of straight portions 30 can be, for example, 200 or more and 300 or less ..
  • the area between the pair of linear portions 30 is a heat radiation for releasing the heat generated in the coil pattern 33 to the surface opposite to the surface where the coil pattern 38 of the base film 2 is laminated. Configured as Region 8.
  • the heat dissipation area 8 is composed of a pair of straight lines 30. ⁇ 2020/175477 6 ⁇ (: 170? 2020 /007491
  • the intervals between the adjacent conductors of the coil pattern 33 are preferably uniform.
  • the lower limit of the average spacing between the adjacent conductors 5 is preferable, and 10 is more preferable.
  • the upper limit of the average interval is preferably 50, and more preferably 30. If the average interval is less than the lower limit, it may be difficult to form the coil pattern 33. On the contrary, if the average interval exceeds the upper limit, there is a possibility that a desired wiring density cannot be obtained. Incidentally, the case where the average spacing is small, the conductor resistance of the coils pattern 3 3 is likely to change due to heat generation.
  • the printed wiring board 1 can intensively radiate heat by the plurality of thermal vias 4, it is possible to sufficiently suppress the change in conductor resistance even when the average interval is set to the upper limit or less.
  • the "average interval” means the average value of the intervals of arbitrary 10 points.
  • the width of the conductors forming the coil pattern 33 is preferably uniform.
  • the lower limit of the average width of the above conductor 5 is preferable, and 10 is more preferable.
  • the upper limit of the average width of the conductor is preferably 50, and more preferably 30. If the average width is less than the lower limit, it may be difficult to form the coil pattern 33. On the contrary, when the average width exceeds the upper limit, the plane area of the coil pattern 33 becomes large, which may violate the demand for miniaturization of the printed wiring board 1.
  • the "average width" is the average value of the width of any 10 points.
  • the conductor resistance may increase.
  • the average thickness exceeds the upper limit described above, there is a fear that the demand for thinning the printed wiring board 1 is violated. ⁇ 2020/175 477 7 ⁇ (: 170? 2020 /007491
  • a plurality of thermal vias 4 penetrates in the thickness direction of the base film 2.
  • the plurality of thermal vias 4 are formed inside the innermost circumference of the coil pattern 33.
  • the plurality of thermal vias 4 are formed in the heat dissipation area 8 described above.
  • the surfaces of the plurality of thermal vias 4, preferably both surfaces, are exposed to the outside (that is, the surfaces of the plurality of thermal vias 4 are not covered with another member such as an insulating layer). ..
  • the plurality of thermal vias 4 are formed inside the innermost circumference of the coil pattern 33, so that the wiring density of the coil pattern 33 is increased and the conductor of the coil pattern 33 is increased. The change in resistance can be suppressed.
  • the plurality of thermal vias 4 are arranged along the pair of straight line portions 30.
  • the thermal connection between the coil pattern 33 and the plurality of thermal vias 4 becomes easy and reliable. Further, according to this configuration, heat is likely to be uniformly transferred from the entire area of the coil pattern 33 to the plurality of thermal vias 4. Therefore, it is possible to easily and reliably suppress the change in the conductor resistance of the coil pattern 33 while increasing the wiring density of the coil pattern 33.
  • the plurality of thermal vias 4 form, for example, a through hole penetrating in the thickness direction of the base film 2, and a metal is formed on the inner peripheral surface of the through hole and both surfaces of the base film 2 continuous from the inner peripheral surface. It is formed by plating. Copper is preferable as the metal. In addition, examples of the metal plating include electroless plating. Further, after this electroless plating, electroplating may be further performed.
  • each thermal via 4 has a cylindrical shape.
  • Each thermal via 4 has lands on both sides in the axial direction.
  • the average diameter of the plurality of thermal vias 4 be relatively small and the number of these thermal vias 4 be relatively large.
  • the thermal vias 4 having a constant thermal conductivity can be densely arranged in the plane direction, and the coil pattern 3 ⁇ 2020/175 477 8 ⁇ (: 170? 2020 /007491
  • the lower limit of the average diameter of the plurality of thermal vias 4 (the average inner diameter of the above-mentioned through holes), 10 is preferable, and 25 is more preferable.
  • the upper limit of the average diameter is preferably 300, more preferably 100. If the average diameter is less than the lower limit, the metal plating connection may be uncertain. On the other hand, if the average diameter exceeds the upper limit, it becomes difficult to arrange a large number of thermal vias 4 densely, and the heat dissipation to the entire coil pattern 33 may become insufficient.
  • the term "diameter” means the diameter when converted into a true circle of equal area.
  • the “average diameter of the thermal via” means the average value of the diameters at the end openings on both sides of the through hole formed in the base film.
  • the plurality of thermal vias 4 are linearly arranged along the longitudinal direction of the heat dissipation area.
  • a lower limit of the number of the plurality of thermal vias 4 arranged in this heat dissipation region 3 is preferable, and 4 is more preferable.
  • the upper limit of the number is preferably 8 and more preferably 6. If the number is less than the lower limit, the heat radiation property to the entire coil pattern 33 may be insufficient. On the other hand, if the number exceeds the upper limit, the heat dissipation area [unnecessarily increases, which may violate the demand for miniaturization of the printed wiring board 1.
  • the average gap opening 1 is less than the above lower limit, it may be difficult to form a plurality of thermal vias 4 or the strength of the base film 2 may be reduced. On the other hand, if the average gap opening 1 exceeds the upper limit, the heat radiation property to the entire coil pattern 33 may be insufficient, or the heat radiation area may become unnecessarily large, and the printed wiring board 1 may be downsized. May violate the requirements of.
  • the interval between adjacent thermal vias means the minimum distance between adjacent thermal vias.
  • the printed wiring board 11 shown in Fig. 3 has an insulating base film and ⁇ 2020/175 477 9 ⁇ (: 170? 2020 /007491
  • the printed wiring board 11 may include an insulating layer laminated on the base film and the conductive pattern 13. This insulating layer can be formed using, for example, a solder resist or a coverlay.
  • the above-mentioned base film of the printed wiring board 11 can have the same structure as the base film 2 of the printed wiring board 1 in FIG. Further, since the thermal via 4 of the printed wiring board 11 is the same as the thermal via 4 of the printed wiring board 1 of FIG. 1, the same reference numerals are given and the description thereof is omitted.
  • the printed wiring board 11 is provided with a plurality of dummy wirings 15 adjacent to the outside of the coil pattern 1 3 3 . Also, at least one dummy wiring 15 is divided. The printed wiring board 11 is provided with a plurality of dummy wirings 15 adjacent to the coil patterns 133, so that the strength of the printed wiring board can be increased. In addition, since at least one dummy wiring 15 is divided, the printed wiring board 11 suppresses the diffusion of heat from the area where the coil patterns 1 3 3 are formed to the outer side in the plane direction, and a plurality of thermal vias are provided. The heat can be more reliably dissipated from the 4.
  • the conductive pattern 13 is a layer made of a conductive conductor and includes a spiral coil pattern 1 33. In addition, the conductive pattern 13 includes a through hole 1 3 13 connected to an end of the coil pattern 1 3 3.
  • the coil pattern 1 3 3 may be a laminate of a seed layer laminated on the base film and an electroplating layer laminated on the seed layer, like the coil pattern 33 of the printed wiring board 1 in FIG. it can.
  • the coil pattern 133 is composed of a core body composed of the seed layer and the electroplating layer, and ⁇ 2020/175477 10 ⁇ (: 170? 2020/007491
  • the coil pattern 133 has a pair of opposing straight line portions (first straight line portion 130).
  • the distance between the pair of first straight line portions 130 facing each other of the coil pattern 13.8 can be the same as the distance between the pair of straight line portions 30 of the printed wiring board 1 in FIG.
  • the coil pattern 133 has one or a plurality of second straight portions 1 3 on one side or both sides in the extending direction of the pair of first straight portions 130.
  • the heat dissipation area 8 is an elongated shape whose longitudinal direction is the extending direction of the pair of first straight portions 130. In this heat radiation area, a plurality of thermal vias 4 are arranged in the same manner as the printed wiring board 1 in FIG.
  • the spacing between adjacent conductors of the coil pattern 1 3 3 is uniform.
  • the average spacing between the adjacent conductors can be the same as that of the printed wiring board 1 in FIG. Further, it is preferable that the width of the conductors forming the coil pattern 1333 is uniform.
  • the average width of the conductor can be the same as that of the printed wiring board 1 in FIG.
  • the plurality of dummy wirings 15 are arranged so as to be electrically insulated from the conductive pattern 13.
  • the plurality of dummy wirings 15 may be a laminate of a seed layer laminated on the base film and an electrical plating layer laminated on the seed layer, like the coil pattern 1 33, for example.
  • the core body may be composed of the seed layer and the electroplating layer, and a coating layer may be laminated on the outer surface of the core body by plating.
  • the plurality of dummy wirings 15 are arranged adjacent to the coil pattern 133, that is, without interposing other wirings or the like.
  • the printed wiring board 11 may include one or a plurality of dummy wirings 15 that are not adjacent to the coil pattern 1 33 in a part of the plurality of dummy wirings 15. Adjacent to the coil pattern 1 3 3 ⁇ 2020/175 477 1 1 ⁇ (: 170? 2020/007491
  • Examples of the dummy wirings 15 that do not exist include dummy wirings 15 that are arranged in parallel with the coil patterns 1 3 3 with another dummy wiring 15 interposed therebetween.
  • the plurality of dummy wirings 15 include a plurality of first dummy wirings 15 3 that intersect the second straight line portions 13.
  • the plurality of first dummy wirings 15 3 are arranged so as to be orthogonal to the second straight line portion 1 3.
  • the upper limit of the average spacing port 2 is preferably 50, and more preferably 30. If the average gap opening 2 is less than the lower limit, the plurality of first dummy wirings 15 3 and the coil patterns 1 3 3 may be short-circuited. On the other hand, when the average gap opening 2 exceeds the upper limit, the effect of improving the strength by the plurality of first dummy wirings 15 3 may be insufficient.
  • the plurality of first dummy wirings 15 3 are arranged in parallel.
  • the plurality of first dummy wirings 153 are divided at a part in the longitudinal direction. As described above, since the plurality of first dummy wirings 1 5 3 are divided in a part in the longitudinal direction, the heat generated in the coil pattern 1 3 3 diffuses to the outside of the formation region of the coil pattern 1 3 3. This can be easily suppressed.
  • the dividing positions of the plurality of first dummy wirings 153 are random. In other words, it is preferable that the dividing positions of the plurality of first dummy wirings 153 are not linearly arranged. As described above, since the dividing positions of the plurality of first dummy wirings 1 53 are random, it is possible to suppress the reduction in strength due to the dividing of the plurality of first dummy wirings 1 5 3.
  • the dividing positions of the plurality of first dummy wirings 1 53 are close to the coil pattern 1 33. Since the dividing position of the multiple first dummy wirings 1 5 3 is close to the coil pattern 1 3 3, it is easy to diffuse the heat generated in the coil pattern 1 3 3 out of the formation area of the coil pattern 1 3 3. And surely restrain ⁇ 2020/175 477 12 boxes (: 170? 2020 /007491
  • the average distance between the divided regions of the plurality of first dummy wirings 1 53 and the coil pattern 1 3 3 can be, for example, 100 or more and 150 0 or less.
  • plurality of first dummy wiring 1 5 3 of the average length of the separated region! -Is preferably larger than the average interval 0 2 between the plurality of first dummy wirings 1 5 3 and the coil pattern 1 3 3.
  • the plurality of first dummy wirings 1 5 3 and the coil patterns 1 3 3 are arranged separately.
  • the gaps between the plurality of first damascene wirings 15 3 and the coil patterns 1 3 3 are arranged in a straight line, increasing the distance between them makes the effect of improving the strength of the printed wiring board 11 insufficient. ..
  • the dividing positions of the plurality of first dummy wirings 153 can be formed at random, even if the length of the dividing region is relatively large, the strength improving effect is unlikely to be insufficient. Further, by making the length of the divided region relatively large, it is possible to reliably suppress the diffusion of heat.
  • the average length of the divided regions of the plurality of first dummy wirings 1 53! The lower limit of-is preferably 10 and more preferably 30. On the other hand, the above average length! As the upper limit of -, 500 is preferable, and 100 is more preferable. If the above average length !- is less than the above lower limit, it may not be possible to sufficiently suppress the diffusion of heat in this divided region. On the contrary, the above average length! If-exceeds the above upper limit, the above dividing area becomes unnecessarily large, and the strength improving effect of the plurality of first dummy wirings 15 3 on the printed wiring board 1 may be insufficient.
  • the configuration including a plurality of thermal vias has been described, but the printed wiring board may include only one thermal via. Also, one or more thermal vias increase the wiring density of the coil pattern. ⁇ 2020/175 477 13 ⁇ (: 170? 2020 /007491
  • the coil pattern is formed on the inner side of the innermost circumference of the coil pattern from the viewpoint that it can be formed. Or may be formed outside the coil pattern.
  • the printed wiring board may be provided with a conductive pattern only on one side of the base film, or may be provided with conductive patterns on both sides of the base film. Further, the shape of the coil pattern on the printed wiring board is not limited to the shape of the above-described embodiment, and for example, the pair of linear portions facing each other may not be provided.
  • the specific layout of these dummy wirings is not limited to the layout described in the above embodiment. Further, the printed wiring board has one or a plurality of dummy wirings arranged in parallel with the extending direction of the coil pattern, and the one or a plurality of dummy wirings may be divided.
  • the printed wiring board according to the embodiment of the present disclosure can suppress the change in the conductor resistance of the coil pattern, and thus is preferably used for various electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

A printed wiring board of the present disclosure comprises: an insulating base film; an electrically conductive pattern which is laminated on at least one surface side of the base film and has a spiral coil pattern; and one or a plurality of thermal vias which are thermally connected to the coil pattern and disposed through the base film in a region in which the electrically conductive pattern is not laminated.

Description

\¥0 2020/175477 1 卩(:17 2020 /007491 明 細 書 \¥0 2020/175477 1 卩(: 17 2020/007491 Clarification
発明の名称 : プリント配線板 Title of invention: Printed wiring board
技術分野 Technical field
[0001 ] 本開示は、 プリント配線板に関する。 [0001] The present disclosure relates to a printed wiring board.
背景技術 Background technology
[0002] 近年、 電子機器の小型化の要求が高くなっている。 この電子機器には、 渦 巻き状のコイルパターンを有するプリント配線板が広く用いられている。 [0002] In recent years, there is an increasing demand for miniaturization of electronic devices. A printed wiring board having a spiral coil pattern is widely used in this electronic device.
[0003] このプリント配線板としては、 例えば特開 2 0 0 4 _ 3 4 2 6 4 5号公報 に記載の平面コイルが発案されている。 As this printed wiring board, for example, a plane coil described in Japanese Patent Laid-Open No. 2000-4_3426456 has been proposed.
先行技術文献 Prior art documents
特許文献 Patent literature
[0004] 特許文献 1 :特開 2 0 0 4— 3 4 2 6 4 5号公報 [0004] Patent Document 1: Japanese Unexamined Patent Publication No. 20 0 4 — 3 4 2 6 4 5
発明の概要 Summary of the invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0005] 上記公報には、 コイル状の下地導体層に、 硫酸銅、 硫酸又はエチレングリ コールを主成分とするめっき液を用いて電気めっきを施すことで、 平面コイ ルの占積率を高め、 線間の狭い平面コイル素子を形成することができると記 載されている。 [0005] In the above publication, electroplating is performed on a coil-shaped base conductor layer using a plating solution containing copper sulfate, sulfuric acid, or ethylene glycol as a main component to increase the space factor of the plane coil. , It is stated that a narrow planar coil element between lines can be formed.
[0006] しかしながら、 このように平面コイルの配線密度を高めると、 電流を印加 した際に平面コイルの発熱によりコイルの導体抵抗が変化しやすい。 また、 この配線の導体抵抗の変化は、 コイル特性に影響を及ぼすことがある。 [0006] However, when the wiring density of the planar coil is increased in this manner, the conductor resistance of the coil is likely to change due to heat generation of the planar coil when an electric current is applied. Further, the change in the conductor resistance of the wiring may affect the coil characteristics.
[0007] 本開示は、 このような事情に基づいてなされたものであり、 コイルバター ンの導体抵抗の変化を抑えることができるプリント配線板の提供を課題とす る。 [0007] The present disclosure has been made under such circumstances, and an object of the present disclosure is to provide a printed wiring board capable of suppressing a change in conductor resistance of a coil pattern.
課題を解決するための手段 Means for solving the problem
[0008] 上記課題を解決するためになされた本開示に係るプリント配線板は、 絶縁 性を有するベースフイルムと、 上記べースフイルムの少なくとも一方の面側 〇 2020/175477 2 卩(:170? 2020 /007491 [0008] A printed wiring board according to the present disclosure made to solve the above problems includes an insulating base film and at least one surface side of the base film. 〇 2020/175477 2 卩 (: 170? 2020 /007491
に積層され、 渦巻き状のコイルパターンを含む導電パターンと、 上記コイル パタ _ンと熱的に接続され、 上記べ _スフィルムにおける上記導電パタ _ン が積層されていない領域を貫通する 1又は複数のサーマルビアとを備える。 発明の効果 A conductive pattern including a spiral coil pattern and one that is thermally connected to the coil pattern and penetrates a region of the base film where the conductive pattern is not laminated. With thermal vias. Effect of the invention
[0009] 本開示に係るプリント配線板は、 コイルパターンの導体抵抗の変化を抑え ることができる。 [0009] The printed wiring board according to the present disclosure can suppress changes in the conductor resistance of the coil pattern.
図面の簡単な説明 Brief description of the drawings
[0010] [図 1]図 1は、 本開示の一実施形態に係るプリント配線板を示す模式的平面図 である。 [0010] [FIG. 1] FIG. 1 is a schematic plan view showing a printed wiring board according to an embodiment of the present disclosure.
[図 2]図 2は、 図 1のプリント配線板の八 _八線部分端面図である。 [Fig. 2] Fig. 2 is an eight-eight line partial end view of the printed wiring board of Fig. 1.
[図 3]図 3は、 図 1のプリント配線板とは異なる実施形態に係るプリント配線 板を示す模式的平面図である。 [FIG. 3] FIG. 3 is a schematic plan view showing a printed wiring board according to an embodiment different from the printed wiring board of FIG.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[001 1] [本開示の実施形態の説明] [001 1] [Description of Embodiments of the Present Disclosure]
最初に本開示の実施態様を列記して説明する。 First, embodiments of the present disclosure will be listed and described.
[0012] 本開示に係るプリント配線板は、 絶縁性を有するベースフィルムと、 上記 ベースフィルムの少なくとも一方の面側に積層され、 渦巻き状のコイルパタ —ンを含む導電パターンと、 上記コイルパターンと熱的に接続され、 上記べ —スフィルムにおける上記導電/《ターンが積層されていない領域を貫通する 1又は複数のサーマルビアとを備える。 [0012] A printed wiring board according to the present disclosure includes an insulating base film, a conductive pattern that is laminated on at least one surface side of the base film, and includes a spiral coil pattern, the coil pattern, and the thermal pattern. And one or a plurality of thermal vias penetrating the region where the conductive/<<turn is not laminated in the base film.
[0013] 当該プリント配線板は、 コイルバターンと熱的に接続され、 ベースフィル ムにおける導電パターンが積層されていない領域を貫通する 1又は複数のサ —マルビアを備えるので、 コイルパターンが発熱した場合でも上記 1又は複 数のサーマルビアによって熱を上記べースフィルムの反対の面側に逃がすこ とができる。 これにより、 当該プリント配線板は、 コイルパターンの導体抵 抗の変化を抑えることができる。 [0013] Since the printed wiring board is provided with one or more thermal vias that are thermally connected to the coil pattern and penetrate the region of the base film where the conductive patterns are not laminated, when the coil pattern generates heat. However, the heat can be released to the opposite surface side of the base film by the above-mentioned one or more thermal vias. As a result, the printed wiring board can suppress changes in the conductor resistance of the coil pattern.
[0014] 上記 1又は複数のサーマルビアが、 上記コイルパターンの最内周よりも内 側に形成されるとよい。 このように、 上記 1又は複数のサーマルビアが、 上 〇 2020/175477 3 卩(:170? 2020 /007491 [0014] The one or more thermal vias may be formed on the inner side of the innermost circumference of the coil pattern. In this way, the above-mentioned one or more thermal vias are 〇 2020/175477 3 卩(: 170? 2020/007491
記コイルパターンの最内周よりも内側に形成されることによって、 上記コイ ルパターンの配線密度を高めつつ、 このコイルパターンの導体抵抗の変化を 抑えることができる。 By forming the coil pattern on the inner side of the innermost circumference, it is possible to suppress the change in the conductor resistance of the coil pattern while increasing the wiring density of the coil pattern.
[0015] 上記コイルパターンが、 対向する _対の直線部を有し、 複数の上記サーマ ルビアが、 上記一対の直線部に沿って配設されているとよい。 このように、 上記コイルパターンが、 対向する _対の直線部を有し、 複数の上記サーマル ビアが、 上記一対の直線部に沿って配設されていることによって、 上記コイ ルパターンの配線密度を高めつつ、 このコイルパターンの導体抵抗の変化を 容易かつ確実に抑えることができる。 [0015] It is preferable that the coil pattern has _ pairs of linear portions facing each other, and the plurality of thermal vias are arranged along the pair of linear portions. Thus, the coil pattern has a linear portion of the _ pairs opposite, by a plurality of the thermal vias are arranged along the pair of linear portions, the wiring density of the coil pattern It is possible to easily and surely suppress the change in the conductor resistance of the coil pattern while increasing the value.
[0016] 上記コイルパターンの外側に隣接する複数のダミー配線を備え、 少なくと も 1つの上記ダミー配線が分断されているとよい。 このように、 上記コイル パターンの外側に隣接して複数のダミー配線を設けることで、 当該プリント 配線板の強度を高めることができる。 また、 少なくとも 1つの上記ダミー配 線が分断されていることによって、 平面方向への熱の拡散を抑制し、 上記 1 又は複数のサーマルビアから熱をより確実に逃がすことができる。 A plurality of dummy wirings adjacent to the outside of the coil pattern may be provided, and at least one dummy wiring may be divided. In this way, by providing a plurality of dummy wirings adjacent to the outside of the coil pattern, the strength of the printed wiring board can be increased. Further, since at least one dummy wiring is divided, it is possible to suppress the diffusion of heat in the plane direction and to more surely release the heat from the one or more thermal vias.
[0017] なお、 本開示において、 「熱的に接続」 とは、 両者間で 1 0 %以下の温度 損失 (摂氏温度換算) で熱伝達可能な状態をいい、 両者が物理的に接触しな い状態であってもよい。 つまり、 サーマルビアがコイルバターンと熱的に接 続されるとは、 コイルパターンに電流を印加した場合に、 このコイルバター ンから 1 0 %以下の温度損失でサーマルビアに熱が伝わることをいう。 [0017] In the present disclosure, "thermally connected" refers to a state in which heat transfer between the two is possible with a temperature loss of 10% or less (converted to a temperature in Celsius), and the two are not in physical contact with each other. It may be in a bad state. In other words, that the thermal via is thermally connected to the coil pattern means that when a current is applied to the coil pattern, heat is transferred from this coil pattern to the thermal via with a temperature loss of 10% or less. ..
[0018] [本開示の実施形態の詳細] [Details of Embodiments of the Present Disclosure]
以下、 本開示の各実施形態に係るプリント配線板について図面を参照しつ つ詳説する。 Hereinafter, a printed wiring board according to each embodiment of the present disclosure will be described in detail with reference to the drawings.
[0019] [第一実施形態] [0019] [First embodiment]
<プリント配線板> <Printed wiring board>
図 1及び図 2のプリント配線板 1は、 絶縁性を有するベースフイルム 2と 、 ベースフイルム 2の少なくとも一方の面側に積層され、 渦巻き状のコイル パターン 3 3を含む導電パターン 3と、 コイルパターン 3 3と熱的に接続さ 〇 2020/175477 4 卩(:170? 2020 /007491 The printed wiring board 1 in FIGS. 1 and 2 has an insulating base film 2, a conductive pattern 3 including a spiral coil pattern 3 3 laminated on at least one surface side of the base film 2, and a coil pattern. 3 Thermally connected to 3 〇 2020/175477 4 卩 (: 170? 2020 /007491
れ、 ベースフィルム 2における導電パターン 3が積層されてない領域を貫通 する複数のサーマルビア 4とを備える。 また、 図示していないが、 当該プリ ント配線板 1は、 ベースフィルム 2及び導電パターン 3に積層される絶縁層 を備えていてもよい。 この絶縁層は、 例えばソルダーレジスト、 カバーレイ 等を用いて形成することができる。 And a plurality of thermal vias 4 penetrating a region of the base film 2 where the conductive pattern 3 is not laminated. Although not shown, the printed wiring board 1 may include an insulating layer laminated on the base film 2 and the conductive pattern 3. This insulating layer can be formed using, for example, a solder resist or a coverlay.
[0020] 当該プリント配線板 1は、 コイルパターン 3 3と熱的に接続され、 ベース フィルム 2における導電パターン 3が積層されていない領域を貫通する複数 のサーマルビア 4を備えるので、 コイルバターン 3 3が発熱した場合でも複 数のサーマルビア 4によって熱をベースフィルム 2の反対の面側に逃がすこ とができる。 つまり、 当該プリント配線板 1は、 コイルバターン 3 3に生じ た熱を、 複数のサーマルビア 4によってベースフィルム 2のコイルパターン 3 3が配設される側と反対の面側から放熱することができる。 これにより、 当該プリント配線板 1は、 コイルパターン 3 3が形成される領域に熱が滞留 することを抑制し、 コイルパターン 3 3の導体抵抗の変化を抑えることがで きる。 Since the printed wiring board 1 is provided with a plurality of thermal vias 4 that are thermally connected to the coil pattern 33 and penetrate the region of the base film 2 where the conductive pattern 3 is not laminated, the coil pattern 33 Even if heat is generated, the heat can be released to the opposite surface side of the base film 2 by the plurality of thermal vias 4. That is, the printed wiring board 1 can radiate the heat generated in the coil pattern 33 from the surface side of the base film 2 opposite to the side where the coil pattern 33 is arranged by the plurality of thermal vias 4. .. Thus, the printed wiring board 1 is to prevent the heat from staying in the region where the coil patterns 3 3 are formed, as possible out to suppress the change in conductor resistance of the coil pattern 3 3.
[0021 ] (ベースフイルム) [0021] (Base film)
ベースフィルム 2は、 合成樹脂を主成分とし、 電気絶縁性を有する。 ベー スフィルム 2は、 導電バターン 3を形成するための基材層である。 ベースフ ィルム 2は可撓性を有していてもよい。 ベースフィルム 2が可撓性を有する 場合、 当該プリント配線板 1はフレキシブルプリント配線板として構成され る。 なお、 「主成分」 とは、 質量換算で最も含有割合の大きい成分をいい、 例えば含有量が 5 0質量%以上の成分をいう。 The base film 2 has a synthetic resin as a main component and has electric insulation. The base film 2 is a base material layer for forming the conductive pattern 3. The base film 2 may have flexibility. When the base film 2 has flexibility, the printed wiring board 1 is configured as a flexible printed wiring board. The “main component” means a component having the largest content ratio in terms of mass, for example, a component having a content of 50 mass% or more.
[0022] 上記合成樹脂としては、 例えばポリイミ ド、 ポリエチレンテレフタレート 、 液晶ポリマー、 フッ素樹脂等が挙げられる。 [0022] Examples of the synthetic resin include polyimide, polyethylene terephthalate, liquid crystal polymer, and fluororesin.
[0023] 当該プリント配線板 1がフレキシブルプリント配線板である場合、 ベース フィルム 2の平均厚さの下限としては、 5 が好ましく、 1 〇 がより 好ましい。 一方、 ベースフィルム 2の平均厚さの上限としては、 5 0 が 好ましく、 4〇 がより好ましい。 ベースフィルム 2の平均厚さが上記下 〇 2020/175477 5 卩(:170? 2020 /007491 When the printed wiring board 1 is a flexible printed wiring board, the lower limit of the average thickness of the base film 2 is preferably 5, and more preferably 10. On the other hand, the upper limit of the average thickness of the base film 2 is preferably 50, and more preferably 40. The average thickness of base film 2 is below the above. 〇 2020/175477 5 卩(: 170? 2020/007491
限に満たないと、 ベースフィルム 2の絶縁強度が不十分となるおそれがある 。 逆に、 ベースフィルム 2の平均厚さが上記上限を超えると、 当該プリント 配線板 1が不必要に厚くなるおそれや、 可撓性が不十分となるおそれがある 。 なお、 本明細書において 「平均厚さ」 とは、 任意の 1 0点の厚さの平均値 をいう。 If it is less than the limit, the insulation strength of the base film 2 may be insufficient. On the contrary, if the average thickness of the base film 2 exceeds the above upper limit, the printed wiring board 1 may be unnecessarily thick and the flexibility may be insufficient. In the present specification, the “average thickness” means the average value of the thicknesses at arbitrary 10 points.
[0024] (導電パターン) [0024] (Conductive pattern)
導電パターン 3は、 導電性を有する導体からなる層であり、 渦巻き状のコ イルバターン3 3を含む。 また、 導電バターン 3は、 コイルバターン3 3の 端部に接続されるスルーホール 3 13を含む。 The conductive pattern 3 is a layer made of a conductor having conductivity, and includes a spiral coil pattern 33. The conductive pattern 3 also includes a through hole 313 connected to the end of the coil pattern 33.
[0025] áコイルバターン ñ [0025] á Coil pattern ñ
コイルパターン 3 8は、 例えばべースフィルム 2に積層されるシード層と 、 このシード層に積層される電気めっき層との積層体である。 また、 コイル パターン 3 3は、 上記シード層及び電気めっき層によって構成される芯体と 、 この芯体の外面にめっきによって積層される被覆層とを有する構成とする こともできる。 上記シード層の主成分としては、 例えば銅、 ニッケル、 銀等 が挙げられる。 上記シード層は、 例えば無電解めっきによって形成される。 また、 上記シード層は、 ベースフィルム 2の表面に金属粒子を含むインクを 塗布し、 金属粒子を焼結させた金属粒子の焼結体層であってもよく、 上記焼 結体層及び無電解めっき層の積層体であってもよい。 また、 上記電気めっき 層は電気めっきによって形成される。 上記電気めっき層の主成分としては、 銅、 ニッケル、 銀等が挙げられる。 The coil pattern 38 is, for example, a laminate of a seed layer laminated on the base film 2 and an electroplating layer laminated on the seed layer. Further, the coil pattern 33 may be configured to have a core body composed of the seed layer and the electroplating layer, and a coating layer laminated on the outer surface of the core body by plating. Examples of the main component of the seed layer include copper, nickel, silver and the like. The seed layer is formed by electroless plating, for example. The seed layer may be a sintered body layer of metal particles obtained by applying ink containing metal particles on the surface of the base film 2 and sintering the metal particles. It may be a laminate of plating layers. The electroplated layer is formed by electroplating. Examples of the main component of the electroplated layer include copper, nickel, silver and the like.
[0026] コイルパターン 3 3は対向する一対の直線部 3〇を有する。 一対の直線部 [0026] The coil pattern 33 has a pair of opposing straight line portions 30. A pair of straight lines
3〇間の間隔、 つまり一対の直線部 3〇の最内周に配設される一対の導体の 内周縁間の間隔、 としては例えば 2 0 0 以上 3 0 0 0 以下とするこ とができる。 The distance between the circles 30, that is, the distance between the inner peripheral edges of the pair of conductors arranged on the innermost periphery of the pair of straight portions 30 can be, for example, 200 or more and 300 or less ..
[0027] —対の直線部 3〇間の領域は、 コイルバターン3 3に生じた熱をベースフ ィルム 2のコイルパターン 3 8が積層される側の面と反対の面側に逃がすた めの放熱領域 8として構成されている。 放熱領域 8は、 一対の直線部 3〇の 〇 2020/175477 6 卩(:170? 2020 /007491 [0027] — The area between the pair of linear portions 30 is a heat radiation for releasing the heat generated in the coil pattern 33 to the surface opposite to the surface where the coil pattern 38 of the base film 2 is laminated. Configured as Region 8. The heat dissipation area 8 is composed of a pair of straight lines 30. 〇 2020/175477 6 卩 (: 170? 2020 /007491
延在方向を長手方向とする細長状である。 後述するように、 この放熱領域 8 には、 複数のサーマルビア 4が配設されている。 It is an elongated shape whose longitudinal direction is the extending direction. As will be described later, a plurality of thermal vias 4 are arranged in this heat dissipation area 8.
[0028] 上述の放熱領域 [¾を除き、 コイルパターン 3 3の隣接する導体間の間隔は 均一であることが好ましい。 上記隣接する導体間の平均間隔の下限としては 、 5 が好ましく、 1 0 がより好ましい。 一方、 上記平均間隔の上限 としては、 5 0 が好ましく、 3 0 がより好ましい。 上記平均間隔が 上記下限に満たないと、 コイルバターン 3 3の形成が容易でなくなるおそれ がある。 逆に、 上記平均間隔が上記上限を超えると、 所望の配線密度を得ら れないおそれがある。 なお、 上記平均間隔が小さい場合、 発熱に起因してコ イルパターン 3 3の導体抵抗が変化しやすい。 しかしながら、 当該プリント 配線板 1は、 複数のサーマルビア 4によって集中的に放熱することができる ため、 上記平均間隔を上記上限以下とした場合でも導体抵抗の変化を十分に 抑えることができる。 なお、 「平均間隔」 とは、 任意の 1 0点の間隔の平均 値をいう。 [0028] Except for the above-described heat dissipation region [], the intervals between the adjacent conductors of the coil pattern 33 are preferably uniform. As the lower limit of the average spacing between the adjacent conductors, 5 is preferable, and 10 is more preferable. On the other hand, the upper limit of the average interval is preferably 50, and more preferably 30. If the average interval is less than the lower limit, it may be difficult to form the coil pattern 33. On the contrary, if the average interval exceeds the upper limit, there is a possibility that a desired wiring density cannot be obtained. Incidentally, the case where the average spacing is small, the conductor resistance of the coils pattern 3 3 is likely to change due to heat generation. However, since the printed wiring board 1 can intensively radiate heat by the plurality of thermal vias 4, it is possible to sufficiently suppress the change in conductor resistance even when the average interval is set to the upper limit or less. The "average interval" means the average value of the intervals of arbitrary 10 points.
[0029] コイルバターン 3 3を構成する導体の幅は均一であることが好ましい。 上 記導体の平均幅の下限としては、 5 が好ましく、 1 0 がより好まし い。 一方、 上記導体の平均幅の上限としては、 5 0 が好ましく、 3 0 がより好ましい。 上記平均幅が上記下限に満たないと、 コイルパターン 3 3の形成が容易でなくなるおそれがある。 逆に、 上記平均幅が上記上限を超 えると、 コイルパターン 3 3の平面面積が大きくなり、 当該プリント配線板 1の小型化の要求に反するおそれがある。 なお、 「平均幅」 とは、 任意の 1 〇点の幅の平均値をいう。 [0029] The width of the conductors forming the coil pattern 33 is preferably uniform. As the lower limit of the average width of the above conductor, 5 is preferable, and 10 is more preferable. On the other hand, the upper limit of the average width of the conductor is preferably 50, and more preferably 30. If the average width is less than the lower limit, it may be difficult to form the coil pattern 33. On the contrary, when the average width exceeds the upper limit, the plane area of the coil pattern 33 becomes large, which may violate the demand for miniaturization of the printed wiring board 1. The "average width" is the average value of the width of any 10 points.
[0030] コイルパターン 3 8を構成する導体の平均厚さの下限としては、 5 が 好ましく、 1 〇 がより好ましい。 一方、 上記平均厚さの上限としては、 [0030] As the lower limit of the average thickness of the conductor forming the coil pattern 38, 5 is preferable, and 10 is more preferable. On the other hand, as the upper limit of the average thickness,
9 0 が好ましく、 7 0 がより好ましい。 上記平均厚さが上記下限に 満たないと、 導体抵抗が大きくなるおそれがある。 逆に、 上記平均厚さが上 記上限を超えると、 当該プリント配線板 1の薄型化の要求に反するおそれが ある。 〇 2020/175477 7 卩(:170? 2020 /007491 90 is preferable, and 70 is more preferable. If the average thickness is less than the above lower limit, the conductor resistance may increase. On the other hand, if the average thickness exceeds the upper limit described above, there is a fear that the demand for thinning the printed wiring board 1 is violated. 〇 2020/175 477 7 卩 (: 170? 2020 /007491
[0031 ] (サーマルビア) [0031] (Thermal via)
図 2に示すように、 複数のサーマルビア 4は、 ベースフイルム 2の厚さ方 向に貫通している。 複数のサーマルビア 4は、 コイルバターン3 3の最内周 よりも内側に形成されている。 具体的には、 複数のサーマルビア 4は、 上述 の放熱領域 8に形成されている。 この放熱領域 8では、 複数のサーマルビア 4の表面、 好ましくは両面、 は外部に露出している (つまり、 複数のサーマ ルビア 4の表面は、 絶縁層等の他の部材に被覆されていない) 。 当該プリン 卜配線板 1は、 複数のサーマルビア 4がコイルパターン 3 3の最内周よりも 内側に形成されることによって、 コイルパターン 3 3の配線密度を高めつつ 、 このコイルパターン 3 3の導体抵抗の変化を抑えることができる。 As shown in FIG. 2, a plurality of thermal vias 4 penetrates in the thickness direction of the base film 2. The plurality of thermal vias 4 are formed inside the innermost circumference of the coil pattern 33. Specifically, the plurality of thermal vias 4 are formed in the heat dissipation area 8 described above. In this heat dissipation area 8, the surfaces of the plurality of thermal vias 4, preferably both surfaces, are exposed to the outside (that is, the surfaces of the plurality of thermal vias 4 are not covered with another member such as an insulating layer). .. In the printed wiring board 1, the plurality of thermal vias 4 are formed inside the innermost circumference of the coil pattern 33, so that the wiring density of the coil pattern 33 is increased and the conductor of the coil pattern 33 is increased. The change in resistance can be suppressed.
[0032] 複数のサーマルビア 4は、 一対の直線部 3〇に沿って配設されている。 複 数のサーマルビア 4が一対の直線部 3〇に沿って配設されることで、 コイル パターン 3 3と複数のサーマルビア 4との熱的な接続が容易かつ確実となる 。 また、 この構成によると、 コイルパターン 3 3の全領域から熱が均等に複 数のサーマルビア 4に伝達されやすい。 そのため、 コイルバターン3 3の配 線密度を高めつつ、 コイルパターン 3 3の導体抵抗の変化を容易かつ確実に 抑えることができる。 The plurality of thermal vias 4 are arranged along the pair of straight line portions 30. By arranging the plurality of thermal vias 4 along the pair of straight line portions 30, the thermal connection between the coil pattern 33 and the plurality of thermal vias 4 becomes easy and reliable. Further, according to this configuration, heat is likely to be uniformly transferred from the entire area of the coil pattern 33 to the plurality of thermal vias 4. Therefore, it is possible to easily and reliably suppress the change in the conductor resistance of the coil pattern 33 while increasing the wiring density of the coil pattern 33.
[0033] 複数のサーマルビア 4は、 例えばべースフイルム 2の厚さ方向を貫通する 貫通孔を形成し、 この貫通孔の内周面及びこの内周面から連続するべースフ イルム 2の両面に金属めっきを施すことで形成される。 上記金属としては、 銅が好ましい。 また、 上記金属めっきとしては、 例えば無電解めっきが挙げ られる。 また、 この無電解めっきの後に、 さらに電気めっきを施してもよい [0033] The plurality of thermal vias 4 form, for example, a through hole penetrating in the thickness direction of the base film 2, and a metal is formed on the inner peripheral surface of the through hole and both surfaces of the base film 2 continuous from the inner peripheral surface. It is formed by plating. Copper is preferable as the metal. In addition, examples of the metal plating include electroless plating. Further, after this electroless plating, electroplating may be further performed.
[0034] 本実施形態において、 各サーマルビア 4は円筒状である。 各サーマルビア 4は軸方向の両側にランド部を有する。 当該プリント配線板 1は、 複数のサ —マルビア 4の平均径を比較的小さく し、 かつこれらのサーマルビア 4の数 量を比較的多くすることが好ましい。 これにより、 一定の熱伝導率を有する サーマルビア 4を平面方向に緻密に配置することができ、 コイルパターン 3 〇 2020/175477 8 卩(:170? 2020 /007491 In this embodiment, each thermal via 4 has a cylindrical shape. Each thermal via 4 has lands on both sides in the axial direction. In the printed wiring board 1, it is preferable that the average diameter of the plurality of thermal vias 4 be relatively small and the number of these thermal vias 4 be relatively large. As a result, the thermal vias 4 having a constant thermal conductivity can be densely arranged in the plane direction, and the coil pattern 3 〇 2020/175 477 8 卩 (: 170? 2020 /007491
3の全領域から熱を均等に放熱しやすい。 It is easy to dissipate heat evenly from all areas of 3.
[0035] 複数のサーマルビア 4の平均径 (上述の貫通孔の平均内径) の下限とし ては、 1 0 が好ましく、 2 5 がより好ましい。 一方、 上記平均径 の上限としては、 3 0 0 が好ましく、 1 〇〇 がより好ましい。 上記 平均径 が上記下限に満たないと、 金属めっきの接続が不確実になるおそれ がある。 逆に、 上記平均径 が上記上限を超えると、 多数のサーマルビア 4 を緻密に配置することが困難になり、 コイルパターン 3 3全体に対する放熱 性が不十分となるおそれがある。 なお、 「径」 とは、 等面積の真円に換算し た場合の直径をいう。 また、 「サーマルビアの平均径」 とは、 ベースフィル ムに形成される貫通孔の両側の端開口における径の平均値をいう。 [0035] As the lower limit of the average diameter of the plurality of thermal vias 4 (the average inner diameter of the above-mentioned through holes), 10 is preferable, and 25 is more preferable. On the other hand, the upper limit of the average diameter is preferably 300, more preferably 100. If the average diameter is less than the lower limit, the metal plating connection may be uncertain. On the other hand, if the average diameter exceeds the upper limit, it becomes difficult to arrange a large number of thermal vias 4 densely, and the heat dissipation to the entire coil pattern 33 may become insufficient. The term "diameter" means the diameter when converted into a true circle of equal area. The “average diameter of the thermal via” means the average value of the diameters at the end openings on both sides of the through hole formed in the base film.
[0036] 複数のサーマルビア 4は、 放熱領域 の長手方向に沿って直線状に配設さ れている。 この放熱領域 に配設される複数のサーマルビア 4の個数の下限 としては、 3が好ましく、 4がより好ましい。 一方、 上記個数の上限として は、 8が好ましく、 6がより好ましい。 上記個数が上記下限に満たないと、 コイルパターン 3 3全体に対する放熱性が不十分となるおそれがある。 逆に 、 上記個数が上記上限を超えると、 放熱領域[¾が不必要に大きくなり、 当該 プリント配線板 1の小型化の要求に反するおそれがある。 [0036] The plurality of thermal vias 4 are linearly arranged along the longitudinal direction of the heat dissipation area. As a lower limit of the number of the plurality of thermal vias 4 arranged in this heat dissipation region, 3 is preferable, and 4 is more preferable. On the other hand, the upper limit of the number is preferably 8 and more preferably 6. If the number is less than the lower limit, the heat radiation property to the entire coil pattern 33 may be insufficient. On the other hand, if the number exceeds the upper limit, the heat dissipation area [unnecessarily increases, which may violate the demand for miniaturization of the printed wiring board 1.
[0037] 隣接するサーマルビア 4の平均間隔 0 1の下限としては、 1 〇 が好ま しく、 2 5 がより好ましい。 一方、 上記平均間隔口 1の上限としては、 [0037] As the lower limit of the average interval 0 1 of the adjacent thermal vias 4, 10 is preferable, and 25 is more preferable. On the other hand, as the upper limit of the average interval mouth 1,
3 0 0 が好ましく、 1 0 0 がより好ましい。 上記平均間隔口 1が上 記下限に満たないと、 複数のサーマルビア 4の形成が困難になるおそれやべ —スフィルム 2の強度が低下するおそれがある。 逆に、 上記平均間隔口 1が 上記上限を超えると、 コイルパターン 3 3全体に対する放熱性が不十分とな るおそれや、 放熱領域 が不必要に大きくなり、 当該プリント配線板 1の小 型化の要求に反するおそれがある。 なお、 隣接するサーマルビアの間隔とは 、 隣接するサーマルビア同士の最小距離をいう。 300 is preferable, and 100 is more preferable. If the average gap opening 1 is less than the above lower limit, it may be difficult to form a plurality of thermal vias 4 or the strength of the base film 2 may be reduced. On the other hand, if the average gap opening 1 exceeds the upper limit, the heat radiation property to the entire coil pattern 33 may be insufficient, or the heat radiation area may become unnecessarily large, and the printed wiring board 1 may be downsized. May violate the requirements of. The interval between adjacent thermal vias means the minimum distance between adjacent thermal vias.
[0038] [第二実施形態] [0038] [Second Embodiment]
図 3のプリント配線板 1 1は、 絶縁性を有するベースフィルムと、 このべ 〇 2020/175477 9 卩(:170? 2020 /007491 The printed wiring board 11 shown in Fig. 3 has an insulating base film and 〇 2020/175 477 9 卩 (: 170? 2020 /007491
—スフィルムの少なくとも一方の面側に積層され、 渦巻き状のコイルバター ン 1 3 3を含む導電パターン 1 3と、 コイルパターン 1 3 3と熱的に接続さ れ、 上記べースフィルムにおける導電パターン 1 3が積層されてない領域を 貫通する複数のサーマルビア 4とを備える。 また、 図示していないが、 当該 プリント配線板 1 1は、 上記べースフィルム及び導電パターン 1 3に積層さ れる絶縁層を備えていてもよい。 この絶縁層は、 例えばソルダーレジスト、 カバーレイ等を用いて形成することができる。 当該プリント配線板 1 1の上 記べースフィルムとしては、 図 1のプリント配線板 1のべースフィルム 2と 同様の構成とすることができる。 また、 当該プリント配線板 1 1のサーマル ビア 4としては、 図 1のプリント配線板 1のサーマルビア 4と同様であるた め、 同一符号を付して説明を省略する。 — Conductive pattern 13 laminated on at least one surface side of the base film and thermally connected to the conductive pattern 13 including the spiral coil pattern 1 3 3 and the conductive pattern 1 3 3 in the above base film. And a plurality of thermal vias (4) penetrating the area where the layers (3) are not stacked. Although not shown, the printed wiring board 11 may include an insulating layer laminated on the base film and the conductive pattern 13. This insulating layer can be formed using, for example, a solder resist or a coverlay. The above-mentioned base film of the printed wiring board 11 can have the same structure as the base film 2 of the printed wiring board 1 in FIG. Further, since the thermal via 4 of the printed wiring board 11 is the same as the thermal via 4 of the printed wiring board 1 of FIG. 1, the same reference numerals are given and the description thereof is omitted.
[0039] 当該プリント配線板 1 1は、 コイルパターン 1 3 3の外側に隣接する複数 のダミー配線 1 5を備える。 また、 少なくとも 1つのダミー配線 1 5は分断 されている。 当該プリント配線板 1 1は、 複数のダミー配線 1 5がコイルパ ターン 1 3 3に隣接して設けられることで、 プリント配線板の強度を高める ことができる。 また、 当該プリント配線板 1 1は、 少なくとも 1つのダミー 配線 1 5が分断されていることによって、 コイルパターン 1 3 3の形成領域 から平面方向外側への熱の拡散を抑制し、 複数のサーマルビア 4から熱をよ り確実に逃がすことができる。 The printed wiring board 11 is provided with a plurality of dummy wirings 15 adjacent to the outside of the coil pattern 1 3 3 . Also, at least one dummy wiring 15 is divided. The printed wiring board 11 is provided with a plurality of dummy wirings 15 adjacent to the coil patterns 133, so that the strength of the printed wiring board can be increased. In addition, since at least one dummy wiring 15 is divided, the printed wiring board 11 suppresses the diffusion of heat from the area where the coil patterns 1 3 3 are formed to the outer side in the plane direction, and a plurality of thermal vias are provided. The heat can be more reliably dissipated from the 4.
[0040] (導電バターン) [0040] (Conductive pattern)
導電パターン 1 3は、 導電性を有する導体からなる層であり、 渦巻き状の コイルバターン 1 3 3を含む。 また、 導電バターン 1 3は、 コイルパターン 1 3 3の端部に接続されるスルーホール 1 3 13を含む。 The conductive pattern 13 is a layer made of a conductive conductor and includes a spiral coil pattern 1 33. In addition, the conductive pattern 13 includes a through hole 1 3 13 connected to an end of the coil pattern 1 3 3.
[0041 ] áコイルバターン ñ [0041] á Coil pattern ñ
コイルパターン 1 3 3は、 図 1のプリント配線板 1のコイルバターン3 3 と同様、 ベースフィルムに積層されるシード層と、 このシード層に積層され る電気めっき層との積層体とすることができる。 また、 コイルパターン 1 3 3は、 上記シード層及び電気めっき層によって構成される芯体と、 この芯体 〇 2020/175477 10 卩(:170? 2020 /007491 The coil pattern 1 3 3 may be a laminate of a seed layer laminated on the base film and an electroplating layer laminated on the seed layer, like the coil pattern 33 of the printed wiring board 1 in FIG. it can. The coil pattern 133 is composed of a core body composed of the seed layer and the electroplating layer, and 〇 2020/175477 10 卩(: 170? 2020/007491
の外面にめっきによって積層される被覆層とを有していてもよい。 May have a coating layer laminated on the outer surface by plating.
[0042] コイルパターン 1 3 3は対向する一対の直線部 (第 1直線部 1 3〇) を有 する。 コイルパターン 1 3 8の対向する一対の第 1直線部 1 3〇間の間隔と しては、 図 1のプリント配線板 1の一対の直線部 3〇間の間隔と同様とする ことができる。 また、 コイルパターン 1 3 3は、 一対の第 1直線部 1 3〇の 延在方向の一方側又は両側に 1又は複数の第 2直線部 1 3 を有する。 [0042] The coil pattern 133 has a pair of opposing straight line portions (first straight line portion 130). The distance between the pair of first straight line portions 130 facing each other of the coil pattern 13.8 can be the same as the distance between the pair of straight line portions 30 of the printed wiring board 1 in FIG. The coil pattern 133 has one or a plurality of second straight portions 1 3 on one side or both sides in the extending direction of the pair of first straight portions 130.
[0043] —対の第 1直線部 1 3〇間の領域は、 コイルバターン 1 3 3に生じた熱を 上記べ _スフィルムのコイルパタ _ン 1 3 8が積層される側の面と反対の面 側に逃がすための放熱領域 8として構成されている。 放熱領域 8は、 一対の 第 1直線部 1 3〇の延在方向を長手方向とする細長状である。 この放熱領域 には、 図 1のプリント配線板 1 と同様の態様で複数のサーマルビア 4が配 設されている。 [0043] - between the first linear portion 1 3_Rei pair region, on the side where the heat generated in the coil Bataan 1 3 3 Koirupata _ down 1 3 8 of the base _ scan film are stacked face opposite It is configured as a heat dissipation area 8 to escape to the surface side. The heat dissipation area 8 is an elongated shape whose longitudinal direction is the extending direction of the pair of first straight portions 130. In this heat radiation area, a plurality of thermal vias 4 are arranged in the same manner as the printed wiring board 1 in FIG.
[0044] 放熱領域 [¾を除き、 コイルパターン 1 3 3の隣接する導体間の間隔は均一 であることが好ましい。 上記隣接する導体間の平均間隔としては、 図 1のプ リント配線板 1 と同様とすることができる。 また、 コイルバターン 1 3 3を 構成する導体の幅は均一であることが好ましい。 上記導体の平均幅としては 、 図 1のプリント配線板 1 と同様とすることができる。 [0044] Except for the heat radiation area [¾, they are preferred spacing between adjacent conductors of the coil pattern 1 3 3 is uniform. The average spacing between the adjacent conductors can be the same as that of the printed wiring board 1 in FIG. Further, it is preferable that the width of the conductors forming the coil pattern 1333 is uniform. The average width of the conductor can be the same as that of the printed wiring board 1 in FIG.
[0045] (ダミー配線) [0045] (Dummy wiring)
複数のダミー配線 1 5は、 導電パターン 1 3と電気的絶縁状態で配設され ている。 複数のダミー配線 1 5は、 例えばコイルバターン 1 3 3と同様、 ベ —スフィルムに積層されるシード層と、 このシード層に積層される電気めっ き層との積層体であってもよく、 上記シード層及び電気めっき層によって構 成される芯体と、 この芯体の外面にめっきによって積層される被覆層とを有 する構成であってもよい。 The plurality of dummy wirings 15 are arranged so as to be electrically insulated from the conductive pattern 13. The plurality of dummy wirings 15 may be a laminate of a seed layer laminated on the base film and an electrical plating layer laminated on the seed layer, like the coil pattern 1 33, for example. The core body may be composed of the seed layer and the electroplating layer, and a coating layer may be laminated on the outer surface of the core body by plating.
[0046] 複数のダミー配線 1 5は、 コイルパターン 1 3 3と隣接して、 つまり他の 配線等を間に挟まずに、 配設されている。 なお、 当該プリント配線板 1 1は 、 複数のダミー配線 1 5の一部にコイルパターン 1 3 3と隣接しない 1又は 複数のダミー配線 1 5を含んでいてもよい。 コイルパターン 1 3 3と隣接し 〇 2020/175477 1 1 卩(:170? 2020 /007491 The plurality of dummy wirings 15 are arranged adjacent to the coil pattern 133, that is, without interposing other wirings or the like. The printed wiring board 11 may include one or a plurality of dummy wirings 15 that are not adjacent to the coil pattern 1 33 in a part of the plurality of dummy wirings 15. Adjacent to the coil pattern 1 3 3 〇 2020/175 477 1 1 卩(: 170? 2020/007491
ないダミー配線 1 5としては、 例えば他のダミー配線 1 5を挟んでコイルパ ターン 1 3 3と並列に配設されるダミー配線 1 5が挙げられる。 Examples of the dummy wirings 15 that do not exist include dummy wirings 15 that are arranged in parallel with the coil patterns 1 3 3 with another dummy wiring 15 interposed therebetween.
[0047] 複数のダミー配線 1 5のうち、 少なくとも 1部のダミー配線は、 隣接する コイルパターン 1 3 3の延在方向と交差する方向に配設されている。 本実施 形態では、 複数のダミー配線 1 5は、 第 2直線部 1 3 と交差する複数の第 1ダミー配線 1 5 3を含んでいる。 複数の第 1ダミー配線 1 5 3は、 第 2直 線部 1 3 と直交するよう配設されている。 At least a part of the dummy wirings 15 among the plurality of dummy wirings 15 is arranged in a direction intersecting with the extending direction of the adjacent coil patterns 1 33. In the present embodiment, the plurality of dummy wirings 15 include a plurality of first dummy wirings 15 3 that intersect the second straight line portions 13. The plurality of first dummy wirings 15 3 are arranged so as to be orthogonal to the second straight line portion 1 3.
[0048] 複数の第 1ダミー配線 1 5 3とコイルバターン 1 3 3との平均間隔 0 2の 下限としては、 5 が好ましい。 一方、 上記平均間隔口 2の上限としては 、 5 0 が好ましく、 3 0 がより好ましい。 上記平均間隔口 2が上記 下限に満たないと、 複数の第 1ダミー配線 1 5 3とコイルバターン 1 3 3と が短絡するおそれがある。 逆に、 上記平均間隔口 2が上記上限を超えると、 複数の第 1ダミー配線 1 5 3による強度の向上効果が不十分となるおそれが ある。 [0048] As a lower limit of the average interval 0 2 between the plurality of first dummy wirings 1 5 3 and the coil patterns 1 3 3, 5 is preferable. On the other hand, the upper limit of the average spacing port 2 is preferably 50, and more preferably 30. If the average gap opening 2 is less than the lower limit, the plurality of first dummy wirings 15 3 and the coil patterns 1 3 3 may be short-circuited. On the other hand, when the average gap opening 2 exceeds the upper limit, the effect of improving the strength by the plurality of first dummy wirings 15 3 may be insufficient.
[0049] 複数の第 1ダミー配線 1 5 3は平行に配設されている。 また、 複数の第 1 ダミー配線 1 5 3は、 長手方向の一部分で分断されている。 このように、 複 数の第 1ダミー配線 1 5 3が長手方向の一部分で分断されていることによっ て、 コイルパターン 1 3 3に生じた熱がコイルパターン 1 3 3の形成領域外 に拡散することを容易に抑制することができる。 [0049] The plurality of first dummy wirings 15 3 are arranged in parallel. In addition, the plurality of first dummy wirings 153 are divided at a part in the longitudinal direction. As described above, since the plurality of first dummy wirings 1 5 3 are divided in a part in the longitudinal direction, the heat generated in the coil pattern 1 3 3 diffuses to the outside of the formation region of the coil pattern 1 3 3. This can be easily suppressed.
[0050] 複数の第 1ダミー配線 1 5 3の分断位置は、 ランダムであることが好まし い。 換言すると、 複数の第 1ダミー配線 1 5 3の分断位置は、 直線状に並ば ないことが好ましい。 このように、 複数の第 1ダミー配線 1 5 3の分断位置 がランダムであることによって、 複数の第 1ダミー配線 1 5 3の分断に起因 する強度の低下を抑制することができる。 [0050] It is preferable that the dividing positions of the plurality of first dummy wirings 153 are random. In other words, it is preferable that the dividing positions of the plurality of first dummy wirings 153 are not linearly arranged. As described above, since the dividing positions of the plurality of first dummy wirings 1 53 are random, it is possible to suppress the reduction in strength due to the dividing of the plurality of first dummy wirings 1 5 3.
[0051 ] 複数の第 1ダミー配線 1 5 3の分断位置は、 コイルパターン 1 3 3と近接 していることが好ましい。 複数の第 1ダミー配線 1 5 3の分断位置がコイル バターン 1 3 3に近接していることで、 コイルバターン 1 3 3に生じた熱の コイルパターン 1 3 3の形成領域外への拡散を容易かつ確実に抑制すること 〇 2020/175477 12 卩(:170? 2020 /007491 It is preferable that the dividing positions of the plurality of first dummy wirings 1 53 are close to the coil pattern 1 33. Since the dividing position of the multiple first dummy wirings 1 5 3 is close to the coil pattern 1 3 3, it is easy to diffuse the heat generated in the coil pattern 1 3 3 out of the formation area of the coil pattern 1 3 3. And surely restrain 〇 2020/175 477 12 boxes (: 170? 2020 /007491
ができる。 複数の第 1ダミー配線 1 5 3の分断領域とコイルパターン 1 3 3 との平均間隔としては、 例えば 1 〇〇 以上 1 5 0 0 以下とすること ができる。 You can The average distance between the divided regions of the plurality of first dummy wirings 1 53 and the coil pattern 1 3 3 can be, for example, 100 or more and 150 0 or less.
[0052] 複数の第 1ダミー配線 1 5 3の分断領域の平均長さ!-は、 複数の第 1ダミ —配線 1 5 3とコイルパターン 1 3 3との平均間隔 0 2よりも大きいことが 好ましい。 当該プリント配線板 1 1では、 複数の第 1ダミー配線 1 5 3とコ イルバターン 1 3 3とは離間して配設される。 しかしながら、 複数の第 1ダ ミー配線 1 5 3とコイルパターン 1 3 3との空隙は直線状に並ぶため、 この 離間距離を大きくすると当該プリント配線板 1 1の強度の向上効果が不十分 となる。 一方、 複数の第 1ダミー配線 1 5 3の分断位置はランダムに形成可 能であるため、 上記分断領域の長さを比較的大きく しても、 強度向上効果が 不十分となり難い。 また、 この分断領域の長さを比較的大きくすることで、 熱の拡散を確実に抑制することができる。 [0052] plurality of first dummy wiring 1 5 3 of the average length of the separated region! -Is preferably larger than the average interval 0 2 between the plurality of first dummy wirings 1 5 3 and the coil pattern 1 3 3. In this printed wiring board 11, the plurality of first dummy wirings 1 5 3 and the coil patterns 1 3 3 are arranged separately. However, since the gaps between the plurality of first damascene wirings 15 3 and the coil patterns 1 3 3 are arranged in a straight line, increasing the distance between them makes the effect of improving the strength of the printed wiring board 11 insufficient. .. On the other hand, since the dividing positions of the plurality of first dummy wirings 153 can be formed at random, even if the length of the dividing region is relatively large, the strength improving effect is unlikely to be insufficient. Further, by making the length of the divided region relatively large, it is possible to reliably suppress the diffusion of heat.
[0053] 複数の第 1ダミー配線 1 5 3の分断領域の平均長さ!-の下限としては、 1 〇 が好ましく、 3〇 がより好ましい。 一方、 上記平均長さ!-の上限 としては、 5 0 0 が好ましく、 1 〇〇 がより好ましい。 上記平均長 さ!-が上記下限に満たないと、 この分断領域で熱の拡散を十分に抑制できな いおそれがある。 逆に、 上記平均長さ!-が上記上限を超えると、 上記分断領 域が不必要に大きくなり、 複数の第 1ダミー配線 1 5 3による当該プリント 配線板 1の強度向上効果が不十分となるおそれがある。 [0053] The average length of the divided regions of the plurality of first dummy wirings 1 53! The lower limit of-is preferably 10 and more preferably 30. On the other hand, the above average length! As the upper limit of -, 500 is preferable, and 100 is more preferable. If the above average length !- is less than the above lower limit, it may not be possible to sufficiently suppress the diffusion of heat in this divided region. On the contrary, the above average length! If-exceeds the above upper limit, the above dividing area becomes unnecessarily large, and the strength improving effect of the plurality of first dummy wirings 15 3 on the printed wiring board 1 may be insufficient.
[0054] [その他の実施形態] [0054] [Other Embodiments]
今回開示された実施の形態は全ての点で例示であって制限的なものではな いと考えられるべきである。 本開示の範囲は、 上記実施形態の構成に限定さ れるものではなく、 特許請求の範囲によって示され、 特許請求の範囲と均等 の意味及び範囲内での全ての変更が含まれることが意図される。 The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present disclosure is not limited to the configurations of the above-described embodiments, but is indicated by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope. It
[0055] 例えば上記実施形態では複数のサーマルビアを備える構成について説明し たが、 当該プリント配線板は、 1つのサーマルビアのみを備えていてもよい 。 また、 1又は複数のサーマルビアは、 コイルバターンの配線密度を高める 〇 2020/175477 13 卩(:170? 2020 /007491 [0055] For example, in the above embodiment, the configuration including a plurality of thermal vias has been described, but the printed wiring board may include only one thermal via. Also, one or more thermal vias increase the wiring density of the coil pattern. 〇 2020/175 477 13 卩 (: 170? 2020 /007491
ことができる等の観点から、 コイルパターンの最内周よりも内側に形成され ることが好ましいが、 配線密度に制限がないような場合であれば、 例えばコ イルパターンの隣接する導体間に形成されてもよく、 コイルパターンの外側 に形成されてもよい。 It is preferable that the coil pattern is formed on the inner side of the innermost circumference of the coil pattern from the viewpoint that it can be formed. Or may be formed outside the coil pattern.
[0056] 当該プリント配線板は、 ベースフイルムの一方の面側にのみ導電パターン を備えていてもよく、 ベースフイルムの両面側に導電バターンを備えていて もよい。 また、 当該プリント配線板におけるコイルパターンの形状は、 上記 実施形態の形状に限定されるものではなく、 例えば対向する一対の直線部を 有しなくてもよい。 The printed wiring board may be provided with a conductive pattern only on one side of the base film, or may be provided with conductive patterns on both sides of the base film. Further, the shape of the coil pattern on the printed wiring board is not limited to the shape of the above-described embodiment, and for example, the pair of linear portions facing each other may not be provided.
[0057] 当該プリント配線板が複数のダミー配線を備える場合、 これらのダミー配 線の具体的配置は、 上記実施形態に記載の配置に限定されるものではない。 また、 当該プリント配線板は、 コイルパターンの延在方向と平行に配設され る 1又は複数のダミー配線を有し、 この 1又は複数のダミー配線が分断され ていてもよい。 When the printed wiring board has a plurality of dummy wirings, the specific layout of these dummy wirings is not limited to the layout described in the above embodiment. Further, the printed wiring board has one or a plurality of dummy wirings arranged in parallel with the extending direction of the coil pattern, and the one or a plurality of dummy wirings may be divided.
産業上の利用可能性 Industrial availability
[0058] 以上のように、 本開示の実施形態に係るプリント配線板は、 コイルバター ンの導体抵抗の変化を抑えることができるので、 種々の電子機器に好適に用 いられる。 [0058] As described above, the printed wiring board according to the embodiment of the present disclosure can suppress the change in the conductor resistance of the coil pattern, and thus is preferably used for various electronic devices.
符号の説明 Explanation of symbols
[0059] 1 , 1 1 プリント配線板 [0059] 1, 1 1 Printed wiring board
2 ベースフイルム 2 base film
3 , 1 3 導電パターン 3, 1 3 Conductive pattern
3 , 1 3 3 コイルパターン 3, 1 3 3 coil pattern
1 3 匕 スルーホール 1 3 sack through hole
3〇 直線部 30 Straight part
4 サーマルビア 4 Thermal via
1 3〇 第 1直線部 1 3 ○ 1st straight line part
1 3 第 2直線部 \¥0 2020/175477 14 卩(:17 2020 /007491 1 3 2nd straight section \¥0 2020/175 477 14 卩 (: 17 2020 /007491
1 5 ダミー配線 1 5 Dummy wiring
1 5 8 第 1ダミー配線 1 5 8 1st dummy wiring
放熱領域 Heat dissipation area

Claims

\¥0 2020/175477 15 卩(:17 2020 /007491 請求の範囲 \¥0 2020/175 477 15 卩(: 17 2020/007491 Claims
[請求項 1 ] 絶縁性を有するベースフィルムと、 [Claim 1] An insulating base film,
上記べースフィルムの少なくとも一方の面側に積層され、 渦巻き状 のコイルパターンを含む導電パターンと、 A conductive pattern laminated on at least one surface side of the base film and including a spiral coil pattern;
上記コイルパターンと熱的に接続され、 上記べースフィルムにおけ る上記導電パターンが積層されていない領域を貫通する 1又は複数の サーマルビアと One or a plurality of thermal vias that are thermally connected to the coil pattern and penetrate the region of the base film where the conductive pattern is not laminated.
を備えるプリント配線板。 A printed wiring board equipped with.
[請求項 2] 上記 1又は複数のサーマルビアが、 上記コイルパターンの最内周よ りも内側に形成される請求項 1 に記載のプリント配線板。 [Claim 2] The printed wiring board according to claim 1, wherein the one or more thermal vias are formed inside the innermost periphery of the coil pattern.
[請求項 3] 上記コイルパターンが、 対向する一対の直線部を有し、 [Claim 3] The coil pattern has a pair of linear portions facing each other,
複数の上記サーマルビアが、 上記一対の直線部に沿つて配設されて いる請求項 2に記載のプリント配線板。 The printed wiring board according to claim 2, wherein the plurality of thermal vias are arranged along the pair of linear portions.
[請求項 4] 上記コイルパターンの外側に隣接する複数のダミー配線を備え、 少なくとも 1つの上記ダミー配線が分断されている請求項 1、 請求 項 2又は請求項 3に記載のプリント配線板。 4. The printed wiring board according to claim 1, claim 2 or claim 3, comprising a plurality of dummy wirings adjacent to the outside of the coil pattern, wherein at least one dummy wiring is divided.
PCT/JP2020/007491 2019-02-27 2020-02-25 Printed wiring board WO2020175477A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080011558.3A CN113366591A (en) 2019-02-27 2020-02-25 Printed wiring board
JP2021502274A JP7409599B2 (en) 2019-02-27 2020-02-25 printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019034037 2019-02-27
JP2019-034037 2019-02-27

Publications (1)

Publication Number Publication Date
WO2020175477A1 true WO2020175477A1 (en) 2020-09-03

Family

ID=72239208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007491 WO2020175477A1 (en) 2019-02-27 2020-02-25 Printed wiring board

Country Status (3)

Country Link
JP (1) JP7409599B2 (en)
CN (1) CN113366591A (en)
WO (1) WO2020175477A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7357582B2 (en) 2020-04-20 2023-10-06 住友電気工業株式会社 flexible printed wiring board
JP7452507B2 (en) 2021-09-25 2024-03-19 株式会社村田製作所 inductor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020185919A1 (en) * 2001-06-08 2002-12-12 Aerotech, Inc. Printed circuit linear motor
JP2013013167A (en) * 2011-06-28 2013-01-17 Hitachi Koki Co Ltd Disk motor and electric working machine including the same
JP2014199909A (en) * 2013-03-15 2014-10-23 オムロンオートモーティブエレクトロニクス株式会社 Coil-integrated printed board and magnetic device
US20180317313A1 (en) * 2015-11-13 2018-11-01 Schaeffler Technologies AG & Co. KG Multi-layer printed circuit board having a printed coil and method for the production thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598405B2 (en) * 1995-04-24 2004-12-08 株式会社Neomax Printed coil parts and printed coil boards
CN1819743A (en) * 2004-12-16 2006-08-16 三井金属矿业株式会社 Flexible printed wiring board
JP6021504B2 (en) * 2012-08-08 2016-11-09 キヤノン株式会社 Printed wiring board, printed circuit board, and printed circuit board manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020185919A1 (en) * 2001-06-08 2002-12-12 Aerotech, Inc. Printed circuit linear motor
JP2013013167A (en) * 2011-06-28 2013-01-17 Hitachi Koki Co Ltd Disk motor and electric working machine including the same
JP2014199909A (en) * 2013-03-15 2014-10-23 オムロンオートモーティブエレクトロニクス株式会社 Coil-integrated printed board and magnetic device
US20180317313A1 (en) * 2015-11-13 2018-11-01 Schaeffler Technologies AG & Co. KG Multi-layer printed circuit board having a printed coil and method for the production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7357582B2 (en) 2020-04-20 2023-10-06 住友電気工業株式会社 flexible printed wiring board
JP7452507B2 (en) 2021-09-25 2024-03-19 株式会社村田製作所 inductor

Also Published As

Publication number Publication date
JP7409599B2 (en) 2024-01-09
CN113366591A (en) 2021-09-07
JPWO2020175477A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
JP6652273B2 (en) Planar coil element and method for manufacturing planar coil element
US9888581B2 (en) Method for manufacturing wiring board
US7508079B2 (en) Circuit substrate and method of manufacturing the same
JP6286800B2 (en) Printed wiring board, antenna and wireless power feeder
JP6365933B2 (en) Flexible printed wiring board, antenna and wireless power feeder
US20070111380A1 (en) Fabricating method of printed circuit board having embedded component
TWI778189B (en) High-frequency printed circuit board
US20120314389A1 (en) Wiring board and method for manufacturing same
US9934905B2 (en) Method of manufacturing multilayer board, multilayer board, and electromagnet
WO2020175477A1 (en) Printed wiring board
TW200306141A (en) Reconfigurable multilayer printed circuit board
CN113474853B (en) Printed wiring board and method for manufacturing printed wiring board
JP5323435B2 (en) Multi-layer wiring board for differential transmission
US7728234B2 (en) Coreless thin substrate with embedded circuits in dielectric layers and method for manufacturing the same
TWI714953B (en) Printed circuit board
JP2011129844A (en) Electronic equipment and method for manufacturing the same
US20180184514A1 (en) Printed circuit board and electric device
JP2017216407A (en) Printed-wiring board and method for manufacturing the same
CN105472884B (en) Circuit board and method for manufacturing the same
US20160219690A1 (en) Wiring board
JP2021057390A (en) Flexible printed wiring board and wiring member
CN112447358A (en) Electronic component and method for manufacturing the same
JP2015162528A (en) wiring board
JP6679082B1 (en) Flexible wiring board
US11871515B2 (en) Wiring substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502274

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763291

Country of ref document: EP

Kind code of ref document: A1