WO2020175368A1 - Dual-sided pressure-sensitive adhesive tape, electronic apparatus component, and electronic apparatus - Google Patents

Dual-sided pressure-sensitive adhesive tape, electronic apparatus component, and electronic apparatus Download PDF

Info

Publication number
WO2020175368A1
WO2020175368A1 PCT/JP2020/007043 JP2020007043W WO2020175368A1 WO 2020175368 A1 WO2020175368 A1 WO 2020175368A1 JP 2020007043 W JP2020007043 W JP 2020007043W WO 2020175368 A1 WO2020175368 A1 WO 2020175368A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive tape
sensitive adhesive
double
sided
acrylic
Prior art date
Application number
PCT/JP2020/007043
Other languages
French (fr)
Japanese (ja)
Inventor
明史 堀尾
繁季 松木
泰志 石堂
寛幸 片岡
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020217025175A priority Critical patent/KR20210129046A/en
Priority to CN202080016737.6A priority patent/CN113490728B/en
Priority to JP2020529391A priority patent/JP7044878B2/en
Publication of WO2020175368A1 publication Critical patent/WO2020175368A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/26Porous or cellular plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Definitions

  • the present invention relates to a double-sided pressure-sensitive adhesive tape, an electronic device component using the double-sided pressure-sensitive adhesive tape, and an electronic device.
  • a double-sided adhesive tape is used for assembly.
  • a double-sided adhesive tape is used to attach a cover panel for protecting the surface of a portable electronic device to a touch panel module or a display panel module, or to attach a touch panel module and a display panel module.
  • Such a double-sided adhesive tape is used, for example, by punching it into a frame-like shape and arranging it around the display screen (for example, Patent Documents 1 and 2).
  • Double-sided adhesive tape is also used to fix vehicle parts (eg, vehicle-mounted panels) to the vehicle body.
  • the double-sided pressure-sensitive adhesive tape used for fixing parts of portable electronic devices has not only high adhesive strength, but also does not cause cracking or delamination of the double-sided pressure-sensitive adhesive tape even when it is dropped or otherwise subjected to a strong impact. High impact resistance is required.
  • a double-sided adhesive tape having excellent impact resistance for example, in Patent Documents 1 and 2, an acryl-based pressure-sensitive adhesive layer is laminated and integrated on at least one side of a base material layer, and the base material layer has a specific crosslinking degree. Further, a crosslinked polyolefin resin foam sheet having an asphalt ratio of bubbles is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 20 09 _ 2 4 2 5 4 1
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2 0 9 -2 5 8 2 7 4 ⁇ 0 2020/175368 2 ((17 2020/007043 Summary of the invention
  • the present invention is a double-sided pressure-sensitive adhesive tape having high flexibility, impact resistance and repulsion resistance, which can be suitably used for fixing electronic device parts and fixing vehicle parts.
  • the purpose is to provide electronic equipment parts and equipment using double-sided adhesive tape.
  • the present invention is a double-sided pressure-sensitive adhesive tape having an acrylic pressure-sensitive adhesive layer on both sides of a foam substrate, wherein the foam substrate has an average major axis of bubbles of 150 000 or less.
  • the tape has a 25% compressive strength of 5 OO k P 3 or less
  • the double-sided adhesive tape has a foam substrate thickness/double-sided adhesive tape thickness of 0.5 or more
  • the double-sided adhesive tape is It is a double-sided pressure-sensitive adhesive tape with a deviation amount of 35 or more and 1 110 or less according to the cohesive strength test.
  • the double-sided pressure-sensitive adhesive tape of the present invention is a double-sided pressure-sensitive adhesive tape having an acrylic pressure-sensitive adhesive layer on both sides of a foam base material.
  • the double-sided pressure-sensitive adhesive tape of the present invention has a 25% compression strength of not more than 5001 ⁇ 3.
  • the flexibility can be improved.
  • the above 25% compressive strength The following is preferable, it is more preferable that it is 4501 ⁇ 3 or less, it is further preferable that it is 4001 ⁇ 3 or less, and it is still more preferable that it is 3501 ⁇ 3 or less. , Particularly preferably 0,011 ⁇ 3 or less, particularly preferably 2,500 ⁇ 1 or less,
  • the lower limit of the 25% compressive strength is not particularly limited, but is preferably from the viewpoint of balance with impact resistance. More preferably, 7 0 1 ⁇ 3.
  • the 25% compressive strength can be controlled by the type of the foam substrate, the expansion ratio, the average major axis of cells, and the type of the acrylic pressure-sensitive adhesive constituting the acrylic pressure-sensitive adhesive layer.
  • the 25% compressive strength can be measured in accordance with "" 3 ⁇ 6 7 6 7.
  • the double-sided pressure-sensitive adhesive tape cut to 20 20 is stacked to form a laminate with a thickness of 100 1 and left at room temperature for 1 hour, and then, at room temperature, in the thickness direction of this laminate. It is possible to calculate the compressive strength of 25% from the obtained 3-3 force by compressing it to 50% of the original thickness at the rate of 10
  • the double-sided pressure-sensitive adhesive tape of the present invention has a foam substrate thickness/double-sided pressure-sensitive adhesive tape thickness of 0.5 or more.
  • the foam base material thickness/double-sided adhesive tape thickness is preferably 0.65 or more, and 0.75 or more. Is more preferable, and 0.85 or more is further preferable.
  • the upper limit of the foam substrate thickness/double-sided adhesive tape thickness is not particularly limited, but from the viewpoint of handleability ⁇ 0 2020/175368 4 ⁇ (: 171? 2020 /007043
  • It is preferably 0.99 or less, more preferably 0.95 or less, and further preferably 0.9 or less.
  • the double-sided pressure-sensitive adhesive tape of the present invention has a deviation amount of 35 or more by the cohesive force test 1 10
  • the double-sided pressure-sensitive adhesive tape When the amount of deviation in the cohesive strength test is 35 or more, the double-sided pressure-sensitive adhesive tape has an appropriate hardness, and high adhesive strength and flexibility can be exhibited. In addition, when the amount of deviation in the cohesive strength test is 110 or less, the double-sided adhesive tape does not become too soft and high repulsion resistance can be exhibited. From the viewpoint of further improving flexibility and repulsion resistance, the amount of deviation in the above cohesive force test is preferably 45 or more, more preferably 50 or more, and preferably 100 or less, It is more preferably 90 or less, and further preferably 80 or less. The amount of deviation due to the cohesive strength test can be controlled by the kind of the acrylic adhesive forming the acrylic adhesive layer, the thickness of the acrylic adhesive layer, and the like.
  • the cohesive strength test can be measured by the following method.
  • Figure 1 shows a schematic diagram showing the cohesive strength test of a double-sided adhesive tape.
  • a double-sided pressure-sensitive adhesive tape in which an acrylic adhesive layer is formed on both sides of a foam substrate is prepared.
  • Stainless plate (3 II 3 # 3 0 4) 2 1 and width Attach the Mingo Film 2 of 2.
  • the longitudinal direction of the double-sided adhesive tape is the pulling direction in Fig. 1.
  • the average major axis of cells is 150 or less.
  • the average major axis of the foam base material By making the average major axis of the foam base material smaller than that of the double-sided pressure-sensitive adhesive tape having a conventional foam base material, the area formed by the foam even with the same expansion ratio. You can increase the number of pictures (cells). As the number of cells increases, it is possible to disperse the impact of dropping and the stress when attached to a curved surface, so the strength of the double-sided adhesive tape can be improved, and the impact resistance and repulsion resistance can be improved. .. On the other hand, even if the average major axis of air bubbles is reduced, the flexibility is the same as that of the larger average major axis of bubbles, so long as the expansion ratio is the same, while improving impact resistance and repulsion resistance. Can also maintain flexibility.
  • the average major diameter of the cells of the foam base material is preferably 140 Mm or less, more preferably 135 Mm or less, and 125 Mm or less. More preferably, 1 20 It is even more preferably below, and particularly preferably 110 Mm or below.
  • the lower limit of the average major axis of the foam base material is not particularly limited as long as it is larger than 0, but it is preferably 40 Mm from the viewpoint of balance between impact resistance, repulsion resistance and flexibility.
  • the average major axis of bubbles in the foam substrate can be controlled by controlling the elongation due to the difference in the winding speed during foaming.
  • the average major axis and the average minor axis of the cells of the foam substrate can be measured by the following method.
  • the average cell diameter in the T D direction is obtained by the same method except that the foam base material is cut along a plane parallel to the T D direction and perpendicular to the plane formed by the M D direction and the T D direction.
  • the larger one is the average length of the bubbles, and the shorter one is the average length of the bubbles.
  • MD Machine Direction
  • TD Transmission direction
  • the foam substrate has a cell aspect ratio (minor axis/major axis) of preferably 0.65 or more, more preferably 0.7 or more, still more preferably 0.75 or more, still more preferably 0.8. Above, particularly preferably 0.85 or more, and particularly preferably 0.9 or more.
  • the foam aspect ratio of the foam base material within the above range reduces the difference in the number of compartments (cells) formed by bubbles in the MD and TD directions, resulting in impact resistance and repulsion resistance in the tape direction. As a result, the impact resistance and repulsion resistance of the entire tape can be improved.
  • the upper limit of the bubble aspect ratio is not particularly limited, but is usually 1 or less, for example, 0.97 or less.
  • the bubble aspect ratio can be calculated by dividing the average minor axis of the bubbles by the average major axis.
  • the foam substrate preferably has a foaming ratio of 2 cm 3 /g or more and 5 cm 3 /g or less.
  • the obtained double-sided pressure-sensitive adhesive tape can have higher flexibility and can easily satisfy the 25% compressive strength.
  • the foaming ratio of the foam base material is more preferably 2.5 m 3 /g or more, 3 cm 3 /g Or more, more preferably 3.5 cm 3 /g or more, even more preferably, 4.7 cm 3 /g or less, more preferably 4.5 cm 3 /g or less. More preferably.
  • the expansion ratio of the foam can be adjusted depending on the material of the foam substrate, the thickness, the number of parts of the foaming agent, and the like.
  • the expansion ratio of the foam base material can be calculated from the reciprocal of the density of the foam. For example, it can be measured according to JISK 7222.
  • the foam substrate is not particularly limited, and examples thereof include a polyolefin foam and a urethane foam. Above all, because it is easy to achieve the above physical properties ⁇ 0 2020/175368 7 ⁇ (: 171? 2020 /007043
  • polyolefin foam It is preferably a polyolefin foam.
  • polyolefin foams include polyethylene foams, polypropylene foams, ethylene-propylene foams, and the like. Of these, polyethylene foam is preferable.
  • the polyolefin resin constituting the above-mentioned polyolefin foam is not particularly limited, but a polyolefin resin obtained by using a metallocene compound containing a tetravalent transition metal as a polymerization catalyst is preferable. Among them, the polyethylene resin obtained by using the metallocene compound is more preferable. Examples of the metallocene compound include Kaminsky catalysts.
  • polyethylene resin obtained by using the above metallocene compound for example, by using the above metallocene compound, ethylene is obtained by copolymerizing with other olefins that are blended as necessary.
  • examples include polyethylene resin.
  • examples of the above-mentioned other ⁇ -olefins include propene, 1-butene, 1-pentene, 1-hexene and the like.
  • the polyethylene resin obtained by using the metallocene compound may be used in combination with another olefin resin.
  • the other olefin resin include polyethylene, polypropylene, ethylene-propylene copolymer, and the like.
  • the foam substrate is preferably crosslinked. Impact resistance can be enhanced by crosslinking the foam substrate.
  • the method for cross-linking the foam substrate is not particularly limited, and, for example, an electron beam, ⁇ beam, And ionizing radiation such as X-rays, and a method of decomposing an organic peroxide previously blended in the foam base material by heating.
  • the method for producing the foam base material is not particularly limited.
  • a foamable resin composition containing a base resin and a foaming agent is prepared, and the foamable resin composition is formed into a sheet using an extruder.
  • a method is preferred in which a foaming agent is foamed at the time of extrusion processing into a sheet shape, and the obtained foam substrate is crosslinked if necessary. ⁇ 0 2020/175368 8 ⁇ (: 171? 2020 /007043
  • the thickness of the foam substrate is not particularly limited, but a preferred lower limit is 30, a more preferred lower limit is 50, a still more preferred lower limit is 7001, and a still more preferred lower limit is 100, especially A preferred lower limit is 150, and a particularly preferred lower limit is 200.
  • the thickness of the foam substrate is not particularly limited, but a preferred upper limit is 700, a more preferred upper limit is 600, a still more preferred upper limit is 500, and a still more preferred upper limit is 400, and particularly preferred.
  • the upper limit is 300, and the particularly preferable upper limit is 2700.
  • the thickness of the foam base material and the pressure-sensitive adhesive layer can be measured by the following method.
  • the thickness of the tape Calculate the thickness of the tape. Then, the total length of the foam base material in the thickness direction is measured by the same method, and the total length is averaged to calculate the thickness of the foam base material. The thickness of the pressure-sensitive adhesive layer is calculated by taking the difference of the foam base material thickness from the tape thickness.
  • Acrylic pressure-sensitive adhesive constituting the acrylic adhesive layer preferably has a storage elastic-resistance ratio in 2 3 ° ⁇ is 4 X 1 ⁇ 5 3 below.
  • the acrylic pressure-sensitive adhesive becomes moderately soft, and thus the pressure-sensitive adhesive force and flexibility of the obtained double-sided pressure-sensitive adhesive tape can be further improved. From the viewpoint of further improving the adhesive strength and flexibility of the obtained double-sided pressure-sensitive adhesive tape, storage of the above acrylic pressure-sensitive adhesive at 23 ° ⁇ 02020/175368 9 ⁇ (: 171? 2020 /007043
  • Built modulus is more preferably 3. at 5 X 1 0 ⁇ 3 or less, 3 more preferably X 1 is 0 5 3 or less, preferably more than that 2. is 8 1 0 5 3 below, 2. it is particularly preferably 7 X 1 ⁇ 5 3 below.
  • the lower limit of the storage elastic modulus at 23° of the acrylic adhesive is not particularly limited, but it is preferably 2 ⁇ 10 5 3 from the viewpoint of balance between impact resistance and repulsion resistance and handleability.
  • the storage elastic modulus of the acrylic adhesive at 23 ° can be adjusted by the glass transition temperature of the raw material monomer of the acrylic adhesive.
  • the storage elastic modulus of the above acrylic adhesive at 23° ⁇ was measured using a viscoelasticity spectrometer (for example, 081200, manufactured by IT Measurement and Control Co., Ltd.) at a constant temperature rising tension mode of 10 ° ⁇ .
  • the storage elastic modulus at 23 ° can be obtained when the dynamic viscoelastic spectrum of 1 ° 40°° to 140°° is measured under the condition of /01 to 1 ° /min.
  • the above-mentioned acrylic pressure-sensitive adhesive preferably has a storage elastic modulus at 140° ⁇ of 3 ⁇ 10 4 3 or more.
  • Storage modulus at high temperature correlates with long-term fluidity.
  • the acrylic adhesive has a storage elastic modulus at 140 ° ⁇ in the above range, it is difficult for the adhesive to flow even after a long period of time, that is, it is difficult to deform even when stressed for a long period of time.
  • the repulsion resistance of the adhesive tape can be further enhanced.
  • the storage elastic modulus at 140 ° ⁇ of the above-mentioned acrylic pressure-sensitive adhesive is more preferably 3.1 ⁇ 10 ⁇ 3 or more, and 3.2 and still more preferably X is 1 ⁇ 4 3 or more.
  • the upper limit of the storage elastic modulus at 140 ° ⁇ of the above-mentioned acrylic adhesive is not particularly limited, but is, for example, 1 XI ⁇ 5 3.
  • a method of controlling the storage elastic modulus of the above-mentioned acrylic adhesive at 140 ° in the above range there is a method of narrowing the molecular weight distribution (weight average molecular weight IV! number average molecular weight ! ⁇ / ⁇ ).
  • a method of adjusting the softening point, content, etc. of the tackifying resin, a method of adjusting the gel fraction of the acrylic pressure-sensitive adhesive layer, and the like are also included.
  • the storage elastic modulus of the above acrylic adhesive at 140 ° is ⁇ 0 2020/175368 10 ⁇ (: 171? 2020 /007043
  • the acrylic pressure-sensitive adhesive is not particularly limited, but it is an acrylic copolymer obtained by copolymerizing a monomer mixture containing butyl acrylate and 2-ethylhexyl acrylate, since it is easy to satisfy the above parameters. Is preferred.
  • the preferable lower limit of the content of butyl acrylate in the total monomer mixture is 40% by weight, and the preferable upper limit thereof is 80% by weight. When the content of butyl acrylate is within this range, both high adhesive strength and cohesive strength can be achieved.
  • a preferable lower limit of the content of 2-ethylhexyl acrylate in the total monomer mixture is 10% by weight, and a preferable upper limit thereof is 40% by weight. When the content of 2-ethylhexyl acrylate is within this range, both high adhesive strength and cohesive strength can be achieved.
  • the above-mentioned monomer mixture may optionally contain other copolymerizable polymerizable monomer other than butyl acrylate and 2-ethylhexyl acrylate.
  • Examples of the other copolymerizable monomer that can be copolymerized include, for example, (meth)methyl acrylate, (meth)ethyl acrylate, (meth)acrylic acid 11-propyl, and (meth)isopropyl acrylate.
  • (Meth)acrylic acid alkyl ester having 1 to 3 (meth)acrylic acid alkyl ester, tridecyl methacrylate, (meth)acrylic acid stearyl, etc., having a carbon number of 13 to 18 carbon atoms in the alkyl group, (meth)acrylic acid Hydroxyalkyl acid, glycerin dimethacrylate, (meth)glycidyl acrylate, 2-methacryloyloxy ethyl isocyanate, (meth)acrylic acid, itaconic acid, maleic anhydride, crotonic acid, maleic acid, fumaric acid and other functional monomers.
  • the monomer mixture may be subjected to a radical reaction in the presence of a polymerization initiator.
  • the polymerization initiator is not particularly limited, and examples thereof include organic peroxides and azo compounds.
  • organic peroxide examples include 1, 1 _ bis (1 _ hexylperoxy) _ 3, 3, 5-trimethylcyclohexane, t _ hexylperoxypivalate, t _ butylperoxypivalate, 2, 5-dimethyl-2 , 5-bis(2-ethylhexanoylperoxy) hexane, t _ hexyl peroxy _ 2 -ethyl hexanoate, t -butyl peroxy _ 2 -ethyl hexanoate, t _ butyl peroxyisobutyrate, t _Putylperoxy_3,5,5-trimethylhexanoate, t_Putylperoxylaurate and the like.
  • the azo compound examples include azobisisobutyronitrile and azobiscyclohexanecarbonitrile. These polymerization initiators may be used alone or
  • a method of radically reacting the above-mentioned monomer mixture that is, as a polymerization method, a conventionally known method is used, for example, solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, bulk polymerization, living Radical polymerization etc. are mentioned.
  • solution polymerization boiling point polymerization or constant temperature polymerization
  • emulsion polymerization suspension polymerization
  • bulk polymerization bulk polymerization
  • living Radical polymerization etc. are mentioned.
  • low-temperature polymerization or living radical polymerization is preferable because the molecular weight distribution can be narrowed and the storage elastic modulus at high temperature can be increased.
  • a preferred lower limit is 400,000, and a preferred upper limit is 1200,000.
  • Mw weight average molecular weight
  • a preferred upper limit is 1200,000.
  • the more preferable lower limit of the weight average molecular weight is 500,000, and the more preferable upper limit thereof is 110,000.
  • the polymerization conditions such as the polymerization initiator and the polymerization temperature may be adjusted.
  • the weight average molecular weight (Mw) is the weight average molecular weight in terms of standard polystyrene by GPC (Gel Permeat i o n C h r om a t o g r a p h y: gel permeation chromatography).
  • the acrylic pressure-sensitive adhesive layer may contain a tackifying resin.
  • tackifying resin examples include rosin ester resin, hydrogenated rosin resin, terpene resin, terpene phenol resin, coumarone indene resin. ⁇ 0 2020/175368 12 ⁇ (: 171? 2020 /007043
  • Alicyclic saturated hydrocarbon resin 05 petroleum resin, 09 petroleum resin, 05-9 copolymer petroleum resin and the like. These tackifying resins may be used alone or in combination of two or more.
  • the content of the tackifying resin is not particularly limited, but a preferable lower limit is 100 parts by weight and a preferable upper limit is 60 parts by weight with respect to 100 parts by weight of the acrylic copolymer. When the content of the tackifying resin is within this range, a high adhesive strength can be exerted.
  • a cross-linking structure is formed between the main chains of the resin (the acrylic copolymer and/or the tackifying resin) constituting the acrylic pressure-sensitive adhesive layer by adding a crosslinking agent. Is preferably provided.
  • the crosslinking agent is not particularly limited, and examples thereof include an isocyanate crosslinking agent, an aziridin crosslinking agent, an epoxy crosslinking agent, and a metal chelate crosslinking agent. Of these, isocyanate crosslinking agents are preferred.
  • a preferred lower limit is 0.01 part by weight, a preferred upper limit is 10 parts by weight, and a more preferred lower limit is 0.1 part by weight, relative to 100 parts by weight of the acrylic copolymer. A more preferable upper limit is 3 parts by weight.
  • the acrylic pressure-sensitive adhesive layer preferably has a gel fraction of 20% or more.
  • the gel fraction of the acrylic pressure-sensitive adhesive layer is within the above range, it is possible to easily satisfy the amount of deviation in the cohesive strength test.
  • the gel fraction of the acrylic pressure-sensitive adhesive layer is more preferably 25% or more, further preferably 30% or more, still more preferably 35% or more, particularly preferably It is 40% or more.
  • the upper limit of the gel fraction of the acrylic pressure-sensitive adhesive layer is not particularly limited, but from the viewpoint of achieving both adhesive strength and flexibility of the obtained double-sided pressure-sensitive adhesive tape, it is preferably 80%, more preferably 75%. , More preferably 70%, even more preferably 65%.
  • the thickness of the acrylic pressure-sensitive adhesive layer is not particularly limited. ⁇ 0 2020/175368 13 ⁇ (: 171? 2020 /007043
  • the preferred lower limit of the layer thickness is 1001, and the preferred upper limit is 100!
  • the thickness of the acrylic pressure-sensitive adhesive layer is within the above range, it is possible to easily adjust the above deviation amount within the above range, and both sides having higher flexibility, impact resistance and repulsion resistance are provided. It can be an adhesive tape.
  • the more preferable lower limit of the thickness of the acrylic pressure-sensitive adhesive layer is 15, the more preferable lower limit is 201, the still more preferable lower limit is 25, the more preferable upper limit is 80, and the still more preferable upper limit is 7001.
  • a more preferable upper limit is 600!
  • the double-sided pressure-sensitive adhesive tape of the present invention has a total thickness of the double-sided pressure-sensitive adhesive tape of preferably 50 or more, more preferably 70 or more, still more preferably 100 or more, still more preferably 150 or more, It is preferably 900 or less, more preferably 700 or less, even more preferably 500 or less, and even more preferably 400 or less.
  • the total thickness of the double-sided pressure-sensitive adhesive tape is within the above range, it is possible to obtain a pressure-sensitive adhesive tape that is more easy to handle and has high flexibility, impact resistance, and repulsion resistance.
  • a solvent is added to the acrylic pressure-sensitive adhesive, optionally a tackifying resin, a crosslinking agent, etc. to prepare a solution of the acrylic pressure-sensitive adhesive, and the solution of the acrylic pressure-sensitive adhesive is applied to the surface of the foam substrate, The solvent in the solution is completely dried and removed to form the acrylic adhesive layer 8.
  • a release film is laminated on the formed acrylic pressure-sensitive adhesive layer 8 so that the release-treated surface faces the acrylic pressure-sensitive adhesive layer.
  • a release film different from the above-mentioned release film is laminated. Prepare and apply a solution of acrylic pressure sensitive adhesive to the release treated surface of this release film and completely dry and remove the solvent in the solution to form an acrylic pressure sensitive adhesive layer on the surface of the release film.
  • the obtained laminated film is laminated on the back surface of the foam base material on which the acrylic pressure-sensitive adhesive layer 8 has been formed, with the acrylic pressure-sensitive adhesive layer facing the back surface of the foam base material to form a laminate.
  • the laminated body ⁇ 0 2020/175368 14 ⁇ (: 171? 2020 /007043
  • the application of the double-sided pressure-sensitive adhesive tape of the present invention is not particularly limited, but it can be particularly preferably used for fixing electronic device parts.
  • Such a double-sided pressure-sensitive adhesive tape of the present invention used for fixing electronic device parts is also one of the present invention.
  • the double-sided pressure-sensitive adhesive tape of the present invention is excellent in flexibility, impact resistance, and repulsion resistance, it has a great effect when used by being attached to a curved surface part of a part having a curved surface among electronic device parts. Demonstrate.
  • the radius of curvature of the part with the above curved surface where the double-sided adhesive tape is attached is 5 Or more is preferable, 1 Is more preferable, and 100 or less!
  • Such a double-sided pressure-sensitive adhesive tape of the present invention used for fixing electronic device parts in which the radius of curvature of the double-sided pressure-sensitive adhesive tape-attached portion is not less than 5 01 01 and not more than 100 0 0! There is one.
  • the electronic device parts in which the double-sided adhesive tape of the present invention is attached to the curved surface and the radius of curvature are 5 Double-sided adhesive of the present invention in the following parts ⁇ 0 2020/175368 15 ⁇ (: 171? 2020 /007043
  • An electronic device component to which a tape is attached is also one aspect of the present invention. Further, an electronic device including the electronic device component described above is also one aspect of the present invention.
  • the shape of the double-sided pressure-sensitive adhesive tape of the present invention in these applications is not particularly limited, and examples thereof include a rectangle, a frame shape, a circle, an ellipse, and a donut shape.
  • a double-sided adhesive tape having high flexibility, impact resistance and repulsion resistance which can be suitably used for fixing electronic device parts and vehicle parts, and the double-sided adhesive tape. It is possible to provide electronic device parts and electronic devices using a tape.
  • Fig. 1 is a schematic diagram illustrating a cohesive strength test of a double-sided adhesive tape.
  • Fig. 2 is a schematic diagram for explaining the II 3!! Adhesive strength test of the double-sided adhesive tape.
  • FIG. 3 A schematic diagram illustrating a drop impact test of a double-sided adhesive tape. MODE FOR CARRYING OUT THE INVENTION
  • Linear low-density polyethylene resin 100 parts by weight, azodicarbonamide 3 parts by weight as a pyrolysis type foaming agent, 1 part by weight of zinc oxide as a decomposition temperature adjusting agent, and 2, 6-ge 1: as an antioxidant.
  • Butyl-cresol 0.5 parts by weight was supplied to a single-screw extruder, melt-kneaded at 130 ° and extruded as a raw sheet having a thickness of 180.
  • the above-mentioned raw sheet is cross-linked by irradiating both sides with an electron beam having an accelerating voltage of 1501 ⁇ 8.8 IV!
  • the foamed sheet was continuously fed into the foaming furnace held at 10 to heat and foamed to obtain a foamed sheet.
  • Foam base materials (Mimi) to ([ ⁇ ) having the thicknesses shown in Table 1 were obtained.
  • the average cell diameter in the 0 direction was obtained by the same method except that the foam substrate was cut along a plane parallel to the 0 direction and perpendicular to the plane formed by the IV! 0 direction and the 0 direction. ..
  • the larger one was defined as the average major diameter of the bubbles, and the shorter one was defined as the average minor diameter.
  • the bubble aspect ratio was calculated from the average major axis and the average minor axis of all the obtained bubbles. The results are shown in Tables 1 and 2.
  • the obtained foam base material was measured by a method according to “3 ⁇ - 6 7 6 7” using an electronic hydrometer manufactured by Mirage Co., Ltd.
  • the foaming ratio was calculated from the degree. The results are shown in Tables 1 and 2.
  • An acrylic pressure-sensitive adhesive (b) was obtained in the same manner as in the preparation of the acrylic pressure-sensitive adhesive (a), except that the amount of the isocyanate cross-linking agent added was 0.9 part by weight.
  • An acrylic pressure-sensitive adhesive (c) was obtained in the same manner as in the preparation of the acrylic pressure-sensitive adhesive (a), except that the amount of the isocyanate cross-linking agent added was 1.8 parts by weight.
  • An acrylic pressure-sensitive adhesive (d) was obtained in the same manner as in the preparation of the acrylic pressure-sensitive adhesive (a), except that the amount of the isocyanate crosslinking agent added was 1.6 parts by weight.
  • Polymerized rosin ester resin 0-1 35, softening point 1 35 ° °, manufactured by Arakawa Chemical Industry Co., Ltd.
  • Terpene phenolic resin Ding 1600, softening point 1600° ⁇ , manufactured by Yasuhara Chemical
  • Rosin ester resin 7 5, Softening point 75 ° ⁇ , Arakawa Chemical Co., Ltd.
  • Isocyanate cross-linking agent Coronate!_45, Tosoh
  • Polymerized rosin ester resin 0-1 35, softening point 1 35° ⁇ , manufactured by Arakawa Chemical Industry Co., Ltd.
  • Terpene phenolic resin Ding 1 160, softening point 1 60° ⁇ , made by Yasuhara Chemical
  • Rosin ester resin 75, Softening point 75 ° ⁇ , Arakawa Chemical Industry Co., Ltd.
  • Isocyanate cross-linking agent Coronate !_45, Tosoh Corporation
  • Acrylic adhesive (h) was prepared in the same manner as for the preparation of acrylic adhesive (h), except that the amount of butyl acrylate was changed to 60 parts by weight and the amount of 2-ethylhexyl acrylate was changed to 37 parts by weight. 9) got The weight average molecular weight was 530,000.
  • An acrylic pressure-sensitive adhesive was obtained in the same manner as in the preparation of the acrylic pressure-sensitive adhesive (3), except that the amount of the isocyanate crosslinking agent added was 2.0 parts by weight.
  • the obtained acrylic pressure-sensitive adhesive, viscoelastic spectrometer (Keisoku Seigyo Co., 0 eighty-one 200) using a 1 ⁇ / min TeihayaNoboru temperature tensile mode, one 40 under the conditions of 1 01 ⁇ 1 ⁇
  • the dynamic viscoelastic spectrum from 0° to 1400° was measured. From the obtained dynamic viscoelastic spectrum, the storage elastic modulus at 23° ⁇ ( ⁇ ' (2
  • the acrylic adhesive obtained was scraped off with 0.19 and washed with ethyl acetate. It was soaked in a bowl and shaken with a shaker for 24 hours at a temperature of 23°C and 120 ". After shaking, absorb ethyl acetate and ethyl acetate using a metal mesh (opening #200 mesh). The swollen acrylic adhesive was separated, and the separated adhesive composition was dried for 1 hour under the condition of 110 ° ⁇ The weight of the dried acrylic adhesive including the metal mesh was measured, The gel fraction of the acrylic adhesive was calculated using the following formula.
  • This acrylic pressure-sensitive adhesive layer is used as a foam base material (8) (polyethylene resin, average major axis and minor axis of cells are 1 32, 9 0 0 1, foaming ratio is 3 0 0 1 3/9, thickness 1 0, respectively). It was attached to the surface of the one that was adjusted to ⁇ ). Then, in the same manner, the same acrylic pressure-sensitive adhesive layer as the above was attached to the opposite surface of the foam substrate (). As a result, a double-sided adhesive tape having a tape thickness shown in Table 1 covered with a release paper having a thickness of 150 ⁇ was obtained.
  • a double-sided pressure-sensitive adhesive tape was obtained in the same manner as in Example 1 except that the foam substrate and the acrylic pressure-sensitive adhesive were changed to those shown in Tables 1 and 2.
  • II 3 1 to 1 adhesive strength of the obtained double-sided pressure-sensitive adhesive tape was measured by the following method.
  • II 3 1 to 1 Adhesive force is the adhesive force when a force is applied in a direction perpendicular to the adhesive surface.
  • II 3 1 ⁇ 1 Adhesive strength changes with pressure even with the same double-sided tape. This is because the pressure changes the degree of adhesion between the adhesive surface of the tape and the interface of the adherend. Therefore, the higher the pressure, the higher the degree of adhesion and the higher the 11 3 1 to 1 adhesive force. In other words, the softer the double-sided tape is, the lower the adhesive force between the adhesive surface and the adherend interface is not lost even when a low pressure is applied, and the difference between the adhesive force when a high pressure is applied is reduced.
  • Fig. 2 shows a schematic diagram of the 11 3 1 to 1 adhesion test of the double-sided adhesive tape.
  • 3 8 The test piece from which the release paper had been peeled off was attached to a stainless steel plate 4 having a square hole and a thickness of 2 so that the square hole was located approximately in the center.
  • a glass plate 3 having a thickness of 500 1 01 700 1 01 01 and a thickness of 4 01 01 was attached from the upper surface of the test piece so that the test piece was located at the substantially center, and the test apparatus was assembled.
  • Figure 3 shows a schematic diagram of the drop impact test for double-sided adhesive tape. Punching the obtained double-sided adhesive tape 1 into a square shape with an outer diameter of 4601111X6 101111 and an inner diameter of 4401111X59111111, did. Then, as shown in Fig. 3 (3),
  • test piece from which the release paper had been peeled off was attached to the stainless steel plate 4 so that the square hole was located approximately in the center. Then, from the top surface of the test piece, 500101 x 700101, The glass plate 3 was attached to the test piece so that the test piece was located almost in the center, and the test device was assembled.
  • the obtained measured value was divided by the thickness () of the double-sided adhesive tape to calculate a value, and the impact resistance was evaluated according to the following criteria.
  • ⁇ 0.16 or more and less than 0.2
  • ⁇ or more and less than ⁇ .16
  • the gap followability of the obtained double-sided pressure-sensitive adhesive tape was evaluated by the following method.
  • a spacer is intentionally squeezed between the adherends that have been bonded together, and tensile force is applied in the thickness direction of the double-sided tape.
  • the tape is subjected to a stress to return to its original shape.
  • the rebound resistance is evaluated by measuring the presence or absence of peeling of the double-sided adhesive tape and measuring the elongation of the foam base material and adhesive. You can In other words, the tape is more resistant to peeling when it is not peeled off, and the more the foam base material is stretched rather than the pressure-sensitive adhesive, the less stress is applied to the interface between the pressure-sensitive adhesive and the adherend. It will be.
  • the obtained adhesive tape is 1 0111X 1
  • it was sandwiched between two polycarbonate plates having a thickness of 1 2501111X50111111 and a thickness of 100! to obtain a laminate.
  • From the top surface of the obtained laminate ⁇ . was applied for 10 seconds to bond the double-sided adhesive tape and the polycarbonate plate.
  • an aluminum plate having a thickness of 1.5 times the thickness of the double-sided adhesive tape was kneaded between the laminated polycarbonate plates and the elongation of the foam base material and the acrylic adhesive layer of the adhesive tape was measured. ..
  • the gap followability was evaluated according to the following criteria.
  • the foam base material is stretched, and the stretch is less than 50% ⁇ 0 2020/175 368 24 ⁇ (: 17 2020 /007043
  • a double-sided adhesive tape having high flexibility, impact resistance, and repulsion resistance which can be suitably used for fixing electronic device parts and vehicle parts, and the double-sided adhesive tape
  • the double-sided adhesive tape To provide electronic equipment parts and electronic equipment using tape ⁇ 0 2020/175 368 27 ⁇ (: 171? 2020 /007043

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The purpose of the present invention is to provide: a dual-sided pressure-sensitive adhesive tape that can be suitably used to secure electronic apparatus components and to secure vehicle components and that has high flexibility, shock resistance, and repulsion resistance; and an electronic apparatus component and an electronic apparatus that use the dual-sided pressure-sensitive adhesive tape. The present invention is a dual-sided pressure-sensitive adhesive tape having an acrylic pressure-sensitive adhesive layer on both sides of a foam substrate, wherein: the average long diameter of air bubbles in the foam substrate is at most 150 µm; the 25% compression strength of the dual-sided pressure-sensitive adhesive tape is at most 500 kPa; the ratio of the thickness of the foam substrate to the thickness of the dual-sided pressure-sensitive adhesive tape is at least 0.5; and the shift length of the dual-sided pressure-sensitive adhesive tape according to a cohesion test is 35–110 µm.

Description

\¥0 2020/175368 1 卩(:17 2020 /007043 明 細 書 \¥0 2020/175368 1 卩 (: 17 2020 /007043 Clarification
発明の名称 : 両面粘着テープ、 電子機器部品及び電子機器 技術分野 Title of invention: Double-sided adhesive tape, electronic device parts and electronic device Technical Field
[0001 ] 本発明は、 両面粘着テープ及び該両面粘着テープを用いた電子機器部品、 電 子機器に関する。 The present invention relates to a double-sided pressure-sensitive adhesive tape, an electronic device component using the double-sided pressure-sensitive adhesive tape, and an electronic device.
背景技術 Background technology
[0002] 画像表示装置又は入力装置を搭載した携帯電子機器 (例えば、 携帯電話、 携 帯情報端末等) においては、 組み立てのために両面粘着テープが用いられて いる。 具体的には、 例えば、 携帯電子機器の表面を保護するためのカバーパ ネルをタツチパネルモジュール又はディスプレイパネルモジュールに接着し たり、 タツチパネルモジュールとディスプレイパネルモジュールとを接着し たりするために両面粘着テープが用いられている。 このような両面粘着テー プは、 例えば、 額縁状等の形状に打ち抜かれ、 表示画面の周辺に配置される ようにして用いられる (例えば、 特許文献 1、 2) 。 また、 車輛部品 (例え ば、 車載用パネル) を車両本体に固定する用途にも両面粘着テープが用いら れている。 [0002] In a mobile electronic device (for example, a mobile phone, a mobile information terminal, etc.) equipped with an image display device or an input device, a double-sided adhesive tape is used for assembly. Specifically, for example, a double-sided adhesive tape is used to attach a cover panel for protecting the surface of a portable electronic device to a touch panel module or a display panel module, or to attach a touch panel module and a display panel module. Is used. Such a double-sided adhesive tape is used, for example, by punching it into a frame-like shape and arranging it around the display screen (for example, Patent Documents 1 and 2). Double-sided adhesive tape is also used to fix vehicle parts (eg, vehicle-mounted panels) to the vehicle body.
[0003] 携帯電子機器の部品を固定するために用いられる両面粘着テープには、 高い 粘着力のみならず、 落下等の強い衝撃によつても両面粘着テープの割れや界 面剥離を起こさない、 高い耐衝撃性が要求される。 耐衝撃性に優れる両面粘 着テープとしては、 例えば、 特許文献 1及び 2に、 基材層の少なくとも片面 にァクリル系粘着剤層が積層一体化されており、 該基材層が特定の架橋度及 び気泡のアスぺクト比を有する架橋ポリオレフィン系樹脂発泡シートが開示 されている。 [0003] The double-sided pressure-sensitive adhesive tape used for fixing parts of portable electronic devices has not only high adhesive strength, but also does not cause cracking or delamination of the double-sided pressure-sensitive adhesive tape even when it is dropped or otherwise subjected to a strong impact. High impact resistance is required. As a double-sided adhesive tape having excellent impact resistance, for example, in Patent Documents 1 and 2, an acryl-based pressure-sensitive adhesive layer is laminated and integrated on at least one side of a base material layer, and the base material layer has a specific crosslinking degree. Further, a crosslinked polyolefin resin foam sheet having an asphalt ratio of bubbles is disclosed.
先行技術文献 Prior art documents
特許文献 Patent literature
[0004] 特許文献 1 :特開 2 0 0 9 _ 2 4 2 5 4 1号公報 Patent Document 1: Japanese Patent Laid-Open No. 20 09 _ 2 4 2 5 4 1
特許文献 2 :特開 2 0 0 9 - 2 5 8 2 7 4号公報 \¥0 2020/175368 2 卩(:17 2020 /007043 発明の概要 Patent Document 2: Japanese Unexamined Patent Publication No. 2 0 9 -2 5 8 2 7 4 \¥0 2020/175368 2 ((17 2020/007043 Summary of the invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0005] 近年の携帯電子機器は意匠性に優れた曲面を多用したデサインが採用されて いる。 このような携帯電子機器の曲面を持った部品に両面粘着テープを貼り 付けるためには、 曲面に追従できる高い柔軟性が要求される。 また、 曲面に 貼り付けられた両面粘着テープは圧着具合が不均一となることによる応力や テープが元の形状に戻ろうとする応力がかかるため、 この応力によっても剥 離しない耐反発性も要求される。 更に、 上記の通り、 携帯電子機器の部品を 固定するために用いられる両面粘着テープには、 高い耐衝撃性が必要とされ るが、 耐衝撃性を高めるためには両面粘着テープを硬くする必要があり、 柔 軟性と耐衝撃性はトレードオフの関係にある。 そのため、 高い耐衝撃性と柔 軟性と耐反発性を兼ね備えた両面粘着テープを得ることは困難である。 [0005] In recent years, portable electronic devices have adopted a design that uses many curved surfaces that are excellent in design. In order to attach the double-sided adhesive tape to such curved parts of portable electronic devices, it is necessary to have high flexibility to follow curved surfaces. In addition, the double-sided adhesive tape adhered to a curved surface is subject to stress due to uneven pressure bonding and stress that tends to return the tape to its original shape, so repulsion resistance that does not separate even with this stress is required. It Further, as described above, the double-sided adhesive tape used to fix parts of portable electronic devices requires high impact resistance, but in order to improve impact resistance, it is necessary to make the double-sided adhesive tape hard. There is a trade-off between flexibility and impact resistance. Therefore, it is difficult to obtain a double-sided pressure-sensitive adhesive tape having high impact resistance, flexibility and repulsion resistance.
[0006] 本発明は、 上記現状に鑑み、 電子機器部品固定用途や車輛部品固定用途に好 適に用いることができる、 高い柔軟性、 耐衝撃性及び耐反発性を兼ね備えた 両面粘着テープ及び該両面粘着テープを用いた電子機器部品、 電子機器を提 供することを目的とする。 In view of the above situation, the present invention is a double-sided pressure-sensitive adhesive tape having high flexibility, impact resistance and repulsion resistance, which can be suitably used for fixing electronic device parts and fixing vehicle parts. The purpose is to provide electronic equipment parts and equipment using double-sided adhesive tape.
課題を解決するための手段 Means for solving the problem
[0007] 本発明は、 発泡体基材の両面にアクリル粘着剤層を有する両面粘着テープで あって、 前記発泡体基材の気泡の平均長径が 1 5 0 〇以下であり、 前記両 面粘着テープの 2 5 %圧縮強度が 5 O O k P 3以下であり、 前記両面粘着テ —プは、 発泡体基材厚み/両面粘着テープ厚みが〇. 5以上であり、 前記両 面粘着テープは、 凝集力試験によるずれ量が 3 5 以上 1 1 〇 以下で ある、 両面粘着テープである。 [0007] The present invention is a double-sided pressure-sensitive adhesive tape having an acrylic pressure-sensitive adhesive layer on both sides of a foam substrate, wherein the foam substrate has an average major axis of bubbles of 150 000 or less. The tape has a 25% compressive strength of 5 OO k P 3 or less, the double-sided adhesive tape has a foam substrate thickness/double-sided adhesive tape thickness of 0.5 or more, and the double-sided adhesive tape is It is a double-sided pressure-sensitive adhesive tape with a deviation amount of 35 or more and 1 110 or less according to the cohesive strength test.
以下に本発明を詳述する。 The present invention will be described in detail below.
[0008] 本発明の両面粘着テープは、 発泡体基材の両面にアクリル粘着剤層を有する 両面粘着テープである。 The double-sided pressure-sensitive adhesive tape of the present invention is a double-sided pressure-sensitive adhesive tape having an acrylic pressure-sensitive adhesive layer on both sides of a foam base material.
両面粘着テープの基材として発泡体基材を用いることで、 被着体の凹凸や曲 面に追従する高い柔軟性と、 落下等の衝撃によって割れや剥離が起き難い、 \¥0 2020/175368 3 卩(:171? 2020 /007043 By using a foam base material as the base material of the double-sided pressure-sensitive adhesive tape, it has high flexibility to follow irregularities and curved surfaces of the adherend, and it is difficult for cracks and peeling to occur due to impact such as dropping. \¥0 2020/175368 3 卩 (: 171? 2020 /007043
高い耐衝撃性を発揮することができる。 It can exhibit high impact resistance.
[0009] 本発明の両面粘着テープは、 2 5 %圧縮強度が 5 0 0 1< 3以下である。 [0009] The double-sided pressure-sensitive adhesive tape of the present invention has a 25% compression strength of not more than 5001 <3.
両面粘着テープの 2 5 %圧縮強度を上記範囲とすることで、 柔軟性を向上さ せることができる。 柔軟性をより向上させる観点から、 上記 2 5 %圧縮強度
Figure imgf000005_0001
以下であることが好ましく 4 5 0 1< 3以下であることがよ り好ましく、 4 0 0 1< 3以下であることが更に好ましく、 3 5 0 1< 3以 下であることが更により好ましく、 3 0 0 1< 3以下であることが特に好ま しく、 2 5 0 1< 3以下であることがとりわけ好ましく、
Figure imgf000005_0002
By adjusting the 25% compressive strength of the double-sided pressure-sensitive adhesive tape within the above range, the flexibility can be improved. From the viewpoint of further improving flexibility, the above 25% compressive strength
Figure imgf000005_0001
The following is preferable, it is more preferable that it is 4501<3 or less, it is further preferable that it is 4001<3 or less, and it is still more preferable that it is 3501<3 or less. , Particularly preferably 0,011<3 or less, particularly preferably 2,500<1 or less,
Figure imgf000005_0002
であることがことさら好ましく、 1 5 0 1< 3以下であることが非常に好ま しく、 1 0 0 1< 3以下であることが最も好ましい。 上記 2 5 %圧縮強度の 下限は特に限定されないが、 耐衝撃性とのバランスの観点から、 好ましくは
Figure imgf000005_0003
より好ましくは 7 0 1< 3である。 上記 2 5 %圧縮強度は、 上 記発泡体基材の種類、 発泡倍率及び気泡の平均長径や上記アクリル粘着剤層 を構成するアクリル粘着剤の種類によつて制御することができる。
Is more preferable, 1 0 0 1 <3 or less is very preferable, and 1 0 0 1 < 3 or less is most preferable. The lower limit of the 25% compressive strength is not particularly limited, but is preferably from the viewpoint of balance with impact resistance.
Figure imgf000005_0003
More preferably, 7 0 1 <3. The 25% compressive strength can be controlled by the type of the foam substrate, the expansion ratio, the average major axis of cells, and the type of the acrylic pressure-sensitive adhesive constituting the acrylic pressure-sensitive adhesive layer.
なお、 2 5 %圧縮強度は、 」 丨 3< 6 7 6 7に準拠して測定できる。 具体 的には、 2〇 2〇 に裁断した両面粘着テープを重ね合わせて厚み 1 0 〇1の積層体を作製し常温下に 1時間放置した後、 常温下で、 この積層体の 厚み方向に 1 〇|^〇1 / |11 丨 の速さで元の厚みの 5 0 %まで圧縮し、 得られ た 3 - 3力ーブから 2 5 %圧縮強度を算出することができる。 The 25% compressive strength can be measured in accordance with "" 3 <6 7 6 7. Specifically, the double-sided pressure-sensitive adhesive tape cut to 20 20 is stacked to form a laminate with a thickness of 100 1 and left at room temperature for 1 hour, and then, at room temperature, in the thickness direction of this laminate. It is possible to calculate the compressive strength of 25% from the obtained 3-3 force by compressing it to 50% of the original thickness at the rate of 10 |^○ 1 / |11 丨.
[0010] 本発明の両面粘着テープは、 発泡体基材厚み/両面粘着テープ厚みが 0 . 5 以上である。 The double-sided pressure-sensitive adhesive tape of the present invention has a foam substrate thickness/double-sided pressure-sensitive adhesive tape thickness of 0.5 or more.
発泡体基材の厚みと両面粘着テープの厚みとの比が上記範囲であることで、 柔軟性及び耐衝撃性を高めることができる。 また、 上記 2 5 %圧縮強度を同 時に満たすことで更に耐反発性を高めることができる。 柔軟性、 耐衝撃性及 び耐反発性を更に向上させる観点から、 上記発泡体基材厚み/両面粘着テー プ厚みは 0 . 6 5以上であることが好ましく、 0 . 7 5以上であることがよ り好ましく、 〇. 8 5以上であることが更に好ましい。 上記発泡体基材厚み /両面粘着テープ厚みの上限は特に限定されないが、 取り扱い性の観点から \¥0 2020/175368 4 卩(:171? 2020 /007043 When the ratio of the thickness of the foam base material to the thickness of the double-sided pressure-sensitive adhesive tape is within the above range, flexibility and impact resistance can be increased. Further, by satisfying the above 25% compressive strength at the same time, the repulsion resistance can be further enhanced. From the viewpoint of further improving flexibility, impact resistance, and repulsion resistance, the foam base material thickness/double-sided adhesive tape thickness is preferably 0.65 or more, and 0.75 or more. Is more preferable, and 0.85 or more is further preferable. The upper limit of the foam substrate thickness/double-sided adhesive tape thickness is not particularly limited, but from the viewpoint of handleability \¥0 2020/175368 4 卩 (: 171? 2020 /007043
〇. 9 9以下であることが好ましく、 〇. 9 5以下であることがより好まし く、 〇. 9以下であることが更に好ましい。 It is preferably 0.99 or less, more preferably 0.95 or less, and further preferably 0.9 or less.
[001 1 ] 本発明の両面粘着テープは、 凝集力試験によるずれ量が 3 5 以上 1 1 0 [001 1] The double-sided pressure-sensitive adhesive tape of the present invention has a deviation amount of 35 or more by the cohesive force test 1 10
111以下である。 It is 111 or less.
凝集力試験によるずれ量が 3 5 以上であることで、 両面粘着テープが適 度な硬さとなり、 高い粘着力と柔軟性を発揮することができる。 また、 凝集 力試験によるずれ量が 1 1 〇 以下であることで、 両面粘着テープが柔ら かくなりすぎず、 高い耐反発性を発揮することができる。 柔軟性と耐反発性 を更に向上させる観点から、 上記凝集力試験によるずれ量は 4 5 以上で あることが好ましく、 5〇 以上であることがより好ましく、 1 0 0 以下であることが好ましく、 9〇 以下であることがより好ましく、 8 0 以下であることが更に好ましい。 上記凝集力試験によるずれ量は上記ア クリル粘着剤層を構成するァクリル粘着剤の種類や上記ァクリル粘着剤層の 厚み等によって制御することができる。 When the amount of deviation in the cohesive strength test is 35 or more, the double-sided pressure-sensitive adhesive tape has an appropriate hardness, and high adhesive strength and flexibility can be exhibited. In addition, when the amount of deviation in the cohesive strength test is 110 or less, the double-sided adhesive tape does not become too soft and high repulsion resistance can be exhibited. From the viewpoint of further improving flexibility and repulsion resistance, the amount of deviation in the above cohesive force test is preferably 45 or more, more preferably 50 or more, and preferably 100 or less, It is more preferably 90 or less, and further preferably 80 or less. The amount of deviation due to the cohesive strength test can be controlled by the kind of the acrylic adhesive forming the acrylic adhesive layer, the thickness of the acrylic adhesive layer, and the like.
[0012] 凝集力試験は、 以下の方法により測定することができる。 [0012] The cohesive strength test can be measured by the following method.
図 1 に、 両面粘着テープの凝集力試験の様子を表した模式図を示す。 まず、 発泡体基材の両面にァクリル粘着剤層が形成された両面粘着テープを作製す る。 次いで、 図 1 に示すように、 2 0 01 01 X 4 0 01 01にカツ トした両面粘着 テープ 1 を用いて、
Figure imgf000006_0001
のステンレス板 ( 3 II 3 # 3 0 4 ) 2 1及び幅
Figure imgf000006_0002
の 巳丁フィルム 2 2を貼り合わせる。 2 3 °〇において、 一方のステンレス板 2 1の一端を固 定し、 巳丁フィルム 2 2の一端を 2 0 0 9の重り 2 3により水平方向に 3 分間引っ張る。 このとき、 両面粘着テープ 1が引っ張り方向にずれた変位量 を測定する。 なお、 両面粘着テープの長手方向を、 図 1 における引張方向と する。
Figure 1 shows a schematic diagram showing the cohesive strength test of a double-sided adhesive tape. First, a double-sided pressure-sensitive adhesive tape in which an acrylic adhesive layer is formed on both sides of a foam substrate is prepared. Then, as shown in Fig. 1, using the double-sided adhesive tape 1 cut to 2 0 01 01 X 4 0 01 01,
Figure imgf000006_0001
Stainless plate (3 II 3 # 3 0 4) 2 1 and width
Figure imgf000006_0002
Attach the Mingo Film 2 of 2. At 23 °C, fix one end of one stainless steel plate 21 and pull one end of the Mending film 2 2 horizontally for 3 minutes with the weight 23 of 2 09. At this time, measure the displacement of the double-sided adhesive tape 1 that is displaced in the pulling direction. The longitudinal direction of the double-sided adhesive tape is the pulling direction in Fig. 1.
[0013] 上記発泡体基材は、 気泡の平均長径が 1 5 0 以下である。 [0013] In the foam substrate, the average major axis of cells is 150 or less.
発泡体基材の気泡の平均長径を従来の発泡体基材を有する両面粘着テープよ りも小さくすることで、 同じ発泡倍率であっても気泡によって形成される区 画 (セル) の数を増やすことができる。 セルの数が増えると、 落下による衝 撃や曲面に貼り付けた際の応力を分散することができるため、 両面粘着テー プの強度が向上し、 耐衝撃性と耐反発性を高めることができる。 一方で、 気 泡の平均長径を小さく した場合であっても、 発泡倍率が同じであれば柔軟性 は気泡の平均長径が大きいものと変わらないため、 耐衝撃性と耐反発性を高 めながらも柔軟性を維持することができる。 By making the average major axis of the foam base material smaller than that of the double-sided pressure-sensitive adhesive tape having a conventional foam base material, the area formed by the foam even with the same expansion ratio. You can increase the number of pictures (cells). As the number of cells increases, it is possible to disperse the impact of dropping and the stress when attached to a curved surface, so the strength of the double-sided adhesive tape can be improved, and the impact resistance and repulsion resistance can be improved. .. On the other hand, even if the average major axis of air bubbles is reduced, the flexibility is the same as that of the larger average major axis of bubbles, so long as the expansion ratio is the same, while improving impact resistance and repulsion resistance. Can also maintain flexibility.
耐衝撃性と耐反発性をより高める観点から、 上記発泡体基材の気泡の平均長 径は 1 40 M m以下が好ましく、 1 35 M m以下であることがより好ましく 、 1 25 Mm以下であることが更に好ましく、 1 20
Figure imgf000007_0001
以下であることが 更により好ましく、 1 1 0 Mm以下であることが特に好ましい。 上記発泡体 基材の気泡の平均長径の下限は 0より大きければ特に限定されないが、 耐衝 撃性、 耐反発性及び柔軟性とのバランスの観点から 40 M mであることが好 ましい。 上記発泡体基材の気泡の平均長径は、 発泡時の巻取り速度差による 伸びを制御することによって制御することができる。
From the viewpoint of further improving the impact resistance and the repulsion resistance, the average major diameter of the cells of the foam base material is preferably 140 Mm or less, more preferably 135 Mm or less, and 125 Mm or less. More preferably, 1 20
Figure imgf000007_0001
It is even more preferably below, and particularly preferably 110 Mm or below. The lower limit of the average major axis of the foam base material is not particularly limited as long as it is larger than 0, but it is preferably 40 Mm from the viewpoint of balance between impact resistance, repulsion resistance and flexibility. The average major axis of bubbles in the foam substrate can be controlled by controlling the elongation due to the difference in the winding speed during foaming.
[0014] 上記発泡体基材の気泡の平均長径及び平均短径は、 以下の方法により測定す ることができる。 [0014] The average major axis and the average minor axis of the cells of the foam substrate can be measured by the following method.
まず、 発泡体基材を 5 Omm四方にカッ トし、 液体窒素に 1分間浸した後、 カミソリ刃を用いて MD方向に平行かつ MD方向と T D方向が成す面に対し て垂直な面で切断する。 次いで、 デジタルマイクロスコープ (例えば、 キー エンス社製、 「VHX-900」 等) を用いて、 200倍の倍率で切断面の 拡大写真を撮影し、 MD方向に 2 mmの範囲 (厚み X 2 mmの範囲) に存在 する全てのセルについて M D方向の気泡径を測定する。 この操作を 5回繰り 返し、 得られたすべての気泡径を平均することで M D方向の平均気泡径を算 出する。 次いで、 発泡体基材を T D方向に平行かつ M D方向と T D方向が成 す面に対して垂直な面で切断する以外は同様の方法で T D方向の平均気泡径 を得る。 得られた MD及び T D方向の平均気泡径のうち大きいほうを気泡の 平均長径、 短いほうを気泡の平均短径とする。 First, cut the foam base material into a square of 5 Omm, soak it in liquid nitrogen for 1 minute, and then cut it with a razor blade in a plane parallel to the MD direction and perpendicular to the plane between the MD and TD directions. To do. Then, using a digital microscope (for example, "VHX-900" manufactured by KEYENCE CORPORATION), a magnified photograph of the cut surface was taken at a magnification of 200, and the range of 2 mm in the MD direction (thickness X 2 mm The cell diameter in the MD direction is measured for all cells existing in the range (1). This operation is repeated 5 times, and the average bubble diameters in the MD direction are calculated by averaging all the obtained bubble diameters. Then, the average cell diameter in the T D direction is obtained by the same method except that the foam base material is cut along a plane parallel to the T D direction and perpendicular to the plane formed by the M D direction and the T D direction. Of the obtained average bubble diameters in the MD and T D directions, the larger one is the average length of the bubbles, and the shorter one is the average length of the bubbles.
なお、 MD (Ma c h i n e D i r e c t i o n) とは、 発泡体基材をシ —卜状に押出加工する際の押出方向をいい、 T D (T r a n s v e r s e D i r e c t i o n) とは M Dに対して垂直な方向をいう。 Note that MD (Machine Direction) is a foam base material — This is the extrusion direction when extrusion processing is done in the shape of a turret, and TD (tranverse direction) is the direction perpendicular to MD.
[0015] 上記発泡体基材は、 気泡アスペクト比 (短径 /長径) が好ましくは 0. 65 以上、 より好ましくは 0. 7以上、 更に好ましくは 0. 75以上、 更により 好ましくは 0. 8以上、 特に好ましくは 0. 85以上、 とりわけ好ましくは 0. 9以上である。 発泡体基材の気泡アスペクト比が上記範囲であることで 、 MDと TD方向で、 気泡によって形成される区画 (セル) の数の差が小さ くなり、 テープ方向による耐衝撃性と耐反発性の差が小さくなるため結果と してテープ全体の耐衝撃性と耐反発性を高めることができる。 上記気泡アス ぺクト比の上限は特に限定されないが、 通常 1以下であり、 例えば 0. 97 以下である。 [0015] The foam substrate has a cell aspect ratio (minor axis/major axis) of preferably 0.65 or more, more preferably 0.7 or more, still more preferably 0.75 or more, still more preferably 0.8. Above, particularly preferably 0.85 or more, and particularly preferably 0.9 or more. The foam aspect ratio of the foam base material within the above range reduces the difference in the number of compartments (cells) formed by bubbles in the MD and TD directions, resulting in impact resistance and repulsion resistance in the tape direction. As a result, the impact resistance and repulsion resistance of the entire tape can be improved. The upper limit of the bubble aspect ratio is not particularly limited, but is usually 1 or less, for example, 0.97 or less.
なお、 上記気泡アスぺクト比は上記気泡の平均短径を平均長径で除すること により算出することができる。 The bubble aspect ratio can be calculated by dividing the average minor axis of the bubbles by the average major axis.
[0016] 上記発泡体基材は、 発泡倍率が 2 c m 3/ g以上 5 c m 3/ g以下であること が好ましい。 [0016] The foam substrate preferably has a foaming ratio of 2 cm 3 /g or more and 5 cm 3 /g or less.
上記発泡体基材の発泡倍率が上記範囲内であると、 得られる両面粘着テープ の柔軟性をより高めることができ、 上記 25 %圧縮強度を満たしやすくする ことができる。 柔軟性と耐衝撃性及び耐反発性とのバランスをとる観点から 、 上記発泡体基材の発泡倍率は、 2. 5 m 3/ g以上であることがより好まし く、 3 c m 3/ g以上であることが更に好ましく、 3. 5 c m3/ g以上であ ることが更により好ましく、 4. 7 c m3/g以下であることがより好ましく 、 4. 5 c m 3/ g以下であることが更に好ましい。 When the expansion ratio of the foam base material is within the above range, the obtained double-sided pressure-sensitive adhesive tape can have higher flexibility and can easily satisfy the 25% compressive strength. From the viewpoint of balancing flexibility with impact resistance and repulsion resistance, the foaming ratio of the foam base material is more preferably 2.5 m 3 /g or more, 3 cm 3 /g Or more, more preferably 3.5 cm 3 /g or more, even more preferably, 4.7 cm 3 /g or less, more preferably 4.5 cm 3 /g or less. More preferably.
上記発泡体の発泡倍率は、 上記発泡体基材の材料、 厚み、 発泡剤部数等によ り調整することができる。 The expansion ratio of the foam can be adjusted depending on the material of the foam substrate, the thickness, the number of parts of the foaming agent, and the like.
なお、 上記発泡体基材の発泡倍率は、 上記発泡体の密度の逆数から算出でき る。 例えば、 J I S K 7222に準拠して測定することができる。 The expansion ratio of the foam base material can be calculated from the reciprocal of the density of the foam. For example, it can be measured according to JISK 7222.
[0017] 上記発泡体基材は、 特に限定されず、 例えば、 ポリオレフィン発泡体、 ウレ タン発泡体等が挙げられる。 なかでも、 上記の物性を達成しやすいことから \¥0 2020/175368 7 卩(:171? 2020 /007043 [0017] The foam substrate is not particularly limited, and examples thereof include a polyolefin foam and a urethane foam. Above all, because it is easy to achieve the above physical properties \¥0 2020/175368 7 卩 (: 171? 2020 /007043
ポリオレフィン発泡体であることが好ましい。 上記ポリオレフィン発泡体と しては、 例えば、 ポリエチレン系発泡体、 ポリプロピレン系発泡体、 エチレ ンープロピレン系発泡体等が挙げられる。 なかでも、 ポリエチレン系発泡体 が好適である。 It is preferably a polyolefin foam. Examples of the above-mentioned polyolefin foams include polyethylene foams, polypropylene foams, ethylene-propylene foams, and the like. Of these, polyethylene foam is preferable.
[0018] 上記ポリオレフィン発泡体を構成するポリオレフィン樹脂は特に限定されな いが、 重合触媒として四価の遷移金属を含むメタロセン化合物を用いて得ら れたポリオレフィン樹脂が好ましい。 なかでも、 メタロセン化合物を用いて 得られたポリエチレン樹脂がより好ましい。 上記メタロセン化合物として、 例えば、 カミンスキー触媒等が挙げられる。 [0018] The polyolefin resin constituting the above-mentioned polyolefin foam is not particularly limited, but a polyolefin resin obtained by using a metallocene compound containing a tetravalent transition metal as a polymerization catalyst is preferable. Among them, the polyethylene resin obtained by using the metallocene compound is more preferable. Examples of the metallocene compound include Kaminsky catalysts.
[0019] 上記メタロセン化合物を用いて得られたポリエチレン樹脂として、 例えば、 上記メタロセン化合物を用いて、 エチレンと、 必要に応じて配合される他の « -オレフィンとを共重合することにより得られたポリエチレン樹脂等が挙 げられる。 上記他の《—オレフィンとして、 例えば、 プロペン、 1 —ブテン 、 1 -ペンテン、 1 -ヘキセン等が挙げられる。 [0019] As the polyethylene resin obtained by using the above metallocene compound, for example, by using the above metallocene compound, ethylene is obtained by copolymerizing with other olefins that are blended as necessary. Examples include polyethylene resin. Examples of the above-mentioned other <<-olefins include propene, 1-butene, 1-pentene, 1-hexene and the like.
[0020] 上記メタロセン化合物を用いて得られたポリエチレン樹脂は、 他のオレフィ ン樹脂と併用されてもよい。 上記他のオレフィン樹脂として、 例えば、 ポリ エチレン、 ポリプロピレン、 エチレンープロピレン共重合体等が挙げられる [0020] The polyethylene resin obtained by using the metallocene compound may be used in combination with another olefin resin. Examples of the other olefin resin include polyethylene, polypropylene, ethylene-propylene copolymer, and the like.
[0021 ] 上記発泡体基材は、 架橋されていることが好ましい。 上記発泡体基材を架橋 することで、 耐衝撃性を高めることができる。 [0021] The foam substrate is preferably crosslinked. Impact resistance can be enhanced by crosslinking the foam substrate.
上記発泡体基材を架橋する方法は特に限定されず、 例えば、 上記発泡体基材 に電子線、 《線、
Figure imgf000009_0001
線、 ァ線等の電離性放射線を照射する方法、 上記発泡体 基材に予め配合しておいた有機過酸化物を加熱により分解させる方法等が挙 げられる。
The method for cross-linking the foam substrate is not particularly limited, and, for example, an electron beam, <<beam,
Figure imgf000009_0001
And ionizing radiation such as X-rays, and a method of decomposing an organic peroxide previously blended in the foam base material by heating.
[0022] 上記発泡体基材の製造方法は特に限定されないが、 例えば、 基材樹脂と発泡 剤とを含有する発泡性樹脂組成物を調製し、 押出機を用いて発泡性樹脂組成 物をシート状に押出加工する際に発泡剤を発泡させ、 得られた発泡体基材を 必要に応じて架橋する方法が好ましい。 \¥0 2020/175368 8 卩(:171? 2020 /007043 The method for producing the foam base material is not particularly limited. For example, a foamable resin composition containing a base resin and a foaming agent is prepared, and the foamable resin composition is formed into a sheet using an extruder. A method is preferred in which a foaming agent is foamed at the time of extrusion processing into a sheet shape, and the obtained foam substrate is crosslinked if necessary. \¥0 2020/175368 8 卩 (: 171? 2020 /007043
[0023] 上記発泡体基材の厚みは、 特に限定されないが、 好ましい下限は 3 0 、 より好ましい下限は 5 0 、 更に好ましい下限は 7 0 〇1、 更により好ま しい下限は 1 〇〇 、 特に好ましい下限は 1 5 0 、 とりわけ好ましい 下限は 2 0 0 である。 上記発泡体基材の厚みが上記下限以上であると、 得られる両面粘着テープの耐衝撃性をより向上させることができる。 上記発 泡体基材の厚みは、 特に限定されないが、 好ましい上限は 7 0 0 、 より 好ましい上限は 6 0 0 、 更に好ましい上限は 5 0 0 、 更により好ま しい上限は 4 0 0 、 特に好ましい上限は 3 0 0 、 とりわけ好ましい 上限は 2 7〇 である。 上記発泡体基材の厚みが上記上限以下であると、 得られる両面粘着テープの柔軟性をより向上させることができる。 本発明に おいて、 発泡体基材および粘着剤層の厚みは以下の方法によって測定するこ とができる。 [0023] The thickness of the foam substrate is not particularly limited, but a preferred lower limit is 30, a more preferred lower limit is 50, a still more preferred lower limit is 7001, and a still more preferred lower limit is 100, especially A preferred lower limit is 150, and a particularly preferred lower limit is 200. When the thickness of the foam substrate is at least the above lower limit, the impact resistance of the obtained double-sided pressure-sensitive adhesive tape can be further improved. The thickness of the foam substrate is not particularly limited, but a preferred upper limit is 700, a more preferred upper limit is 600, a still more preferred upper limit is 500, and a still more preferred upper limit is 400, and particularly preferred. The upper limit is 300, and the particularly preferable upper limit is 2700. When the thickness of the foam base material is not more than the upper limit, the flexibility of the obtained double-sided pressure-sensitive adhesive tape can be further improved. In the present invention, the thickness of the foam base material and the pressure-sensitive adhesive layer can be measured by the following method.
まず、 テープを 5〇 四方にカツ トし、 液体窒素に 1分間浸した後、 カミ ソリ刃を用いて IV! 0方向に平行かつ IV! 0方向と丁口方向が成す面に対して垂 直な面で切断する。 次いで、 デジタルマイクロスコープ (例えば、 キーエン ス社製、 「▽1~1乂_ 9 0 0」 等) を用いて、 2 0 0倍の倍率で切断面の拡大 写真を撮影し、 テープの厚さ方向の全長を測定する。 この操作を IV! 0方向に 2 の範囲でランダムに 5点測定し、 すべての全長を平均することで、 テFirst, cut the tape in a 50-square direction, soak it in liquid nitrogen for 1 minute, and then use a razor blade to make it parallel to the IV! 0 direction and perpendicular to the plane defined by the IV! 0 direction and the mouth direction. Cut at a sharp surface. Then, using a digital microscope (for example, "▽1 ~ 1_900_" manufactured by KEYENCE CORPORATION), an enlarged photograph of the cut surface was taken at a magnification of 200x, and the tape thickness was measured. Measure the total length in the direction. This operation is performed by randomly measuring 5 points in the range of 2 in the IV! 0 direction and averaging all the total lengths.
—プの厚みを算出する。 次いで、 同様の方法で発泡体基材の厚さ方向の全長 を測定し、 すべての全長を平均することで、 発泡体基材の厚みを算出する。 粘着剤層の厚みは、 上記テープ厚みから発泡体基材厚みの差を取ることで算 出する。 — Calculate the thickness of the tape. Then, the total length of the foam base material in the thickness direction is measured by the same method, and the total length is averaged to calculate the thickness of the foam base material. The thickness of the pressure-sensitive adhesive layer is calculated by taking the difference of the foam base material thickness from the tape thickness.
[0024] 上記アクリル粘着剤層を構成するアクリル粘着剤は、 2 3 °〇における貯蔵弾 性率が 4 X 1 〇5 3以下であることが好ましい。 [0024] Acrylic pressure-sensitive adhesive constituting the acrylic adhesive layer, it preferably has a storage elastic-resistance ratio in 2 3 ° 〇 is 4 X 1 〇 5 3 below.
アクリル粘着剤の 2 3 °〇における貯蔵弾性率が上記範囲であることで、 アク リル粘着剤が適度に柔らかくなるため、 得られる両面粘着テープの粘着力と 柔軟性をより向上させることができる。 得られる両面粘着テープの粘着力と 柔軟性を更に向上させる観点から、 上記アクリル粘着剤の 2 3 °〇における貯 \¥02020/175368 9 卩(:171? 2020 /007043 When the storage elastic modulus of the acrylic pressure-sensitive adhesive at 23° is in the above range, the acrylic pressure-sensitive adhesive becomes moderately soft, and thus the pressure-sensitive adhesive force and flexibility of the obtained double-sided pressure-sensitive adhesive tape can be further improved. From the viewpoint of further improving the adhesive strength and flexibility of the obtained double-sided pressure-sensitive adhesive tape, storage of the above acrylic pressure-sensitive adhesive at 23 ° \¥02020/175368 9 卩 (: 171? 2020 /007043
蔵弾性率は 3. 5 X 1 0^ 3以下であることがより好ましく、 3 X 1 05 3以下であることが更に好ましく、 2. 8 1 05 3以下であることが更に より好ましく、 2. 7 X 1 〇5 3以下であることが特に好ましい。 上記アク リル粘着剤の 23°〇における貯蔵弾性率の下限は特に限定されないが、 耐衝 撃性、 耐反発性とのバランス及び取り扱い性の観点から 2 X 1 05 3である ことが好ましい。 上記アクリル粘着剤の 23 °〇における貯蔵弾性率はアクリ ル粘着剤の原料モノマーのガラス転移温度によって調節することができる。 なお、 上記アクリル粘着剤の 23°〇における貯蔵弾性率は、 粘弾性スペクト ロメーター (例えば、 アイティー計測制御社製、 0 八一200等) を用い 、 定速昇温引張モードの 1 0°〇/分、 1 01~1 åの条件で一 40°〇~ 1 40°〇 の動的粘弾性スぺクトルを測定した時の、 23 °〇における貯蔵弾性率として 得ることができる。 Built modulus is more preferably 3. at 5 X 1 0 ^ 3 or less, 3 more preferably X 1 is 0 5 3 or less, preferably more than that 2. is 8 1 0 5 3 below, 2. it is particularly preferably 7 X 1 〇 5 3 below. The lower limit of the storage elastic modulus at 23° of the acrylic adhesive is not particularly limited, but it is preferably 2×10 5 3 from the viewpoint of balance between impact resistance and repulsion resistance and handleability. The storage elastic modulus of the acrylic adhesive at 23 ° can be adjusted by the glass transition temperature of the raw material monomer of the acrylic adhesive. The storage elastic modulus of the above acrylic adhesive at 23° 〇 was measured using a viscoelasticity spectrometer (for example, 081200, manufactured by IT Measurement and Control Co., Ltd.) at a constant temperature rising tension mode of 10 ° 〇. The storage elastic modulus at 23 ° can be obtained when the dynamic viscoelastic spectrum of 1 ° 40°° to 140°° is measured under the condition of /01 to 1 ° /min.
[0025] 上記アクリル粘着剤は、 1 40°〇における貯蔵弾性率が 3 X 1 〇4 3以上で あることが好ましい。 The above-mentioned acrylic pressure-sensitive adhesive preferably has a storage elastic modulus at 140° ◯ of 3×10 4 3 or more.
高温における貯蔵弾性率は、 長期間における流動性と相関がある。 アクリル 粘着剤の 1 40°〇における貯蔵弾性率が上記範囲であることで、 粘着剤が長 期間経っても流動しにくい、 つまり、 長期間応力がかかっても変形しにくい ことから、 得られる両面粘着テープの耐反発性をより高めることができる。 得られる両面粘着テープの耐反発性を更に向上させる観点から、 上記アクリ ル粘着剤の 1 40 °〇における貯蔵弾性率は 3. 1 X 1 0^ 3以上であること がより好ましく、 3. 2 X 1 〇4 3以上であることが更に好ましい。 上記ア クリル粘着剤の 1 40°〇における貯蔵弾性率の上限は、 特に限定されないが 、 例えば 1 X I 〇5 3である。 上記アクリル粘着剤の 1 40°〇における貯蔵 弾性率を上記範囲に制御する方法としては、 分子量分布 (重量平均分子量 IV! 数平均分子量 !\/^) を狭くする方法が挙げられる。 また、 粘着付与樹脂 の軟化点、 含有量等を調整する方法、 上記アクリル粘着剤層のゲル分率を調 整する方法等も挙げられる。 Storage modulus at high temperature correlates with long-term fluidity. When the acrylic adhesive has a storage elastic modulus at 140 ° 〇 in the above range, it is difficult for the adhesive to flow even after a long period of time, that is, it is difficult to deform even when stressed for a long period of time. The repulsion resistance of the adhesive tape can be further enhanced. From the viewpoint of further improving the repulsion resistance of the obtained double-sided pressure-sensitive adhesive tape, the storage elastic modulus at 140 ° 〇 of the above-mentioned acrylic pressure-sensitive adhesive is more preferably 3.1 × 10^3 or more, and 3.2 and still more preferably X is 1 〇 4 3 or more. The upper limit of the storage elastic modulus at 140 ° 〇 of the above-mentioned acrylic adhesive is not particularly limited, but is, for example, 1 XI 〇 5 3. As a method of controlling the storage elastic modulus of the above-mentioned acrylic adhesive at 140 ° in the above range, there is a method of narrowing the molecular weight distribution (weight average molecular weight IV! number average molecular weight !\/^). Further, a method of adjusting the softening point, content, etc. of the tackifying resin, a method of adjusting the gel fraction of the acrylic pressure-sensitive adhesive layer, and the like are also included.
なお、 上記アクリル粘着剤の 1 40 °〇における貯蔵弾性率は上記アクリル粘 \¥0 2020/175368 10 卩(:171? 2020 /007043 The storage elastic modulus of the above acrylic adhesive at 140 ° is \¥0 2020/175368 10 卩 (: 171? 2020 /007043
着剤の 2 3 °〇における貯蔵弾性率と同様の方法で動的粘弾性スぺクトルを測 定した時の、 1 4 0 °〇における貯蔵弾性率として得ることができる。 It can be obtained as the storage elastic modulus at 140 ° when the dynamic viscoelastic spectrum is measured by the same method as the storage elastic modulus at 23° of the adhesive.
[0026] 上記アクリル粘着剤は特に限定されないが、 上記各パラメータを満たしやす いことから、 プチルアクリレートと 2—エチルヘキシルアクリレートとを含 むモノマー混合物を共重合して得られるアクリル共重合体であることが好ま しい。 [0026] The acrylic pressure-sensitive adhesive is not particularly limited, but it is an acrylic copolymer obtained by copolymerizing a monomer mixture containing butyl acrylate and 2-ethylhexyl acrylate, since it is easy to satisfy the above parameters. Is preferred.
全モノマー混合物に占めるプチルアクリレートの含有量の好ましい下限は 4 0重量%、 好ましい上限は 8 0重量%である。 ブチルアクリレートの含有量 がこの範囲内であると、 高い粘着力と凝集力とを両立することができる。 全モノマー混合物に占める 2—エチルヘキシルアクリ レートの含有量の好ま しい下限は 1 0重量%、 好ましい上限は 4 0重量%である。 2—エチルヘキ シルアクリ レートの含有量がこの範囲内であると、 高い粘着力と凝集力とを 両立することができる。 The preferable lower limit of the content of butyl acrylate in the total monomer mixture is 40% by weight, and the preferable upper limit thereof is 80% by weight. When the content of butyl acrylate is within this range, both high adhesive strength and cohesive strength can be achieved. A preferable lower limit of the content of 2-ethylhexyl acrylate in the total monomer mixture is 10% by weight, and a preferable upper limit thereof is 40% by weight. When the content of 2-ethylhexyl acrylate is within this range, both high adhesive strength and cohesive strength can be achieved.
[0027] 上記モノマー混合物は、 必要に応じてプチルアクリレート及び 2—エチルへ キシルアクリレート以外の共重合可能な他の重合性モノマーを含んでいても よい。 [0027] The above-mentioned monomer mixture may optionally contain other copolymerizable polymerizable monomer other than butyl acrylate and 2-ethylhexyl acrylate.
上記共重合可能な他の重合性モノマーとして、 例えば、 (メタ) アクリル酸 メチル、 (メタ) アクリル酸エチル、 (メタ) アクリル酸 11 -プロピル、 ( メタ) アクリル酸イソプロピル等のアルキル基の炭素数が 1〜 3の (メタ) アクリル酸アルキルエステル、 メタクリル酸トリデシル、 (メタ) アクリル 酸ステアリル等のアルキル基の炭素数が 1 3〜 1 8の (メタ) アクリル酸ア ルキルエステル、 (メタ) アクリル酸ヒドロキシアルキル、 グリセリンジメ タクリレート、 (メタ) アクリル酸グリシジル、 2—メタクリロイルオキシ エチルイソシアネート、 (メタ) アクリル酸、 イタコン酸、 無水マレイン酸 、 クロトン酸、 マレイン酸、 フマル酸等の官能性モノマーが挙げられる。 Examples of the other copolymerizable monomer that can be copolymerized include, for example, (meth)methyl acrylate, (meth)ethyl acrylate, (meth)acrylic acid 11-propyl, and (meth)isopropyl acrylate. (Meth)acrylic acid alkyl ester having 1 to 3 (meth)acrylic acid alkyl ester, tridecyl methacrylate, (meth)acrylic acid stearyl, etc., having a carbon number of 13 to 18 carbon atoms in the alkyl group, (meth)acrylic acid Hydroxyalkyl acid, glycerin dimethacrylate, (meth)glycidyl acrylate, 2-methacryloyloxy ethyl isocyanate, (meth)acrylic acid, itaconic acid, maleic anhydride, crotonic acid, maleic acid, fumaric acid and other functional monomers. To be
[0028] 上記モノマー混合物を共重合して上記アクリル共重合体を得るには、 上記モ ノマー混合物を、 重合開始剤の存在下にてラジカル反応させればよい。 上記 重合開始剤は特に限定されず、 例えば、 有機過酸化物、 アゾ化合物等が挙げ られる。 上記有機過酸化物として、 例えば、 1 , 1 _ビス (1 _へキシルパ —オキシ) _3, 3, 5—トリメチルシクロヘキサン、 t _ヘキシルパーオ キシピバレート、 t _プチルパーオキシピバレート、 2, 5—ジメチルー 2 , 5—ビス (2—エチルへキサノイルパーオキシ) ヘキサン、 t _ヘキシル パーオキシ _ 2—エチルへキサノエート、 t—ブチルパーオキシ _ 2—エチ ルへキサノエート、 t _プチルパーオキシイソプチレート、 t _プチルパー オキシ _ 3, 5, 5—トリメチルへキサノエート、 t _プチルパーオキシラ ウレート等が挙げられる。 上記アゾ化合物として、 例えば、 アゾビスイソブ チロニトリル、 アゾビスシクロヘキサンカルボニトリル等が挙げられる。 こ れらの重合開始剤は単独で用いてもよいし、 2種以上を併用してもよい。 [0028] In order to copolymerize the monomer mixture to obtain the acrylic copolymer, the monomer mixture may be subjected to a radical reaction in the presence of a polymerization initiator. The polymerization initiator is not particularly limited, and examples thereof include organic peroxides and azo compounds. To be Examples of the above-mentioned organic peroxide include 1, 1 _ bis (1 _ hexylperoxy) _ 3, 3, 5-trimethylcyclohexane, t _ hexylperoxypivalate, t _ butylperoxypivalate, 2, 5-dimethyl-2 , 5-bis(2-ethylhexanoylperoxy) hexane, t _ hexyl peroxy _ 2 -ethyl hexanoate, t -butyl peroxy _ 2 -ethyl hexanoate, t _ butyl peroxyisobutyrate, t _Putylperoxy_3,5,5-trimethylhexanoate, t_Putylperoxylaurate and the like. Examples of the azo compound include azobisisobutyronitrile and azobiscyclohexanecarbonitrile. These polymerization initiators may be used alone or in combination of two or more kinds.
[0029] 上記モノマー混合物をラジカル反応させる方法、 即ち、 重合方法としては、 従来公知の方法が用いられ、 例えば、 溶液重合 (沸点重合又は定温重合) 、 乳化重合、 懸濁重合、 塊状重合、 リビングラジカル重合等が挙げられる。 な かでも、 分子量分布を狭くでき、 高温での貯蔵弾性率を高めることができる ことから、 低温重合又はリビングラジカル重合が好ましい。 As a method of radically reacting the above-mentioned monomer mixture, that is, as a polymerization method, a conventionally known method is used, for example, solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, bulk polymerization, living Radical polymerization etc. are mentioned. Of these, low-temperature polymerization or living radical polymerization is preferable because the molecular weight distribution can be narrowed and the storage elastic modulus at high temperature can be increased.
[0030] 上記アクリル共重合体の重量平均分子量 (Mw) は、 好ましい下限が 40万 、 好ましい上限が 1 20万である。 重量平均分子量が上記範囲であることで 、 上記アクリル粘着剤層の凝集力が高まり、 両面粘着テープの粘着力がより 向上する。 重量平均分子量のより好ましい下限は 50万、 より好ましい上限 は 1 1 0万である。 [0030] With respect to the weight average molecular weight (Mw) of the acrylic copolymer, a preferred lower limit is 400,000, and a preferred upper limit is 1200,000. When the weight average molecular weight is in the above range, the cohesive force of the acrylic pressure-sensitive adhesive layer is increased, and the pressure-sensitive adhesive force of the double-sided pressure-sensitive adhesive tape is further improved. The more preferable lower limit of the weight average molecular weight is 500,000, and the more preferable upper limit thereof is 110,000.
重量平均分子量を上記範囲に調整するためには、 重合開始剤、 重合温度等の 重合条件を調整すればよい。 In order to adjust the weight average molecular weight within the above range, the polymerization conditions such as the polymerization initiator and the polymerization temperature may be adjusted.
なお、 重量平均分子量 (Mw) とは、 G PC (Ge l P e r me a t i 〇 n C h r om a t o g r a p h y :ゲルパーミエーシヨンクロマトグラフ ィ) による標準ポリスチレン換算の重量平均分子量である。 The weight average molecular weight (Mw) is the weight average molecular weight in terms of standard polystyrene by GPC (Gel Permeat i o n C h r om a t o g r a p h y: gel permeation chromatography).
[0031] 上記アクリル粘着剤層は、 粘着付与樹脂を含有してもよい。 [0031] The acrylic pressure-sensitive adhesive layer may contain a tackifying resin.
上記粘着付与樹脂として、 例えば、 ロジンエステル系樹脂、 水添ロジン系樹 月旨、 テルペン系樹脂、 テルペンフエノール系樹脂、 クマロンインデン系樹脂 \¥0 2020/175368 12 卩(:171? 2020 /007043 Examples of the tackifying resin include rosin ester resin, hydrogenated rosin resin, terpene resin, terpene phenol resin, coumarone indene resin. \¥0 2020/175368 12 卩 (: 171? 2020 /007043
、 脂環族飽和炭化水素系樹脂、 0 5系石油樹脂、 0 9系石油樹脂、 0 5 - 0 9共重合系石油樹脂等が挙げられる。 これらの粘着付与樹脂は単独で用いて もよいし、 2種以上を併用してもよい。 Alicyclic saturated hydrocarbon resin, 05 petroleum resin, 09 petroleum resin, 05-9 copolymer petroleum resin and the like. These tackifying resins may be used alone or in combination of two or more.
[0032] 上記粘着付与樹脂の含有量は特に限定されないが、 上記アクリル共重合体 1 〇〇重量部に対する好ましい下限は 1 〇重量部、 好ましい上限は 6 0重量部 である。 上記粘着付与樹脂の含有量がこの範囲内であると、 高い粘着力を発 揮することができる。 The content of the tackifying resin is not particularly limited, but a preferable lower limit is 100 parts by weight and a preferable upper limit is 60 parts by weight with respect to 100 parts by weight of the acrylic copolymer. When the content of the tackifying resin is within this range, a high adhesive strength can be exerted.
[0033] 上記アクリル粘着剤層は、 架橋剤が添加されることにより上記アクリル粘着 剤層を構成する樹脂 (上記アクリル共重合体及び/又は上記粘着付与樹脂) の主鎖間に架橋構造が形成されていることが好ましい。 アクリル粘着剤層に 架橋構造が形成されることで、 貯蔵弾性率を上記範囲に制御しやすくするこ とができる。 [0033] In the acrylic pressure-sensitive adhesive layer, a cross-linking structure is formed between the main chains of the resin (the acrylic copolymer and/or the tackifying resin) constituting the acrylic pressure-sensitive adhesive layer by adding a crosslinking agent. Is preferably provided. By forming a crosslinked structure in the acrylic pressure-sensitive adhesive layer, it is possible to easily control the storage elastic modulus within the above range.
上記架橋剤は特に限定されず、 例えば、 イソシアネート系架橋剤、 アジリジ ン系架橋剤、 エポキシ系架橋剤、 金属キレート型架橋剤等が挙げられる。 な かでも、 イソシアネート系架橋剤が好ましい。 The crosslinking agent is not particularly limited, and examples thereof include an isocyanate crosslinking agent, an aziridin crosslinking agent, an epoxy crosslinking agent, and a metal chelate crosslinking agent. Of these, isocyanate crosslinking agents are preferred.
上記架橋剤の添加量は、 上記アクリル共重合体 1 〇〇重量部に対する好まし い下限が〇. 0 1重量部、 好ましい上限が 1 0重量部であり、 より好ましい 下限が〇. 1重量部、 より好ましい上限が 3重量部である。 With respect to the amount of the crosslinking agent added, a preferred lower limit is 0.01 part by weight, a preferred upper limit is 10 parts by weight, and a more preferred lower limit is 0.1 part by weight, relative to 100 parts by weight of the acrylic copolymer. A more preferable upper limit is 3 parts by weight.
[0034] 上記アクリル粘着剤層は、 ゲル分率が 2 0 %以上であることが好ましい。 [0034] The acrylic pressure-sensitive adhesive layer preferably has a gel fraction of 20% or more.
アクリル粘着剤層のゲル分率が上記範囲であることで、 上記凝集力試験によ るずれ量を満たしやすくすることができる。 ずれ量を更に満たし易くする観 点から、 上記アクリル粘着剤層のゲル分率は、 より好ましくは 2 5 %以上、 更に好ましくは 3 0 %以上、 更により好ましくは 3 5 %以上、 特に好ましく は 4 0 %以上である。 上記アクリル粘着剤層のゲル分率の上限は特に限定さ れないが、 得られる両面粘着テープの粘着力と柔軟性とを両立できる観点か ら、 好ましくは 8 0 %、 より好ましくは 7 5 %、 更に好ましくは 7 0 %、 更 により好ましくは 6 5 %である。 When the gel fraction of the acrylic pressure-sensitive adhesive layer is within the above range, it is possible to easily satisfy the amount of deviation in the cohesive strength test. From the viewpoint of making it easier to satisfy the shift amount, the gel fraction of the acrylic pressure-sensitive adhesive layer is more preferably 25% or more, further preferably 30% or more, still more preferably 35% or more, particularly preferably It is 40% or more. The upper limit of the gel fraction of the acrylic pressure-sensitive adhesive layer is not particularly limited, but from the viewpoint of achieving both adhesive strength and flexibility of the obtained double-sided pressure-sensitive adhesive tape, it is preferably 80%, more preferably 75%. , More preferably 70%, even more preferably 65%.
[0035] 上記アクリル粘着剤層の厚みは特に限定されないが、 片面のアクリル粘着剤 \¥0 2020/175368 13 卩(:171? 2020 /007043 [0035] The thickness of the acrylic pressure-sensitive adhesive layer is not particularly limited. \¥0 2020/175368 13 卩 (: 171? 2020 /007043
層の厚みの好ましい下限は 1 0 〇1、 好ましい上限は 1 〇〇 〇!である。 上 記アクリル粘着剤層の厚みが上記範囲内であることで、 上記ずれ量を上記範 囲に調節しやすくすることができ、 より高い柔軟性と耐衝撃性と耐反発性と を兼ね備えた両面粘着テープとすることができる。 上記アクリル粘着剤層の 厚みのより好ましい下限は 1 5 、 更に好ましい下限は 2 0 〇1、 更によ り好ましい下限は 2 5 、 より好ましい上限は 8 0 、 更に好ましい上 限は 7 0 01、 更により好ましい上限は 6 0 〇!である。 The preferred lower limit of the layer thickness is 1001, and the preferred upper limit is 100! When the thickness of the acrylic pressure-sensitive adhesive layer is within the above range, it is possible to easily adjust the above deviation amount within the above range, and both sides having higher flexibility, impact resistance and repulsion resistance are provided. It can be an adhesive tape. The more preferable lower limit of the thickness of the acrylic pressure-sensitive adhesive layer is 15, the more preferable lower limit is 201, the still more preferable lower limit is 25, the more preferable upper limit is 80, and the still more preferable upper limit is 7001. A more preferable upper limit is 600!
[0036] 本発明の両面粘着テープは、 両面粘着テープの総厚みが好ましくは 5 0 以上、 より好ましくは 7〇 以上、 更に好ましくは 1 〇〇 以上、 更に より好ましくは 1 5 0 以上であり、 好ましくは 9 0 0 以下、 より好 ましくは 7 0 0 以下、 更に好ましくは 5 0 0 以下、 更により好まし くは 4 0 0 以下である。 両面粘着テープの総厚みが上記範囲であること で、 より取り扱い性に優れ、 高い柔軟性と耐衝撃性と耐反発性とを兼ね備え た粘着テープとすることができる。 The double-sided pressure-sensitive adhesive tape of the present invention has a total thickness of the double-sided pressure-sensitive adhesive tape of preferably 50 or more, more preferably 70 or more, still more preferably 100 or more, still more preferably 150 or more, It is preferably 900 or less, more preferably 700 or less, even more preferably 500 or less, and even more preferably 400 or less. When the total thickness of the double-sided pressure-sensitive adhesive tape is within the above range, it is possible to obtain a pressure-sensitive adhesive tape that is more easy to handle and has high flexibility, impact resistance, and repulsion resistance.
[0037] 本発明の両面粘着テープの製造方法として、 例えば、 以下のような方法が挙 げられる。 [0037] As a method for producing the double-sided pressure-sensitive adhesive tape of the present invention, for example, the following method can be mentioned.
まず、 上記アクリル粘着剤、 必要に応じて粘着付与樹脂、 架橋剤等に溶剤を 加えてアクリル粘着剤 の溶液を作製して、 このアクリル粘着剤 の溶液を 発泡体基材の表面に塗布し、 溶液中の溶剤を完全に乾燥除去してアクリル粘 着剤層八を形成する。 次に、 形成されたアクリル粘着剤層八の上に離型フィ ルムをその離型処理面がアクリル粘着剤層 に対向した状態に重ね合わせる 次いで、 上記離型フィルムとは別の離型フィルムを用意し、 この離型フィル ムの離型処理面にアクリル粘着剤巳の溶液を塗布し、 溶液中の溶剤を完全に 乾燥除去することにより、 離型フィルムの表面にアクリル粘着剤層巳が形成 された積層フィルムを作製する。 得られた積層フィルムをアクリル粘着剤層 八が形成された発泡体基材の裏面に、 アクリル粘着剤層巳が発泡体基材の裏 面に対向した状態に重ね合わせて積層体を作製する。 そして、 上記積層体を \¥0 2020/175368 14 卩(:171? 2020 /007043 First, a solvent is added to the acrylic pressure-sensitive adhesive, optionally a tackifying resin, a crosslinking agent, etc. to prepare a solution of the acrylic pressure-sensitive adhesive, and the solution of the acrylic pressure-sensitive adhesive is applied to the surface of the foam substrate, The solvent in the solution is completely dried and removed to form the acrylic adhesive layer 8. Next, a release film is laminated on the formed acrylic pressure-sensitive adhesive layer 8 so that the release-treated surface faces the acrylic pressure-sensitive adhesive layer. Then, a release film different from the above-mentioned release film is laminated. Prepare and apply a solution of acrylic pressure sensitive adhesive to the release treated surface of this release film and completely dry and remove the solvent in the solution to form an acrylic pressure sensitive adhesive layer on the surface of the release film. To produce the laminated film. The obtained laminated film is laminated on the back surface of the foam base material on which the acrylic pressure-sensitive adhesive layer 8 has been formed, with the acrylic pressure-sensitive adhesive layer facing the back surface of the foam base material to form a laminate. And the laminated body \¥0 2020/175368 14 卩 (: 171? 2020 /007043
ゴムローラ等によって加圧することによって、 発泡体基材の両面にアクリル 粘着剤層を有し、 かつ、 アクリル粘着剤層の表面が離型フィルムで覆われた 両面粘着テープを得ることができる。 しかし、 発泡体基材を用いる場合、 粘 着剤を基材に直接塗布する製造方法は基材の厚みばらつきや、 表面粗さが大 きい場合均一に粘着剤を塗布できない可能性がある。 By pressing with a rubber roller or the like, it is possible to obtain a double-sided pressure-sensitive adhesive tape having an acrylic pressure-sensitive adhesive layer on both sides of a foam base material and having the surface of the acrylic pressure-sensitive adhesive layer covered with a release film. However, when a foam substrate is used, the manufacturing method in which the adhesive is directly applied to the substrate may not be able to uniformly apply the adhesive when the thickness of the substrate varies or the surface roughness is large.
[0038] また、 本発明の両面粘着テープの製造方法としては、 他にも以下のような方 法が挙げられる。 [0038] In addition, as the method for producing the double-sided pressure-sensitive adhesive tape of the present invention, the following methods may be mentioned.
まず、 同様の要領で積層フィルムを 2組作製し、 これらの積層フィルムを発 泡体基材の両面のそれぞれに、 積層フィルムのアクリル粘着剤層を発泡体基 材に対向させた状態に重ね合わせて積層体を作製する。 その後、 この積層体 をゴムローラ等によって加圧することによって、 発泡体基材の両面にアクリ ル粘着剤層を有し、 かつ、 アクリル粘着剤層の表面が離型フィルムで覆われ た両面粘着テープを得る。 First, two sets of laminated films were prepared in the same manner, and these laminated films were laminated on both sides of the foam substrate with the acrylic adhesive layer of the laminated film facing the foam substrate. To produce a laminate. Then, by pressing the laminated body with a rubber roller or the like, a double-sided adhesive tape having an acrylic adhesive layer on both sides of the foam base material and the surface of the acrylic adhesive layer covered with a release film is formed. obtain.
[0039] 本発明の両面粘着テープの用途は特に限定されないが、 電子機器部品の固定 に特に好適に用いることができる。 The application of the double-sided pressure-sensitive adhesive tape of the present invention is not particularly limited, but it can be particularly preferably used for fixing electronic device parts.
このような、 電子機器部品の固定に用いられる本発明の両面粘着テープもま た、 本発明の 1つである。 Such a double-sided pressure-sensitive adhesive tape of the present invention used for fixing electronic device parts is also one of the present invention.
[0040] 本発明の両面粘着テープは、 柔軟性と耐衝撃性と耐反発性に優れることから 、 電子機器部品の中でも特に曲面を持った部品の曲面部に貼り付けて用いる 際に大きな効果を発揮する。 上記曲面を持った部品の両面粘着テープを貼り 付ける部分の曲率半径は、 5
Figure imgf000016_0002
以上であることが好ましく、 1
Figure imgf000016_0001
であることがより好ましく、 1 0 0 0〇!〇!以下が好ましく、
Figure imgf000016_0003
Since the double-sided pressure-sensitive adhesive tape of the present invention is excellent in flexibility, impact resistance, and repulsion resistance, it has a great effect when used by being attached to a curved surface part of a part having a curved surface among electronic device parts. Demonstrate. The radius of curvature of the part with the above curved surface where the double-sided adhesive tape is attached is 5
Figure imgf000016_0002
Or more is preferable, 1
Figure imgf000016_0001
Is more preferable, and 100 or less!
Figure imgf000016_0003
がより好ましく、
Figure imgf000016_0004
以下が更に好ましい。
Is more preferable,
Figure imgf000016_0004
The following is more preferable.
このような、 両面粘着テープ貼付部分の曲率半径が 5 01 01以上 1 0 0 0〇!〇! 以下である、 電子機器部品の固定に用いられる本発明の両面粘着テープもま た、 本発明の 1つである。 Such a double-sided pressure-sensitive adhesive tape of the present invention used for fixing electronic device parts, in which the radius of curvature of the double-sided pressure-sensitive adhesive tape-attached portion is not less than 5 01 01 and not more than 100 0 0! There is one.
また、 曲面部に本発明の両面粘着テープが貼り付けられている電子機器部品 及び曲率半径が 5
Figure imgf000016_0005
以下である部分に本発明の両面粘着 \¥0 2020/175368 15 卩(:171? 2020 /007043
In addition, the electronic device parts in which the double-sided adhesive tape of the present invention is attached to the curved surface and the radius of curvature are 5
Figure imgf000016_0005
Double-sided adhesive of the present invention in the following parts \¥0 2020/175368 15 卩 (: 171? 2020 /007043
テープが貼り付けられている、 電子機器部品もまた、 本発明の 1つである。 更に、 上記電子機器部品を有する電子機器もまた、 本発明の 1つである。 [0041] これらの用途における本発明の両面粘着テープの形状は特に限定されないが 、 長方形、 額縁状、 円形、 楕円形、 ドーナツ型等が挙げられる。 An electronic device component to which a tape is attached is also one aspect of the present invention. Further, an electronic device including the electronic device component described above is also one aspect of the present invention. The shape of the double-sided pressure-sensitive adhesive tape of the present invention in these applications is not particularly limited, and examples thereof include a rectangle, a frame shape, a circle, an ellipse, and a donut shape.
発明の効果 Effect of the invention
[0042] 本発明によれば、 電子機器部品固定用途や車輛部品固定用途に好適に用いる ことができる、 高い柔軟性、 耐衝撃性及び耐反発性を兼ね備えた両面粘着テ —プ及び該両面粘着テープを用いた電子機器部品、 電子機器を提供すること ができる。 [0042] According to the present invention, a double-sided adhesive tape having high flexibility, impact resistance and repulsion resistance, which can be suitably used for fixing electronic device parts and vehicle parts, and the double-sided adhesive tape. It is possible to provide electronic device parts and electronic devices using a tape.
図面の簡単な説明 Brief description of the drawings
[0043] [図 1]両面粘着テープの凝集力試験を説明する模式図である。 [0043] [Fig. 1] Fig. 1 is a schematic diagram illustrating a cohesive strength test of a double-sided adhesive tape.
[図 2]両面粘着テープの II 3 ! !粘着力試験を説明する模式図である。 [Fig. 2] Fig. 2 is a schematic diagram for explaining the II 3!! Adhesive strength test of the double-sided adhesive tape.
[図 3]両面粘着テープの落下衝撃試験を説明する模式図である。 発明を実施するための形態 [FIG. 3] A schematic diagram illustrating a drop impact test of a double-sided adhesive tape. MODE FOR CARRYING OUT THE INVENTION
[0044] 以下に実施例を挙げて本発明の態様を更に詳しく説明するが、 本発明はこれ ら実施例にのみ限定されるものではない。 [0044] Hereinafter, the embodiments of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0045] (発泡体基材 ( ) の調製) [0045] (Preparation of foam substrate ())
直鎖状低密度ポリエチレン樹脂 1 〇〇重量部、 熱分解型発泡剤としてアゾジ カルボンアミ ド 3重量部、 分解温度調整剤としての酸化亜鉛 1質量部及び酸 化防止剤として 2 , 6—ジー 1:—ブチルー ークレゾール 0 . 5重量部、 を 単軸押出機に供給して 1 3 0 °〇で溶融混練して、 厚み 1 8 0 の原反シー 卜として押出した。 Linear low-density polyethylene resin 100 parts by weight, azodicarbonamide 3 parts by weight as a pyrolysis type foaming agent, 1 part by weight of zinc oxide as a decomposition temperature adjusting agent, and 2, 6-ge 1: as an antioxidant. — Butyl-cresol (0.5 parts by weight) was supplied to a single-screw extruder, melt-kneaded at 130 ° and extruded as a raw sheet having a thickness of 180.
[0046] 次に、 上記原反シートを、 その両面に加速電圧 1 5 0 1< の電子線を 8 . 8 IV!「 3 照射して架橋した後、 熱風及び赤外線ヒーターにより 2 5 0 °〇に保 持された発泡炉内に連続的に送り込んで加熱して発泡させ、 発泡シートを得 た。 次いで、 全体の厚さが 1 0〇 となるように、 1
Figure imgf000017_0001
[0046] Next, the above-mentioned raw sheet is cross-linked by irradiating both sides with an electron beam having an accelerating voltage of 1501 <8.8 IV! The foamed sheet was continuously fed into the foaming furnace held at 10 to heat and foamed to obtain a foamed sheet.
Figure imgf000017_0001
口に延伸し、 厚さ 1 0〇 のポリオレフイン発泡体を得た。 It was stretched in the mouth to obtain a polyolefin foam having a thickness of 100.
[0047] (発泡体基材 (巳) 〜 ([<) の調製) \¥0 2020/175368 16 卩(:171? 2020 /007043 [0047] (Foam Base Material (Mimi)) ~ (Preparation of [<)) \¥0 2020/175368 16 卩 (: 171? 2020 /007043
発泡剤添加量を ·! . 5〜 4 . 0質量部数、 架橋時の線量を 3 . 〇〜 1 0 . 5 IV!「 3 となるように調整した点以外は発泡体基材 ( ) と同様の方法で表 1、 2に示す厚みを有する発泡体基材 (巳) 〜 ([<) を得た。 Amount of foaming agent added! 0.5 to 4.0 parts by mass, and the dose at the time of cross-linking was adjusted to 3.0 to 10.5 IV! “ 3 . Foam base materials (Mimi) to ([<) having the thicknesses shown in Table 1 were obtained.
[0048] (気泡の平均長径、 平均短径及び気泡アスぺクト比の測定) [0048] (Measurement of average major axis, average minor axis, and bubble aspect ratio of bubbles)
まず、 発泡体基材を 5〇 四方にカッ トし、 液体窒素に 1分間浸した後、 カミソリ刃を用いて IV! 0方向に平行かつ IV! 0方向と丁 0方向が成す面に対し て垂直な面で切断した。 次いで、 デジタルマイクロスコープ ( 1~1乂_ 9 0 〇、 キーエンス社製) を用いて、 2 0 0倍の倍率で切断面の拡大写真を撮影 し、
Figure imgf000018_0001
の範囲 (厚み X 2 01 01の範囲) に存在する全てのセル について
Figure imgf000018_0002
方向の気泡径を測定した。 この操作を 5回繰り返し、 得られた すべての気泡径を平均することで IV! 0方向の平均気泡径を算出した。 次いで 、 発泡体基材を丁 0方向に平行かつ IV! 0方向と丁 0方向が成す面に対して垂 直な面で切断する以外は同様の方法で丁 0方向の平均気泡径を得た。 得られ た IV! 0及び丁 0方向の平均気泡径のうち大きい方を気泡の平均長径、 短い方 を平均短径とした。 また、 得られたすべての気泡の平均長径及び平均短径か ら気泡アスペクト比 (短径/長径) を算出した。 結果を表 1、 2に示した。
First, cut the foam base material in the direction of 504, soak it in liquid nitrogen for 1 minute, and then use a razor blade to cut it against the plane parallel to the IV! 0 direction and parallel to the IV! 0 direction. Cut in a vertical plane. Then, using a digital microscope (1 to 100 _ 900, manufactured by Keyence), take a magnified photograph of the cut surface at a magnification of 200 times,
Figure imgf000018_0001
For all cells existing in the range (thickness X 2 01 01 range)
Figure imgf000018_0002
The bubble size in the direction was measured. This operation was repeated 5 times, and the average bubble diameters in the IV!0 direction were calculated by averaging all the obtained bubble diameters. Next, the average cell diameter in the 0 direction was obtained by the same method except that the foam substrate was cut along a plane parallel to the 0 direction and perpendicular to the plane formed by the IV! 0 direction and the 0 direction. .. Of the obtained average bubble diameters in IV! 0 and 0 direction, the larger one was defined as the average major diameter of the bubbles, and the shorter one was defined as the average minor diameter. Further, the bubble aspect ratio (minor axis/major axis) was calculated from the average major axis and the average minor axis of all the obtained bubbles. The results are shown in Tables 1 and 2.
[0049] (発泡倍率の測定) [0049] (Measurement of expansion ratio)
得られた発泡体基材について、 ミラージュ社製の電子比重計 (商品名 「巳〇 1 2 0丁」 ) を使用して、 」 丨 3 < - 6 7 6 7に準拠した方法で測定した密 度から発泡倍率を算出した。 結果を表 1、 2に示した。 The obtained foam base material was measured by a method according to “3 <- 6 7 6 7” using an electronic hydrometer manufactured by Mirage Co., Ltd. The foaming ratio was calculated from the degree. The results are shown in Tables 1 and 2.
[0050] (アクリル粘着剤 (3) の調製) [0050] (Preparation of acrylic adhesive (3))
温度計、 攪拌機、 冷却管を備えた反応器にプチルアクリレート 4 2重量部、 42 parts by weight of butyl acrylate in a reactor equipped with a thermometer, a stirrer, and a cooling tube,
2—エチルヘキシルアクリレート 5 5重量部、 アクリル酸 3重量部、 2—ヒ ドロキシエチルアクリレート〇. 2重量部、 及び、 酢酸エチル 8 0重量部を 加え、 窒素置換した。 その後、 重合開始剤としてアゾビスイソプチロニトリ ル〇. 1重量部を添加し、 6 0 °0で 8時間重合させ、 アクリル共重合体の溶 液を得た。 得られたアクリル共重合体について、 〇 (3法により重量平均分 子量を測定したところ、 1 1 〇万であった。 得られたアクリル共重合体の溶液に含まれるアクリル共重合体の固形分 1 0 0重量部に対して、 重合ロジンエステル 1 5重量部、 酢酸エチル (不二化学 薬品社製) 1 25重量部、 イソシアネート系架橋剤 1. 5重量部を添加し、 攪拌して、 アクリル粘着剤 (a) を得た。 なお、 重合ロジンエステル、 イソ シアネート系架橋剤及び G PCの測定機器と測定条件は以下の通りとした。 重合ロジンエステル: D- 1 35、 軟化点 1 35°C、 荒川化学工業社製 イソシアネート系架橋剤: コロネート L45、 東ソー社製 2-Ethylhexyl acrylate 55 parts by weight, acrylic acid 3 parts by weight, 2-hydroxyethyl acrylate 0.2 parts by weight, and ethyl acetate 80 parts by weight were added, and the atmosphere was replaced with nitrogen. Then, 0.1 part by weight of azobisisoptyronitril was added as a polymerization initiator, and the mixture was polymerized at 60 ° C. for 8 hours to obtain a solution of an acrylic copolymer. The weight average molecular weight of the obtained acrylic copolymer was measured by the method (3), and it was 11,000,000. 15 parts by weight of polymerized rosin ester and 25 parts by weight of ethyl acetate (manufactured by Fuji Chemical Co., Ltd.) based on 100 parts by weight of the solid content of the acrylic copolymer contained in the obtained solution of the acrylic copolymer. Then, 1.5 parts by weight of an isocyanate crosslinking agent was added and stirred to obtain an acrylic pressure-sensitive adhesive (a). The measuring equipment and measuring conditions for polymerized rosin ester, isocyanate cross-linking agent and GPC were as follows. Polymerized rosin ester: D-1 35, Softening point 1 35 °C, Arakawa Chemical Co., Ltd. Isocyanate crosslinking agent: Coronate L45, Tosoh Corporation
<G P Cの測定機器及び測定条件 > <GPC measurement equipment and measurement conditions>
ゲルパミエーシヨンクロマトグラフ : e 2695 S e p a r a t i o n s M o d u I e (W a t e r s社製) Gel permeation chromatograph: e 2695 Sep a r a t i o n s M o d u I e (manufactured by W a t er s)
検出器:示差屈折計 (24 1 4、 Wa t e r s社製) Detector: Differential refractometer (24 14, manufactured by Wa ter s)
カラム: G PC K F-806 L (昭和電工社製) Column: G PC K F-806 L (manufactured by Showa Denko KK)
標準試料: STAN D RAD SM- 1 05、 昭和電工社製 Standard sample: STAN D RAD SM- 105, manufactured by Showa Denko KK
サンプル流量: 1 m L/m i n Sample flow rate: 1 m L/m i n
カラム温度: 40°C Column temperature: 40 °C
[0051] (アクリル粘着剤 (b) の調製) (Preparation of acrylic adhesive (b))
イソシアネート系架橋剤の添加量を 0. 9重量部とした以外はアクリル粘着 剤 (a) の調製方法と同様にして、 アクリル粘着剤 (b) を得た。 An acrylic pressure-sensitive adhesive (b) was obtained in the same manner as in the preparation of the acrylic pressure-sensitive adhesive (a), except that the amount of the isocyanate cross-linking agent added was 0.9 part by weight.
[0052] (アクリル粘着剤 (c) の調製) (Preparation of acrylic adhesive (c))
イソシアネート系架橋剤の添加量を 1. 8重量部とした以外はアクリル粘着 剤 (a) の調製方法と同様にして、 アクリル粘着剤 (c) を得た。 An acrylic pressure-sensitive adhesive (c) was obtained in the same manner as in the preparation of the acrylic pressure-sensitive adhesive (a), except that the amount of the isocyanate cross-linking agent added was 1.8 parts by weight.
[0053] (アクリル粘着剤 (d) の調製) (Preparation of acrylic adhesive (d))
イソシアネート系架橋剤の添加量を 1. 6重量部とした以外はアクリル粘着 剤 (a) の調製方法と同様にして、 アクリル粘着剤 (d) を得た。 An acrylic pressure-sensitive adhesive (d) was obtained in the same manner as in the preparation of the acrylic pressure-sensitive adhesive (a), except that the amount of the isocyanate crosslinking agent added was 1.6 parts by weight.
[0054] (アクリル粘着剤 (e) の調製) (Preparation of acrylic adhesive (e))
温度計、 攪拌機、 冷却管を備えた反応器にプチルアクリレート 82重量部、 エチルアクリレート 1 0重量部、 2—エチルヘキシルアクリレート 5重量部 、 アクリル酸 3重量部、 2 -ヒドロキシエチルアクリレート 0. 2重量部、 \¥0 2020/175368 18 卩(:171? 2020 /007043 82 parts by weight of butyl acrylate, 10 parts by weight of ethyl acrylate, 5 parts by weight of 2-ethylhexyl acrylate, 3 parts by weight of acrylic acid, 0.2 parts by weight of 2-hydroxyethyl acrylate in a reactor equipped with a thermometer, a stirrer and a cooling tube. , \¥0 2020/175368 18 卩 (: 171? 2020 /007043
及び、 酢酸エチル 8 0重量部を加え、 窒素置換した後、 反応器を加熱して還 流を開始した。 続いて、 上記反応器内に、 重合開始剤としてアゾビスイソブ チロニトリル〇. 1重量部を添加した。 5時間還流させて、 アクリル共重合 体の溶液を得た。 得られたアクリル共重合体について、 上記アクリル粘着剤 (八) の調製と同様にして重量平均分子量を測定したところ、 1 2 0万であ った。 Then, 80 parts by weight of ethyl acetate was added, the atmosphere was replaced with nitrogen, and then the reactor was heated to start reflux. Subsequently, 0.1 part by weight of azobisisobutyronitrile was added as a polymerization initiator into the reactor. The solution was refluxed for 5 hours to obtain a solution of an acrylic copolymer. The weight average molecular weight of the obtained acrylic copolymer was measured in the same manner as in the preparation of the acrylic pressure-sensitive adhesive (8), and it was 120,000.
得られたアクリル共重合体の溶液に含まれるアクリル共重合体の固形分 1 0 0重量部に対して、 重合ロジンエステル系樹脂 1 5重量部、 テルペンフエノ —ル系樹脂 1 〇重量部、 ロジンエステル系樹脂 1 0重量部、 酢酸エチル (不 二化学薬品社製) 1 2 5重量部、 イソシアネート系架橋剤 1 . 8重量部を添 加し、 攪拌して、 アクリル粘着剤 (巳) を得た。 なお、 重合ロジンエステル 系樹脂、 テルペンフエノール系樹脂、 ロジンエステル系樹脂及びイソシアネ —卜系架橋剤については以下のものを用いた。 15 parts by weight of polymerized rosin ester resin, 10 parts by weight of terpene phenol resin, and 10 parts by weight of rosin ester based on 100 parts by weight of the solid content of the acrylic copolymer contained in the obtained acrylic copolymer solution. Resin-based resin (10 parts by weight), ethyl acetate (manufactured by Fuji Chemical Co., Ltd.) 1-25 parts by weight, and isocyanate-based crosslinking agent (1.8 parts by weight) were added and stirred to obtain an acrylic pressure-sensitive adhesive (Mitsumi). .. The following were used as the polymerized rosin ester-based resin, terpene phenol-based resin, rosin ester-based resin, and isocyanate-based cross-linking agent.
重合ロジンエステル系樹脂: 0 - 1 3 5 , 軟化点 1 3 5 °〇、 荒川化学工業社 製 Polymerized rosin ester resin: 0-1 35, softening point 1 35 ° °, manufactured by Arakawa Chemical Industry Co., Ltd.
テルペンフエノール系樹脂: 丁一 1 6 0、 軟化点 1 6 0 °〇、 ヤスハラケミカ ル社製 Terpene phenolic resin: Ding 1600, softening point 1600° 〇, manufactured by Yasuhara Chemical
ロジンエステル系樹脂:
Figure imgf000020_0001
7 5、 軟化点 7 5 °〇、 荒川化学工業社製 イソシアネート系架橋剤: コロネート !_ 4 5、 東ソー社製
Rosin ester resin:
Figure imgf000020_0001
7 5, Softening point 75 ° 〇, Arakawa Chemical Co., Ltd. Isocyanate cross-linking agent: Coronate!_45, Tosoh
[0055] (アクリル粘着剤 (干) の調製) (Preparation of acrylic adhesive (dried))
温度計、 攪拌機、 冷却管を備えた反応器にプチルアクリレート 7 8重量部、 In a reactor equipped with a thermometer, a stirrer, and a cooling pipe, 78 parts by weight of butyl acrylate,
2 -エチルヘキシルアクリレート 1 9重量部、 アクリル酸 3重量部、 2 -ヒ ドロキシエチルアクリレート〇. 2重量部、 及び、 酢酸エチル 8 0重量部を 加え、 窒素置換した後、 反応器を加熱して還流を開始した。 続いて、 上記反 応器内に、 重合開始剤としてアゾビスイソプチロニトリル 0 . 1重量部を添 加した。 5時間還流させて、 アクリル共重合体の溶液を得た。 得られたアク リル共重合体について、 上記アクリル粘着剤 (3) の調製と同様にして重量 平均分子量を測定したところ、 9 1万であった。 \¥02020/175368 19 卩(:171? 2020 /007043 19 parts by weight of 2-ethylhexyl acrylate, 3 parts by weight of acrylic acid, 0.2 parts by weight of 2-hydroxyethyl acrylate, and 80 parts by weight of ethyl acetate were added, and after nitrogen substitution, the reactor was heated. The reflux started. Then, 0.1 part by weight of azobisisoptyronitrile was added as a polymerization initiator into the reactor. The solution was refluxed for 5 hours to obtain a solution of an acrylic copolymer. The weight average molecular weight of the obtained acrylic copolymer was measured in the same manner as in the preparation of the acrylic pressure-sensitive adhesive (3), and it was 910,000. \¥02020/175368 19 卩 (: 171? 2020 /007043
得られたアクリル共重合体の溶液に含まれるアクリル共重合体の固形分 1 0 0重量部に対して、 重合ロジンエステル系樹脂 1 5重量部、 テルペンフエノ —ル系樹脂 1 〇重量部、 ロジンエステル系樹脂 1 0重量部、 酢酸エチル (不 二化学薬品社製) 1 25重量部、 イソシアネート系架橋剤 2. 2重量部を添 加し、 攪拌して、 アクリル粘着剤 ) を得た。 なお、 重合ロジンエステル 系樹脂、 テルペンフエノール系樹脂、 ロジンエステル系樹脂及びイソシアネ —卜系架橋剤については以下のものを用いた。 15 parts by weight of polymerized rosin ester resin, 10 parts by weight of terpene phenol resin, and 10 parts by weight of rosin ester based on 100 parts by weight of the solid content of the acrylic copolymer contained in the obtained acrylic copolymer solution. Resin (10 parts by weight), ethyl acetate (manufactured by Fuji Chemical Co., Ltd.) 125 parts by weight, and isocyanate crosslinking agent 2.2 parts by weight were added and stirred to obtain an acrylic adhesive. The following were used as the polymerized rosin ester-based resin, terpene phenol-based resin, rosin ester-based resin, and isocyanate-based cross-linking agent.
重合ロジンエステル系樹脂: 0- 1 35, 軟化点 1 35°〇、 荒川化学工業社 製 Polymerized rosin ester resin: 0-1 35, softening point 1 35° 〇, manufactured by Arakawa Chemical Industry Co., Ltd.
テルペンフエノール系樹脂: 丁一 1 60、 軟化点 1 60°〇、 ヤスハラケミカ ル社製 Terpene phenolic resin: Ding 1 160, softening point 1 60° 〇, made by Yasuhara Chemical
ロジンエステル系樹脂:
Figure imgf000021_0001
75、 軟化点 75°〇、 荒川化学工業社製 イソシアネート系架橋剤: コロネート !_45、 東ソー社製
Rosin ester resin:
Figure imgf000021_0001
75, Softening point 75 ° 〇, Arakawa Chemical Industry Co., Ltd. Isocyanate cross-linking agent: Coronate !_45, Tosoh Corporation
[0056] (アクリル粘着剤 (9) の調製) (Preparation of acrylic adhesive (9))
プチルアクリレートの添加量を 60重量部に、 2—エチルヘキシルアクリレ —卜の添加量を 37重量部に変更したこと以外はアクリル粘着剤 (チ) の調 製方法と同様にして、 アクリル粘着剤 (9) を得た。 重量平均分子量は 53 万であった。 Acrylic adhesive (h) was prepared in the same manner as for the preparation of acrylic adhesive (h), except that the amount of butyl acrylate was changed to 60 parts by weight and the amount of 2-ethylhexyl acrylate was changed to 37 parts by weight. 9) got The weight average molecular weight was 530,000.
[0057] (アクリル粘着剤 ( ) の調製) (Preparation of acrylic adhesive ())
イソシアネート系架橋剤の添加量を 2. 0重量部とした以外はアクリル粘着 剤 (3) の調製方法と同様にして、 アクリル粘着剤 ) を得た。 An acrylic pressure-sensitive adhesive) was obtained in the same manner as in the preparation of the acrylic pressure-sensitive adhesive (3), except that the amount of the isocyanate crosslinking agent added was 2.0 parts by weight.
[0058] (貯蔵弾性率の測定) (Measurement of storage elastic modulus)
得られたアクリル粘着剤について、 粘弾性スペクトロメーター (アイティー 計測制御社製、 0 八一200) を用い、 定速昇温引張モードの 1 〇 /分 、 1 01~1 åの条件で一 40°〇~ 1 40°〇の動的粘弾性スぺクトルを測定した 。 得られた動的粘弾性スペクトルから 23°〇における貯蔵弾性率 (〇’ (2The obtained acrylic pressure-sensitive adhesive, viscoelastic spectrometer (Keisoku Seigyo Co., 0 eighty-one 200) using a 1 〇 / min TeihayaNoboru temperature tensile mode, one 40 under the conditions of 1 01 ~ 1 Å The dynamic viscoelastic spectrum from 0° to 1400° was measured. From the obtained dynamic viscoelastic spectrum, the storage elastic modulus at 23° 〇 (〇' (2
3°〇 ) と 1 40°〇における貯蔵弾性率 (〇’ (1 40°〇 ) を決定した。 結果を表 1、 2に示した。 \¥02020/175368 20 卩(:171? 2020 /007043 The storage elastic moduli (○'(1 40°○) at 3°○) and 140°○ were determined. The results are shown in Tables 1 and 2. \¥02020/175368 20 units (: 171? 2020 /007043
[0059] (ゲル分率の測定) (Measurement of gel fraction)
得られたアクリル粘着剤を 0. 1 9こそぎ取って酢酸エチル 5
Figure imgf000022_0001
丨 中に浸 潰し、 振とう機で温度 23度、 1 20 「 の条件で 24時間振とうした。 振とう後、 金属メッシュ (目開き# 200メッシュ) を用いて、 酢酸エチル と酢酸エチルを吸収し膨潤したアクリル粘着剤を分離した。 分離後の粘着剤 組成物を 1 1 〇°〇の条件下で 1時間乾燥させた。 乾燥後の金属メッシュを含 むアクリル粘着剤の重量を測定し、 下記式を用いてアクリル粘着剤のゲル分 率を算出した。
The acrylic adhesive obtained was scraped off with 0.19 and washed with ethyl acetate.
Figure imgf000022_0001
It was soaked in a bowl and shaken with a shaker for 24 hours at a temperature of 23°C and 120 ". After shaking, absorb ethyl acetate and ethyl acetate using a metal mesh (opening #200 mesh). The swollen acrylic adhesive was separated, and the separated adhesive composition was dried for 1 hour under the condition of 110 ° 〇 The weight of the dried acrylic adhesive including the metal mesh was measured, The gel fraction of the acrylic adhesive was calculated using the following formula.
ゲル分率 (重量%) = 1 00 X
Figure imgf000022_0002
/ 〇
Gel fraction (% by weight) = 100 X
Figure imgf000022_0002
/ 〇
( 〇 :初期アクリル粘着剤重量、
Figure imgf000022_0003
:乾燥後の金属メッシュを含むアクリ ル粘着剤重量、 2 :金属メッシュの初期重量)
(○: initial acrylic adhesive weight,
Figure imgf000022_0003
: Weight of acrylic adhesive including metal mesh after drying, 2 : Initial weight of metal mesh)
[0060] (実施例 1) (Example 1)
厚み 1 5〇 の離型紙を用意し、 この離型紙の離型処理面にアクリル粘着 剤 (八) を塗布し、 1 00°〇で 5分間乾燥させることにより、 厚み 50 のアクリル粘着剤層を形成した。 このアクリル粘着剤層を、 発泡体基材 (八 ) (ポリエチレン樹脂、 気泡の平均長径、 短径をそれぞれを 1 32 、 9 〇 〇1、 発泡倍率を 3〇〇13/9、 厚み 1 〇〇 に調整したもの) の表面と 貼り合わせた。 次いで、 同様の要領で、 発泡体基材 ( ) の反対の表面にも 上記と同じアクリル粘着剤層を貼り合わせた。 これにより、 厚み 1 50^ ^ の離型紙で覆われた表 1 に示すテープ厚の両面粘着テープを得た。 Prepare a release paper with a thickness of 150, apply acrylic adhesive (8) on the release treated surface of this release paper, and dry it at 100 ° 〇 for 5 minutes to form a 50-layer acrylic adhesive layer. Formed. This acrylic pressure-sensitive adhesive layer is used as a foam base material (8) (polyethylene resin, average major axis and minor axis of cells are 1 32, 9 0 0 1, foaming ratio is 3 0 0 1 3/9, thickness 1 0, respectively). It was attached to the surface of the one that was adjusted to ◯). Then, in the same manner, the same acrylic pressure-sensitive adhesive layer as the above was attached to the opposite surface of the foam substrate (). As a result, a double-sided adhesive tape having a tape thickness shown in Table 1 covered with a release paper having a thickness of 150^^ was obtained.
[0061] (実施例 2〜 1 2、 比較例 1〜 7) (Examples 2 to 12, Comparative Examples 1 to 7)
発泡体基材及びアクリル粘着剤を表 1、 2に示したものに代えた以外は実施 例 1 と同様にして両面粘着テープを得た。 A double-sided pressure-sensitive adhesive tape was obtained in the same manner as in Example 1 except that the foam substrate and the acrylic pressure-sensitive adhesive were changed to those shown in Tables 1 and 2.
[0062] (25 %圧縮強度の測定) [0062] (25% compression strength measurement)
得られた両面粘着テープについて」
Figure imgf000022_0004
About the obtained double-sided adhesive tape"
Figure imgf000022_0004
強度を算出した。 結果を表 1、 2に示した。 The intensity was calculated. The results are shown in Tables 1 and 2.
[0063] (凝集力試験によるずれ量) (Amount of deviation due to cohesive strength test)
図 1 に示すように、 2001111X40111111にカッ トした両面粘着テープ 1 を幅 \¥0 2020/175368 21 卩(:171? 2020 /007043 Double-sided double-sided adhesive tape 1 cut on 2001111X40111111 as shown in Figure 1. \¥0 2020/175368 21 卩 (: 171? 2020 /007043
Figure imgf000023_0001
Figure imgf000023_0001
せた。 次いで、 一方のステンレス板 2 1の一端を固定し、 巳丁フイルム 2 2の一端を 2 0 0 9の重り 2 3により水平方向に温度 2 3 °〇の条件で、 3分 間引っ張った。 その後、 両面粘着テープ 1が引っ張り方向にずれた変位量を 測定した。 結果を表 1、 2に示した。 Let Next, one end of one of the stainless steel plates 21 was fixed, and one end of the Mitsume film 22 was pulled horizontally by a weight 23 of 209 at a temperature of 23° for 3 minutes. Then, the displacement amount of the double-sided pressure-sensitive adhesive tape 1 displaced in the pulling direction was measured. The results are shown in Tables 1 and 2.
[0064] <評価> [0064] <Evaluation>
実施例、 比較例で得られた両面粘着テープについて以下の評価を行った。 結 果を表 1及び表 2に示した。 The double-sided pressure-sensitive adhesive tapes obtained in Examples and Comparative Examples were evaluated as follows. The results are shown in Tables 1 and 2.
[0065] ( 1 )
Figure imgf000023_0002
力の評価
[0065] (1)
Figure imgf000023_0002
Evaluation of power
得られた両面粘着テープについて下記方法により II 3 1~1粘着力を測定した 。 II 3 1~1粘着力とは粘着面に対して垂直な方向に力をかけた際の粘着力で ある。 II 3 1~1粘着力は同じ両面テープでも圧着する圧力により変化する。 なぜならば、 圧力によってテープの粘着面と被着体界面の密着度合いが変化 するからである。 そのため、 高い圧力を加えた方が密着度合いは高くなり、 11 3 1~1粘着力も高くなる。 言い換えると、 両面テープが柔軟なほど低い圧 力を加えた場合でも粘着面と被着体界面の密着度合いが損なわれず、 高い圧 力を加えた場合の粘着力との差が小さくなる。 よって、 P U S H粘着力を測 定することで、 両面粘着テープの柔軟性を測る指標とすることができる。 図 2に、 両面粘着テープの 11 3 1~1粘着力試験の模式図を示す。 得られた両 面粘着テープ 1 を外径が
Figure imgf000023_0003
内径が 4 4〇1〇1 5 9〇1〇1の 口の字に打ち抜き、
Figure imgf000023_0004
した。 次いで、 図 2 ( 3 ) に示すように、 中央部分に 3 8
Figure imgf000023_0005
の四角い穴のあいた厚さ 2 のステンレス板 4に対して離型紙を剥がした試験片を四角い穴がほぼ中 央に位置するように貼り付けた。 そして、 試験片の上面から 5 0〇1〇1 7 0 01 01、 厚さ 4 01 01のガラス板 3を試験片がほぼ中央に位置するように貼り付 け、 試験装置を組み立てた。
II 3 1 to 1 adhesive strength of the obtained double-sided pressure-sensitive adhesive tape was measured by the following method. II 3 1 to 1 Adhesive force is the adhesive force when a force is applied in a direction perpendicular to the adhesive surface. II 3 1 ~ 1 Adhesive strength changes with pressure even with the same double-sided tape. This is because the pressure changes the degree of adhesion between the adhesive surface of the tape and the interface of the adherend. Therefore, the higher the pressure, the higher the degree of adhesion and the higher the 11 3 1 to 1 adhesive force. In other words, the softer the double-sided tape is, the lower the adhesive force between the adhesive surface and the adherend interface is not lost even when a low pressure is applied, and the difference between the adhesive force when a high pressure is applied is reduced. Therefore, by measuring the PUSH adhesive strength, it can be used as an index to measure the flexibility of the double-sided adhesive tape. Fig. 2 shows a schematic diagram of the 11 3 1 to 1 adhesion test of the double-sided adhesive tape. The outer diameter of the obtained double-sided adhesive tape 1
Figure imgf000023_0003
Punched into a square shape with an inner diameter of 4 4 0 1 1 5 9 0 1 0 1
Figure imgf000023_0004
did. Then, as shown in Fig. 2 (3), 3 8
Figure imgf000023_0005
The test piece from which the release paper had been peeled off was attached to a stainless steel plate 4 having a square hole and a thickness of 2 so that the square hole was located approximately in the center. Then, a glass plate 3 having a thickness of 500 1 01 700 1 01 01 and a thickness of 4 01 01 was attached from the upper surface of the test piece so that the test piece was located at the substantially center, and the test apparatus was assembled.
その後、 試験装置の上面に位置するステンレス板側から〇. 1 1\/1 3の圧力 \¥02020/175368 22 卩(:171? 2020 /007043 Then, from the stainless plate side located on the upper surface of the test equipment, pressure of 0. 1 1\/1 3 \¥02020/175368 22 卩 (: 171? 2020 /007043
を 1 〇秒間加えて上下に位置するステンレス板と試験片とを圧着し、 常温で 24時間放置した。 Was applied for 10 seconds, the upper and lower stainless steel plates and the test piece were pressure-bonded, and left at room temperature for 24 hours.
放置後、 図 2 (匕) に示すように、 作製した試験装置を裏返して支持台に固 定し、 四角い穴を通して試験片の四角い穴のほぼ中央部分を 1 00101X 1 0 0101四方のステンレス棒を用いて 1 001111/111 丨 の速度でゆっくりと荷重 5をかけていき、 荷重により試験片とガラス板が剥がれた時の荷重の値を計 測した。 これを
Figure imgf000024_0001
粘着力 (低圧着) とした。
After leaving it for a while, as shown in Fig. 2 (Slung), turn over the test device that was made, fix it on the support, and insert a square stainless steel rod into the square hole of the test piece through the square hole. A load of 5 was slowly applied at a speed of 1 001111/111, and the value of the load when the test piece and the glass plate were peeled off by the load was measured. this
Figure imgf000024_0001
Adhesive strength (low pressure bonding).
次いで、 圧着の条件を〇.
Figure imgf000024_0002
1 0秒間とした以外は II 31~1粘着力
Then, set the crimping conditions to 〇.
Figure imgf000024_0002
II 31 ~ 1 Adhesiveness except for 10 seconds
(低圧着) と同様の操作で測定を行い、 P US H粘着力 (通常) を得た。 得られた結果から、 (1 00 X II 31~1粘着力 (低圧着) / II 31~1粘着力 (通常) ) を算出し、 下記基準で評価した。 The measurement was performed in the same manner as (low pressure bonding) to obtain P US H adhesive strength (normal). From the obtained results, (100 X II 31 to 1 adhesive strength (low pressure bonding)/II 31 to 1 adhesive strength (normal)) was calculated and evaluated according to the following criteria.
◎ : 95 %以上 ◎: 95% or more
0 : 92 %以上 95 %未満 0: 92% or more and less than 95%
△ = 73 %以上 92 %未満 △ = 73% or more and less than 92%
X : 73 %未満 X: less than 73%
[0066] (2) 耐衝撃性 (落下衝撃試験) の評価 [0066] (2) Evaluation of impact resistance (drop impact test)
図 3に、 両面粘着テープの落下衝撃試験の模式図を示す。 得られた両面粘着 テープ 1 を外径が 4601111X6 1 01111、 内径が 4401111X59111111の口の字 に打ち抜き、
Figure imgf000024_0003
した。 次いで、 図 3 (3) に示 すように、 中央部分に
Figure imgf000024_0004
Figure 3 shows a schematic diagram of the drop impact test for double-sided adhesive tape. Punching the obtained double-sided adhesive tape 1 into a square shape with an outer diameter of 4601111X6 101111 and an inner diameter of 4401111X59111111,
Figure imgf000024_0003
did. Then, as shown in Fig. 3 (3),
Figure imgf000024_0004
ステンレス板 4に対して離型紙を剥がした試験片を四角い穴がほぼ中央に位 置するように貼り付けた。 そして、 試験片の上面から 500101 X 700101、
Figure imgf000024_0005
のガラス板 3を試験片がほぼ中央に位置するように貼り付け、 試 験装置を組み立てた。
The test piece from which the release paper had been peeled off was attached to the stainless steel plate 4 so that the square hole was located approximately in the center. Then, from the top surface of the test piece, 500101 x 700101,
Figure imgf000024_0005
The glass plate 3 was attached to the test piece so that the test piece was located almost in the center, and the test device was assembled.
その後、 試験装置の上面に位置するステンレス板側から〇.
Figure imgf000024_0006
の圧力 を 1 〇秒間加えて上下に位置するステンレス板と試験片とを圧着し、 常温で 24時間放置した。
After that, from the side of the stainless steel plate located on the upper surface of the test equipment,
Figure imgf000024_0006
Was applied for 10 seconds to crimp the upper and lower stainless steel plates to the test piece, and left at room temperature for 24 hours.
放置後、 図 3 (匕) に示すように、 作製した試験装置を裏返して支持台に固 \¥02020/175368 23 卩(:171? 2020 /007043 After leaving it for a while, as shown in Fig. 3 (slung), turn over the test device that was made and fix it on the support base. \¥02020/175368 23 卩 (: 171? 2020 /007043
定し、 四角い穴を通過する大きさの 1 509の重さの鉄球 6を四角い穴のほ ぼ中央を通過するように落とした。 鉄球を落とす高さを徐々に高く していき 、 鉄球の落下により加わった衝撃により試験片とガラス板が剥がれた時の鉄 球を落した高さ
Figure imgf000025_0001
を計測した。
Then, an iron ball 6 weighing 1 509, which is large enough to pass through the square hole, was dropped so as to pass through the approximate center of the square hole. The height at which the iron ball is dropped is gradually increased, and the height at which the iron ball is dropped when the test piece and the glass plate are peeled off by the impact applied by the drop of the iron ball
Figure imgf000025_0001
Was measured.
得られた計測値を両面粘着テープの厚み ( ) で割った値を算出し、 下記 基準で耐衝撃性を評価した。 The obtained measured value was divided by the thickness () of the double-sided adhesive tape to calculate a value, and the impact resistance was evaluated according to the following criteria.
© : 〇. 2以上 ©: ○ 0.2 or more
〇 : 〇. 1 6以上〇. 2未満 ○: ○ 0.16 or more and less than 0.2
△ : 〇. 1以上〇. 1 6未満 △: ○ or more and less than ○.16
X : 〇. 1未満 X: less than 0.1
[0067] (3) ギャップ追従性の評価 [0067] (3) Evaluation of gap followability
得られた両面粘着テープについて下記方法によりギャップ追従性を評価した 。 ギャップ追従性の評価では、 貼り合わせた被着体間に意図的にスぺーサー を揷入し、 両面テープの厚み方向に引張力を加える。 この時、 テープには元 の形状に戻ろうとする応力がかかるため、 この状態で両面粘着テープの剥が れの有無や発泡体基材及び粘着剤の伸びを測定することで耐反発性を評価す ることができる。 即ち、 テープの剥がれがないほど耐反発性に優れており、 粘着剤ではなく発泡体基材が伸びるほど、 粘着剤と被着体界面にかかる応力 が小さくなるため剥がれにくく、 耐反発性に優れていることになる。 The gap followability of the obtained double-sided pressure-sensitive adhesive tape was evaluated by the following method. In the evaluation of gap followability, a spacer is intentionally squeezed between the adherends that have been bonded together, and tensile force is applied in the thickness direction of the double-sided tape. At this time, the tape is subjected to a stress to return to its original shape.In this state, the rebound resistance is evaluated by measuring the presence or absence of peeling of the double-sided adhesive tape and measuring the elongation of the foam base material and adhesive. You can In other words, the tape is more resistant to peeling when it is not peeled off, and the more the foam base material is stretched rather than the pressure-sensitive adhesive, the less stress is applied to the interface between the pressure-sensitive adhesive and the adherend. It will be.
得られた粘着テープを 1 0111X 1
Figure imgf000025_0002
にカッ トし、 1 2501111X50111111、 厚さ 1 0〇! の 2枚のポリカーボネート板で挟み込んで積層体を得た。 得ら えた積層体の上面から〇.
Figure imgf000025_0003
の圧力を 1 0秒間加えて両面粘着テープ とポリカーボネート板を圧着した。 圧着した直後、 積層体のポリカーボネー 卜板の間に両面粘着テープの厚みの 1. 5倍の厚みを有するアルミ板を揷入 し、 粘着テープの発泡体基材及びアクリル粘着剤層の伸びを測定した。 下記 基準でギャップ追従性を評価した。
The obtained adhesive tape is 1 0111X 1
Figure imgf000025_0002
Then, it was sandwiched between two polycarbonate plates having a thickness of 1 2501111X50111111 and a thickness of 100! to obtain a laminate. From the top surface of the obtained laminate 〇.
Figure imgf000025_0003
Was applied for 10 seconds to bond the double-sided adhesive tape and the polycarbonate plate. Immediately after pressure bonding, an aluminum plate having a thickness of 1.5 times the thickness of the double-sided adhesive tape was kneaded between the laminated polycarbonate plates and the elongation of the foam base material and the acrylic adhesive layer of the adhesive tape was measured. .. The gap followability was evaluated according to the following criteria.
◎ :発泡体基材の伸びが 50%以上 ◎: Expansion of the foam substrate is 50% or more
〇:発泡体基材が伸びており、 伸びが 50%未満 \¥0 2020/175368 24 卩(:17 2020 /007043 ◯: The foam base material is stretched, and the stretch is less than 50% \¥0 2020/175 368 24 卩 (: 17 2020 /007043
△ :発泡体基材が伸びていない △: Foam base material is not stretched
X :界面で剥離している部分がある X: There is a part that is peeled off at the interface
[0068] [0068]
〔¾二 [¾ji
Figure imgf000027_0001
Figure imgf000027_0001
\¥0 2020/175368 26 卩(:171? 2020 /007043 \¥0 2020/175368 26 卩 (: 171? 2020 /007043
[0069] [表 2] [0069] [Table 2]
Figure imgf000028_0001
Figure imgf000028_0001
産業上の利用可能性 Industrial availability
[0070] 本発明によれば、 電子機器部品固定用途や車輛部品固定用途に好適に用いる ことができる、 高い柔軟性、 耐衝撃性及び耐反発性を兼ね備えた両面粘着テ —プ及び該両面粘着テープを用いた電子機器部品、 電子機器を提供すること \¥0 2020/175368 27 卩(:171? 2020 /007043 [0070] According to the present invention, a double-sided adhesive tape having high flexibility, impact resistance, and repulsion resistance, which can be suitably used for fixing electronic device parts and vehicle parts, and the double-sided adhesive tape To provide electronic equipment parts and electronic equipment using tape \\0 2020/175 368 27 卩 (: 171? 2020 /007043
ができる。 You can
符号の説明 Explanation of symbols
[0071 ] 1 両面粘着テープ [0071] 1 Double-sided adhesive tape
2 1 ステンレス板 2 1 Stainless steel plate
2 2 巳丁フイルム 2 2 Ming Film
2 3 重り 2 3 weight
3 ガラス板 3 glass plate
4 ステンレス板 4 stainless steel plate
5 荷重 5 load
6 鉄球 6 iron ball

Claims

\¥0 2020/175368 28 卩(:17 2020 /007043 請求の範囲 \¥0 2020/175 368 28 卩 (: 17 2020 /007043 Claims
[請求項 1 ] 発泡体基材の両面にアクリル粘着剤層を有する両面粘着テープであっ て、 [Claim 1] A double-sided adhesive tape having an acrylic adhesive layer on both sides of a foam substrate,
前記発泡体基材の気泡の平均長径が 1 5 0 以下であり、 前記両面粘着テープの 2 5 %圧縮強度が 5 O O k P 3以下であり、 前記両面粘着テープは、 発泡体基材厚み/両面粘着テープ厚みが〇.The average major axis of the bubbles of the foam substrate is 1 5 0 or less, the 25% compressive strength of the double-sided adhesive tape is at 5 OO k P 3 below, the double-sided adhesive tape, foam substrate thickness / Double-sided adhesive tape thickness is 〇.
5以上であり、 5 or more,
前記両面粘着テープは、 凝集力試験によるずれ量が 3 5 以上 1 1 0 以下である、 両面粘着テープ。 The double-sided pressure-sensitive adhesive tape is a double-sided pressure-sensitive adhesive tape in which the amount of deviation in the cohesive strength test is 35 or more and 110 or less.
[請求項 2] 前記発泡体基材の発泡倍率が 2〇
Figure imgf000030_0001
3 / 9以上 5〇〇! 3 / 9以下であ る、 請求項 1記載の両面粘着テープ。
[Claim 2] The expansion ratio of the foam substrate is 20
Figure imgf000030_0001
3/9 or more 5_Rei_rei! 3/9 Ru der less double-sided pressure-sensitive adhesive tape of claim 1, wherein.
[請求項 3] 前記アクリル粘着剤層を構成するアクリル粘着剤は、 2 3 °〇における 貯蔵弾性率が 4 X 1 0 5 3以下であり、 かつ、 1 4 0 °〇における貯 蔵弾性率が 3 X 1 〇4 3以上である、 請求項 1又は 2記載の両面粘 着テープ。 [Claim 3] Acrylic pressure-sensitive adhesive constituting the acrylic adhesive layer is storage modulus at 2 3 ° 〇 is 4 X 1 0 5 3 or less, 1 4 savings built modulus at 0 ° 〇 is 3 X 1 〇 4 is 3 or more, according to claim 1 or 2 sided pressure-sensitive adhesive tape according.
[請求項 4] 電子機器部品の固定に用いられる、 請求項 1、 2又は 3記載の両面粘 着テープ。 [Claim 4] The double-sided adhesive tape according to claim 1, which is used for fixing electronic device parts.
[請求項 5] 両面粘着テープ貼付部分の曲率半径が 5 〇!以上 1 0 0 0 〇!以下で ある、 電子機器部品の固定に用いられる、 請求項 1、 2又は 3記載の 両面粘着テープ。 [Claim 5] The double-sided pressure-sensitive adhesive tape according to claim 1, 2 or 3, which has a radius of curvature of not less than 50! and not more than 100!
[請求項 6] 曲面部に請求項 1、 2又は 3記載の両面粘着テープが貼り付けられて いる、 電子機器部品。 [Claim 6] An electronic device component, wherein the double-sided adhesive tape according to Claim 1, 2 or 3 is attached to a curved surface portion.
[請求項 7] 曲率半径が
Figure imgf000030_0002
下である部分に請求項 1、 2又 は 3記載の両面粘着テープが貼り付けられている、 電子機器部品。
[Claim 7] The radius of curvature is
Figure imgf000030_0002
An electronic device component having the double-sided adhesive tape according to claim 1, 2 or 3 attached to the lower part.
[請求項 8] 請求項 6又は 7記載の電子機器部品を有する電子機器。 [Claim 8] An electronic device comprising the electronic device component according to claim 6 or 7.
PCT/JP2020/007043 2019-02-25 2020-02-21 Dual-sided pressure-sensitive adhesive tape, electronic apparatus component, and electronic apparatus WO2020175368A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217025175A KR20210129046A (en) 2019-02-25 2020-02-21 Double-sided adhesive tape, electronic device components and electronic devices
CN202080016737.6A CN113490728B (en) 2019-02-25 2020-02-21 Double-sided adhesive tape, electronic device component, and electronic device
JP2020529391A JP7044878B2 (en) 2019-02-25 2020-02-21 Double-sided adhesive tape, electronic device parts and electronic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-031869 2019-02-25
JP2019031869 2019-02-25

Publications (1)

Publication Number Publication Date
WO2020175368A1 true WO2020175368A1 (en) 2020-09-03

Family

ID=72238491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007043 WO2020175368A1 (en) 2019-02-25 2020-02-21 Dual-sided pressure-sensitive adhesive tape, electronic apparatus component, and electronic apparatus

Country Status (4)

Country Link
JP (1) JP7044878B2 (en)
KR (1) KR20210129046A (en)
CN (1) CN113490728B (en)
WO (1) WO2020175368A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156816A1 (en) * 2013-03-29 2014-10-02 Dic株式会社 Double-sided adhesive tape
JP2017133002A (en) * 2016-01-29 2017-08-03 日東電工株式会社 Double-sided adhesive sheet and utilization thereof
WO2017131082A1 (en) * 2016-01-26 2017-08-03 積水化学工業株式会社 Double-sided adhesive tape
WO2018181486A1 (en) * 2017-03-30 2018-10-04 積水化学工業株式会社 Resin foam sheet, method for producing resin foam sheet, and adhesive tape

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242541A (en) 2008-03-31 2009-10-22 Sekisui Chem Co Ltd Impact-absorbing tape
JP5249625B2 (en) 2008-04-15 2013-07-31 積水化学工業株式会社 Adhesive sheet for display device front plate
JP5836463B1 (en) * 2014-09-29 2015-12-24 積水化学工業株式会社 Double-sided adhesive tape
JPWO2016052399A1 (en) * 2014-09-29 2017-07-06 積水化学工業株式会社 Double-sided adhesive tape
KR102642645B1 (en) * 2016-02-22 2024-02-29 세키스이가가쿠 고교가부시키가이샤 Two-sided adhesive tape, two-sided adhesive tape for vehicle-mounted component fixation, and two-sided adhesive tape for vehicle-mounted head-up display cover

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156816A1 (en) * 2013-03-29 2014-10-02 Dic株式会社 Double-sided adhesive tape
WO2017131082A1 (en) * 2016-01-26 2017-08-03 積水化学工業株式会社 Double-sided adhesive tape
JP2017133002A (en) * 2016-01-29 2017-08-03 日東電工株式会社 Double-sided adhesive sheet and utilization thereof
WO2018181486A1 (en) * 2017-03-30 2018-10-04 積水化学工業株式会社 Resin foam sheet, method for producing resin foam sheet, and adhesive tape

Also Published As

Publication number Publication date
KR20210129046A (en) 2021-10-27
CN113490728A (en) 2021-10-08
JPWO2020175368A1 (en) 2021-09-27
JP7044878B2 (en) 2022-03-30
CN113490728B (en) 2022-06-24

Similar Documents

Publication Publication Date Title
JP6557470B2 (en) Double-sided adhesive tape for portable electronic devices
JP6426887B2 (en) Acrylic adhesive for portable electronic devices and double-sided adhesive tape for portable electronic devices
JP6523725B2 (en) Double-sided adhesive tape
JP6499586B2 (en) Double-sided adhesive tape for portable electronic devices
KR20180101167A (en) Double-sided adhesive tape
JP2016183274A (en) Double-sided adhesive tape for shock resistance
CN106232757B (en) Double-sided adhesive tape
JP6505518B2 (en) Double-sided adhesive tape
JP6470684B2 (en) Double-sided adhesive tape
JP6411127B2 (en) Acrylic adhesive and adhesive sheet for electronic devices
JP6557501B2 (en) Adhesive tape
WO2016052399A1 (en) Double-sided adhesive tape
JP6511314B2 (en) Adhesive tape
WO2020175368A1 (en) Dual-sided pressure-sensitive adhesive tape, electronic apparatus component, and electronic apparatus
JP2016069611A (en) Double-sided adhesive tape
JP6523125B2 (en) Double-sided adhesive tape, double-sided adhesive tape for fixing electronic device parts and double-sided adhesive tape for fixing automotive parts
CN115427527A (en) Double-sided adhesive tape
JP2019094512A (en) Double-sided adhesive tape
JP6460788B2 (en) Adhesive sheet
JP2016125044A (en) Double-sided adhesive tape
JP2018199827A (en) Acryl adhesive and adhesive sheet for electronic apparatus
JP2019065301A (en) Adhesive sheet
JP2023088827A (en) Adhesive tape, and method for disassembling structure
JP2016098259A (en) Double sided adhesive tape

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020529391

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762443

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762443

Country of ref document: EP

Kind code of ref document: A1