WO2020175196A1 - Electronic substrate and photocurable composition - Google Patents

Electronic substrate and photocurable composition Download PDF

Info

Publication number
WO2020175196A1
WO2020175196A1 PCT/JP2020/005876 JP2020005876W WO2020175196A1 WO 2020175196 A1 WO2020175196 A1 WO 2020175196A1 JP 2020005876 W JP2020005876 W JP 2020005876W WO 2020175196 A1 WO2020175196 A1 WO 2020175196A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
photocurable composition
flexible substrate
board
flexible
Prior art date
Application number
PCT/JP2020/005876
Other languages
French (fr)
Japanese (ja)
Inventor
眸 愛澤
Original Assignee
積水ポリマテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水ポリマテック株式会社 filed Critical 積水ポリマテック株式会社
Priority to JP2020524247A priority Critical patent/JP6762600B1/en
Publication of WO2020175196A1 publication Critical patent/WO2020175196A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits

Definitions

  • the present invention relates to an electronic substrate having a flexible portion having excellent flexibility, and a photocurable composition excellent in flexibility and adhesiveness.
  • An electronic substrate having a flexible portion having flexibility is generally referred to as a flexible substrate (flexible wiring substrate (F Lex ib Le Pr nted C i rcu i ts, hereinafter referred to as "flexible substrate”) as the flexible portion. )
  • Flexible substrates are usually bendable with a copper foil or other metal conductor circuit formed on a film of polyimide resin or polyester resin, and a cover film of polyimide resin or polyester resin provided as a protective layer.
  • Patent Document 1 a resin composition is used as a protective member for a connecting portion between a rigid portion and a flexible portion in a substrate having a rigid portion and a flexible portion. ing.
  • an electronic substrate having a rigid substrate and a flexible substrate provided at an end of the rigid substrate is, for example, a liquid crystal display device, a plasma display device, an organic EL display device, or an RGB inorganic LED mounting type. It is also used in image display devices such as display devices.
  • a panel which is an image display portion, is used as a rigid substrate, and a flexible substrate electrically connected to an end portion of the panel is provided in order to apply a voltage or a signal to the panel.
  • an anisotropic conductive film is generally used for the connection between the panel and the flexible substrate, and a protective member for insulating protection and adhesive reinforcement of this connection portion is applied.
  • the other end of the flexible board is electrically connected to an electronic circuit board (motherboard or the like).
  • the electronic circuit board is arranged on the back surface of the panel, and therefore, the flexible substrate extending from the panel is used. ⁇ 0 2020/175 196 2 ⁇ (: 171? 2020 /005876
  • the board is bent and connected to the electronic circuit board.
  • the chip-on mounting the driver on the flexible substrate instead of on the conventional panel A film structure is also used.
  • Patent Document 2 discloses a panel having an electrode lead-out portion and the electrode.
  • An image display device having a flexible substrate connected to a lead portion and a protective layer covering a connecting portion between the flexible substrate and the electrode lead portion, the wettability of the flexible substrate to a resin material is disclosed. Has been done. With the above structure, when the resin material is applied to the flexible substrate, a region where the resin material stably forms the protective layer and a region where the resin material is repelled and the protective layer is not stably formed.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-106072
  • Patent Document 2 Japanese Patent Laid-Open No. 20 08 _ 2 6 5 2 8 Summary of Invention
  • the layers themselves were an obstacle. Further, if the bending radius is forcibly reduced, the protective layer may be damaged or peeled off, and it is difficult to reduce the protruding width of the bent portion.
  • the present invention has been made to solve the above problems. That is, it is an object of the present invention to provide an electronic substrate having a flexible portion excellent in flexibility and durability, and a photocurable composition excellent in flexibility and adhesion used in a flexible portion.
  • An electronic board is an electronic board that includes a rigid board and a flexible board that extends from an end of the rigid board and is electrically connected to the rigid board.
  • An elastic protection member is provided on at least one surface of the bent portion of the flexible substrate, and the flexible substrate is projected from an end of the rigid substrate and bent toward one surface side of the rigid substrate.
  • the bending width of the bent portion of the flexible substrate protruding from the end portion of the rigid substrate is 100 to 400.
  • a smaller bend from the end of the rigid substrate is used.
  • the flexible substrate is bent at a radius, since the predetermined elastic protection member is provided, it is possible to make it difficult for the bent portion to have a problem. As a result, the protrusion amount of the bent portion of the flexible substrate from the end portion of the rigid substrate can be made smaller and superior in durability as compared with the conventional one.
  • the elastic protection member has a Martens hardness measured by a nanoindentation test of from 0.01 to 0.5. Is. By setting the Martens hardness of the elastic protective member in the range of 0.1 to 0.5, the elastic protective member has excellent flexibility from the end of the rigid substrate to the flexible substrate. ⁇ 0 2020/175 196 4 (:171? 2020 /005876
  • the bending radius when the flexible substrate is bent can be made smaller than before.
  • the protruding width of the bent portion of the flexible board that protrudes outward from the end of the rigid board (that is, the amount of protrusion of the flexible board from the end of the rigid board) is made smaller than in the past.
  • it can be made highly durable.
  • the Young's modulus of the elastic protection member is preferably from 0.1 to 3.0 IV! 3.
  • the elastic protection member has an appropriate hardness, which makes it possible to reduce the bending radius of the flexible substrate as compared with the conventional one.
  • the protrusion width of the bent portion of the flexible substrate that protrudes outward from the end of the rigid substrate can be made smaller and superior in durability as compared with the conventional one.
  • the peeling force of the elastic protection member shows the relationship of the following expression (1).
  • the protection member has a rigid substrate and a flexible substrate more than the conventional one. It is possible to reduce the bending radius of the flexible substrate without peeling off from the flexible substrate. As a result, the protrusion width of the bent portion of the flexible substrate protruding outward from the end portion of the rigid substrate can be made smaller than that of the conventional one, and excellent in durability.
  • the flexible substrate is a resin film having a thickness of 15 to 200, and when the flexible substrate is bent, a wiring body is provided on at least one of the folded inner surface and the outer surface of the flexible substrate. It is provided.
  • the moonlight film include a polyimide film and a polyester film. Even when the flexible substrate is a resin film having the above thickness, the protrusion width of the flexible substrate bent portion can be made smaller than in the conventional case.
  • an elastic protection member on the inner surface of the flexible printed circuit board, damage to the wiring body is suppressed when it is bent to reduce the bending radius. ⁇ 0 2020/175 196 5 ⁇ (: 171? 2020 /005876
  • a photocurable composition according to one embodiment of the present invention is a photocurable composition that forms an elastic protective layer by being applied to an electronic substrate and then cured by being irradiated with light.
  • Cyclic (meth)acrylic acid ester monomer, monofunctional aliphatic (meth)acrylic acid ester monomer, monofunctional high polar monomer, thermoplastic elastomer, and radical polymerization initiator However, the Martens hardness measured by the nano-indentation test of the cured product after curing is in the range of 0.1 to 0. and said that it is a range of 1_Rei_1 2.
  • the photocurable composition according to one aspect of the present invention contains the above-mentioned components and has an uncured viscosity within the above range, so that the amount applied to an electronic substrate can be easily controlled precisely, and Excellent in performance.
  • the cured product has a Martens hardness within the above range, so that the cured product does not hinder bending.
  • the flexible substrate can be bent with a smaller bending radius.
  • the peeling force of the cured product after curing the photocurable composition shows the relationship of the following formula (1).
  • the cured product obtained by curing the photocurable composition is a rigid substrate and a flexible substrate because the peeling force of the cured product of the photocurable composition has the relationship of the above formula (1). It has excellent adhesion to and flexibility, and is difficult to peel off even if the flexible substrate is bent to a small bending radius, and the durability of the electronic substrate can be improved.
  • the cured product obtained by curing the photocurable composition is a rigid substrate and a flexible substrate because the peeling force of the cured product of the photocurable composition has the relationship of the above formula (2).
  • An electronic substrate according to an aspect of the present invention is formed by applying the photocurable composition according to any one of the above to a boundary region between the rigid substrate and the flexible substrate.
  • a photocurable composition that exhibits appropriate flexibility when cured to the boundary area, the amount of protrusion of the bent portion of the flexible substrate from the edge of the rigid substrate In comparison, even if it is made smaller, the protective member does not easily come off the rigid board and flexible board.
  • the protrusion width of the bent portion of the flexible substrate that protrudes outward from the end portion of the rigid substrate can be made smaller and superior in durability as compared with the conventional one.
  • the photo-curable composition adheres to both the rigid and flexible substrates and is cured, preventing the rigid and flexible substrates from peeling off and damp from the boundary between the rigid and flexible substrates. And foreign matter can be prevented from entering.
  • the protective member may be damaged or peeled off. Absent.
  • the photocurable composition of one embodiment of the present invention has a low viscosity when uncured, so that it is easy to apply and has excellent workability. Further, the cured product after curing has a desired hardness, durability, and appropriate hardness. The flexibility can be expressed. Brief description of the drawings
  • FIG. 1 A perspective view of an electronic substrate according to an embodiment of the present invention.
  • Fig. 2 is a partial enlarged cross-sectional view taken along the line I-I in Fig. 1 for explaining the configuration of the flexible substrate and the cured body.
  • Fig. 3 is a partially enlarged cross-sectional view for explaining a state in which the flexible substrate is bent, which is a cross-section taken along the line I_I in Fig. 1. ⁇ 0 2020/175 196 7 ⁇ (: 171? 2020 /005876
  • FIG. 4 A bending test method, which is one of the evaluation methods in the examples in the present specification, in which a surface on which a cured body functioning as an elastic protection member is formed is bent inward FIG.
  • FIG. 5 One of the evaluation methods in the examples of the present specification, which is a bending test method of bending so that the surface on which a cured body that functions as an elastic protection member is formed is the outside FIG.
  • FIG. 6 is a schematic configuration diagram illustrating the configuration of a test piece to be subjected to a bending resistance test, which is one of the evaluation methods in the examples in the present specification.
  • Fig. 7 is an explanatory view illustrating an outline of a bending resistance test.
  • FIG. 8 is a graph showing the relationship between the Young's modulus of the elastic protection member and the peeling force.
  • FIG. 9 A graph defining the range by classifying the relationship between the Young's modulus of the elastic protection member and the peeling force.
  • an electronic board 10 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3.
  • an electronic board 10 according to an exemplary embodiment of the present invention includes a rigid board 12 and a flexible board 14 extending from an end of the rigid board 12 and connected in a conductive manner. Equipped with.
  • the electronic substrate 10 is provided with an elastic protection member from the end of the flexible substrate 14 to at least one side of the bent portion 16 of the flexible substrate 14. Then, as shown in Fig.
  • the rigid board 12 is The projecting width 40 of the bent portion of the flexible substrate 14 projecting from the end is 100 to 400. From the viewpoint of miniaturization of the device using the electronic board, when the flexible board 14 is projected from the end of the rigid board 12 and bent toward one side of the rigid board 12, the rigid board 1
  • the projecting width of the bent portion of the flexible base plate 14 projecting from the end of 2 is preferably 100 to 350, and ⁇ 0 2020/175 196 8 ⁇ (: 171? 2020 /005876
  • the protrusion width 40 of 6 in the range of 100 to 400, while maintaining durability against deformation of the connection portion of the rigid substrate 12 and the flexible substrate 14 compared to the conventional one, The board space can be saved. Therefore, when the electronic substrate 10 according to the embodiment of the present invention is used in, for example, an image display device, it is possible to reduce the non-display portion of the panel, so that the image display device can be downsized and the frame can be narrowed. It will be possible.
  • the electronic substrate 10 used in the image display device will be described as an example with reference to FIGS. 2 and 3. Therefore, the electronic substrate 10 according to the embodiment of the present invention is not limited to the electronic substrates shown in FIGS. As shown in Fig. 2 and Fig. 3, for example, the flexible substrate 14 is connected to the anisotropic conductive film on the electrodes of the liquid crystal display panel or the rigid substrate 12 which is the Mitsuguchi mounting panel by laminating various functional layers on the glass substrate. 1 5 electrically connected.
  • the flexible substrate 14 is provided at the end of the second glass substrate 12 with a transparent electrode via the anisotropic conductive film 15.
  • the anisotropic conductive film 15 is covered with an elastic protective member.
  • the structure of the electronic substrate 10 is not limited to the structure described above, and any structure may be used as long as the rigid substrate 12 is a harder substrate than the flexible substrate 14. As an example, it may be a glass epoxy resin substrate, a phenol resin substrate, a silicon substrate, a ceramics substrate, or the like. Also, in the case of a LCD monitor, the first transparent electrode is attached. ⁇ 0 2020/175 196 9 ⁇ (: 171? 2020 /005876
  • the glass substrate 12 is the glass substrate with the first transparent electrode and the color filter, and the glass substrate 12 with the second transparent electrode is the glass substrate with the second transparent electrode and the knife.
  • Fig. 2 is a partially enlarged cross-sectional view showing a state before the flexible substrate 14 is bent.
  • the photo-curable composition described below is applied to at least one of the inside and the outside of the bent portion 16 at the connecting portion between the rigid substrate 12 and the flexible substrate 14, and is cured by, for example, ultraviolet rays to give elasticity.
  • Protective member 20 20 pits are formed.
  • the glass substrate with the first transparent electrode 1 2 The boundary side including the tip of the glass substrate with the first transparent electrode 1 2 and the anisotropic conductive film 15 and a part of the flexible substrate 1 2 0 3 so as to cover, it is provided elastic protective member 2 0 3.
  • the anisotropic conductive film 15 and a part of the flexible substrate 14 is provided on the side of the second glass substrate 12 with a transparent electrode.
  • An elastic protective member 20 is provided so as to cover the region 30.
  • the anisotropic conductive film 15 which electrically connects the rigid substrate 12 and the flexible substrate 14 is sealed by the elastic protective members 20 3 and 20.
  • FIG. 3 shows a state where the flexible substrate 14 is bent in the direction of the white arrow shown in FIG.
  • the flexible substrate 14 and the elastic protection members 2 0 3 and 20 Since it has flexibility, it is projected and bent from the end of the rigid substrate 12 to form a bent portion 16.
  • the distance from the end of the rigid substrate 12 to the protruding end of the bent portion 16 of the flexible substrate 14 at the time of this bending is referred to as the protruding width 40.
  • the protrusion width 40 is 100 to 400, preferably 100 to 3501, more preferably 150 to 350. ⁇ 1.
  • the ends of the rigid board 12 are bent in the bending direction in a region where the flexible board 14 and the rigid board 12 overlap. Means the most protruding end.
  • the projecting end of the bent portion 16 of the flexible substrate 14 is similar to the above in plan view.
  • the surface of the base material (resin film) of the flexible substrate 14 that is the protruding end of the flexible substrate 14 farthest from the end of the rigid substrate 12 and is the outside of the bending.
  • the direction of observing the end portion and the protruding end is not limited to the front surface side, and for example, the side surface may be observed.
  • a flexible substrate 14 according to an embodiment of the present invention is a substrate made of a resin film such as a polyimide film or a polyester film, and usually at least a wiring body is formed on the resin film.
  • the wiring body is provided on the polyimide film.
  • the thickness of the flexible substrate 14 is more preferably 15 to 200 Mm. In order to form a predetermined elastic protection member, even if the flexible substrate 14 is a polyimide film having the above-mentioned thickness, the protrusion width 40 of the bent portion 16 of the flexible substrate 14 is , Can be made smaller.
  • the flexible substrate 14 may include a resist layer in addition to the wiring body. Further, it may be a so-called chip-on-film on which an electronic element is further mounted. In that case, it is preferable that the electronic element is arranged so as to avoid the most bent portion of the bent portion.
  • the martens ⁇ ! measured by the nanoindentation test is preferably 0.1 to 0.5 N / mm 2 .
  • the elastic protection member described above has excellent flexibility from the end of the rigid board to the flexible board.
  • it also has extensibility and compressibility, and the bending radius when the flexible substrate is bent can be made smaller than in the past. More specifically, when the elastic protection member is arranged inside the flexible substrate, the elastic protection member is compressed by bending when bent, so that the elastic protection member is bent. ⁇ 0 2020/175 196 1 1 ⁇ (: 171? 2020 /005876
  • the radius can be reduced.
  • the elastic protection member when the elastic protection member is arranged outside the flexible substrate, the bending radius can be reduced by the elastic protection member being stretched with a weak stress when being bent.
  • the protrusion width 40 of the bent portion of the flexible substrate that protrudes outward from the end of the rigid substrate that is, the amount of protrusion of the flexible substrate from the end of the rigid substrate
  • it can be made smaller.
  • the Martens hardness is 0.1 to 0.3. Is more preferable
  • the elastic protective layer material having the above hardness When the elastic protective layer material having the above hardness is used, the bending radius can be reduced with a weak stress. Therefore, the load on the flexible substrate or the rigid substrate is small, and it is suitable for application to, for example, a glass substrate or a thin substrate that is easily damaged. Further, the Martens hardness is 0.3 to ⁇ . Although the stress for reducing the bending radius becomes large, it is high in strength and resistant to rubbing, and is suitable for large substrates and applications where shock such as vibration is applied.
  • the Young's modulus of the elastic protection member according to the embodiment of the present invention is:
  • the elastic protection member having the Young's modulus in the above range, the elastic protection member has an appropriate hardness, which makes it possible to reduce the bending radius of the flexible substrate as compared with the conventional case. As a result, the protrusion width of the bent portion of the flexible substrate that protrudes outward from the end portion of the rigid substrate can be made smaller than in the conventional case.
  • the elastic protective layer has a predetermined strength in order to protect the flexible substrate. At this time, it was found that if the strength of the elastic protective layer is increased too much, the elastic protective layer is easily peeled from the flexible substrate when the flexible substrate is bent to have a predetermined protrusion width. As a result of diligent studies by the inventor, when the relationship between the strength (Young's modulus) of the elastic protective layer and the peeling force between the elastic protective layer and the flexible substrate is within a predetermined range, the flexible substrate is provided with a predetermined protrusion width It was found that peeling did not occur even when bent. That is, the elastic protection part ⁇ 0 2020/175 196 12 ⁇ (: 17 2020 /005876
  • the peeling force of the material from the flexible substrate can be expressed by the following equation (1).
  • the protection member has a rigid substrate and a flexible substrate more than the conventional one. It is possible to reduce the bending radius of the flexible substrate without peeling off from the flexible substrate. As a result, it is possible to reduce the protrusion width of the bent portion of the flexible substrate that protrudes outward from the end portion of the rigid substrate, while maintaining durability against deformation, as compared with the conventional case. The method for measuring the peeling force will be described later.
  • FIG. 8 A graph of the relationship between Young's modulus and peeling rate, which will be described later, is shown in Fig. 8.
  • This graph is a graph created based on the samples of the examples of the present specification.
  • F 1 O O X I n (Mi) + 250 as a regression line that determines the superiority or inferiority of durability against deformation. If the peeling force of the elastic protective member satisfies the condition of the above formula (1), the flexible substrate is not peeled off when the flexible substrate is bent from the end of the rigid substrate, and the flexible substrate is more flexible than before. The bending radius of can be reduced.
  • F 100 X I n (o) + 760 as a regression line that determines the superiority or inferiority of repairability. If the peeling force of the elastic protection member satisfies the condition of the above-mentioned formula (2), it can be peeled from the base material while having desired hardness and adhesiveness, and can be repaired (repair). Clearly, If the peeling force exceeds the regression line, the adhesion of the elastic protection member to the flexible substrate will be too strong, and the elastic protection member will break when attempting to peel it off, making repairing difficult.
  • the elastic protection member according to the embodiment of the present invention is roughly divided into three preferable ranges. That is, the elastic protective member of the present invention has a Young's modulus Is 1.0 £ £ 3.0 and the peeling ⁇ 0 2020/175 196 13 ⁇ (: 171? 2020 /005876
  • a certain range is more preferable, and Young's modulus is Is more preferable to be a peeling force (1 ⁇ 1/ ⁇ is 80 ££550), the range 8 is more preferable.
  • the elastic protective member having the property of the above range ⁇ 3.
  • the stress for reducing the bending radius becomes large, but it is high-strength and resistant to rubbing, and is suitable for a large substrate or an application to which a shock such as vibration is applied.
  • the bending radius can be reduced with weak stress by using an elastic protective layer material that has the property of: Therefore, it is suitable when applied to a glass substrate or a thin substrate that is easily damaged and has a small load on a flexible substrate or a rigid substrate.
  • a range member is an elastic protective member having an intermediate property and has a wide range. It is preferable because it is easy to use for various purposes.
  • the photocurable composition according to one embodiment of the present invention is a photocurable composition that forms a protective layer by applying light to an electronic substrate and then curing the composition.
  • the Young's modulus of the cured product is in the range of 0.1 to 3.
  • the "monofunctional alicyclic (meth)acrylic acid ester monomer” is meant to include a monofunctional alicyclic acrylic acid ester monomer and a monofunctional alicyclic methacrylic acid ester monomer.
  • the “monofunctional aliphatic (meth)acrylic acid ester monomer” is meant to include a monofunctional aliphatic acrylic acid ester monomer and a monofunctional aliphatic methacrylic acid ester monomer.
  • “monofunctional highly polar monomer” is meant to include monofunctional highly polar acrylate monomers and monofunctional highly polar methacrylic acid monomers, acrylate monomers. ⁇ 02020/175196 14 ⁇ (: 171? 2020 /005876
  • a photocurable composition according to an embodiment of the present invention contains the above-mentioned components and has an uncured viscosity within the above range, so that it is easy to apply and excellent in workability, and after curing. By having the Young's modulus of the cured body of the above range, the cured body has desired flexibility.
  • the cured product of the photocurable composition of the present invention may be used as an elastic protection member for the electronic substrate 10 described above.
  • the uncured viscosity of the photocurable composition is from 10 to 5000. Range of 3, preferably 50-2000 It is in the range of 3, and more preferably in the range of 90 to 1000001 33.
  • the coating amount can be controlled with high accuracy. Therefore, it is preferable that the viscosity is 90 to 1,000,000 133.
  • the Young's modulus of the cured product of the photocurable composition is from 0.01 to 3.
  • the range is 0, preferably 1 to 1. It is in the range of 3, and more preferably 0,1 to 0.
  • the peeling force of the cured product after curing the photocurable composition shows the relationship of the following formula (1).
  • the cured product obtained by curing the photocurable composition has a desired hardness because the peeling force of the cured product of the photocurable composition has the relationship of the above formula (1). While having excellent durability.
  • the peeling force of the cured product after curing the photocurable composition shows the relationship of the following formula (2).
  • the peeling force of the cured product of the photocurable composition has the relationship of the following formula (2)
  • the cured product obtained by curing the photocurable composition has desired hardness and adhesion. While having it, it can be peeled off from the base material and has excellent process reworkability (repairability).
  • the cured product of the photocurable composition according to one embodiment of the present invention after curing is
  • the cured product of the present invention has a Young's modulus (IV! 3) of 1.0 £ 3.0 and a peeling strength of Is particularly preferred in the range ⁇ , which is 250 £ £800. Is 0.3 ⁇ M £ 1.0 and the peeling force is Is more preferred, with a Young's modulus (IV! 3) of ⁇ .
  • Range M is a cured product having intermediate properties, and is preferable because it is easy to use in a wide range of applications.
  • the monofunctional alicyclic (meth)acrylic acid ester monomer is a liquid composition and is a component that dissolves the thermoplastic elastomer.
  • a monofunctional alicyclic (meth)acrylic acid ester monomer is blended, the adhesive force of the cured product after curing of the photocurable composition is enhanced, and when the cured product is peeled from the adherend. Adhesive residue can be reduced.
  • the Young's modulus is increased by strengthening the cured body. ⁇ 0 2020/175 196 16 ⁇ (: 171? 2020 /005876
  • monofunctional alicyclic (meth)acrylic acid ester monomer examples include isobornyl acrylate, cyclohexyl acrylate, dicyclopentanyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, 4 — ⁇ “1: —Butylcyclohexyl acrylate and the like.
  • the monofunctional aliphatic (meth)acrylic acid ester monomer is a liquid composition and is a component for dissolving the thermoplastic elastomer together with the above-mentioned monofunctional alicyclic (meth)acrylic acid ester monomer.
  • the monofunctional aliphatic (meth)acrylic acid ester monomer include aliphatic ether (meth)acrylic acid ester monomers such as ethoxydiethylene glycol acrylate, 2-ethylhexyl diglycol acrylate, and butoxyethyl acrylate. And aliphatic hydrocarbon (meth)acrylic acid ester monomers such as lauryl acrylate, stearyl acrylate, isostearyl acrylate, decyl acrylate, isodecyl acrylate, isononyl acrylate, and mono-octyl acrylate.
  • the compatibility with the soft segment of the thermoplastic elastomer can be increased and the viscosity of the photocurable composition can be lowered.
  • the monofunctional highly polar monomer is a liquid composition, and by admixing the monofunctional highly polar monomer, it is possible to enhance the adhesion of the cured product obtained after curing the photocurable composition.
  • the monofunctional highly polar monomer include a hydroxyl group-containing acrylic acid ester monomer, a glycidyl group-containing acrylic acid ester monomer, and an acrylic acid. ⁇ 0 2020/175 196 17 ⁇ (: 171? 2020/005876
  • Examples thereof include a amide-based monomer, a tertiary amino group-containing (meth)acrylic acid ester monomer, and an imide-based (meth)acrylic acid ester monomer.
  • Acrylic amide monomers, tertiary amino group-containing (meth)acrylic acid ester monomers, imide (meth)acrylic acid ester monomers, etc. from the viewpoint of storage stability and adhesion improvement in photocurable compositions.
  • Nitrogen-containing monomers are preferred. Examples include acryloyl morpholine, dimethylaminoethyl (meth) acrylate, and 1 ⁇ 1-acryloyloxyethyl hexahydrophthalimide.
  • the monofunctional high-polarity monomer is preferably 0.5% by mass to 12.75% by mass in the photocurable composition, and 2 to 8.5% by mass. It is more preferable. ⁇ If it is less than 0.5% by mass, the peeling force is low, so if the deformation is large, it easily peels off at the joint between the rigid and flexible substrates. If it is more than 12.7 5% by mass, the thermoplastic elastomer is used. Since it has low compatibility with, it is feared that the viscosity tends to increase over time, and that the moisture resistance of the cured product may decrease due to the increase in the number of highly polar segments. When the content is in the range of 2 to 8.5% by mass, it is possible to obtain a photocurable composition having a low viscosity, a small viscosity change, and a high adhesiveness.
  • the Young's modulus is ⁇ . It becomes remarkable for the following photocurable compositions. ⁇ In the photo-curable composition of less than 3 IV! 3, the resistance to shearing force tends to be weak, and the adhesion tends to be low only with the monofunctional (meth)acrylic acid ester monomer. Is.
  • the photocurable composition according to one embodiment of the present invention further comprises a polyfunctional aliphatic (meth)acrylic acid ester monomer, a polyfunctional cyclic (meth)acrylic acid ester monomer, a polyfunctional compound such as bismaleimide.
  • a monomer may be included as appropriate.
  • a polyfunctional aliphatic (meth)acrylic acid ester monomer and a polyfunctional cyclic (meth)acrylic acid ester monomer are used. It is preferable that one or more of bismaleimide is 0% by mass to 4.25% by mass in the photocurable composition, either alone or in total. If it is more than 4.2% by mass, the residual tack of the cured product is low. ⁇ 0 2020/175 196 18 ⁇ (: 171? 2020 /005876
  • the cured product may undergo curing shrinkage (warpage) or hardness increase.
  • polyfunctional aliphatic (meth)acrylic acid ester monomer examples include a bifunctional aliphatic (meth)acrylic acid ester monomer.
  • the bifunctional aliphatic (meth)acrylic acid ester monomer examples include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, Polypropylene glycol di (meth) acrylate, glycerin di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) Acrylate, 1,
  • polyfunctional cyclic (meth)acrylic acid ester monomer examples include ethoxylated bisphenol octadi(meth)acrylate, propoxylated bisphenol octadi(meth)acrylate, and propoxylated ethoxylated bisphenol octadiene.
  • a tris(2-hydroxyethyl)isocyanurate (meth)acrylic acid ester monomer is preferable from the viewpoint of improving adhesion.
  • Examples of the bismaleimide include 4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 2,2-bis [4-(4-maleimide phenoxy)phenyl] Propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, 1, 6-bis (maleimide) ⁇ 0 2020/175 196 19 ⁇ (: 171? 2020 /005876
  • Hexane, 1, 6, and bismaleimide (2, 2, 4-trimethyl) hexane are examples. From the point of not easily inhibiting the compatibility and photocurability of the photocurable composition, 1,6-bis(maleimide)hexane, 1,6'-bismaleimide (2
  • Aliphatic bismaleimides such as, 2,4-trimethyl)hexane are preferred.
  • thermoplastic elastomer examples include styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, ester-based thermoplastic elastomers, urethane-based thermoplastic elastomers, amide-based thermoplastic elastomers, vinyl chloride thermoplastic elastomers, and fluororesin-based thermoplastic elastomers. Examples thereof include a plastic elastomer and an ionically crosslinked thermoplastic elastomer. As the thermoplastic elastomer in the present invention, a styrene-based thermoplastic elastomer is preferable.
  • the styrenic thermoplastic elastomer includes the monofunctional alicyclic (meth)acrylic acid ester monomer and the monofunctional aliphatic (meth)acrylic acid ester monomer, and the monofunctional high polarity in the photocurable composition. Dissolved in any of the monomers. Then, the styrene-based thermoplastic elastomer is a cured product of the monofunctional alicyclic (meth)acrylic acid ester monomer and the monofunctional aliphatic (meth)acrylic acid ester monomer and the monofunctional highly polar monomer. Improves repairability and lowers moisture permeability.
  • the styrene-based thermoplastic elastomer is dissolved in any of the monofunctional alicyclic (meth)acrylic acid ester monomer and the monofunctional aliphatic (meth)acrylic acid ester monomer and the monofunctional highly polar monomer, and It is a component that imparts rubber elasticity (flexibility and extensibility) to the cured product.
  • the dissolved state may be a state in which it is in a uniform liquid state as a whole, and in addition to the case where it is colorless and transparent, it is clouded with white turbidity or other colors. It is okay.
  • the styrene-based thermoplastic elastomer alone is solid, it does not have adhesiveness at room temperature, but the monofunctional alicyclic (meth)acrylic acid ester monomer and the monofunctional aliphatic (meth)acrylic acid ester monomer are used. And high monofunctionality When dissolved in a polar monomer, it can be uniformly dispersed in the photocurable composition and its cured product, so that it can be contained as one component of the photocurable composition having adhesiveness.
  • the addition amount of the styrene-based thermoplastic elastomer is 10 to 3 in the photocurable composition.
  • It is preferably 5% by mass, more preferably 10 to 20% by mass, and further preferably 10 to 15% by mass. If the content of the styrene-based elastomer is less than 10% by mass, there is a possibility that the bearer property may be lowered. On the other hand, when it exceeds 35% by mass, the viscosity of the photocurable composition becomes high, which may make application difficult. When it is 20% by mass or less, the fluidity is suitable and the coating is easy.
  • styrene-based thermoplastic elastomer examples include styrene-butadiene-styrene block copolymer (S BS), styrene-isoprene styrene block copolymer (SIS), and styrene-ethylene propylene.
  • S BS styrene-butadiene-styrene block copolymer
  • SIS styrene-isoprene styrene block copolymer
  • styrene-ethylene propylene examples include styrene-ethylene propylene.
  • Styrene block copolymer SE BS
  • SE PS styrene-ethylene-propylene styrene block copolymer
  • S BS styrene-isobutylene-styrene block copolymer
  • SEE PS ethylene-propylene-styrene block copolymer
  • E PS and S I BS is preferable because the cured product of the photocurable composition has excellent weather resistance. Further, by using one having a high soft segment ratio among SEBS and SEPS, it is possible to enhance the transparency of the cured body. Specifically, the ratio of the mass of the soft segment to the total mass of the thermoplastic elastomer is preferably 80 to 95 mass %. By doing so, for example, the parallel light transmittance (wavelength 55 Onm) of the elastic protective member having a thickness of 0.5 mm can be increased to 90% or more.
  • the weight average molecular weight of the styrene-based thermoplastic elastomer is determined by GPC method (Gel Permeation Chromatography; gel permeation chromatography). ⁇ 0 2020/175 196 21 ⁇ (: 171? 2020 /005876
  • styrene-based thermoplastic elastomer having a weight average molecular weight of less than 200,000 because the viscosity suitable for coating can be easily adjusted.
  • radical polymerization initiator specifically, a monofunctional aliphatic (meth)acrylic acid ester monomer and a monofunctional alicyclic (meth)acrylic acid ester monomer, and a monofunctional highly polar monomer are photoreacted by, for example, light rays.
  • a photo-radical polymerization initiator that is allowed to cure is preferable.
  • the photocurable composition contains a photoradical polymerization initiator, the photocurable composition is irradiated with light rays, for example, the photocurable composition coated on the film-forming target is photocured. And a coating film can be formed.
  • Examples of the photoradical polymerization initiator include benzophenone-based, thioxanthone-based, acetophenone-based, acylphosphine-based, oxime ester-based, and alkylphenone-based photopolymerization initiators.
  • the addition amount of the photo radical polymerization initiator is preferably 0.1 to 10 parts by mass, and 0.5 to 5 parts by mass, based on 100 parts by mass of the total amount of all monomers including monofunctional and polyfunctional. The mass part is more preferable.
  • the photocurable composition according to one embodiment of the present invention may further contain other components such as various additives as appropriate without departing from the spirit of one embodiment of the present invention.
  • silica, thixotropic agents such as aluminum oxide
  • plasticizers such as olefin oils and paraffin oils
  • silane coupling agents and polymerization inhibitors such as olefin oils and paraffin oils
  • defoamers such as light stabilizers, antioxidants, antistatic agents
  • fillers include fillers.
  • a sample was prepared as shown below.
  • acrylic monomers lauryl acrylate, isobornyl acrylate, 1 ⁇ 1_acryloyloxyethyl hexahydrophthalimide, and 1,9-nonanediol diacrylate were prepared.
  • 3M 3 styrene-isobutylene-styrene block copolymer
  • 3I M 3 3 8 [3 ⁇ 4 10 2C” Kaneka Co., Ltd.
  • the photo radical polymerization initiator phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide is used.
  • 2-hydroxy-2-methylpropiophenone were added to the above resin components in amounts of 0.40 parts by mass and 3.6 parts by mass, respectively, to obtain a photocurable composition of Sample 1.
  • the obtained photocurable composition of Sample 1 was irradiated with ultraviolet rays under the conditions described below to form an elastic protective member which is a cured product of Sample 1.
  • Photocurable compositions of Samples 2 to 28 were prepared in the same manner as Sample 1 except that the thermoplastic elastomer of Sample 1 and each monomer were changed to the types and formulations (parts by mass) shown in Tables 2 to 4. ..
  • the photo-curable compositions of Samples 2 to 28 were also irradiated with ultraviolet rays in the same manner as in Sample 1 to form the elastic protective members of Samples 2 to 28 on the polyimide film.
  • a photocurable composition mainly composed of a rate resin and a (meth)acrylic monomer was used.
  • Tables 1 to 4 show the compositions of Samples 1 to 29 and the evaluation results. The evaluation method will be described later.
  • Epofriend Hatcho 501 Product name "Epofriend Hatcho 501", styrene content 40 mass%, weight average molecular weight 90,000, epoxy modified styrene-butadiene-styrene copolymer, manufactured by Daicel Corporation
  • the photocurable composition was allowed to stand for 2 weeks in an environment of 25°°, and when precipitation or separation could not be visually confirmed, it was evaluated as “8”, and when precipitation or separation could be visually confirmed, it was judged as “Mitsumi”. He said, "He said. ⁇ 02020/175196 28 ⁇ (: 171? 2020 /005876
  • the mechanical strength of the cured product was determined by changing "3 ⁇ 625 1 :2010". Thickness on silicone release treated polyester film 1 And then apply the photocurable composition,
  • the photocurable composition is cured by irradiating it with UV light for 15 seconds at ⁇ , and the obtained cured product is punched out with a dumbbell-shaped No. 8 mold, and the rod-shaped part of the dumbbell-shaped sample is filled with 16 Marks were attached at intervals to prepare test pieces.
  • Speed 200111111/111 ⁇ Tensile test was performed to measure tensile elongation at break (elongation at break), tensile strength (maximum tensile stress), 100% elongation tensile stress, and Young's modulus (elastic modulus).
  • the tensile elongation at break, the tensile strength, and the 100% elongation tensile stress were calculated by applying the following equations (1), (2), and (3), respectively. Young's modulus was obtained by dividing the tensile stress within the tensile proportional limit by the strain.
  • cure by irradiating an external line was used. And with the nano indenter, the maximum pushing force ⁇ .1 1 ⁇ 1, the pushing speed ⁇ .
  • the Martens hardness of the cured product was measured under the condition of 01 1/1/sec. As a result, the average value of the Martens hardness measured at 5 points was ⁇ . 31 ⁇ 1/ ⁇ 1 ⁇ 12 If less than or equal to 8 then ⁇ . Greater than ⁇ .
  • 1 3 70208: 1 976 apply the resin composition at a thickness of 1 on the silicone release-treated polyester film, and The wavelength of 1_ 0 is used for 200
  • the moisture permeability (water vapor transmission rate) of the cured product that was cured by irradiating ultraviolet rays for 1 hour was measured at a temperature of 40 ° 0 and a relative humidity of 90% [3 ⁇ 4 1 to 1]. If the weight of the sample decreased during the measurement of moisture permeability, the decrease was corrected.
  • the volume resistivity was measured using a mitomi. Apply a photo-curable composition with a thickness of 100 on a silicone release-treated polyester film, and use 200! Measure the cured product that has been cured by irradiating it with UV light for 15 seconds, and if the resistance value is above the upper limit of measurement, it is evaluated as "", and if it is the volume resistivity within the measurement range, the value is shown in the table. Described.
  • peel strength adheresive strength
  • Thickness on a polyimide film with a thickness of 50 Resin composition with a wavelength of 365 Using 200 Cut out for UV irradiation for 2 seconds. This is 85° ⁇ , 85% After that, those with no floating or peeling were rated as “8", and those with floating or peeling were rated as "Mi”.
  • FIG. 4 is an explanatory diagram of the measurement method of the bending test (inside). Apply the photocurable composition to a thickness of 100 on a polyimide film 50 with a thickness of 500, and Using It was cured by irradiation with ultraviolet rays for 2 seconds to obtain a cured product 56. 26 of this cured product Stick out a double-sided tape 54 with a thickness of 50 in the range of 26111111X5111111 on the edge of the cured product 56, and A test piece was prepared by adhering it to the edge of the glass substrate 52 (3100). When the test piece was bent toward the non-adhesive tape side of the glass substrate 52 with load 509 so that the cured body 56 was on the inside ( ⁇ 02020/175196 31 ⁇ (: 171? 2020 /005876
  • protrusion width 40 protruding from the end of the glass substrate 12 was measured (31 04).
  • protrusion width 40 protruding from the end of the glass substrate 12 that is, the “protrusion length” protruding from the end of the glass substrate 12
  • protrusion length protrusion length
  • Those with a protrusion width (extrusion length) of less than 400 were evaluated as “8”, those with a width of 400 or more and less than 500 were evaluated as “Mi”, and those of 500 ⁇ ! or more were evaluated as “ ⁇ ”.
  • FIG. 5 is an explanatory diagram of the measurement method of the bending test (outside).
  • Polyimide film 50 with a thickness of 500 is coated with a photocurable composition to a thickness of 100 and cured by irradiating it with ultraviolet light at 200 mW/cm 2 for 15 seconds using a 365 nm wavelength LED.
  • 26 of this cured product A double-sided tape 54 having a thickness of 50 ⁇ ! was attached to the end of the polyimide film 50 in the range of 26111111X5111111, and was attached to the end of the glass substrate 12 having a thickness of 10! ).
  • a polyimide film 50 with a thickness of 50 is The photo-curable composition is applied so that It was cured by irradiating it with ultraviolet rays for 15 seconds to obtain a cured product 56.
  • the hardened material 56 was cut into 2001111X 1 0001111, and a weight of 11 ⁇ 9 was attached to one end of the cut test piece.
  • a 20- degree bending test was performed by inserting 20 from the end opposite to the weight. That is, at a bending angle of 180 ° and a bending half-diameter of 100 ° ! ⁇ !
  • Minami There is no crack and there is peeling.
  • the “thickness” of the photocurable composition means the thickness after curing.
  • Fig. 8 shows a graph plotting the Young's modulus on the horizontal axis and the peeling force on the vertical axis for each of Samples 1 to 29 and plotting the relationship between the Young's modulus and the peeling force.
  • the peeling force of the cured product of the photocurable composition or the elastic protective member is as follows from the graph of Fig. 8. 1) It was found that there is a relation of formula. ⁇ 02020/175196 33 ⁇ (: 171? 2020/005876
  • the peeling force of the elastic protection member has the relationship of the above formula (1)
  • the protection member when the flexible substrate is bent from the end of the rigid substrate, the protection member is more rigid than the conventional one. Also, the bending radius of the flexible substrate can be reduced without peeling off from the flexible substrate. As a result, the protrusion width of the bent portion of the flexible substrate protruding outward from the end portion of the rigid substrate can be made smaller than that of the conventional one, and excellent in durability.
  • the cured product obtained by curing the photocurable composition is a rigid substrate because the peeling force of the cured product of the photocurable composition has the relationship of the above formula (2). Also, by not sticking to the flexible substrate more strongly than necessary, the durability of the electronic substrate against deformation of the flexible substrate can be enhanced while it can be peeled off from the base material and has excellent repairability.
  • the stress for reducing the bending radius becomes large, but it is high strength and resistant to rubbing, and is suitable for large substrates and applications where shock such as vibration is applied. Is.
  • the elastic protective layer material having the properties within the above range is used, the bending radius can be reduced with a weak stress. Therefore, the load on the flexible substrate or the rigid substrate is small, and it is suitable for application to, for example, a glass substrate or a thin substrate that is easily damaged. For this reason, it is preferable to have a range of properties, especially when it is desired to reduce the size and size of the frame together.
  • Umizumi is an elastic protective member having intermediate properties and is preferable in that it is easy to use in a wide range of applications.
  • the Young's modulus could not be measured because the test piece of Sample 25 was hard and brittle.
  • the test pieces of Samples 23 and 27 were torn into pieces during curing, and the peeling force could not be measured.
  • the results of the bending test (inside), bending test (outside), and bending resistance test were taken into consideration and As for the cured product, the sample with a Martens hardness of "8" has a small value of 100% elongation tensile stress in addition to flexibility, and it has excellent extensibility. It was found that it is preferable even if it is provided in the point that it can be bent with a small stress and the force (repulsive force) to return to the original position after bending can be reduced.
  • the Martens hardness is ⁇ .
  • the peeling power (1 ⁇ 1/ ⁇ was in the range of 80 ⁇ 5 56.
  • the Martens hardness was ⁇ 0.3. Greater than 0.5
  • the peeling force (1 ⁇ 1/ ⁇ was in the range of 200 ⁇ 896. ⁇ 02020/175196 35 ⁇ (: 171? 2020 /005876
  • Samples 26 and 28 have a higher content of polyfunctional monomers and polyfunctional polymers and a higher Young's modulus of 3 IV! 8 or more than the other samples.
  • the light transmittance of Sample 7 which was 3%3 with the mass ratio of the soft segment of 87% by mass, was 95%. On the other hand, in the remaining samples, the transmittance was less than 86%, and the cured product was opaque, resulting in poor light transmission.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Combinations Of Printed Boards (AREA)
  • Formation Of Insulating Films (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides an electronic substrate which has a flexible part that exhibits excellent flexibility. An electronic substrate which is provided with a rigid substrate (12) and a flexible substrate (14) that extends from an end of the rigid substrate (12), while being bonded in an electrically connectable manner, and which is configured such that: an elastic protective member (20a, 20b) is provided on at least one surface from an end of the flexible substrate (14) to a folded part of the flexible substrate (14); and if the flexible substrate (14) is folded to one surface side of the rigid substrate (12) so as to protrude from the end of the rigid substrate, the projection width (40) of the folded part of the flexible substrate (14) protruding beyond the end of the rigid substrate (12) is 100-400 μm.

Description

明 細 書 Specification
発明の名称 : 電子基板及び光硬化性組成物 Title of invention: Electronic substrate and photocurable composition
技術分野 Technical field
[0001 ] 本発明は、 柔軟性に優れたフレキシブル部位を有する電子基板、 及び柔軟 性および密着性に優れた光硬化性組成物に関する。 The present invention relates to an electronic substrate having a flexible portion having excellent flexibility, and a photocurable composition excellent in flexibility and adhesiveness.
背景技術 Background technology
[0002] 柔軟性を有するフレキシブル部位を有する電子基板は、 一般に、 そのフレ キシブル部位として、 フレキシブル基板 (フレキシブル配線基板 (F Lex i b Le Pr i nted C i rcu i ts、 以下 「フレキシブル基板」 ともいう) を含む) が用いら れる。 フレキシブル基板は、 通常、 ポリイミ ド樹脂やポリエステル樹脂等の フィルムに銅箔等の金属導体回路が形成され、 これにポリイミ ド樹脂やポリ エステル樹脂等のカバーフィルムが保護層として設けられた折曲げ可能な基 板として知られている。 例えば、 特開平 7— 1 0 6 7 2 8号公報 (特許文献 1) では、 リジッ ド部位とフレキシブル部位を有する基板において、 リジッ ド部位とフレキシブル部位の接続部分の保護部材として樹脂組成物を用いて いる。 [0002] An electronic substrate having a flexible portion having flexibility is generally referred to as a flexible substrate (flexible wiring substrate (F Lex ib Le Pr nted C i rcu i ts, hereinafter referred to as "flexible substrate") as the flexible portion. ) Is used. Flexible substrates are usually bendable with a copper foil or other metal conductor circuit formed on a film of polyimide resin or polyester resin, and a cover film of polyimide resin or polyester resin provided as a protective layer. Known as a base plate. For example, in Japanese Unexamined Patent Publication No. 7-106072 (Patent Document 1), a resin composition is used as a protective member for a connecting portion between a rigid portion and a flexible portion in a substrate having a rigid portion and a flexible portion. ing.
[0003] また、 リジッ ド基板と前記リジッ ド基板の端部に設けられたフレキシブル 基板を有する電子基板は、 例えば、 液晶ディスプレイ装置やプラズマディス プレイ装置、 有機 E Lディスプレイ装置、 R G B無機 L E D実装型のディス プレイ装置等の画像表示装置にも用いられる。 この画像表示装置は、 リジッ ド基板として画像表示部位であるパネルが用いられ、 パネルに電圧又は信号 を印加するために、 パネルの端部に電気的に接続されたフレキシブル基板が 設けられている。 ここで、 パネルとフレキシブル基板の接続には異方導電膜 が一般的に使用されており、 この接続部の絶縁保護や接着補強のための保護 部材が塗布されている。 そして、 前記フレキシブル基板の他端部は、 電子回 路基板 (マザーボード等) に電気的に接続される。 一般に、 電子回路基板は 、 パネル裏面に配置されていることから、 パネルから延びるフレキシブル基 \¥0 2020/175196 2 卩(:171? 2020 /005876 [0003] Further, an electronic substrate having a rigid substrate and a flexible substrate provided at an end of the rigid substrate is, for example, a liquid crystal display device, a plasma display device, an organic EL display device, or an RGB inorganic LED mounting type. It is also used in image display devices such as display devices. In this image display device, a panel, which is an image display portion, is used as a rigid substrate, and a flexible substrate electrically connected to an end portion of the panel is provided in order to apply a voltage or a signal to the panel. Here, an anisotropic conductive film is generally used for the connection between the panel and the flexible substrate, and a protective member for insulating protection and adhesive reinforcement of this connection portion is applied. The other end of the flexible board is electrically connected to an electronic circuit board (motherboard or the like). In general, the electronic circuit board is arranged on the back surface of the panel, and therefore, the flexible substrate extending from the panel is used. \¥0 2020/175 196 2 卩 (: 171? 2020 /005876
板は、 折曲げられて電子回路基板に接続される。 また、 近年、 画像表示装置 の小型化及び狭額縁化の要望が高まっており、 非画像表示部位の省スペース 化のため、 ドライバー丨 〇を従来のパネル上ではなくフレキシブル基板上に 実装したチップオンフィルム構造等も採用されている。 The board is bent and connected to the electronic circuit board. In addition, in recent years, there has been an increasing demand for downsizing and narrowing of the frame of the image display device, and in order to save space in the non-image display area, the chip-on mounting the driver on the flexible substrate instead of on the conventional panel. A film structure is also used.
[0004] ここで、 フレキシブル基板の折曲げ性を制御するために、 特開 2 0 0 8 - 2 6 5 2 8号公報 (特許文献 2) には、 電極引き出し部を有するパネルと、 前記電極引き出し部に接続されたフレキシブル基板と、 前記フレキシブル基 板と前記電極引き出し部との接続部分を覆う保護層とを有する画像表示装置 において、 前記フレキシブル基板上の樹脂材料に対する濡れ性を変えること が開示されている。 上記構成にすることにより、 樹脂材料を前記フレキシブ ル基板に塗布した際に、 樹脂材料が安定して保護層が形成される領域と、 樹 脂材料をはじいて保護層が安定して形成されない領域とが生じ、 その結果、 保護層が形成された前記フレキシブル基板における保護層の先端を起点とし て、 フレキシブル基板が折り曲がるため、 保護層が形成される領域を所定幅 に制御することができる。 これにより、 パネル端部から外側に突出するフレ キシブル基板の折曲げ部の突出幅を小さく制御することができる。 先行技術文献 [0004] Here, in order to control the bendability of a flexible substrate, Japanese Patent Laid-Open Publication No. 2000-8265 (Patent Document 2) discloses a panel having an electrode lead-out portion and the electrode. An image display device having a flexible substrate connected to a lead portion and a protective layer covering a connecting portion between the flexible substrate and the electrode lead portion, the wettability of the flexible substrate to a resin material is disclosed. Has been done. With the above structure, when the resin material is applied to the flexible substrate, a region where the resin material stably forms the protective layer and a region where the resin material is repelled and the protective layer is not stably formed. As a result, since the flexible substrate is bent with the tip of the protective layer in the flexible substrate having the protective layer as a starting point, the region where the protective layer is formed can be controlled to have a predetermined width. As a result, it is possible to control the protrusion width of the bent portion of the flexible substrate protruding outward from the panel end portion to be small. Prior art documents
特許文献 Patent literature
[0005] 特許文献 1 :特開平 7— 1 0 6 7 2 8号公報 [0005] Patent Document 1: Japanese Patent Laid-Open No. 7-106072
特許文献 2 :特開 2 0 0 8 _ 2 6 5 2 8号公報 発明の概要 Patent Document 2: Japanese Patent Laid-Open No. 20 08 _ 2 6 5 2 8 Summary of Invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0006] ところで、 画像表示装置についてはさらなる小型化及び狭額縁化が望まれ ている。 具体的には、 画像表示装置等を構成するリジッ ド基板の端部で折曲 げたフレキシブル基板について、 前記折曲げ部の突出幅を、 さらに縮小した いという強い要請がある。 こうした要請に対して、 前記技術は、 保護層の外 形を制御することで外形を最小化しているが、 さらに狭額縁化するには保護 \¥0 2020/175196 3 卩(:171? 2020 /005876 By the way, further miniaturization and narrower frame of the image display device are desired. Specifically, there is a strong demand to further reduce the protrusion width of the bent portion of a flexible board that is bent at the end of a rigid board that constitutes an image display device or the like. In response to these demands, the above technology minimizes the outer shape by controlling the outer shape of the protective layer, but in order to further narrow the frame, it is necessary to protect the outer shape. \¥0 2020/175 196 3 卩 (: 171? 2020 /005876
層自体が妨げとなっていた。 また、 仮に無理に屈曲半径を小さくすると、 保 護層が破損したり剥離してしまい、 前記折曲げ部の突出幅を小さくすること が難しかった。 The layers themselves were an obstacle. Further, if the bending radius is forcibly reduced, the protective layer may be damaged or peeled off, and it is difficult to reduce the protruding width of the bent portion.
[0007] 本発明は、 上記課題を解決するためになされたものである。 すなわち、 柔 軟性および耐久性に優れたフレキシブル部位を有する電子基板、 ならびにフ レキシブル部位に用いる柔軟性および密着性に優れた光硬化性組成物を提供 することを目的とする。 The present invention has been made to solve the above problems. That is, it is an object of the present invention to provide an electronic substrate having a flexible portion excellent in flexibility and durability, and a photocurable composition excellent in flexibility and adhesion used in a flexible portion.
課題を解決するための手段 Means for solving the problem
[0008] 上記目的を達成する本発明の一態様の電子基板、 ならびに光硬化性組成物 は、 以下のとおりである。 [0008] The electronic substrate and the photocurable composition according to one embodiment of the present invention that achieves the above object are as follows.
[0009] 本発明の一態様の電子基板は、 リジッ ド基板と、 前記リジッ ド基板の端部 から延び導通可能に接続されるフレキシブル基板と、 を備える電子基板にお いて、 前記フレキシブル基板の端部から前記フレキシブル基板の折曲げ部の 少なくとも一方面に、 弾性保護部材が設けられ、 前記フレキシブル基板を、 前記リジッ ド基板の端部から突出して前記リジッ ド基板の一方面側に向かっ て折曲げた際に、 前記リジッ ド基板の端部から突出した前記フレキシブル基 板の折曲げ部の突出幅が、 1 0 0〜 4 0〇 であることを特徴とする。 前 記リジッ ド基板の端部から突出した前記フレキシブル基板の折曲げ部の突出 幅を、 1 0 0〜 4 0 0 の範囲とするために、 前記リジッ ド基板の端部か ら、 より小さい屈曲半径でフレキシブル基板を折曲げても、 所定の弾性保護 部材を備えるため、 前記折曲げ部に不具合が生じ難くすることができる。 そ の結果、 前記リジッ ド基板の端部からのフレキシブル基板の折曲げ部のはみ 出し量を、 従来に比べ、 小さく しながら耐久性の優れたものとすることがで きる。 An electronic board according to an aspect of the present invention is an electronic board that includes a rigid board and a flexible board that extends from an end of the rigid board and is electrically connected to the rigid board. An elastic protection member is provided on at least one surface of the bent portion of the flexible substrate, and the flexible substrate is projected from an end of the rigid substrate and bent toward one surface side of the rigid substrate. At this time, the bending width of the bent portion of the flexible substrate protruding from the end portion of the rigid substrate is 100 to 400. In order to set the protrusion width of the bent portion of the flexible substrate protruding from the end of the rigid substrate to be in the range of 100 to 400, a smaller bend from the end of the rigid substrate is used. Even if the flexible substrate is bent at a radius, since the predetermined elastic protection member is provided, it is possible to make it difficult for the bent portion to have a problem. As a result, the protrusion amount of the bent portion of the flexible substrate from the end portion of the rigid substrate can be made smaller and superior in durability as compared with the conventional one.
[0010] 前記弾性保護部材は、 ナノインデンテーシヨン試験で測定されるマルテン ス硬さが、 〇. 1〜〇. 5
Figure imgf000005_0001
である。 前記弾性保護部材のマルテンス 硬さを、 〇. 1〜〇. 5 の範囲にすることにより、 リジッ ド基板の 端部からフレキシブル基板にかけて前記弾性保護部材が、 優れた可撓性を有 \¥0 2020/175196 4 卩(:171? 2020 /005876
[0010] The elastic protection member has a Martens hardness measured by a nanoindentation test of from 0.01 to 0.5.
Figure imgf000005_0001
Is. By setting the Martens hardness of the elastic protective member in the range of 0.1 to 0.5, the elastic protective member has excellent flexibility from the end of the rigid substrate to the flexible substrate. \\0 2020/175 196 4 (:171? 2020 /005876
し、 フレキシブル基板を折曲げた際の屈曲半径を、 従来に比べ小さくするこ とができる。 これにより、 前記リジッ ド基板の端部から外側に突出した前記 フレキシブル基板の折曲げ部の突出幅 (即ち、 リジッ ド基板の端部からのフ レキシブル基板のはみ出し量) を、 従来に比べ、 小さく しながら耐久性の優 れたものとすることができる。 However, the bending radius when the flexible substrate is bent can be made smaller than before. As a result, the protruding width of the bent portion of the flexible board that protrudes outward from the end of the rigid board (that is, the amount of protrusion of the flexible board from the end of the rigid board) is made smaller than in the past. However, it can be made highly durable.
[001 1 ] 前記弾性保護部材のヤング率は、 〇. 1〜 3 . 0 IV! 3であることが好ま しい。 上記範囲のヤング率を有する弾性保護部材を用いることにより、 適度 の硬さを有し、 これにより、 従来に比べ、 フレキシブル基板の屈曲半径を小 さくすることができる。 その結果、 前記リジッ ド基板の端部から外側に突出 した前記フレキシブル基板の折曲げ部の突出幅を、 従来に比べ、 小さく しな がら耐久性の優れたものとすることができる。 [001 1] The Young's modulus of the elastic protection member is preferably from 0.1 to 3.0 IV! 3. By using the elastic protection member having the Young's modulus in the above range, the elastic protection member has an appropriate hardness, which makes it possible to reduce the bending radius of the flexible substrate as compared with the conventional one. As a result, the protrusion width of the bent portion of the flexible substrate that protrudes outward from the end of the rigid substrate can be made smaller and superior in durability as compared with the conventional one.
[0012] 前記弾性保護部材の剥離カ が、 下記 (1) 式の関係を示す。 [0012] The peeling force of the elastic protection member shows the relationship of the following expression (1).
>1 0 0 X 4 (巳) + 2 5 0 · · · (1) >1 0 0 X 4 (Min) +2 5 0 ··· (1)
式中、 :剥離力
Figure imgf000006_0001
巳 :ヤング率
Figure imgf000006_0002
In the formula,: Peeling force
Figure imgf000006_0001
Mami: Young's modulus
Figure imgf000006_0002
前記弾性保護部材の剥離カ が、 上記 (1) 式の関係を有することにより 、 フレキシブル基板をリジッ ド基板の端部から折曲げた際に、 従来に比べ、 保護部材がリジッ ド基板及びフレキシブル基板から剥がれることなく、 フレ キシブル基板の屈曲半径を小さくすることができる。 その結果、 前記リジッ ド基板の端部から外側に突出した前記フレキシブル基板の折曲げ部の突出幅 を、 従来に比べ、 小さく しながら耐久性の優れたものとすることができる。 Since the peeling force of the elastic protection member has the relationship of the above formula (1), when the flexible substrate is bent from the end of the rigid substrate, the protection member has a rigid substrate and a flexible substrate more than the conventional one. It is possible to reduce the bending radius of the flexible substrate without peeling off from the flexible substrate. As a result, the protrusion width of the bent portion of the flexible substrate protruding outward from the end portion of the rigid substrate can be made smaller than that of the conventional one, and excellent in durability.
[0013] 前記フレキシブル基板は、 1 5〜 2 0〇 の厚みを有する樹脂フィルム であり、 前記フレキシブル基板を折曲げた際に、 前記フレキシブル基板の折 曲げ内面または外面の少なくとも一方に、 配線体が設けられている。 前記樹 月旨フィルムとしては、 例えば、 ポリイミ ドフィルム、 ポリエステルフィルム が挙げられる。 前記フレキシブル基板が上記厚みの樹脂フィルムであっても 、 前記フレキシブル基板折曲げ部の突出幅を、 従来に比べ、 小さくすること ができる。 また、 フレキシブル基板の折曲げ内面に弾性保護部材を設けるこ とにより、 屈曲半径を小さくするように折曲げた際に配線体の損傷を抑制す \¥0 2020/175196 5 卩(:171? 2020 /005876 [0013]The flexible substrate is a resin film having a thickness of 15 to 200, and when the flexible substrate is bent, a wiring body is provided on at least one of the folded inner surface and the outer surface of the flexible substrate. It is provided. Examples of the moonlight film include a polyimide film and a polyester film. Even when the flexible substrate is a resin film having the above thickness, the protrusion width of the flexible substrate bent portion can be made smaller than in the conventional case. In addition, by providing an elastic protection member on the inner surface of the flexible printed circuit board, damage to the wiring body is suppressed when it is bent to reduce the bending radius. \¥0 2020/175 196 5 卩 (: 171? 2020 /005876
ることができる。 You can
[0014] 本発明の一態様の光硬化性組成物は、 電子基板に塗布した後に光を照射し て硬化させることにより、 弾性保護層を形成する光硬化性組成物であって、 単官能脂環式 (メタ) アクリル酸エステルモノマーと、 単官能脂肪族 (メタ ) アクリル酸エステルモノマーと、 単官能高極性モノマーと、 熱可塑性エラ ストマーと、 ラジカル重合開始剤とを含み、 未硬化時の粘度が、 1 0〜 5 0 0 0 01 3 3の範囲であり、 硬化後の硬化体のナノインデンテーシヨン試 験で測定されるマルテンス硬さが、 〇. 1〜〇. 5 1\1 /〇1〇1 2の範囲であるこ とを特徴とする。 本発明の一態様の光硬化性組成物は、 上述の各成分を含み 、 上述の範囲の未硬化時の粘度を有することにより、 電子基板への塗布量を 精密に制御しやすく、 塗布の作業性に優れる。 またその結果、 電子基板へ過 剰に塗布されるおそれが低いことに加え、 硬化後の硬化体が上述の範囲のマ ルテンス硬さを有することにより、 硬化体が折曲げを妨げるおそれがなく、 より小さい屈曲半径でフレキシブル基板を折曲げることができる。 [0014] A photocurable composition according to one embodiment of the present invention is a photocurable composition that forms an elastic protective layer by being applied to an electronic substrate and then cured by being irradiated with light. Cyclic (meth)acrylic acid ester monomer, monofunctional aliphatic (meth)acrylic acid ester monomer, monofunctional high polar monomer, thermoplastic elastomer, and radical polymerization initiator However, the Martens hardness measured by the nano-indentation test of the cured product after curing is in the range of 0.1 to 0. and said that it is a range of 1_Rei_1 2. The photocurable composition according to one aspect of the present invention contains the above-mentioned components and has an uncured viscosity within the above range, so that the amount applied to an electronic substrate can be easily controlled precisely, and Excellent in performance. As a result, in addition to the low possibility of excessive coating on the electronic substrate, the cured product has a Martens hardness within the above range, so that the cured product does not hinder bending. The flexible substrate can be bent with a smaller bending radius.
[0015] 前記光硬化組成物の硬化後の硬化体の剥離カ が、 下記 (1) 式の関係を 示す。 [0015] The peeling force of the cured product after curing the photocurable composition shows the relationship of the following formula (1).
>1 0 0X 4 (巳) + 2 5 0 (1) >100 x 4 (Min) +250 (1)
式中、 :剥離力
Figure imgf000007_0001
巳 :ヤング率
Figure imgf000007_0002
In the formula,: Peeling force
Figure imgf000007_0001
Mami: Young's modulus
Figure imgf000007_0002
前記光硬化組成物の硬化後の硬化体の剥離カ が、 上記 (1) 式の関係を 有することにより、 前記光硬化組成物を硬化させて得られる硬化体は、 リジ ッ ド基板及びフレキシブル基板への密着性と柔軟性に優れ、 フレキシブル基 板を小さい屈曲半径に折り曲げても剥がれ難く、 電子基板の耐久性を高める ことができる。 The cured product obtained by curing the photocurable composition is a rigid substrate and a flexible substrate because the peeling force of the cured product of the photocurable composition has the relationship of the above formula (1). It has excellent adhesion to and flexibility, and is difficult to peel off even if the flexible substrate is bent to a small bending radius, and the durability of the electronic substrate can be improved.
[0016] 前記光硬化組成物の硬化後の硬化体の剥離カ が、 下記 (2) 式の関係を 示す。 [0016] The peeling force of the cured product after curing the photocurable composition shows the relationship of the following formula (2).
<1 0 0X 4 (巳) + 7 6 0 (2) <100 X 4 (Min) + 760 (2)
:剥離力
Figure imgf000007_0003
: Peel force
Figure imgf000007_0003
º :ヤング率 (IV! 3) \¥0 2020/175196 6 卩(:171? 2020 /005876 º: Young's modulus (IV! 3) \\0 2020/175 196 6 卩 (: 171? 2020 /005876
前記光硬化組成物の硬化後の硬化体の剥離カ が、 上記 (2) 式の関係を 有することにより、 前記光硬化組成物を硬化させて得られる硬化体は、 リジ ッ ド基板及びフレキシブル基板へ必要以上に強く密着させないことにより、 フレキシブル基板の変形に対する電子基板の耐久性を高めつつも、 基材から の引きはがしが可能であり、 リペア性に優れる。 The cured product obtained by curing the photocurable composition is a rigid substrate and a flexible substrate because the peeling force of the cured product of the photocurable composition has the relationship of the above formula (2). By not sticking more strongly than necessary, the durability of the electronic board against deformation of the flexible board can be improved, and it can be peeled off from the base material, resulting in excellent repairability.
[0017] 本発明の一態様の電子基板は、 前記何れか記載の光硬化性組成物を前記リ ジッ ド基板と前記フレキシブル基板との境界領域に塗布してなる。 硬化した 際に、 適度な柔軟性を発現する光硬化性組成物を前記境界領域に塗布するこ とにより、 リジッ ド基板の端部からのフレキシブル基板の折曲げ部のはみ出 し量を、 従来に比べ、 小さく しても、 保護部材がリジッ ド基板及びフレキシ ブル基板をから剥がれ難い。 その結果、 前記リジッ ド基板の端部から外側に 突出した前記フレキシブル基板の折曲げ部の突出幅を、 従来に比べ、 小さく しながら耐久性の優れたものとすることができる。 また、 光硬化性組成物は リジッ ド基板とフレキシブル基板の双方に密着して硬化しているため、 リジ ッ ド基板とフレキシブル基板の剥離を防ぐとともに、 リジッ ド基板とフレキ シブル基板の境界から湿気や異物が侵入することを防ぐことができる。 [0017] An electronic substrate according to an aspect of the present invention is formed by applying the photocurable composition according to any one of the above to a boundary region between the rigid substrate and the flexible substrate. By applying a photocurable composition that exhibits appropriate flexibility when cured to the boundary area, the amount of protrusion of the bent portion of the flexible substrate from the edge of the rigid substrate In comparison, even if it is made smaller, the protective member does not easily come off the rigid board and flexible board. As a result, the protrusion width of the bent portion of the flexible substrate that protrudes outward from the end portion of the rigid substrate can be made smaller and superior in durability as compared with the conventional one. In addition, the photo-curable composition adheres to both the rigid and flexible substrates and is cured, preventing the rigid and flexible substrates from peeling off and damp from the boundary between the rigid and flexible substrates. And foreign matter can be prevented from entering.
発明の効果 Effect of the invention
[0018] 本発明の一態様の電子基板は、 前記リジッ ド基板の端部から突出した前記 フレキシブル基板の折曲げ部の突出幅を小さく しても、 保護部材が破損した り剥がれたりすることがない。 また、 本発明の一態様の光硬化性組成物は、 未硬化時の粘度が低いことから、 塗布しやすく、 作業性に優れ、 また、 硬化 後の硬化体が所望の硬さと耐久性と適度な柔軟性を発現することができる。 図面の簡単な説明 [0018] In the electronic board according to an aspect of the present invention, even if the protrusion width of the bent portion of the flexible board that protrudes from the end portion of the rigid board is reduced, the protective member may be damaged or peeled off. Absent. In addition, the photocurable composition of one embodiment of the present invention has a low viscosity when uncured, so that it is easy to apply and has excellent workability. Further, the cured product after curing has a desired hardness, durability, and appropriate hardness. The flexibility can be expressed. Brief description of the drawings
[0019] [図 1]本発明の一実施形態における電子基板の斜視図である。 [0019] [FIG. 1] A perspective view of an electronic substrate according to an embodiment of the present invention.
[図 2]図 1の I - I線に沿った断面であってフレキシブル基板と硬化体との構 成を説明する部分拡大断面図である。 [Fig. 2] Fig. 2 is a partial enlarged cross-sectional view taken along the line I-I in Fig. 1 for explaining the configuration of the flexible substrate and the cured body.
[図 3]図 1の I _ I線に沿った断面であってフレキシブル基板を折曲げた状態 を説明する部分拡大断面図である。 \¥0 2020/175196 7 卩(:171? 2020 /005876 [Fig. 3] Fig. 3 is a partially enlarged cross-sectional view for explaining a state in which the flexible substrate is bent, which is a cross-section taken along the line I_I in Fig. 1. \\0 2020/175 196 7 卩 (: 171? 2020 /005876
[図 4]本明細書中の実施例における評価方法の一つであって、 弾性保護部材と して機能する硬化体が形成された面が内側になるように折曲げる折曲げ試験 方法を説明する説明図である。 [FIG. 4] A bending test method, which is one of the evaluation methods in the examples in the present specification, in which a surface on which a cured body functioning as an elastic protection member is formed is bent inward FIG.
[図 5]本明細書中の実施例における評価方法の一つであって、 弾性保護部材と して機能する硬化体が形成された面が外側になるように折曲げる折曲げ試験 方法を説明する説明図である。 [FIG. 5] One of the evaluation methods in the examples of the present specification, which is a bending test method of bending so that the surface on which a cured body that functions as an elastic protection member is formed is the outside FIG.
[図 6]本明細書中の実施例における評価方法の一つである耐屈曲試験に供する 試験片の構成を説明する概略構成図である。 FIG. 6 is a schematic configuration diagram illustrating the configuration of a test piece to be subjected to a bending resistance test, which is one of the evaluation methods in the examples in the present specification.
[図 7]耐屈曲試験の概略を説明する説明図である。 [Fig. 7] Fig. 7 is an explanatory view illustrating an outline of a bending resistance test.
[図 8]弾性保護部材のヤング率と剥離力の関係を示すグラフである。 FIG. 8 is a graph showing the relationship between the Young's modulus of the elastic protection member and the peeling force.
[図 9]弾性保護部材のヤング率と剥離力の関係を分類分けして範囲を規定した グラフである。 [FIG. 9] A graph defining the range by classifying the relationship between the Young's modulus of the elastic protection member and the peeling force.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0020] 〔電子基板〕 [0020] [Electronic substrate]
本発明一態様について実施形態に基づき詳しく説明する。 図 1〜図 3を用 いて、 本発明の一実施形態に係る電子基板 1 〇について説明する。 本発明の —実施形態に係る電子基板 1 0は、 図 1 に示すように、 リジッ ド基板 1 2と 、 リジッ ド基板 1 2の端部から延び導通可能に接続されるフレキシブル基板 1 4と、 を備えている。 さらに、 電子基板 1 0は、 図 2に示すように、 フレ キシブル基板 1 4の端部からフレキシブル基板 1 4の折曲げ部 1 6の少なく とも一方面に、 弾性保護部材が設けられている。 そして、 図 3に示すように 、 フレキシブル基板 1 4をリジッ ド基板 1 2の端部から突出してリジッ ド基 板 1 2の一方面側に向かって折曲げた際に、 リジッ ド基板 1 2の端部から突 出したフレキシブル基板 1 4の折曲げ部の突出幅 4 0が、 1 0 0〜 4 0 0 である。 電子基板を用いる装置の小型化の観点から、 フレキシブル基板 1 4をリジッ ド基板 1 2の端部から突出してリジッ ド基板 1 2の一方面側に向 かって折曲げた際に、 リジッ ド基板 1 2の端部から突出したフレキシブル基 板 1 4の折曲げ部の突出幅は、 好ましくは 1 0 0〜 3 5 0 であり、 より \¥0 2020/175196 8 卩(:171? 2020 /005876 One aspect of the present invention will be described in detail based on an embodiment. An electronic board 10 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3. As shown in FIG. 1, an electronic board 10 according to an exemplary embodiment of the present invention includes a rigid board 12 and a flexible board 14 extending from an end of the rigid board 12 and connected in a conductive manner. Equipped with. Further, as shown in FIG. 2, the electronic substrate 10 is provided with an elastic protection member from the end of the flexible substrate 14 to at least one side of the bent portion 16 of the flexible substrate 14. Then, as shown in Fig. 3, when the flexible board 14 is projected from the end of the rigid board 12 and bent toward one side of the rigid board 12, the rigid board 12 is The projecting width 40 of the bent portion of the flexible substrate 14 projecting from the end is 100 to 400. From the viewpoint of miniaturization of the device using the electronic board, when the flexible board 14 is projected from the end of the rigid board 12 and bent toward one side of the rigid board 12, the rigid board 1 The projecting width of the bent portion of the flexible base plate 14 projecting from the end of 2 is preferably 100 to 350, and \\0 2020/175 196 8 卩 (: 171? 2020 /005876
好ましくは 1 5 0〜 3 5 0 ^ 01である。 It is preferably 150-350 ^ 01.
[0021 ] リジッ ド基板 1 2の端部から突出したフレキシブル基板 1 4の折曲げ部 1 [0021] The bent portion 1 of the flexible substrate 1 4 protruding from the end of the rigid substrate 1 2
6の突出幅 4 0を、 1 0 0〜 4 0〇 の範囲とすることにより、 従来に比 ベ、 リジッ ド基板 1 2とフレキシブル基板 1 4の接続部の変形に対する耐久 性を維持しながら、 基板の省スペース化できる。 そのため、 本発明の一実施 形態に係る電子基板 1 〇を、 例えば、 画像表示装置に用いる場合、 パネルの 非表示部位をより少なくすることができるため、 画像表示装置の小型化や狭 額縁化が可能になる。 By setting the protrusion width 40 of 6 in the range of 100 to 400, while maintaining durability against deformation of the connection portion of the rigid substrate 12 and the flexible substrate 14 compared to the conventional one, The board space can be saved. Therefore, when the electronic substrate 10 according to the embodiment of the present invention is used in, for example, an image display device, it is possible to reduce the non-display portion of the panel, so that the image display device can be downsized and the frame can be narrowed. It will be possible.
[0022] 次に図 2および図 3を用いて、 画像表示装置に用いた電子基板 1 0を一例 に取って説明する。 したがって、 本発明の一実施形態に係る電子基板 1 〇は 、 図 1〜図 3に記載の電子基板に限るものではない。 図 2及び図 3に示すよ うに、 例えば、 ガラス基板に各種機能層を積層した液晶ディスプレイパネル や !_巳口実装パネルであるリジッ ド基板 1 2の電極にフレキシブル基板 1 4 が異方導電膜 1 5により電気的に接続されている。 更に詳細に説明すると、 液晶ディスプレイパネルの場合は、 リジッ ド基板 1 2は、 偏光板 1 2 3と、 第 1の透明電極付きガラス基板 1 2匕と、 第 2の透明電極付きガラス基板 1 2 と、 前記第 1のガラス基板 1 2匕と前記第 2のガラス基板 1 2 とに挟 持されている液晶層
Figure imgf000010_0001
液晶を封止する封止材 1 3と、 第 2のガラス 基板 1 2 側の背面に配置された偏光板 1 2 6とバックライ トユニッ ト 1 2 干とが順次積層されて成る。 本発明の電子基板 1 0において、 第 2の透明電 極付きガラス基板 1 2 の端部には、 異方導電膜 1 5を介してフレキシブル 基板 1 4が設けられている。 さらに、 異方導電膜 1 5の短絡や剥離を防止す るために、 異方導電膜 1 5を被覆するように、 弾性保護部材
Figure imgf000010_0002
2 0匕 が設けられている。 なお、 電子基板 1 〇の構造は、 上述の構造に限るもので はなく、 リジッ ド基板 1 2がフレキシブル基板 1 4に比べて硬質の基板であ れば、 如何なる構成であってもよい。 一例を挙げれば、 例えばガラスエポキ シ樹脂基板、 フエノール樹脂基板、 シリコン基板、 セラミックス基板などで あっても良い。 また、 丁 丁液晶ディスプレイの場合には、 第 1透明電極付 \¥0 2020/175196 9 卩(:171? 2020 /005876
Next, the electronic substrate 10 used in the image display device will be described as an example with reference to FIGS. 2 and 3. Therefore, the electronic substrate 10 according to the embodiment of the present invention is not limited to the electronic substrates shown in FIGS. As shown in Fig. 2 and Fig. 3, for example, the flexible substrate 14 is connected to the anisotropic conductive film on the electrodes of the liquid crystal display panel or the rigid substrate 12 which is the Mitsuguchi mounting panel by laminating various functional layers on the glass substrate. 1 5 electrically connected. In more detail, in the case of the liquid crystal display panel, Riji' de board 1 2 polarizer 1 2 3, and the first transparent electrode-coated glass substrate 1 2 spoon, with the second transparent electrode glass substrate 1 2 And a liquid crystal layer sandwiched between the first glass substrate 12 and the second glass substrate 12
Figure imgf000010_0001
An encapsulating material 13 for encapsulating liquid crystal, a polarizing plate 1 26 and a backlight unit 12 2 arranged on the back surface of the second glass substrate 12 side are sequentially laminated. In the electronic substrate 10 of the present invention, the flexible substrate 14 is provided at the end of the second glass substrate 12 with a transparent electrode via the anisotropic conductive film 15. Furthermore, in order to prevent the anisotropic conductive film 15 from being short-circuited or peeled off, the anisotropic conductive film 15 is covered with an elastic protective member.
Figure imgf000010_0002
There are 20 tanks. The structure of the electronic substrate 10 is not limited to the structure described above, and any structure may be used as long as the rigid substrate 12 is a harder substrate than the flexible substrate 14. As an example, it may be a glass epoxy resin substrate, a phenol resin substrate, a silicon substrate, a ceramics substrate, or the like. Also, in the case of a LCD monitor, the first transparent electrode is attached. \¥0 2020/175 196 9 卩 (: 171? 2020 /005876
きガラス基板 1 2匕は、 第 1透明電極及びカラーフィルタ付きガラス基板と なり、 第 2透明電極付きガラス基板 1 2 は、 第 2透明電極及び丁 丁付き ガラス基板となる。 The glass substrate 12 is the glass substrate with the first transparent electrode and the color filter, and the glass substrate 12 with the second transparent electrode is the glass substrate with the second transparent electrode and the knife.
[0023] 図 2は、 フレキシブル基板 1 4を折曲げる前の状態を示す部分拡大断面図 である。 後述する光硬化性組成物が、 リジッ ド基板 1 2とフレキシブル基板 1 4の接続部で、 折曲げ部 1 6の内側または外側の少なくとも一方に塗布さ れ、 例えば紫外線などにより硬化して、 弾性保護部材 2 0
Figure imgf000011_0001
2 0匕が形成 される。 第 1の透明電極付きガラス基板 1 2匕側は、 第 1の透明電極付きガ ラス基板 1 2匕等の先端と異方導電膜 1 5とフレキシブル基板 1 4の一部と を含む境界領域 3 0 3を覆うように、 弾性保護部材 2 0 3が設けられている 。 これに対して、 第 2の透明電極付きガラス基板 1 2 側は、 第 2の透明電 極付きガラス基板 1 2 の先端と異方導電膜 1 5とフレキシブル基板 1 4の 一部とを含む境界領域 3 0匕を覆うように弾性保護部材 2 0匕が設けられて いる。 これによりリジッ ド基板 1 2とフレキシブル基板 1 4とを導通接続す る異方導電膜 1 5は、 弾性保護部材 2〇 3 , 2 0匕により封止される。
[0023] Fig. 2 is a partially enlarged cross-sectional view showing a state before the flexible substrate 14 is bent. The photo-curable composition described below is applied to at least one of the inside and the outside of the bent portion 16 at the connecting portion between the rigid substrate 12 and the flexible substrate 14, and is cured by, for example, ultraviolet rays to give elasticity. Protective member 20
Figure imgf000011_0001
20 pits are formed. The glass substrate with the first transparent electrode 1 2 The boundary side including the tip of the glass substrate with the first transparent electrode 1 2 and the anisotropic conductive film 15 and a part of the flexible substrate 1 2 0 3 so as to cover, it is provided elastic protective member 2 0 3. On the other hand, on the side of the second glass substrate 12 with a transparent electrode, the boundary including the tip of the second glass substrate 12 with a transparent electrode, the anisotropic conductive film 15 and a part of the flexible substrate 14 is provided. An elastic protective member 20 is provided so as to cover the region 30. As a result, the anisotropic conductive film 15 which electrically connects the rigid substrate 12 and the flexible substrate 14 is sealed by the elastic protective members 20 3 and 20.
[0024] 次に、 図 2に示す白抜矢印方向に、 フレキシブル基板 1 4を折曲げた状態 が、 図 3に示されている。 図 3に示すように、 フレキシブル基板 1 4におい て弾性保護部材 2 0 3 , 2 0匕が形成された部分は、 フレキシブル基板 1 4 および弾性保護部材 2 0 3 , 2 0匕が所定の厚みと可撓性を備えることから 、 リジッ ド基板 1 2の端部から突出して折曲げられ、 折曲げ部 1 6が形成さ れる。 この折曲げ時における、 リジッ ド基板 1 2の端部から突出したフレキ シブル基板 1 4の折曲げ部 1 6の突出端までの距離を、 突出幅 4 0という。 そして、 上述したように、 この突出幅 4 0が、 1 0 0〜 4 0 0 〇1であり、 好ましくは 1 0 0〜 3 5 0 〇1であり、 より好ましくは 1 5 0〜 3 5 0 〇1 である。 なお、 リジッ ド基板 1 2の端部は、 リジッ ド基板 1 2の表面を正面 (即ち平面視) から見たとき、 フレキシブル基板 1 4とリジッ ド基板 1 2と が重なる領域において、 折曲げ方向に最も突出している端部を意味する。 一 方、 フレキシブル基板 1 4の折曲げ部 1 6の突出端は、 前記同様に平面視で 、 リジッ ド基板 1 2の端部から最も離れたフレキシブル基板 1 4の突出端で あって、 折曲げの外側となるフレキシブル基板 1 4の基材 (樹脂フィルム) の表面を示すものとする。 また、 ここでは平面視で観察した例としたが、 前 記端部および突出端を観察する方向は、 表面側に限定するものではなく、 例 えば側面から観察しても良いものとする。 Next, FIG. 3 shows a state where the flexible substrate 14 is bent in the direction of the white arrow shown in FIG. As shown in FIG. 3, in the flexible substrate 14 where the elastic protection members 2 0 3 and 20 are formed, the flexible substrate 14 and the elastic protection members 2 0 3 and 20 Since it has flexibility, it is projected and bent from the end of the rigid substrate 12 to form a bent portion 16. The distance from the end of the rigid substrate 12 to the protruding end of the bent portion 16 of the flexible substrate 14 at the time of this bending is referred to as the protruding width 40. Then, as described above, the protrusion width 40 is 100 to 400, preferably 100 to 3501, more preferably 150 to 350. 〇 1. In addition, when the surface of the rigid board 12 is viewed from the front (that is, in plan view), the ends of the rigid board 12 are bent in the bending direction in a region where the flexible board 14 and the rigid board 12 overlap. Means the most protruding end. On the other hand, the projecting end of the bent portion 16 of the flexible substrate 14 is similar to the above in plan view. , The surface of the base material (resin film) of the flexible substrate 14 that is the protruding end of the flexible substrate 14 farthest from the end of the rigid substrate 12 and is the outside of the bending. In addition, here, although an example of observing in a plan view is used, the direction of observing the end portion and the protruding end is not limited to the front surface side, and for example, the side surface may be observed.
[0025] <フレキシブル基板 > [0025] <Flexible substrate>
本発明の一実施形態に係るフレキシブル基板 1 4は、 ポリイミ ドフィルム やポリエステルフィルム等の樹脂フィルムでなる基板であり、 通常は樹脂フ ィルムの上に少なくとも配線体が形成されている。 本発明の一実施形態に係 るフレキシブル基板 1 4では、 ポリイミ ドフィルムの上に配線体が設けられ ていることが好ましい。 また、 フレキシブル基板 1 4の厚みは、 1 5〜 2 0 0 M mであることがより好ましい。 所定の弾性保護部材を形成するため、 フ レキシブル基板 1 4が、 上述の厚みのポリイミ ドフィルムであっても、 フレ キシブル基板 1 4の折曲げ部 1 6の突出幅 4 0を、 従来に比べ、 小さくする ことができる。 A flexible substrate 14 according to an embodiment of the present invention is a substrate made of a resin film such as a polyimide film or a polyester film, and usually at least a wiring body is formed on the resin film. In the flexible substrate 14 according to the embodiment of the present invention, it is preferable that the wiring body is provided on the polyimide film. Further, the thickness of the flexible substrate 14 is more preferably 15 to 200 Mm. In order to form a predetermined elastic protection member, even if the flexible substrate 14 is a polyimide film having the above-mentioned thickness, the protrusion width 40 of the bent portion 16 of the flexible substrate 14 is , Can be made smaller.
[0026] また、 前記フレキシブル基板 1 4は、 前記配線体の他にレジスト層を備え るものとすることができる。 また、 さらに電子素子が実装されていている、 いわゆるチップオンフィルムとしてもよい。 その場合には、 前記電子素子は 折曲げ部の最も屈曲する部分を避けて配置することが好ましい。 Further, the flexible substrate 14 may include a resist layer in addition to the wiring body. Further, it may be a so-called chip-on-film on which an electronic element is further mounted. In that case, it is preferable that the electronic element is arranged so as to avoid the most bent portion of the bent portion.
[0027] <弾性保護部材> [0027] <Elastic protection member>
本発明の一実施形態に係る弾性保護部材は、 ナノインデンテーション試験 で測定されるマルテンス^!さが、 0 . 1〜 0 . 5 N / m m 2であることが好ま しい。 前記弾性保護部材のマルテンス硬さを、 〇. 1〜〇. 5 N / m m 2の範 囲にすることにより、 リジッ ド基板の端部からフレキシブル基板にかけて前 記弾性保護部材が、 優れた可撓性に加えて、 伸長性および圧縮性をも有し、 フレキシブル基板を折曲げた際の屈曲半径を、 従来に比べ小さくすることが できる。 より具体的には、 前記弾性保護部材がフレキシブル基板の内側に配 置されている場合には、 折曲げた際に弾性保護部材が圧縮されることで屈曲 \¥0 2020/175196 1 1 卩(:171? 2020 /005876 In the elastic protection member according to the embodiment of the present invention, the martens ^! measured by the nanoindentation test is preferably 0.1 to 0.5 N / mm 2 . By setting the Martens hardness of the elastic protection member within the range of 0.1 to 0.5 N/mm 2 , the elastic protection member described above has excellent flexibility from the end of the rigid board to the flexible board. In addition to elasticity, it also has extensibility and compressibility, and the bending radius when the flexible substrate is bent can be made smaller than in the past. More specifically, when the elastic protection member is arranged inside the flexible substrate, the elastic protection member is compressed by bending when bent, so that the elastic protection member is bent. \\0 2020/175 196 1 1 卩 (: 171? 2020 /005876
半径を小さくできる。 一方、 前記弾性保護部材がフレキシブル基板の外側に 配置されている場合には、 折曲げた際に弾性保護部材が弱い応力で伸長され ることで屈曲半径を小さくできる。 これにより、 前記リジッ ド基板の端部か ら外側に突出した前記フレキシブル基板の折曲げ部の突出幅 4 0 (即ち、 リ ジッ ド基板の端部からのフレキシブル基板のはみ出し量) を、 従来に比べ、 小さくすることができる。 The radius can be reduced. On the other hand, when the elastic protection member is arranged outside the flexible substrate, the bending radius can be reduced by the elastic protection member being stretched with a weak stress when being bent. As a result, the protrusion width 40 of the bent portion of the flexible substrate that protrudes outward from the end of the rigid substrate (that is, the amount of protrusion of the flexible substrate from the end of the rigid substrate) is In comparison, it can be made smaller.
[0028] 前記マルテンス硬さは〇. 1〜〇. 3
Figure imgf000013_0001
であることがより好ましい
[0028] The Martens hardness is 0.1 to 0.3.
Figure imgf000013_0001
Is more preferable
。 前記硬さを有する弾性保護層材料を用いると、 弱い応力で屈曲半径を小さ くできる。 したがって、 フレキシブル基板やリジッ ド基板への負荷が小さく 、 例えば、 破損しやすいガラス基板や薄型基板に適用する際に好適である。 また、 前記マルテンス硬さが 0 . 3〜〇.
Figure imgf000013_0002
屈 曲半径を小さくするための応力は大きくなるが、 高強度で擦れに強く、 大型 の基板や、 振動などの衝撃が加わる用途に好適である。
.. When the elastic protective layer material having the above hardness is used, the bending radius can be reduced with a weak stress. Therefore, the load on the flexible substrate or the rigid substrate is small, and it is suitable for application to, for example, a glass substrate or a thin substrate that is easily damaged. Further, the Martens hardness is 0.3 to 〇.
Figure imgf000013_0002
Although the stress for reducing the bending radius becomes large, it is high in strength and resistant to rubbing, and is suitable for large substrates and applications where shock such as vibration is applied.
[0029] 本発明の一実施形態に係る弾性保護部材のヤング率は、 〇. 1〜 3 . 0 1\/1 [0029] The Young's modulus of the elastic protection member according to the embodiment of the present invention is:
3であり、 好ましくは〇. 1〜 1 .
Figure imgf000013_0003
の範囲であり、 より好ましく は〇. 1〜〇. 3 1\/1 3の範囲である。 なお、 ヤング率の測定方法について は、 後述する。 上記範囲のヤング率を有する弾性保護部材を用いることによ り、 適度の硬さを有し、 これにより、 従来に比べ、 フレキシブル基板の屈曲 半径を小さくすることができる。 その結果、 前記リジッ ド基板の端部から外 側に突出した前記フレキシブル基板の折曲げ部の突出幅を、 従来に比べ、 小 さくすることができる。
3, preferably from 0.1 to 1.
Figure imgf000013_0003
The range is from 0.1 to 0. 3 1\/1 3. The method of measuring Young's modulus will be described later. By using the elastic protection member having the Young's modulus in the above range, the elastic protection member has an appropriate hardness, which makes it possible to reduce the bending radius of the flexible substrate as compared with the conventional case. As a result, the protrusion width of the bent portion of the flexible substrate that protrudes outward from the end portion of the rigid substrate can be made smaller than in the conventional case.
[0030] ところで、 フレキシブル基板を保護するために前記弾性保護層は所定の強 度を有している。 このとき、 弾性保護層の強度を高めすぎると、 所定の突出 幅となるようにフレキシブル基板を折曲げた際に、 フレキシブル基板から弾 性保護層が剥離しやすいことが判明した。 発明者が鋭意検討したところ、 弾 性保護層の強度 (ヤング率) と、 弾性保護層とフレキシブル基板の剥離力の 関係が所定の範囲であると、 所定の突出幅となるようにフレキシブル基板を 折曲げた際にも剥離が生じないことを見出した。 すなわち、 前記弾性保護部 \¥0 2020/175196 12 卩(:17 2020 /005876 By the way, the elastic protective layer has a predetermined strength in order to protect the flexible substrate. At this time, it was found that if the strength of the elastic protective layer is increased too much, the elastic protective layer is easily peeled from the flexible substrate when the flexible substrate is bent to have a predetermined protrusion width. As a result of diligent studies by the inventor, when the relationship between the strength (Young's modulus) of the elastic protective layer and the peeling force between the elastic protective layer and the flexible substrate is within a predetermined range, the flexible substrate is provided with a predetermined protrusion width It was found that peeling did not occur even when bent. That is, the elastic protection part \¥0 2020/175 196 12 卩 (: 17 2020 /005876
材のフレキシブル基板に対する剥離カ を、 下記 (1) 式で示すことができ る。 The peeling force of the material from the flexible substrate can be expressed by the following equation (1).
>1 0 0 X 4 (巳) + 2 5 0 (1) >100 x 4 (Min) +250 (1)
式中、 :剥離力 (1\1 /〇〇 、 巳 :ヤング率
Figure imgf000014_0001
In the formula,: Peeling force (1\1/○○, Mitsu: Young's modulus
Figure imgf000014_0001
前記弾性保護部材の剥離カ が、 上記 (1) 式の関係を有することにより 、 フレキシブル基板をリジッ ド基板の端部から折曲げた際に、 従来に比べ、 保護部材がリジッ ド基板及びフレキシブル基板から剥がれることなく、 フレ キシブル基板の屈曲半径を小さくすることができる。 その結果、 変形に対す る耐久性を維持しながら、 前記リジッ ド基板の端部から外側に突出した前記 フレキシブル基板の折曲げ部の突出幅を、 従来に比べ、 小さくすることがで きる。 なお、 剥離力の測定方法は後述する。 Since the peeling force of the elastic protection member has the relationship of the above formula (1), when the flexible substrate is bent from the end of the rigid substrate, the protection member has a rigid substrate and a flexible substrate more than the conventional one. It is possible to reduce the bending radius of the flexible substrate without peeling off from the flexible substrate. As a result, it is possible to reduce the protrusion width of the bent portion of the flexible substrate that protrudes outward from the end portion of the rigid substrate, while maintaining durability against deformation, as compared with the conventional case. The method for measuring the peeling force will be described later.
[0031 ] 後述するヤング率と剥離率との関係のグラフが、 図 8に示されている。 こ のグラフは、 本明細書の実施例の試料を基に作成されたグラフである。 図 8 に示されているように、 変形に対する耐久性の優劣を決する回帰直線として 、 F = 1 O O X I n (巳) + 2 5 0を見出した。 弾性保護部材の剥離カ が 上記 (1) 式の条件を満たすことによって、 フレキシブル基板をリジッ ド基 板の端部から折曲げた際に、 保護部材が剥がれることなく、 従来に比べ、 フ レキシブル基板の屈曲半径を小さくすることができる。 さらに、 リペア性の 優劣を決する回帰直線として、 F = 1 0 0 X I n (º) + 7 6 0を見いだし た。 弾性保護部材の剥離カ が、 前述 (2) 式の条件を満たすことによって 、 所望の硬さと密着性を有しつつ、 基材からの引きはがしが可能であり、 エ 程手直し (リペア) が可能となる。 この回帰直線を超える剥離力を備える場 合には、 フレキシブル基板に対する弾性保護部材の密着力が強すぎてしまい 、 剥離しようとした際に弾性保護部材が千切れてしまうため、 リペアし難く なる。 [0031] A graph of the relationship between Young's modulus and peeling rate, which will be described later, is shown in Fig. 8. This graph is a graph created based on the samples of the examples of the present specification. As shown in Fig. 8, we found F = 1 O O X I n (Mi) + 250 as a regression line that determines the superiority or inferiority of durability against deformation. If the peeling force of the elastic protective member satisfies the condition of the above formula (1), the flexible substrate is not peeled off when the flexible substrate is bent from the end of the rigid substrate, and the flexible substrate is more flexible than before. The bending radius of can be reduced. Furthermore, we found F = 100 X I n (º) + 760 as a regression line that determines the superiority or inferiority of repairability. If the peeling force of the elastic protection member satisfies the condition of the above-mentioned formula (2), it can be peeled from the base material while having desired hardness and adhesiveness, and can be repaired (repair). Becomes If the peeling force exceeds the regression line, the adhesion of the elastic protection member to the flexible substrate will be too strong, and the elastic protection member will break when attempting to peel it off, making repairing difficult.
[0032] さらに、 本発明の一実施形態に係る弾性保護部材は、 図 9に示すように、 大きく分けて 3つの好ましい範囲を有する。 即ち、 本発明の弾性保護部材は 、 ヤング率巳
Figure imgf000014_0002
が 1 . 0 £巳£ 3 . 0であって剥離カ \¥0 2020/175196 13 卩(:171? 2020 /005876
Further, as shown in FIG. 9, the elastic protection member according to the embodiment of the present invention is roughly divided into three preferable ranges. That is, the elastic protective member of the present invention has a Young's modulus
Figure imgf000014_0002
Is 1.0 £ £ 3.0 and the peeling \\0 2020/175 196 13 卩 (: 171? 2020 /005876
が 2 5 0 £ £ 8 0 0である範囲〇が特に好ましく、 ヤング率巳
Figure imgf000015_0001
が〇. 3<巳£ 1 . 0であって剥離カ (1\1 /〇〇
Figure imgf000015_0002
Is particularly preferable in the range ◯, which is 250 £ £ 800.
Figure imgf000015_0001
Is 0.3 <M £ 1.0 and the peeling force (1\1/
Figure imgf000015_0002
ある範囲巳がさらに好ましく、 ヤング率巳
Figure imgf000015_0003
が〇. 1 £巳£〇. 3 であって剥離カ (1\1 /〇〇 が 8 0 £ £ 5 5 0である範囲八がさらに好ま しい。 前記範囲<3の性質を有する弾性保護部材を用いると、 屈曲半径を小さ くするための応力は大きくなるが、 高強度で擦れに強く、 大型の基板や、 振 動などの衝撃が加わる用途に好適である。 一方、 前記範囲八の性質を有する 弾性保護層材料を用いると、 弱い応力で屈曲半径を小さくできる。 したがっ て、 フレキシブル基板やリジッ ド基板への負荷が小さく、 例えば破損しやす いガラス基板や薄型基板に適用する際に好適である。 このため、 特に高いレ ベルで小型化 ·共額縁化したい場合には、 範囲 の性質を有することが好ま しい。 他方、 範囲巳は中間的な性質を有する弾性保護部材であり、 広い用途 に用いやすい点で好ましい。
A certain range is more preferable, and Young's modulus is
Figure imgf000015_0003
Is more preferable to be a peeling force (1\1/○○ is 80 ££550), the range 8 is more preferable. The elastic protective member having the property of the above range <3. When used, the stress for reducing the bending radius becomes large, but it is high-strength and resistant to rubbing, and is suitable for a large substrate or an application to which a shock such as vibration is applied. The bending radius can be reduced with weak stress by using an elastic protective layer material that has the property of: Therefore, it is suitable when applied to a glass substrate or a thin substrate that is easily damaged and has a small load on a flexible substrate or a rigid substrate. Therefore, it is preferable to have a range property when downsizing at a high level and co-framed.On the other hand, a range member is an elastic protective member having an intermediate property and has a wide range. It is preferable because it is easy to use for various purposes.
[0033] 〔光硬化性組成物〕 [0033] [Photocurable composition]
本発明の一実施形態に係る光硬化性組成物は、 電子基板に塗布した後に光 を照射して硬化させることにより、 保護層を形成する光硬化性組成物であっ て、 単官能脂環式 (メタ) アクリル酸エステルモノマーと、 単官能脂肪族 ( メタ) アクリル酸エステルモノマーと、 単官能高極性モノマーと、 熱可塑性 エラストマーと、 ラジカル重合開始剤とを含み、 未硬化時の粘度が、 1 〇〜
Figure imgf000015_0004
3の範囲であり、 硬化後の硬化体のヤング率が、 0 . 1〜 3 . の範囲である。
The photocurable composition according to one embodiment of the present invention is a photocurable composition that forms a protective layer by applying light to an electronic substrate and then curing the composition. (Meth)acrylic acid ester monomer, monofunctional aliphatic (meth)acrylic acid ester monomer, monofunctional high-polarity monomer, thermoplastic elastomer, and radical polymerization initiator, and the uncured viscosity is 1 〇〜
Figure imgf000015_0004
The Young's modulus of the cured product is in the range of 0.1 to 3.
[0034] ここで、 「単官能脂環式 (メタ) アクリル酸エステルモノマー」 は、 単官 能脂環式アクリル酸エステルモノマーおよび単官能脂環式メタクリル酸エス テルモノマーを含む意味である。 「単官能脂肪族 (メタ) アクリル酸エステ ルモノマー」 は、 単官能脂肪族アクリル酸エステルモノマーおよび単官能脂 肪族メタクリル酸エステルモノマーを含む意味である。 同様に、 「単官能高 極性モノマー」 は、 単官能高極性アクリル酸エステルモノマーおよび単官能 高極性メタクリル酸エステルモノマー、 アクリルアミ ド系モノマーを含む意 \¥02020/175196 14 卩(:171? 2020 /005876 [0034] Here, the "monofunctional alicyclic (meth)acrylic acid ester monomer" is meant to include a monofunctional alicyclic acrylic acid ester monomer and a monofunctional alicyclic methacrylic acid ester monomer. The “monofunctional aliphatic (meth)acrylic acid ester monomer” is meant to include a monofunctional aliphatic acrylic acid ester monomer and a monofunctional aliphatic methacrylic acid ester monomer. Similarly, “monofunctional highly polar monomer” is meant to include monofunctional highly polar acrylate monomers and monofunctional highly polar methacrylic acid monomers, acrylate monomers. \¥02020/175196 14 卩 (: 171? 2020 /005876
味である。 The taste.
[0035] 本発明の一実施形態に係る光硬化性組成物は、 上述の各成分を含み、 上述 の範囲の未硬化時の粘度を有することにより、 塗布し易く作業性に優れ、 硬 化後の硬化体が上述の範囲のヤング率を有することにより、 硬化体は所望の 柔軟性を有する。 また、 本発明の光硬化体組成物の硬化体は、 上述の電子基 板 1 0の弾性保護部材として用いられてもよい。 [0035] A photocurable composition according to an embodiment of the present invention contains the above-mentioned components and has an uncured viscosity within the above range, so that it is easy to apply and excellent in workability, and after curing. By having the Young's modulus of the cured body of the above range, the cured body has desired flexibility. In addition, the cured product of the photocurable composition of the present invention may be used as an elastic protection member for the electronic substrate 10 described above.
[0036] 本発明の一実施形態に係る光硬化性組成物の塗布性の観点から、 前記光硬 化性組成物の未硬化時の粘度は、 1 〇〜 5000
Figure imgf000016_0001
3の範囲であり、 好ましくは 50〜 2000
Figure imgf000016_0002
3の範囲であり、 より好ましくは 90〜 1 00001 3 3の範囲である。 特に凹凸を有する塗布対象の所定領域に 、 所定厚みとなるようにジエツ トディスペンサ等の非接触型の塗布装置を用 いて光硬化性組成物を塗布する場合には、 塗布量を高精度で制御するために 、 粘度を 9〇〜 1 000〇1 3 3とすることが好ましい。
From the viewpoint of coatability of the photocurable composition according to an embodiment of the present invention, the uncured viscosity of the photocurable composition is from 10 to 5000.
Figure imgf000016_0001
Range of 3, preferably 50-2000
Figure imgf000016_0002
It is in the range of 3, and more preferably in the range of 90 to 1000001 33. Especially when the photocurable composition is applied to a predetermined area having unevenness by using a non-contact type coating device such as a jet dispenser so as to have a predetermined thickness, the coating amount can be controlled with high accuracy. Therefore, it is preferable that the viscosity is 90 to 1,000,000 133.
[0037] また、 硬化体として所望の柔軟性を付与する観点から、 前記光硬化性組成 物の硬化後の硬化体のヤング率は、 〇. 1 ~3.
Figure imgf000016_0003
の範囲であり、 好 ましくは〇. 1 ~ 1 .
Figure imgf000016_0004
3の範囲であり、 より好ましくは〇. 1 〜〇.
[0037] From the viewpoint of imparting desired flexibility as a cured product, the Young's modulus of the cured product of the photocurable composition is from 0.01 to 3.
Figure imgf000016_0003
The range is 0, preferably 1 to 1.
Figure imgf000016_0004
It is in the range of 3, and more preferably 0,1 to 0.
3 IV! 8の範囲である。 It is in the range of 3 IV! 8.
[0038] 前記光硬化組成物の硬化後の硬化体の剥離カ が、 下記 ( 1 ) 式の関係を 示す。 [0038] The peeling force of the cured product after curing the photocurable composition shows the relationship of the following formula (1).
> 1 00X 4 (巳) + 250 ( 1 ) > 100 x 4 (Min) + 250 (1)
式中、 :剥離力
Figure imgf000016_0005
巳 : ヤング率
Figure imgf000016_0006
In the formula,: Peeling force
Figure imgf000016_0005
Mami: Young's modulus
Figure imgf000016_0006
前記光硬化組成物の硬化後の硬化体の剥離カ が、 上記 ( 1 ) 式の関係を 有することにより、 前記光硬化組成物を硬化させて得られる硬化体は、 所望 の硬さを有しつつ耐久性に優れる。 The cured product obtained by curing the photocurable composition has a desired hardness because the peeling force of the cured product of the photocurable composition has the relationship of the above formula (1). While having excellent durability.
[0039] 前記光硬化組成物の硬化後の硬化体の剥離カ が、 下記 (2) 式の関係を 示す。 [0039] The peeling force of the cured product after curing the photocurable composition shows the relationship of the following formula (2).
< 1 00X 4 (巳) + 7 60 (2) <100 X 4 (Mimi) + 7 60 (2)
:剥離力
Figure imgf000016_0007
\¥02020/175196 15 卩(:171? 2020 /005876
: Peel force
Figure imgf000016_0007
\¥02020/175196 15 卩 (: 171? 2020 /005876
º :ヤング率 (IV! 3) º: Young's modulus (IV! 3)
前記光硬化組成物の硬化後の硬化体の剥離カ が、 下記 (2) 式の関係を 有することにより、 前記光硬化組成物を硬化させて得られる硬化体は、 所望 の硬さと密着性を有しつつ、 基材からの引きはがしが可能であり、 工程手直 し性 (リペア性) に優れる。 Since the peeling force of the cured product of the photocurable composition has the relationship of the following formula (2), the cured product obtained by curing the photocurable composition has desired hardness and adhesion. While having it, it can be peeled off from the base material and has excellent process reworkability (repairability).
[0040] さらに、 本発明の一実施形態に係る光硬化組成物の硬化後の硬化体は、 図 [0040] Furthermore, the cured product of the photocurable composition according to one embodiment of the present invention after curing is
9に示すように、 大きく分けて 3つの好ましい範囲を有する。 即ち、 本発明 の前記硬化体は、 ヤング率巳 (IV! 3) が 1. 0£巳£3. 0であって剥離 カ
Figure imgf000017_0001
が 250£ £800である範囲〇が特に好ましく、 ヤング 率巳
Figure imgf000017_0002
が〇. 3<巳£ 1. 0であって剥離カ
Figure imgf000017_0003
が 1 40 £ £ 740である範囲巳がさらに好ましく、 ヤング率巳 (IV! 3) が〇.
As shown in 9, it has three preferable ranges. That is, the cured product of the present invention has a Young's modulus (IV! 3) of 1.0 £ 3.0 and a peeling strength of
Figure imgf000017_0001
Is particularly preferred in the range 〇, which is 250 £ £800.
Figure imgf000017_0002
Is 0.3 <M £ 1.0 and the peeling force is
Figure imgf000017_0003
Is more preferred, with a Young's modulus (IV! 3) of 〇.
1 £º£〇. 3であって剥離カ
Figure imgf000017_0004
が 80£ £550である範囲 八がさらに好ましい。 前記範囲(3の性質を有する硬化体でなる弾性保護部材 を形成すれば、 屈曲半径を小さくするための応力は大きくなるが、 高強度で 擦れに強く、 大型の基板や、 振動などの衝撃が加わる用途に好適である。 一 方、 前記範囲八の性質を有する硬化体でなる弾性保護部材を形成すれば、 弱 い応力で屈曲半径を小さくできる。 したがって、 フレキシブル基板やリジッ ド基板への負荷が小さく、 例えば破損しやすいガラス基板や薄型基板に適用 する際に好適である。 このため、 特に高いレベルで小型化 ·共額縁化したい 場合には、 範囲八の性質を有することが好ましい。 他方、 範囲巳は中間的な 性質を有する硬化体であり、 広い用途に用いやすい点で好ましい。
1 £ º £ 〇 0.3 and peeling power
Figure imgf000017_0004
Is more preferably 80 £ £550. If an elastic protective member made of a hardened material having the above-mentioned range (3) is formed, the stress for reducing the bending radius increases, but it is high in strength and resistant to rubbing, and large substrates and shocks such as vibration are On the other hand, if an elastic protective member made of a cured material having the properties of the above range 8 is formed, the bending radius can be reduced with a weak stress, so that the load on the flexible substrate or the rigid substrate can be reduced. Therefore, it is suitable when applied to a glass substrate or a thin substrate that is easily damaged, etc. For this reason, it is preferable to have the property of range 8 especially when it is desired to downsize and co-frame at a high level. Range M is a cured product having intermediate properties, and is preferable because it is easy to use in a wide range of applications.
[0041] 次に、 光硬化性組成物の含有成分について説明する。 [0041] Next, the components contained in the photocurable composition will be described.
[0042] 単官能脂環式 (メタ) アクリル酸エステルモノマー: [0042] Monofunctional alicyclic (meth)acrylic acid ester monomer:
単官能脂環式 (メタ) アクリル酸エステルモノマーは、 液状組成物であり 、 熱可塑性エラストマーを溶解する成分である。 また、 単官能脂環式 (メタ ) アクリル酸エステルモノマーを配合することで、 光硬化性組成物の硬化後 における硬化体の接着力を高めつつ、 被着物に対して硬化体を剥したときに 糊残りを少なくすることができる。 また、 硬化体を強靭にしてヤング率を高 \¥0 2020/175196 16 卩(:171? 2020 /005876 The monofunctional alicyclic (meth)acrylic acid ester monomer is a liquid composition and is a component that dissolves the thermoplastic elastomer. In addition, when a monofunctional alicyclic (meth)acrylic acid ester monomer is blended, the adhesive force of the cured product after curing of the photocurable composition is enhanced, and when the cured product is peeled from the adherend. Adhesive residue can be reduced. In addition, the Young's modulus is increased by strengthening the cured body. \\0 2020/175 196 16 卩(: 171? 2020 /005876
める効果がある。 加えて、 この成分の割合を多くすると防湿性を高めること ができる。 Has the effect of In addition, increasing the proportion of this component can increase the moisture resistance.
[0043] 単官能脂環式 (メタ) アクリル酸エステルモノマーとして具体的には、 イ ソボルニルアクリレート、 シクロヘキシルアクリレート、 ジシクロペンタニ ルアクリレート、 3 , 3 , 5—トリメチルシクロヘキシルアクリレート、 4 — ㊀ 「 1:—ブチルシクロヘキシルアクリレート等が挙げられる。 [0043] Specific examples of the monofunctional alicyclic (meth)acrylic acid ester monomer include isobornyl acrylate, cyclohexyl acrylate, dicyclopentanyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, 4 — ㊀ “1: —Butylcyclohexyl acrylate and the like.
[0044] 単官能脂肪族 (メタ) アクリル酸エステルモノマー: [0044] Monofunctional aliphatic (meth)acrylic acid ester monomer:
単官能脂肪族 (メタ) アクリル酸エステルモノマーは、 液状組成物であり 、 前述の単官能脂環式 (メタ) アクリル酸エステルモノマーと共に熱可塑性 エラストマーを溶解するための成分である。 単官能脂肪族 (メタ) アクリル 酸エステルモノマーを配合することで、 光硬化性組成物の硬化後に得られる 硬化体の柔軟性を高め、 ヤング率を下げることができる。 The monofunctional aliphatic (meth)acrylic acid ester monomer is a liquid composition and is a component for dissolving the thermoplastic elastomer together with the above-mentioned monofunctional alicyclic (meth)acrylic acid ester monomer. By blending a monofunctional aliphatic (meth)acrylic acid ester monomer, the flexibility of the cured product obtained after curing the photocurable composition can be increased and the Young's modulus can be reduced.
[0045] 単官能脂肪族 (メタ) アクリル酸エステルモノマーとして具体的には、 エ トキシジエチレングリコールアクリレート、 2—エチルヘキシルジグリコー ルアクリレート、 ブトキシエチルアクリレートなどの脂肪族エーテル系 (メ 夕) アクリル酸エステルモノマーや、 ラウリルアクリレート、 ステアリルア クリレート、 イソステアリルアクリレート、 デシルアクリレート、 イソデシ ルアクリレート、 イソノニルアクリレート、 门一オクチルアクリレート等の 脂肪族炭化水素系 (メタ) アクリル酸エステルモノマーが挙げられる。 脂肪 族炭化水素系 (メタ) アクリル酸エステルモノマーを使用することで、 熱可 塑性エラストマーのソフトセグメントとの相溶性が高め、 光硬化性組成物の 粘度を下げることができる。 [0045] Specific examples of the monofunctional aliphatic (meth)acrylic acid ester monomer include aliphatic ether (meth)acrylic acid ester monomers such as ethoxydiethylene glycol acrylate, 2-ethylhexyl diglycol acrylate, and butoxyethyl acrylate. And aliphatic hydrocarbon (meth)acrylic acid ester monomers such as lauryl acrylate, stearyl acrylate, isostearyl acrylate, decyl acrylate, isodecyl acrylate, isononyl acrylate, and mono-octyl acrylate. By using the aliphatic hydrocarbon (meth)acrylic acid ester monomer, the compatibility with the soft segment of the thermoplastic elastomer can be increased and the viscosity of the photocurable composition can be lowered.
[0046] 単官能高極性モノマー: [0046] Monofunctional highly polar monomer:
単官能高極性モノマーは、 液状組成物であり単官能高極性モノマーを配合 することで、 光硬化性組成物の硬化後に得られる硬化体の密着性を高めるこ とができる。 The monofunctional highly polar monomer is a liquid composition, and by admixing the monofunctional highly polar monomer, it is possible to enhance the adhesion of the cured product obtained after curing the photocurable composition.
[0047] 単官能高極性モノマーとして具体的には、 ヒドロキシル基含有アクリル酸 エステルモノマー、 グリシジル基含有アクリル酸エステルモノマー、 アクリ \¥0 2020/175196 17 卩(:171? 2020 /005876 [0047] Specific examples of the monofunctional highly polar monomer include a hydroxyl group-containing acrylic acid ester monomer, a glycidyl group-containing acrylic acid ester monomer, and an acrylic acid. \¥0 2020/175 196 17 卩(: 171? 2020/005876
ルアミ ド系モノマー、 第三級アミノ基含有 (メタ) アクリル酸エステルモノ マー、 イミ ド系 (メタ) アクリル酸エステルモノマーが挙げられる。 光硬化 性組成物中での保管安定性と密着向上の観点から、 アクリルアミ ド系モノマ —、 第三級アミノ基含有 (メタ) アクリル酸エステルモノマー、 イミ ド系 ( メタ) アクリル酸エステルモノマー等の窒素含有モノマーが好ましい。 例え ば、 アクリロイルモルフオリン、 ジメチルアミノエチル (メタ) アクリレー 卜、 1\1-アクリロイルオキシエチルへキサヒドロフタルイミ ドが挙げられる。 Examples thereof include a amide-based monomer, a tertiary amino group-containing (meth)acrylic acid ester monomer, and an imide-based (meth)acrylic acid ester monomer. Acrylic amide monomers, tertiary amino group-containing (meth)acrylic acid ester monomers, imide (meth)acrylic acid ester monomers, etc., from the viewpoint of storage stability and adhesion improvement in photocurable compositions. Nitrogen-containing monomers are preferred. Examples include acryloyl morpholine, dimethylaminoethyl (meth) acrylate, and 1\1-acryloyloxyethyl hexahydrophthalimide.
[0048] 単官能高極性モノマーは、 接着性の観点から、 光硬化性組成物中 0 . 5質 量%〜 1 2 . 7 5質量%であることが好ましく、 2〜 8 . 5質量%であるこ とがより好ましい。 〇. 5質量%よりも少ない場合は、 剥離力が低いため、 変形が大きいとリジッ ド基板とフレキシブル基板の接合部で剥がれやすく、 1 2 . 7 5質量%よりも多い場合は、 熱可塑性エラストマーとの相溶性が低 いため、 経時で粘度が増加しやすいなど保存安定性の観点の懸念や、 極性の 高いセグメントが増えることにより硬化体の防湿性が低下してしまうことが 懸念される。 2〜 8 . 5質量%の範囲であれば、 低粘度で粘度変化も小さく 、 密着性が高い光硬化性組成物を得ることができる。 [0048] From the viewpoint of adhesiveness, the monofunctional high-polarity monomer is preferably 0.5% by mass to 12.75% by mass in the photocurable composition, and 2 to 8.5% by mass. It is more preferable. 〇 If it is less than 0.5% by mass, the peeling force is low, so if the deformation is large, it easily peels off at the joint between the rigid and flexible substrates. If it is more than 12.7 5% by mass, the thermoplastic elastomer is used. Since it has low compatibility with, it is feared that the viscosity tends to increase over time, and that the moisture resistance of the cured product may decrease due to the increase in the number of highly polar segments. When the content is in the range of 2 to 8.5% by mass, it is possible to obtain a photocurable composition having a low viscosity, a small viscosity change, and a high adhesiveness.
[0049] また、 上記密着性を高める効果は、 ヤング率が〇.
Figure imgf000019_0001
以下の光硬化 性組成物について顕著となる。 〇. 3 IV! 3以下の光硬化性組成物では、 せ ん断力に対する抵抗力が弱くなりやすいため、 単官能 (メタ) アクリル酸エ ステルモノマーのみでは密着性が低くなりやすい傾向があるためである。
[0049] Further, the Young's modulus is ◯.
Figure imgf000019_0001
It becomes remarkable for the following photocurable compositions. ○ In the photo-curable composition of less than 3 IV! 3, the resistance to shearing force tends to be weak, and the adhesion tends to be low only with the monofunctional (meth)acrylic acid ester monomer. Is.
[0050] 本発明の一実施形態に係る光硬化性組成物は、 さらに、 多官能脂肪族 (メ 夕) アクリル酸エステルモノマー、 多官能環状 (メタ) アクリル酸エステル モノマー、 ビスマレイミ ド等の多官能モノマーを適宜含んでもよい。 前記光 硬化性組成物の硬化後の硬化体の強度および前記光硬化性組成物の反応性の 観点から、 多官能脂肪族 (メタ) アクリル酸エステルモノマー、 多官能環状 (メタ) アクリル酸エステルモノマー、 ビスマレイミ ドの 1種以上は、 光硬 化性組成物中、 単独又は合計で、 0質量%〜 4 . 2 5質量%であることが好 ましい。 4 . 2 5質量%よりも多い場合は、 硬化体の残存タックが少ない一 \¥0 2020/175196 18 卩(:171? 2020 /005876 [0050] The photocurable composition according to one embodiment of the present invention further comprises a polyfunctional aliphatic (meth)acrylic acid ester monomer, a polyfunctional cyclic (meth)acrylic acid ester monomer, a polyfunctional compound such as bismaleimide. A monomer may be included as appropriate. From the viewpoint of the strength of the cured product of the photocurable composition and the reactivity of the photocurable composition, a polyfunctional aliphatic (meth)acrylic acid ester monomer and a polyfunctional cyclic (meth)acrylic acid ester monomer are used. It is preferable that one or more of bismaleimide is 0% by mass to 4.25% by mass in the photocurable composition, either alone or in total. If it is more than 4.2% by mass, the residual tack of the cured product is low. \¥0 2020/175 196 18 卩 (: 171? 2020 /005876
方で、 硬化体の硬化収縮 (反り) や硬度上昇の懸念がある。 On the other hand, there is a concern that the cured product may undergo curing shrinkage (warpage) or hardness increase.
[0051] 前記多官能脂肪族 (メタ) アクリル酸エステルモノマーとして具体的には 、 二官能脂肪族 (メタ) アクリル酸エステルモノマーが挙げられる。 前記二 官能脂肪族 (メタ) アクリル酸エステルモノマーとしては、 エチレングリコ —ルジ (メタ) アクリレート、 ジエチレングリコールジ (メタ) アクリレー 卜、 トリエチレングリコールジ (メタ) アクリレート、 ポリエチレングリコ —ルジ (メタ) アクリレート、 ポリプロピレングリコールジ (メタ) アクリ レート、 グリセリンジ (メタ) アクリレート、 トリシクロデカンジメタノー ルジ (メタ) アクリレート、 ネオペンチルグリコールジ (メタ) アクリレー 卜、 3—メチルー 1 , 5—ペンタンジオールジ (メタ) アクリレート、 1 , [0051] Specific examples of the polyfunctional aliphatic (meth)acrylic acid ester monomer include a bifunctional aliphatic (meth)acrylic acid ester monomer. Examples of the bifunctional aliphatic (meth)acrylic acid ester monomer include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, Polypropylene glycol di (meth) acrylate, glycerin di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) Acrylate, 1,
6—ヘキサンジオールジ (メタ) アクリレート、 1 , 9—ノナンジオールジ (メタ) アクリレート、 1 , 1 0 -デカンジオールジ (メタ) アクリレート 、 等が挙げられる。 熱可塑性エラストマーのソフトセグメントとの相溶性が 比較的高いことから、 両末端に反応性基を有する二官能脂肪族炭化水素系ジ (メタ) アクリル酸エステルモノマーが好ましい。 6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, and the like. Since the compatibility with the soft segment of the thermoplastic elastomer is relatively high, a bifunctional aliphatic hydrocarbon-based di(meth)acrylic acid ester monomer having a reactive group at both ends is preferable.
[0052] 前記多官能環状 (メタ) アクリル酸エステルモノマーとして具体的には、 エトキシ化ビスフエノール八ジ (メタ) アクリレート、 プロポキシ化ビスフ エノール八ジ (メタ) アクリレート、 プロポキシ化エトキシ化ビスフエノー ル八ジ (メタ) アクリレート、 エトキシ化イソシアヌル酸ジ/トリ (メタ) アクリレート、 £ -カプロラクトン変性トリスー (2 -アクリロキシエチル ) イソシアヌレート等が挙げられる。 前記多官能環状 (メタ) アクリル酸エ ステルモノマーとしては、 密着性向上の観点から、 トリス (2 -ヒドロキシ エチル) イソシアヌレート系 (メタ) アクリル酸エステルモノマーが好まし い。 [0052] Specific examples of the polyfunctional cyclic (meth)acrylic acid ester monomer include ethoxylated bisphenol octadi(meth)acrylate, propoxylated bisphenol octadi(meth)acrylate, and propoxylated ethoxylated bisphenol octadiene. (Meth) acrylate, ethoxylated isocyanuric acid di/tri (meth) acrylate, £-caprolactone-modified tris-(2-acryloxyethyl) isocyanurate, and the like. As the polyfunctional cyclic (meth)acrylic acid ester monomer, a tris(2-hydroxyethyl)isocyanurate (meth)acrylic acid ester monomer is preferable from the viewpoint of improving adhesion.
[0053] 前記ビスマレイミ ドとしては、 4 , 4’ ージフエニルメタンビスマレイミ ド、 4 -メチルー 1 , 3 -フエニレンビスマレイミ ド、 2 , 2 -ビス [4 - (4—マレイミ ドフエノキシ) フエニル] プロパン、 ビス (3—エチルー 5 —メチルー 4—マレイミ ドフエニル) メタン、 1 , 6—ビス (マレイミ ド) \¥0 2020/175196 19 卩(:171? 2020 /005876 [0053] Examples of the bismaleimide include 4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 2,2-bis [4-(4-maleimide phenoxy)phenyl] Propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, 1, 6-bis (maleimide) \¥0 2020/175 196 19 卩 (: 171? 2020 /005876
ヘキサン、 1 , 6, ービスマレイミ ドー (2 , 2 , 4—トリメチル) へキサ ンが挙げられる。 光硬化性組成物の相溶性や光硬化性を阻害しにくい点から 、 1 , 6—ビス (マレイミ ド) ヘキサン、 1 , 6’ ービスマレイミ ドー (2Hexane, 1, 6, and bismaleimide (2, 2, 4-trimethyl) hexane are examples. From the point of not easily inhibiting the compatibility and photocurability of the photocurable composition, 1,6-bis(maleimide)hexane, 1,6'-bismaleimide (2
, 2 , 4 -トリメチル) ヘキサンなどの脂肪族ビスマレイミ ドが好ましい。 Aliphatic bismaleimides such as, 2,4-trimethyl)hexane are preferred.
[0054] 熱可塑性エラストマー: [0054] Thermoplastic elastomer:
前記熱可塑性エラストマーとしては、 スチレン系熱可塑性エラストマー、 オレフィン系熱可塑性エラストマー、 エステル系熱可塑性エラストマー、 ウ レタン系熱可塑性エラストマー、 アミ ド系熱可塑性エラストマー、 塩化ビニ ル熱可塑性エラストマー、 フッ素樹脂系熱可塑性エラストマー、 イオン架橋 系熱可塑性エラストマーなどが挙げられる。 本発明における熱可塑性エラス トマーとしては、 スチレン系熱可塑性エラストマーが好ましい。 Examples of the thermoplastic elastomer include styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, ester-based thermoplastic elastomers, urethane-based thermoplastic elastomers, amide-based thermoplastic elastomers, vinyl chloride thermoplastic elastomers, and fluororesin-based thermoplastic elastomers. Examples thereof include a plastic elastomer and an ionically crosslinked thermoplastic elastomer. As the thermoplastic elastomer in the present invention, a styrene-based thermoplastic elastomer is preferable.
[0055] スチレン系熱可塑性エラストマーは、 光硬化性組成物中では、 前記単官能 脂環式 (メタ) アクリル酸エステルモノマーおよび前記単官能脂肪族 (メタ ) アクリル酸エステルモノマーおよび前記単官能高極性モノマーの何れかに 溶解している。 そして、 スチレン系熱可塑性エラストマーは、 前記単官能脂 環式 (メタ) アクリル酸エステルモノマーおよび前記単官能脂肪族 (メタ) アクリル酸エステルモノマーおよび前記単官能高極性モノマーが硬化した後 の硬化体のリペア性を高めるとともに透湿度を低くする。 また、 スチレン系 熱可塑性エラストマーは、 前記単官能脂環式 (メタ) アクリル酸エステルモ ノマーおよび前記単官能脂肪族 (メタ) アクリル酸エステルモノマーおよび 前記単官能高極性モノマーの何れかに溶解すると共に、 硬化体にゴム弾性 ( 柔軟性と伸長性) を付与する成分である。 なお、 本発明の一実施形態におい て、 溶解している状態は、 全体として均一な液状になっている状態であれば よく、 無色透明である場合の他に、 白濁やその他の色で濁っていても良いも のとする。 [0055] The styrenic thermoplastic elastomer includes the monofunctional alicyclic (meth)acrylic acid ester monomer and the monofunctional aliphatic (meth)acrylic acid ester monomer, and the monofunctional high polarity in the photocurable composition. Dissolved in any of the monomers. Then, the styrene-based thermoplastic elastomer is a cured product of the monofunctional alicyclic (meth)acrylic acid ester monomer and the monofunctional aliphatic (meth)acrylic acid ester monomer and the monofunctional highly polar monomer. Improves repairability and lowers moisture permeability. Further, the styrene-based thermoplastic elastomer is dissolved in any of the monofunctional alicyclic (meth)acrylic acid ester monomer and the monofunctional aliphatic (meth)acrylic acid ester monomer and the monofunctional highly polar monomer, and It is a component that imparts rubber elasticity (flexibility and extensibility) to the cured product. In one embodiment of the present invention, the dissolved state may be a state in which it is in a uniform liquid state as a whole, and in addition to the case where it is colorless and transparent, it is clouded with white turbidity or other colors. It is okay.
[0056] スチレン系熱可塑性エラストマー単独では固体のため、 常温では接着性を 有さないが、 前記単官能脂環式 (メタ) アクリル酸エステルモノマーおよび 前記単官能脂肪族 (メタ) アクリル酸エステルモノマーおよび前記単官能高 極性モノマーに溶解することで、 光硬化性組成物及びその硬化体中に均一に 分散させることで、 密着性を有する光硬化性組成物の一成分として含ませる ことができる。 Since the styrene-based thermoplastic elastomer alone is solid, it does not have adhesiveness at room temperature, but the monofunctional alicyclic (meth)acrylic acid ester monomer and the monofunctional aliphatic (meth)acrylic acid ester monomer are used. And high monofunctionality When dissolved in a polar monomer, it can be uniformly dispersed in the photocurable composition and its cured product, so that it can be contained as one component of the photocurable composition having adhesiveness.
[0057] スチレン系熱可塑性エラストマーの添加量は、 光硬化性組成物中 1 0〜 3 [0057] The addition amount of the styrene-based thermoplastic elastomer is 10 to 3 in the photocurable composition.
5質量%であることが好ましく、 1 0〜 20質量%であることがより好まし く、 1 0〜 1 5質量%であることがより好ましい。 スチレン系エラストマー の配合が 1 0質量%未満である場合には、 リベア性が低くなるおそれがある 。 一方で 35質量%を超えると、 光硬化性組成物の粘度が高くなり、 塗布が 困難になるおそれがある。 20質量%以下であれば流動性が好適であり塗布 し易い。 It is preferably 5% by mass, more preferably 10 to 20% by mass, and further preferably 10 to 15% by mass. If the content of the styrene-based elastomer is less than 10% by mass, there is a possibility that the bearer property may be lowered. On the other hand, when it exceeds 35% by mass, the viscosity of the photocurable composition becomes high, which may make application difficult. When it is 20% by mass or less, the fluidity is suitable and the coating is easy.
[0058] スチレン系熱可塑性エラストマーの具体例としては、 スチレンーブタジエ ンースチレンブロック共重合体 (S BS) 、 スチレンーイソプレンースチレ ンブロック共重合体 (S I S) 、 スチレンーエチレンープチレンースチレン ブロック共重合体 (S E BS) 、 スチレンーエチレンープロピレンースチレ ンブロック共重合体 (S E PS) 、 スチレンーイソプチレンースチレンブロ ック共重合体 (S 丨 BS) 、 スチレンーエチレンーエチレンープロピレンー スチレンブロック共重合体 (S E E PS) 、 およびこれらの変性体が挙げら れる。 [0058] Specific examples of the styrene-based thermoplastic elastomer include styrene-butadiene-styrene block copolymer (S BS), styrene-isoprene styrene block copolymer (SIS), and styrene-ethylene propylene. Styrene block copolymer (SE BS), styrene-ethylene-propylene styrene block copolymer (SE PS), styrene-isobutylene-styrene block copolymer (S BS), styrene-ethylene- Examples thereof include ethylene-propylene-styrene block copolymer (SEE PS) and modified products thereof.
[0059] これらの中でも、 ソフトセグメントに不飽和結合を有さない S E B S、 S [0059] Among these, S E B S and S having no unsaturated bond in the soft segment
E PS、 S I BSを用いると光硬化性組成物の硬化体が耐候性に優れるもの となるため好ましい。 また、 S E B Sおよび S E P Sの中でもソフトセグメ ントの比率が高いものを使用することで、 硬化体の透明性を高めることがで きる。 具体的には、 熱可塑性エラストマーの全質量に対するソフトセグメン 卜の質量の比率が 8〇〜 95質量%であることが好ましい。 このようにする ことで、 例えば厚さ 0. 5 mmの弾性保護部材の平行光線透過率 (波長 55 O n m) を 90%以上に高めることができる。 The use of E PS and S I BS is preferable because the cured product of the photocurable composition has excellent weather resistance. Further, by using one having a high soft segment ratio among SEBS and SEPS, it is possible to enhance the transparency of the cured body. Specifically, the ratio of the mass of the soft segment to the total mass of the thermoplastic elastomer is preferably 80 to 95 mass %. By doing so, for example, the parallel light transmittance (wavelength 55 Onm) of the elastic protective member having a thickness of 0.5 mm can be increased to 90% or more.
[0060] 本明細書において、 スチレン系熱可塑性エラストマーの重量平均分子量は 、 G PC法 (Gel Permeation Chromatography ;ゲル浸透クロマトグラフィー \¥0 2020/175196 21 卩(:171? 2020 /005876 [0060] In the present specification, the weight average molecular weight of the styrene-based thermoplastic elastomer is determined by GPC method (Gel Permeation Chromatography; gel permeation chromatography). \¥0 2020/175 196 21 卩 (: 171? 2020 /005876
) を用い、 かつ、 標準ポリスチレンにより測定された校正曲線 (検量線) を 基に測定した。 本発明の一実施形態では、 重量平均分子量が 2 0万未満のス チレン系熱可塑性エラストマーを用いることが、 塗布に適した粘度に調整し やすいという点で好ましい。 ) And based on a calibration curve (calibration curve) measured with standard polystyrene. In one embodiment of the present invention, it is preferable to use a styrene-based thermoplastic elastomer having a weight average molecular weight of less than 200,000 because the viscosity suitable for coating can be easily adjusted.
[0061 ] ラジカル重合開始剤 [0061] Radical polymerization initiator
ラジカル重合開始剤として、 具体的には、 単官能脂肪族 (メタ) アクリル 酸エステルモノマーおよび単官能脂環式 (メタ) アクリル酸エステルモノマ —および単官能高極性モノマーを、 例えば、 光線によって光反応させて硬化 させる、 光ラジカル重合開始剤が好ましい。 光硬化性組成物が光ラジカル重 合開始剤を含むことによって、 光硬化性組成物に光線を照射することで、 例 えば、 塗膜形成対象物上に塗布した光硬化性組成物を光硬化させ、 塗膜を形 成することができる。 光ラジカル重合開始剤としては、 ベンゾフエノン系、 チオキサントン系、 アセトフエノン系、 アシルフォスフィン系、 オキシムエ ステル系、 アルキルフエノン系等の光重合開始剤を挙げることができる。 光 ラジカル重合開始剤の添加量は、 単官能および多官能を含めた全てのモノマ 一の合計量 1 〇〇質量部に対して、 〇. 1〜 1 〇質量部が好ましく、 〇. 5 〜 5質量部がより好ましい。 As the radical polymerization initiator, specifically, a monofunctional aliphatic (meth)acrylic acid ester monomer and a monofunctional alicyclic (meth)acrylic acid ester monomer, and a monofunctional highly polar monomer are photoreacted by, for example, light rays. A photo-radical polymerization initiator that is allowed to cure is preferable. When the photocurable composition contains a photoradical polymerization initiator, the photocurable composition is irradiated with light rays, for example, the photocurable composition coated on the film-forming target is photocured. And a coating film can be formed. Examples of the photoradical polymerization initiator include benzophenone-based, thioxanthone-based, acetophenone-based, acylphosphine-based, oxime ester-based, and alkylphenone-based photopolymerization initiators. The addition amount of the photo radical polymerization initiator is preferably 0.1 to 10 parts by mass, and 0.5 to 5 parts by mass, based on 100 parts by mass of the total amount of all monomers including monofunctional and polyfunctional. The mass part is more preferable.
[0062] その他の成分: [0062] Other ingredients:
本発明の一実施形態に係る光硬化性組成物は、 さらに、 本発明の一実施形 態の趣旨を逸脱しない範囲で、 種々の添加剤等のその他の成分を適宜配合す ることができる。 例えば、 シリカ、 酸化アルミニウム等のチキソ性付与剤、 オレフィン系オイル、 パラフィン系オイル等の可塑剤、 シランカップリング 剤や重合禁止剤、 消泡剤、 光安定剤、 酸化防止剤、 帯電防止剤、 充填剤等が 挙げられる。 The photocurable composition according to one embodiment of the present invention may further contain other components such as various additives as appropriate without departing from the spirit of one embodiment of the present invention. For example, silica, thixotropic agents such as aluminum oxide, plasticizers such as olefin oils and paraffin oils, silane coupling agents and polymerization inhibitors, defoamers, light stabilizers, antioxidants, antistatic agents, Examples include fillers.
[0063] 上記実施形態は、 本発明の一実施形態の例示であり、 本発明の趣旨を逸脱 しない範囲で、 実施形態の変更または公知技術の付加や、 組合せ等を行い得 るものであり、 それらの技術もまた本発明の範囲に含まれるものである。 実施例 \¥0 2020/175196 22 卩(:171? 2020 /005876 [0063] The above embodiment is an example of one embodiment of the present invention, and modifications of the embodiments, addition of known techniques, combinations, and the like can be performed without departing from the spirit of the present invention. Those techniques are also included in the scope of the present invention. Example \¥0 2020/175 196 22 卩 (: 171? 2020 /005876
[0064] 次に実施例 (比較例) に基づいて本発明一実施形態をさらに詳しく説明す る。 次の試料 1〜試料 2 9の光硬化性組成物およびその硬化体を作製し、 以 下に示す評価方法により評価した。 Next, one embodiment of the present invention will be described in more detail based on examples (comparative examples). The following photo-curable compositions of Sample 1 to Sample 29 and cured products thereof were prepared and evaluated by the evaluation methods described below.
[0065] <試料の作製> <Preparation of sample>
以下に示すように、 試料を作製した。 A sample was prepared as shown below.
[0066] 試料 1 : [0066] Sample 1:
アクリル系モノマーとして、 ラウリルアクリレートとイソボルニルアクリ レートと 1\1 _アクリロイルオキシエチルへキサヒドロフタルイミ ド、 さらに 1 , 9—ノナンジオールジアクリレートを、 を準備した。 次に、 上述のモノ マーに、 熱可塑性エラストマーとして 3 丨 巳 3 (スチレンーイソプチレンー スチレンブロック共重合体) (商品名 「3 I 巳3丁八[¾ 1 0 2丁」 、 株式会 社カネカ製) を添加して、 2 4時間攪拌することにより、 熱可塑性エラスト マーを上述のモノマーに溶解した。 このときの配合割合は、 表 1 に示すとお りである。 そして、 上述のモノマーと熱可塑性エラストマーとからなる 「樹 脂成分」 を 1 〇〇質量部としたときに、 光ラジカル重合開始剤であるフエニ ルビス(2 , 4 , 6—トリメチルべンゾイル)ホスフィンオキシドと 2—ヒド ロキシー 2—メチルプロピオフエノンを、 それぞれ〇. 4 0質量部、 3 . 6 〇質量部となる質量で、 上記樹脂成分に添加して、 試料 1の光硬化性組成物 を得た。 As acrylic monomers, lauryl acrylate, isobornyl acrylate, 1\1_acryloyloxyethyl hexahydrophthalimide, and 1,9-nonanediol diacrylate were prepared. Next, in addition to the above-mentioned monomer, as a thermoplastic elastomer, 3M 3 (styrene-isobutylene-styrene block copolymer) (trade name “3I M 3 3 8 [¾ 10 2C”) Kaneka Co., Ltd.) was added and the mixture was stirred for 24 hours to dissolve the thermoplastic elastomer in the above-mentioned monomer. The blending ratio at this time is as shown in Table 1. When the "resin component" consisting of the above-mentioned monomer and thermoplastic elastomer is 100 parts by mass, the photo radical polymerization initiator phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide is used. And 2-hydroxy-2-methylpropiophenone were added to the above resin components in amounts of 0.40 parts by mass and 3.6 parts by mass, respectively, to obtain a photocurable composition of Sample 1. It was
[0067] 得られた試料 1の光硬化性組成物に後述の条件で紫外線を照射して試料 1 の硬化体である弾性保護部材を形成した。 The obtained photocurable composition of Sample 1 was irradiated with ultraviolet rays under the conditions described below to form an elastic protective member which is a cured product of Sample 1.
[0068] 試料 2〜 2 8 : [0068] Samples 2 to 28:
試料 1の熱可塑性エラストマーと各モノマー等を表 2〜 4に記した種類と 配合 (質量部) に変更した以外は試料 1 と同様にして試料 2〜 2 8の光硬化 性組成物を作製した。 試料 2〜 2 8の光硬化性組成物ついても、 試料 1 と同 様に紫外線を照射して、 ポリイミ ドフィルム上に、 試料 2〜 2 8の弾性保護 部材を形成した。 Photocurable compositions of Samples 2 to 28 were prepared in the same manner as Sample 1 except that the thermoplastic elastomer of Sample 1 and each monomer were changed to the types and formulations (parts by mass) shown in Tables 2 to 4. .. The photo-curable compositions of Samples 2 to 28 were also irradiated with ultraviolet rays in the same manner as in Sample 1 to form the elastic protective members of Samples 2 to 28 on the polyimide film.
[0069] 試料 2 9として、 熱可塑性エラストマーを含まず、 ポリウレタンメタクリ \¥02020/175196 23 卩(:17 2020 /005876 [0069] As Sample 29, a polyurethane methacrylate containing no thermoplastic elastomer was used. \¥02020/175 196 23 卩 (: 17 2020 /005876
レート樹脂と (メタ) アクリルモノマーを主体とする光硬化性組成物である ヘンケルジャパン株式会社製の商品名 丨 63523」 を用いた A photocurable composition mainly composed of a rate resin and a (meth)acrylic monomer was used.
[0070] 以下に、 試料 1〜 29の組成と評価結果を表 1〜 4に示す。 評価方法は、 後述する。 [0070] Tables 1 to 4 show the compositions of Samples 1 to 29 and the evaluation results. The evaluation method will be described later.
[0071] [表 1] [0071] [Table 1]
Figure imgf000025_0001
\¥0 2020/175196 24 卩(:17 2020 /005876
Figure imgf000025_0001
\\0 2020/175 196 24 (: 17 2020 /005876
[0072] [表 2][0072] [Table 2]
Figure imgf000026_0001
Figure imgf000026_0001
[0073] \¥0 2020/175196 25 卩(:17 2020 /005876[0073] \¥0 2020/175 196 25 卩 (: 17 2020 /005876
[表 3][Table 3]
Figure imgf000027_0001
Figure imgf000027_0001
[0074] \¥0 2020/175196 26 卩(:17 2020 /005876 [0074] \\0 2020/175 196 26 卩 (: 17 2020 /005876
[表 4] [Table 4]
Figure imgf000028_0001
Figure imgf000028_0001
[0075] 表 1〜 4に用いた原料を以下に示す。 [0075] The raw materials used in Tables 1 to 4 are shown below.
<熱可塑性エラストマ _> \¥02020/175196 27 卩(:171? 2020 /005876 <Thermoplastic elastomer _> \¥02020/175 196 27 卩 (: 171? 2020 /005876
3183丁八(¾102丁:商品名 「3 丨 巳3丁八[¾ 1 02丁」 、 スチレン含有量 1 5質 量%、 重量平均分子量 9万、 スチレンーイソプチレンースチレンブロック共 重合体、 株式会社カネカ製 3183, 8 (¾ 102: product name “3 丳3 3/8, ¾ 102 ”, styrene content 15 mass%, weight average molecular weight 90,000, styrene-isoptyrene-styrene block copolymer, Kaneka Corporation
3183丁八(¾103丁:商品名 「3 丨 巳3丁八[¾ 1 03丁」 、 スチレン含有量 30質 量%、 重量平均分子量 9万、 スチレンーイソプチレンースチレンブロック共 重合体、 株式会社カネカ製 3183 Choha (¾ 103 cho: Product name “3 丨 Miho 3 Choha [¾ 103 cho”), Styrene content 30 mass %, weight average molecular weight 90,000, Styrene-isoptyrene-styrene block copolymer, stock Made by Kaneka
3183丁八(¾073丁:商品名 「3 丨 巳3丁八[¾073丁」 、 スチレン含有量 30質 量%、 重量平均分子量 7万、 スチレンーイソプチレンースチレンブロック共 重合体、 株式会社カネカ製 3183 Choha (¾073: Brand name “3 丨3 徳3 Choha [¾073 crocodile”, styrene content 30 mass %, weight average molecular weight 70,000, styrene-isobutylene-styrene block copolymer, Kaneka Corporation Made
3£卩丁(^2063 :商品名 「3巳?丁〇 2063」 、 スチレン含有量 1 3質量 %、 重量平均分子量 1 2万、 スチレンーエチレンープロピレンースチレンブ ロック共重合体、 株式会社クラレ製 3£(^2063: Brand name “3M??Cho 2063”, styrene content 13 mass%, weight average molecular weight 120,000, styrene-ethylene-propylene-styrene block copolymer, Kuraray Co., Ltd. Made
エポフレンド八丁501 :商品名 「エポフレンド八丁 501」 、 スチレン含有量 40質量%、 重量平均分子量 9万、 エポキシ変性されたスチレンーブタジエ ンースチレン共重合体、 株式会社ダイセル製 Epofriend Hatcho 501: Product name "Epofriend Hatcho 501", styrene content 40 mass%, weight average molecular weight 90,000, epoxy modified styrene-butadiene-styrene copolymer, manufactured by Daicel Corporation
<多官能ポリマ _> <Multifunctional polymer _>
1£-2000 :商品名 「丁巳 _ 2000」 、 末端メタクリル基導入ポリブタジエ ン (アクリル当量 2000) 、 日本曹達株式会社製 1 £-2000: Product name "Chomi _ 2000", Polymethadiene with terminal methacryl group (acrylic equivalent 2000), manufactured by Nippon Soda Co., Ltd.
[0076] <各種試験と評価 >
Figure imgf000029_0001
社製、 巳〇 1"1 I 1 n V 88 V I 3。〇〇16 6 「、 コーンプレート 「〇 5° /30」 ) を使用し、 23°〇、 1 07 「 における、 未硬化時の光硬化性組成物の粘 度を測定した。
[0076] <Various tests and evaluations>
Figure imgf000029_0001
Manufactured by Mitsumi 〇 1" 1 I 1 n V 88 VI 3. 〇 〇 16 6 ”, cone plate “〇 5°/30” ), and light at 23 ° 〇, 1 07 ”when uncured The viscosity of the curable composition was measured.
[0078] 保管安定性: [0078] Storage stability:
光硬化性組成物を 25°◦の環境下で 2週間静置し、 沈殿や分離が目視で確 認できないものを 「八」 と評価し、 沈殿や分離が目視で確認できたものを 「 巳」 と言平彳面した。 \¥02020/175196 28 卩(:171? 2020 /005876 The photocurable composition was allowed to stand for 2 weeks in an environment of 25°°, and when precipitation or separation could not be visually confirmed, it was evaluated as “8”, and when precipitation or separation could be visually confirmed, it was judged as “Mitsumi”. He said, "He said. \¥02020/175196 28 卩 (: 171? 2020 /005876
[0079] 引張破断伸び (%) 、 引張強さ
Figure imgf000030_0001
1 00%伸び引張応力 〇\/1 a) およびヤング率 (IV! 3) :
[0079] Tensile breaking elongation (%), tensile strength
Figure imgf000030_0001
100% elongation tensile stress 〇\/1 a) and Young's modulus (IV! 3):
硬化体の機械的強度は、 」 丨 3 < 625 1 : 201 0を一部変更して 実施した。 シリコーン離型処理されたポリエステルフィルム上に厚み 1
Figure imgf000030_0002
で光硬化性組成物を塗布し、
Figure imgf000030_0003
The mechanical strength of the cured product was determined by changing "3 <625 1 :2010". Thickness on silicone release treated polyester film 1
Figure imgf000030_0002
And then apply the photocurable composition,
Figure imgf000030_0003
〇〇^で1 5秒間紫外線照射することで、 光硬化性組成物を硬化させ、 得られ た硬化体をダンべル状 8号型で打ち抜き、 ダンべル状試料の棒状部に 1 6 の間隔を空けて標線を付け、 試験片を作製した。 速度 200111111/111 丨
Figure imgf000030_0004
で引張試験を行い、 引張破断伸び (切断時伸び) 、 引張強さ (最大引張応力 ) 、 1 0〇%伸び引張応力、 ヤング率 (弾性率) を測定した。 それぞれ下記 式 (1) 、 式 (2) 、 式 (3) に適用して、 引張破断伸び、 引張強さ、 1 0 〇%伸び引張応力を算出した。 ヤング率は引張比例限度内の引張応力をひず みで割ることで求めた。
The photocurable composition is cured by irradiating it with UV light for 15 seconds at ◯○^, and the obtained cured product is punched out with a dumbbell-shaped No. 8 mold, and the rod-shaped part of the dumbbell-shaped sample is filled with 16 Marks were attached at intervals to prepare test pieces. Speed 200111111/111 丨
Figure imgf000030_0004
Tensile test was performed to measure tensile elongation at break (elongation at break), tensile strength (maximum tensile stress), 100% elongation tensile stress, and Young's modulus (elastic modulus). The tensile elongation at break, the tensile strength, and the 100% elongation tensile stress were calculated by applying the following equations (1), (2), and (3), respectively. Young's modulus was obtained by dividing the tensile stress within the tensile proportional limit by the strain.
丁 3 = 〇1 - - 式 ( 1)
Figure imgf000030_0005
Ding 3 = ○ 1--Formula (1)
Figure imgf000030_0005
〇! :最大引張力 (1\!) ○!: Maximum tensile force (1\!)
3 :試験片の初期断面積 ( 〇!23: Initial cross-sectional area of test piece (〇! 2 )
巳匕 :引張破断伸び (%) Minoru: Tensile elongation at break (%)
!- 0 :初期の標線間距離 (01111) !- 0: Initial distance between marked lines (01111)
!- 1 :破断時の標線間距離 (〇!〇〇 !- 1: Distance between marked lines at break (○!○○
731 00 : 1 00%伸び引張応力 (IV! 3) 731 00: 100% elongation tensile stress (IV! 3)
1 00 : 1 00%伸び引張力 (1\!) 100: 100% elongation tensile force (1\!)
[0080] マルテンス硬さ (1\1/〇1〇12) : [0080] Martens hardness (1\1/○1○1 2 ):
ナノインデンター (巳 1_ I 〇 1\1 I X製、 巳 1\1丁一 2 1 00) を用いて、 硬 化体のナノインデンテーション試験を実施した。 試験片は、 厚み 50 の ポリイミ ドフィルムに、 厚み 1 00 になるように光硬化性組成物を塗布 \¥02020/175196 29 卩(:171? 2020 /005876
Figure imgf000031_0001
Using a nano indenter (Mitsumi 1_I 〇 1\1 IX, Mimi 1\1 1-12 21 00), a nano-indentation test of the hardened material was performed. For the test piece, apply a photocurable composition to a thickness of 100 on a polyimide film with a thickness of 50. \¥02020/175196 29 卩(: 171? 2020 /005876
Figure imgf000031_0001
外線を照射することで硬化させることで作製した硬化体を用いた。 そして、 前記ナノインデンターで、 押し込み最大荷重〇. 1 1\1、 押し込み速度〇. The hardened|cured body produced by making it harden|cure by irradiating an external line was used. And with the nano indenter, the maximum pushing force 〇 .1 1\1, the pushing speed 〇.
01 1\1/秒の条件で硬化体のマルテンス硬さを測定した。 その結果、 5点 で測定したマルテンス硬さの平均値が〇.
Figure imgf000031_0002
31\1/〇1〇12 以下の場合を 「八」 、 〇.
Figure imgf000031_0003
より大きく〇.
Figure imgf000031_0004
The Martens hardness of the cured product was measured under the condition of 01 1/1/sec. As a result, the average value of the Martens hardness measured at 5 points was ◯.
Figure imgf000031_0002
31\1/○ 1 ○ 12 If less than or equal to 8 then 〇.
Figure imgf000031_0003
Greater than 〇.
Figure imgf000031_0004
合を 「巳」 、 〇. 51\1/〇1〇12より大きく 1. 01\1/〇1〇12以下の場合を 「〇 」 、 1.
Figure imgf000031_0005
012を超える場合を 「口」 とした。
If it is less than 0.51 \1/○ 1 ○ 1 2 and 1.01 \1/○ 1 ○ 1 2 or less, it is "○", 1.
Figure imgf000031_0005
A case in which more than 01 2 is set to "mouth".
[0081 ] 透湿度 (9/〇12 . 2411 「) : [0081] Water vapor transmission rate (9/〇 1 2 .2411 "):
」 1 3 70208 : 1 976に従い、 シリコーン離型処理されたポリエ ステルフィルム上に厚み 1 で樹脂組成物を塗布し、 365
Figure imgf000031_0006
の波長 1_ 巳 0を使用し、 200
Figure imgf000031_0007
間紫外線照射することで硬化させ た硬化体の透湿度 (水蒸気透過率) を、 温度 40°0、 相対湿度 90%[¾1~1で 測定した。 透湿度の測定中に試料の重量減少がある場合は減少分を補正した
1 3 70208: 1 976, apply the resin composition at a thickness of 1 on the silicone release-treated polyester film, and
Figure imgf000031_0006
The wavelength of 1_ 0 is used for 200
Figure imgf000031_0007
The moisture permeability (water vapor transmission rate) of the cured product that was cured by irradiating ultraviolet rays for 1 hour was measured at a temperature of 40 ° 0 and a relative humidity of 90% [¾ 1 to 1]. If the weight of the sample decreased during the measurement of moisture permeability, the decrease was corrected.
[0082] 体積抵抗率 (0 〇〇 : [0082] Volume resistivity (0 〇 〇:
八0 八1\1丁巳3丁製デジタルマルチメータ
Figure imgf000031_0008
巳を使用し、 体 積抵抗率を測定した。 シリコーン離型処理されたポリエステルフィルム上に 厚み 1 00 で光硬化性組成物を塗布し、 波長 365 n の !_巳 0を使用 し 200
Figure imgf000031_0009
で 1 5秒間紫外線照射することで硬化させた硬化体を測 定し、 測定上限以上の抵抗値の場合は 「 」 と評価し、 測定範囲内の体積抵 抗率の場合はその値を表に記載した。
8 0 8 1 \ 1 Chome 3 multi digital multimeter
Figure imgf000031_0008
The volume resistivity was measured using a mitomi. Apply a photo-curable composition with a thickness of 100 on a silicone release-treated polyester film, and use 200!
Figure imgf000031_0009
Measure the cured product that has been cured by irradiating it with UV light for 15 seconds, and if the resistance value is above the upper limit of measurement, it is evaluated as "", and if it is the volume resistivity within the measurement range, the value is shown in the table. Described.
[0083] 反り : [0083] Warp:
厚み 50 〇1のポリイミ ドフィルムに、 厚み 1 00 〇1になるように光石更 化性組成物を塗布し、
Figure imgf000031_0010
を使用し
Figure imgf000031_0011
To the polyimide film with a thickness of 501, apply the photolithographic composition to a thickness of 100
Figure imgf000031_0010
Using
Figure imgf000031_0011
1 5秒間紫外線照射することで硬化させた。 この硬化体を 20 60 に切り出し、 長辺の一方端部を押さえたとき、 他方端部の浮きがないもの を 「八」 と評価し、 浮きがあるものを 「巳」 と評価した。 \¥02020/175196 30 卩(:171? 2020 /005876 It was cured by UV irradiation for 15 seconds. This cured product was cut out to 20 60, and when one end of the long side was pressed, the other end was not lifted, and was evaluated as "eight", and the one that was lifted was evaluated as "Mi". \¥02020/175196 30 卩 (: 171? 2020 /005876
[0084] 剥離力 (1\1/〇〇 : [0084] Peeling force (1\1/○○:
」 1 3 < 6852— 2 : 1 999の 1 80度剥離試験方法を一部変更 して測定した。 厚み 50 のポリイミ ドフィルム上に厚み 1 〇!〇!で光硬化 性組成物を塗布し、
Figure imgf000032_0001
を使用し
Figure imgf000032_0002
1 3 <6852—2: 1 999 Measured by partially changing the 180 degree peel test method. Apply a photocurable composition to a thickness of 50! on a polyimide film with a thickness of 10!
Figure imgf000032_0001
Using
Figure imgf000032_0002
5秒間紫外線照射することで硬化させた後、 幅 26 に切り出し、 剥離速 度 300
Figure imgf000032_0003
n、 剥離角度 1 80度で引き剥がすことで剥離力 (接着 強さ) を測定した。
After curing by UV irradiation for 5 seconds, cut into a width of 26 and peel off at 300
Figure imgf000032_0003
n, were measured peel strength (adhesive strength) by peeling at a peel angle of 1 80 °.
[0085] 耐局温局湿試験: [0085] Local temperature and humidity resistance test:
厚み 5〇 のポリイミ ドフィルム上に厚み
Figure imgf000032_0004
で樹脂組成物を塗布し 、 波長 365
Figure imgf000032_0005
を使用し 200
Figure imgf000032_0006
秒間紫外線照射 に切り出した。 これを 85°〇、 85%
Figure imgf000032_0007
た後、 浮きや剥がれがないものを 「八 」 、 浮きまたは剥がれが見られたもの 「巳」 と評価した。
Thickness on a polyimide film with a thickness of 50
Figure imgf000032_0004
Resin composition with a wavelength of 365
Figure imgf000032_0005
Using 200
Figure imgf000032_0006
Cut out for UV irradiation for 2 seconds. This is 85°○, 85%
Figure imgf000032_0007
After that, those with no floating or peeling were rated as "8", and those with floating or peeling were rated as "Mi".
[0086] リペア試験: [0086] Repair test:
厚み 50 のポリイミ ドフィルムに、 厚み 500 01、 幅2〇!〇!になる ように樹脂組成物を塗布し、 波長 365 n mのL E Dを使用し200mW/ 〇 2で1 5秒間紫外線照射することで硬化させた。 この硬化体をポリイミ ド フィルムから剥がした際に、 目視で千切れずに剥がせたものを 「八」 と評価 し、 剥がせなかったものを 「巳」 と評価した。 By coating a resin composition on a polyimide film with a thickness of 50 to a thickness of 500 01 and a width of 20!○! and irradiating it with UV light at 200 mW/○ 2 for 15 seconds using a 365 nm wavelength LED. Cured. When this cured product was peeled off from the polyimide film, it was rated "8" if it could be peeled visually without tearing, and "Mitsu" if it could not be peeled off.
[0087] 折曲げ試験 (内側) : [0087] Bending test (inside):
図 4は、 折曲げ試験 (内側) の測定方法の説明図である。 厚み 50 〇の ポリイミ ドフィルム 50に、 厚み 1 00 になるように光硬化性組成物を 塗布し、
Figure imgf000032_0008
を使用し
Figure imgf000032_0009
秒間紫外 線照射することで硬化させて硬化体 56を得た。 この硬化体 56を 26
Figure imgf000032_0010
り出し、 硬化体 56の端 26111111X5111111の範囲に厚み 50 の両面テープ 54を貼り、 厚み 1
Figure imgf000032_0011
のガラス基板 52の端部に貼り付 けて試験片を作製した (31 00) 。 試験片において硬化体 56が内側にな るように、 ガラス基板 52の非粘着テープ側へ荷重 509で折曲げた際に ( \¥02020/175196 31 卩(:171? 2020 /005876
FIG. 4 is an explanatory diagram of the measurement method of the bending test (inside). Apply the photocurable composition to a thickness of 100 on a polyimide film 50 with a thickness of 500, and
Figure imgf000032_0008
Using
Figure imgf000032_0009
It was cured by irradiation with ultraviolet rays for 2 seconds to obtain a cured product 56. 26 of this cured product
Figure imgf000032_0010
Stick out a double-sided tape 54 with a thickness of 50 in the range of 26111111X5111111 on the edge of the cured product 56, and
Figure imgf000032_0011
A test piece was prepared by adhering it to the edge of the glass substrate 52 (3100). When the test piece was bent toward the non-adhesive tape side of the glass substrate 52 with load 509 so that the cured body 56 was on the inside ( \¥02020/175196 31 卩(: 171? 2020 /005876
31 02) 、 ガラス基板 1 2の端部から突出した突出幅 40 (即ち、 ガラス 基板 1 2の端部からはみ出した 「はみ出しの長さ」 ) を測定した (31 04 ) 。 突出幅 (はみだし長さ) が 400 未満のものを 「八」 と評価し、 4 00 以上 500 未満のものを 「巳」 と評価し、 500 〇!以上のも のを 「〇」 と評価した。 31 02), and the protrusion width 40 protruding from the end of the glass substrate 12 (that is, the “protrusion length” protruding from the end of the glass substrate 12) was measured (31 04). Those with a protrusion width (extrusion length) of less than 400 were evaluated as “8”, those with a width of 400 or more and less than 500 were evaluated as “Mi”, and those of 500 ◯! or more were evaluated as “◯”.
[0088] 折曲げ試験 (外側) : [0088] Bending test (outside):
図 5は、 折曲げ試験 (外側) の測定方法の説明図である。 厚み 50 〇の ポリイミ ドフィルム 50に、 厚み 1 00 になるように光硬化性組成物を 塗布し、 波長 365 n mのL E Dを使用し200mW/c m2で1 5秒間紫外 線照射することで硬化させて硬化体 56を得た。 この硬化体 56を 26
Figure imgf000033_0001
り出し、 ポリイミ ドフィルム 50の端 26111111X5111111の範 囲に厚み 50 〇!の両面テープ 54を貼り、 厚み 1 〇!〇!のガラス基板 1 2の 端部に貼り付けて試験片を作製した (3200) 。 試験片においてポリイミ ドフィルム 50が内側になるように、 ガラス基板 1 2の非粘着テープ側へ荷 重 509で折曲げた際に (3202) 、 ガラス基板 1 2の端部からはみ出し た 「はみ出しの長さ」 ) を測定した (3204) 。 突出幅 40 (はみだし長 さが 400 未満のものを 「八」 と評価し、 400 〇!以上 500 〇!未 満を 「巳」 と評価し、 500 以上のものを 「〇」 と評価した。
FIG. 5 is an explanatory diagram of the measurement method of the bending test (outside). Polyimide film 50 with a thickness of 500 is coated with a photocurable composition to a thickness of 100 and cured by irradiating it with ultraviolet light at 200 mW/cm 2 for 15 seconds using a 365 nm wavelength LED. To obtain a cured product 56. 26 of this cured product
Figure imgf000033_0001
A double-sided tape 54 having a thickness of 50 〇! was attached to the end of the polyimide film 50 in the range of 26111111X5111111, and was attached to the end of the glass substrate 12 having a thickness of 10!! ). When the polyimide film 50 was placed on the inside of the test piece so that it was folded toward the non-adhesive tape side of the glass substrate 12 with a load 509 (3202), the “extrusion” of the glass substrate 12 Length") was measured (3204). Projection width 40 (A projecting length of less than 400 was evaluated as “8”, 400 ◯! or more and 500 〇! Insufficient was rated as “Mi”, and 500 or more was rated as “○”.
[0089] 耐屈曲試験: [0089] Flex resistance test:
図 6および図 7を用いて、 耐屈曲試験について説明する。 図 6に示すよう に、 厚み 5〇 のポリイミ ドフィルム 50に、
Figure imgf000033_0002
になるように光 硬化性組成物を塗布し、 波長 365 n の 1_巳 0を使用し 200
Figure imgf000033_0003
で 1 5秒間紫外線照射することで硬化させて硬化体 56を得た。 次に、 図 7 に示すように、 硬化体 56を 2001111X 1 0001111に切り出し、 切り出した 試験片の片端に 1 1< 9の錘を取り付けた。 錘とは反対の端から 2〇 を挟 み、 1 80° 折曲げ繰返し試験を実施した。 即ち、 屈曲角 1 80° 、 屈曲半 径 1 0〇!〇!以下で、 硬化体 56を内側になるように折曲げた後 (図 7の左側 の図) 、 硬化体 56を外側になるように折曲げた状態 (図 7の右側の図) を \¥0 2020/175196 32 卩(:171? 2020 /005876
The flex resistance test will be described with reference to FIGS. 6 and 7. As shown in Fig. 6, a polyimide film 50 with a thickness of 50 is
Figure imgf000033_0002
The photo-curable composition is applied so that
Figure imgf000033_0003
It was cured by irradiating it with ultraviolet rays for 15 seconds to obtain a cured product 56. Next, as shown in FIG. 7, the hardened material 56 was cut into 2001111X 1 0001111, and a weight of 11 <9 was attached to one end of the cut test piece. A 20- degree bending test was performed by inserting 20 from the end opposite to the weight. That is, at a bending angle of 180 ° and a bending half-diameter of 100 ° !○! or less, after bending the cured body 56 so that it is on the inside (left side of Fig. 7), the cured body 56 is on the outside. Bend it in the direction (right side of Fig. 7) \¥0 2020/175 196 32 卩 (: 171? 2020 /005876
1サイクルとし、 1 0 0サイクル後の屈曲部分を目視で観察した。 評価の基 準は以下に示すとおりである。 One cycle was set, and the bent portion after 100 cycles was visually observed. The criteria for evaluation are as follows.
八 : クラックがなく、 剥離もない。 Eight: No cracks and no peeling.
巳 : クラックがなく、 剥離がある。 Minami: There is no crack and there is peeling.
0 : クラックがあり、 剥離がない。 0: There are cracks and no peeling.
0 : クラックがあり、 剥離もある。 0: There are cracks and peeling.
[0090] 光透過率 (%) : [0090] Light transmittance (%):
各試料について、 一対のガラス板を準備し、 一方のガラス板に光硬化性組 成物を塗布し、 他方のガラス板で挟み込み、 厚みが〇.
Figure imgf000034_0001
となるように 硬化して、 一対のガラス板に硬化体が挟まれた試験片を作製した。 ここで、 試験片としてガラス板で挟む構造とした理由は、 硬化体表面の乱反射がある と透過率に影響を与えてしまうためである。 次いで各試験片について、 紫外 可視分光光度計 (株式会社島津製作所製 「11 _ 1 6 0 0」 ) を用いて波長 5 5 0 n〇!における平行光線透過率 (光透過率) を測定した。
For each sample, prepare a pair of glass plates, apply the photo-curable composition to one glass plate, and sandwich it with the other glass plate.
Figure imgf000034_0001
After curing, a test piece was prepared in which the cured product was sandwiched between a pair of glass plates. The reason why the test piece is sandwiched between glass plates is that diffuse reflection on the surface of the cured body affects the transmittance. Then, with respect to each test piece, the parallel light transmittance (light transmittance) at a wavelength of 550 n°! was measured using an ultraviolet-visible spectrophotometer (“11 — 1600” manufactured by Shimadzu Corporation).
[0091 ] 絶縁信頼性試験: [0091] Insulation reliability test:
ガラスエポキシ基板に配線間隔 0 . 3 1 8
Figure imgf000034_0002
の銅配線を有する」 丨 3 2 型く し形基板に、 厚み 1 〇〇 で樹脂組成物を塗布し、 波長 3 6 5 n の 1-巳 0を使用
Figure imgf000034_0003
ことで硬化させ ることで試験片を作製した。 8 5 °〇、 8 5 % [¾ 1~1の環境下で 1 2 0時間、 基 板に 5 0 Vの電圧を印加した。
Wiring spacing on glass epoxy board 0.3 1 8
Figure imgf000034_0002
It has copper wiring.” 丨32 The resin composition is applied to a comb-shaped substrate with a thickness of 100, and 1-M0 with a wavelength of 3 6 5 n is used.
Figure imgf000034_0003
Then, a test piece was prepared by curing. A voltage of 50 V was applied to the substrate for 120 hours in an environment of 85 °, 85% [¾ 1 to 1].
[0092] なお、 上述した何れの試験においても、 光硬化性組成物の 「厚み」 は、 硬 化後の厚みを意味する。 In all of the above-mentioned tests, the “thickness” of the photocurable composition means the thickness after curing.
[0093] <試験結果の分析 > [0093] <Analysis of test results>
[0094] 試料 1〜 2 9について、 横軸にヤング率を、 縦軸に剥離力を取って、 ヤン グ率と剥離力との関係をプロッ トしたグラフが、 図 8に示されている。 折曲 げ試験 (内側) 、 折曲げ試験 (外側) および耐屈曲試験の結果を勘案して、 図 8のグラフから、 光硬化性組成物の硬化体または弾性保護部材の剥離カ が、 下記 (1) 式の関係を有することが分かった。 \¥02020/175196 33 卩(:171? 2020 /005876 [0094] Fig. 8 shows a graph plotting the Young's modulus on the horizontal axis and the peeling force on the vertical axis for each of Samples 1 to 29 and plotting the relationship between the Young's modulus and the peeling force. Considering the results of the bending test (inside), bending test (outside), and bending resistance test, the peeling force of the cured product of the photocurable composition or the elastic protective member is as follows from the graph of Fig. 8. 1) It was found that there is a relation of formula. \¥02020/175196 33 卩(: 171? 2020/005876
>1 00X 4 (巳) +250 (1) >100 x 4 (Min) +250 (1)
式中、 :剥離力 (1\1/〇〇 、 巳 :ヤング率
Figure imgf000035_0001
In the formula,: Peeling force (1\1/〇〇, Mitsu: Young's modulus
Figure imgf000035_0001
[0095] 前記弾性保護部材の剥離カ が、 上記 (1) 式の関係を有することにより 、 フレキシブル基板をリジッ ド基板の端部から折曲げた際に、 従来に比べ、 保護部材がリジッ ド基板及びフレキシブル基板から剥がれることなく、 フレ キシブル基板の屈曲半径を小さくすることができる。 その結果、 前記リジッ ド基板の端部から外側に突出した前記フレキシブル基板の折曲げ部の突出幅 を、 従来に比べ、 小さく しながら耐久性の優れたものとすることができる。 [0095] Since the peeling force of the elastic protection member has the relationship of the above formula (1), when the flexible substrate is bent from the end of the rigid substrate, the protection member is more rigid than the conventional one. Also, the bending radius of the flexible substrate can be reduced without peeling off from the flexible substrate. As a result, the protrusion width of the bent portion of the flexible substrate protruding outward from the end portion of the rigid substrate can be made smaller than that of the conventional one, and excellent in durability.
[0096] また、 試料 1〜 29について、 横軸にヤング率を、 縦軸に剥離力を取って 、 ヤング率と剥離力との関係をプロッ トしたグラフが、 図 8に示されている 。 リペア試験の結果を勘案して、 図 8のグラフから、 光硬化性組成物の硬化 体の剥離カ が、 下記 (2) 式の関係を有することが分かった。 [0096] In addition, regarding Samples 1 to 29, a graph plotting the Young's modulus on the horizontal axis and the peeling force on the vertical axis and plotting the relationship between the Young's modulus and the peeling force is shown in FIG. Taking the results of the repair test into consideration, it was found from the graph of FIG. 8 that the peeling force of the cured product of the photocurable composition has the relationship of the following formula (2).
<1 00X 4 (巳) + 760 (2) <100 X 4 (Mimi) + 760 (2)
式中、 :剥離力
Figure imgf000035_0002
巳 :ヤング率
Figure imgf000035_0003
In the formula,: Peeling force
Figure imgf000035_0002
Mami: Young's modulus
Figure imgf000035_0003
[0097] 前記光硬化組成物の硬化後の硬化体の剥離カ が、 上記 (2) 式の関係を 有することにより、 前記光硬化組成物を硬化させて得られる硬化体は、 リジ ッ ド基板及びフレキシブル基板へ必要以上に強く密着させないことにより、 フレキシブル基板の変形に対する電子基板の耐久性を高めつつも、 基材から の引きはがしが可能であり、 リペア性に優れる。 [0097] The cured product obtained by curing the photocurable composition is a rigid substrate because the peeling force of the cured product of the photocurable composition has the relationship of the above formula (2). Also, by not sticking to the flexible substrate more strongly than necessary, the durability of the electronic substrate against deformation of the flexible substrate can be enhanced while it can be peeled off from the base material and has excellent repairability.
[0098] さらに、 試料 1〜 29について、 横軸にヤング率を、 縦軸に剥離力を取っ て、 ヤング率と剥離力との関係をプロッ トしたグラフが、 図 9に示されてい る。 折曲げ試験 (内側) 、 折曲げ試験 (外側) および耐屈曲試験の結果を勘 案して、 図 9のグラフから、 光硬化組成物の硬化後の硬化体は、 ヤング率巳
Figure imgf000035_0004
が 250£ £800である範囲〇が特に好ましく、 ヤング率巳 (IV! 3) が〇. 3<巳 £ 1. 0であって剥離カ
Figure imgf000035_0005
である範囲巳が さらに好ましく、 ヤング率巳 が〇. 1 £巳£〇. 3であって剥離 カ
Figure imgf000035_0006
が 80£ £550である範囲八がさらに好ましいことが分 \¥0 2020/175196 34 卩(:171? 2020 /005876
Further, for Samples 1 to 29, a graph plotting the Young's modulus on the horizontal axis and the peeling force on the vertical axis and plotting the relationship between the Young's modulus and the peeling force is shown in FIG. Taking into account the results of the bending test (inside), bending test (outside) and bending resistance test, the graph of Fig. 9 shows that the cured product of the photocurable composition has a Young's modulus
Figure imgf000035_0004
Is particularly preferable in the range of 250 £ £800, and Young's modulus (IV! 3) is 0.3 <M £ 1.0 and the peeling force is
Figure imgf000035_0005
Is more preferable, and the Young's modulus is 0.01 £ £ £ 0.3 and the peeling coefficient is
Figure imgf000035_0006
The range 8 with 80 £ £550 is more preferable. \¥0 2020/175 196 34 卩 (: 171? 2020 /005876
かった。 前記範囲<3の性質を有する弾性保護部材を用いると、 屈曲半径を小 さくするための応力は大きくなるが、 高強度で擦れに強く、 大型の基板や、 振動などの衝撃が加わる用途に好適である。 一方、 前記範囲 の性質を有す る弾性保護層材料を用いると、 弱い応力で屈曲半径を小さくできる。 したが って、 フレキシブル基板やリジッ ド基板への負荷が小さく、 例えば破損しや すいガラス基板や薄型基板に適用する際に好適である。 このため、 特に高い レベルで小型化 ·共額縁化したい場合には、 範囲 の性質を有することが好 ましい。 他方、 範囲巳は中間的な性質を有する弾性保護部材であり、 広い用 途に用いやすい点で好ましいことが分かった。 なお、 試料 2 5の試験片は硬 く脆いため、 ヤング率の測定ができなかった。 また、 試料 2 3、 2 7の試験 片は剥離中に硬化体が千切れてしまい、 剥離力の測定ができなかった。 won. When an elastic protection member with the property of the above range <3 is used, the stress for reducing the bending radius becomes large, but it is high strength and resistant to rubbing, and is suitable for large substrates and applications where shock such as vibration is applied. Is. On the other hand, when the elastic protective layer material having the properties within the above range is used, the bending radius can be reduced with a weak stress. Therefore, the load on the flexible substrate or the rigid substrate is small, and it is suitable for application to, for example, a glass substrate or a thin substrate that is easily damaged. For this reason, it is preferable to have a range of properties, especially when it is desired to reduce the size and size of the frame together. On the other hand, it has been found that Umizumi is an elastic protective member having intermediate properties and is preferable in that it is easy to use in a wide range of applications. The Young's modulus could not be measured because the test piece of Sample 25 was hard and brittle. In addition, the test pieces of Samples 23 and 27 were torn into pieces during curing, and the peeling force could not be measured.
[0099] 粘度: [0099] Viscosity:
熱可塑性エラストマーの濃度を 1 5質量%以下の試料についてみると、 単 官能高極性モノマーと多官能モノマーの合計が 1 2 . 7 5質量%以上である 試料 1 3、 1 8、 2 0、 2 6において、 粘度がやや高くなっている。 他方、 残余の試料については粘度が低く抑えられていることがわかる。 Looking at the samples with a thermoplastic elastomer concentration of 15% by mass or less, the sum of monofunctional highly polar monomers and polyfunctional monomers was 12.7 5% by mass or more. Samples 13, 18, 20, 20 In 6, the viscosity is slightly higher. On the other hand, it can be seen that the viscosity of the remaining samples is kept low.
[0100] マルテンス硬さ
Figure imgf000036_0001
:
[0100] Martens hardness
Figure imgf000036_0001
:
試料 1〜 2 9について、 マルテンス硬さと剥離力の関係を見ると、 折曲げ 試験 (内側) 、 折曲げ試験 (外側) および耐屈曲試験の結果を勘案して、 光 硬化組成物の硬化後の硬化体は、 マルテンス硬さが 「八」 の試料は、 柔軟性 に加えて 1 〇〇%伸び引張応力の値も小さく、 伸長性に優れることから、 折 り曲げの内側に設けても、 外側に設けても、 小さい応力で折曲げることがで き、 さらに折曲げ後に元に戻る力 (反発力) も少なくすることができる点で 好ましいことがわかった。 Looking at the relationship between the Martens hardness and the peeling force for Samples 1 to 29, the results of the bending test (inside), bending test (outside), and bending resistance test were taken into consideration and As for the cured product, the sample with a Martens hardness of "8" has a small value of 100% elongation tensile stress in addition to flexibility, and it has excellent extensibility. It was found that it is preferable even if it is provided in the point that it can be bent with a small stress and the force (repulsive force) to return to the original position after bending can be reduced.
[0101 ] なお、 マルテンス硬さが〇.
Figure imgf000036_0002
[0101] The Martens hardness is 〇.
Figure imgf000036_0002
とき、 剥離カ (1\1 /〇〇 は 8 0< <5 5 6の範囲にあった。 また、 マル テンス硬さが〇. 3
Figure imgf000036_0003
より大きく〇. 5
Figure imgf000036_0004
以下であるとき剥 離カ (1\1 /〇〇 は 2 0 0< <8 9 6の範囲となった。 \¥02020/175196 35 卩(:171? 2020 /005876
At that time, the peeling power (1\1/○○ was in the range of 80 <<5 56. In addition, the Martens hardness was ○ 0.3.
Figure imgf000036_0003
Greater than 0.5
Figure imgf000036_0004
When it was below, the peeling force (1\1/○○ was in the range of 200<<896. \¥02020/175196 35 卩 (: 171? 2020 /005876
[0102] 反り : [0102] Warp:
試料 26、 28については反りが見られた。 試料 26、 28は他の試料に 比べて、 多官能モノマーや多官能ポリマーの含有量が多く、 さらにヤング率 が 3 IV! 8以上と大きいことがわかる。 Warpage was observed for Samples 26 and 28. It can be seen that Samples 26 and 28 have a higher content of polyfunctional monomers and polyfunctional polymers and a higher Young's modulus of 3 IV! 8 or more than the other samples.
[0103] 光透過率 (%) : [0103] Light transmittance (%):
ソフトセグメントの質量の比率が 87質量%の 3巳 3である試料 7の光 透過率は 95%であった。 一方、 残余の試料については、 透過率が 86%以 下であり、 硬化体に白濁がみられ、 光透過性に劣っていた。 The light transmittance of Sample 7, which was 3%3 with the mass ratio of the soft segment of 87% by mass, was 95%. On the other hand, in the remaining samples, the transmittance was less than 86%, and the cured product was opaque, resulting in poor light transmission.
[0104] 絶縁信頼性試験: [0104] Insulation reliability test:
全ての本発明の一実施形態に係る光硬化性組成物については、 銅配線の短 絡が見られなかった。 一方、 試料 29については、 銅配線の表面が褐色に変 色していた。 No short circuit of copper wiring was observed in all the photocurable compositions according to one embodiment of the present invention. On the other hand, in Sample 29, the surface of the copper wiring turned brown.
符号の説明 Explanation of symbols
[0105] 1 0 電子基板 [0105] 10 Electronic board
1 2 リジッ ド基板 1 2 Rigid board
1 23 偏光板 1 2 3 Polarizer
1 2匕 第 1の透明電極付きガラス基板 1 2 匕 1st glass substrate with transparent electrode
1 2〇 液晶層 1 2 0 Liquid crystal layer
1 2 第 2の透明電極付きガラス基板 1 2 2nd glass substrate with transparent electrode
1 26 偏光板 1 26 Polarizer
1 2干 バックライ トユニッ ト 1 2 Dry back light unit
1 3 封止材 1 3 Sealant
1 4 フレキシブル基板 1 4 Flexible board
1 5 異方導電膜 1 5 Anisotropic conductive film
1 6 折曲げ部 1 6 Bent section
203, 20 弾性保護部材 203, 20 Elastic protection member
3〇 3、 30匕 境界領域 30 3 , 30 border area
40 突出幅 40 Projection width

Claims

\¥0 2020/175196 36 卩(:171? 2020 /005876 請求の範囲 \\0 2020/175 196 36 卩(: 171? 2020/005876 Claims
[請求項 1 ] リジッ ド基板と、 前記リジッ ド基板の端部から延び導通可能に接続さ れるフレキシブル基板と、 を備える電子基板において、 [Claim 1] An electronic board comprising: a rigid board; and a flexible board extending from an end portion of the rigid board and connected in a conductive manner,
前記フレキシブル基板の端部から前記フレキシブル基板の折曲げ部の 少なくとも一方面に、 弾性保護部材が設けられ、 An elastic protection member is provided on at least one surface of the bent portion of the flexible substrate from the end of the flexible substrate,
前記フレキシブル基板を、 前記リジッ ド基板の端部から突出して前記 リジッ ド基板の一方面側に向かって折曲げた際に、 前記リジッ ド基板 の端部から突出した前記フレキシブル基板の折曲げ部の突出幅が、 1 0 0〜 4 0 0 01であることを特徴とする電子基板。 When the flexible board is protruded from the end of the rigid board and bent toward one surface side of the rigid board, the bending part of the flexible board is protruded from the end of the rigid board. An electronic substrate having a protrusion width of 100 to 4001.
[請求項 2] 前記弾性保護部材は、 ナノインデンテーシヨン試験で測定されるマル テンス硬さが、 〇. 1〜〇.
Figure imgf000038_0001
に記載の電 子基板。
[Claim 2] The elastic protective member has a Martens hardness measured by a nanoindentation test of 0.1 to 〇.
Figure imgf000038_0001
Electronic board described in.
[請求項 3] 前記弾性保護部材の剥離カ が、 下記 (1) 式の関係を示す請求項 1 記載の電子基板。 [Claim 3] The electronic substrate according to claim 1, wherein the peeling force of the elastic protection member has a relationship represented by the following formula (1).
>1 0 0 X 4 (巳) + 2 5 0 (1) >100 x 4 (Min) +250 (1)
式中、 :剥離力
Figure imgf000038_0002
巳 :ヤング率
Figure imgf000038_0003
In the formula,: Peeling force
Figure imgf000038_0002
Mami: Young's modulus
Figure imgf000038_0003
[請求項 4] 前記フレキシブル基板は、 1 5〜 2 0 0 の厚みを有する樹脂フィ ルムであり、 [Claim 4] The flexible substrate is a resin film having a thickness of 15 to 200,
前記フレキシブル基板を折曲げた際に、 前記フレキシブル基板の折曲 げ内面に、 配線体が設けられている請求項 1記載の電子基板。 The electronic board according to claim 1, wherein a wiring body is provided on an inner surface of the flexible board when the flexible board is bent.
[請求項 5] 電子基板に塗布した後に光を照射して硬化させることにより、 弾性保 護層を形成する光硬化性組成物であって、 [Claim 5] A photocurable composition for forming an elastic protective layer by applying light to an electronic substrate and then curing the composition,
単官能脂環式 (メタ) アクリル酸エステルモノマーと、 単官能脂肪族 (メタ) アクリル酸エステルモノマーと、 単官能高極性モノマーと、 \¥02020/175196 37 卩(:171? 2020 /005876 Monofunctional alicyclic (meth)acrylic acid ester monomer, monofunctional aliphatic (meth)acrylic acid ester monomer, monofunctional highly polar monomer, \¥02020/175196 37 卩 (: 171? 2020 /005876
熱可塑性エラストマーと、 ラジカル重合開始剤とを含み、 Including a thermoplastic elastomer and a radical polymerization initiator,
未硬化時の粘度が、 1 〇〜 5000
Figure imgf000039_0001
3の範囲であり、 硬化後の硬化体の、 ナノインデンテーシヨン試験で測定されるマルテ ンス硬さが、 〇. 1〜〇.
Figure imgf000039_0002
の範囲であることを特徴とす る光硬化性組成物。
Viscosity when uncured is 10 to 5000
Figure imgf000039_0001
The hardness of the cured product after curing is in the range of 3 and the hardness measured by the nanoindentation test is from 0.01 to 0.
Figure imgf000039_0002
The photo-curable composition is characterized in that
[請求項 6] 前記光硬化性組成物の硬化後の硬化体の剥離カ が、 下記 (1) 式の 関係を示す請求項 5記載の光硬化性組成物。 6. The photocurable composition according to claim 5, wherein the peeling force of the cured product of the photocurable composition after curing exhibits the relationship of the following formula (1).
>1 00X 4 (巳) +250 (1) >100 x 4 (Min) +250 (1)
式中、 :剥離力
Figure imgf000039_0003
巳 :ヤング率
Figure imgf000039_0004
In the formula,: Peeling force
Figure imgf000039_0003
Mami: Young's modulus
Figure imgf000039_0004
[請求項 7] 前記光硬化性組成物の硬化後の硬化体の剥離カ が、 下記 (2) 式の 関係を示す請求項 5記載の光硬化性組成物。 7. The photocurable composition according to claim 5, wherein the peeling force of the cured product of the photocurable composition after curing exhibits the relationship of the following formula (2).
<1 00X 4 (巳) + 760 (2) <100 X 4 (Mimi) + 760 (2)
:剥離力
Figure imgf000039_0005
: Peel force
Figure imgf000039_0005
º :ヤング率 (IV! 3) º: Young's modulus (IV! 3)
[請求項 8] 請求項 5〜 7の何れか記載の光硬化性組成物を前記リジッ ド基板と前 記フレキシブル基板との境界領域に塗布してなる電子基板。 [8] An electronic substrate obtained by applying the photocurable composition according to any one of [5] to [7] to a boundary region between the rigid substrate and the flexible substrate.
PCT/JP2020/005876 2019-02-28 2020-02-14 Electronic substrate and photocurable composition WO2020175196A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020524247A JP6762600B1 (en) 2019-02-28 2020-02-14 Electronic substrate and photocurable composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019036874 2019-02-28
JP2019-036874 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020175196A1 true WO2020175196A1 (en) 2020-09-03

Family

ID=72239816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005876 WO2020175196A1 (en) 2019-02-28 2020-02-14 Electronic substrate and photocurable composition

Country Status (3)

Country Link
JP (1) JP6762600B1 (en)
TW (1) TWI808307B (en)
WO (1) WO2020175196A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054443A (en) * 2004-07-14 2006-02-23 Hitachi Chem Co Ltd Printed-circuit board
JP2006078622A (en) * 2004-09-08 2006-03-23 Seiko Epson Corp Electro-optical apparatus and electronic device
JP2008026528A (en) * 2006-07-20 2008-02-07 Matsushita Electric Ind Co Ltd Display device
JP2017126595A (en) * 2016-01-12 2017-07-20 ポリマテック・ジャパン株式会社 Sealant and seal-material composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170103644A (en) * 2016-03-04 2017-09-13 동우 화인켐 주식회사 Hard coating film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054443A (en) * 2004-07-14 2006-02-23 Hitachi Chem Co Ltd Printed-circuit board
JP2006078622A (en) * 2004-09-08 2006-03-23 Seiko Epson Corp Electro-optical apparatus and electronic device
JP2008026528A (en) * 2006-07-20 2008-02-07 Matsushita Electric Ind Co Ltd Display device
JP2017126595A (en) * 2016-01-12 2017-07-20 ポリマテック・ジャパン株式会社 Sealant and seal-material composition

Also Published As

Publication number Publication date
JP6762600B1 (en) 2020-09-30
TW202106133A (en) 2021-02-01
TWI808307B (en) 2023-07-11
JPWO2020175196A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP6162033B2 (en) Optical pressure-sensitive adhesive composition, optical pressure-sensitive adhesive sheet, and image display device
TWI830400B (en) Use of double-sided adhesive sheets, laminated bodies containing components for forming image display devices, laminated body forming sets, and double-sided adhesive sheets
CN103937417B (en) Binder film, adhesive composition and comprise the display of this binder film
JP6161994B2 (en) Optical pressure-sensitive adhesive composition, optical pressure-sensitive adhesive sheet, image display device and input / output device
WO2012077808A1 (en) Adhesive sheet for image display device, image display device, and adhesive resin composition
JP5847724B2 (en) adhesive
JP5490089B2 (en) Electrode connection method and connection composition used therefor
JP2020517800A (en) Optically transparent adhesive sheet, composition for producing the same, and flat panel display using the same
JP6712459B2 (en) Photocurable resin composition
JP6101945B2 (en) Sealing material and sealing method
WO2021019919A1 (en) Electronic substrate and photocurable composition
WO2020175196A1 (en) Electronic substrate and photocurable composition
WO2020184110A1 (en) Photocurable composition and electronic board
JP2008106189A (en) Adhesive composition
JP6654437B2 (en) Photocurable moisture-proof insulating coating composition
KR20190083481A (en) Adhesive sheet, optical member and display device using the same
JP2014214275A (en) Active energy ray-curable optical adhesive composition, optical adhesive sheet, image display unit, output/input unit, and method for producing adhesive layer
KR101611003B1 (en) Anisotropic conductive film comprising silicone elastomer
TWI742213B (en) Solventless type adhesive composition, adhesive, and manufacturing method of adhesive
TW201825632A (en) Curable resin composition, image display device and manufacturing method of image display device
JP7439815B2 (en) Wiring board and its manufacturing method
KR20180029410A (en) Optically Clear Adhesive Composition, and Optically Clear Adhesive Film comprising the Same, and Flat Panel Display
KR20180029547A (en) Optically Clear Adhesive Composition, and Optically Clear Adhesive Film comprising the Same, and Flat Panel Display

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020524247

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762808

Country of ref document: EP

Kind code of ref document: A1