WO2020175186A1 - Control system, power source control system, control method, and program - Google Patents

Control system, power source control system, control method, and program Download PDF

Info

Publication number
WO2020175186A1
WO2020175186A1 PCT/JP2020/005832 JP2020005832W WO2020175186A1 WO 2020175186 A1 WO2020175186 A1 WO 2020175186A1 JP 2020005832 W JP2020005832 W JP 2020005832W WO 2020175186 A1 WO2020175186 A1 WO 2020175186A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
power conversion
unit
control system
Prior art date
Application number
PCT/JP2020/005832
Other languages
French (fr)
Japanese (ja)
Inventor
真 小曽根
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020175186A1 publication Critical patent/WO2020175186A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • Control system Power supply control system, control method, and program
  • the present disclosure relates generally to a control system, a power supply control system, a control method, and a program, and more particularly, to a control system, a power supply control system, a control method, which controls a power supply system including a plurality of power supply devices.
  • program related background art a control system, a power supply control system, a control method, which controls a power supply system including a plurality of power supply devices.
  • Patent Document 1 describes a battery system (power supply control system) that efficiently charges a plurality of battery modules.
  • the battery system of Patent Document 1 includes a power supply device that supplies electric power, a battery device, and a control device (control system).
  • the battery device includes a plurality of substantially the same battery units in parallel, each of which includes a power conversion unit that converts the power supplied from the power supply unit and a battery module that charges the power converted by the power conversion unit. Connected and configured.
  • the control device should supply power among the plurality of battery units connected in parallel according to the amount of power supplied from the power supply device and considering the predetermined power conversion efficiency of the power conversion unit. Select the battery unit.
  • the battery unit is selected based on a predetermined power conversion efficiency stored in the storage unit.
  • the power conversion efficiency of the power converter may change depending on the operating state. Therefore, in some cases, the actual power conversion efficiency of the power conversion unit is different from the predetermined power conversion efficiency stored in the storage unit. Therefore, when the power conversion unit is operated based on the predetermined power conversion efficiency, the power conversion efficiency may decrease.
  • Patent Document 1 Patent No. 5 1 5 6 1 1 2
  • the present disclosure has been made in view of the above circumstances, and an object thereof is to provide a control system, a power supply control system, a control method, and a program capable of improving the power conversion efficiency in a plurality of power conversion units. To do.
  • a control system controls a power supply system including a plurality of power supply devices including a power conversion unit.
  • the control system includes an estimation unit and a motion control unit.
  • the estimation unit estimates the characteristic of the power conversion efficiency of each of the plurality of power conversion units during the operation period of one or more power supply units of the plurality of power supply units.
  • the operation control unit controls the operations of the plurality of power conversion units based on the estimation result of the estimation unit.
  • a power supply control system includes the control system and the power supply system.
  • a control method is a method of controlling a power supply system including a plurality of power supply devices including a power conversion unit.
  • the control method includes an estimation process and an operation control process.
  • the estimation process the characteristic of the power conversion efficiency of each of the plurality of power conversion units during the operation period of one or more power supply devices of the plurality of power supply devices is estimated.
  • the operation control process the operations of the plurality of power conversion units are controlled based on the estimation result of the estimation process.
  • a program according to an aspect of the present disclosure causes a computer system to execute the control method.
  • Fig. 1 is a block diagram of a control system and a power supply control system according to an embodiment of the present disclosure.
  • Figure 2 is a graph of the characteristics of power conversion efficiency.
  • Fig. 3 is an operation flow chart of the above control system.
  • the control system 1 is a control system that controls the power supply system 2.
  • the power supply system 2 includes a plurality (three in this embodiment) of power supply devices 20.
  • the power supply control system 10 according to the present embodiment includes a control system 1 and a power supply system 2.
  • Each power supply device 20 is, for example, an energy storage system (Mitsumi 33: [3rd person ""396 System). Each power supply device 20 has a power conversion unit 2 2 and a storage battery 2 3. The power supply device 20 is electrically connected to the power system 5 and the load 4. The power conversion unit 2 2 charges the storage battery 2 3 with the power supplied from the power system 5 and stores it in the storage battery 2 3. The stored electric energy is output to the load 4.
  • the power supply device 20 includes, for example, office buildings, offices, factories, warehouses, stores (including complex facilities such as shopping centers), parks, schools, hospitals, stations. Installed in non-residential facilities such as airports or parking lots, etc. The power supply unit 20 can be installed not only in non-residential facilities but also in residential facilities such as collective housing or detached houses.
  • a plurality of power supply devices 20 are installed in one facility, and the plurality of power supply devices 20 output electric energy to a common load 4.
  • a power supply device 208 In order to distinguish a plurality of power supply devices 20, they are referred to as a power supply device 208, a power supply device 20, and a power supply device 200.
  • the control system 1 is configured to control the power supply system 2 (the plurality of power supply devices 20).
  • the control system 1 may be installed in the same facility as the plurality of power supply devices 20 or may be installed in a facility different from the plurality of power supply devices 20. In the present embodiment, as an example, it is assumed that the control system 1 is installed in the same facility as the plurality of power supply devices 20.
  • the control system 1 is a network such as an internet as a lower system. ⁇ 2020/175 186 4 ⁇ (: 171? 2020 /005832
  • the host system 3 is installed, for example, at a place distant from the facility where a plurality of power supply units 20 are installed.
  • the control system 1 is a system capable of controlling a plurality of power supply devices 20 by communicating with the host system 3.
  • the “upper” of the higher system 3 and the “lower” of the lower system are merely used as labels for distinguishing the two, and are not meant to specify their respective positions and ranks. Absent.
  • the control system 1 controls each power supply device 20 according to the prediction information acquired by communication with the host system 3.
  • the control system 1 for example, not only the power consumption value at the current load 4 but also the power consumption value at the future load 4 etc. are taken into consideration for each power supply unit 20. It can be executed and the power supply unit 20 can be efficiently controlled.
  • Each power supply device 20 functions as an emergency power supply during a power failure of the power system 5. Further, the control system 1 controls each power supply unit 20 so that, for example, it is possible to monitor the usage status of electric energy in a facility where a plurality of power supply units 20 are installed and to efficiently use the electric energy. Becomes Further, the control system 1 controls each power supply unit 20 to realize functions such as peak shift or peak cut for avoiding concentration of the power supplied from the power system 5. it can. As a result, by introducing the control system 1 and the power supply system 2, it is possible to stabilize the supply of electric power, monitor the usage of electric energy and use it efficiently, and stabilize the power system 5. It is possible.
  • the control system 1 estimates the characteristic of the power conversion efficiency (efficiency characteristic) of each of the plurality of power conversion units 2 2 during the operation period of one or more of the plurality of power supply units 20. Then, the control system 1 controls the operations of the plurality of power conversion units 22 based on the estimated efficiency characteristics.
  • the characteristics of the power conversion efficiency (efficiency characteristics) in the power conversion unit 22 may change depending on the operating state of the power supply device 20.
  • the control system 1 of this embodiment Estimates the efficiency characteristics of one or more power supply units 20 among the plurality of power supply units 20 during the operation period, and controls the operation of each power conversion unit 22 based on the estimation result. As a result, in the control system 1 of the present embodiment, it is possible to improve the power conversion efficiency of the plurality of power conversion units 22.
  • control system 1 the control system 1 and the power supply system 2 will be described with reference to FIGS. 1 to 3.
  • the control system 1 is configured to be able to communicate with the host system 3.
  • communicable means that information can be exchanged directly or indirectly via a network 6 or a relay by a suitable communication method such as wire communication or wireless communication. That is, the control system 1 and the upper system 3 can exchange information with each other.
  • control system 1 and the host system 3 are capable of bidirectional communication with each other, and are capable of transmitting information from the host system 3 to the control system 1 and transmitting information from the control system 1 to the host system 3. Both are possible.
  • control system 1 and the host system 3 are configured to be communicable via a public network 6 such as the Internet.
  • the control system 1 is a system for controlling the plurality of power supply devices 20 as described above. Therefore, the control system 1 is configured to communicate with not only the host system 3 but also each power supply device 20. The control system 1 controls the operation of the power conversion unit 22 of each power supply unit 20 by outputting control information to each power supply unit 20.
  • the control system 1 mainly has a computer system including a memory and a processor. That is, the functions of the control system 1 are realized by the processor executing the program recorded in the memory of the computer system.
  • the program may be recorded in a memory in advance, may be provided through an electric communication line such as the Internet, or may be recorded and provided in a non-transitory recording medium such as a memory card.
  • the power supply device 20 includes a communication unit 21, a power conversion unit 22, a storage battery 23, and a measurement unit 24.
  • the communication unit 21 is a communication interface, and is configured to be communicable with the control system 1 (the second communication unit 12 thereof) by an appropriate communication method such as wired communication or wireless communication. There is.
  • the communication unit 21 is capable of bidirectional communication with the control system 1.
  • the storage battery 23 is, for example, a secondary battery such as a lithium ion battery.
  • the power conversion unit 22 is, for example, a power conditioner (PCS: Power Condition System) and has a power conversion circuit.
  • the power conversion circuit has, for example, power devices including semiconductor switching elements, electronic components such as transformers, capacitors, inductors, etc., and performs power conversion from AC power to DC power and from DC power to AC power. It is configured to be capable of power conversion. That is, the power conversion unit 22 is configured to be capable of bidirectional power conversion between AC power and DC power.
  • the power conversion unit 22 may be configured to be able to perform power conversion from DC power to DC power or AC power to AC power.
  • the power conversion unit 22 charges and discharges the storage battery 23 by performing power conversion. Specifically, the power converter 22 is electrically connected to the power grid 5. The power conversion unit 22 charges the storage battery 23 by converting the AC power supplied from the power system 5 into DC power and outputting the DC power to the storage battery 23. The power conversion unit 22 also discharges the storage battery 23 by converting the electric energy (DC power) stored in the storage battery 23 into alternating current power and outputting it to the load 4.
  • DC power electric energy
  • the power conversion unit 22 charges and discharges the storage battery 23 according to the control information from the control system 1.
  • the control information from the “Sai I” control system 1 includes, for example, command values such as the charging period of the storage battery 23, the charging power value (or power amount), the discharging period, and the discharging power value (or power amount). Has been. ⁇ 2020/175 186 7 ⁇ (:171? 2020 /005832
  • the measuring unit 24 is configured to measure the operating state of the power supply device 20.
  • the “operating state of the power supply device 20” in the present disclosure is information related to the operation (operation) of the power supply device 20 and includes, for example, voltage information, temperature information, and the like.
  • the measurement unit 24 has a voltage measurement unit 2 4 1 and a temperature measurement unit 2 4 2.
  • the voltage measurement unit 2 41 measures the input voltage of the power conversion unit 2 2 as the operating state (voltage information) of the power supply device 20.
  • the input voltage of the power conversion unit 22 is the system voltage input from the system power source to the power conversion unit 22 and the battery voltage input from the storage battery 23 to the power conversion unit 22.
  • the voltage measurement unit 2 41 may be configured to measure only one of the system voltage and the battery voltage.
  • the temperature measurement unit 2 42 measures the temperature of the power conversion unit 2 2 as the operating state (temperature information) of the power supply device 20.
  • the temperature of the power conversion unit 22 is, for example, the temperature of electronic components (power device, transformer, coil, etc.) that constitute the power conversion circuit.
  • the measuring unit 24 may be configured to include only one of the voltage measuring unit 2 4 1 and the temperature measuring unit 2 4 2.
  • the measuring unit 24 repeatedly measures the operating state of the power supply device 20 at least during the operation period of the power supply device 20.
  • the operation period is a period during which the power supply device 20 is operating, and a period during which the power conversion unit 22 is performing power conversion.
  • the operating period is the period during which the storage battery 23 is being charged or discharged.
  • the measuring unit 24 repeatedly measures the operating state of the power supply device 20 at a predetermined cycle, for example.
  • the predetermined cycle is a time cycle shorter than the operation period, and is, for example, 1 minute, 5 minutes, 10 minutes, or the like.
  • the measuring unit 24 repeatedly measures not only the operating period of the power supply device 20 but also the operating state of the power supply device 20 during the standby period of the power supply device 20.
  • the standby period of the power supply device 20 is a period during which the power supply device 20 is not operating, that is, the power supply device 20 is activated but the power conversion unit 2 2 performs power conversion (charging and discharging of the storage battery 23). ) Is not performed.
  • the operating state of the power supply device 20 immediately before the start can be measured.
  • the measurement unit 24 may start the measurement of the operating state of the power supply unit 20 by using the measurement start command output from the control system 1 before the start of the operation period of the power supply unit 20 as a trigger. ..
  • the measurement unit 24 outputs the measurement result of the operating state of the power supply device 20 to the control system 1 via the communication unit 21.
  • the communication unit 21 and the measurement unit 24 are the power conversion unit.
  • the power converter 22 may have a function of communicating with the control system 1 and a function of measuring the operating state.
  • the control system 1 has a first communication unit 11, a second communication unit 12, an estimation unit 13, an operation control unit 14, and a storage unit 15.
  • the estimation unit 13 and the operation control unit 14 are realized as one function of a computer system including a memory and a processor.
  • the first communication unit 11 is a communication interface, and is configured to be communicable with the host system 3 by an appropriate communication method such as wired communication or wireless communication.
  • the first communication unit 11 is configured to be communicable with the higher-level system 3 via the public network 6 such as the Internet.
  • the second communication unit 12 is a communication interface, and is configured to be able to communicate with (the communication unit 21 of) the power supply device 20 by an appropriate communication method such as wired communication or wireless communication. ..
  • the second communication unit 12 is configured to be able to communicate with each of the plurality of power supply devices 20.
  • the estimation unit 13 determines the characteristics of the power conversion efficiency of each of the plurality of power conversion units 2 2 during the operation period of one or more power supply units 20 among the plurality of power supply units 20 (hereinafter referred to as the efficiency characteristic). To say).
  • the power conversion efficiency is the ratio of the output power to the input power of the power conversion unit 22.
  • the efficiency characteristics are the power conversion efficiency [%] for the output power [! ⁇ ⁇ /] of the power converter 22 (see Fig. 2) or the power conversion efficiency [% for the input power [! ⁇ ⁇ /]. ] And other characteristics related to changes in power conversion efficiency.
  • the characteristics of the power conversion efficiency may change according to the operating state of the power supply device 20. For example, even when the power conversion unit 22 outputs a predetermined output power, the power conversion efficiency may decrease due to the temperature rise of the power conversion unit 22.
  • the estimation unit 13 acquires the measurement result of the operating state of the power supply device 20 measured by the measurement unit 24 of each power supply device 20 via the second communication unit 12. Then, the estimation unit 13 uses the obtained measurement result of the operating state of the power supply unit 20 to determine the power conversion unit 2 2 of each power conversion unit 2 2 during the operation period of one or more power supply units 20. Estimate power conversion efficiency characteristics (efficiency characteristics). Specifically, the estimation unit 13 estimates the efficiency characteristic by referring to the database stored in the storage unit 15 based on the acquired measurement result of the operating state of the power supply device 20.
  • the storage unit 15 is a memory selected from ROM (Read On Memory), RAM (Random Access Memory), or EEPROM (Electric Memory). Composed of devices.
  • the storage unit 15 stores the efficiency characteristics corresponding to various conditions of the operating state of the power supply device 20 as a database.
  • Various operating conditions include, for example, input voltage (system voltage, battery voltage), temperature of power converter 22 divided into ranges (voltage range or temperature range, etc.), and combined with each other. It is a condition.
  • the estimation unit 13 refers to the database of the storage unit 15 and acquires the acquired power supply device.
  • the estimation unit 13 outputs the extracted efficiency characteristic as an estimation result to the operation control unit 14.
  • the estimating unit 13 may be configured to calculate (estimate) the efficiency characteristic by a calculation process using the acquired measurement result of the operating state of the power supply device 20.
  • the operation control unit 14 generates control information corresponding to each power supply device 20 based on the prediction information from the host system 3 and the estimation result (efficiency characteristic) of the estimation unit 13 and generates the control information.
  • the control information is output to each power supply device 20 to control each power supply device 20.
  • the "prediction information" referred to in the present disclosure refers to the operation of the power supply system 2 (power supply device 20). ⁇ 2020/175 186 10 (:171? 2020 /005832
  • Information that includes relevant future predictions for example, a set of prediction values related to the operation of the power supply system 2.
  • predicted values include the power consumption value (or power amount) at load 4, the output power value (or power amount) of power supply system 2, the threshold value used to control power supply system 2, and the state of storage battery 23. ..
  • the state of the storage battery 23 is, for example, the temperature of the storage battery 23, the state of charge of the storage battery 23 (3 ⁇ : 513163 Including etc.
  • the prediction information includes information that lists (combinations) of these prediction values for each time zone (for example, every hour).
  • the forecast information also includes the time of day when the electric power company or electric power aggregator issues a request such as peak cut or peak shift.
  • the forecast information includes information on both the demand and supply of electric power in the power supply system 2.
  • the information on the demand for electric power in the power supply system 2 there is information on the charging electric power value (or electric energy) of each storage battery 23.
  • the prediction information is information necessary for predicting both the output and the input of the power supply system 2.
  • the prediction information includes the operation plan of the power supply system 2.
  • the operation plan is a plan showing the operation period of the power supply system 2 (power supply device 20) and the input or output power value (or electric energy) during the operation period.
  • the operating period of the power supply system 2 is a period in which one or more power supply devices 20 among the plurality of power supply devices 20 are operating, and a period in which the power conversion unit 22 is performing power conversion.
  • the operation period of the power supply system 2 is the operation period of one or more power supply devices 20 among the plurality of power supply devices 20.
  • the input or output power value (or power amount) is also referred to as charge/discharge power.
  • the operation plan includes the charging plan and discharging plan for the power supply system 2.
  • the charging plan is a plan showing the charging period in which the power supply system 2 (power supply device 20) charges the storage battery 23 with the electric power from the power grid 5, and the charging power value (or charging power amount) in the charging period. is there.
  • the discharge plan is a discharge period in which power is output from the storage battery 23 of the power supply system 2 to the load 4, and the output power value during the discharge period. ⁇ 2020/175 186 1 1 ⁇ (: 171? 2020 /005832
  • the operation control unit 14 determines the power conversion unit 2 of each power supply device 20 during the operation period (charge period, discharge period) of the power supply system 2.
  • the operation command of 2 is generated as control information.
  • the charging/discharging power indicated by the operation plan is the charging/discharging power of the power supply system 2 (plurality of power supply units 20) as a whole, that is, the total charging/discharging power obtained by adding the charging/discharging power of each power supply unit 20. ..
  • the operation control unit 14 determines the distribution of the charging/discharging power of each of the plurality of power supply devices 20 based on the efficiency characteristics estimated by the estimation unit 13.
  • the operation control unit 14 determines, based on the efficiency characteristics estimated by the estimation unit 13 that the power conversion efficiencies of the plurality of power conversion units 2 2 during the operation period of the power supply system 2 meet a predetermined condition.
  • the charging/discharging power of each power supply device 20 is determined so as to satisfy the above condition.
  • the power conversion efficiency of multiple power conversion units 22 is the ratio of the total output power to the total input power of each power conversion unit 22, that is, the power conversion efficiency of the entire power supply system 2. is there.
  • the predetermined condition is a condition that maximizes the power conversion efficiency of the plurality of power conversion units 22.
  • the operation control unit 14 determines the distribution of the charging/discharging power of each power supply device 20 so that the power conversion efficiency of the power supply system 2 as a whole is maximized.
  • the predetermined condition is not limited to the condition that the power conversion efficiencies of the plurality of power conversion units 22 are maximized, and, for example, the condition that the power conversion efficiencies of the plurality of power conversion units 22 are equal to or greater than a threshold value that is smaller than the maximum. It may be.
  • the operation control unit 14 determines whether each power supply unit 20 has a power supply unit 20 based on the charge state (300) of the storage battery 23 in each power supply unit 20 and the deterioration state (30! ⁇ 1). Distribution of charge/discharge power may be determined. For example, the operation control unit 14 determines the distribution of the charging/discharging power of each power supply device 20 so that the storage battery 23 having a high value of 30 (3 or 3 0 1 to 1) is preferentially used.
  • the operation control unit 14 uses the operation command corresponding to the charging/discharging power of each power supply device 20 determined based on the estimation result (efficiency characteristic) of the estimation unit 13 as control information and the second communication unit. Output to each power supply unit 20 via 1 2.
  • the power conversion unit 22 inputs the charging/discharging power indicated by the control information received via the communication unit 21. ⁇ 2020/175 186 12 boxes (: 171-1? 2020 /005832
  • the measurement unit 24 measures the operating state of the power supply device 20 and sends the measurement result to the control system 1 via the communication unit 21.
  • the estimation unit 13 performs an acquisition process for acquiring the operating state of the power supply device 20 measured by the measurement unit 24 of each power supply device 20 via the second communication unit 12 (3 1) .. That is, the estimation unit 13 acquires the operating status of each of the plurality of power supply devices 20.
  • the estimation unit 13 estimates the characteristic of the power conversion efficiency (efficiency characteristic) of each power supply unit 20 based on the acquired measurement result of the operating state of each of the plurality of power supply units 20. Do (3 2). In the present embodiment, the estimation unit 13 refers to the database of the storage unit 15 and extracts the efficiency characteristic corresponding to the acquired measurement result of the operating state of each power supply device 20, thereby Estimate the efficiency characteristic corresponding to 0.
  • the efficiency characteristic of each power supply device 20 at the start of the discharge period (operating period of the power supply system 2) estimated by the estimation unit 13 is the first efficiency characteristic 1 (see FIG. 2). ).
  • the power conversion efficiency reaches a peak of 10 when the output power is X I 0.
  • the 1st efficiency characteristic 1 if the output power increases or decreases below X 10, the power conversion efficiency becomes less than 10
  • the estimation unit 13 outputs the estimated efficiency characteristic (first efficiency characteristic 1) to the operation control unit 14.
  • the operation control unit 14 performs an operation control process (33) that controls the operation of the plurality of power conversion units 2 2 based on the estimation result of the estimation unit 13 (first efficiency characteristic 1). ⁇ 2020/175 186 13 ⁇ (:171? 2020/005832
  • the operation control unit 14 acquires the operation plan (discharge plan) as the prediction information from the higher-level system 3 via the first communication unit 11, and the operation plan (discharge plan) and the estimation unit 1 are acquired. Based on the efficiency characteristic (1st efficiency characteristic 1) estimated by 3 and, control information corresponding to each power supply unit 20 is generated and output.
  • the operation control unit 14 controls the control information corresponding to each power supply device 20 so that the power conversion efficiency of the plurality of power conversion units 2 2 (the entire power supply system 2) is maximized. Is generated and output.
  • the target output power of the power supply system 2 indicated by the discharge plan is 3.
  • the operation control unit 14 controls the output power X 1 0 of each of the two power supply units 2 0 (for example, power supply units 20 8 and 20 0) of the three power supply units 20 during the discharging period. Output and generate and output control information so that the remaining one power supply unit 200 does not output power.
  • the power conversion unit 22 is based on the control information from the operation control unit 14 so that the output power supplied to the load 4 becomes X10. Discharge 2 3
  • the power conversion unit 22 does not supply power to the load 4, that is, does not discharge the storage battery 23, based on the control information from the operation control unit 14. At this time, as shown in FIG.
  • the efficiency characteristic is the first efficiency characteristic 1, so the output power X 10 is output, and the power conversion efficiency becomes a peak 10 10. Therefore, the power conversion efficiency of the power supply system 2 also reaches a peak of 10.
  • the measurement unit 24 repeatedly measures the operating state of the power supply device 20 at a predetermined cycle and transmits the measurement result to the control system 1.
  • the estimation unit 13 acquires the latest measurement result (operational state of the power supply unit 20) in the measurement unit 24, and based on the acquired measurement result, the efficiency characteristic corresponding to each power supply unit 20. Estimate (update) (3 1, 3 2). In other words, the estimation unit 13 repeatedly estimates (updates) the efficiency characteristics corresponding to each power supply device 20 over time. Then, the operation control unit 14 is based on the updated estimation result (efficiency characteristic). ⁇ 2020/175 186 14 ⁇ (: 171-1? 2020 /005832
  • control information output to each power supply unit 20 is updated (33).
  • the operating state of the power supply device 20 may change as the power supply device 20 operates.
  • the temperature of the power conversion unit 22 may increase as the power conversion unit 2 2 performs the power conversion operation.
  • the estimation unit 13 updates the efficiency characteristics corresponding to the power supply units 20 8 and 20 based on the operating state of the power supply units 20 and 20 after the change.
  • the efficiency characteristic corresponding to the power supply devices 20 8 and 20 0 newly estimated by the estimation unit 13 is the second efficiency characteristic 2 (see FIG. 2).
  • the second efficiency characteristic 2 when the output power is X20, the power conversion efficiency becomes a peak of 20.
  • the second efficiency characteristic 2 when the output power increases or decreases below 20, the power conversion efficiency becomes smaller than 20.
  • the output power X 20 is smaller than the output power X 10 and the power conversion efficiency 20 is smaller than the power conversion efficiency 10.
  • the power conversion efficiency 21 at the output power X 10 is smaller than the peak power conversion efficiency 20.
  • the operation control unit 14 is configured to perform a plurality of power conversions based on the second efficiency characteristic 2 corresponding to the power supply devices 20 and 20 and the first efficiency characteristic 1 corresponding to the power supply device 20 (3).
  • the control information corresponding to each power supply device 20 is updated so that the power conversion efficiency of the unit 22 (entire power supply system 2) is maximized.
  • the operation control unit 14 controls the power supply devices 20 and 20 to output power X
  • the target output power of the power supply system 2 indicated by the discharge plan is 3.
  • the target output power 3 is the sum of twice the output power 20 and the output power XI 1 ( ⁇ 2020/175 186 15 ⁇ (: 171-1? 2020 /005832
  • the output power X11 is greater than the output power X20 and less than the output power XIO.
  • the power conversion efficiency 11 when the output power is X 11 is larger than the power conversion efficiency 20.
  • the power conversion unit 22 stores the power so that the output power supplied to the load 4 becomes X20 based on the control information from the operation control unit 14. Discharge pond 2 3 Further, in the power supply device 200, the power conversion unit 22 discharges the storage battery 23 so that the output power supplied to the load 4 becomes X 1 1 based on the control information from the operation control unit 14. ..
  • the power conversion efficiency 11 when the output power is X 11 in the first efficiency characteristic 1 is the power conversion efficiency when the output power is X 10 in the second efficiency characteristic 2. Greater than efficiency 2 1 In other words, although the efficiency characteristics have changed due to the changes in the operating states of the power supply units 208 and 20, the power supply units 208 and 20 output the output power X 1 0. Compared to the case of continuous operation, the power conversion efficiency of the entire power supply system 2 is improved.
  • the power supply system 2 supplies power to the load 4, that is, the storage battery.
  • the case of discharging 23 is described as an example, but the same applies to the case where the power supply system 2 is supplied with power from the power system 5, that is, the storage battery 23 is charged.
  • the operation control unit 14 uses the storage battery 2 of each power supply unit 20 so as to maximize the power conversion efficiency of the plurality of power conversion units 2 2 based on the efficiency characteristics estimated by the estimation unit 13. Determine the charging power of 3.
  • the charge amount of the storage battery 23 may differ among the plurality of power supply devices 20 depending on the operating state of each power supply device 20.
  • the efficiency characteristic that varies depending on the operating state of the power supply device 20 is estimated, and the power conversion of each power supply device 20 is performed based on the estimated efficiency characteristic. Controls the operation of part 22. As a result, the power conversion efficiency of the plurality of power conversion units 22 can be improved.
  • the target output power X3 is output from the power supply system 2. ⁇ 2020/175 186 16 ⁇ (:171? 2020/005832
  • the power supply units 20 and 20 output the output power X 2 0 and the power supply unit 2 0 0 outputs the output power XI 1, but the magnitude of these output powers is an example. It It suffices that the magnitude of the output power of the power supply units 208 to 200 is determined so that the power conversion efficiency of the entire power supply system 2 is maximized. For example, the output of the power supply units 208 and 20 The power may be less than 20 and the power output of the power supply 200 may be greater than X 11.
  • the operation control unit 14 maximizes the power conversion efficiency of the entire power supply system 2 based on the efficiency characteristics of each power supply device 20 (for example, the first efficiency characteristic 1 and the second efficiency characteristic 2).
  • the magnitude of the output power of the power supply units 208 to 200 for outputting the target output power 3 is arbitrarily determined.
  • the operation control unit 14 is a power supply unit required to output the target output power X 3 when the output power of each of the power supply units 20 and 20 is changed continuously or at predetermined intervals. Find the magnitude of the output power of 200.
  • the operation control unit 14 calculates the power conversion efficiency of the entire power supply system 2 at this time by calculation based on the first efficiency characteristic 1 and the second efficiency characteristic 2.
  • the operation control unit 14 selects the power supply units 20 to 20 (combination of the output power magnitudes of 3 that maximizes the power conversion efficiency of the entire power supply system 2 and selects each power supply based on the selection result. It controls the power converter 22 of the device 20.
  • the operation control unit 14 controls so that the output powers of the power supply devices 20 and 20 are equal in magnitude to each other. This facilitates the control of the power supply devices 208, 20 by the operation control unit 14. Note that it is not essential that the output powers of the power supply units 20 and 20 have the same magnitude, and they may have different magnitudes.
  • the operation control unit 14 sets the power conversion efficiency and the output power or the input power of each power conversion unit 2 2. It may be configured to control each power supply device 20 based on the above. For example, the operation control unit 14 determines that the sum of the multiplication values of the power conversion efficiency and the output power of each power conversion unit 22 in the plurality of power supply units 20 is the maximum. ⁇ 2020/175 186 17 ⁇ (:171? 2020/005832
  • each power supply device 20 may be controlled.
  • the estimation unit 13 repeats the estimation of the efficiency characteristics with the lapse of time, and the operation control unit 14 determines the plurality of power conversion units 2 2 based on the latest estimation result. Controls the operation of, but is not limited to this. For example, if the change in the estimation result of the estimation unit 13 with the passage of time satisfies a predetermined trigger condition, the motion control unit 14 determines that a plurality of results are obtained based on the estimation result of the estimation unit 13 after the change (latest). The operation of the power conversion unit 22 may be controlled.
  • the trigger condition is, for example, the difference in the power conversion efficiency corresponding to the current output power is equal to or greater than a threshold value before or after the change in the efficiency characteristic estimated by the estimation unit 13 or the ratio of the difference in the power conversion efficiency is equal to or greater than the threshold value.
  • the condition is that In other words, if the operation control unit 14 determines that the power conversion efficiency is changing significantly based on the estimation result of the estimation unit 13, the plurality of power conversion units 2 2 based on the latest efficiency characteristics are calculated. Update the control contents. As a result, the processing load on the operation control unit 14 can be reduced.
  • the measuring unit 24 repeatedly measures the operating state of the power supply device 20. Then, at different times during the operation period of the power supply system 2, the estimation unit 13 estimates the characteristics of the power conversion efficiency of each of the power conversion units 2 2 and the operation control unit 14 determines the power consumption based on the estimation result. It controlled the operation of the converter 22. That is, the power conversion units 22 are controlled so that the power conversion efficiency of the power supply system 2 as a whole is maximized at each time during the operation period of the power supply system 2, but the present invention is not limited to this configuration.
  • the control system 1 schedules each power conversion unit 22 to maximize the power conversion efficiency of the power supply system 2 as a whole during the operating period (charge period, discharge period) of the power supply system 2. You may control.
  • the estimation unit 13 acquires the measurement result of the operating state of each power supply device 20 at the start (or immediately before) of the operation period of the power supply system 2. Furthermore, the estimation unit 13 acquires the prediction information (including the operation plan) from the higher-level system 3. ⁇ 2020/175 186 18 ⁇ (:171? 2020 /005832
  • the estimation unit 13 estimates the fluctuation of the operating state of each power supply device 20 during the operation period of the power supply system 2 based on the measurement result of the operating state of each power supply device 20 and the prediction information.
  • the estimation unit 13 estimates the efficiency characteristic for each predetermined unit time during the operation period of the power supply system 2 based on the estimated fluctuation of the operating state of each power supply device 20.
  • the predetermined unit time is a time shorter than the operating period of the power supply system 2, and is, for example, 10 minutes, 15 minutes, 30 minutes, or the like.
  • the operation control unit 14 Based on the efficiency characteristics of the power supply system 2 for each predetermined unit time estimated by the estimation unit 13 for each predetermined unit time, the operation control unit 14 sets each predetermined unit time for the operation period of the power supply system 2. In addition, schedule control is performed to control the operation of multiple power converters 22. Specifically, the operation control unit 14 converts each power conversion unit every predetermined unit time so that the plurality of power conversion units 2 2 (entire power supply system 2) in the operation period of the power supply system 2 satisfy the predetermined condition. Determines the operation of part 22.
  • the predetermined condition is a condition that maximizes the power conversion efficiency of the plurality of power conversion units 2 2 (the entire power supply system 2) during the operation period of the power supply system 2.
  • the predetermined condition is a condition in which the product value of the power conversion efficiencies of the plurality of power conversion units 2 2 (entire power supply system 2 as a whole) per predetermined unit time during the operation period of the power supply system 2 is the maximum. is there.
  • the operation control unit 14 controls the power supply system 2 based on the fluctuation of the operating state of each of the plurality of power supply devices 20 during the operation period of the power supply system 2.
  • schedule control is performed to control the operation of each power supply conversion unit for each predetermined unit time during the operating period of the power supply system 2.
  • the power supply system 2 may be configured to transfer power between a plurality of power supply devices 20.
  • the slope of the power conversion efficiency in the area where the power conversion efficiency reaches the peak of 10 and the output power is smaller than X 10 is in the area where the output power is larger than X 10. Is larger than the slope of the power conversion efficiency. Therefore, when the output power of any one of the plurality of power conversion units 22 is relatively small, the power conversion efficiency of the entire power supply system 2 may decrease.
  • the operation control unit 14 controls the electric energy stored in the storage battery 23 in at least one power supply unit 20 among the plurality of power supply units 20 to generate at least one power supply unit 20.
  • the operation of the power conversion unit 22 is controlled so that the power is output to another power supply device 20 different from. That is, the storage battery 23 of the other power supply device 20 is used as a load.
  • the target output power supplied to the load 4 in the power supply system 2 as a whole is X 4.
  • the target output power 4 is the sum of the output power X I 0 and the output power X I 2.
  • the efficiency characteristic of each power supply device 20 is the first efficiency characteristic 1.
  • the operation control unit 14 controls the power conversion unit 22 of the power supply device 20 to supply the output power X 10 to the load 4. Further, the operation control unit 14 causes the power conversion unit 22 of the power supply unit 20 to supply the output power X 1 2 to the load 4, and the difference between the output power X 10 and the output power X 1 2 Control to supply power X 120 to the power supply unit 200.
  • the differential power X I 2 0 is greater than the output power X 1 2.
  • the output power of the power supply unit 20 is X 100. Further, the operation control unit 14 charges the storage battery 23 with the power (differential power XI 20) supplied from the power supply device 20 to the power supply device 20 (the power conversion unit 22 of 3). To control.
  • the power supply unit 20 regards the storage battery 23 of the power supply unit 200 as the load 4 and supplies a part of the output power X I 0 (differential power X I 20 ). As a result, the power supply units 20 and 20 output the output power X 10 at which the power conversion efficiency reaches a peak of 10. As a result, the power conversion efficiency of the plurality of power conversion units 22 (the entire power supply system 2) can be improved.
  • the operation control unit 14 controls at least one of the plurality of power supply devices 20. ⁇ 2020/175 186 20 (:171? 2020/005832
  • the difference power between the target value (XI 0) of the output power of the storage battery 23 and the target value (XI 2) of the output power from the storage battery 23 to the load 4 (the difference power XI 2 0 ) Is controlled from the storage battery 23 to the other power supply device 20.
  • the operation control unit 14 determines multiple power conversion units based on the time zone of the operation period of the power supply system 2. The operation of 2 2 may be controlled.
  • the unit price of electricity supplied from the power system 5 to the power supply system 2 or the load 4 may vary depending on the time of day. In general, the unit price of electricity is often set lower during the night hours than during the day hours.
  • the data on the electricity rate unit price for each time period is included in the forecast information acquired from the upper system 3.
  • the operation control unit 14 calculates the prediction information from the higher-level system 3 (electricity charge unit price for each time period), the efficiency characteristics estimated by the estimation unit 13 and the time period of the operation period of the power supply system 2. , The plurality of power conversion units 22 are operated so that the electricity charge of the power supplied from the power system 5 to the power supply system 2 or the load 4 becomes low. For example, when charging the storage battery 23, the operation control unit 14 uses the efficiency characteristics estimated by the estimation unit 13 based on the time period when the unit price of electricity is lower during the operation period (charging period) of the power supply system 2. , Each power conversion unit 22 is operated so as to charge the storage battery 23 with higher power conversion efficiency.
  • the operation control unit 14 is based on the efficiency characteristics estimated by the estimation unit 13 at a time when the unit price of electricity is higher than the operating period (discharge period) of the power supply system 2. Then, each power conversion unit 22 is operated so as to discharge the storage battery 23 with higher power conversion efficiency.
  • control system 1 of the present modification it is possible to control the power conversion unit 22 in consideration of the time zone of the operation period of the power supply system 2.
  • the function similar to that of the control system 1 may be embodied by a control method, a computer program, or a non-transitory recording medium recording the program.
  • the control method is a method of controlling a power supply system 2 including a plurality of power supply devices 20 each having a power conversion unit 22.
  • the control method includes an estimation process and a motion control process.
  • the estimation process the characteristics of the power conversion efficiency of each of the plurality of power conversion units 22 during the operation period of one or more power supply devices 20 of the plurality of power supply devices 20 are estimated.
  • the operation control process the operation of the plurality of power conversion units 22 is controlled based on the estimation result of the estimation process.
  • a (computer) program according to one aspect is a program for causing a computer system to execute the control method described above.
  • the control system 1 in the present disclosure includes a computer system.
  • the computer system mainly consists of a processor and memory as hardware.
  • the function as the control system 1 in the present disclosure is realized by the processor executing the program recorded in the memory of the computer system.
  • the program may be pre-recorded in the memory of the computer system, may be provided through a telecommunication line, or may be recorded in a non-transitory recording medium such as a computer system-readable memory card, optical disk, hard disk drive, etc. May be provided.
  • a computer system processor is composed of one or more electronic circuits including a semiconductor integrated circuit (C) or a large scale integrated circuit (LS I).
  • the integrated circuit such as C or LS I referred to here depends on the degree of integration, and is called a system LSI, VLS I (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration). including.
  • the F-PGA Field-Programmable Gate Array
  • the plurality of electronic circuits may be integrated in one chip, or may be distributed and provided in the plurality of chips.
  • the plurality of chips may be integrated in one device, or may be distributed and provided in the plurality of devices.
  • a computer system includes a microcontroller that has one or more processors and one or more memories. Therefore, the microcontroller is also composed of one or more electronic circuits including semiconductor integrated circuits or large-scale integrated circuits.
  • control system 1 it is not an essential configuration for control system 1 that multiple functions of control system 1 are integrated in one chassis, and the components of control system 1 are distributed over multiple chassis. It may be provided. Furthermore, at least a part of the functions of the control system 1, for example, the functions of the estimation unit 13 and the operation control unit 14 may be realized by a cloud (cloud computing) or the like.
  • control system 1 is configured to be communicable with the host system 3 via the network 6, but the configuration is not limited to this.
  • the control system 1 is connected to the host system 3 via a communication line, for example, Eight "68 1
  • the host system 3 is provided in the housing of the control system 1 and can accept operations from the user.
  • an operation panel or the like capable of displaying the operation content and the like may be provided.
  • the higher-level system 3 generates the prediction information, but the control system 1 may generate the prediction information.
  • the operation control unit 14 controls each power supply device 20 based on the prediction information (operation plan) and the efficiency characteristics estimated by the estimation unit 13.
  • the operation control unit 14 may control each power supply device 20 based on the power command corresponding to the current target output power and the efficiency characteristic estimated by the estimation unit 13. ⁇ 2020/175 186 23 ⁇ (:171? 2020 /005832
  • a control system (1) controls a power supply system (2) including a plurality of power supply devices (20) having a power conversion section (2 2 ).
  • the control system (1) includes an estimation unit (1 3) and an operation control unit (1 4).
  • the estimation unit (1 3) estimates the characteristics of the power conversion efficiency of each of the plurality of power conversion units (2 2) during the operation period of one or more of the plurality of power supply units (20). To do.
  • the operation control unit (1 4) controls the operation of the plurality of power conversion units (2 2) based on the estimation result of the estimation unit (1 3).
  • each power conversion unit (2 2) can be controlled based on the characteristics of the power conversion efficiency estimated by the estimation unit (1 3 ), so that a plurality of power sources can be controlled.
  • the power conversion efficiency of the converter (22) can be improved.
  • the estimation unit (13) estimates the characteristic of the power conversion efficiency with the passage of time or a change in the operating state. ..
  • the motion control section (1 4) is configured so that the estimation result of the estimation section (1 3) changes.
  • the operation of the plurality of power conversion units (2 2) is controlled based on the estimation result of the changed estimation unit (1 3).
  • control system (1) according to the fifth aspect provides the control system according to any one of the first to third aspects. ⁇ 02020/175 186 24 (: 17 2020/005832
  • the operation control unit (14) controls the operation of the plurality of power conversion units (2 2) for each of the plurality of power conversion units (2 2) at every predetermined unit time during the operation period.
  • the operation control unit (14) includes a plurality of power conversion units (2 2) during an operation period.
  • the operation of multiple power converters (22) is controlled so that the power conversion efficiency of the power converter satisfies the specified conditions.
  • the predetermined condition is that the power conversion efficiency of the power supply system (2) as a whole is maximum.
  • the operation control section (14) includes a plurality of power supply devices (20) during the operation period.
  • the operation of the multiple power converters (22) is controlled based on the fluctuations in the operating status of each power converter.
  • each of the plurality of power supply devices (20) includes a storage battery (23).
  • the operation control section (14) includes at least one power supply device (20) among the plurality of power supply devices (20). , So that the electric energy stored in the storage battery (23) is output to another power supply (20) different from at least one power supply (20). ⁇ 2020/175 186 25 ⁇ (: 171-1? 2020 /005832
  • the operation control section (14) includes at least one power supply device (20) out of the plurality of power supply devices (20). ), the difference power between the target value of the output power of the storage battery (2 3) and the target value of the output power of the storage battery (2 3) to the load (4) is transferred from the storage battery (2 3) to another power supply ( It controls the operation of the power converter (22) so that it is output to (20).
  • the operation control section (1 4) includes the estimation result of the estimation section (1 3), and the operation period.
  • the operation of the plurality of power conversion units (22) is controlled based on the time period between them.
  • a power supply control system (10) according to a 13th aspect includes a control system (1) according to any one of the 1st to 12th aspects and a power supply system (2).
  • the control method according to the fourteenth aspect is a method of controlling a power supply system (2) including a plurality of power supply devices (20) having a power conversion section (22).
  • the control method includes an estimation process and an operation control process.
  • the estimation process the characteristics of the power conversion efficiency of each of the plurality of power conversion units 6 (2 2) during the operation period of at least one power supply unit (20) among the plurality of power supply units (20) are estimated.
  • the operation control process the operations of the multiple power converters (22) are controlled based on the estimation result of the estimation process.
  • each power conversion unit (2 2) since the operation of each power conversion unit (2 2) can be controlled, the power conversion efficiency of the plurality of power conversion units (2 2) can be improved.
  • a program according to the fifteenth aspect causes a computer system to execute the control method according to the fourteenth aspect.
  • each power conversion unit (2 2) can be controlled based on the characteristics of the power conversion efficiency estimated by the estimation unit (1 3 ), so that it is possible to control a plurality of power sources.
  • the power conversion efficiency of the converter (22) can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The purpose of the present disclosure is to provide a control system, a power source control system, a control method, and a program which can improve power conversion efficiency in a plurality of power conversion units. The control system (1) controls a power source system (2) that includes a plurality of power source devices (20) having power conversion units (22). The control system (1) comprises an estimation unit (13) and an operation control unit (14). The estimation unit (13) estimates the power conversion efficiency characteristics of each of the plurality of power convertors (22) during operations periods of one or more power source devices (20) of the plurality of power source devices (20). The operation control unit (14) controls operations of the plurality of power convertors (22) on the basis of the estimation result of the estimation unit (13).

Description

\¥02020/175186 1 ?01/^2020/005832 \¥02020/175186 1 ?01/^2020/005832
明 細 書 Specification
発明の名称 : Title of invention:
制御システム、 電源制御システム、 制御方法、 及びプログラム Control system, power supply control system, control method, and program
技術分野 Technical field
[0001 ] 本開示は、 一般に制御システム、 電源制御システム、 制御方法、 及びプロ グラムに関し、 より詳細には、 複数の電源装置を備えた電源システムを制御 する制御システム、 電源制御システム、 制御方法、 及びプログラムに関する 背景技術 The present disclosure relates generally to a control system, a power supply control system, a control method, and a program, and more particularly, to a control system, a power supply control system, a control method, which controls a power supply system including a plurality of power supply devices. And program related background art
[0002] 特許文献 1 には、 複数の電池モジュールを効率よく充電する電池システム (電源制御システム) が記載されている。 [0002]Patent Document 1 describes a battery system (power supply control system) that efficiently charges a plurality of battery modules.
[0003] 特許文献 1の電池システムは、 電力を供給する電源装置と、 電池装置と、 制御装置 (制御システム) と、 を備えている。 電池装置は、 電源装置から供 給される電力を変換する電力変換部と、 電力変換部で変換された電力を充電 する電池モジュールとをそれぞれ備える実質的同一の電池ユニッ トが複数且 つ並列に接続されて構成されている。 制御装置は、 電源装置からの供給電力 量に応じて、 且つ、 電力変換部の所定の電力変換効率を考慮して、 並列にそ れぞれ接続された複数の電池ユニッ トのうち供給すべき電池ユニッ トを選択 する。 The battery system of Patent Document 1 includes a power supply device that supplies electric power, a battery device, and a control device (control system). The battery device includes a plurality of substantially the same battery units in parallel, each of which includes a power conversion unit that converts the power supplied from the power supply unit and a battery module that charges the power converted by the power conversion unit. Connected and configured. The control device should supply power among the plurality of battery units connected in parallel according to the amount of power supplied from the power supply device and considering the predetermined power conversion efficiency of the power conversion unit. Select the battery unit.
[0004] 特許文献 1では、 記憶部に記憶されている所定の電力変換効率に基づいて 、 電池ユニッ トを選択している。 しかしながら、 電力変換部の電力変換効率 は、 稼働状態に応じて変動する可能性がある。 そのため、 実際の電力変換部 の電力変換効率が、 記憶部に記憶されている所定の電力変換効率と異なるお それがあった。 したがって、 所定の電力変換効率に基づいて電力変換部を動 作させた場合、 電力変換効率が低下するおそれがあった。 [0004] In Patent Document 1, the battery unit is selected based on a predetermined power conversion efficiency stored in the storage unit. However, the power conversion efficiency of the power converter may change depending on the operating state. Therefore, in some cases, the actual power conversion efficiency of the power conversion unit is different from the predetermined power conversion efficiency stored in the storage unit. Therefore, when the power conversion unit is operated based on the predetermined power conversion efficiency, the power conversion efficiency may decrease.
先行技術文献 Prior art documents
特許文献 〇 2020/175186 2 卩(:171? 2020 /005832 Patent literature 〇 2020/175 186 2 卩 (: 171-1? 2020 /005832
[0005] 特許文献 1 :特許第 5 1 5 6 1 1 2号公報 [0005] Patent Document 1: Patent No. 5 1 5 6 1 1 2
発明の概要 Summary of the invention
[0006] 本開示は、 上記事由に鑑みてなされており、 その目的は、 複数の電力変換 部における電力変換効率の向上を図ることができる制御システム、 電源制御 システム、 制御方法、 及びプログラムを提供することにある。 [0006] The present disclosure has been made in view of the above circumstances, and an object thereof is to provide a control system, a power supply control system, a control method, and a program capable of improving the power conversion efficiency in a plurality of power conversion units. To do.
[0007] 本開示の一態様に係る制御システムは、 電力変換部を有する電源装置を複 数備えた電源システムを制御する。 前記制御システムは、 推定部と、 動作制 御部と、 を備える。 前記推定部は、 前記複数の電源装置のうち 1以上の電源 装置の運転期間における前記複数の電力変換部それぞれの電力変換効率の特 性を推定する。 前記動作制御部は、 前記推定部の推定結果に基づいて、 前記 複数の電力変換部の動作を制御する。 [0007] A control system according to an aspect of the present disclosure controls a power supply system including a plurality of power supply devices including a power conversion unit. The control system includes an estimation unit and a motion control unit. The estimation unit estimates the characteristic of the power conversion efficiency of each of the plurality of power conversion units during the operation period of one or more power supply units of the plurality of power supply units. The operation control unit controls the operations of the plurality of power conversion units based on the estimation result of the estimation unit.
[0008] 本開示の一態様に係る電源制御システムは、 前記制御システムと、 前記電 源システムと、 を備える。 [0008] A power supply control system according to an aspect of the present disclosure includes the control system and the power supply system.
[0009] 本開示の一態様に係る制御方法は、 電力変換部を有する電源装置を複数備 えた電源システムを制御する方法である。 前記制御方法は、 推定処理と、 動 作制御処理と、 を有する。 前記推定処理では、 前記複数の電源装置のうち 1 以上の電源装置の運転期間における前記複数の電力変換部それぞれの電力変 換効率の特性を推定する。 前記動作制御処理では、 前記推定処理での推定結 果に基づいて、 前記複数の電力変換部の動作を制御する。 [0009] A control method according to an aspect of the present disclosure is a method of controlling a power supply system including a plurality of power supply devices including a power conversion unit. The control method includes an estimation process and an operation control process. In the estimation process, the characteristic of the power conversion efficiency of each of the plurality of power conversion units during the operation period of one or more power supply devices of the plurality of power supply devices is estimated. In the operation control process, the operations of the plurality of power conversion units are controlled based on the estimation result of the estimation process.
[0010] 本開示の一態様に係るプログラムは、 前記制御方法をコンピユータシステ ムに実行させる。 [0010] A program according to an aspect of the present disclosure causes a computer system to execute the control method.
図面の簡単な説明 Brief description of the drawings
[001 1] [図 1]図 1は、 本開示の一実施形態に係る制御システム及び電源制御システム のブロック図である。 [001 1] [Fig. 1] Fig. 1 is a block diagram of a control system and a power supply control system according to an embodiment of the present disclosure.
[図 2]図 2は、 電力変換効率の特性のグラフである。 [Figure 2] Figure 2 is a graph of the characteristics of power conversion efficiency.
[図 3]図 3は、 同上の制御システムの動作フローチヤートである。 [Fig. 3] Fig. 3 is an operation flow chart of the above control system.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0012] 以下に説明する実施形態及び変形例は、 本開示の一例に過ぎず、 本開示は 〇 2020/175186 3 卩(:171? 2020 /005832 [0012] The embodiments and modifications described below are merely examples of the present disclosure, and the present disclosure is 〇 2020/175 186 3 卩 (:171? 2020 /005832
、 実施形態及び変形例に限定されない。 この実施形態及び変形例以外であつ ても、 本開示の技術的思想を逸脱しない範囲であれば、 設計等に応じて種々 の変更が可能である。 However, the present invention is not limited to the embodiment and the modified examples. Other than this embodiment and modifications, various modifications can be made according to the design and the like as long as they do not deviate from the technical idea of the present disclosure.
[0013] (実施形態) (Embodiment)
(1) 概要 (1) Outline
図 1 に示すように、 本実施形態に係る制御システム 1は、 電源システム 2 を制御する制御システムである。 電源システム 2は、 複数 (本実施形態では 3つ) の電源装置 2 0を備えている。 また、 本実施形態に係る電源制御シス テム 1 0は、 制御システム 1 と、 電源システム 2と、 を備えている。 As shown in FIG. 1, the control system 1 according to the present embodiment is a control system that controls the power supply system 2. The power supply system 2 includes a plurality (three in this embodiment) of power supply devices 20. The power supply control system 10 according to the present embodiment includes a control system 1 and a power supply system 2.
[0014] 各電源装置 2 0は、 例えば、 エネルギ貯蔵システム (巳 3 3 : [ 3士〇「 396 System) である。 各電源装置 2 0は、 電力変換部 2 2、 及び蓄電池 2 3 を有する。 電源装置 2 0は、 電力系統 5及び負荷 4に電気的に接続されてい る。 電力変換部 2 2は、 電力系統 5から供給される電力で蓄電池 2 3を充電 し、 かつ蓄電池 2 3に貯められた電気エネルギを負荷 4に出力する。 電源装 置 2 0は、 例えば、 オフィスビル、 事務所、 工場、 倉庫、 店舗 (シヨッピン グセンタ等の複合施設を含む) 、 公園、 学校、 病院、 駅、 空港又は駐車場等 の非住宅施設に設置される。 また、 電源装置 2 0は、 非住宅施設に限らず、 集合住宅又は戸建住宅等の住宅施設にも設置が可能である。 [0014] Each power supply device 20 is, for example, an energy storage system (Mitsumi 33: [3rd person ""396 System). Each power supply device 20 has a power conversion unit 2 2 and a storage battery 2 3. The power supply device 20 is electrically connected to the power system 5 and the load 4. The power conversion unit 2 2 charges the storage battery 2 3 with the power supplied from the power system 5 and stores it in the storage battery 2 3. The stored electric energy is output to the load 4. The power supply device 20 includes, for example, office buildings, offices, factories, warehouses, stores (including complex facilities such as shopping centers), parks, schools, hospitals, stations. Installed in non-residential facilities such as airports or parking lots, etc. The power supply unit 20 can be installed not only in non-residential facilities but also in residential facilities such as collective housing or detached houses.
[0015] 1つの施設に複数の電源装置 2 0が設置されており、 複数の電源装置 2 0 は、 共通の負荷 4に電気エネルギを出力する。 以下の説明では、 複数の電源 装置 2 0を区別する場合、 電源装置 2 0八、 電源装置 2 0巳、 電源装置 2 0 〇という。 A plurality of power supply devices 20 are installed in one facility, and the plurality of power supply devices 20 output electric energy to a common load 4. In the following description, in order to distinguish a plurality of power supply devices 20, they are referred to as a power supply device 208, a power supply device 20, and a power supply device 200.
[0016] 制御システム 1は、 電源システム 2 (複数の電源装置 2 0) を制御するよ うに構成されている。 制御システム 1は、 複数の電源装置 2 0と同じ施設に 設置されていてもよいし、 複数の電源装置 2 0とは異なる施設に設置されて いてもよい。 本実施形態では、 一例として、 制御システム 1は、 複数の電源 装置 2 0と同じ施設に設置されているとする。 [0016] The control system 1 is configured to control the power supply system 2 (the plurality of power supply devices 20). The control system 1 may be installed in the same facility as the plurality of power supply devices 20 or may be installed in a facility different from the plurality of power supply devices 20. In the present embodiment, as an example, it is assumed that the control system 1 is installed in the same facility as the plurality of power supply devices 20.
[0017] 制御システム 1は、 下位システムとして、 インターネッ トなどのネッ トワ 〇 2020/175186 4 卩(:171? 2020 /005832 [0017] The control system 1 is a network such as an internet as a lower system. 〇 2020/175 186 4 卩 (: 171? 2020 /005832
—ク 6を介して上位システム 3と通信可能に構成されている。 上位システム 3は、 例えば、 複数の電源装置 2 0が導入されている施設から、 離れた場所 に設置されている。 制御システム 1は、 上位システム 3との通信により複数 の電源装置 2 0を制御可能なシステムである。 ここで、 上位システム 3の 「 上位」 、 及び下位システムの 「下位」 は、 単に、 両者を区別するためのラべ ルとして用いているのであって、 各々の地位及び順位等を特定する意味では ない。 — It is configured to be able to communicate with the higher-level system 3 via the network 6. The host system 3 is installed, for example, at a place distant from the facility where a plurality of power supply units 20 are installed. The control system 1 is a system capable of controlling a plurality of power supply devices 20 by communicating with the host system 3. Here, the “upper” of the higher system 3 and the “lower” of the lower system are merely used as labels for distinguishing the two, and are not meant to specify their respective positions and ranks. Absent.
[0018] 制御システム 1は、 上位システム 3との通信により取得した予測情報に従 って各電源装置 2 0を制御する。 これにより、 制御システム 1では、 例えば 、 現在の負荷 4での消費電力値だけでなく、 将来の負荷 4での消費電力値等 を加味したきめ細やかな制御を、 各電源装置 2 0に対して実行することがで き、 電源装置 2 0を効率的に設御することが可能である。 The control system 1 controls each power supply device 20 according to the prediction information acquired by communication with the host system 3. As a result, in the control system 1, for example, not only the power consumption value at the current load 4 but also the power consumption value at the future load 4 etc. are taken into consideration for each power supply unit 20. It can be executed and the power supply unit 20 can be efficiently controlled.
[0019] 各電源装置 2 0は、 電力系統 5の停電時における非常用電源として機能す る。 また、 制御システム 1が各電源装置 2 0を制御することにより、 例えば 、 複数の電源装置 2 0が導入されている施設における電気エネルギの使用状 況の監視及び電気エネルギの効率的な使用が可能となる。 さらに、 制御シス テム 1が各電源装置 2 0を制御することにより、 電力系統 5から供給される 電力の消費が集中することを回避するためのピークシフト又はピークカツ ト 等の機能を実現することができる。 結果的に、 制御システム 1及び電源シス テム 2を導入することで、 電力の供給の安定化、 電気エネルギの使用状況の 監視及び効率的な使用、 並びに電力系統 5の安定化等を図ることが可能であ る。 [0019] Each power supply device 20 functions as an emergency power supply during a power failure of the power system 5. Further, the control system 1 controls each power supply unit 20 so that, for example, it is possible to monitor the usage status of electric energy in a facility where a plurality of power supply units 20 are installed and to efficiently use the electric energy. Becomes Further, the control system 1 controls each power supply unit 20 to realize functions such as peak shift or peak cut for avoiding concentration of the power supplied from the power system 5. it can. As a result, by introducing the control system 1 and the power supply system 2, it is possible to stabilize the supply of electric power, monitor the usage of electric energy and use it efficiently, and stabilize the power system 5. It is possible.
[0020] 制御システム 1は、 複数の電源装置 2 0のうち 1以上の電源装置 2 0の運 転期間における複数の電力変換部 2 2それぞれの電力変換効率の特性 (効率 特性) を推定する。 そして、 制御システム 1は、 推定した効率特性に基づい て、 複数の電力変換部 2 2の動作を制御する。 [0020] The control system 1 estimates the characteristic of the power conversion efficiency (efficiency characteristic) of each of the plurality of power conversion units 2 2 during the operation period of one or more of the plurality of power supply units 20. Then, the control system 1 controls the operations of the plurality of power conversion units 22 based on the estimated efficiency characteristics.
[0021 ] 電力変換部 2 2における電力変換効率の特性 (効率特性) は、 電源装置 2 〇の稼働状態によって変化する場合がある。 本実施形態の制御システム 1で は、 複数の電源装置 2 0のうち 1以上の電源装置 2 0の運転期間における効 率特性を推定し、 推定結果に基づいて各電力変換部 2 2の動作を制御する。 これにより、 本実施形態の制御システム 1では、 複数の電力変換部 2 2の電 力変換効率の向上を図ることができる。 [0021] The characteristics of the power conversion efficiency (efficiency characteristics) in the power conversion unit 22 may change depending on the operating state of the power supply device 20. In the control system 1 of this embodiment Estimates the efficiency characteristics of one or more power supply units 20 among the plurality of power supply units 20 during the operation period, and controls the operation of each power conversion unit 22 based on the estimation result. As a result, in the control system 1 of the present embodiment, it is possible to improve the power conversion efficiency of the plurality of power conversion units 22.
[0022] ( 2 ) 詳細 [0022] (2) Details
以下、 図 1〜図 3を参照して、 制御システム 1及び電源システム 2の詳細 な構成について説明する。 Hereinafter, the detailed configurations of the control system 1 and the power supply system 2 will be described with reference to FIGS. 1 to 3.
[0023] 制御システム 1は、 上位システム 3との間で通信可能に構成されている。 The control system 1 is configured to be able to communicate with the host system 3.
本開示において 「通信可能」 とは、 有線通信又は無線通信の適宜の通信方式 により、 直接的、 又はネッ トワーク 6若しくは中継器等を介して間接的に、 情報を授受できることを意味する。 すなわち、 制御システム 1 と上位システ ム 3とは、 互いに情報を授受することができる。 In the present disclosure, “communicable” means that information can be exchanged directly or indirectly via a network 6 or a relay by a suitable communication method such as wire communication or wireless communication. That is, the control system 1 and the upper system 3 can exchange information with each other.
[0024] 制御システム 1 と上位システム 3とは、 互いに双方向に通信可能であって 、 上位システム 3から制御システム 1への情報の送信、 及び制御システム 1 から上位システム 3への情報の送信の両方が可能である。 本実施形態では、 制御システム 1 と上位システム 3とは、 インターネッ トのような公衆のネッ トワーク 6を介して、 通信可能に構成されている。 [0024] The control system 1 and the host system 3 are capable of bidirectional communication with each other, and are capable of transmitting information from the host system 3 to the control system 1 and transmitting information from the control system 1 to the host system 3. Both are possible. In this embodiment, the control system 1 and the host system 3 are configured to be communicable via a public network 6 such as the Internet.
[0025] 制御システム 1は、 上述したように複数の電源装置 2 0を制御するシステ ムである。 そのため、 制御システム 1は、 上位システム 3だけでなく、 各電 源装置 2 0とも通信可能に構成されている。 制御システム 1は、 各電源装置 2 0に対して制御情報を出力することによって、 各電源装置 2 0の電力変換 部 2 2の動作を制御する。 The control system 1 is a system for controlling the plurality of power supply devices 20 as described above. Therefore, the control system 1 is configured to communicate with not only the host system 3 but also each power supply device 20. The control system 1 controls the operation of the power conversion unit 22 of each power supply unit 20 by outputting control information to each power supply unit 20.
[0026] 本実施形態では、 制御システム 1は、 メモリ及びプロセッサを含むコンビ ュータシステムを主構成とする。 すなわち、 コンビュータシステムのメモリ に記録されたプログラムを、 プロセッサが実行することにより、 制御システ ム 1の機能が実現される。 プログラムはメモリに予め記録されていてもよい し、 インターネッ ト等の電気通信回線を通して提供されてもよく、 メモリカ —ド等の非一時的記録媒体に記録されて提供されてもよい。 [0027] 電源装置 2 0は、 通信部 2 1 と、 電力変換部 2 2と、 蓄電池 2 3と、 計測 部 2 4と、 を備えている。 [0026] In the present embodiment, the control system 1 mainly has a computer system including a memory and a processor. That is, the functions of the control system 1 are realized by the processor executing the program recorded in the memory of the computer system. The program may be recorded in a memory in advance, may be provided through an electric communication line such as the Internet, or may be recorded and provided in a non-transitory recording medium such as a memory card. [0027] The power supply device 20 includes a communication unit 21, a power conversion unit 22, a storage battery 23, and a measurement unit 24.
[0028] 通信部 2 1は、 通信インターフヱースであり、 有線通信又は無線通信の適 宜の通信方式により、 制御システム 1 (の第 2通信部 1 2) との間で通信可 能に構成されている。 通信部 2 1は、 制御システム 1 との間で双方向の通信 が可能である。 [0028] The communication unit 21 is a communication interface, and is configured to be communicable with the control system 1 (the second communication unit 12 thereof) by an appropriate communication method such as wired communication or wireless communication. There is. The communication unit 21 is capable of bidirectional communication with the control system 1.
[0029] 蓄電池 2 3は、 例えば、 リチウムイオン電池等の二次電池である。 蓄電池 The storage battery 23 is, for example, a secondary battery such as a lithium ion battery. Storage battery
2 3は、 電気エネルギの蓄積 (充電) 、 及び貯めた電気エネルギの放出 (放 電) が可能である。 23 can store (charge) electric energy and discharge (discharge) the stored electric energy.
[0030] 電力変換部 2 2は、 例えば、 パワーコンディシヨナ (P C S : Power Cond i t i on i ng System) であり、 電力変換回路を有している。 電力変換回路は、 例 えば、 半導体スイッチング素子等を有するパワーデバイス、 トランス、 コン デンサ、 インダクタ等の電子部品を有しており、 交流電力から直流電力への 電力変換、 及び直流電力から交流電力への電力変換が可能に構成されている 。 つまり、 電力変換部 2 2は、 交流電力と直流電力との間の双方向の電力変 換が可能に構成されている。 なお、 電力変換部 2 2は、 直流電力から直流電 力への電力変換、 又は交流電力から交流電力への電力変換が可能に構成され ていてもよい。 The power conversion unit 22 is, for example, a power conditioner (PCS: Power Condition System) and has a power conversion circuit. The power conversion circuit has, for example, power devices including semiconductor switching elements, electronic components such as transformers, capacitors, inductors, etc., and performs power conversion from AC power to DC power and from DC power to AC power. It is configured to be capable of power conversion. That is, the power conversion unit 22 is configured to be capable of bidirectional power conversion between AC power and DC power. The power conversion unit 22 may be configured to be able to perform power conversion from DC power to DC power or AC power to AC power.
[0031 ] 電力変換部 2 2は、 電力変換を行うことにより、 蓄電池 2 3を充電及び放 電する。 具体的には、 電力変換部 2 2は、 電力系統 5と電気的に接続されて いる。 電力変換部 2 2は、 電力系統 5から供給される交流電力を直流電力に 変換して蓄電池 2 3に出力することにより、 蓄電池 2 3を充電する。 また、 電力変換部 2 2は、 蓄電池 2 3に貯められた電気エネルギ (直流電力) を交 流電力に変換して負荷 4に出力することにより、 蓄電池 2 3を放電する。 The power conversion unit 22 charges and discharges the storage battery 23 by performing power conversion. Specifically, the power converter 22 is electrically connected to the power grid 5. The power conversion unit 22 charges the storage battery 23 by converting the AC power supplied from the power system 5 into DC power and outputting the DC power to the storage battery 23. The power conversion unit 22 also discharges the storage battery 23 by converting the electric energy (DC power) stored in the storage battery 23 into alternating current power and outputting it to the load 4.
[0032] 電力変換部 2 2は、 制御システム 1からの制御情報に従って、 蓄電池 2 3 の充電及び放電を行う。 芾 I」御システム 1からの制御情報には、 例えば、 蓄電 池 2 3の充電期間、 充電電力値 (又は電力量) 、 放電期間、 及び放電電力値 (又は電力量) 等の指令値が含まれている。 〇 2020/175186 7 卩(:171? 2020 /005832 The power conversion unit 22 charges and discharges the storage battery 23 according to the control information from the control system 1. The control information from the “Sai I” control system 1 includes, for example, command values such as the charging period of the storage battery 23, the charging power value (or power amount), the discharging period, and the discharging power value (or power amount). Has been. 〇 2020/175 186 7 卩 (:171? 2020 /005832
[0033] 計測部 2 4は、 電源装置 2 0の稼働状態を計測するように構成されている 。 本開示における 「電源装置 2 0の稼働状態」 とは、 電源装置 2 0の稼働 ( 動作) に関連する情報であり、 例えば電圧情報、 温度情報等が含まれる。 本 実施形態では、 計測部 2 4は、 電圧計測部 2 4 1及び温度計測部 2 4 2を有 している。 The measuring unit 24 is configured to measure the operating state of the power supply device 20. The “operating state of the power supply device 20” in the present disclosure is information related to the operation (operation) of the power supply device 20 and includes, for example, voltage information, temperature information, and the like. In the present embodiment, the measurement unit 24 has a voltage measurement unit 2 4 1 and a temperature measurement unit 2 4 2.
[0034] 電圧計測部 2 4 1は、 電源装置 2 0の稼働状態 (電圧情報) として、 電力 変換部 2 2の入力電圧を計測する。 電力変換部 2 2の入力電圧とは、 系統電 源から電力変換部 2 2に入力される系統電圧、 及び蓄電池 2 3から電力変換 部 2 2に入力される電池電圧である。 なお、 電圧計測部 2 4 1は、 系統電圧 と電池電圧とのいずれか一方のみを計測する構成であってもよい。 [0034] The voltage measurement unit 2 41 measures the input voltage of the power conversion unit 2 2 as the operating state (voltage information) of the power supply device 20. The input voltage of the power conversion unit 22 is the system voltage input from the system power source to the power conversion unit 22 and the battery voltage input from the storage battery 23 to the power conversion unit 22. The voltage measurement unit 2 41 may be configured to measure only one of the system voltage and the battery voltage.
[0035] 温度計測部 2 4 2は、 電源装置 2 0の稼働状態 (温度情報) として、 電力 変換部 2 2の温度を計測する。 電力変換部 2 2の温度とは、 例えば、 電力変 換回路を構成する電子部品 (パワーデバイス、 トランス、 コイルなど) の温 度である。 [0035] The temperature measurement unit 2 42 measures the temperature of the power conversion unit 2 2 as the operating state (temperature information) of the power supply device 20. The temperature of the power conversion unit 22 is, for example, the temperature of electronic components (power device, transformer, coil, etc.) that constitute the power conversion circuit.
[0036] なお、 計測部 2 4は、 電圧計測部 2 4 1 と温度計測部 2 4 2とのいずれか —方のみを備える構成であってもよい。 The measuring unit 24 may be configured to include only one of the voltage measuring unit 2 4 1 and the temperature measuring unit 2 4 2.
[0037] 計測部 2 4は、 少なくとも電源装置 2 0の運転期間において、 電源装置 2 〇の稼働状態を繰り返し計測する。 運転期間とは、 電源装置 2 0が稼働して いる期間であって、 電力変換部 2 2が電力変換を行っている期間である。 言 い換えれば、 運転期間とは、 蓄電池 2 3を充電又は放電している期間である 。 計測部 2 4は、 例えば、 電源装置 2 0の稼働状態を所定周期で繰り返し計 測する。 所定周期は、 運転期間よりも短い時間周期であって、 例えば、 1分 、 5分、 1 0分などである。 本実施形態では、 計測部 2 4は、 電源装置 2 0 の運転期間だけでなく、 電源装置 2 0のスタンバイ期間における電源装置 2 〇の稼働状態を繰り返し計測する。 電源装置 2 0のスタンバイ期間とは、 電 源装置 2 0が稼働していない期間、 つまり、 電源装置 2 0が起動しているが 電力変換部 2 2が電力変換 (蓄電池 2 3の充電及び放電) を行っていない期 間である。 これにより、 計測部 2 4は、 電源装置 2 0の運転期間の開始時、 〇 2020/175186 8 卩(:171? 2020 /005832 The measuring unit 24 repeatedly measures the operating state of the power supply device 20 at least during the operation period of the power supply device 20. The operation period is a period during which the power supply device 20 is operating, and a period during which the power conversion unit 22 is performing power conversion. In other words, the operating period is the period during which the storage battery 23 is being charged or discharged. The measuring unit 24 repeatedly measures the operating state of the power supply device 20 at a predetermined cycle, for example. The predetermined cycle is a time cycle shorter than the operation period, and is, for example, 1 minute, 5 minutes, 10 minutes, or the like. In the present embodiment, the measuring unit 24 repeatedly measures not only the operating period of the power supply device 20 but also the operating state of the power supply device 20 during the standby period of the power supply device 20. The standby period of the power supply device 20 is a period during which the power supply device 20 is not operating, that is, the power supply device 20 is activated but the power conversion unit 2 2 performs power conversion (charging and discharging of the storage battery 23). ) Is not performed. As a result, the measuring unit 24, at the start of the operation period of the power supply unit 20, 〇 2020/175 186 8 卩 (:171? 2020 /005832
又は開始直前の電源装置 2 0の稼働状態を計測することができる。 なお、 計 測部 2 4は、 制御システム 1から、 電源装置 2 0の運転期間の開始前に出力 される測定開始指令をトリガとして、 電源装置 2 0の稼働状態の測定を開始 してもよい。 Alternatively, the operating state of the power supply device 20 immediately before the start can be measured. Note that the measurement unit 24 may start the measurement of the operating state of the power supply unit 20 by using the measurement start command output from the control system 1 before the start of the operation period of the power supply unit 20 as a trigger. ..
[0038] 計測部 2 4は、 電源装置 2 0の稼働状態の計測結果を、 通信部 2 1 を介し て制御システム 1 に出力する。 [0038] The measurement unit 24 outputs the measurement result of the operating state of the power supply device 20 to the control system 1 via the communication unit 21.
[0039] なお、 電源装置 2 0において、 通信部 2 1及び計測部 2 4は、 電力変換部 [0039] In the power supply device 20, the communication unit 21 and the measurement unit 24 are the power conversion unit.
2 2に含まれていてもよい。 言い換えれば、 電力変換部 2 2は、 制御システ ム 1 との通信機能、 及び稼働状態の計測機能を有していてもよい。 2 2 may be included. In other words, the power converter 22 may have a function of communicating with the control system 1 and a function of measuring the operating state.
[0040] 制御システム 1は、 第 1通信部 1 1 と、 第 2通信部 1 2と、 推定部 1 3と 、 動作制御部 1 4と、 記憶部 1 5と、 を有している。 このうち、 推定部 1 3 、 及び動作制御部 1 4は、 メモリ及びプロセッサを含むコンピュータシステ ムの一機能として実現される。 [0040] The control system 1 has a first communication unit 11, a second communication unit 12, an estimation unit 13, an operation control unit 14, and a storage unit 15. Of these, the estimation unit 13 and the operation control unit 14 are realized as one function of a computer system including a memory and a processor.
[0041] 第 1通信部 1 1は、 通信インターフェースであり、 有線通信又は無線通信 の適宜の通信方式により、 上位システム 3との間で通信可能に構成されてい る。 本実施形態では、 第 1通信部 1 1は、 インターネッ トのような公衆のネ ッ トワーク 6を介して、 上位システム 3と通信可能に構成されている。 [0041] The first communication unit 11 is a communication interface, and is configured to be communicable with the host system 3 by an appropriate communication method such as wired communication or wireless communication. In the present embodiment, the first communication unit 11 is configured to be communicable with the higher-level system 3 via the public network 6 such as the Internet.
[0042] 第 2通信部 1 2は、 通信インターフェースであり、 有線通信又は無線通信 の適宜の通信方式により、 電源装置 2 0 (の通信部 2 1) との間で通信可能 に構成されている。 第 2通信部 1 2は、 複数の電源装置 2 0それぞれと通信 可能に構成されている。 [0042] The second communication unit 12 is a communication interface, and is configured to be able to communicate with (the communication unit 21 of) the power supply device 20 by an appropriate communication method such as wired communication or wireless communication. .. The second communication unit 12 is configured to be able to communicate with each of the plurality of power supply devices 20.
[0043] 推定部 1 3は、 複数の電源装置 2 0のうち 1以上の電源装置 2 0の運転期 間における複数の電力変換部 2 2それぞれの電力変換効率の特性 (以下、 効 率特性ともいう) を推定する。 電力変換効率とは、 電力変換部 2 2の入力電 力に対する出力電力の割合である。 効率特性とは、 電力変換部 2 2の出力電 力 [!< \^/] に対する電力変換効率 [%] (図 2参照) 、 又は入力電力 [!< \^/ ] に対する電力変換効率 [%] などの電力変換効率の変化に関する特性であ る。 [0044] ここで、 電力変換効率の特性は、 電源装置 2 0の稼働状態に応じて変化す る場合がある。 例えば、 電力変換部 2 2が所定の出力電力を出力している場 合であっても、 電力変換部 2 2の温度上昇によって、 電力変換効率が低減す る場合がある。 [0043] The estimation unit 13 determines the characteristics of the power conversion efficiency of each of the plurality of power conversion units 2 2 during the operation period of one or more power supply units 20 among the plurality of power supply units 20 (hereinafter referred to as the efficiency characteristic). To say). The power conversion efficiency is the ratio of the output power to the input power of the power conversion unit 22. The efficiency characteristics are the power conversion efficiency [%] for the output power [!< \^/] of the power converter 22 (see Fig. 2) or the power conversion efficiency [% for the input power [!< \^/]. ] And other characteristics related to changes in power conversion efficiency. Here, the characteristics of the power conversion efficiency may change according to the operating state of the power supply device 20. For example, even when the power conversion unit 22 outputs a predetermined output power, the power conversion efficiency may decrease due to the temperature rise of the power conversion unit 22.
[0045] 推定部 1 3は、 第 2通信部 1 2を介して、 各電源装置 2 0の計測部 2 4が 計測した電源装置 2 0の稼働状態の計測結果を取得する。 そして、 推定部 1 3は、 取得した電源装置 2 0の稼働状態の計測結果に基づいて、 複数の電源 装置 2 0のうち 1以上の電源装置 2 0の運転期間における各電力変換部 2 2 の電力変換効率の特性 (効率特性) を推定する。 具体的には、 推定部 1 3は 、 取得した電源装置 2 0の稼働状態の計測結果に基づいて、 記憶部 1 5に記 憶されているデータベースを参照することにより、 効率特性を推定する。 The estimation unit 13 acquires the measurement result of the operating state of the power supply device 20 measured by the measurement unit 24 of each power supply device 20 via the second communication unit 12. Then, the estimation unit 13 uses the obtained measurement result of the operating state of the power supply unit 20 to determine the power conversion unit 2 2 of each power conversion unit 2 2 during the operation period of one or more power supply units 20. Estimate power conversion efficiency characteristics (efficiency characteristics). Specifically, the estimation unit 13 estimates the efficiency characteristic by referring to the database stored in the storage unit 15 based on the acquired measurement result of the operating state of the power supply device 20.
[0046] 記憶部 1 5は、 R O M (Read On ly Memory) 、 R A M (Random Access Mem ory) 、 又は E E P R O M (E lect r i ca l ly Erasab le Prog rammab le Read On ly Memory) 等から選択される記憶デバイスで構成されている。 記憶部 1 5は、 電源装置 2 0の稼働状態の様々な条件に対応した効率特性をデータベースと して記憶している。 稼働状態の様々な条件とは、 例えば、 入力電圧 (系統電 圧、 電池電圧) 、 電力変換部 2 2の温度等を範囲 (電圧範囲又は温度範囲等 ) ごとに細分化して、 それぞれを組み合わせた条件である。 [0046] The storage unit 15 is a memory selected from ROM (Read On Memory), RAM (Random Access Memory), or EEPROM (Electric Memory). Composed of devices. The storage unit 15 stores the efficiency characteristics corresponding to various conditions of the operating state of the power supply device 20 as a database. Various operating conditions include, for example, input voltage (system voltage, battery voltage), temperature of power converter 22 divided into ranges (voltage range or temperature range, etc.), and combined with each other. It is a condition.
[0047] 推定部 1 3は、 記憶部 1 5のデータべースを参照して、 取得した電源装置 The estimation unit 13 refers to the database of the storage unit 15 and acquires the acquired power supply device.
2 0の稼働状態の計測結果に適合する効率特性を抽出する。 推定部 1 3は、 抽出した効率特性を推定結果として、 動作制御部 1 4に出力する。 なお、 推 定部 1 3は、 取得した電源装置 2 0の稼働状態の計測結果を用いた演算処理 により、 効率特性を算出 (推定) するように構成されていてもよい。 Extract the efficiency characteristics that match the measurement results of the operating state of 20. The estimation unit 13 outputs the extracted efficiency characteristic as an estimation result to the operation control unit 14. The estimating unit 13 may be configured to calculate (estimate) the efficiency characteristic by a calculation process using the acquired measurement result of the operating state of the power supply device 20.
[0048] 動作制御部 1 4は、 上位システム 3からの予測情報、 及び推定部 1 3の推 定結果 (効率特性) に基づいて、 各電源装置 2 0に対応する制御情報を生成 し、 生成した制御情報を各電源装置 2 0に出力することにより、 各電源装置 2 0を制御する。 The operation control unit 14 generates control information corresponding to each power supply device 20 based on the prediction information from the host system 3 and the estimation result (efficiency characteristic) of the estimation unit 13 and generates the control information. The control information is output to each power supply device 20 to control each power supply device 20.
[0049] 本開示でいう 「予測情報」 は、 電源システム 2 (電源装置 2 0) の動作に 〇 2020/175186 10 卩(:171? 2020 /005832 [0049] The "prediction information" referred to in the present disclosure refers to the operation of the power supply system 2 (power supply device 20). 〇 2020/175 186 10 (:171? 2020 /005832
関連する将来の予測を含む情報であって、 例えば、 電源システム 2の動作に 関する予測値の集合である。 予測値の一例として、 負荷 4での消費電力値 ( 又は電力量) 、 電源システム 2の出力電力値 (又は電力量) 、 電源システム 2の制御に用いる閾値、 及び蓄電池 2 3の状態等がある。 蓄電池 2 3の状態 とは、 例えば、 蓄電池 2 3の温度、 蓄電池 2 3の充電状態 (3〇〇 : 513163
Figure imgf000012_0001
等を 含む。 また、 予測情報は、 これらの予測値の集合 (組み合わせ) を、 時間帯 (例えば、 1時間単位) ごとにリスト化した情報を含んでいる。 さらに、 予 測情報は、 電力会社又は電カアグリゲータがピークカツ ト又はピークシフト 等の要求を発する時間帯等も含んでいる。 また、 予測情報は、 電源システム 2における電力の需要と供給との両方に関する情報を含んでいる。 電源シス テム 2における電力の需要に関する情報の一例として、 各蓄電池 2 3の充電 電力値 (又は電力量) に係る情報がある。 電源システム 2における電力の供 給に関する情報の一例として、 電源システム 2の出力電力値 (又は電力量) に係る情報がある。 つまり、 本実施形態では、 予測情報は、 電源システム 2 の出力と入力との両方を予測するのに必要な情報である。
Information that includes relevant future predictions, for example, a set of prediction values related to the operation of the power supply system 2. Examples of predicted values include the power consumption value (or power amount) at load 4, the output power value (or power amount) of power supply system 2, the threshold value used to control power supply system 2, and the state of storage battery 23. .. The state of the storage battery 23 is, for example, the temperature of the storage battery 23, the state of charge of the storage battery 23 (3 〇 : 513163
Figure imgf000012_0001
Including etc. In addition, the prediction information includes information that lists (combinations) of these prediction values for each time zone (for example, every hour). Furthermore, the forecast information also includes the time of day when the electric power company or electric power aggregator issues a request such as peak cut or peak shift. In addition, the forecast information includes information on both the demand and supply of electric power in the power supply system 2. As an example of the information on the demand for electric power in the power supply system 2, there is information on the charging electric power value (or electric energy) of each storage battery 23. As an example of the information regarding the supply of electric power in the power supply system 2, there is information regarding the output electric power value (or electric energy) of the power supply system 2. That is, in this embodiment, the prediction information is information necessary for predicting both the output and the input of the power supply system 2.
[0050] 予測情報には、 電源システム 2の運転計画が含まれている。 運転計画は、 電源システム 2 (電源装置 2 0) の運転期間、 及び運転期間での入力又は出 力の電力値 (又は電力量) を示す計画である。 電源システム 2の運転期間と は、 複数の電源装置 2 0のうち 1以上の電源装置 2 0が稼働している期間で あって、 電力変換部 2 2が電力変換を行っている期間である。 言い換えると 、 電源システム 2の運転期間とは、 複数の電源装置 2 0のうち 1以上の電源 装置 2 0の運転期間である。 以下、 入力又は出力の電力値 (又は電力量) を 、 充放電電力ともいう。 運転計画は、 電源システム 2の充電計画及び放電計 画を含む。 充電計画とは、 電源システム 2 (電源装置 2 0) が電力系統 5か らの電力で蓄電池 2 3を充電する充電期間、 及び充電期間での充電電力値 ( 又は充電電力量) を示す計画である。 放電計画とは、 電源システム 2の蓄電 池 2 3から負荷 4に電力を出力する放電期間、 及び放電期間での出力電力値 〇 2020/175186 1 1 卩(:171? 2020 /005832 [0050] The prediction information includes the operation plan of the power supply system 2. The operation plan is a plan showing the operation period of the power supply system 2 (power supply device 20) and the input or output power value (or electric energy) during the operation period. The operating period of the power supply system 2 is a period in which one or more power supply devices 20 among the plurality of power supply devices 20 are operating, and a period in which the power conversion unit 22 is performing power conversion. In other words, the operation period of the power supply system 2 is the operation period of one or more power supply devices 20 among the plurality of power supply devices 20. Hereinafter, the input or output power value (or power amount) is also referred to as charge/discharge power. The operation plan includes the charging plan and discharging plan for the power supply system 2. The charging plan is a plan showing the charging period in which the power supply system 2 (power supply device 20) charges the storage battery 23 with the electric power from the power grid 5, and the charging power value (or charging power amount) in the charging period. is there. The discharge plan is a discharge period in which power is output from the storage battery 23 of the power supply system 2 to the load 4, and the output power value during the discharge period. 〇 2020/175 186 1 1 卩 (: 171? 2020 /005832
(又は出力電力量) を示す計画である。 (Or the amount of output power).
[0051 ] 動作制御部 1 4は、 推定部 1 3の推定結果 (効率特性) に基づいて、 電源 システム 2の運転期間 (充電期間、 放電期間) における各電源装置 2 0の電 力変換部 2 2の動作指令を制御情報として生成する。 運転計画が示す充放電 電力は、 電源システム 2 (複数の電源装置 2 0) 全体としての充放電電力で ある、 つまり各電源装置 2〇の充放電電力を足し合わせた総充放電電力であ る。 動作制御部 1 4は、 推定部 1 3が推定した効率特性に基づいて、 複数の 電源装置 2 0の各々の充放電電力の配分を決定する。 Based on the estimation result (efficiency characteristic) of the estimation unit 13 the operation control unit 14 determines the power conversion unit 2 of each power supply device 20 during the operation period (charge period, discharge period) of the power supply system 2. The operation command of 2 is generated as control information. The charging/discharging power indicated by the operation plan is the charging/discharging power of the power supply system 2 (plurality of power supply units 20) as a whole, that is, the total charging/discharging power obtained by adding the charging/discharging power of each power supply unit 20. .. The operation control unit 14 determines the distribution of the charging/discharging power of each of the plurality of power supply devices 20 based on the efficiency characteristics estimated by the estimation unit 13.
[0052] 具体的には、 動作制御部 1 4は、 推定部 1 3が推定した効率特性に基づい て、 電源システム 2の運転期間における複数の電力変換部 2 2の電力変換効 率が所定条件を満たすように、 各電源装置 2 0の充放電電力を決定する。 複 数の電力変換部 2 2の電力変換効率とは、 各電力変換部 2 2の入力電力の合 計に対する、 出力電力の合計の割合である、 つまり電源システム 2全体とし ての電力変換効率である。 所定条件とは、 複数の電力変換部 2 2の電力変換 効率が最大となる条件である。 つまり、 動作制御部 1 4は、 電源システム 2 全体としての電力変換効率が最大となるように、 各電源装置 2〇の充放電電 力の配分を決定する。 なお、 所定条件は、 複数の電力変換部 2 2の電力変換 効率が最大となる条件に限らず、 例えば、 複数の電力変換部 2 2の電力変換 効率が最大よりも小さい閾値以上となる条件であってもよい。 [0052] Specifically, the operation control unit 14 determines, based on the efficiency characteristics estimated by the estimation unit 13 that the power conversion efficiencies of the plurality of power conversion units 2 2 during the operation period of the power supply system 2 meet a predetermined condition. The charging/discharging power of each power supply device 20 is determined so as to satisfy the above condition. The power conversion efficiency of multiple power conversion units 22 is the ratio of the total output power to the total input power of each power conversion unit 22, that is, the power conversion efficiency of the entire power supply system 2. is there. The predetermined condition is a condition that maximizes the power conversion efficiency of the plurality of power conversion units 22. That is, the operation control unit 14 determines the distribution of the charging/discharging power of each power supply device 20 so that the power conversion efficiency of the power supply system 2 as a whole is maximized. The predetermined condition is not limited to the condition that the power conversion efficiencies of the plurality of power conversion units 22 are maximized, and, for example, the condition that the power conversion efficiencies of the plurality of power conversion units 22 are equal to or greater than a threshold value that is smaller than the maximum. It may be.
[0053] さらに、 動作制御部 1 4は、 各電源装置 2 0における蓄電池 2 3の充電状 態 (3〇〇) 、 劣化状態 (3〇!~1) に基づいて、 各電源装置 2 0の充放電電 力の配分を決定してもよい。 例えば、 動作制御部 1 4は、 3 0(3又は 3〇1~1 が高い蓄電池 2 3を優先的に使用するように各電源装置 2 0の充放電電力の 配分を決定する。 [0053] Further, the operation control unit 14 determines whether each power supply unit 20 has a power supply unit 20 based on the charge state (300) of the storage battery 23 in each power supply unit 20 and the deterioration state (30! ~ 1). Distribution of charge/discharge power may be determined. For example, the operation control unit 14 determines the distribution of the charging/discharging power of each power supply device 20 so that the storage battery 23 having a high value of 30 (3 or 3 0 1 to 1) is preferentially used.
[0054] 動作制御部 1 4は、 推定部 1 3の推定結果 (効率特性) に基づいて決定し た各電源装置 2〇の充放電電力に対応する動作指令を制御情報として、 第 2 通信部 1 2を介して各電源装置 2 0に出力する。 電源装置 2 0では、 電力変 換部 2 2は、 通信部 2 1 を介して受信した制御情報が示す充放電電力が入力 〇 2020/175186 12 卩(:171? 2020 /005832 The operation control unit 14 uses the operation command corresponding to the charging/discharging power of each power supply device 20 determined based on the estimation result (efficiency characteristic) of the estimation unit 13 as control information and the second communication unit. Output to each power supply unit 20 via 1 2. In the power supply device 20, the power conversion unit 22 inputs the charging/discharging power indicated by the control information received via the communication unit 21. 〇 2020/175 186 12 boxes (: 171-1? 2020 /005832
又は出力されるように動作する。 Or, it operates so as to be output.
[0055] (3) 動作例 [0055] (3) Operation example
以下に、 本実施形態に係る制御システム 1の動作例を図 2、 図 3を参照し て説明する。 Hereinafter, an operation example of the control system 1 according to the present embodiment will be described with reference to FIGS. 2 and 3.
[0056] ここでは、 放電期間 (電源システム 2の運転期間) において、 蓄電池 2 3 を放電して負荷 4に電力を供給する場合を例に説明する。 Here, a case where the storage battery 23 is discharged and power is supplied to the load 4 during the discharging period (operating period of the power supply system 2) will be described as an example.
[0057] 複数の電源装置 2 0のそれぞれにおいて、 計測部 2 4は、 電源装置 2 0の 稼働状態を計測し、 計測結果を通信部 2 1 を介して制御システム 1 に送信す る。 In each of the plurality of power supply devices 20, the measurement unit 24 measures the operating state of the power supply device 20 and sends the measurement result to the control system 1 via the communication unit 21.
[0058] 推定部 1 3は、 第 2通信部 1 2を介して、 各電源装置 2 0の計測部 2 4が 計測した電源装置 2 0の稼働状態を取得する取得処理を行う (3 1) 。 つま り、 推定部 1 3は、 複数の電源装置 2 0それぞれの稼働状態を取得する。 The estimation unit 13 performs an acquisition process for acquiring the operating state of the power supply device 20 measured by the measurement unit 24 of each power supply device 20 via the second communication unit 12 (3 1) .. That is, the estimation unit 13 acquires the operating status of each of the plurality of power supply devices 20.
[0059] 推定部 1 3は、 取得した複数の電源装置 2 0それぞれの稼働状態の計測結 果に基づいて、 各電源装置 2 0の電力変換効率の特性 (効率特性) を推定す る推定処理を行う (3 2) 。 本実施形態では、 推定部 1 3は、 記憶部 1 5の データベースを参照して、 取得した各電源装置 2 0の稼働状態の計測結果に 対応する効率特性を抽出することにより、 各電源装置 2 0に対応する効率特 性を推定する。 The estimation unit 13 estimates the characteristic of the power conversion efficiency (efficiency characteristic) of each power supply unit 20 based on the acquired measurement result of the operating state of each of the plurality of power supply units 20. Do (3 2). In the present embodiment, the estimation unit 13 refers to the database of the storage unit 15 and extracts the efficiency characteristic corresponding to the acquired measurement result of the operating state of each power supply device 20, thereby Estimate the efficiency characteristic corresponding to 0.
[0060] ここでは、 推定部 1 3が推定した、 放電期間 (電源システム 2の運転期間 ) の開始時における各電源装置 2 0の効率特性が第 1効率特性 1であると する (図 2参照) 。 第 1効率特性 1では、 出力電力が X I 0である場合、 電力変換効率がピークの丫 1 〇となる。 第 1効率特性 1では、 出力電力が X 1 〇よりも増加又は減少すると、 電力変換効率が丫 1 0よりも小さくなる [0060] Here, it is assumed that the efficiency characteristic of each power supply device 20 at the start of the discharge period (operating period of the power supply system 2) estimated by the estimation unit 13 is the first efficiency characteristic 1 (see FIG. 2). ). In the first efficiency characteristic 1, the power conversion efficiency reaches a peak of 10 when the output power is X I 0. In the 1st efficiency characteristic 1, if the output power increases or decreases below X 10, the power conversion efficiency becomes less than 10
[0061 ] 推定部 1 3は、 推定した効率特性 (第 1効率特性 1) を動作制御部 1 4 に出力する。 The estimation unit 13 outputs the estimated efficiency characteristic (first efficiency characteristic 1) to the operation control unit 14.
[0062] 動作制御部 1 4は、 推定部 1 3の推定結果 (第 1効率特性 1) に基づい て、 複数の電力変換部 2 2の動作を制御する動作制御処理 (3 3) を行う。 〇 2020/175186 13 卩(:171? 2020 /005832 The operation control unit 14 performs an operation control process (33) that controls the operation of the plurality of power conversion units 2 2 based on the estimation result of the estimation unit 13 (first efficiency characteristic 1). 〇 2020/175 186 13 卩(:171? 2020/005832
具体的には、 動作制御部 1 4は、 第 1通信部 1 1 を介して上位システム 3か ら予測情報として運転計画 (放電計画) を取得し、 運転計画 (放電計画) と 、 推定部 1 3が推定した効率特性 (第 1効率特性 1) と、 に基づいて、 各 電源装置 2 0に対応する制御情報を生成して出力する。 Specifically, the operation control unit 14 acquires the operation plan (discharge plan) as the prediction information from the higher-level system 3 via the first communication unit 11, and the operation plan (discharge plan) and the estimation unit 1 are acquired. Based on the efficiency characteristic (1st efficiency characteristic 1) estimated by 3 and, control information corresponding to each power supply unit 20 is generated and output.
[0063] 本実施形態では、 動作制御部 1 4は、 複数の電力変換部 2 2 (電源システ ム 2全体) の電力変換効率が最大となるように各電源装置 2 0に対応する制 御情報を生成して出力する。 ここでは、 放電計画が示す電源システム 2の目 標出力電力 (複数の電源装置 2 0の総出力電力) が乂3であるとする。 一例 として、 目標出力電力 X 3は、 出力電力 X I 0 (図 2参照) の 2倍であると する (乂3 =乂 1 0 X 2) 。 この場合、 動作制御部 1 4は、 放電期間におい て、 3つの電源装置 2 0のうち 2つの電源装置 2 0 (例えば電源装置 2 0八 , 2 0巳) の各々が出力電力 X 1 0を出力し、 残りの 1つの電源装置 2〇〇 が電力を出力しないように制御情報を生成して出力する。 [0063] In the present embodiment, the operation control unit 14 controls the control information corresponding to each power supply device 20 so that the power conversion efficiency of the plurality of power conversion units 2 2 (the entire power supply system 2) is maximized. Is generated and output. Here, it is assumed that the target output power of the power supply system 2 indicated by the discharge plan (total output power of the plurality of power supply devices 20) is 3. As an example, the target output power X 3 is twice the output power X I 0 (see Fig. 2) (3 = 1 10 X 2). In this case, the operation control unit 14 controls the output power X 1 0 of each of the two power supply units 2 0 (for example, power supply units 20 8 and 20 0) of the three power supply units 20 during the discharging period. Output and generate and output control information so that the remaining one power supply unit 200 does not output power.
[0064] 電源装置 2 0 , 2 0巳では、 電力変換部 2 2は、 動作制御部 1 4からの 制御情報に基づいて、 負荷 4に供給する出力電力が X 1 0となるように蓄電 池 2 3を放電させる。 また、 電源装置 2〇〇では、 電力変換部 2 2は、 動作 芾 I」御部 1 4からの制御情報に基づいて、 負荷 4に電力を供給しない、 つまり 蓄電池 2 3を放電しない。 このとき、 図 2に示すように、 電源装置 2 0八, [0064] In the power supply devices 20 and 20, the power conversion unit 22 is based on the control information from the operation control unit 14 so that the output power supplied to the load 4 becomes X10. Discharge 2 3 In addition, in the power supply device 200, the power conversion unit 22 does not supply power to the load 4, that is, does not discharge the storage battery 23, based on the control information from the operation control unit 14. At this time, as shown in FIG.
2 0巳では、 効率特性が第 1効率特性 1であるため、 出力電力 X 1 0を出 力することによって、 電力変換効率がピークの丫 1 0となる。 したがって、 電源システム 2としての電力変換効率もピークの丫 1 0となる。 At 20 m, the efficiency characteristic is the first efficiency characteristic 1, so the output power X 10 is output, and the power conversion efficiency becomes a peak 10 10. Therefore, the power conversion efficiency of the power supply system 2 also reaches a peak of 10.
[0065] 本実施形態では、 計測部 2 4は、 電源装置 2 0の稼働状態を所定周期で繰 り返し計測して制御システム 1 に送信している。 In the present embodiment, the measurement unit 24 repeatedly measures the operating state of the power supply device 20 at a predetermined cycle and transmits the measurement result to the control system 1.
[0066] 推定部 1 3は、 計測部 2 4での最新の計測結果 (電源装置 2 0の稼働状態 ) を取得し、 取得した計測結果に基づいて、 各電源装置 2 0に対応する効率 特性を推定 (更新) する (3 1、 3 2) 。 言い換えれば、 推定部 1 3は、 時 間経過に伴って各電源装置 2 0に対応する効率特性を繰り返し推定 (更新) する。 そして、 動作制御部 1 4は、 更新された推定結果 (効率特性) に基づ 〇 2020/175186 14 卩(:171? 2020 /005832 [0066] The estimation unit 13 acquires the latest measurement result (operational state of the power supply unit 20) in the measurement unit 24, and based on the acquired measurement result, the efficiency characteristic corresponding to each power supply unit 20. Estimate (update) (3 1, 3 2). In other words, the estimation unit 13 repeatedly estimates (updates) the efficiency characteristics corresponding to each power supply device 20 over time. Then, the operation control unit 14 is based on the updated estimation result (efficiency characteristic). 〇 2020/175 186 14 卩 (: 171-1? 2020 /005832
いて、 各電源装置 2 0に出力する制御情報を更新する (3 3) 。 Then, the control information output to each power supply unit 20 is updated (33).
[0067] ここで、 電源装置 2 0の稼働状態は、 電源装置 2 0が動作することによっ て変化する場合がある。 例えば、 電力変換部 2 2の温度は、 電力変換部 2 2 が電力変換動作を行うことによって上昇する場合がある。 本動作例では、 電 源装置 2 0 , 2 0巳において、 電力変換部 2 2が電力変換動作を行うこと によって、 放電期間の開始時から稼働状態が変動したとする。 推定部 1 3は 、 電源装置 2 0 , 2 0巳の変動後の稼働状態に基づいて、 電源装置 2 0八 , 2 0巳に対応する効率特性を更新する。 [0067] Here, the operating state of the power supply device 20 may change as the power supply device 20 operates. For example, the temperature of the power conversion unit 22 may increase as the power conversion unit 2 2 performs the power conversion operation. In this operation example, it is assumed that the operation state changes from the start of the discharge period due to the power conversion operation of the power conversion unit 22 in the power supply devices 20 and 20. The estimation unit 13 updates the efficiency characteristics corresponding to the power supply units 20 8 and 20 based on the operating state of the power supply units 20 and 20 after the change.
[0068] ここでは、 推定部 1 3が新たに推定した電源装置 2 0八, 2 0巳に対応す る効率特性が第 2効率特性 2であるとする (図 2参照) 。 第 2効率特性 2では、 出力電力が X 2 0である場合、 電力変換効率がピークの丫 2 0とな る。 第 2効率特性 2では、 出力電力が乂2 0よりも増加又は減少すると、 電力変換効率が丫 2 0よりも小さくなる。 また、 出力電力 X 2 0は、 出力電 力 X 1 0よりも小さく、 電力変換効率丫 2 0は電力変換効率丫 1 0よりも小 さい。 また、 第 2効率特性 2において、 出力電力 X 1 0であるときの電力 変換効率丫 2 1は、 ピークである電力変換効率丫 2 0よりも小さい。 Here, it is assumed that the efficiency characteristic corresponding to the power supply devices 20 8 and 20 0 newly estimated by the estimation unit 13 is the second efficiency characteristic 2 (see FIG. 2). In the second efficiency characteristic 2, when the output power is X20, the power conversion efficiency becomes a peak of 20. In the second efficiency characteristic 2, when the output power increases or decreases below 20, the power conversion efficiency becomes smaller than 20. Further, the output power X 20 is smaller than the output power X 10 and the power conversion efficiency 20 is smaller than the power conversion efficiency 10. Further, in the second efficiency characteristic 2, the power conversion efficiency 21 at the output power X 10 is smaller than the peak power conversion efficiency 20.
[0069] また、 電源装置 2〇〇では、 電力変換動作を行っていなかったため、 推定 部 1 3が推定した電源装置 2 0(3に対応する効率特性が第 1効率特性 1の ままであるとする。 [0069] Further, since the power supply device 200 did not perform the power conversion operation, it is assumed that the efficiency characteristic corresponding to the power supply device 20 (3 estimated by the estimation unit 13 is up to the first efficiency characteristic 1. To do.
[0070] 動作制御部 1 4は、 電源装置 2 0 , 2 0巳に対応する第 2効率特性 2 、 及び電源装置 2 0(3に対応する第 1効率特性 1 に基づいて、 複数の電力 変換部 2 2 (電源システム 2全体) の電力変換効率が最大となるように各電 源装置 2 0に対応する制御情報を更新する。 [0070] The operation control unit 14 is configured to perform a plurality of power conversions based on the second efficiency characteristic 2 corresponding to the power supply devices 20 and 20 and the first efficiency characteristic 1 corresponding to the power supply device 20 (3). The control information corresponding to each power supply device 20 is updated so that the power conversion efficiency of the unit 22 (entire power supply system 2) is maximized.
[0071 ] 本動作例では、 動作制御部 1 4は、 電源装置 2 0 , 2 0巳が出力電力 X [0071] In the present operation example, the operation control unit 14 controls the power supply devices 20 and 20 to output power X
2 0を出力し、 電源装置 2〇〇が出力電力 X 1 1 を出力するように制御情報 を生成して出力する。 上述したように、 放電計画が示す電源システム 2の目 標出力電力 (複数の電源装置 2 0の総出力電力) が乂3である。 目標出力電 力乂3は、 出力電力乂2 0の 2倍と、 出力電力 X I 1 との和であるとする ( 〇 2020/175186 15 卩(:171? 2020 /005832 Outputs 20 and generates and outputs the control information so that the power supply unit 200 outputs the output power X 1 1. As described above, the target output power of the power supply system 2 indicated by the discharge plan (total output power of the plurality of power supply devices 20) is 3. The target output power 3 is the sum of twice the output power 20 and the output power XI 1 ( 〇 2020/175 186 15 卩 (: 171-1? 2020 /005832
乂3 =乂2 0 2十 X I 1) 。 出力電力 X 1 1は、 出力電力 X 2 0よりも大 きく、 出力電力 X I 〇よりも小さい。 第 1効率特性 1 において、 出力電力 X 1 1であるときの電力変換効率丫 1 1は、 電力変換効率丫 2 0よりも大き い。 3 = 2 20 2 X I 1). The output power X11 is greater than the output power X20 and less than the output power XIO. In the first efficiency characteristic 1, the power conversion efficiency 11 when the output power is X 11 is larger than the power conversion efficiency 20.
[0072] 電源装置 2 0八, 2 0巳では、 電力変換部 2 2は、 動作制御部 1 4からの 制御情報に基づいて、 負荷 4に供給する出力電力が X 2 0となるように蓄電 池 2 3を放電させる。 また、 電源装置 2〇〇では、 電力変換部 2 2は、 動作 制御部 1 4からの制御情報に基づいて、 負荷 4に供給する出力電力が X 1 1 となるように蓄電池 2 3を放電させる。 [0072] In the power supply devices 20 and 20, the power conversion unit 22 stores the power so that the output power supplied to the load 4 becomes X20 based on the control information from the operation control unit 14. Discharge pond 2 3 Further, in the power supply device 200, the power conversion unit 22 discharges the storage battery 23 so that the output power supplied to the load 4 becomes X 1 1 based on the control information from the operation control unit 14. ..
[0073] 第 2効率特性 2において出力電力が X 2 0であるときの電力変換効率丫 [0073] In the second efficiency characteristic 2, the power conversion efficiency when the output power is X 2 0
2 0、 及び第 1効率特性 1 において出力電力が X 1 1であるときの電力変 換効率丫 1 1は、 いずれも第 2効率特性 2において出力電力が X 1 0であ るときの電力変換効率丫 2 1 よりも大きい。 つまり、 電源装置 2 0八, 2 0 巳の稼働状態の変化によつて効率特性が変化しているにも関わらず、 電源装 置 2 0八, 2 0巳が出力電力 X 1 0の出力を継続している場合に比べて、 電 源システム 2全体の電力変換効率が向上している。 20 and the power conversion efficiency 11 when the output power is X 11 in the first efficiency characteristic 1 is the power conversion efficiency when the output power is X 10 in the second efficiency characteristic 2. Greater than efficiency 2 1 In other words, although the efficiency characteristics have changed due to the changes in the operating states of the power supply units 208 and 20, the power supply units 208 and 20 output the output power X 1 0. Compared to the case of continuous operation, the power conversion efficiency of the entire power supply system 2 is improved.
[0074] 本動作例では、 電源システム 2が負荷 4に電力を供給する、 つまり蓄電池 [0074] In this operation example, the power supply system 2 supplies power to the load 4, that is, the storage battery.
2 3を放電する場合を例に説明したが、 電源システム 2が電力系統 5から電 力を供給される、 つまり蓄電池 2 3を充電する場合も同様である。 この場合 、 動作制御部 1 4は、 推定部 1 3が推定した効率特性に基づいて、 複数の電 力変換部 2 2の電力変換効率が最大となるように、 各電源装置 2 0の蓄電池 2 3の充電電力を決定する。 この場合、 各電源装置 2 0の稼働状態に応じて 、 複数の電源装置 2 0間で蓄電池 2 3の充電量が異なる場合がある。 The case of discharging 23 is described as an example, but the same applies to the case where the power supply system 2 is supplied with power from the power system 5, that is, the storage battery 23 is charged. In this case, the operation control unit 14 uses the storage battery 2 of each power supply unit 20 so as to maximize the power conversion efficiency of the plurality of power conversion units 2 2 based on the efficiency characteristics estimated by the estimation unit 13. Determine the charging power of 3. In this case, the charge amount of the storage battery 23 may differ among the plurality of power supply devices 20 depending on the operating state of each power supply device 20.
[0075] このように、 本実施形態の制御システム 1では、 電源装置 2 0の稼働状態 に応じて変動する効率特性を推定し、 推定した効率特性に基づいて各電源装 置 2 0の電力変換部 2 2の動作を制御する。 これにより、 複数の電力変換部 2 2の電力変換効率の向上を図ることができる。 As described above, in the control system 1 of the present embodiment, the efficiency characteristic that varies depending on the operating state of the power supply device 20 is estimated, and the power conversion of each power supply device 20 is performed based on the estimated efficiency characteristic. Controls the operation of part 22. As a result, the power conversion efficiency of the plurality of power conversion units 22 can be improved.
[0076] なお、 本動作例では、 電源システム 2から目標出力電力 X 3を出力するた 〇 2020/175186 16 卩(:171? 2020 /005832 [0076] In this operation example, the target output power X3 is output from the power supply system 2. 〇 2020/175 186 16 卩(:171? 2020/005832
めに、 電源装置 2 0八, 2 0巳が出力電力 X 2 0を出力し、 電源装置 2 0〇 が出力電力 X I 1 を出力しているが、 これらの出力電力の大きさは一例であ る。 電源システム 2全体の電力変換効率が最大となるように電源装置 2〇八 〜 2〇〇の出力電力の大きさが決定されていればよく、 例えば、 電源装置 2 0八, 2 0巳の出力電力が乂2 0よりも低く、 電源装置 2〇〇の出力電力が X 1 1 よりも大きくてもよい。 For this reason, the power supply units 20 and 20 output the output power X 2 0 and the power supply unit 2 0 0 outputs the output power XI 1, but the magnitude of these output powers is an example. It It suffices that the magnitude of the output power of the power supply units 208 to 200 is determined so that the power conversion efficiency of the entire power supply system 2 is maximized. For example, the output of the power supply units 208 and 20 The power may be less than 20 and the power output of the power supply 200 may be greater than X 11.
[0077] つまり、 動作制御部 1 4は、 各電源装置 2 0の効率特性 (例えば第 1効率 特性 1、 第 2効率特性 2) に基づいて、 電源システム 2全体の電力変換 効率が最大となるように、 目標出力電力乂3を出力するための電源装置 2 0 八〜 2〇〇の出力電力の大きさを任意に決定する。 例えば、 動作制御部 1 4 は、 電源装置 2 0八, 2 0巳それぞれの出力電力を連続的又は所定間隔で変 動させた場合における、 目標出力電力 X 3を出力するために必要な電源装置 2 0〇の出力電力の大きさを求める。 動作制御部 1 4は、 このときの電源シ ステム 2全体の電力変換効率を、 第 1効率特性 1及び第 2効率特性 2に 基づいて演算により算出する。 そして、 動作制御部 1 4は、 電源システム 2 全体の電力変換効率が最大となる電源装置 2 0八〜 2 0(3の出力電力の大き さの組み合わせを選択し、 選択結果に基づいて各電源装置 2 0の電力変換部 2 2を制御する。 That is, the operation control unit 14 maximizes the power conversion efficiency of the entire power supply system 2 based on the efficiency characteristics of each power supply device 20 (for example, the first efficiency characteristic 1 and the second efficiency characteristic 2). As described above, the magnitude of the output power of the power supply units 208 to 200 for outputting the target output power 3 is arbitrarily determined. For example, the operation control unit 14 is a power supply unit required to output the target output power X 3 when the output power of each of the power supply units 20 and 20 is changed continuously or at predetermined intervals. Find the magnitude of the output power of 200. The operation control unit 14 calculates the power conversion efficiency of the entire power supply system 2 at this time by calculation based on the first efficiency characteristic 1 and the second efficiency characteristic 2. Then, the operation control unit 14 selects the power supply units 20 to 20 (combination of the output power magnitudes of 3 that maximizes the power conversion efficiency of the entire power supply system 2 and selects each power supply based on the selection result. It controls the power converter 22 of the device 20.
[0078] また、 本動作例では、 動作制御部 1 4は、 電源装置 2 0 , 2 0巳の出力 電力の大きさが互いに同じ大きさとなるように制御している。 これにより、 動作制御部 1 4による電源装置 2 0八, 2 0巳の制御が容易となる。 なお、 電源装置 2 0八, 2 0巳の出力電力の大きさを互いに同じにすることは必須 ではなく、 互いに異なる大きさであってもよい。 Further, in the present operation example, the operation control unit 14 controls so that the output powers of the power supply devices 20 and 20 are equal in magnitude to each other. This facilitates the control of the power supply devices 208, 20 by the operation control unit 14. Note that it is not essential that the output powers of the power supply units 20 and 20 have the same magnitude, and they may have different magnitudes.
[0079] 電源システム 2全体の電力変換効率が最大となるように制御する方法の一 例として、 動作制御部 1 4は、 各電力変換部 2 2の電力変換効率及び出力電 力又は入力電力に基づいて各電源装置 2 0を制御するように構成されていて もよい。 例えば、 動作制御部 1 4は、 複数の電源装置 2 0における、 それぞ れの電力変換部 2 2の電力変換効率と出力電力との乗算値の総和が最大とな 〇 2020/175186 17 卩(:171? 2020 /005832 As an example of a method for controlling the power conversion efficiency of the power supply system 2 as a whole, the operation control unit 14 sets the power conversion efficiency and the output power or the input power of each power conversion unit 2 2. It may be configured to control each power supply device 20 based on the above. For example, the operation control unit 14 determines that the sum of the multiplication values of the power conversion efficiency and the output power of each power conversion unit 22 in the plurality of power supply units 20 is the maximum. 〇 2020/175 186 17 卩(:171? 2020/005832
るように、 各電源装置 2 0を制御してもよい。 Thus, each power supply device 20 may be controlled.
[0080] また、 本動作例では、 推定部 1 3が時間経過に伴って効率特性の推定を繰 り返し行い、 動作制御部 1 4が最新の推定結果に基づいて複数の電力変換部 2 2の動作を制御しているが、 これに限らない。 例えば、 動作制御部 1 4は 、 時間経過に伴う推定部 1 3の推定結果の変化が所定のトリガー条件を満た した場合、 変化後 (最新) の推定部 1 3の推定結果に基づいて、 複数の電力 変換部 2 2の動作を制御してもよい。 トリガー条件とは、 例えば推定部 1 3 が推定した効率特性の変化前後において、 現在の出力電力に対応する電力変 換効率の差が閾値以上である、 又は電力変換効率の差の比率が閾値以上であ る、 という条件である。 つまり、 動作制御部 1 4は、 推定部 1 3の推定結果 に基づいて電力変換効率が比較的大きく変化していると判断した場合、 最新 の効率特性に基づいて複数の電力変換部 2 2の制御内容を更新する。 これに より動作制御部 1 4の処理負荷の軽減を図ることができる。 Further, in this operation example, the estimation unit 13 repeats the estimation of the efficiency characteristics with the lapse of time, and the operation control unit 14 determines the plurality of power conversion units 2 2 based on the latest estimation result. Controls the operation of, but is not limited to this. For example, if the change in the estimation result of the estimation unit 13 with the passage of time satisfies a predetermined trigger condition, the motion control unit 14 determines that a plurality of results are obtained based on the estimation result of the estimation unit 13 after the change (latest). The operation of the power conversion unit 22 may be controlled. The trigger condition is, for example, the difference in the power conversion efficiency corresponding to the current output power is equal to or greater than a threshold value before or after the change in the efficiency characteristic estimated by the estimation unit 13 or the ratio of the difference in the power conversion efficiency is equal to or greater than the threshold value. The condition is that In other words, if the operation control unit 14 determines that the power conversion efficiency is changing significantly based on the estimation result of the estimation unit 13, the plurality of power conversion units 2 2 based on the latest efficiency characteristics are calculated. Update the control contents. As a result, the processing load on the operation control unit 14 can be reduced.
[0081 ] (4) 変形例 [0081] (4) Modification
(4 . 1) 第 1変形例 (4.1) First modified example
上述した例では、 計測部 2 4は、 電源装置 2 0の稼働状態を繰り返し計測 している。 そして、 電源システム 2の運転期間のその時々において、 推定部 1 3が複数の電力変換部 2 2それぞれの電力変換効率の特性を推定し、 動作 制御部 1 4が推定結果に基づいて複数の電力変換部 2 2の動作を制御してい た。 つまり、 電源システム 2の運転期間のその時々において、 電源システム 2全体としての電力変換効率が最大となるように各電力変換部 2 2を制御し ていたが、 当該構成に限らない。 In the example described above, the measuring unit 24 repeatedly measures the operating state of the power supply device 20. Then, at different times during the operation period of the power supply system 2, the estimation unit 13 estimates the characteristics of the power conversion efficiency of each of the power conversion units 2 2 and the operation control unit 14 determines the power consumption based on the estimation result. It controlled the operation of the converter 22. That is, the power conversion units 22 are controlled so that the power conversion efficiency of the power supply system 2 as a whole is maximized at each time during the operation period of the power supply system 2, but the present invention is not limited to this configuration.
[0082] 制御システム 1は、 電源システム 2の運転期間 (充電期間、 放電期間) の 卜ータルでの、 電源システム 2全体としての電力変換効率が最大となるよう に各電力変換部 2 2をスケジュール制御してもよい。 [0082] The control system 1 schedules each power conversion unit 22 to maximize the power conversion efficiency of the power supply system 2 as a whole during the operating period (charge period, discharge period) of the power supply system 2. You may control.
[0083] 具体的には、 推定部 1 3は、 電源システム 2の運転期間の開始時 (又はそ の直前) における各電源装置 2 0の稼働状態の計測結果を取得する。 さらに 、 推定部 1 3は、 上位システム 3から予測情報 (運転計画を含む) を取得す 〇 2020/175186 18 卩(:171? 2020 /005832 Specifically, the estimation unit 13 acquires the measurement result of the operating state of each power supply device 20 at the start (or immediately before) of the operation period of the power supply system 2. Furthermore, the estimation unit 13 acquires the prediction information (including the operation plan) from the higher-level system 3. 〇 2020/175 186 18 卩 (:171? 2020 /005832
る。 そして、 推定部 1 3は、 各電源装置 2 0の稼働状態の計測結果、 及び予 測情報とに基づいて、 電源システム 2の運転期間における各電源装置 2 0の 稼働状態の変動を推測する。 推定部 1 3は、 推測した各電源装置 2 0の稼働 状態の変動に基づいて、 電源システム 2の運転期間における所定の単位時間 ごとの効率特性を推定する。 所定の単位時間とは、 電源システム 2の運転期 間よりも短い時間であつて、 例えば 1 0分、 1 5分、 3 0分などである。 It Then, the estimation unit 13 estimates the fluctuation of the operating state of each power supply device 20 during the operation period of the power supply system 2 based on the measurement result of the operating state of each power supply device 20 and the prediction information. The estimation unit 13 estimates the efficiency characteristic for each predetermined unit time during the operation period of the power supply system 2 based on the estimated fluctuation of the operating state of each power supply device 20. The predetermined unit time is a time shorter than the operating period of the power supply system 2, and is, for example, 10 minutes, 15 minutes, 30 minutes, or the like.
[0084] 動作制御部 1 4は、 推定部 1 3が推定した電源システム 2の運転期間にお ける所定の単位時間ごとの効率特性に基づいて、 電源システム 2の運転期間 における所定の単位時間ごとに複数の電力変換部 2 2の動作を制御するスケ ジュール制御を行う。 具体的には、 動作制御部 1 4は、 電源システム 2の運 転期間における複数の電力変換部 2 2 (電源システム 2全体) が所定条件を 満たすように、 所定の単位時間ごとに各電力変換部 2 2の動作を決定する。 所定条件とは、 電源システム 2の運転期間の卜ータルでの複数の電力変換部 2 2 (電源システム 2全体) の電力変換効率が最大となる条件である。 言い 換えれば、 所定条件とは、 電源システム 2の運転期間における所定の単位時 間ごとの複数の電力変換部 2 2 (電源システム 2全体) の電力変換効率の積 分値が最大となる条件である。 Based on the efficiency characteristics of the power supply system 2 for each predetermined unit time estimated by the estimation unit 13 for each predetermined unit time, the operation control unit 14 sets each predetermined unit time for the operation period of the power supply system 2. In addition, schedule control is performed to control the operation of multiple power converters 22. Specifically, the operation control unit 14 converts each power conversion unit every predetermined unit time so that the plurality of power conversion units 2 2 (entire power supply system 2) in the operation period of the power supply system 2 satisfy the predetermined condition. Determines the operation of part 22. The predetermined condition is a condition that maximizes the power conversion efficiency of the plurality of power conversion units 2 2 (the entire power supply system 2) during the operation period of the power supply system 2. In other words, the predetermined condition is a condition in which the product value of the power conversion efficiencies of the plurality of power conversion units 2 2 (entire power supply system 2 as a whole) per predetermined unit time during the operation period of the power supply system 2 is the maximum. is there.
[0085] このように、 本変形例の制御システム 1では、 動作制御部 1 4は、 電源シ ステム 2の運転期間における複数の電源装置 2 0それぞれの稼働状態の変動 に基づいて、 電源システム 2の運転期間における電源システム 2の電力変換 効率が最大となるように、 電源システム 2の運転期間における所定の単位時 間ごとに各電源変換部の動作を制御するスケジュール制御を行う。 As described above, in the control system 1 of the present modification, the operation control unit 14 controls the power supply system 2 based on the fluctuation of the operating state of each of the plurality of power supply devices 20 during the operation period of the power supply system 2. In order to maximize the power conversion efficiency of the power supply system 2 during the above operating period, schedule control is performed to control the operation of each power supply conversion unit for each predetermined unit time during the operating period of the power supply system 2.
[0086] これにより、 電源システム 2の運転期間を通しての複数の電力変換部 2 2 の電力変換効率の向上を図ることができる。 [0086] This makes it possible to improve the power conversion efficiency of the plurality of power conversion units 2 2 throughout the operation period of the power supply system 2.
[0087] (4 . 2) 第 2変形例 [0087] (4.2) Second Modification
電源システム 2において、 複数の電源装置 2 0間で電力を授受するように 構成されていてもよい。 The power supply system 2 may be configured to transfer power between a plurality of power supply devices 20.
[0088] 図 2に示すように、 出力電力が比較的小さい場合、 電力変換効率が低くな 〇 2020/175186 19 卩(:171? 2020 /005832 [0088] As shown in FIG. 2, when the output power is relatively small, the power conversion efficiency is low. 〇 2020/175 186 19 卩(:171? 2020/005832
る。 例えば、 第 1効率特性 1では、 電力変換効率がピークの丫 1 0となる 出力電力が X 1 〇よりも小さい領域での電力変換効率の傾きが、 出力電力が X 1 〇よりも大きい領域での電力変換効率の傾きよりも大きい。 そのため、 複数の電力変換部 2 2のうちいずれかの電力変換部 2 2の出力電力が比較的 小さい場合、 電源システム 2全体の電力変換効率が低下する可能性がある。 It For example, in the first efficiency characteristic 1, the slope of the power conversion efficiency in the area where the power conversion efficiency reaches the peak of 10 and the output power is smaller than X 10 is in the area where the output power is larger than X 10. Is larger than the slope of the power conversion efficiency. Therefore, when the output power of any one of the plurality of power conversion units 22 is relatively small, the power conversion efficiency of the entire power supply system 2 may decrease.
[0089] そこで、 動作制御部 1 4は、 複数の電源装置 2 0のうち少なくとも 1つの 電源装置 2 0において、 蓄電池 2 3に貯められた電気エネルギを、 上記少な くとも 1つの電源装置 2 0とは異なる他の電源装置 2 0に出力するように、 電力変換部 2 2の動作を制御する。 つまり、 他の電源装置 2 0の蓄電池 2 3 を、 負荷として利用する。 Therefore, the operation control unit 14 controls the electric energy stored in the storage battery 23 in at least one power supply unit 20 among the plurality of power supply units 20 to generate at least one power supply unit 20. The operation of the power conversion unit 22 is controlled so that the power is output to another power supply device 20 different from. That is, the storage battery 23 of the other power supply device 20 is used as a load.
[0090] 例えば、 電源システム 2全体として負荷 4に供給する目標出力電力が X 4 であるとする。 目標出力電力乂4は、 出力電力 X I 0と出力電力 X I 2とを 足した値であるとする。 なお、 ここでは、 各電源装置 2 0の効率特性が第 1 効率特性 1であるとする。 動作制御部 1 4は、 電源装置 2 0 の電力変換 部 2 2に対して、 出力電力 X 1 0を負荷 4に供給するように制御する。 また 、 動作制御部 1 4は、 電源装置 2 0巳の電力変換部 2 2に対して、 出力電力 X 1 2を負荷 4に供給させ、 出力電力 X 1 0と出力電力 X 1 2との差分電力 X 1 2 0を電源装置 2〇〇に供給するように制御する。 差分電力 X I 2 0は 、 出力電力 X 1 2よりも大きい。 したがって、 電源装置 2 0巳の出力電力が X 1 〇となる。 また、 動作制御部 1 4は、 電源装置 2 0(3の電力変換部 2 2 に対して、 電源装置 2 0巳から供給される電力 (差分電力 X I 2 0) で蓄電 池 2 3を充電するように制御する。 For example, assume that the target output power supplied to the load 4 in the power supply system 2 as a whole is X 4. The target output power 4 is the sum of the output power X I 0 and the output power X I 2. Here, it is assumed that the efficiency characteristic of each power supply device 20 is the first efficiency characteristic 1. The operation control unit 14 controls the power conversion unit 22 of the power supply device 20 to supply the output power X 10 to the load 4. Further, the operation control unit 14 causes the power conversion unit 22 of the power supply unit 20 to supply the output power X 1 2 to the load 4, and the difference between the output power X 10 and the output power X 1 2 Control to supply power X 120 to the power supply unit 200. The differential power X I 2 0 is greater than the output power X 1 2. Therefore, the output power of the power supply unit 20 is X 100. Further, the operation control unit 14 charges the storage battery 23 with the power (differential power XI 20) supplied from the power supply device 20 to the power supply device 20 (the power conversion unit 22 of 3). To control.
[0091 ] つまり、 電源装置 2 0巳は、 電源装置 2〇〇の蓄電池 2 3を負荷 4とみな して、 出力電力 X I 0の一部 (差分電力 X I 2 0) を供給する。 これにより 、 電源装置 2 0八, 2 0巳は、 電力変換効率がピークの丫 1 0となる出力電 力 X 1 〇を出力することとなる。 これにより、 複数の電力変換部 2 2 (電源 システム 2全体) の電力変換効率の向上を図ることができる。 That is, the power supply unit 20 regards the storage battery 23 of the power supply unit 200 as the load 4 and supplies a part of the output power X I 0 (differential power X I 20 ). As a result, the power supply units 20 and 20 output the output power X 10 at which the power conversion efficiency reaches a peak of 10. As a result, the power conversion efficiency of the plurality of power conversion units 22 (the entire power supply system 2) can be improved.
[0092] このように、 動作制御部 1 4は、 複数の電源装置 2 0のうち少なくとも 1 〇 2020/175186 20 卩(:171? 2020 /005832 [0092] As described above, the operation control unit 14 controls at least one of the plurality of power supply devices 20. 〇 2020/175 186 20 (:171? 2020/005832
つの電源装置 2 0において、 蓄電池 2 3の出力電力の目標値 (X I 0) と蓄 電池 2 3から負荷 4への出力電力の目標値 (X I 2) との差分の電力 (差分 電力 X I 2 0) を蓄電池 2 3から他の電源装置 2 0に出力するように、 電力 変換部 2 2の動作を制御する。 In one power supply unit 20, the difference power between the target value (XI 0) of the output power of the storage battery 23 and the target value (XI 2) of the output power from the storage battery 23 to the load 4 (the difference power XI 2 0 ) Is controlled from the storage battery 23 to the other power supply device 20.
[0093] (4 . 3) 第 3変形例 [0093] (4.3) Third Modified Example
動作制御部 1 4は、 上位システム 3からの予測情報、 及び推定部 1 3の推 定結果 (効率特性) に加えて、 電源システム 2の運転期間の時間帯に基づい て、 複数の電力変換部 2 2の動作を制御してもよい。 In addition to the prediction information from the higher-level system 3 and the estimation results (efficiency characteristics) of the estimation unit 13, the operation control unit 14 determines multiple power conversion units based on the time zone of the operation period of the power supply system 2. The operation of 2 2 may be controlled.
[0094] 電力系統 5から電源システム 2又は負荷 4に供給する電力の電気料金単価 は、 時間帯に応じて異なる場合がある。 一般的に、 電気料金単価は、 昼間の 時間帯に比べて夜間の時間帯の方が低く設定されていることが多い。 時間帯 ごとの電気料金単価のデータは、 上位システム 3から取得する予測情報に含 まれている。 [0094] The unit price of electricity supplied from the power system 5 to the power supply system 2 or the load 4 may vary depending on the time of day. In general, the unit price of electricity is often set lower during the night hours than during the day hours. The data on the electricity rate unit price for each time period is included in the forecast information acquired from the upper system 3.
[0095] 動作制御部 1 4は、 上位システム 3からの予測情報 (時間帯ごとの電気料 金単価) と、 推定部 1 3が推定した効率特性と、 電源システム 2の運転期間 の時間帯と、 に基づいて、 電力系統 5から電源システム 2又は負荷 4に供給 される電力の電気料金が低くなるように、 複数の電力変換部 2 2の動作をす る。 例えば、 蓄電池 2 3を充電する場合、 動作制御部 1 4は、 電源システム 2の運転期間 (充電期間) においてより電気料金単価が低い時間帯に、 推定 部 1 3が推定した効率特性に基づいて、 より高い電力変換効率で蓄電池 2 3 を充電するように各電力変換部 2 2を動作させる。 また、 蓄電池 2 3を放電 させる場合、 動作制御部 1 4は、 電源システム 2の運転期間 (放電期間) に おけるより電気料金単価が高い時間帯に、 推定部 1 3が推定した効率特性に 基づいて、 より高い電力変換効率で蓄電池 2 3を放電するように各電力変換 部 2 2を動作させる。 [0095] The operation control unit 14 calculates the prediction information from the higher-level system 3 (electricity charge unit price for each time period), the efficiency characteristics estimated by the estimation unit 13 and the time period of the operation period of the power supply system 2. , The plurality of power conversion units 22 are operated so that the electricity charge of the power supplied from the power system 5 to the power supply system 2 or the load 4 becomes low. For example, when charging the storage battery 23, the operation control unit 14 uses the efficiency characteristics estimated by the estimation unit 13 based on the time period when the unit price of electricity is lower during the operation period (charging period) of the power supply system 2. , Each power conversion unit 22 is operated so as to charge the storage battery 23 with higher power conversion efficiency. Further, when discharging the storage battery 23, the operation control unit 14 is based on the efficiency characteristics estimated by the estimation unit 13 at a time when the unit price of electricity is higher than the operating period (discharge period) of the power supply system 2. Then, each power conversion unit 22 is operated so as to discharge the storage battery 23 with higher power conversion efficiency.
[0096] これにより、 本変形例の制御システム 1では、 電源システム 2の運転期間 の時間帯を考慮した電力変換部 2 2の制御が可能となる。 With this, in the control system 1 of the present modification, it is possible to control the power conversion unit 22 in consideration of the time zone of the operation period of the power supply system 2.
[0097] (4 . 4) その他の変形例 上記実施形態 (及び変形例) は、 本開示の様々な実施形態 (及び変形例) の一つに過ぎない。 上記実施形態 (及び変形例) は、 本開示の目的を達成で きれば、 設計等に応じて種々の変更が可能である。 [0097] (4.4) Other Modifications The above-mentioned embodiment (and modification) is only one of various embodiments (and modification) of this indication. The above-described embodiments (and modified examples) can be variously modified according to the design and the like as long as the object of the present disclosure can be achieved.
[0098] 制御システム 1 と同様の機能は、 制御方法、 コンビュータプログラム、 又 はプログラムを記録した非一時的な記録媒体等で具現化されてもよい。 一態 様に係る制御方法は、 電力変換部 22を有する電源装置 20を複数備えた電 源システム 2を制御する方法である。 制御方法は、 推定処理と、 動作制御処 理と、 を有する。 推定処理では、 複数の電源装置 20のうち 1以上の電源装 置 20の運転期間における複数の電力変換部 22それぞれの電力変換効率の 特性を推定する。 動作制御処理では、 推定処理での推定結果に基づいて、 複 数の電力変換部 22の動作を制御する。 一態様に係る (コンピュータ) プロ グラムは、 コンピュータシステムに、 上記の制御方法を実行させるためのプ ログラムである。 The function similar to that of the control system 1 may be embodied by a control method, a computer program, or a non-transitory recording medium recording the program. The control method according to one aspect is a method of controlling a power supply system 2 including a plurality of power supply devices 20 each having a power conversion unit 22. The control method includes an estimation process and a motion control process. In the estimation process, the characteristics of the power conversion efficiency of each of the plurality of power conversion units 22 during the operation period of one or more power supply devices 20 of the plurality of power supply devices 20 are estimated. In the operation control process, the operation of the plurality of power conversion units 22 is controlled based on the estimation result of the estimation process. A (computer) program according to one aspect is a program for causing a computer system to execute the control method described above.
[0099] 本開示における制御システム 1は、 コンピュータシステムを含んでいる。 [0099] The control system 1 in the present disclosure includes a computer system.
コンビュータシステムは、 ハードウエアとしてのプロセッサ及びメモリを主 構成とする。 コンビュータシステムのメモリに記録されたプログラムをプロ セッサが実行することによって、 本開示における制御システム 1 としての機 能が実現される。 プログラムは、 コンビュータシステムのメモリに予め記録 されてもよく、 電気通信回線を通じて提供されてもよく、 コンピュータシス テムで読み取り可能なメモリカード、 光学ディスク、 ハードディスクドライ ブ等の非一時的記録媒体に記録されて提供されてもよい。 コンピュータシス テムのプロセッサは、 半導体集積回路 (丨 C) 又は大規模集積回路 (LS I ) を含む 1ないし複数の電子回路で構成される。 ここでいう 丨 C又は LS I 等の集積回路は、 集積の度合いによって呼び方が異なっており、 システム L S I、 VLS I (Very Large Scale Integration) 、 又は U L S I (Ultra L arge Scale Integration) と呼ばれる集積回路を含む。 さらに、 LS 丨の製 造後にプログラムされる、 F PGA (Field-Programmable Gate Array) 、 又 は LS I 内部の接合関係の再構成若しくは LS I 内部の回路区画の再構成が 〇 2020/175186 22 卩(:171? 2020 /005832 The computer system mainly consists of a processor and memory as hardware. The function as the control system 1 in the present disclosure is realized by the processor executing the program recorded in the memory of the computer system. The program may be pre-recorded in the memory of the computer system, may be provided through a telecommunication line, or may be recorded in a non-transitory recording medium such as a computer system-readable memory card, optical disk, hard disk drive, etc. May be provided. A computer system processor is composed of one or more electronic circuits including a semiconductor integrated circuit (C) or a large scale integrated circuit (LS I). The integrated circuit such as C or LS I referred to here depends on the degree of integration, and is called a system LSI, VLS I (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration). including. In addition, the F-PGA (Field-Programmable Gate Array), which is programmed after the manufacturing of the LS 丨, or the reconfiguration of the junction relation inside the LS I or the reconfiguration of the circuit section inside the LS I can be performed. 〇 2020/175 186 22 卩 (: 171-1? 2020 /005832
可能な論理デ/《イスについても、 プロセッサとして採用することができる。 複数の電子回路は、 1つのチップに集約されていてもよいし、 複数のチップ に分散して設けられていてもよい。 複数のチップは、 1つの装置に集約され ていてもよいし、 複数の装置に分散して設けられていてもよい。 ここでいう コンピュータシステムは、 1以上のプロセッサ及び 1以上のメモリを有する マイクロコントローラを含む。 したがって、 マイクロコントローラについて も、 半導体集積回路又は大規模集積回路を含む 1ないし複数の電子回路で構 成される。 It can also be used as a processor for possible logical devices. The plurality of electronic circuits may be integrated in one chip, or may be distributed and provided in the plurality of chips. The plurality of chips may be integrated in one device, or may be distributed and provided in the plurality of devices. As used herein, a computer system includes a microcontroller that has one or more processors and one or more memories. Therefore, the microcontroller is also composed of one or more electronic circuits including semiconductor integrated circuits or large-scale integrated circuits.
[0100] また、 制御システム 1 における複数の機能が、 1つの筐体内に集約されて いることは制御システム 1 に必須の構成ではなく、 制御システム 1の構成要 素は、 複数の筐体に分散して設けられていてもよい。 さらに、 制御システム 1の少なくとも一部の機能、 例えば、 推定部 1 3、 及び動作制御部 1 4等の —部の機能がクラウド (クラウドコンピューティング) 等によって実現され てもよい。 [0100] Also, it is not an essential configuration for control system 1 that multiple functions of control system 1 are integrated in one chassis, and the components of control system 1 are distributed over multiple chassis. It may be provided. Furthermore, at least a part of the functions of the control system 1, for example, the functions of the estimation unit 13 and the operation control unit 14 may be realized by a cloud (cloud computing) or the like.
[0101 ] また、 上述した例では、 制御システム 1は、 ネッ トワーク 6を介して上位 システム 3と通信可能に構成されているが、 当該構成に限らない。 制御シス テム 1は、 通信線を介して上位システム 3と接続され、 例えば〇八
Figure imgf000024_0001
八「68 1|/\/0「1〇 通信等を行うように構成されていてもよい。 この場合 、 上位システム 3は、 制御システム 1の筐体に設けられ、 ユーザからの操作 を受け付け可能であり、 かつ操作内容等の表示が可能な操作パネルなどを備 えていてもよい。
[0101] Further, in the above-mentioned example, the control system 1 is configured to be communicable with the host system 3 via the network 6, but the configuration is not limited to this. The control system 1 is connected to the host system 3 via a communication line, for example,
Figure imgf000024_0001
Eight "68 1|/\/0" 10 It may be configured to perform communication, etc. In this case, the host system 3 is provided in the housing of the control system 1 and can accept operations from the user. In addition, an operation panel or the like capable of displaying the operation content and the like may be provided.
[0102] また、 上述した例では、 上位システム 3が予測情報を生成しているが、 制 御システム 1が生成するように構成されていてもよい。 [0102] In the example described above, the higher-level system 3 generates the prediction information, but the control system 1 may generate the prediction information.
[0103] また、 上述した例では、 動作制御部 1 4は、 予測情報 (運転計画) と、 推 定部 1 3が推定した効率特性と、 に基づいて、 各電源装置 2 0を制御してい るが、 これに限らない。 例えば、 動作制御部 1 4は、 現在の目標出力電力に 対応する電力指令と、 推定部 1 3が推定した効率特性と、 に基づいて、 各電 源装置 2 0を制御してもよい。 〇 2020/175186 23 卩(:171? 2020 /005832 [0103] Further, in the above-described example, the operation control unit 14 controls each power supply device 20 based on the prediction information (operation plan) and the efficiency characteristics estimated by the estimation unit 13. However, it is not limited to this. For example, the operation control unit 14 may control each power supply device 20 based on the power command corresponding to the current target output power and the efficiency characteristic estimated by the estimation unit 13. 〇 2020/175 186 23 卩 (:171? 2020 /005832
[0104] (まとめ) [0104] (Summary)
第 1態様に係る制御システム ( 1) は、 電力変換部 (2 2) を有する電源 装置 (2 0) を複数備えた電源システム (2) を制御する。 制御システム ( 1) は、 推定部 (1 3) と、 動作制御部 (1 4) と、 を備える。 推定部 (1 3) は、 複数の電源装置 (2 0) のうち 1以上の電源装置 (2 0) の運転期 間における複数の電力変換部 (2 2) それぞれの電力変換効率の特性を推定 する。 動作制御部 (1 4) は、 推定部 (1 3) の推定結果に基づいて、 複数 の電力変換部 (2 2) の動作を制御する。 A control system (1) according to the first aspect controls a power supply system (2) including a plurality of power supply devices (20) having a power conversion section (2 2 ). The control system (1) includes an estimation unit (1 3) and an operation control unit (1 4). The estimation unit (1 3) estimates the characteristics of the power conversion efficiency of each of the plurality of power conversion units (2 2) during the operation period of one or more of the plurality of power supply units (20). To do. The operation control unit (1 4) controls the operation of the plurality of power conversion units (2 2) based on the estimation result of the estimation unit (1 3).
[0105] この態様によれば、 推定部 (1 3) が推定した電力変換効率の特性に基づ いて、 各電力変換部 (2 2) の動作を制御することができるので、 複数の電 力変換部 (2 2) の電力変換効率の向上を図ることができる。 [0105] According to this aspect, the operation of each power conversion unit (2 2) can be controlled based on the characteristics of the power conversion efficiency estimated by the estimation unit (1 3 ), so that a plurality of power sources can be controlled. The power conversion efficiency of the converter (22) can be improved.
[0106] 第 2態様に係る制御システム (1) では、 第 1態様において、 推定部 (1 [0106] In the control system (1) according to the second aspect, in the first aspect, the estimation unit (1
3) は、 複数の電源装置 (2 0) の稼働状態の計測結果に基づいて、 電力変 換効率の特性を推定する。 3) estimates the characteristics of power conversion efficiency based on the measurement results of the operating states of multiple power supply units (20).
[0107] この態様によれば、 複数の電力変換部 (2 2) それぞれの電力変換効率の 特性の推定精度の向上を図ることができる。 According to this aspect, it is possible to improve the accuracy of estimating the characteristics of the power conversion efficiency of each of the plurality of power conversion units (22).
[0108] 第 3態様に係る制御システム (1) では、 第 1又は第 2態様において、 推 定部 (1 3) は、 時間経過又は稼働状態の変化に伴って電力変換効率の特性 を推定する。 [0108] In the control system (1) according to the third aspect, in the first or second aspect, the estimation unit (13) estimates the characteristic of the power conversion efficiency with the passage of time or a change in the operating state. ..
[0109] この態様によれば、 電力変換効率の特定の変化に追従して、 複数の電力変 換部 (2 2) の動作を制御することができる。 According to this aspect, it is possible to control the operation of the plurality of power conversion units (22) by following a specific change in the power conversion efficiency.
[01 10] 第 4態様に係る制御システム (1) では、 第 1〜第 3態様のいずれかにお いて、 動作制御部 (1 4) は、 推定部 (1 3) の推定結果の変化が所定の卜 リガー条件を満たした場合、 変化後の推定部 (1 3) の推定結果に基づいて 、 複数の電力変換部 (2 2) の動作を制御する。 [0110] In the control system (1) according to the fourth aspect, in any one of the first to third aspects, the motion control section (1 4) is configured so that the estimation result of the estimation section (1 3) changes. When a predetermined ligature condition is satisfied, the operation of the plurality of power conversion units (2 2) is controlled based on the estimation result of the changed estimation unit (1 3).
[01 1 1 ] この態様によれば、 動作制御部 (1 4) の処理負荷の軽減を図ることがで きる。 [0111] According to this aspect, it is possible to reduce the processing load of the operation control section (14).
[01 12] 第 5態様に係る制御システム (1) では、 第 1〜第 3態様のいずれかにお \¥02020/175186 24 卩(:17 2020/005832 [0112] The control system (1) according to the fifth aspect provides the control system according to any one of the first to third aspects. \¥02020/175 186 24 (: 17 2020/005832
いて、 動作制御部 (1 4) は、 複数の電力変換部 (2 2) に対して、 運転期 間における所定の単位時間ごとに複数の電力変換部 (2 2) の動作を制御す る。 Then, the operation control unit (14) controls the operation of the plurality of power conversion units (2 2) for each of the plurality of power conversion units (2 2) at every predetermined unit time during the operation period.
[01 13] この態様によれば、 時間に応じて複数の電力変換部 (2 2) の動作内容が 変化するように複数の電力変換部 (2 2) を制御することができる。 According to this aspect, it is possible to control the plurality of power conversion units (2 2) so that the operation contents of the plurality of power conversion units (2 2) change according to time.
[01 14] 第 6態様に係る制御システム (1) では、 第 1〜第 5態様のいずれかにお いて、 動作制御部 (1 4) は、 運転期間における複数の電力変換部 (2 2) の電力変換効率が所定条件を満たすように、 複数の電力変換部 (2 2) の動 作を制御する。 [0114] In the control system (1) according to the sixth aspect, in any one of the first to fifth aspects, the operation control unit (14) includes a plurality of power conversion units (2 2) during an operation period. The operation of multiple power converters (22) is controlled so that the power conversion efficiency of the power converter satisfies the specified conditions.
[01 15] この態様によれば、 運転期間卜ータルでの電力変換効率の向上を図ること ができる。 [0115] According to this aspect, it is possible to improve the power conversion efficiency during the operation period.
[01 16] 第 7態様に係る制御システム (1) では、 第 6態様において、 所定条件は 、 電源システム (2) 全体としての電力変換効率が最大となる条件である。 In the control system (1) according to the seventh aspect, in the sixth aspect, the predetermined condition is that the power conversion efficiency of the power supply system (2) as a whole is maximum.
[01 17] この態様によれば、 電力変換効率の最大化を図ることができる。 [0117] According to this aspect, it is possible to maximize the power conversion efficiency.
[01 18] 第 8態様に係る制御システム (1) では、 第 1〜第 7態様のいずれかにお いて、 動作制御部 (1 4) は、 運転期間における複数の電源装置 (2 0) そ れそれの稼働状態の変動に基づいて、 複数の電力変換部 (2 2) の動作を制 御する。 [0118] In the control system (1) according to the eighth aspect, in any one of the first to seventh aspects, the operation control section (14) includes a plurality of power supply devices (20) during the operation period. The operation of the multiple power converters (22) is controlled based on the fluctuations in the operating status of each power converter.
[01 19] この態様によれば、 電源装置 (2 0) の稼働状態の変動を考慮して、 複数 の電力変換部 (2 2) の動作内容を決定することができる。 According to this aspect, it is possible to determine the operation content of the plurality of power conversion units (2 2) in consideration of the fluctuation of the operating state of the power supply device (20 ).
[0120] 第 9態様に係る制御システム (1) では、 第 1〜第 8態様のいずれかにお いて、 複数の電源装置 (2 0) の各々は、 蓄電池 (2 3) を有する。 [0120] In the control system (1) according to the ninth aspect, in each of the first to eighth aspects, each of the plurality of power supply devices (20) includes a storage battery (23).
[0121 ] この態様によれば、 蓄電池 (2 3) の充電効率及び放電効率の向上を図る ことができる。 [0121] According to this aspect, it is possible to improve the charging efficiency and the discharging efficiency of the storage battery (23).
[0122] 第 1 0態様に係る制御システム (1) では、 第 9態様において、 動作制御 部 (1 4) は、 複数の電源装置 (2 0) のうち少なくとも 1つの電源装置 ( 2 0) において、 蓄電池 (2 3) に貯められた電気エネルギを、 少なくとも 1つの電源装置 (2 0) とは異なる他の電源装置 (2 0) に出力するように 〇 2020/175186 25 卩(:171? 2020 /005832 [0122] In the control system (1) according to the tenth aspect, in the ninth aspect, the operation control section (14) includes at least one power supply device (20) among the plurality of power supply devices (20). , So that the electric energy stored in the storage battery (23) is output to another power supply (20) different from at least one power supply (20). 〇 2020/175 186 25 卩 (: 171-1? 2020 /005832
、 電力変換部 (2 2) の動作を制御する。 , Controls the operation of the power converter (22).
[0123] この態様によれば、 出力電力が低すぎることによる電力変換効率の低下を 抑制することができる。 [0123] According to this aspect, it is possible to suppress a decrease in power conversion efficiency due to the output power being too low.
[0124] 第 1 1態様に係る制御システム ( 1) では、 第 1 0態様において、 動作制 御部 (1 4) は、 複数の電源装置 (2 0) のうち少なくとも 1つの電源装置 (2 0) において、 蓄電池 (2 3) の出力電力の目標値と蓄電池 (2 3) か ら負荷 (4) への出力電力の目標値との差分の電力を蓄電池 (2 3) から他 の電源装置 (2 0) に出力するように、 電力変換部 (2 2) の動作を制御す る。 [0124] In the control system (1) according to the eleventh aspect, in the tenth aspect, the operation control section (14) includes at least one power supply device (20) out of the plurality of power supply devices (20). ), the difference power between the target value of the output power of the storage battery (2 3) and the target value of the output power of the storage battery (2 3) to the load (4) is transferred from the storage battery (2 3) to another power supply ( It controls the operation of the power converter (22) so that it is output to (20).
[0125] この態様によれば、 出力電力が低すぎることによる電力変換効率の低下を 抑制することができる。 [0125] According to this aspect, it is possible to suppress a decrease in power conversion efficiency due to the output power being too low.
[0126] 第 1 2態様に係る制御システム (1) では、 第 1〜第 1 1態様のいずれか において、 動作制御部 (1 4) は、 推定部 (1 3) の推定結果、 及び運転期 間の時間帯に基づいて、 複数の電力変換部 (2 2) の動作を制御する。 [0126] In the control system (1) according to the 12th aspect, in any one of the 1st to 11th aspects, the operation control section (1 4) includes the estimation result of the estimation section (1 3), and the operation period. The operation of the plurality of power conversion units (22) is controlled based on the time period between them.
[0127] この態様によれば、 運転期間の時間帯に応じて、 複数の電力変換部 (2 2 ) の動作内容を決定することができる。 According to this aspect, it is possible to determine the operation content of the plurality of power conversion units (2 2) according to the time zone of the operation period.
[0128] 第 1 3態様に係る電源制御システム (1 0) は、 第 1〜第 1 2態様のいず れかの制御システム ( 1) と、 電源システム (2) と、 を備える。 [0128] A power supply control system (10) according to a 13th aspect includes a control system (1) according to any one of the 1st to 12th aspects and a power supply system (2).
[0129] この態様によれば、 電源システム (2) における複数の電力変換部 (2 2 ) の電力変換効率の向上を図ることができる。 [0129] According to this aspect, it is possible to improve the power conversion efficiency of the plurality of power conversion units (2 2) in the power supply system (2).
[0130] 第 1 4態様に係る制御方法は、 電力変換部 (2 2) を有する電源装置 (2 〇) を複数備えた電源システム (2) を制御する方法である。 制御方法は、 推定処理と、 動作制御処理と、 を有する。 推定処理では、 複数の電源装置 ( 2 0) のうち 1以上の電源装置 (2 0) の運転期間における複数の電力変換 咅6 (2 2) それぞれの電力変換効率の特性を推定する。 動作制御処理では、 推定処理での推定結果に基づいて、 複数の電力変換部 (2 2) の動作を制御 する。 [0130] The control method according to the fourteenth aspect is a method of controlling a power supply system (2) including a plurality of power supply devices (20) having a power conversion section (22). The control method includes an estimation process and an operation control process. In the estimation process, the characteristics of the power conversion efficiency of each of the plurality of power conversion units 6 (2 2) during the operation period of at least one power supply unit (20) among the plurality of power supply units (20) are estimated. In the operation control process, the operations of the multiple power converters (22) are controlled based on the estimation result of the estimation process.
[0131 ] この態様によれば、 推定部 (1 3) が推定した電力変換効率の特性に基づ 〇 2020/175186 26 卩(:171? 2020 /005832 [0131] According to this aspect, based on the characteristic of the power conversion efficiency estimated by the estimation unit (13). 〇 2020/175 186 26 卩 (:171? 2020 /005832
いて、 各電力変換部 (2 2) の動作を制御することができるので、 複数の電 力変換部 (2 2) の電力変換効率の向上を図ることができる。 Moreover, since the operation of each power conversion unit (2 2) can be controlled, the power conversion efficiency of the plurality of power conversion units (2 2) can be improved.
[0132] 第 1 5態様に係るプログラムは、 第 1 4態様の制御方法をコンピュータシ ステムに実行させる。 A program according to the fifteenth aspect causes a computer system to execute the control method according to the fourteenth aspect.
[0133] この態様によれば、 推定部 (1 3) が推定した電力変換効率の特性に基づ いて、 各電力変換部 (2 2) の動作を制御することができるので、 複数の電 力変換部 (2 2) の電力変換効率の向上を図ることができる。 符号の説明 [0133] According to this aspect, the operation of each power conversion unit (2 2) can be controlled based on the characteristics of the power conversion efficiency estimated by the estimation unit (1 3 ), so that it is possible to control a plurality of power sources. The power conversion efficiency of the converter (22) can be improved. Explanation of symbols
[0134] 1 制御システム [0134] 1 Control system
1 0 電源制御システム 1 0 power control system
1 3 推定部 1 3 Estimator
1 4 動作制御部 1 4 Motion control section
2 電源システム 2 power system
2 0 電源装置 20 power supply
2 2 電力変換部 2 2 Power converter
2 3 蓄電池 2 3 Storage battery

Claims

\¥02020/175186 27 卩(:17 2020/005832 請求の範囲 \¥02020/175 186 27 (: 17 2020/005832 Claims
[請求項 1 ] 電力変換部を有する電源装置を複数備えた電源システムを制御する 制御システムであって、 [Claim 1] A control system for controlling a power supply system including a plurality of power supply devices having a power conversion unit,
前記複数の電源装置のうち 1以上の電源装置の運転期間における前 記複数の電力変換部それぞれの電力変換効率の特性を推定する推定部 と、 An estimation unit that estimates the characteristics of the power conversion efficiency of each of the plurality of power conversion units during the operation period of one or more power supply units of the plurality of power supply units,
前記推定部の推定結果に基づいて、 前記複数の電力変換部の動作を 制御する動作制御部と、 を備える、 An operation control unit that controls the operation of the plurality of power conversion units based on the estimation result of the estimation unit;
制御システム。 Control system.
[請求項 2] 前記推定部は、 前記複数の電源装置の稼働状態の計測結果に基づい て、 前記電力変換効率の特性を推定する、 2. The estimation unit estimates the characteristic of the power conversion efficiency based on the measurement results of the operating states of the plurality of power supply devices.
請求項 1 に記載の制御システム。 The control system according to claim 1.
[請求項 3] 前記推定部は、 時間経過又は稼働状態の変化に伴って前記電力変換 効率の特性を推定する、 [Claim 3] The estimation unit estimates the characteristic of the power conversion efficiency with the passage of time or a change in operating state,
請求項 1又は 2に記載の制御システム。 The control system according to claim 1 or 2.
[請求項 4] 前記動作制御部は、 前記推定部の推定結果の変化が所定のトリガー 条件を満たした場合、 変化後の前記推定部の推定結果に基づいて、 前 記複数の電力変換部の動作を制御する、 [Claim 4] When the change in the estimation result of the estimation unit satisfies a predetermined trigger condition, the operation control unit determines, based on the estimation result of the estimation unit after the change, the plurality of power conversion units described above. Control the movement,
請求項 1〜 3のいずれか 1項に記載の制御システム。 The control system according to any one of claims 1 to 3.
[請求項 5] 前記動作制御部は、 前記複数の電力変換部に対して、 前記運転期間 における所定の単位時間ごとに前記複数の電力変換部の動作を制御す る、 5. The operation control unit controls, with respect to the plurality of power conversion units, operations of the plurality of power conversion units at every predetermined unit time in the operation period.
請求項 1〜 3のいずれか 1項に記載の制御システム。 The control system according to any one of claims 1 to 3.
[請求項 6] 前記動作制御部は、 前記運転期間における前記複数の電力変換部の 電力変換効率が所定条件を満たすように、 前記複数の電力変換部の動 作を制御する、 6. The operation control unit controls operations of the plurality of power conversion units so that power conversion efficiencies of the plurality of power conversion units in the operation period satisfy a predetermined condition.
請求項 1〜 5のいずれか 1項に記載の制御システム。 The control system according to any one of claims 1 to 5.
[請求項 7] 前記所定条件は、 前記電源システム全体としての電力変換効率が最 〇 2020/175186 28 卩(:171? 2020 /005832 [Claim 7] The predetermined condition is that the power conversion efficiency of the entire power supply system is the highest. 〇 2020/175 186 28 卩 (:171? 2020 /005832
大となる条件である、 It is a big condition,
請求項 6に記載の制御システム。 The control system according to claim 6.
[請求項 8] 前記動作制御部は、 前記運転期間における前記複数の電源装置それ それの稼働状態の変動に基づいて、 前記複数の電力変換部の動作を制 御する、 8. The operation control unit controls operations of the plurality of power conversion units based on fluctuations in operating states of the plurality of power supply devices and the power supply devices during the operation period.
請求項 1〜 7のいずれか 1項に記載の制御システム。 The control system according to any one of claims 1 to 7.
[請求項 9] 前記複数の電源装置の各々は、 蓄電池を有する、 [Claim 9] Each of the plurality of power supply devices has a storage battery,
請求項 1〜 8のいずれか 1項に記載の制御システム。 The control system according to any one of claims 1 to 8.
[請求項 10] 前記動作制御部は、 前記複数の電源装置のうち少なくとも 1つの電 源装置において、 前記蓄電池に貯められた電気エネルギを、 前記少な くとも 1つの電源装置とは異なる他の電源装置に出力するように、 前 記電力変換部の動作を制御する、 10. The operation control unit, in at least one power supply device among the plurality of power supply devices, uses the electric energy stored in the storage battery as a power source different from that of the at least one power supply device. Control the operation of the power converter to output to the device,
請求項 9に記載の制御システム。 The control system according to claim 9.
[請求項 1 1 ] 前記動作制御部は、 前記少なくとも 1つの電源装置において、 前記 蓄電池の出力電力の目標値と前記蓄電池から負荷への出力電力の目標 値との差分の電力を前記蓄電池から前記他の電源装置に出力するよう に、 前記電力変換部の動作を制御する、 [Claim 11] In the at least one power supply device, the operation control unit supplies, from the storage battery, electric power that is a difference between a target value of output power of the storage battery and a target value of output power from the storage battery to a load. Controlling the operation of the power converter so as to output to another power supply device,
請求項 1 0に記載の制御システム。 The control system according to claim 10.
[請求項 12] 前記動作制御部は、 前記推定部の推定結果、 及び前記運転期間の時 間帯に基づいて、 前記複数の電力変換部の動作を制御する、 12. The operation control unit controls operations of the plurality of power conversion units based on an estimation result of the estimation unit and a time zone of the operation period.
請求項 1〜 1 1のいずれか 1項に記載の制御システム。 The control system according to any one of claims 1 to 11.
[請求項 13] 請求項 1〜 1 2のいずれか 1項に記載の制御システムと、 [Claim 13] The control system according to any one of claims 1 to 12,
前記電源システムと、 を備える、 And a power supply system,
電源制御システム。 Power control system.
[請求項 14] 電力変換部を有する電源装置を複数備えた電源システムを制御する 制御方法であって、 [Claim 14] A control method for controlling a power supply system including a plurality of power supply devices having a power conversion unit, comprising:
前記複数の電源装置のうち 1以上の電源装置の運転期間における前 記複数の電力変換部それぞれの電力変換効率の特性を推定する推定処 〇 2020/175186 29 卩(:171? 2020 /005832 An estimation process for estimating the characteristics of the power conversion efficiency of each of the plurality of power conversion units during the operation period of one or more of the plurality of power supply devices. 〇 2020/175 186 29 卩 (: 171-1? 2020 /005832
理と、 Reason
前記推定処理での推定結果に基づいて、 前記複数の電力変換部の動 作を制御する動作制御処理と、 を有する、 An operation control process for controlling the operation of the plurality of power conversion units based on the estimation result in the estimation process.
制御方法。 Control method.
[請求項 15] 請求項 1 4に記載の制御方法をコンピュータシステムに実行させる ためのプログラム。 [Claim 15] A program for causing a computer system to execute the control method according to claim 14.
PCT/JP2020/005832 2019-02-26 2020-02-14 Control system, power source control system, control method, and program WO2020175186A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-033309 2019-02-26
JP2019033309 2019-02-26

Publications (1)

Publication Number Publication Date
WO2020175186A1 true WO2020175186A1 (en) 2020-09-03

Family

ID=72240215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005832 WO2020175186A1 (en) 2019-02-26 2020-02-14 Control system, power source control system, control method, and program

Country Status (1)

Country Link
WO (1) WO2020175186A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330073A (en) * 2006-06-09 2007-12-20 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power source system
JP2012005335A (en) * 2010-06-21 2012-01-05 Fujitsu Ltd Regulator device
JP2012217299A (en) * 2011-04-01 2012-11-08 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion system
JP2015115968A (en) * 2013-12-09 2015-06-22 株式会社日立製作所 Power storage system, power conditioner, and control method of power storage system
WO2018051600A1 (en) * 2016-09-16 2018-03-22 三菱電機株式会社 Power conversion apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330073A (en) * 2006-06-09 2007-12-20 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power source system
JP2012005335A (en) * 2010-06-21 2012-01-05 Fujitsu Ltd Regulator device
JP2012217299A (en) * 2011-04-01 2012-11-08 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion system
JP2015115968A (en) * 2013-12-09 2015-06-22 株式会社日立製作所 Power storage system, power conditioner, and control method of power storage system
WO2018051600A1 (en) * 2016-09-16 2018-03-22 三菱電機株式会社 Power conversion apparatus

Similar Documents

Publication Publication Date Title
US9246334B2 (en) Alleviating solar energy congestion in the distribution grid via smart metering communications
KR102610662B1 (en) Systems and methods for creating dynamic nanogrids and aggregating electrical power consumers to participate in energy markets
CA2884744C (en) Energy harvesting load control switch
Sanandaji et al. Ramping rate flexibility of residential HVAC loads
US9893526B2 (en) Networked power management and demand response
JP6249895B2 (en) Power control system, method, and power control apparatus
US20150058061A1 (en) Zonal energy management and optimization systems for smart grids applications
JP6332276B2 (en) Electric power supply and demand adjustment device, electric power system, and electric power supply and demand adjustment method
EP2898389B1 (en) Low voltage load control switch
WO2012154451A2 (en) Electricity demand prediction
KR20110008358A (en) Reduction system for simultaneous load factor of electric power
WO2016002346A1 (en) Power control system, and power control device
JP2024518404A (en) Systems and methods for electric vehicle charging power distribution
WO2014075009A2 (en) Personal energy system
JP7165876B2 (en) control system
CN104272548A (en) Device, system, and method for managing power
US20230307918A1 (en) System and method for bi-directional direct current charging in electric vehicle supply equipment
EP2917995A2 (en) Distributed energy source system
WO2020175186A1 (en) Control system, power source control system, control method, and program
JP2021069236A (en) Electric power management system, electric power management device, electric power management method, and program
JP6454929B2 (en) Storage battery control system, storage battery control method, and program
JP7328803B2 (en) Power management system and power management method
Marwan Mitigating Electricity a Price Spike under Pre-Cooling Method.
US20140136004A1 (en) Personal Power Preserver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP