WO2020174972A1 - Photoelectric conversion element and production method for photoelectric conversion element - Google Patents

Photoelectric conversion element and production method for photoelectric conversion element Download PDF

Info

Publication number
WO2020174972A1
WO2020174972A1 PCT/JP2020/002820 JP2020002820W WO2020174972A1 WO 2020174972 A1 WO2020174972 A1 WO 2020174972A1 JP 2020002820 W JP2020002820 W JP 2020002820W WO 2020174972 A1 WO2020174972 A1 WO 2020174972A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photoelectric conversion
transport layer
conversion element
hole transport
Prior art date
Application number
PCT/JP2020/002820
Other languages
French (fr)
Japanese (ja)
Inventor
良太 三島
将志 日野
智巳 目黒
淳志 若宮
ミンアン チョン
Original Assignee
株式会社カネカ
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ, 国立大学法人京都大学 filed Critical 株式会社カネカ
Priority to JP2021501760A priority Critical patent/JP7244031B2/en
Publication of WO2020174972A1 publication Critical patent/WO2020174972A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion element and a method for manufacturing a photoelectric conversion element.
  • perovskite-type solar cells can achieve high conversion efficiency, and many reports have been made in recent years (eg, Patent Document 1 and Non-Patent Document 1).
  • the organic metal for example, a compound represented by the general formula RN H 3 MX 3 (wherein R is an alkyl group, M is a divalent metal ion, and X is a halogen) is used.
  • RN H 3 MX 3 wherein R is an alkyl group, M is a divalent metal ion, and X is a halogen
  • a belovsky type crystal such as CH 3 NH 3 P bX 3 (X: halogen) can be formed at low cost by solution coating such as spin coating. Therefore, perovskite-type solar cells using such perovskite-type crystals are drawing attention as low-cost and high-efficiency next-generation solar cells.
  • a bevelskite solar cell typically has a hole transport layer on one side and an electron transport layer on the other side of the above-described light absorption layer.
  • a material for forming the hole transport layer an organic material such as Spiro-Me TAD is generally used. Since the hole transport layer formed of S p i r ⁇ — M e T A D can absorb light, it is usually arranged on the side opposite to the light incident side with respect to the light absorbing layer. On the other hand, it may be desirable that the light is incident on the light absorption layer from the side where the hole transport layer is arranged.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2014_72327
  • Non-Patent Document 1 G. Hodes, Science, 342, 317-318 (2013). ⁇ 2020/174972 2 (:171? 2020/002820 Summary of invention)
  • an object of the present invention is to provide a belovskite-type photoelectric conversion element in which light is incident on the light absorption layer from the side where the hole transport layer is arranged.
  • a photoelectric conversion element includes a light absorption layer containing a compound having a perovskite structure, an electron transport layer arranged on one side of the light absorption layer, and a hole arranged on the other side of the light absorption layer. And a hole transporting layer containing an organic material, having a thickness of 50 nm or less and an absorption peak wavelength of 400 n or less, and the organic material is: General formula (1):
  • 8 represents a hydrogen atom or an organic group, Represents a substituent comprising an organic group not containing nitrogen same or different, 8 2 represents a substituent the _ or different, Are the same or different and represent a substituent consisting of an organic group containing no nitrogen, 1 is an integer of 0 to 4, 2 is an integer of 0 to 2, and 3 is an integer of 0 to 4.
  • 8 represents a hydrogen atom or an organic group, Are the same or different and represent a substituent consisting of an organic group containing no nitrogen, 5 represents a substituent comprising a containing having no organic group nitrogen same or different, 8 6 Represents a substituent same _ or different, 4 represents an integer of ⁇ _ ⁇ 4, 5 of ⁇ _ ⁇ 3 Represents an integer, and 6 represents an integer from 0 to 3.
  • the light is incident on the light absorption layer from the side on which the hole transport layer is arranged.
  • the absorption edge wavelength of the hole transport layer is 450 n or less.
  • the molecular weight of the organic material is 270 or more and 200 or less.
  • the hole transport layer is substantially free of dopant.
  • the photoelectric conversion element has a transparent electrode arranged on a side of the hole transport layer opposite to a side on which the light absorption layer is arranged.
  • the photoelectric conversion element has a buffer layer arranged between the hole transport layer and the transparent electrode.
  • the photoelectric conversion element has a transparent electrode arranged on a side of the electron transport layer opposite to a side on which the light absorption layer is arranged.
  • the photoelectric conversion element is another photoelectric conversion element. ⁇ 2020/174972 4 ⁇ (:171? 2020 /002820
  • the other photoelectric conversion unit includes a crystalline silicon substrate.
  • a method for manufacturing a photoelectric conversion element includes forming a light absorbing layer containing a compound having a perovskite structure on one side of a substrate, and depositing a vapor deposition material containing an organic material on one side of the substrate. And forming a hole transport layer having a thickness of 50 n or less and an absorption peak wavelength of 400 n or less, wherein the organic material has the following general formula (1):
  • 8 represents a hydrogen atom or an organic group, Are the same or different and represent a substituent consisting of an organic group containing no nitrogen, 5 is the same or different and represents a substituent consisting of an organic group containing no nitrogen, 8 6 is the same or different and represents a substituent, 4 is an integer from 0 to 4, 5 is an integer from 0 to 3. Represents, and 6 represents an integer from 0 to 3.
  • the method for manufacturing a photoelectric conversion element includes forming a transparent electrode on the side of the hole transport layer opposite to the side on which the light absorption layer is arranged.
  • Fig. 1 is a schematic cross-sectional view of a photoelectric conversion element in one embodiment of the present invention.
  • FIG. 2 is a schematic sectional view of a photoelectric conversion element according to another embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a laminated photoelectric conversion element according to an embodiment of the present invention.
  • FIG. 4 is a graph showing measurement results of external quantum efficiency of Example 1 and Comparative Example 1. ⁇ 0 2020/174972 6 ⁇ (: 17 2020 /002820
  • FIG. 5 is a graph showing the measurement results of external quantum efficiency before and after the formation of the antireflection layer.
  • FIG. 1 is a schematic cross-sectional view of a photoelectric conversion element according to an embodiment of the present invention.
  • a photoelectric conversion element typically, a solar cell
  • a photoelectric conversion element 100 is a substrate (transparent substrate) 10, a first electrode layer 21, an electron transport layer 30 and a compound having a perovskite structure ( Hereinafter, a light absorption layer 40 containing a perovskite compound), a hole transport layer 50, and a second electrode layer 22 are provided in this order.
  • the electron transport layer 30 includes a blocking layer 31 and a porous carrier layer 32.
  • the electrode layers 21 and 22 arranged on both sides of the light absorption layer 40 are both transparent electrode layers. Therefore, as shown by the arrow in the figure, light may be incident on the light absorption layer 40 from the first electrode layer 21 (substrate 10) side or from the second electrode layer 22 side. It may be incident, or may be incident from the first electrode layer 21 side and the second electrode layer 22 side.
  • the hole transport layer 50 can suppress optical absorption loss, from the side where the hole transport layer 50 is arranged with respect to the light absorption layer 40 (in the illustrated example, , And from the side of the second electrode layer 22) Even if light is incident, the photoelectric conversion efficiency can be excellent.
  • the photoelectric conversion element 100 may have other layers.
  • the other layer examples include a buffer layer arranged between the hole transport layer 50 and the second electrode layer 22.
  • Another specific example of the other layer is an antireflection layer (antireflection layer) capable of preventing reflection of incident light.
  • the antireflection layer is typically arranged as the outermost layer on the light incident side of the photoelectric conversion element 100. In the illustrated example, it may be arranged on the outside of the substrate 10 and/or the second electrode layer 22 (the side opposite to the side on which the light absorption layer 40 is arranged).
  • the substrate 10 is typically composed of a transparent substrate such as glass or a film capable of transmitting light.
  • a transparent substrate such as glass or a film capable of transmitting light.
  • the glass include non-alkali glass. ⁇ 2020/174972 7 ⁇ (:171? 2020/002820
  • Examples of the film include Mingo film, aramid film, and polyimido film.
  • the transparent electrode layer for example, fluorine-doped tin oxide (Ding ⁇ ), Suzudo - flop indium oxide ( ⁇ Ding ⁇ ), single layer material such as zinc oxide (Z n ⁇ ), or a laminate thereof
  • the thickness of the transparent electrode layer varies depending on its structure, but is typically 10 Is.
  • the transparent electrode layer can be formed by any appropriate film forming method depending on the forming material. For example, it is formed by a spray pyrolysis method or a grasshopper method.
  • the electron transport layer 30 can be formed of any appropriate material.
  • the material for forming the electron transport layer include inorganic materials represented by metal oxides such as titanium oxide, zinc oxide, niobium oxide, zirconium oxide, and aluminum oxide, and fullerene-based materials such as ⁇ 1 ⁇ /1.
  • the material include organic materials such as perylene-based materials. Among these, inorganic materials are preferably used.
  • Donors may be added to the electron transport layer. As a specific example, when titanium oxide is used as the material for forming the electron transport layer, yttrium, europium, terbium, etc. are used as the donor.
  • the electron transport layer 30 includes the blocking layer 31.
  • the blocking layer 31 can function as a seed layer. Specifically, the blocking layer 31 can promote the growth of the layer as a scaffold when forming the light absorption layer 40 (perovskite compound layer), for example.
  • Blocking layer 3 1 is preferably titanium oxide (Ding ⁇ 2), comprising a metal oxide such as zinc oxide (Z n ⁇ ).
  • the blocking layer 3 1 is composed of a compact Ding ⁇ 2. According to such a form, for example, the surface of the first electrode layer 21 can be densely covered.
  • the thickness of the blocking layer 31 is preferably, for example, from the viewpoint of optical and electron injection, More preferably
  • the electron transport layer 30 preferably includes a porous carrier layer 32 in addition to the blocking layer 31.
  • the porous carrier layer 32 is a blocking layer. ⁇ 2020/174972 8 ⁇ (:171? 2020 /002820
  • the porous carrier layer 32 can function as a scaffold for the light absorption layer 40.
  • the porous carrier layer 32 can increase the surface area of the light absorption layer 40 to allow the light absorption layer 40 to absorb more light.
  • the porous carrier layer 32 preferably contains the components contained in the blocking layer 31. According to such a form, the adhesion between the blocking layer 3 1 and the porous carrier layer 3 2 can be improved. As a result, the adhesion between the electron transport layer 30 and the light absorption layer 40 can be improved.
  • the porous support layer 3 2 of the forming material it is preferable to use a metal oxide, among others, it is preferable to use a Ding I ⁇ 2 and eight ⁇ 2 ⁇ 2.
  • the thickness of the porous carrier layer 32 is preferably 50 nm to 3001 ⁇ 111, more preferably With such a range, for example, optical absorption loss can be reduced. Further, the light absorption layer 40 can be formed well.
  • the electron transport layer 30 can be formed by any appropriate method depending on its configuration, forming material, and the like.
  • the forming method include a vacuum evaporation method, a dry method such as a XX method and a sputtering method, and a wet process such as a spin coating method, a spray method and a bar coating method.
  • the photoelectric conversion element 100 is typically manufactured by sequentially laminating each layer on the substrate 10. As shown in FIG. 1, in the configuration in which the electron transport layer 30 is arranged on the substrate 10 side of the light absorption layer 40, the electron transport layer 30 is formed first, and then the light absorption layer 40 is formed. It According to such a stacking order, the porous carrier layer 32 capable of functioning as a scaffold for the light absorption layer 40 can be favorably formed.
  • the electron transport layer The transparency of 30 can be set low.
  • the electron transport layer 30 can be thickened.
  • the light absorption layer 40 contains a berovskite compound.
  • Berobusukai DOO compounds for example, the general formula 1 ⁇ 1 1 to 1 3 1 ⁇ / 1 say yes 3 or ⁇ 1-1 Represented by 2 1 ⁇ / 1 say yes 3. In the ceremony
  • Is an alkyl group preferably an alkyl group having 1 to 5 carbon atoms, ⁇ 2020/174972 9 ⁇ (:171? 2020/002820
  • IV! is a divalent metal ion, and preferably is 3 n.
  • X is a halogen, and specifically, ⁇ B r s ⁇ can be mentioned. All three Xs in the formula may be the same halogen element, or a plurality of halogen elements may be mixed. For example, the spectral sensitivity characteristics can be changed by changing the type and ratio of halogen. In the above formula Instead of 2 , it is also possible to partially use an alkali metal (for example, 0 3, [3 ⁇ 4, [ ⁇ ]).
  • the thickness of the light absorption layer 40 is, for example, For example, from the viewpoint of light absorption efficiency and exciton diffusion length, the thickness of the light absorption layer 40 is preferably
  • the light absorption layer 40 can be formed by the dry process or the wet process described above.
  • the light absorption layer 40 is formed, for example, by applying a coating solution (for example, a solution) containing a material forming a perovskite compound by a spin coating method or the like.
  • a coating solution for example, a solution
  • a solvent such as dimethyl sulfoxide, 1 ⁇ 1, 1 ⁇ 1—dimethylformamide.
  • the light absorption layer 40 can also be formed by combining the dry process and the wet process described above.
  • a thin film of lead iodide by a vacuum deposition method and contacting its surface with a solution of methylammonium iodide in isopropyl alcohol
  • Examples of the method of bringing the solution into contact with the surface of the thin film include a method of applying the solution by spin coating and a method of immersing the thin film in the solution. For example, after ⁇ 2020/174972 10 ⁇ (:171? 2020/002820
  • the immersing method is preferably used from the viewpoint of uniformly contacting the solution, such as when the surface contacting the solution has irregularities.
  • the hole transport layer 50 is composed of a vapor deposition layer containing an organic material.
  • the vapor-deposited layer can be excellent in film forming property. Further, by adopting the vapor deposition layer, a film having a high density can be obtained and the thickness of the hole transport layer 50 can be reduced. As a result, optical absorption loss can be suppressed. In addition, the use of additives such as dopants is suppressed, which can contribute to the improvement of the life of the photoelectric conversion element.
  • the thickness of the hole transport layer 50 is preferably 50 n or less, more preferably 45 nm or less, and further preferably 40 n. It is particularly preferably 35 or less. On the other hand, the thickness of the hole transport layer 50 is preferably 20 n or more, more preferably 15 n or more, further preferably 10 n or more, particularly preferably 5 n 01 or more. With such a range, it is expected that the internal electric field will be sufficiently secured to improve the performance.
  • the absorption peak wavelength of the hole transport layer 50 is preferably 400 n or less. Within such a range, the photoelectric conversion efficiency can be excellent even if light is incident on the light absorption layer 40 from the side where the hole transport layer 50 is arranged.
  • the absorption peak wavelength refers to a wavelength at which the extinction coefficient has a maximum value and the absorption coefficient has a maximum value, and is obtained, for example, by measuring an absorption spectrum with an ultraviolet-visible spectrophotometer.
  • the absorption edge wavelength of the hole transport layer 50 is preferably 450 n or less.
  • the photoelectric conversion efficiency can be excellent.
  • the use of additives such as a dopant can be suppressed, so that optical absorption loss can be suppressed, and such an absorption edge wavelength can be satisfactorily achieved.
  • the absorption edge wavelength means, for example, a wavelength indicating the absorption edge of the absorption spectrum measured by an ultraviolet-visible spectrophotometer.
  • the vapor deposition layer is compared with a coating layer formed by a solution method using the same organic material. ⁇ 2020/174972 11 ⁇ (:171? 2020/002820
  • the compactness can be increased.
  • many pinholes are observed in the coating layer formed by the solution method, whereas formation of pinholes can be suppressed in the vapor deposition layer.
  • the use of the additive such as the dopant can be suppressed in the hole transport layer 50, the formation of the protrusion due to the additive can be suppressed.
  • the proportion of pinholes and protrusions on the surface of the hole transport layer 50 is, for example, 30% or less.
  • the proportion occupied by pinholes and protrusions can be determined by counting foreign matter by observing the surface with a scanning electron microscope (3*1 ⁇ /1), for example.
  • the vapor deposition layer may have excellent film stability. Specifically, the vapor-deposited layer may have a higher glass transition temperature (Cho 9) as compared with a coating layer formed by the solution method using the same organic material.
  • the organic material contained in the hole transport layer 50 is preferably 5.606 V-1.706 V, and more preferably 1.560-6 to 4.906 V.
  • 1-of the organic materials contained in the hole transport layer 50 Is preferably, for example, from the relationship with the adjacent layer, 1.36 V/ ⁇ -I 406 V, and more preferably 1.006 V-1.606 V.
  • it can be measured by atmospheric photoelectron spectroscopy.
  • ⁇ gap is preferably 2. 76 V or more, more preferably 3. 06 V or higher, particularly preferably 3. 1 6 V or more. This is because the absorption edge can be set to the ultraviolet region to suppress optical absorption loss.
  • the band gap of the organic material contained in the hole transport layer 50 is, for example, 4.
  • the voltage is preferably 56 V or less, more preferably 4.06 or less, and particularly preferably 3.56 V or less.
  • the band gap is confirmed by, for example, spectroscopic ellipsometry or spectrophotometer.
  • any suitable organic material can be adopted as long as a vapor deposition layer can be formed.
  • 01 4 represents an integer from 0 to 4
  • 01 5 represents an integer from 0 to 3
  • 6 represents an integer from 0 to 3.
  • the compound represented by This is because the vapor deposition layer can be formed well. Specifically, a very dense vapor deposition film can be formed. In addition, it can contribute to improvement of photoelectric conversion efficiency. In particular, ⁇ can be satisfied satisfactorily. In addition, the band gap can be well satisfied, optical absorption loss can be suppressed, and sensitivity (particularly, sensitivity to light having a short wavelength (for example, light having a wavelength of 420 nm or less)) can be excellent. In addition, it may have a high hole mobility. As a result, it can contribute to the suppression of the use of additives such as dopants.
  • substituents include a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryloxy group and the like. Of these, an unsubstituted alkyl group is preferable.
  • the alkyl group may be linear, branched, or cyclic. It is preferably linear or branched.
  • the carbon number of the alkyl group is, for example, 1 to 20, preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 3 (specifically, methyl group, ethyl group, n-proton, etc. Pill group or isopropyl group).
  • the alkoxy group may be linear, branched, or cyclic. It is preferably linear or branched.
  • the carbon number of the alkoxy group is, for example, 1 to 20, preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 3 (specifically, a methoxy group, an ethoxy group,
  • the aryl group may be a group derived from a monocyclic aromatic ring or a group derived from a polycyclic aromatic ring.
  • the carbon number of the aryl group is, for example, 6 to 22, preferably 6 to 18, more preferably 6 to 14 and particularly preferably 6 to 10 (specifically, a phenyl group, 1 — Naphthyl group, 2-naphthyl group, etc.).
  • the above-mentioned aryloxy group may be a group derived from a monocyclic aromatic ring, or a polycyclic aromatic ring. ⁇ 2020/174972 14 ⁇ (:171? 2020 /002820
  • the carbon number of the aryloxy group is, for example, 6 to 22, preferably 6 to 18, more preferably 6 to 14 and particularly preferably 6 to 10 (specifically, a phenyloxy group, 1-naphthyl Oxy group, 2-naphthyloxy group, etc.).
  • the plurality When there are a plurality of (when 1 is 2 or more), the plurality may be the same or different. When there are two or more (2 is 2 or more), two or more 2 may be the same or different. When there is more than one (when 3 is 2 or more), the plurality of may be the same or different. If there is more than one (O 14 is 2 or more, they may be the same or different. If there are multiple A plurality of may be the same or different. If there is a number (6 is 2 or more), the two or more may be the same or different. Also, May be the same or different from each other.
  • 1 represents the number of substituents and is an integer from 0 to 4.
  • (Only hydrogen atom) is preferable. This is because the hole transport layer 50 is a vapor deposition layer, and thus the hole transport layer (vapor deposition layer) 50 can be formed regardless of solubility in an organic solvent, for example.
  • I an integer from 0 to 2.
  • (Only hydrogen atom) is preferable. This is because the hole transport layer 50 is a vapor deposition layer, and thus the hole transport layer (vapor deposition layer) 50 can be formed regardless of solubility in an organic solvent, for example.
  • I an integer from 0 to 4.
  • (Only hydrogen atom) is preferable. This is because the hole transport layer 50 is a vapor deposition layer, and thus the hole transport layer (vapor deposition layer) 50 can be formed regardless of solubility in an organic solvent, for example.
  • 4 represents the number of substituents 4, it is an integer of ⁇ _ ⁇ 4.
  • (Only hydrogen atom) is preferable. This is because the hole transport layer 50 is a vapor deposition layer, and thus the hole transport layer (vapor deposition layer) 50 can be formed regardless of solubility in an organic solvent, for example. ⁇ 2020/174972 1 5 ⁇ (: 171? 2020 /002820
  • 5 represents the number of the substituents 5 , and is an integer from 0 to 3.
  • (hydrogen atom only) is preferred. This is because the hole transport layer 50 is a vapor deposition layer, and thus the hole transport layer (vapor deposition layer) 50 can be formed regardless of solubility in an organic solvent, for example.
  • the hole transport layer 50 is a vapor deposition layer, and thus the hole transport layer (vapor deposition layer) 50 can be formed regardless of solubility in an organic solvent, for example.
  • eight is preferably an organic group. This is because the vapor deposition layer can be formed well.
  • n 0 or 1
  • n 0 or 1
  • n 0 or 1
  • 111 4 represents an integer from 0 to 4
  • 11 15 represents an integer from 0 to 3
  • 11 16 represents an integer from 0 to 3.
  • the aromatic hydrocarbon group include a monocyclic aromatic hydrocarbon group and a polycyclic aromatic group. And a condensed polycyclic aromatic hydrocarbon group.
  • 8 is a nitrogen-containing group.
  • the molecular weight of the organic material contained in the hole transport layer 50 is preferably 270 or more, more preferably 300 or more, and particularly preferably 400 or more.
  • the molecular weight of the organic material contained in the pore transport layer 50 is preferably 200 or less, more preferably 180 or less, and particularly preferably 150 or less.
  • a vapor deposition layer can be formed well. Specifically, materials with a low molecular weight tend to sublime, making it difficult to control the deposition amount. Materials with high molecular weight have a high sublimation temperature and tend to decompose before vapor deposition. Further, if the sublimation temperature is high, the light absorption layer 40 may be damaged when the hole transport layer 50 is formed.
  • a vapor deposition material containing an organic material is used as a method of forming the hole transport layer 50.
  • a method of vapor deposition by any appropriate vapor deposition method is used.
  • the vapor deposition method include a physical vapor deposition method and a chemical vapor deposition method.
  • the physical vapor deposition method include vacuum vapor deposition method, sputtering, and ion plating.
  • the chemical vapor deposition (CV D) method include a thermal CV D method, a plasma CV D method, and an optical CV D method.
  • the vacuum deposition method is preferably used.
  • the hole transport layer 50 is formed after forming the light absorption layer 40. In this case, for example, from the viewpoint of suppressing damage to the light absorption layer, it is preferable to form the film at a low film formation rate by the vacuum evaporation method.
  • the hole transport layer 50 (vapor deposition material) contains an organic material as a main component.
  • the content of the organic material in the hole transport layer 50 is, for example, 80% by weight or more, preferably 90% by weight or more, more preferably 95% by weight or more, further preferably 99% by weight or more, particularly preferably 99. It is at least 5% by weight, most preferably 100% by weight.
  • the hole transport layer 50 may contain an additive.
  • the additive include metal salts such as lithium and cobalt (for example, bis (trif I u ⁇ romethylsu IT onyl; imide lithium, C oba It (III) tris [bis (trif I uoromethylsu I fonyl) imide]), an acceptor material (eg, tetrafluorotetracyanoquinodimethane (F4 TC NQ)), etc.
  • metal salts such as lithium and cobalt (for example, bis (trif I u ⁇ romethylsu IT onyl; imide lithium, C oba It (III) tris [bis (trif I uoromethylsu I fonyl) imide]
  • an acceptor material eg, tetrafluorotetracyanoquinodimethane (F4 TC NQ)
  • Another specific example of the additive is 4-tert-buthylpyridien.
  • the hole transport layer 50 contains substantially no dopant.
  • the content of the dopant in the hole transport layer (vapor deposition material) is 10% by weight or less. It is more preferably 5% by weight or less, still more preferably 1% by weight or less, particularly preferably 0.5% by weight or less, and most preferably 0% by weight.
  • the performance (conductivity) can be maintained even if the dopant is not substantially contained, and the performance (conductivity) can be maintained even if the dopant is not substantially contained by using the above predetermined organic material. Rate) can be retained. ⁇ 0 2020/174972 19 ⁇ (: 17 2020 /002820
  • Examples of the material for forming the buffer layer (eg, hole injection layer) arranged between the hole transport layer 50 and the second electrode layer 22 include molybdenum oxide (1 ⁇ /1 ⁇ ⁇ 3 )
  • Tungsten oxide ( ⁇ ⁇ / ⁇ 3), nickel oxide (1 ⁇ 1 ⁇ ), copper oxide ( ⁇ Li ⁇ )
  • the thickness of the buffer layer is, for example, Preferably
  • Examples of the method for forming the buffer layer include a vacuum vapor deposition method.
  • the material for forming the anti-reflection layer for example, 1 ⁇ / 1 9 2, 1_ ⁇ , 3 I 0,, include the low refractive index material such as eight I 2 ⁇ 3.
  • the thickness of the antireflection layer is, for example, 5 Is. Any appropriate method can be adopted as a method of forming the antireflection layer. Specifically, when using a IV! 9 2 as the material, if example embodiment, an electron beam deposition method is employed.
  • Fig. 2 is a schematic cross-sectional view of a photoelectric conversion element in another embodiment of the present invention.
  • the photoelectric conversion element 200 includes a transparent substrate 10, a transparent electrode layer 20, a hole transport layer 50, a light absorbing layer 40 containing a perovskite compound, an electron transport layer 30 and a metal electrode layer 60. In this order. In the illustrated example, as shown by the arrow in the figure, light is incident on the light absorption layer 40 from the side where the transparent electrode layer 20 (transparent substrate 10) is arranged.
  • the transparent substrate 10, the transparent electrode layer 20, the electron transporting layer 30, the light absorbing layer 40 containing the belovskite compound, and the hole transporting layer 50 are as described above.
  • Examples of the material for forming the metal electrode layer 60 include metals such as gold, silver, and aluminum.
  • the thickness of the metal electrode layer 60 is typically 100 nm to 50 nm.
  • the metal electrode layer 60 may be formed by, for example, a grasshopper method, an ion plating method, or the like. ⁇ 2020/174972 20 ⁇ (:171? 2020 /002820
  • a known technique such as the 0 method or resistance heating may be used, and the sputtering method is preferably used from the viewpoint of productivity.
  • the photoelectric conversion element 200 is typically manufactured by sequentially laminating each layer on the substrate 10. As shown in FIG. 2, in the form in which the hole transport layer 50 is arranged on the substrate 10 side of the light absorption layer 40, the light absorption layer 40 is formed after the hole transport layer 50 is formed. Can be done. According to such an order, the hole transport layer 50 can be formed without considering the influence (damage or the like) on the light absorption layer 40.
  • FIG. 3 is a schematic cross-sectional view of a stacked photoelectric conversion element according to an embodiment of the present invention.
  • the photoelectric conversion element 300 has a first photoelectric conversion unit (top cell) 3 01 and a second photoelectric conversion unit (bottom cell) 30 2 in this order.
  • first photoelectric conversion unit (top cell) 3 01 and a second photoelectric conversion unit (bottom cell) 30 2 in this order.
  • bottom cell In the illustrated example, as shown by the arrow in the figure, light is incident from the side where the first photoelectric conversion unit 301 is arranged.
  • a perovskite type photoelectric conversion unit having a light absorbing layer containing the above perovskite compound is adopted as one of the photoelectric conversion units constituting the laminated photoelectric conversion element.
  • a perovskite type photoelectric conversion unit is adopted as the first photoelectric conversion unit 301.
  • the first photoelectric conversion unit 301 is arranged on one side of the light absorption layer 40 containing the perovskite compound and the light absorption layer 40, and on the other side of the electron transport layer 30 and the light absorption layer 40.
  • the hole transport layer 50 is formed.
  • the hole transport layer (vapor deposition layer) 50 is disposed on the light incident side of the light absorption layer 40.
  • the electron transport layer 30 includes a blocking layer 31 and a porous carrier layer 32. The details of each layer are as described above.
  • any appropriate photoelectric conversion unit may be adopted as the photoelectric conversion unit (the second photoelectric conversion unit 302 in the illustrated example) combined with the above-mentioned perovskite photoelectric conversion unit. ..
  • a photoelectric conversion unit having a bandgap narrower than that of the perovskite type photoelectric conversion unit is used.
  • a photoelectric conversion unit having a band gap narrower than that of a belovskite type photoelectric conversion unit is, for example, a silicon-based photoelectric conversion unit. ⁇ 2020/174972 21 ⁇ (:171? 2020/002820
  • a conversion unit (typically a crystalline silicon-based photoelectric conversion unit) can be mentioned.
  • a crystalline silicon photoelectric conversion unit is typically composed of a crystalline silicon substrate, a first conductive layer arranged on one side of the crystalline silicon substrate, and a second conductive layer arranged on the other side of the crystalline silicon substrate. Have and.
  • the conductivity type of the crystalline silicon substrate may be n-type or n-type.
  • the conductivity type of the first conductive layer and the conductivity type of the second conductive layer are different. Specifically, one is a mold and the other is a door.
  • the first conductive layer 71 disposed on the light incident side of the substrate (crystalline silicon substrate) 70 of the second photoelectric conversion unit 302 is the first photoelectric conversion unit 300 Of the second photoelectric conversion unit 302, which has the same conductivity type as the conductive layer (hole transport layer 50) arranged on the light incident side of the second photoelectric conversion unit 302.
  • the conductive layer 72 has the same conductivity type as the conductive layer (electron transport layer 30) arranged on the back side of the first photoelectric conversion unit 30 1.
  • the first conductive layer 71 is a type and the second conductive layer 72 is an n type. Therefore, the first photoelectric conversion unit 3001 and the second photoelectric conversion unit 3002 are connected in series, and both have rectifying properties in the same direction.
  • the crystalline silicon-based photoelectric conversion unit include a diffusion-type silicon photoelectric conversion unit and a heterojunction silicon photoelectric conversion unit.
  • the diffusion type silicon photoelectric conversion unit is obtained, for example, by diffusing a doping impurity such as boron or phosphorus on the surface of a crystalline silicon substrate to form a conductive layer (conductive type silicon-based semiconductor layer).
  • the heterojunction silicon photoelectric conversion unit is obtained, for example, by forming a non-single crystal silicon thin film such as amorphous silicon or microcrystalline silicon on a single crystal silicon substrate to form a conductive layer.
  • a heterojunction is formed between the single crystal silicon substrate and the non-single crystal silicon thin film.
  • the heterojunction silicon photoelectric conversion unit preferably has an intrinsic silicon based thin film between the single crystal silicon substrate and the conductivity type silicon based thin film. Having an intrinsic silicon thin film enables effective surface passivation while suppressing diffusion of impurities into the single crystal silicon substrate. ⁇ 0 2020/174972 22 ⁇ (: 17 2020 /002820
  • the second photoelectric conversion unit (crystalline silicon photoelectric conversion unit) 302 for example, the above heterojunction silicon photoelectric conversion unit is adopted.
  • the substrate 70 for example, an n-type single crystal silicon substrate is used. Although not shown, the substrate 70 may have a textured structure formed on its surface from the viewpoint of light confinement or the like.
  • a type silicon-based thin film (first conductive layer 71) is formed via an intrinsic silicon-based thin film (not shown).
  • a gate type silicon thin film is formed via an intrinsic silicon thin film (not shown).
  • the intrinsic silicon-based thin film is formed by forming an intrinsic amorphous silicon thin film on the surface of the substrate 70 by any appropriate method from the viewpoint of more effectively performing the above-mentioned surface passivation. It is preferably formed.
  • the thickness of the intrinsic silicon thin film is preferably Is.
  • Examples of the material for forming the conductive type silicon-based thin film include amorphous silicon, microcrystalline silicon (a material containing amorphous silicon and crystalline silicon), Amorphous silicon alloy, microcrystalline silicon alloy, etc. are used.
  • Examples of silicon alloys include silicon oxide, silicon carbide, silicon nitride, and silicon germanium.
  • the conductive silicon-based thin film is preferably an amorphous silicon thin film.
  • the film thickness of the conductive type silicon-based thin film (conductive layers 71, 72) is preferably 3 n 0 1 to 300 0!.
  • a second photoelectric conversion unit 300 2 is prepared in advance, and the second photoelectric conversion unit 300 2 is provided with the first photoelectric conversion unit 300. It is produced by sequentially forming the respective layers constituting 1. In one embodiment, between the first photoelectric conversion unit 30 1 (top cell) and the second photoelectric conversion unit 30 2 (bottom cell), for example, both units are connected. For the purpose of electrical connection and adjustment of the amount of incident light for current matching, the intermediate layer (Fig. ⁇ 2020/174972 23 ⁇ (:171? 2020/002820
  • the bottom layer of the top cell (the electron transport layer 30 in the illustrated example) and/or the top layer of the bottom cell (the first conductive layer 71 in the illustrated example) has one of the functions of the intermediate layer. You may have some or all.
  • the wavelength range of light absorbed by the light absorbing layer 40 containing the perovskite compound is typically determined by the band gap of the perovskite compound.
  • the band gap of the light absorption layer 40 containing the perovskite compound is 1.556 to 1.756 V from the viewpoint of current matching (with the top cell and the bottom cell) with another photoelectric conversion unit to be combined. It is preferably, and more preferably 1.66 to 1.656 V.
  • a transparent electrode layer is typically formed on the light incident surface of the first photoelectric conversion unit 301 arranged on the light incident side (upper side in the figure). From the viewpoint of improving the carrier extraction efficiency, for example, a patterned metal electrode may be further provided on the surface of the transparent electrode layer.
  • a back electrode is provided on the side (back side) opposite to the light incident side of the second photoelectric conversion unit 302.
  • a transparent electrode layer is formed on the back surface of the second photoelectric conversion unit 302, and a back surface metal electrode is provided on this transparent electrode layer to form a back surface electrode.
  • Examples of materials for forming the transparent electrode layer include oxides such as zinc oxide (Z n ⁇ ), tin oxide (S n ⁇ 2 ), indium oxide ( ⁇ 2 ⁇ 3 ), and indium tin oxide ( ⁇ ).
  • a composite oxide such as that described above is preferably used. It may also be a material doped with W or Ding ⁇ to ⁇ n 2 ⁇ 3 and S N_ ⁇ 2. Since such a transparent conductive oxide has transparency and low resistance, it can efficiently collect photoexcited carriers.
  • the method for forming the transparent electrode layer is preferably the Svatta method or the 1 ⁇ /100 method.
  • fine metal wires such as 9 nanowires, and? ⁇ 0 ⁇ _ 3
  • Organic materials such as S can also be used.
  • the photoelectric conversion element When a metal oxide such as To is used as the transparent electrode layer on the light incident side, the photoelectric conversion element preferably has an antireflection layer on the outermost surface thereof. By having the antireflection layer on the outermost surface, it is possible to reduce the difference in refractive index at the air interface, reduce the reflected light, and increase the amount of light taken into the photoelectric conversion element.
  • the back surface metal electrode may be patterned or planar.
  • the back electrode it is desirable to use a material having a high reflectance for long-wavelength light, high conductivity, and high chemical stability. Examples of materials that satisfy such characteristics include silver, copper, and aluminum.
  • the back electrode is formed by, for example, a printing method, various physical vapor deposition methods, a plating method, or the like.
  • the stacked photoelectric conversion element is modularized.
  • a photoelectric conversion element is sealed between a substrate and a back sheet via a sealing material to form a module.
  • a plurality of units may be connected in series or in parallel via the interconnector and then sealed.
  • a substrate made by Pi Ikington, T EC 7) having a transparent conductive film (F TO) formed on a glass substrate was prepared.
  • This substrate was ultrasonically cleaned with ultrapure water, ethanol, and acetone for 10 minutes each, and then dried. Then on the board, The surface was treated with UV ozone for 30 minutes.
  • the transparent conductive film side of the substrate (surface processing side), was formed a compact Bok T i ⁇ 2 film having a thickness of 3 1 nm. Specifically, by spraying the solution of titanium diisopropoxide bis(acetylacetonate)/ethanol of 0.3/4.0 vol% on the substrate surface heated to 500 ° C by the spray pyrolysis method. The film was formed.
  • T i ⁇ 2 film It was formed a T i ⁇ 2 film. Specifically, titania best (product name: 18 NR—T, manufactured by T ransparent T itania Paste D yesol) and ethanol were mixed in a volume ratio of 0.7:0.3 and ultrasonic wave was added. Treatment was performed to obtain a dispersion. The dispersion thus obtained is dropped onto a substrate using a micropipette, spin-coated at a speed of 5000 rpm for 30 seconds, and then the substrate is baked in an electric furnace at 500°C for 30 minutes. in was formed mesoporous T i ⁇ 2 film.
  • H 3 NH 3 P b I a (MAP b I 3) layer was formed with 1 86 nm to 267 nm thickness.
  • 1.1 M0MA P bl 3 /DMS ⁇ solution was dropped onto the substrate using a micropipette, and spin coating was performed for 70 seconds at a speed of 1 000 rpm. .. Then, while rotating at a speed of 5000 rpm for 20 seconds, 0.5 m of toluene is dropped using a dropper, and then the substrate is baked at a substrate temperature of 100 ° C for 10 minutes. As a result, three black MA P b layers were formed.
  • An organic material film consisting of was formed by a vacuum deposition method. Specifically, the alumina crucible containing the compound (I) is heated by heating a tungsten wire to sublimate the compound ( ⁇ ), and the organic material film (absorption peak wavelength:
  • the organic material film side of the substrate the thickness 1 thousand! 1 ⁇ / 1_Rei_0 three layers of more formed in the vacuum deposition method, and then, the thickness 8 0 I layer was formed by sputtering method.
  • a photoelectric conversion element solar cell
  • a solar cell was produced in the same manner as in Example 1 except that the organic material film was formed using.
  • a solar cell was produced in the same manner as in Example 1 except that the organic material film was formed using. ⁇ 0 2020/174972 28 ⁇ (: 17 2020/002820
  • a solar cell was produced in the same manner as in Example 1 except that the organic material film was formed using.
  • S pir o-Me TAD (HOMO: -5.1 e V) represented by the following method is used. Furthermore, instead of the vapor deposition method, the organic material film is formed by the solution method (solution coating).
  • a solar cell was produced in the same manner as in Example 1 except for the above. Specifically, chlorobenzene was added to S piro— OMe TAD, bis (trifluor ome thylsulfonyl) imide lithium, Co balt (
  • a solution was prepared by mixing tris [bis (trif i uor ome thylsu I fony I) imide] and 4 — tert- buthy I pyridien, and the resulting solution was spin-coated on the substrate to give MA P b 3 layers. It was applied on the side and heated at 70 ° C for 30 minutes to form an organic material film (absorption peak wavelength: 390 nm, absorption edge wavelength: 580 nm).
  • An antireflection layer was formed on the surface of the solar cell obtained in Example 1. In concrete terms, it was formed with 1 ⁇ / 1 9 2 film having a thickness of 1 1 5 n by electron beam evaporation method. The external quantum efficiency was measured before and after the formation of the antireflection layer. Figure 5 shows the measurement results.
  • Example 2 Was used to form an organic material film, and instead of forming IV! ⁇ 3 layers and ⁇ layers on the organic material film side of the substrate, a thickness of 100 A solar cell was prepared in the same manner as in Example 1 except that the eight layers were formed by resistance heating evaporation.
  • An organic material film with a thickness of 30 n was formed, and Except that by interposing a 1 ⁇ / 1_Rei_rei three layers of thickness 30 N_rei_1 in the same manner as in Example 5-1 between, to produce a solar cell.
  • a solar cell was produced in the same manner as in Example 5_2 except for the above.
  • the solar cell characteristics (short-circuit current density (“30)), open-circuit voltage (V ⁇ , fill factor (), and conversion efficiency (day ⁇ I)) of the solar cells obtained in each example were measured. The measurement was performed with light incident from the substrate side, and the evaluation results are shown in Table 2.
  • Example 5_4 In Examples 5_1 to 5-4.
  • the organic material film contains no dopant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a perovskite-type photoelectric conversion element in which light enters a light absorption layer from a side on which a hole transport layer is disposed. This photoelectric conversion element has a light absorption layer containing a compound having a perovskite-type structure, an electron transport layer disposed on one side of the light absorption layer, and a hole transport layer provided on the other side of the light absorption layer, wherein the hole transport layer is a vapor deposition layer that contains an organic material, has a thickness of 50 nm or less, and has an absorption peak wavelength of 400 nm or less.

Description

明 細 書 Specification
発明の名称 : 光電変換素子および光電変換素子の製造方法 技術分野 Title of invention: Photoelectric conversion element and method for manufacturing photoelectric conversion element
[0001] 本発明は、 光電変換素子および光電変換素子の製造方法に関する。 The present invention relates to a photoelectric conversion element and a method for manufacturing a photoelectric conversion element.
背景技術 Background technology
[0002] 有機金属のベロブスカイ ト型結晶を光吸収層として利用した太陽電池 (ぺ ロブスカイ ト型太陽電池) は、 高変換効率を実現可能であり、 近年、 多数の 報告がなされている (例えば、 特許文献 1および非特許文献 1) 。 有機金属 としては、 例えば、 一般式 RN H3MX3 (式中、 Rはアルキル基であり、 M は 2価の金属イオンであり、 Xはハロゲンである) で表される化合物が用い られている。 中でも、 CH3N H3P bX3 (X :ハロゲン) 等のベロブスカイ 卜型結晶は、 例えば、 スピンコート法等の溶液塗布により低コストで形成さ れ得る。 よって、 このようなぺロブスカイ ト型結晶を用いたぺロブスカイ ト 型太陽電池は、 低コストかつ高効率の次世代太陽電池として注目されている [0002] Solar cells using perovskite-type crystals of organic metal as a light absorption layer (perovskite-type solar cells) can achieve high conversion efficiency, and many reports have been made in recent years (eg, Patent Document 1 and Non-Patent Document 1). As the organic metal, for example, a compound represented by the general formula RN H 3 MX 3 (wherein R is an alkyl group, M is a divalent metal ion, and X is a halogen) is used. There is. Above all, a belovsky type crystal such as CH 3 NH 3 P bX 3 (X: halogen) can be formed at low cost by solution coating such as spin coating. Therefore, perovskite-type solar cells using such perovskite-type crystals are drawing attention as low-cost and high-efficiency next-generation solar cells.
[0003] ベロブスカイ ト型太陽電池は、 代表的には、 上述のような光吸収層の片側 に正孔輸送層を、 もう片側に電子輸送層を有している。 正孔輸送層の形成材 料としては、 一般的に、 S p i r o— Me TADなどの有機材料が用いられ ている。 S p i r〇— M e T A Dで形成される正孔輸送層は光を吸収し得る ことから、 通常、 光吸収層に対して光入射側とは反対側に配置される。 その —方で、 光吸収層に対して正孔輸送層が配置される側から光を入射させる形 態が望まれる場合がある。 [0003] A bevelskite solar cell typically has a hole transport layer on one side and an electron transport layer on the other side of the above-described light absorption layer. As a material for forming the hole transport layer, an organic material such as Spiro-Me TAD is generally used. Since the hole transport layer formed of S p i r 〇 — M e T A D can absorb light, it is usually arranged on the side opposite to the light incident side with respect to the light absorbing layer. On the other hand, it may be desirable that the light is incident on the light absorption layer from the side where the hole transport layer is arranged.
先行技術文献 Prior art documents
特許文献 Patent literature
[0004] 特許文献 1 :特開 201 4 _ 72327号公報 [0004] Patent Document 1: Japanese Unexamined Patent Publication No. 2014_72327
非特許文献 Non-patent literature
[0005] 非特許文献 1 : G. Hodes, Science, 342, 317-318 (2013) 〇 2020/174972 2 卩(:171? 2020 /002820 発明の概要 [0005] Non-Patent Document 1: G. Hodes, Science, 342, 317-318 (2013). 〇 2020/174972 2 (:171? 2020/002820 Summary of invention)
発明が解決しようとする課題 Problems to be Solved by the Invention
[0006] 上記に鑑み、 本発明は、 光吸収層に対して正孔輸送層が配置される側から 光を入射させるベロブスカイ ト型光電変換素子の提供を目的の 1つとする。 課題を解決するための手段 In view of the above, an object of the present invention is to provide a belovskite-type photoelectric conversion element in which light is incident on the light absorption layer from the side where the hole transport layer is arranged. Means for solving the problem
[0007] 本発明の 1つの局面によれば、 光電変換素子が提供される。 この光電変換 素子は、 ぺロブスカイ ト型構造を有する化合物を含む光吸収層と、 前記光吸 収層の片側に配置される電子輸送層と、 前記光吸収層のもう片側に配置され る正孔輸送層と、 を有し、 前記正孔輸送層は、 有機材料を含み、 厚みが 5 0 门 以下で、 吸収ピーク波長が 4 0 0 n 以下の蒸着層であり、 前記有機材 料は、 下記一般式 ( 1) : According to one aspect of the present invention, a photoelectric conversion element is provided. This photoelectric conversion device includes a light absorption layer containing a compound having a perovskite structure, an electron transport layer arranged on one side of the light absorption layer, and a hole arranged on the other side of the light absorption layer. And a hole transporting layer containing an organic material, having a thickness of 50 nm or less and an absorption peak wavelength of 400 n or less, and the organic material is: General formula (1):
[化 1 ] [Chemical 1]
Figure imgf000004_0001
Figure imgf000004_0001
(式中、 八は水素原子または有機基を表し、
Figure imgf000004_0002
は同一または異なって窒素を 含有しない有機基からなる置換基を表し、 8 2は同 _または異なって置換基を 表し、
Figure imgf000004_0003
は同一または異なって窒素を含有しない有機基からなる置換基を表 し、 1は〇〜 4の整数を表し、 2は〇〜 2の整数を表し、 3は〇〜 4 の整数を表す。 )
(In the formula, 8 represents a hydrogen atom or an organic group,
Figure imgf000004_0002
Represents a substituent comprising an organic group not containing nitrogen same or different, 8 2 represents a substituent the _ or different,
Figure imgf000004_0003
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen, 1 is an integer of 0 to 4, 2 is an integer of 0 to 2, and 3 is an integer of 0 to 4. )
で表される化合物、 および/または、 一般式 (2) : 〇 2020/174972 卩(:171? 2020 /002820 And/or the general formula (2): 〇 2020/174972 卩(: 171-1? 2020/002820
[化 2] [Chemical 2]
Figure imgf000005_0001
Figure imgf000005_0001
(式中、 八は水素原子または有機基を表し、
Figure imgf000005_0002
は同一または異なって窒素を 含有しない有機基からなる置換基を表し、
Figure imgf000005_0003
5は同一または異なって窒素を含 有しない有機基からなる置換基を表し、 8 6は同 _または異なって置換基を表 し、 4は〇〜 4の整数を表し、 5は〇〜 3の整数を表し、 6は〇〜 3 の整数を表す。 )
(In the formula, 8 represents a hydrogen atom or an organic group,
Figure imgf000005_0002
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen,
Figure imgf000005_0003
5 represents a substituent comprising a containing having no organic group nitrogen same or different, 8 6 Represents a substituent same _ or different, 4 represents an integer of 〇_~ 4, 5 of 〇_~ 3 Represents an integer, and 6 represents an integer from 0 to 3. )
で表される化合物であり、 前記光吸収層に対して前記正孔輸送層が配置され る側から光を入射させる。 The light is incident on the light absorption layer from the side on which the hole transport layer is arranged.
[0008] 1つの実施形態においては、 上記正孔輸送層の吸収端波長は 4 5 0 n 以 下である。 [0008] In one embodiment, the absorption edge wavelength of the hole transport layer is 450 n or less.
1つの実施形態においては、 上記有機材料の分子量は 2 7 0以上 2 0 0 0 以下である。 In one embodiment, the molecular weight of the organic material is 270 or more and 200 or less.
1つの実施形態においては、 上記正孔輸送層はドーパントを実質的に含有 しない。 In one embodiment, the hole transport layer is substantially free of dopant.
1つの実施形態においては、 上記光電変換素子は、 上記正孔輸送層の上記 光吸収層が配置される側とは反対側に配置される透明電極を有する。 In one embodiment, the photoelectric conversion element has a transparent electrode arranged on a side of the hole transport layer opposite to a side on which the light absorption layer is arranged.
1つの実施形態においては、 上記光電変換素子は、 上記正孔輸送層と上記 透明電極との間に配置されるバッファ層を有する。 In one embodiment, the photoelectric conversion element has a buffer layer arranged between the hole transport layer and the transparent electrode.
1つの実施形態においては、 上記光電変換素子は、 上記電子輸送層の上記 光吸収層が配置される側とは反対側に配置される透明電極を有する。 In one embodiment, the photoelectric conversion element has a transparent electrode arranged on a side of the electron transport layer opposite to a side on which the light absorption layer is arranged.
1つの実施形態においては、 上記光電変換素子は、 光電変換する別の光電 〇 2020/174972 4 卩(:171? 2020 /002820 In one embodiment, the photoelectric conversion element is another photoelectric conversion element. 〇 2020/174972 4 卩 (:171? 2020 /002820
変換ユニッ トをさらに有する。 It further has a conversion unit.
1つの実施形態においては、 上記別の光電変換ユニッ トは結晶シリコン基 板を含む。 In one embodiment, the other photoelectric conversion unit includes a crystalline silicon substrate.
[0009] 本発明の別の局面によれば、 光電変換素子の製造方法が提供される。 この 光電変換素子の製造方法は、 基板の片側に、 ぺロブスカイ ト型構造を有する 化合物を含む光吸収層を形成すること、 および、 前記基板の片側に、 有機材 料を含む蒸着材料を蒸着させて、 厚み 5 0 n 以下で吸収ピーク波長が 4 0 0 n 以下の正孔輸送層を形成すること、 を含み、 前記有機材料は、 下記一 般式 ( 1) : [0009] According to another aspect of the present invention, a method for manufacturing a photoelectric conversion element is provided. This method for manufacturing a photoelectric conversion element includes forming a light absorbing layer containing a compound having a perovskite structure on one side of a substrate, and depositing a vapor deposition material containing an organic material on one side of the substrate. And forming a hole transport layer having a thickness of 50 n or less and an absorption peak wavelength of 400 n or less, wherein the organic material has the following general formula (1):
[化 3] [Chemical 3]
Figure imgf000006_0001
Figure imgf000006_0001
(式中、 八は水素原子または有機基を表し、
Figure imgf000006_0002
は同一または異なって窒素を 含有しない有機基からなる置換基を表し、
Figure imgf000006_0003
2は同一または異なって置換基を 表し、
Figure imgf000006_0004
は同一または異なって窒素を含有しない有機基からなる置換基を表 し、 01 1は〇〜 4の整数を表し、 01 2は〇〜 2の整数を表し、 01 3は〇〜 4 の整数を表す。 )
(In the formula, 8 represents a hydrogen atom or an organic group,
Figure imgf000006_0002
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen,
Figure imgf000006_0003
2 are the same or different and represent a substituent,
Figure imgf000006_0004
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen, 01 1 represents an integer from 0 to 4, 01 2 represents an integer from 0 to 2, 01 3 represents an integer from 0 to 4. Represent )
で表される化合物、 および/または、 一般式 (2) : 〇 2020/174972 卩(:171? 2020 /002820 And/or the general formula (2): 〇 2020/174972 卩(: 171-1? 2020/002820
[化 4] [Chemical 4]
Figure imgf000007_0001
Figure imgf000007_0001
(式中、 八は水素原子または有機基を表し、
Figure imgf000007_0002
は同一または異なって窒素を 含有しない有機基からなる置換基を表し、
Figure imgf000007_0003
5は同一または異なって窒素を含 有しない有機基からなる置換基を表し、 8 6は同一または異なって置換基を表 し、 4は〇〜 4の整数を表し、 5は〇〜 3の整数を表し、 6は〇〜 3 の整数を表す。 )
(In the formula, 8 represents a hydrogen atom or an organic group,
Figure imgf000007_0002
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen,
Figure imgf000007_0003
5 is the same or different and represents a substituent consisting of an organic group containing no nitrogen, 8 6 is the same or different and represents a substituent, 4 is an integer from 0 to 4, 5 is an integer from 0 to 3. Represents, and 6 represents an integer from 0 to 3. )
で表される化合物である。 Is a compound represented by.
[0010] 1つの実施形態においては、 上記光電変換素子の製造方法は、 上記正孔輸 送層の上記光吸収層が配置される側とは反対側に、 透明電極を形成すること を含む。 [0010] In one embodiment, the method for manufacturing a photoelectric conversion element includes forming a transparent electrode on the side of the hole transport layer opposite to the side on which the light absorption layer is arranged.
発明の効果 Effect of the invention
[001 1] 本発明によれば、 光吸収層に対して正孔輸送層が配置される側から光を入 射させるぺロブスカイ ト型光電変換素子を提供することができる。 [001 1] According to the present invention, it is possible to provide a perovskite photoelectric conversion element in which light is emitted from the side where the hole transport layer is arranged with respect to the light absorption layer.
図面の簡単な説明 Brief description of the drawings
[0012] [図 1]本発明の 1つの実施形態における光電変換素子の概略断面図である。 [0012] [Fig. 1] Fig. 1 is a schematic cross-sectional view of a photoelectric conversion element in one embodiment of the present invention.
[図 2]本発明の別の実施形態における光電変換素子の概略断面図である。 FIG. 2 is a schematic sectional view of a photoelectric conversion element according to another embodiment of the present invention.
[図 3]本発明の 1つの実施形態における積層型の光電変換素子の概略断面図で ある。 FIG. 3 is a schematic cross-sectional view of a laminated photoelectric conversion element according to an embodiment of the present invention.
[図 4]実施例 1および比較例 1の外部量子効率の測定結果を示すグラフである \¥0 2020/174972 6 卩(:17 2020 /002820 FIG. 4 is a graph showing measurement results of external quantum efficiency of Example 1 and Comparative Example 1. \¥0 2020/174972 6 卩 (: 17 2020 /002820
[図 5]反射防止層形成前後における外部量子効率の測定結果を示すグラフであ る。 FIG. 5 is a graph showing the measurement results of external quantum efficiency before and after the formation of the antireflection layer.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、 本発明の実施形態について説明するが、 本発明はこれらの実施形態 には限定されない。 [0013] Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
[0014] 図 1は、 本発明の 1つの実施形態における光電変換素子の概略断面図であ る。 光電変換素子 (代表的には、 太陽電池) 1 0 0は、 基板 (透明基板) 1 0、 第 1の電極層 2 1、 電子輸送層 3 0、 ぺロブスカイ ト型構造を有する化 合物 (以下、 ぺロブスカイ ト化合物と称する) を含む光吸収層 4 0、 正孔輸 送層 5 0および第 2の電極層 2 2をこの順に有する。 電子輸送層 3 0は、 ブ ロッキング層 3 1および多孔質担体層 3 2を含む。 [0014] FIG. 1 is a schematic cross-sectional view of a photoelectric conversion element according to an embodiment of the present invention. A photoelectric conversion element (typically, a solar cell) 100 is a substrate (transparent substrate) 10, a first electrode layer 21, an electron transport layer 30 and a compound having a perovskite structure ( Hereinafter, a light absorption layer 40 containing a perovskite compound), a hole transport layer 50, and a second electrode layer 22 are provided in this order. The electron transport layer 30 includes a blocking layer 31 and a porous carrier layer 32.
[0015] 光吸収層 4 0の両側に配置された電極層 2 1 , 2 2はいずれも透明電極層 とされている。 したがって、 図中の矢印で示すように、 光吸収層 4 0に対し 、 光を第 1の電極層 2 1 (基板 1 0) 側から入射させてもよく、 第 2の電極 層 2 2側から入射させてもよく、 第 1の電極層 2 1側および第 2の電極層 2 2側から入射させてもよい。 後述するように、 正孔輸送層 5 0は光学的な吸 収ロスが抑制され得ることから、 光吸収層 4 0に対して正孔輸送層 5 0が配 置される側から (図示例では、 第 2の電極層 2 2側から) 光を入射させても 、 光電変換効率に優れ得る。 [0015] The electrode layers 21 and 22 arranged on both sides of the light absorption layer 40 are both transparent electrode layers. Therefore, as shown by the arrow in the figure, light may be incident on the light absorption layer 40 from the first electrode layer 21 (substrate 10) side or from the second electrode layer 22 side. It may be incident, or may be incident from the first electrode layer 21 side and the second electrode layer 22 side. As will be described later, since the hole transport layer 50 can suppress optical absorption loss, from the side where the hole transport layer 50 is arranged with respect to the light absorption layer 40 (in the illustrated example, , And from the side of the second electrode layer 22) Even if light is incident, the photoelectric conversion efficiency can be excellent.
[0016] 図示しないが、 光電変換素子 1 0 0は、 その他の層を有していてもよい。 [0016] Although not shown, the photoelectric conversion element 100 may have other layers.
その他の層の具体例としては、 正孔輸送層 5 0と第 2の電極層 2 2との間に 配置されるバッファ層が挙げられる。 その他の層の別の具体例としては、 入 射光の反射を防止し得る反射防止層 (アンチリフレクト層) が挙げられる。 反射防止層は、 代表的には、 光電変換素子 1 〇〇の光入射側の最外層として 配置される。 図示例では、 基板 1 〇および/または第 2の電極層 2 2の外側 (光吸収層 4 0が配置されている側と反対側) に配置され得る。 Specific examples of the other layer include a buffer layer arranged between the hole transport layer 50 and the second electrode layer 22. Another specific example of the other layer is an antireflection layer (antireflection layer) capable of preventing reflection of incident light. The antireflection layer is typically arranged as the outermost layer on the light incident side of the photoelectric conversion element 100. In the illustrated example, it may be arranged on the outside of the substrate 10 and/or the second electrode layer 22 (the side opposite to the side on which the light absorption layer 40 is arranged).
[0017] 基板 1 0としては、 代表的には、 ガラス、 フィルム等の光を透過可能な透 明基板で構成される。 ガラスとしては、 例えば、 無アルカリガラスが挙げら 〇 2020/174972 7 卩(:171? 2020 /002820 [0017] The substrate 10 is typically composed of a transparent substrate such as glass or a film capable of transmitting light. Examples of the glass include non-alkali glass. 〇 2020/174972 7 卩(:171? 2020/002820
れる。 フイルムとしては、 例えば、 巳丁フイルム、 アラミ ドフイルム、 ポ リイミ ドフイルム等が挙げられる。 Be done. Examples of the film include Mingo film, aramid film, and polyimido film.
[0018] 上記透明電極層としては、 例えば、 フッ素ドープ酸化錫 ( 丁〇) 、 錫ド —プ酸化インジウム (丨 丁〇) 、 酸化亜鉛 (Z n〇) 等の単層体、 あるいは これらを積層して構成される積層体が挙げられる。 透明電極層の厚みは、 そ の構成により異なるが、 代表的には 1 0门
Figure imgf000009_0001
である。 透明電 極層は、 その形成材料に応じて、 任意の適切な製膜方法に形成され得る。 例 えば、 スプレー熱分解法、 スバッタ法により形成される。
The [0018] The transparent electrode layer, for example, fluorine-doped tin oxide (Ding 〇), Suzudo - flop indium oxide (丨Ding 〇), single layer material such as zinc oxide (Z n 〇), or a laminate thereof A laminated body constituted by The thickness of the transparent electrode layer varies depending on its structure, but is typically 10
Figure imgf000009_0001
Is. The transparent electrode layer can be formed by any appropriate film forming method depending on the forming material. For example, it is formed by a spray pyrolysis method or a grasshopper method.
[0019] 電子輸送層 3 0は、 任意の適切な材料で形成され得る。 電子輸送層の形成 材料としては、 例えば、 酸化チタン、 酸化亜鉛、 酸化ニオブ、 酸化ジルコニ ウム、 酸化アルミニウム等の金属酸化物に代表される無機材料、 〇巳1\/1を はじめとするフラーレン系材料や、 ペリレン系材料等の有機材料が挙げられ る。 これらの中でも、 無機材料が好ましく用いられる。 電子輸送層には、 ド ナーが添加されていてもよい。 具体例としては、 電子輸送層の形成材料とし て酸化チタンを採用する場合、 ドナーとして、 イッ トリウム、 ユウロピウム 、 テルビウム等が用いられる。 [0019] The electron transport layer 30 can be formed of any appropriate material. Examples of the material for forming the electron transport layer include inorganic materials represented by metal oxides such as titanium oxide, zinc oxide, niobium oxide, zirconium oxide, and aluminum oxide, and fullerene-based materials such as 〇巳1\/1. Examples of the material include organic materials such as perylene-based materials. Among these, inorganic materials are preferably used. Donors may be added to the electron transport layer. As a specific example, when titanium oxide is used as the material for forming the electron transport layer, yttrium, europium, terbium, etc. are used as the donor.
[0020] 図 1 に示す例では、 電子輸送層 3 0は、 ブロッキング層 3 1 を含む。 ブロ ッキング層 3 1は、 シード層として機能し得る。 具体的には、 ブロッキング 層 3 1は、 例えば、 光吸収層 4 0 (ぺロブスカイ ト化合物層) を形成する際 、 足場として層の成長を促進し得る。 ブロッキング層 3 1は、 好ましくは、 酸化チタン (丁 丨 〇2) 、 酸化亜鉛 (Z n〇) 等の金属酸化物を含む。 好まし くは、 ブロッキング層 3 1は、 コンパクト丁 丨 〇2で構成される。 このような 形態によれば、 例えば、 第 1の電極層 2 1表面を緻密に覆うことができる。 ブロッキング層 3 1の厚みは、 例えば、 光学的および電子注入の観点から、 好ましくは
Figure imgf000009_0003
さらに好ましくは
Figure imgf000009_0002
In the example shown in FIG. 1, the electron transport layer 30 includes the blocking layer 31. The blocking layer 31 can function as a seed layer. Specifically, the blocking layer 31 can promote the growth of the layer as a scaffold when forming the light absorption layer 40 (perovskite compound layer), for example. Blocking layer 3 1 is preferably titanium oxide (Ding丨〇 2), comprising a metal oxide such as zinc oxide (Z n 〇). Preferably rather the blocking layer 3 1 is composed of a compact Ding丨〇 2. According to such a form, for example, the surface of the first electrode layer 21 can be densely covered. The thickness of the blocking layer 31 is preferably, for example, from the viewpoint of optical and electron injection,
Figure imgf000009_0003
More preferably
Figure imgf000009_0002
111である。 It is 111.
[0021 ] 図 1 に示すように、 電子輸送層 3 0は、 ブロッキング層 3 1 に加えて多孔 質担体層 3 2を含むことが好ましい。 多孔質担体層 3 2は、 ブロッキング層 〇 2020/174972 8 卩(:171? 2020 /002820 As shown in FIG. 1, the electron transport layer 30 preferably includes a porous carrier layer 32 in addition to the blocking layer 31. The porous carrier layer 32 is a blocking layer. 〇 2020/174972 8 卩 (:171? 2020 /002820
3 1 よりも光吸収層 4 0が配置される側に配置される。 多孔質担体層 3 2は 、 光吸収層 4 0の足場として機能し得る。 また、 多孔質担体層 3 2は、 光吸 収層 4 0の表面積を広く して、 光吸収層 4 0により多く光を吸収させ得る。 It is arranged on the side where the light absorption layer 40 is arranged with respect to 31. The porous carrier layer 32 can function as a scaffold for the light absorption layer 40. In addition, the porous carrier layer 32 can increase the surface area of the light absorption layer 40 to allow the light absorption layer 40 to absorb more light.
[0022] 多孔質担体層 3 2は、 ブロッキング層 3 1 に含まれる成分を含むことが好 ましい。 このような形態によれば、 ブロッキング層 3 1 と多孔質担体層 3 2 との密着性を向上させ得る。 その結果、 電子輸送層 3 0と光吸収層 4 0との 密着性の向上にも寄与し得る。 具体的には、 多孔質担体層 3 2の形成材料と しては、 金属酸化物を用いることが好ましく、 中でも、 丁 I 〇 2や八 丨 22を 用いることが好ましい。 多孔質担体層 3 2の厚みは、 好ましくは 5 0 n m ~ 3 0 0 1^ 111、 さらに好ましくは
Figure imgf000010_0001
このような 範囲とすることで、 例えば、 光学的な吸収ロスを低減し得る。 また、 光吸収 層 4 0が良好に形成され得る。
The porous carrier layer 32 preferably contains the components contained in the blocking layer 31. According to such a form, the adhesion between the blocking layer 3 1 and the porous carrier layer 3 2 can be improved. As a result, the adhesion between the electron transport layer 30 and the light absorption layer 40 can be improved. Specifically, as the porous support layer 3 2 of the forming material, it is preferable to use a metal oxide, among others, it is preferable to use a Ding I 〇 2 and eight丨22. The thickness of the porous carrier layer 32 is preferably 50 nm to 3001^111, more preferably
Figure imgf000010_0001
With such a range, for example, optical absorption loss can be reduced. Further, the light absorption layer 40 can be formed well.
[0023] 電子輸送層 3 0は、 その構成や形成材料等に応じて、 任意の適切な方法に より形成され得る。 形成方法としては、 例えば、 真空蒸着法、 〇 〇法、 ス パッタ法等のドライプロセス、 スピンコート法、 スプレー法、 バーコート法 等のウエッ トプロセスが挙げられる。 [0023] The electron transport layer 30 can be formed by any appropriate method depending on its configuration, forming material, and the like. Examples of the forming method include a vacuum evaporation method, a dry method such as a XX method and a sputtering method, and a wet process such as a spin coating method, a spray method and a bar coating method.
[0024] 光電変換素子 1 0 0は、 代表的には、 基板 1 0に、 各層を順次積層するこ とにより作製される。 図 1 に示すように、 光吸収層 4 0よりも電子輸送層 3 0が基板 1 〇側に配置される形態では、 電子輸送層 3 0を形成してから光吸 収層 4 0が形成される。 このような積層順序によれば、 光吸収層 4 0の足場 として機能し得る多孔質担体層 3 2を良好に形成することができる。 [0024] The photoelectric conversion element 100 is typically manufactured by sequentially laminating each layer on the substrate 10. As shown in FIG. 1, in the configuration in which the electron transport layer 30 is arranged on the substrate 10 side of the light absorption layer 40, the electron transport layer 30 is formed first, and then the light absorption layer 40 is formed. It According to such a stacking order, the porous carrier layer 32 capable of functioning as a scaffold for the light absorption layer 40 can be favorably formed.
[0025] 例えば、 光を光吸収層 4 0に対して正孔輸送層 5 0が配置される側から ( 図示例では、 第 2の電極層 2 2側から) のみ入射させる場合、 電子輸送層 3 0の透光性は低く設定され得る。 この場合、 電子輸送層 3 0は、 厚膜化する ことも可能である。 [0025] For example, when light is incident only on the light absorption layer 40 from the side on which the hole transport layer 50 is arranged (in the illustrated example, from the second electrode layer 22 side), the electron transport layer The transparency of 30 can be set low. In this case, the electron transport layer 30 can be thickened.
[0026] 光吸収層 4 0は、 ベロブスカイ ト化合物を含む。 ベロブスカイ ト化合物は 、 例えば、 一般式 1\1 1~1 3 1\/1乂3または〇 1~1
Figure imgf000010_0002
2 1\/1乂3で表される。 式中
[0026] The light absorption layer 40 contains a berovskite compound. Berobusukai DOO compounds, for example, the general formula 1 \ 1 1 to 1 3 1 \ / 1 say yes 3 or 〇 1-1
Figure imgf000010_0002
Represented by 2 1 \ / 1 say yes 3. In the ceremony
、 はアルキル基であり、 好ましくは炭素数 1〜 5のアルキル基であり、 さ 〇 2020/174972 9 卩(:171? 2020 /002820 , Is an alkyl group, preferably an alkyl group having 1 to 5 carbon atoms, 〇 2020/174972 9 卩(:171? 2020/002820
らに好ましくはメチル基である。 式中、 IV!は 2価の金属イオンであり、 好ま しくは 匕、 3 nである。 式中、 Xはハロゲンであり、 具体的には、 、 〇 B r s 丨が挙げられる。 式中の 3個の Xは、 全て同一のハロゲン元素で あってもよく、 複数のハロゲン元素が混在していてもよい。 ハロゲンの種類 や比率を変更することにより、 例えば、 分光感度特性を変化させることがで きる。 なお、 上記式中の
Figure imgf000011_0001
2のかわりに、 部分的にアル カリ金属 (例えば、 〇 3、 [¾匕、 [<) を用いることも可能である。
Further, it is preferably a methyl group. In the formula, IV! is a divalent metal ion, and preferably is 3 n. In the formula, X is a halogen, and specifically, ◯ B r s丨 can be mentioned. All three Xs in the formula may be the same halogen element, or a plurality of halogen elements may be mixed. For example, the spectral sensitivity characteristics can be changed by changing the type and ratio of halogen. In the above formula
Figure imgf000011_0001
Instead of 2 , it is also possible to partially use an alkali metal (for example, 0 3, [¾, [<]).
[0027] 光吸収層 4 0の厚みは、 例えば
Figure imgf000011_0002
例えば、 光の吸収効率と励起子拡散長の観点から、 光吸収層 4 0の厚みは、 好ましく
Figure imgf000011_0003
[0027] The thickness of the light absorption layer 40 is, for example,
Figure imgf000011_0002
For example, from the viewpoint of light absorption efficiency and exciton diffusion length, the thickness of the light absorption layer 40 is preferably
Figure imgf000011_0003
[0028] 光吸収層 4 0の X線回折法による 6 「〇 3 1< 丨 1 6 (丨 丨 丨) の回折 ピーク (2 0 = 1 4 ° ) の半値幅は、 代表的には〇. 1 6〜〇. 2 5である [0028] The half-value width of the diffraction peak (2 0 = 1 4 °) of 6 "○ 3 1 <丨 16 (丨丨丨)" of the light absorption layer 40 by X-ray diffraction method is typically ○. 1 6 to 0 .25
[0029] 光吸収層 4 0は、 上述のドライプロセスやウエッ トプロセスにより形成さ れ得る。 光吸収層 4 0は、 例えば、 ぺロブスカイ ト化合物を形成する材料を 含有する塗布液 (例えば、 溶液) を、 スピンコート法等により塗布すること により形成される。 具体的には、 ぺロブスカイ ト化合物として〇1~1 3 1\1 1~1 3 ? 匕 丨 3を採用する場合、 ジメチルスルホキシド、 1\1 , 1\1—ジメチルホルムアミ ド等の溶媒に、 ヨウ化鉛とヨウ化メチルアンモニウムを混合して得られる溶 液をスピンコート法にて塗布し、 得られた塗膜を加熱することにより、 〇1~1 3
Figure imgf000011_0004
塗膜の表面に貧溶媒を接触さ せることにより、 結晶性を向上させることもできる。
The light absorption layer 40 can be formed by the dry process or the wet process described above. The light absorption layer 40 is formed, for example, by applying a coating solution (for example, a solution) containing a material forming a perovskite compound by a spin coating method or the like. Specifically, when 〇 1 ~ 1 3 1\1 1 ~ 1 3 ?匕丨3 is adopted as a perovskite compound, it can be used in a solvent such as dimethyl sulfoxide, 1\1, 1\1—dimethylformamide. by a solvent solution obtained by mixing lead iodide and methyl iodide ammonium was applied by a spin coating method, heating the resulting coating film, Rei_1 ~ 1 3
Figure imgf000011_0004
The crystallinity can be improved by bringing a poor solvent into contact with the surface of the coating film.
[0030] 上述のドライプロセスとウエッ トプロセスとの組み合わせにより、 光吸収 層 4 0を形成することもできる。 例えば、 真空蒸着法によりヨウ化鉛の薄膜 を形成し、 その表面にヨウ化メチルアンモニウムのイソプロピルアルコール 溶液を接触させることにより、
Figure imgf000011_0005
薄膜の 表面に溶液を接触させる方法としては、 例えば、 スピンコート等により溶液 を塗布する方法や、 溶液中に薄膜を浸潰する方法が挙げられる。 例えば、 後 〇 2020/174972 10 卩(:171? 2020 /002820
The light absorption layer 40 can also be formed by combining the dry process and the wet process described above. For example, by forming a thin film of lead iodide by a vacuum deposition method and contacting its surface with a solution of methylammonium iodide in isopropyl alcohol,
Figure imgf000011_0005
Examples of the method of bringing the solution into contact with the surface of the thin film include a method of applying the solution by spin coating and a method of immersing the thin film in the solution. For example, after 〇 2020/174972 10 卩(:171? 2020/002820
述するシリコン基板のテクスチャ構造 (凹凸構造) により、 溶液を接触させ る面に凹凸を有する場合等、 均一に溶液に接触させる観点から、 浸潰法が好 ましく用いられる。 Due to the texture structure (irregular structure) of the silicon substrate described above, the immersing method is preferably used from the viewpoint of uniformly contacting the solution, such as when the surface contacting the solution has irregularities.
[0031 ] 正孔輸送層 5 0は、 有機材料を含む蒸着層で構成される。 蒸着層は製膜性 に優れ得る。 また、 蒸着層を採用することにより、 緻密度の高い膜が得られ て正孔輸送層 5 0の厚みを薄くすることができる。 その結果、 光学的な吸収 ロスが抑制され得る。 加えて、 ドーパント等の添加剤の使用は抑制され、 光 電変換素子の寿命の向上に寄与し得る。 The hole transport layer 50 is composed of a vapor deposition layer containing an organic material. The vapor-deposited layer can be excellent in film forming property. Further, by adopting the vapor deposition layer, a film having a high density can be obtained and the thickness of the hole transport layer 50 can be reduced. As a result, optical absorption loss can be suppressed. In addition, the use of additives such as dopants is suppressed, which can contribute to the improvement of the life of the photoelectric conversion element.
[0032] 正孔輸送層 5 0の厚みは、 好ましくは 5 0 n 以下、 より好ましくは 4 5 门 以下、 さらに好ましくは 4 0 n
Figure imgf000012_0001
以下、 特に好ましくは 3 5门 以下で ある。 一方、 正孔輸送層 5 0の厚みは、 好ましくは 2 0 n 以上、 より好ま しくは 1 5 n 以上、 さらに好ましくは 1 0 n 以上、 特に好ましくは 5 n 01以上である。 このような範囲によれば、 内部電界を十分確保して性能向上 が期待される。
The thickness of the hole transport layer 50 is preferably 50 n or less, more preferably 45 nm or less, and further preferably 40 n.
Figure imgf000012_0001
It is particularly preferably 35 or less. On the other hand, the thickness of the hole transport layer 50 is preferably 20 n or more, more preferably 15 n or more, further preferably 10 n or more, particularly preferably 5 n 01 or more. With such a range, it is expected that the internal electric field will be sufficiently secured to improve the performance.
[0033] 正孔輸送層 5 0の吸収ピーク波長は、 4 0 0 n 以下であることが好まし い。 このような範囲であれば、 例えば、 光吸収層 4 0に対して正孔輸送層 5 0が配置される側から光を入射させても、 光電変換効率に優れ得る。 吸収ピ —ク波長とは、 吸光係数の極大値を示し、 吸光係数の最大値を示す波長をい い、 例えば、 紫外可視分光光度計により吸収スペクトルを測定することによ り求められる。 The absorption peak wavelength of the hole transport layer 50 is preferably 400 n or less. Within such a range, the photoelectric conversion efficiency can be excellent even if light is incident on the light absorption layer 40 from the side where the hole transport layer 50 is arranged. The absorption peak wavelength refers to a wavelength at which the extinction coefficient has a maximum value and the absorption coefficient has a maximum value, and is obtained, for example, by measuring an absorption spectrum with an ultraviolet-visible spectrophotometer.
[0034] 正孔輸送層 5 0の吸収端波長は、 4 5 0 n 以下であることが好ましい。 The absorption edge wavelength of the hole transport layer 50 is preferably 450 n or less.
このような範囲であれば、 例えば、 光吸収層 4 0に対して正孔輸送層 5 0が 配置される側から光を入射させても、 光電変換効率に優れ得る。 上述のよう に、 正孔輸送層 5 0はドーパント等の添加剤の使用が抑制され得るため、 光 学的な吸収ロスが抑制され、 このような吸収端波長が良好に達成され得る。 吸収端波長とは、 例えば、 紫外可視分光光度計により測定される吸収スぺク トルの吸収端を示す波長をいう。 Within such a range, for example, even if light is incident on the light absorption layer 40 from the side where the hole transport layer 50 is arranged, the photoelectric conversion efficiency can be excellent. As described above, in the hole transport layer 50, the use of additives such as a dopant can be suppressed, so that optical absorption loss can be suppressed, and such an absorption edge wavelength can be satisfactorily achieved. The absorption edge wavelength means, for example, a wavelength indicating the absorption edge of the absorption spectrum measured by an ultraviolet-visible spectrophotometer.
[0035] 蒸着層は、 同じ有機材料を用いて溶液法により形成された塗布層と比較し 〇 2020/174972 11 卩(:171? 2020 /002820 [0035] The vapor deposition layer is compared with a coating layer formed by a solution method using the same organic material. 〇 2020/174972 11 卩(:171? 2020/002820
て、 緻密度が高くなり得る。 例えば、 溶液法により形成された塗布層ではピ ンホールが多く観察されるのに対し、 蒸着層ではピンホールの形成が抑制さ れ得る。 また、 上述のように、 正孔輸送層 50はドーパント等の添加剤の使 用が抑制され得るため、 添加剤による突起の形成が抑制され得る。 正孔輸送 層 50表面において、 ピンホールおよび突起が占める割合は、 例えば、 30 %以下である。 ピンホールおよび突起が占める割合は、 例えば、 走査型電子 顕微鏡 (3巳1\/1) による表面観察により異物をカウントすることにより求め ることができる。 As a result, the compactness can be increased. For example, many pinholes are observed in the coating layer formed by the solution method, whereas formation of pinholes can be suppressed in the vapor deposition layer. Further, as described above, since the use of the additive such as the dopant can be suppressed in the hole transport layer 50, the formation of the protrusion due to the additive can be suppressed. The proportion of pinholes and protrusions on the surface of the hole transport layer 50 is, for example, 30% or less. The proportion occupied by pinholes and protrusions can be determined by counting foreign matter by observing the surface with a scanning electron microscope (3*1\/1), for example.
[0036] 蒸着層は膜安定性に優れ得る。 具体的には、 蒸着層は、 同じ有機材料を用 いて溶液法により形成された塗布層と比較して、 ガラス転移温度 (丁 9) が 高くなり得る。 The vapor deposition layer may have excellent film stability. Specifically, the vapor-deposited layer may have a higher glass transition temperature (Cho 9) as compared with a coating layer formed by the solution method using the same organic material.
[0037] 正孔輸送層 50に含まれる有機材料の
Figure imgf000013_0001
は、 例えば、 隣接する層と の関係から、 一5. 606 V 一 4. 706 Vであることが好ましく、 さら に好ましくは一 5. 5〇 6 〜一4. 906 Vである。 正孔輸送層 50に含 まれる有機材料の 1-
Figure imgf000013_0002
は、 例えば、 隣接する層との関係から、 一3. 6 〇 6 \/〜— I 406 Vであることが好ましく、 さらに好ましくは一 3. 0 06 V〜一 1. 606 Vである。 なお、
Figure imgf000013_0003
例えば、 大気下光電子 分光法により測定することができる。
[0037] Of the organic material contained in the hole transport layer 50,
Figure imgf000013_0001
For example, in view of the relationship with the adjacent layer, it is preferably 5.606 V-1.706 V, and more preferably 1.560-6 to 4.906 V. 1-of the organic materials contained in the hole transport layer 50
Figure imgf000013_0002
Is preferably, for example, from the relationship with the adjacent layer, 1.36 V/~-I 406 V, and more preferably 1.006 V-1.606 V. In addition,
Figure imgf000013_0003
For example, it can be measured by atmospheric photoelectron spectroscopy.
[0038] 正孔輸送層 50に含まれる有機材料のバンドギャップ
Figure imgf000013_0004
[0038] Band gap of the organic material contained in the hole transport layer 50
Figure imgf000013_0004
〇ギャップ) は、 好ましくは 2. 76 V以上、 さらに好ましくは 3. 06 V 以上、 特に好ましくは 3. 1 6 V以上である。 吸収端を紫外領域とさせて、 光学的な吸収ロスが抑制され得るからである。 一方、 正孔輸送層 50に含ま れる有機材料のバンドギャップは、 例えば、 隣接する層との関係から、 4.〇 gap) is preferably 2. 76 V or more, more preferably 3. 06 V or higher, particularly preferably 3. 1 6 V or more. This is because the absorption edge can be set to the ultraviolet region to suppress optical absorption loss. On the other hand, the band gap of the organic material contained in the hole transport layer 50 is, for example, 4.
56 V以下であることが好ましく、 さらに好ましくは 4. 〇 6 以下、 特に 好ましくは 3. 56 V以下である。 なお、 バンドギャップは、 例えば、 分光 エリプソメ トリーや分光光度計によつて確認される。 The voltage is preferably 56 V or less, more preferably 4.06 or less, and particularly preferably 3.56 V or less. The band gap is confirmed by, for example, spectroscopic ellipsometry or spectrophotometer.
[0039] 正孔輸送層 50に含まれる有機材料としては、 蒸着層を形成し得る限り、 任意の適切な有機材料が採用され得る。 正孔輸送層 50に含まれる有機材料 20/174972 12 2020 /002820 As the organic material contained in the hole transport layer 50, any suitable organic material can be adopted as long as a vapor deposition layer can be formed. Organic material contained in the hole transport layer 50 20/174972 12 2020 /002820
としては、 好ましくは、 一般式 ( 1) Is preferably represented by the general formula (1)
[化 5] [Chemical 5]
Figure imgf000014_0001
Figure imgf000014_0001
(式中、 八は水素原子または有機基を表し、
Figure imgf000014_0002
は同一または異なって窒素を 含有しない有機基からなる置換基を表し、
Figure imgf000014_0003
2は同一または異なって置換基を 表し、
Figure imgf000014_0004
は同一または異なって窒素を含有しない有機基からなる置換基を表 し、 1は〇〜 4の整数を表し、 2は〇〜 2の整数を表し、 3は〇〜 4 の整数を表す。 )
(In the formula, 8 represents a hydrogen atom or an organic group,
Figure imgf000014_0002
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen,
Figure imgf000014_0003
2 are the same or different and represent a substituent,
Figure imgf000014_0004
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen, 1 is an integer of 0 to 4, 2 is an integer of 0 to 2, and 3 is an integer of 0 to 4. )
で表される化合物、 および/または、 一般式 (2) : And/or the general formula (2):
[化 6] [Chemical 6]
Figure imgf000014_0005
Figure imgf000014_0005
(式中、 八は水素原子または有機基を表し、
Figure imgf000014_0006
は同一または異なって窒素を 含有しない有機基からなる置換基を表し、
Figure imgf000014_0007
(In the formula, 8 represents a hydrogen atom or an organic group,
Figure imgf000014_0006
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen,
Figure imgf000014_0007
有しない有機基からなる置換基を表し、 8 6は同一または異なって置換基を表 〇 2020/174972 13 卩(:171? 2020 /002820 Represents a substituent having an organic group which does not have, and 8 6 represents the same or different substituents. 〇 2020/174972 13 卩(:171? 2020/002820
し、 01 4は〇〜 4の整数を表し、 01 5は〇〜 3の整数を表し、 6は〇〜 3 の整数を表す。 ) However, 01 4 represents an integer from 0 to 4, 01 5 represents an integer from 0 to 3, and 6 represents an integer from 0 to 3. )
で表される化合物が用いられる。 蒸着層が良好に形成され得るからである。 具体的には、 極めて緻密な蒸着膜が形成され得る。 また、 光電変換効率の向 上に寄与し得るからである。 具体的には、
Figure imgf000015_0001
〇を良 好に満足し得る。 また、 上記バンドギャップを良好に満足し得、 光学的な吸 収ロスが抑制されて感度 (特に、 短波長の光 (例えば、 波長 4 2 0 n m以下 の光) に対する感度) に優れ得る。 さらに、 高い正孔移動度を有し得る。 そ の結果、 ドーパント等の添加剤の使用の抑制に寄与し得る。
The compound represented by This is because the vapor deposition layer can be formed well. Specifically, a very dense vapor deposition film can be formed. In addition, it can contribute to improvement of photoelectric conversion efficiency. In particular,
Figure imgf000015_0001
◯ can be satisfied satisfactorily. In addition, the band gap can be well satisfied, optical absorption loss can be suppressed, and sensitivity (particularly, sensitivity to light having a short wavelength (for example, light having a wavelength of 420 nm or less)) can be excellent. In addition, it may have a high hole mobility. As a result, it can contribute to the suppression of the use of additives such as dopants.
[0040] 上記一般式 (1) および (2) において、
Figure imgf000015_0002
は置換基を表す。 置換 基の具体例としては、 置換または無置換のアルキル基、 置換または無置換の アルコキシ基、 置換または無置換のアリール基、 置換または無置換のアリー ルオキシ基等が挙げられる。 中でも、 無置換のアルキル基が好ましい。
[0040] In the above general formulas (1) and (2),
Figure imgf000015_0002
Represents a substituent. Specific examples of the substituent include a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryloxy group and the like. Of these, an unsubstituted alkyl group is preferable.
[0041 ] 上記アルキル基は、 直鎖状であってもよく、 分枝状であってもよく、 環状 であってもよい。 好ましくは、 直鎖状または分枝状である。 アルキル基の炭 素数は、 例えば 1〜 2 0であり、 好ましくは 1〜 1 2、 さらに好ましくは 1 〜 6、 特に好ましくは 1〜 3 (具体的には、 メチル基、 エチル基、 n—プロ ピル基またはイソプロピル基) である。 [0041] The alkyl group may be linear, branched, or cyclic. It is preferably linear or branched. The carbon number of the alkyl group is, for example, 1 to 20, preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 3 (specifically, methyl group, ethyl group, n-proton, etc. Pill group or isopropyl group).
[0042] 上記アルコキシ基は、 直鎖状であってもよく、 分枝状であってもよく、 環 状であってもよい。 好ましくは、 直鎖状または分枝状である。 アルコキシ基 の炭素数は、 例えば 1〜 2 0であり、 好ましくは 1〜 1 2、 さらに好ましく は 1〜 6、 特に好ましくは 1〜 3 (具体的には、 メ トキシ基、 エトキシ基、 [0042] The alkoxy group may be linear, branched, or cyclic. It is preferably linear or branched. The carbon number of the alkoxy group is, for example, 1 to 20, preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 3 (specifically, a methoxy group, an ethoxy group,
-プロポキシ基またはイソプロポキシ基) である。 -Propoxy group or isopropoxy group).
[0043] 上記アリール基は、 単環芳香環由来の基であってもよく、 多環芳香環由来 の基であってもよい。 アリール基の炭素数は、 例えば 6〜 2 2であり、 好ま しくは 6〜 1 8、 さらに好ましくは 6〜 1 4、 特に好ましくは 6〜 1 0 (具 体的には、 フエニル基、 1 —ナフチル基、 2—ナフチル基等) である。 The aryl group may be a group derived from a monocyclic aromatic ring or a group derived from a polycyclic aromatic ring. The carbon number of the aryl group is, for example, 6 to 22, preferably 6 to 18, more preferably 6 to 14 and particularly preferably 6 to 10 (specifically, a phenyl group, 1 — Naphthyl group, 2-naphthyl group, etc.).
[0044] 上記アリールオキシ基は、 単環芳香環由来の基であってもよく、 多環芳香 〇 2020/174972 14 卩(:171? 2020 /002820 The above-mentioned aryloxy group may be a group derived from a monocyclic aromatic ring, or a polycyclic aromatic ring. 〇 2020/174972 14 卩 (:171? 2020 /002820
環由来の基であってもよい。 アリールオキシ基の炭素数は、 例えば 6〜 2 2 であり、 好ましくは 6〜 1 8、 さらに好ましくは 6〜 1 4、 特に好ましくは 6〜 1 0 (具体的には、 フエニルオキシ基、 1 -ナフチルオキシ基、 2 -ナ フチルオキシ基等) である。 It may be a ring-derived group. The carbon number of the aryloxy group is, for example, 6 to 22, preferably 6 to 18, more preferably 6 to 14 and particularly preferably 6 to 10 (specifically, a phenyloxy group, 1-naphthyl Oxy group, 2-naphthyloxy group, etc.).
[0045] が複数ある場合 ( 1が 2以上の場合) 、 複数の は同一でも異なっ ていてもよい。
Figure imgf000016_0001
が複数ある場合 ( 2が 2以上の場合) 、 複数の 2は同 —でも異なっていてもよい。
Figure imgf000016_0002
が複数ある場合 ( 3が 2以上の場合) 、 複 数の は同一でも異なっていてもよい。
Figure imgf000016_0003
が複数ある場合 (〇1 4が 2以上 同一でも異なっていてもよい。
Figure imgf000016_0004
が複数ある場合 (
Figure imgf000016_0005
複数の は同一でも異なっていてもよい。
Figure imgf000016_0006
数ある場合 ( 6が 2以上の場合) 、 複数の は同一でも異なっていてもよ い。 また、
Figure imgf000016_0007
は相互に同一でもよく異なっていてもよい。
When there are a plurality of (when 1 is 2 or more), the plurality may be the same or different.
Figure imgf000016_0001
When there are two or more (2 is 2 or more), two or more 2 may be the same or different.
Figure imgf000016_0002
When there is more than one (when 3 is 2 or more), the plurality of may be the same or different.
Figure imgf000016_0003
If there is more than one (O 14 is 2 or more, they may be the same or different.
Figure imgf000016_0004
If there are multiple
Figure imgf000016_0005
A plurality of may be the same or different.
Figure imgf000016_0006
If there is a number (6 is 2 or more), the two or more may be the same or different. Also,
Figure imgf000016_0007
May be the same or different from each other.
[0046] 上記一般式 (1) において、 1は置換基 の個数を表し、 〇〜 4の整数 である。 1つの実施形態においては、
Figure imgf000016_0008
(水素原子のみ) であること が好ましい。 正孔輸送層 5 0は蒸着層であることから、 例えば、 有機溶媒へ の溶解性に関係なく、 正孔輸送層 (蒸着層) 5 0を形成し得るからである。
In the above general formula (1), 1 represents the number of substituents and is an integer from 0 to 4. In one embodiment,
Figure imgf000016_0008
(Only hydrogen atom) is preferable. This is because the hole transport layer 50 is a vapor deposition layer, and thus the hole transport layer (vapor deposition layer) 50 can be formed regardless of solubility in an organic solvent, for example.
[0047] 上記一般式 (1) において、
Figure imgf000016_0009
の個数を表し、 〇〜 2の整数 である。 1つの実施形態においては、
Figure imgf000016_0010
(水素原子のみ) であること が好ましい。 正孔輸送層 5 0は蒸着層であることから、 例えば、 有機溶媒へ の溶解性に関係なく、 正孔輸送層 (蒸着層) 5 0を形成し得るからである。
[0047] In the above general formula (1),
Figure imgf000016_0009
Is an integer from 0 to 2. In one embodiment,
Figure imgf000016_0010
(Only hydrogen atom) is preferable. This is because the hole transport layer 50 is a vapor deposition layer, and thus the hole transport layer (vapor deposition layer) 50 can be formed regardless of solubility in an organic solvent, for example.
[0048] 上記一般式 (1) において、
Figure imgf000016_0011
の個数を表し、 〇〜 4の整数 である。 1つの実施形態においては、
Figure imgf000016_0012
(水素原子のみ) であること が好ましい。 正孔輸送層 5 0は蒸着層であることから、 例えば、 有機溶媒へ の溶解性に関係なく、 正孔輸送層 (蒸着層) 5 0を形成し得るからである。
[0048] In the above general formula (1),
Figure imgf000016_0011
Is an integer from 0 to 4. In one embodiment,
Figure imgf000016_0012
(Only hydrogen atom) is preferable. This is because the hole transport layer 50 is a vapor deposition layer, and thus the hole transport layer (vapor deposition layer) 50 can be formed regardless of solubility in an organic solvent, for example.
[0049] 上記一般式 (2) において、 4は置換基 4の個数を表し、 〇〜 4の整数 である。 1つの実施形態においては、
Figure imgf000016_0013
(水素原子のみ) であること が好ましい。 正孔輸送層 5 0は蒸着層であることから、 例えば、 有機溶媒へ の溶解性に関係なく、 正孔輸送層 (蒸着層) 5 0を形成し得るからである。 〇 2020/174972 1 5 卩(:171? 2020 /002820
[0049] In the general formula (2), 4 represents the number of substituents 4, it is an integer of 〇_~ 4. In one embodiment,
Figure imgf000016_0013
(Only hydrogen atom) is preferable. This is because the hole transport layer 50 is a vapor deposition layer, and thus the hole transport layer (vapor deposition layer) 50 can be formed regardless of solubility in an organic solvent, for example. 〇 2020/174972 1 5 卩 (: 171? 2020 /002820
[0050] 上記一般式 (2) において、 5は置換基 5の個数を表し、 〇〜 3の整数 である。 1つの実施形態においては、 (水素原子のみ) であること が好ましい。 正孔輸送層 5 0は蒸着層であることから、 例えば、 有機溶媒へ の溶解性に関係なく、 正孔輸送層 (蒸着層) 5 0を形成し得るからである。 [0050] In the above general formula (2), 5 represents the number of the substituents 5 , and is an integer from 0 to 3. In one embodiment, (hydrogen atom only) is preferred. This is because the hole transport layer 50 is a vapor deposition layer, and thus the hole transport layer (vapor deposition layer) 50 can be formed regardless of solubility in an organic solvent, for example.
[0051 ] 上記一般式 (2) において、
Figure imgf000017_0001
の個数を表し、 〇〜 3の整数 である。 1つの実施形態においては、
Figure imgf000017_0002
(水素原子のみ) であること が好ましい。 正孔輸送層 5 0は蒸着層であることから、 例えば、 有機溶媒へ の溶解性に関係なく、 正孔輸送層 (蒸着層) 5 0を形成し得るからである。
[0051] In the above general formula (2),
Figure imgf000017_0001
It represents the number of, and is an integer from 0 to 3. In one embodiment,
Figure imgf000017_0002
(Only hydrogen atom) is preferable. This is because the hole transport layer 50 is a vapor deposition layer, and thus the hole transport layer (vapor deposition layer) 50 can be formed regardless of solubility in an organic solvent, for example.
[0052] 上記一般式 (1) および (2) において、 八は有機基であることが好まし い。 蒸着層が良好に形成され得るからである。 In the above general formulas (1) and (2), eight is preferably an organic group. This is because the vapor deposition layer can be formed well.
[0053] 1つの実施形態においては、 上記一般式 (1) および (2) において、 八 は、 下記一般式 (3) : In one embodiment, in the above general formulas (1) and (2), 8 is the following general formula (3):
[化 7] [Chemical 7]
Figure imgf000017_0003
Figure imgf000017_0003
(式中、 八 「は 2価の芳香族炭化水素基を表し、 nは 0または 1 を表し、
Figure imgf000017_0004
は同一または異なって窒素を含有しない有機基からなる置換基を表し、
Figure imgf000017_0005
は 同一または異なって置換基を表し、
Figure imgf000017_0006
は同一または異なって窒素を含有しな い有機基からなる置換基を表し、
Figure imgf000017_0007
(In the formula, 8'represents a divalent aromatic hydrocarbon group, n represents 0 or 1,
Figure imgf000017_0004
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen,
Figure imgf000017_0005
Are the same or different and represent a substituent,
Figure imgf000017_0006
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen,
Figure imgf000017_0007
の整数を表し、 111 3は〇〜 4の整数を表す。 ) Represents the integer, and 111 3 represents the integer from 0 to 4. )
で表される基、 または、 一般式 (4) : 〇 2020/174972 16 卩(:171? 2020 /002820 Or a general formula (4): 〇 2020/174972 16 卩(:171? 2020/002820
[化 8] [Chemical 8]
Figure imgf000018_0001
Figure imgf000018_0001
(式中、 八 「は 2価の芳香族炭化水素基を表し、 nは 0または 1 を表し、
Figure imgf000018_0002
は同一または異なって窒素を含有しない有機基からなる置換基を表し、
Figure imgf000018_0003
は 同一または異なって窒素を含有しない有機基からなる置換基を表し、
Figure imgf000018_0004
は同 —または異なって置換基を表し、 111 4は〇〜 4の整数を表し、 111 5は〇〜 3 の整数を表し、 111 6は〇〜 3の整数を表す。 )
(In the formula, 8'represents a divalent aromatic hydrocarbon group, n represents 0 or 1,
Figure imgf000018_0002
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen,
Figure imgf000018_0003
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen,
Figure imgf000018_0004
Are the same or different and each represents a substituent, 111 4 represents an integer from 0 to 4, 11 15 represents an integer from 0 to 3, and 11 16 represents an integer from 0 to 3. )
で表される基である。 Is a group represented by.
[0054] 上記一般式 (3) および (4) において、
Figure imgf000018_0005
[0054] In the above general formulas (3) and (4),
Figure imgf000018_0005
いては、 上述のとおりである。 The above is as described above.
[0055] 上記一般式 (3) および (4) において、 「は 2価の芳香族炭化水素基 を表す。 芳香族炭化水素基としては、 例えば、 単環芳香族炭化水素基、 多環 芳香族炭化水素基、 縮合多環芳香族炭化水素基が挙げられる。 好ましくは、 八 「は、 In the above general formulas (3) and (4), “represents a divalent aromatic hydrocarbon group. Examples of the aromatic hydrocarbon group include a monocyclic aromatic hydrocarbon group and a polycyclic aromatic group. And a condensed polycyclic aromatic hydrocarbon group.
[化 9] [Chemical 9]
Figure imgf000018_0006
である。 \¥0 2020/174972 17 卩(:17 2020 /002820
Figure imgf000018_0006
Is. \¥0 2020/174972 17 卩(: 17 2020/002820
[0056] 1つの実施形態においては、 上記一般式 (1) および (2) において、 八 は、 窒素含有基である。 具体例としては、 [0056] In one embodiment, in the general formulas (1) and (2), 8 is a nitrogen-containing group. As a specific example,
[化 10] [Chemical 10]
Figure imgf000019_0001
Figure imgf000019_0001
、 下記一般式 (5) , The following general formula (5)
[化 1 1 ] [Chemical 1 1]
Figure imgf000019_0002
Figure imgf000019_0002
(式中、
Figure imgf000019_0003
は同一または異なって置換基を表し、
Figure imgf000019_0004
は同一または異なって 置換基を表し、 111 7は〇〜 5の整数を表し、 〇! 8は〇〜 5の整数を表す。 ) で表される基が挙げられる。
(In the formula,
Figure imgf000019_0003
Are the same or different and represent a substituent,
Figure imgf000019_0004
Are the same or different and each represents a substituent, 111 7 represents an integer from 0 to 5, and 0! 8 represents an integer from 0 to 5. And a group represented by:
[0057] 上記一般式 (5) の置換基の詳細については、 上述のとおりである。 The details of the substituent of the general formula (5) are as described above.
[0058] 正孔輸送層 5 0に含まれる有機材料の分子量は、 好ましくは 2 7 0以上、 さらに好ましくは 3 0 0以上、 特に好ましくは 4 0 0以上である。 一方、 正 孔輸送層 5 0に含まれる有機材料の分子量は、 好ましくは 2 0 0 0以下、 さ らに好ましくは 1 8 0 0以下、 特に好ましくは 1 5 0 0以下である。 このよ うな範囲の分子量を有することにより、 蒸着層が良好に形成され得る。 具体 的には、 分子量が小さい材料は、 昇華しやすく、 蒸着量の制御が難しい傾向 にある。 分子量が大きい材料は、 昇華温度が高く、 蒸着前に分解してしまう 傾向にある。 また、 昇華温度が高いと、 正孔輸送層 5 0の形成の際に、 光吸 収層 4 0にダメージを与えてしまうおそれがある。 [0058] The molecular weight of the organic material contained in the hole transport layer 50 is preferably 270 or more, more preferably 300 or more, and particularly preferably 400 or more. On the other hand, the molecular weight of the organic material contained in the pore transport layer 50 is preferably 200 or less, more preferably 180 or less, and particularly preferably 150 or less. By having a molecular weight in such a range, a vapor deposition layer can be formed well. Specifically, materials with a low molecular weight tend to sublime, making it difficult to control the deposition amount. Materials with high molecular weight have a high sublimation temperature and tend to decompose before vapor deposition. Further, if the sublimation temperature is high, the light absorption layer 40 may be damaged when the hole transport layer 50 is formed.
[0059] 正孔輸送層 5 0の形成方法としては、 例えば、 有機材料を含む蒸着材料を 任意の適切な蒸着法により蒸着させる方法が用いられる。 蒸着法としては、 例えば、 物理蒸着法、 化学蒸着法が挙げられる。 物理蒸着法としては、 例え ば、 真空蒸着法、 スパッタリング、 イオンプレーティング等が挙げられる。 化学蒸着 (CV D) 法としては、 例えば、 熱 CV D法、 プラズマ CV D法、 光 CV D法等が挙げられる。 これらの中でも、 真空蒸着法が好ましく用いら れる。 例えば、 正孔輸送層 50は、 光吸収層 40を形成した後に形成される 。 この場合、 例えば、 光吸収層へのダメージを抑制する観点から、 真空蒸着 法において低製膜レートで製膜することが好ましい。 As a method of forming the hole transport layer 50, for example, a vapor deposition material containing an organic material is used. A method of vapor deposition by any appropriate vapor deposition method is used. Examples of the vapor deposition method include a physical vapor deposition method and a chemical vapor deposition method. Examples of the physical vapor deposition method include vacuum vapor deposition method, sputtering, and ion plating. Examples of the chemical vapor deposition (CV D) method include a thermal CV D method, a plasma CV D method, and an optical CV D method. Among these, the vacuum deposition method is preferably used. For example, the hole transport layer 50 is formed after forming the light absorption layer 40. In this case, for example, from the viewpoint of suppressing damage to the light absorption layer, it is preferable to form the film at a low film formation rate by the vacuum evaporation method.
[0060] 正孔輸送層 50 (蒸着材料) は有機材料を主成分とする。 正孔輸送層 50 における有機材料の含有量は、 例えば 80重量%以上であり、 好ましくは 9 0重量%以上、 より好ましくは 95重量%以上、 さらに好ましくは 99重量 %以上、 特に好ましくは 99. 5重量%以上、 最も好ましくは 1 00重量% である。 [0060] The hole transport layer 50 (vapor deposition material) contains an organic material as a main component. The content of the organic material in the hole transport layer 50 is, for example, 80% by weight or more, preferably 90% by weight or more, more preferably 95% by weight or more, further preferably 99% by weight or more, particularly preferably 99. It is at least 5% by weight, most preferably 100% by weight.
[0061] 正孔輸送層 50 (蒸着材料) は、 添加剤を含み得る。 添加剤の具体例とし ては、 リチウム、 コバルト等の金属塩 (例えば、 b i s (t r i f I u〇 r o m e t h y l s u I T o n y l; i m i d e L i t h i u m、 C o b a I t ( I I I) t r i s [b i s (t r i f I u o r o m e t h y l s u I f o n y l) i m i d e] ) 、 アクセプタ材料 (例えば、 テトラフルオロテ トラシアノキノジメタン (F4 TC N Q) ) 等のドーパントが挙げられる。 添加剤の別の具体例としては、 4— t e r t — b u t h y l p y r i d i e nが挙げられる。 好ましくは、 正孔輸送層 50 (蒸着材料) は、 ドーパント を実質的に含有しない。 具体的には、 正孔輸送層 (蒸着材料) におけるドー パントの含有量は 1 0重量%以下であることが好ましく、 より好ましくは 5 重量%以下、 さらに 1重量%以下、 特に好ましくは 0. 5重量%以下、 最も 好ましくは 0重量%である。 正孔輸送層を蒸着層とすることで、 その厚みを 薄く し得、 ドーパントを実質的に含有させなくても性能 (導電率) が保持さ れ得る。 また、 上記所定の有機材料を用いることで、 ドーパントを実質的に 含有させなくても性能 (導電率) が保持され得る。 上記所定の有機材料を用 \¥0 2020/174972 19 卩(:17 2020 /002820 [0061] The hole transport layer 50 (vapor deposition material) may contain an additive. Specific examples of the additive include metal salts such as lithium and cobalt (for example, bis (trif I u 〇 romethylsu IT onyl; imide lithium, C oba It (III) tris [bis (trif I uoromethylsu I fonyl) imide]), an acceptor material (eg, tetrafluorotetracyanoquinodimethane (F4 TC NQ)), etc. Another specific example of the additive is 4-tert-buthylpyridien. The hole transport layer 50 (vapor deposition material) contains substantially no dopant.Specifically, the content of the dopant in the hole transport layer (vapor deposition material) is 10% by weight or less. It is more preferably 5% by weight or less, still more preferably 1% by weight or less, particularly preferably 0.5% by weight or less, and most preferably 0% by weight. The performance (conductivity) can be maintained even if the dopant is not substantially contained, and the performance (conductivity) can be maintained even if the dopant is not substantially contained by using the above predetermined organic material. Rate) can be retained. \¥0 2020/174972 19 卩 (: 17 2020 /002820
いて蒸着層とすることにより、 極めて良好に、 ドーパントの使用を抑制し得 る。 By forming a vapor-deposited layer, the use of dopant can be suppressed very well.
[0062] 正孔輸送層 5 0と第 2の電極層 2 2との間に配置されるバッファ層 (例え ば、 正孔注入層) の形成材料としては、 例えば、 酸化モリブテン (1\/1〇〇3[0062] Examples of the material for forming the buffer layer (eg, hole injection layer) arranged between the hole transport layer 50 and the second electrode layer 22 include molybdenum oxide (1\/1 〇 〇 3 )
、 酸化タングステン (\^/〇3) 、 酸化ニッケル (1\1 丨 〇) 、 酸化銅 (〇リ〇), Tungsten oxide (\ ^ / 〇 3), nickel oxide (1 \ 1丨〇), copper oxide (〇 Li 〇)
、 酸化錫 (s n〇) 等の金属酸化物、 フッ化リチウム等のハロゲン化物 (好 ましくは、 フッ化物) 等が挙げられる。 これらの中でも、 金属酸化物 (特に 、 酸化モリブテン、 酸化ニッケル) を含むことが好ましい。 バッファ層の厚 みは、 例えば
Figure imgf000021_0002
好ましくは
Figure imgf000021_0001
Examples thereof include metal oxides such as tin oxide (s n 〇) and halides such as lithium fluoride (preferably fluorides). Among these, it is preferable to include a metal oxide (in particular, molybdenum oxide, nickel oxide). The thickness of the buffer layer is, for example,
Figure imgf000021_0002
Preferably
Figure imgf000021_0001
である。 バッファ層の形成方法としては、 例えば、 真空蒸着法が挙げられる Is. Examples of the method for forming the buffer layer include a vacuum vapor deposition method.
[0063] 上記反射防止層の形成材料としては、 例えば、 1\/1 9 2、 1_ 丨 , 3 I 0 , , 八 I 23等の低屈折率材料が挙げられる。 反射防止層の厚みは、 例えば 5
Figure imgf000021_0003
である。 反射防止層の形成方法としては、 任意の適切な 方法が採用され得る。 具体的には、 形成材料として IV! 9 2を用いる場合、 例 えば、 電子線蒸着法が採用される。
[0063] The material for forming the anti-reflection layer, for example, 1 \ / 1 9 2, 1_丨, 3 I 0,, include the low refractive index material such as eight I 23. The thickness of the antireflection layer is, for example, 5
Figure imgf000021_0003
Is. Any appropriate method can be adopted as a method of forming the antireflection layer. Specifically, when using a IV! 9 2 as the material, if example embodiment, an electron beam deposition method is employed.
[0064] 図 2は、 本発明の別の実施形態における光電変換素子の概略断面図である 。 光電変換素子 2 0 0は、 透明基板 1 0、 透明電極層 2 0、 正孔輸送層 5 0 、 ぺロブスカイ ト化合物を含む光吸収層 4 0、 電子輸送層 3 0および金属電 極層 6 0をこの順に有する。 図示例では、 図中の矢印で示すように、 光吸収 層 4 0に対して透明電極層 2 0 (透明基板 1 0) が配置されている側から光 を入射させる。 透明基板 1 0、 透明電極層 2 0、 電子輸送層 3 0、 ベロブス カイ ト化合物を含む光吸収層 4 0および正孔輸送層 5 0については、 上述の とおりである。 [0064] Fig. 2 is a schematic cross-sectional view of a photoelectric conversion element in another embodiment of the present invention. The photoelectric conversion element 200 includes a transparent substrate 10, a transparent electrode layer 20, a hole transport layer 50, a light absorbing layer 40 containing a perovskite compound, an electron transport layer 30 and a metal electrode layer 60. In this order. In the illustrated example, as shown by the arrow in the figure, light is incident on the light absorption layer 40 from the side where the transparent electrode layer 20 (transparent substrate 10) is arranged. The transparent substrate 10, the transparent electrode layer 20, the electron transporting layer 30, the light absorbing layer 40 containing the belovskite compound, and the hole transporting layer 50 are as described above.
[0065] 金属電極層 6 0の形成材料としては、 例えば、 金、 銀、 アルミニウム等の 金属が挙げられる。 金属電極層 6 0の厚みは、 代表的には 1 0 0 n m〜5 0
Figure imgf000021_0004
金属電極層 6 0 の形成方法としては、 例えば、 スバッタ法、 イオンプレーティング法等の 〇 2020/174972 20 卩(:171? 2020 /002820
[0065] Examples of the material for forming the metal electrode layer 60 include metals such as gold, silver, and aluminum. The thickness of the metal electrode layer 60 is typically 100 nm to 50 nm.
Figure imgf000021_0004
The metal electrode layer 60 may be formed by, for example, a grasshopper method, an ion plating method, or the like. 〇 2020/174972 20 卩 (:171? 2020 /002820
▽ 0法や抵抗加熱などといった公知の技術を用いればよく、 生産性の観点か らはスパッタ法が好ましく用いられる。 A known technique such as the 0 method or resistance heating may be used, and the sputtering method is preferably used from the viewpoint of productivity.
[0066] 光電変換素子 2 0 0は、 代表的には、 基板 1 0に、 各層を順次積層するこ とにより作製される。 図 2に示すように、 光吸収層 4 0よりも正孔輸送層 5 0が基板 1 〇側に配置される形態では、 正孔輸送層 5 0を形成した後に光吸 収層 4 0が形成され得る。 このような順序によれば、 光吸収層 4 0への影響 (ダメージ等) を考慮せずに、 正孔輸送層 5 0を形成することができる。 [0066] The photoelectric conversion element 200 is typically manufactured by sequentially laminating each layer on the substrate 10. As shown in FIG. 2, in the form in which the hole transport layer 50 is arranged on the substrate 10 side of the light absorption layer 40, the light absorption layer 40 is formed after the hole transport layer 50 is formed. Can be done. According to such an order, the hole transport layer 50 can be formed without considering the influence (damage or the like) on the light absorption layer 40.
[0067] 図 3は、 本発明の 1つの実施形態における積層型の光電変換素子の概略断 面図である。 光電変換素子 3 0 0は、 第 1の光電変換ユニッ ト (トップセル ) 3 0 1および第 2の光電変換ユニッ ト (ボトムセル) 3 0 2をこの順に有 する。 図示例では、 図中の矢印で示すように、 第 1の光電変換ユニッ ト 3 0 1が配置されている側から光を入射させる。 [0067] Fig. 3 is a schematic cross-sectional view of a stacked photoelectric conversion element according to an embodiment of the present invention. The photoelectric conversion element 300 has a first photoelectric conversion unit (top cell) 3 01 and a second photoelectric conversion unit (bottom cell) 30 2 in this order. In the illustrated example, as shown by the arrow in the figure, light is incident from the side where the first photoelectric conversion unit 301 is arranged.
[0068] 積層型の光電変換素子を構成する光電変換ユニッ トの 1つとして、 上記べ ロブスカイ ト化合物を含む光吸収層を有するぺロブスカイ ト型光電変換ユニ ッ トが採用される。 図示例では、 第 1の光電変換ユニッ ト 3 0 1 に、 ぺロブ スカイ ト型光電変換ユニッ トが採用されている。 第 1の光電変換ユニッ ト 3 0 1は、 ベロブスカイ ト化合物を含む光吸収層 4 0と光吸収層 4 0の片側に 配置された電子輸送層 3 0と光吸収層 4 0のもう片側に配置された正孔輸送 層 5 0とを有する。 図示例では、 光吸収層 4 0の光入射側に正孔輸送層 (蒸 着層) 5 0が配置されている。 電子輸送層 3 0は、 ブロッキング層 3 1 と多 孔質担体層 3 2とを含む。 なお、 各層の詳細については、 上述のとおりであ る。 [0068] As one of the photoelectric conversion units constituting the laminated photoelectric conversion element, a perovskite type photoelectric conversion unit having a light absorbing layer containing the above perovskite compound is adopted. In the illustrated example, a perovskite type photoelectric conversion unit is adopted as the first photoelectric conversion unit 301. The first photoelectric conversion unit 301 is arranged on one side of the light absorption layer 40 containing the perovskite compound and the light absorption layer 40, and on the other side of the electron transport layer 30 and the light absorption layer 40. And the hole transport layer 50 is formed. In the illustrated example, the hole transport layer (vapor deposition layer) 50 is disposed on the light incident side of the light absorption layer 40. The electron transport layer 30 includes a blocking layer 31 and a porous carrier layer 32. The details of each layer are as described above.
[0069] 上記べロブスカイ ト型光電変換ユニッ トと組み合わせる光電変換ユニッ ト (図示例では、 第 2の光電変換ユニッ ト 3 0 2) には、 任意の適切な光電変 換ユニッ トが採用され得る。 好ましくは、 ぺロブスカイ ト型光電変換ユニッ 卜よりもバンドギャップが狭い光電変換ユニッ トが用いられる。 例えば、 高 効率化が期待されるからである。 ベロブスカイ ト型光電変換ユニッ トよりも バンドギャップが狭い光電変換ユニッ トとしては、 例えば、 シリコン系光電 〇 2020/174972 21 卩(:171? 2020 /002820 [0069] Any appropriate photoelectric conversion unit may be adopted as the photoelectric conversion unit (the second photoelectric conversion unit 302 in the illustrated example) combined with the above-mentioned perovskite photoelectric conversion unit. .. Preferably, a photoelectric conversion unit having a bandgap narrower than that of the perovskite type photoelectric conversion unit is used. For example, higher efficiency is expected. A photoelectric conversion unit having a band gap narrower than that of a belovskite type photoelectric conversion unit is, for example, a silicon-based photoelectric conversion unit. 〇 2020/174972 21 卩(:171? 2020/002820
変換ユニッ ト (代表的には、 結晶シリコン系光電変換ユニッ ト) が挙げられ る。 結晶シリコン系光電変換ユニッ トは、 代表的には、 結晶シリコン基板と 、 結晶シリコン基板の片側に配置される第 1の導電層と、 結晶シリコン基板 のもう片側に配置される第 2の導電層とを有する。 結晶シリコン基板の導電 型は、 n型であってもよく、 型であってもよい。 第 1の導電層の導電型と 第 2の導電層の導電型とは異なる。 具体的には、 一方が 型であり、 他方が 门型である。 A conversion unit (typically a crystalline silicon-based photoelectric conversion unit) can be mentioned. A crystalline silicon photoelectric conversion unit is typically composed of a crystalline silicon substrate, a first conductive layer arranged on one side of the crystalline silicon substrate, and a second conductive layer arranged on the other side of the crystalline silicon substrate. Have and. The conductivity type of the crystalline silicon substrate may be n-type or n-type. The conductivity type of the first conductive layer and the conductivity type of the second conductive layer are different. Specifically, one is a mold and the other is a door.
[0070] 第 2の光電変換ユニッ ト 3 0 2の基板 (結晶シリコン基板) 7 0の光入射 側に配置されている第 1の導電層 7 1は、 第 1の光電変換ユニッ ト 3 0 1の 光入射側に配置される導電層 (正孔輸送層 5 0) と同一の導電型を有し、 第 2の光電変換ユニッ ト 3 0 2の基板 7 0の裏側に配置されている第 2の導電 層 7 2は、 第 1の光電変換ユニッ ト 3 0 1の裏側に配置される導電層 (電子 輸送層 3 0) と同一の導電型を有する。 具体的には、 第 1の導電層 7 1は 型であり、 第 2の導電層 7 2は n型である。 したがって、 第 1の光電変換ユ ニッ ト 3 0 1 と第 2の光電変換ユニッ ト 3 0 2とは直列接続されており、 両 者は同一方向の整流性を有する。 [0070] The first conductive layer 71 disposed on the light incident side of the substrate (crystalline silicon substrate) 70 of the second photoelectric conversion unit 302 is the first photoelectric conversion unit 300 Of the second photoelectric conversion unit 302, which has the same conductivity type as the conductive layer (hole transport layer 50) arranged on the light incident side of the second photoelectric conversion unit 302. The conductive layer 72 has the same conductivity type as the conductive layer (electron transport layer 30) arranged on the back side of the first photoelectric conversion unit 30 1. Specifically, the first conductive layer 71 is a type and the second conductive layer 72 is an n type. Therefore, the first photoelectric conversion unit 3001 and the second photoelectric conversion unit 3002 are connected in series, and both have rectifying properties in the same direction.
[0071 ] 上記結晶シリコン系光電変換ユニッ トの具体例として、 拡散型シリコン光 電変換ユニッ ト、 ヘテロ接合シリコン光電変換ユニッ トが挙げられる。 拡散 型シリコン光電変換ユニッ トは、 例えば、 結晶シリコン基板の表面にホウ素 やリン等のドープ不純物を拡散させて導電層 (導電型シリコン系半導体層) を形成することにより得られる。 ヘテロ接合シリコン光電変換ユニッ トは、 例えば、 単結晶シリコン基板に、 非晶質シリコンや微結晶シリコン等の非単 結晶シリコン系薄膜を製膜して導電層を形成することにより得られる。 ここ で、 単結晶シリコン基板と非単結晶シリコン系薄膜との間で、 ヘテロ接合が 形成されている。 ヘテロ接合シリコン光電変換ユニッ トは、 単結晶シリコン 基板と導電型シリコン系薄膜との間に、 真性シリコン系薄膜を有することが 好ましい。 真性シリコン系薄膜を有することにより、 単結晶シリコン基板へ の不純物の拡散を抑えつつ、 表面パッシベーシヨンを有効に行うことができ \¥0 2020/174972 22 卩(:17 2020 /002820 [0071] Specific examples of the crystalline silicon-based photoelectric conversion unit include a diffusion-type silicon photoelectric conversion unit and a heterojunction silicon photoelectric conversion unit. The diffusion type silicon photoelectric conversion unit is obtained, for example, by diffusing a doping impurity such as boron or phosphorus on the surface of a crystalline silicon substrate to form a conductive layer (conductive type silicon-based semiconductor layer). The heterojunction silicon photoelectric conversion unit is obtained, for example, by forming a non-single crystal silicon thin film such as amorphous silicon or microcrystalline silicon on a single crystal silicon substrate to form a conductive layer. Here, a heterojunction is formed between the single crystal silicon substrate and the non-single crystal silicon thin film. The heterojunction silicon photoelectric conversion unit preferably has an intrinsic silicon based thin film between the single crystal silicon substrate and the conductivity type silicon based thin film. Having an intrinsic silicon thin film enables effective surface passivation while suppressing diffusion of impurities into the single crystal silicon substrate. \¥0 2020/174972 22 卩 (: 17 2020 /002820
る。 It
[0072] 第 2の光電変換ユニッ ト (結晶シリコン系光電変換ユニッ ト) 3 0 2とし て、 例えば、 上記へテロ接合シリコン光電変換ユニッ トが採用される。 基板 7 0として、 例えば、 n型の単結晶シリコン基板が用いられる。 図示しない が、 基板 7 0は、 光閉じ込め等の観点から、 その表面にテクスチャ構造が形 成されていてもよい。 As the second photoelectric conversion unit (crystalline silicon photoelectric conversion unit) 302, for example, the above heterojunction silicon photoelectric conversion unit is adopted. As the substrate 70, for example, an n-type single crystal silicon substrate is used. Although not shown, the substrate 70 may have a textured structure formed on its surface from the viewpoint of light confinement or the like.
[0073] n型の単結晶シリコン基板 7 0の光入射側には、 真性シリコン系薄膜 (図 示せず) を介して、 型シリコン系薄膜 (第 1の導電層 7 1) が形成され、 门型の単結晶シリコン基板 7 0の裏側には、 真性シリコン系薄膜 (図示せず ) を介して、 门型シリコン系薄膜 (第 2の導電層 7 2) が形成される。 ここ で、 真性シリコン系薄膜は、 上述の表面パッシベーシヨンをより有効に行う 等の観点から、 基板 7 0の表面に、 任意の適切な方法により、 真性非晶質シ リコン薄膜を製膜することで形成されることが好ましい。 真性シリコン系薄 膜の膜厚は、 好ましくは
Figure imgf000024_0001
である。
On the light-incident side of the n-type single crystal silicon substrate 70, a type silicon-based thin film (first conductive layer 71) is formed via an intrinsic silicon-based thin film (not shown). On the back side of the single crystal silicon substrate 70 of the mold, a gate type silicon thin film (second conductive layer 72) is formed via an intrinsic silicon thin film (not shown). Here, the intrinsic silicon-based thin film is formed by forming an intrinsic amorphous silicon thin film on the surface of the substrate 70 by any appropriate method from the viewpoint of more effectively performing the above-mentioned surface passivation. It is preferably formed. The thickness of the intrinsic silicon thin film is preferably
Figure imgf000024_0001
Is.
[0074] 上記導電型シリコン系薄膜 (導電層 7 1 , 7 2) の形成材料としては、 例 えば、 非晶質シリコン、 微結晶シリコン (非晶質シリコンと結晶質シリコン を含む材料) や、 非晶質シリコン合金、 微結晶シリコン合金等が用いられる 。 シリコン合金としては、 例えば、 シリコンオキサイ ド、 シリコンカーバイ ド、 シリコンナイ トライ ド、 シリコンゲルマニウム等が挙げられる。 これら の中でも、 導電型シリコン系薄膜は、 非晶質シリコン薄膜であることが好ま しい。 導電型シリコン系薄膜 (導電層 7 1 , 7 2) の膜厚は、 好ましくは 3 n〇1〜3 0 〇!である。 [0074] Examples of the material for forming the conductive type silicon-based thin film (conductive layers 7 1 and 7 2) include amorphous silicon, microcrystalline silicon (a material containing amorphous silicon and crystalline silicon), Amorphous silicon alloy, microcrystalline silicon alloy, etc. are used. Examples of silicon alloys include silicon oxide, silicon carbide, silicon nitride, and silicon germanium. Among these, the conductive silicon-based thin film is preferably an amorphous silicon thin film. The film thickness of the conductive type silicon-based thin film (conductive layers 71, 72) is preferably 3 n 0 1 to 300 0!.
[0075] 光電変換素子 3 0 0は、 例えば、 予め、 第 2の光電変換ユニッ ト 3 0 2を 作製し、 第 2の光電変換ユニッ ト 3 0 2に、 第 1の光電変換ユニッ ト 3 0 1 を構成する各層を順次形成することにより作製される。 1つの実施形態にお いては、 第 1の光電変換ユニッ ト 3 0 1 (トップセル) と第 2の光電変換ユ ニッ ト 3 0 2 (ボトムセル) との間には、 例えば、 両ユニッ トの電気的な接 続や、 電流マッチングのための入射光量の調整等を目的として、 中間層 (図 〇 2020/174972 23 卩(:171? 2020 /002820 As the photoelectric conversion element 300, for example, a second photoelectric conversion unit 300 2 is prepared in advance, and the second photoelectric conversion unit 300 2 is provided with the first photoelectric conversion unit 300. It is produced by sequentially forming the respective layers constituting 1. In one embodiment, between the first photoelectric conversion unit 30 1 (top cell) and the second photoelectric conversion unit 30 2 (bottom cell), for example, both units are connected. For the purpose of electrical connection and adjustment of the amount of incident light for current matching, the intermediate layer (Fig. 〇 2020/174972 23 卩(:171? 2020/002820
示せず) を設けてもよい。 別の実施形態においては、 トップセルの最下層 ( 図示例では、 電子輸送層 30) および/またはボトムセルの最上層 (図示例 では、 第 1の導電層 7 1) に、 中間層の機能の一部または全部を持たせても よい。 (Not shown) may be provided. In another embodiment, the bottom layer of the top cell (the electron transport layer 30 in the illustrated example) and/or the top layer of the bottom cell (the first conductive layer 71 in the illustrated example) has one of the functions of the intermediate layer. You may have some or all.
[0076] 上記べロブスカイ ト化合物を含む光吸収層 40が吸収する光の波長範囲は 、 代表的には、 ぺロブスカイ ト化合物のバンドギャップで決まる。 組み合わ せる別の光電変換ユニッ トとの (トップセルとボトムセルとの) 電流マッチ ングを取る観点から、 ベロブスカイ ト化合物を含む光吸収層 40のバンドギ ャップは、 1. 556 ~ 1. 756 Vであることが好ましく、 さらに好ま しくは 1. 66 ~ 1. 656 Vである。 例えば、 ぺロブスカイ ト化合物が
Figure imgf000025_0001
で表される場合、 バンドギャップを 1. 556 ~ 1. 756 Vにするためにはソ= 0〜〇. 85程度が好ましく、 バンド ギャップを 1. 606 ~ 1. 656 Vにするためにはソ =〇. 1 5〜〇.
[0076] The wavelength range of light absorbed by the light absorbing layer 40 containing the perovskite compound is typically determined by the band gap of the perovskite compound. The band gap of the light absorption layer 40 containing the perovskite compound is 1.556 to 1.756 V from the viewpoint of current matching (with the top cell and the bottom cell) with another photoelectric conversion unit to be combined. It is preferably, and more preferably 1.66 to 1.656 V. For example, the perovskite compound
Figure imgf000025_0001
In order to obtain a bandgap of 1.556 to 1.756 V, it is preferable to set so = 0 ~ 〇.85, and to obtain a bandgap of 1.606 to 1.656 V. = 〇.15 to 〇.
55程度が好ましい。 About 55 is preferable.
[0077] 図示しないが、 光入射側 (図の上側) に配置される第 1の光電変換ユニッ 卜 301の光入射面には、 代表的には、 透明電極層が形成される。 この透明 電極層の表面には、 キャリアの取出し効率を向上させる観点から、 例えば、 パターン状の金属電極がさらに設けられてもよい。 第 2の光電変換ユニッ ト 302の光入射側と反対側 (裏側) には、 裏面電極が設けられる。 例えば、 第 2の光電変換ユニッ ト 302の裏面には、 透明電極層が形成され、 この透 明電極層上に裏面金属電極が設けられ、 裏面電極が構成される。 Although not shown, a transparent electrode layer is typically formed on the light incident surface of the first photoelectric conversion unit 301 arranged on the light incident side (upper side in the figure). From the viewpoint of improving the carrier extraction efficiency, for example, a patterned metal electrode may be further provided on the surface of the transparent electrode layer. A back electrode is provided on the side (back side) opposite to the light incident side of the second photoelectric conversion unit 302. For example, a transparent electrode layer is formed on the back surface of the second photoelectric conversion unit 302, and a back surface metal electrode is provided on this transparent electrode layer to form a back surface electrode.
[0078] 上記透明電極層の形成材料としては、 酸化亜鉛 (Z n〇) 、 酸化錫 (S n2) 、 酸化インジウム (丨 门23) 等の酸化物や、 酸化インジウム錫 (丨 丁 〇) 等の複合酸化物等が好ましく用いられる。 また、 丨 n23やS n〇2にW や丁 丨等をドープした材料を用いてもよい。 このような透明導電性酸化物は 、 透明性を有しかつ低抵抗であるため、 光励起キャリアを効率よく収集でき る。 透明電極層の製膜方法は、 スバッタ法や1\/1〇〇 0法等が好ましい。 透 明導電性酸化物以外に、 9ナノワイヤ等の金属細線や、 ?巳 0〇丁_ 3 S等の有機材料も用いられ得る。 [0078] Examples of materials for forming the transparent electrode layer include oxides such as zinc oxide (Z n 〇), tin oxide (S n2 ), indium oxide (丨门23 ), and indium tin oxide (丨). A composite oxide such as that described above is preferably used. It may also be a material doped with W or Ding丨等to丨n 23 and S N_〇 2. Since such a transparent conductive oxide has transparency and low resistance, it can efficiently collect photoexcited carriers. The method for forming the transparent electrode layer is preferably the Svatta method or the 1\/100 method. In addition to transparent conductive oxides, fine metal wires such as 9 nanowires, and?巳 0 〇 _ 3 Organic materials such as S can also be used.
[0079] 光入射側の透明電極層として 丨 TO等の金属酸化物が用いられる場合、 光 電変換素子は、 その最表面には反射防止層を有することが好ましい。 反射防 止層を最表面に有することにより、 空気界面での屈折率差を小さく して反射 光を低減し、 光電変換素子に取り込まれる光量を増大できる。 When a metal oxide such as To is used as the transparent electrode layer on the light incident side, the photoelectric conversion element preferably has an antireflection layer on the outermost surface thereof. By having the antireflection layer on the outermost surface, it is possible to reduce the difference in refractive index at the air interface, reduce the reflected light, and increase the amount of light taken into the photoelectric conversion element.
[0080] 上記裏面金属電極は、 パターン状であってもよく、 面状であってもよい。 The back surface metal electrode may be patterned or planar.
裏面電極には、 長波長光の反射率が高く、 かつ導電性や化学的安定性が高い 材料を用いることが望ましい。 このような特性を満たす材料としては、 例え ば、 銀、 銅、 アルミニウム等が挙げられる。 裏面電極は、 例えば、 印刷法、 各種物理気相蒸着法、 めっき法等により形成される。 For the back electrode, it is desirable to use a material having a high reflectance for long-wavelength light, high conductivity, and high chemical stability. Examples of materials that satisfy such characteristics include silver, copper, and aluminum. The back electrode is formed by, for example, a printing method, various physical vapor deposition methods, a plating method, or the like.
[0081] 積層型の光電変換素子は、 実用的には、 モジュール化されることが好まし い。 例えば、 基板とバックシートとの間に、 封止材を介して光電変換素子を 封止することで、 モジュール化される。 インターコネクタを介して複数のユ ニッ トを直列または並列に接続した後に封止してもよい。 [0081] Practically, it is preferable that the stacked photoelectric conversion element is modularized. For example, a photoelectric conversion element is sealed between a substrate and a back sheet via a sealing material to form a module. A plurality of units may be connected in series or in parallel via the interconnector and then sealed.
実施例 Example
[0082] 以下、 実施例によって本発明を具体的に説明するが、 本発明はこれら実施 例によって限定されるものではない。 なお、 各特性の測定方法は、 断りがな い限り、 以下の通りである。 Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. The measuring method of each property is as follows unless otherwise specified.
1. 厚み 1. Thickness
走査型電子顕微鏡 (日立ハイテクノロジーズ製、 S-4800) による断 面観察により算出した。 It was calculated by observing the cross section with a scanning electron microscope (S-4800, manufactured by Hitachi High-Technologies Corporation).
2. 吸収率 2. Absorption rate
紫外可視分光光度計 (P e r k i n E I m e r製、 L A M B D A) によ り測定した。 It was measured by an ultraviolet-visible spectrophotometer (L A M B D A manufactured by Perr k i n E I m er).
[0083] [実施例 1 ] [0083] [Example 1]
ガラス基板上に透明導電膜 (F TO) が形成された基板 (P i I k i n g t o n製、 T EC 7) を準備した。 この基板を、 超純水、 エタノール、 アセ トンにてそれぞれ 1 0分間超音波洗浄した後に乾燥した。 その後、 基板に、 U Vオゾンにて 30分間表面処理を施した。 A substrate (made by Pi Ikington, T EC 7) having a transparent conductive film (F TO) formed on a glass substrate was prepared. This substrate was ultrasonically cleaned with ultrapure water, ethanol, and acetone for 10 minutes each, and then dried. Then on the board, The surface was treated with UV ozone for 30 minutes.
[0084] 続いて、 基板の透明導電膜側 (表面処理側) に、 厚み 3 1 n mのコンパク 卜 T i 〇2膜を製膜した。 具体的には、 500°Cに加熱した基板表面に、 0. 3/4. 0体積%のチタンジイソプロポキシドビス (アセチルアセトナート ) /エタノール溶液をスプレーパイロリシス法にて噴霧することにより製膜 した。 [0084] Then, the transparent conductive film side of the substrate (surface processing side), was formed a compact Bok T i 〇 2 film having a thickness of 3 1 nm. Specifically, by spraying the solution of titanium diisopropoxide bis(acetylacetonate)/ethanol of 0.3/4.0 vol% on the substrate surface heated to 500 ° C by the spray pyrolysis method. The film was formed.
[0085] 続いて、 基板のコンパクト T i 〇 2膜側に、 厚み 350 n mのメソポーラス [0085] Subsequently, the compact T i 〇 2 film side of the substrate, the thickness 350 nm of the mesoporous
T i 〇2膜を製膜した。 具体的には、 体積比 0. 7 : 0. 3にてチタニアべ一 スト (商品名 : 1 8 N R— T、 T r a n s p a r e n t T i t a n i a P a s t e D y e s o l社製) とエタノールとを混合し、 超音波処理を施 して分散液を得た。 こうして得られた分散液を、 マイクロピペッ トを用いて 基板上に滴下し、 5000 r p mの速度にて 30秒間スピンコートを実施し た後、 基板を 500°Cの電気炉にて 30分間焼成することでメソポーラス T i 〇2膜を製膜した。 It was formed a T i 〇 2 film. Specifically, titania best (product name: 18 NR—T, manufactured by T ransparent T itania Paste D yesol) and ethanol were mixed in a volume ratio of 0.7:0.3 and ultrasonic wave was added. Treatment was performed to obtain a dispersion. The dispersion thus obtained is dropped onto a substrate using a micropipette, spin-coated at a speed of 5000 rpm for 30 seconds, and then the substrate is baked in an electric furnace at 500°C for 30 minutes. in was formed mesoporous T i 〇 2 film.
[0086] 続いて、 基板のコンパクト T i 〇2膜 (メソポーラス T i 〇2膜) 側に、 C [0086] Subsequently, the compact T i 〇 2 film (mesoporous T i 〇 2 film) side of the substrate, C
H3 N H3 P b I a (M A P b I 3) 層を 1 86 n m〜 267 n mの厚みで形成 した。 具体的には、 基板上に 1. 1 M0MA P b l 3/DMS〇溶液を、 マイ クロピぺッ トを用いて基板上に滴下し、 1 000 r pmの速度にて 70秒間 スピンコートを実施した。 その後、 5000 r p mの速度にて 20秒回転さ せている最中に、 スポイ トを用いてトルエンを 0. 5 m 丨滴下した後、 基板 を基板温度 1 〇〇°Cで 1 0分間焼成することで、 黒色の MA P b 丨 3層を形成 した。 H 3 NH 3 P b I a (MAP b I 3) layer was formed with 1 86 nm to 267 nm thickness. Specifically, 1.1 M0MA P bl 3 /DMS 〇 solution was dropped onto the substrate using a micropipette, and spin coating was performed for 70 seconds at a speed of 1 000 rpm. .. Then, while rotating at a speed of 5000 rpm for 20 seconds, 0.5 m of toluene is dropped using a dropper, and then the substrate is baked at a substrate temperature of 100 ° C for 10 minutes. As a result, three black MA P b layers were formed.
[0087] 続いて、 基板の M A P b 丨 3層側に、 厚み 1 5 n mの下記化合物 (丨) : 〇 2020/174972 26 卩(:171? 2020 /002820 [0087] Next, on the MAP b layer 3 side of the substrate, the following compound (layer) with a thickness of 15 nm: 〇 2020/174972 26 卩 (:171? 2020 /002820
[化 12] [Chemical 12]
Figure imgf000028_0001
Figure imgf000028_0001
(1~1〇1\/1〇 : - 5 . 2 6 V) (1 ~ 1○1\/1○: -5.26V)
からなる有機材料膜を、 真空蒸着法にて製膜した。 具体的には、 化合物 ( I ) が入ったアルミナるつぼを、 タングステン線を加熱することによって温め ることによって、 化合物 (丨) を昇華させ、 有機材料膜 (吸収ピーク波長: An organic material film consisting of was formed by a vacuum deposition method. Specifically, the alumina crucible containing the compound (I) is heated by heating a tungsten wire to sublimate the compound (丨), and the organic material film (absorption peak wavelength:
3 9 7 n 、 吸収端波長: 4 4 0 n ) を製膜した。 397 n , absorption edge wavelength: 440 n ) was formed into a film.
[0088] その後、 基板の有機材料膜側に、 厚み 1 〇〇〇!の1\/1〇0 3層を真空蒸着法に より形成し、 次いで、 厚み 8 0
Figure imgf000028_0002
I 丁〇層をスパッタ法により形成した 。 こうして、 光電変換素子 (太陽電池) を作製した。
[0088] Thereafter, the organic material film side of the substrate, the thickness 1 thousand! 1 \ / 1_Rei_0 three layers of more formed in the vacuum deposition method, and then, the thickness 8 0
Figure imgf000028_0002
I layer was formed by sputtering method. Thus, a photoelectric conversion element (solar cell) was produced.
[0089] [実施例 2 ] [Example 2]
化合物 (丨) のかわりに化合物 ( I I) : Compound (II) instead of compound (丨):
〇 2020/174972 27 卩(:171? 2020 /002820 〇 2020/174972 27 卩(: 171-1?2020/002820
[化 13] [Chemical 13]
Figure imgf000029_0001
Figure imgf000029_0001
(1~1〇1\/1〇 : - 5. 376 V) (1 ~ 1 ○ 1\ / 1 :: - 5.376 V)
を用いて有機材料膜を製膜したこと以外は実施例 1 と同様にして、 太陽電池 を作製した。 A solar cell was produced in the same manner as in Example 1 except that the organic material film was formed using.
[0090] [実施例 3] [0090] [Example 3]
化合物 (丨 ) のかわりに化合物 ( I I I ) : Compound (I I I ): instead of compound (丨):
[化 14] [Chemical 14]
Figure imgf000029_0002
Figure imgf000029_0002
を用いて有機材料膜を製膜したこと以外は実施例 1 と同様にして、 太陽電池 を作製した。 \¥0 2020/174972 28 卩(:17 2020 /002820 A solar cell was produced in the same manner as in Example 1 except that the organic material film was formed using. \¥0 2020/174972 28 卩(: 17 2020/002820
[0091 ] [実施例 4 ] [0091] [Example 4]
化合物 (丨) のかわりに化合物 (丨 V) Compound (丨 V) instead of Compound (丨)
[化 15] [Chemical 15]
Figure imgf000030_0001
Figure imgf000030_0001
(1~1〇1\/1〇 : - 5 . 0 4 6 V) (1 ~ 1 ○ 1\/ 1 :: - 5.04 6 V)
を用いて有機材料膜を製膜したこと以外は実施例 1 と同様にして、 太陽電池 を作製した。 A solar cell was produced in the same manner as in Example 1 except that the organic material film was formed using.
なお、 有機材料膜の製膜後、 蒸着用ボートに残留物が確認された。 After the formation of the organic material film, a residue was confirmed on the evaporation boat.
[0092] [比較例 1 ] [0092] [Comparative Example 1]
有機材料膜の製膜に際し、 化合物 (丨) のかわりに Instead of compound (丨) when forming organic material film
[化 16] [Chemical 16]
Figure imgf000031_0001
で表される S p i r o-Me TAD (HOMO : - 5. 1 e V) を用い、 さ らには、 蒸着法のかわりに溶液法 (溶液塗布) にて有機材料膜を製膜したこ と以外が実施例 1 と同様にして、 太陽電池を作製した。 具体的には、 クロロ ベンゼンに、 S p i r o— OMe TAD、 b i s (t r i f l u o r ome t h y l s u l f o n y l) i m i d e L i t h i u m、 Co b a l t (
Figure imgf000031_0001
S pir o-Me TAD (HOMO: -5.1 e V) represented by the following method is used. Furthermore, instead of the vapor deposition method, the organic material film is formed by the solution method (solution coating). A solar cell was produced in the same manner as in Example 1 except for the above. Specifically, chlorobenzene was added to S piro— OMe TAD, bis (trifluor ome thylsulfonyl) imide lithium, Co balt (
I I I) t r i s [b i s (t r i f I u o r ome t h y l s u I f o n y I) i m i d e ] および 4— t e r t— b u t h y I p y r i d i e nを 混合した溶液を作製し、 得られた溶液をスピンコート法によって基板の MA P b 丨 3層側に塗布し、 70°Cで 30分間加熱し、 有機材料膜 (吸収ピーク波 長: 390 n m、 吸収端波長: 580 n m) を製膜した。 III) A solution was prepared by mixing tris [bis (trif i uor ome thylsu I fony I) imide] and 4 — tert- buthy I pyridien, and the resulting solution was spin-coated on the substrate to give MA P b 3 layers. It was applied on the side and heated at 70 ° C for 30 minutes to form an organic material film (absorption peak wavelength: 390 nm, absorption edge wavelength: 580 nm).
[0093] <評価方法> [0093] <Evaluation method>
ソーラーシミュレータを用いて、 各実施例および比較例で得られた太陽電 池の太陽電池特性 (短絡電流密度 (J s c) 、 開放電圧 (Vo c) 、 曲線因 子 (F F) および変換効率 (E f f . ) ) を測定した。 測定は、 丨 TO層側 から光を入射させた場合および基板側から光を入射させた場合のそれぞれに ついて行った。 評価結果を表 1 に示す。 なお、 表 1中のバンドギャップ (E 〇 2020/174972 30 卩(:171? 2020 /002820 Using the solar simulator, the solar cell characteristics of the solar cells obtained in each Example and Comparative Example (short circuit current density (J sc), open circuit voltage (V o c ), curvilinear factor (FF) and conversion efficiency (E ff .))) was measured. The measurement was performed for each of the case where light was incident from the TO layer side and the case where light was incident from the substrate side. The evaluation results are shown in Table 1. The bandgap (E 〇 2020/174972 30 卩(: 171? 2020/002820
9) は、 分光エリプソメ トリー (ジェー エー ウーラム社製、 IV! 2000 ) にて、 T a u c-L o r e n t zモデルにて算出した有機材料膜の光学的 バンドギヤツプである。 9) is an optical bandgap of an organic material film calculated by a spectroscopic ellipsometry (IV! 2000, manufactured by J.A. Woollam Co., Ltd.) using the Tauc-Lorenz model.
[0094] [表 1] [0094] [Table 1]
Figure imgf000032_0002
Figure imgf000032_0002
[0095] 各実施例において優れた太陽電池特性が確認された (例えば、 比較例 1の 基板側の値と比較した場合においても) 。 [0095] Excellent solar cell characteristics were confirmed in each example (for example, even when compared with the values on the substrate side of Comparative Example 1).
[0096] á外部量子効率の測定 ñ [0096] á Measurement of external quantum efficiency ñ
実施例 1および比較例 1で得られた太陽電池について外部量子効率を、 分 光感度測定装置を用いて測定した。 測定結果を図 4に示す。 The external quantum efficiency of the solar cells obtained in Example 1 and Comparative Example 1 was measured using a photometric sensitivity measurement device. Figure 4 shows the measurement results.
[0097] 実施例 1で得られた太陽電池の丨 丁〇層表面に反射防止層を形成した。 具 体的には、 電子線蒸着法によって厚み 1 1 5 n の 1\/19 2膜を製膜した。 反 射防止層形成前後における外部量子効率を測定した。 測定結果を図 5に示す [0097] An antireflection layer was formed on the surface of the solar cell obtained in Example 1. In concrete terms, it was formed with 1 \ / 1 9 2 film having a thickness of 1 1 5 n by electron beam evaporation method. The external quantum efficiency was measured before and after the formation of the antireflection layer. Figure 5 shows the measurement results.
[0098] 図 5に示すように、
Figure imgf000032_0001
の範囲において顕著な 感度の向上が確認された。
[0098] As shown in FIG.
Figure imgf000032_0001
A remarkable improvement in sensitivity was confirmed in the range of.
[0099] [実施例 5- 1] [0099] [Example 5-1]
化合物 (丨) のかわりに化合物 (V) : 〇 2020/174972 卩(:171? 2020 /002820 Compound (V) instead of compound (丨): 〇 2020/174972 卩 (: 171-1? 2020 /002820
[化 17] [Chemical 17]
Figure imgf000033_0001
Figure imgf000033_0001
(1~1〇1\/1〇 : - 5. 26 V) (1 ~ 1 ○ 1\/1 〇:-5.26 V)
を用いて有機材料膜を製膜したこと、 および、 基板の有機材料膜側に IV!〇〇3 層および丨 丁〇層を形成するかわりに厚み 1 00
Figure imgf000033_0002
八リ層を抵抗加熱蒸 着により形成したこと以外は実施例 1 と同様にして、 太陽電池を作製した。
Was used to form an organic material film, and instead of forming IV!○ 3 layers and 丨〇 layers on the organic material film side of the substrate, a thickness of 100
Figure imgf000033_0002
A solar cell was prepared in the same manner as in Example 1 except that the eight layers were formed by resistance heating evaporation.
[0100] [実施例 5 -2] [0100] [Example 5 -2]
厚み 30 n の有機材料膜を製膜したこと、 および、 有機材料膜と
Figure imgf000033_0003
との間に厚み 30 n〇1の1\/1〇〇3層を介在させたこと以外は実施例 5— 1 と同 様にして、 太陽電池を作製した。
An organic material film with a thickness of 30 n was formed, and
Figure imgf000033_0003
Except that by interposing a 1 \ / 1_Rei_rei three layers of thickness 30 N_rei_1 in the same manner as in Example 5-1 between, to produce a solar cell.
[0101] [実施例 5 -3] [0101] [Example 5 -3]
基板の有機材料膜側に八リ層を形成するかわりに、 厚み 80 n mの丨 丁〇 層をスパツタ法により形成し、 次いで、 厚み 1 001·! 01の八 9層を真空蒸着 法により形成したこと以外は実施例 5 _ 2と同様にして、 太陽電池を作製し た。 Instead of forming an 8-layer on the organic material film side of the substrate, a 80-nm-thick layer was formed by the sputtering method, and then a 1001-thick-layer 89 layer was formed by a vacuum evaporation method. A solar cell was produced in the same manner as in Example 5_2 except for the above.
[0102] [参考例 5 -4] [0102] [Reference example 5 -4]
厚み 1 1 0 n mの有機材料膜を製膜したこと以外は実施例 5 _ 1 と同様に \¥02020/174972 32 卩(:17 2020 /002820 Similarly except that the film formation of the organic material film having a thickness of 1 1 0 n m is as in Example 5 _ 1 \¥02020/174972 32 卩 (: 17 2020 /002820
して、 太陽電池を作製した。 Then, a solar cell was produced.
[0103] <評価方法> [0103] <Evaluation method>
ソーラーシミュレータを用いて、 各実施例で得られた太陽電池の太陽電池 特性 (短絡電流密度 (」 3〇) 、 開放電圧 (V〇 、 曲線因子 ( ) お よび変換効率 (日† I ) ) を測定した。 測定は、 基板側から光を入射させ て行った。 評価結果を表 2に示す。 Using a solar simulator, the solar cell characteristics (short-circuit current density (“30)), open-circuit voltage (V 〇, fill factor (), and conversion efficiency (day † I)) of the solar cells obtained in each example were measured. The measurement was performed with light incident from the substrate side, and the evaluation results are shown in Table 2.
[0104] [表 2] [0104] [Table 2]
Figure imgf000034_0001
Figure imgf000034_0001
[0105] 実施例 5 _ 1から 5—4において。 有機材料膜にドーパントが含まれない 。 有機材料膜の厚みの厚い実施例 5 _4は他に比べて太陽電池特性が劣って いる。 [0105] In Examples 5_1 to 5-4. The organic material film contains no dopant. Example 5_4, in which the thickness of the organic material film is large, is inferior to the other solar cell characteristics.
実施例 5— 2と実施例 5— 3との比較から、 1\/1〇〇3層/丨 丁〇層の組合せ が好ましいと考えられる。 符号の説明 From the comparison between Example 5-2 and Example 5-3, it is considered that the combination of 1\/1 〇 3 layers / 丨 〇 layer is preferable. Explanation of symbols
[0106] 1 〇. 基板 (透明基板) [0106] 1 ○. Substrate (transparent substrate)
2〇. 透明電極層 20. Transparent electrode layer
2 1. 電極層 2 1. Electrode layer
22. 電極層 22. Electrode layer
30. 電子輸送層 30. Electron transport layer
3 1. ブロッキング層 3 1. Blocking layer
32. 多孔質担体層 32. Porous carrier layer
40. 光吸収層 40. Light absorption layer
50. 正孔輸送層 4972 33 ?01/1?2020/002820 50. Hole transport layer 4972 33 ?01/1?2020/002820
〇. 金属電極層 〇. Metal electrode layer
〇. 基板 〇.Substrate
1. 第 1の導電層 1. First conductive layer
2. 第 2の導電層 2. Second conductive layer
0. 光電変換素子 0. Photoelectric conversion element
0. 光電変換素子 0. Photoelectric conversion element
0. 光電変換素子 0. Photoelectric conversion element
1. 第 1の光電変換ユニッ ト 1. First photoelectric conversion unit
2. 第 2の光電変換ユニッ ト 2. Second photoelectric conversion unit

Claims

\¥0 2020/174972 34 卩(:17 2020 /002820 請求の範囲 [請求項 1 ] ベロブスカイ ト型構造を有する化合物を含む光吸収層と、 前記光吸収層の片側に配置される電子輸送層と、 前記光吸収層のもう片側に配置される正孔輸送層と、 を有し、 前記正孔輸送層は、 有機材料を含み、 厚みが 5 0 n m以下で、 吸収 ピーク波長が 4 0 0 n 以下の蒸着層であり、 前記有機材料は、 下記一般式 (1) : \0 2020/174972 34 卩(: 17 2020/002820 Scope [Claim 1] A light absorbing layer containing a compound having a belovskite structure, and an electron transporting layer disposed on one side of the light absorbing layer. A hole transport layer disposed on the other side of the light absorption layer, wherein the hole transport layer contains an organic material, has a thickness of 50 nm or less, and has an absorption peak wavelength of 400 nm. The following vapor deposition layer, wherein the organic material is represented by the following general formula (1):
[化 1 ] [Chemical 1]
Figure imgf000036_0001
Figure imgf000036_0001
(式中、 八は水素原子または有機基を表し、
Figure imgf000036_0002
は同一または異なっ て窒素を含有しない有機基からなる置換基を表し、
Figure imgf000036_0003
2は同一または 異なって置換基を表し、
Figure imgf000036_0004
は同一または異なって窒素を含有しない 有機基からなる置換基を表し、 01 1は〇〜 4の整数を表し、 〇1 2は0 〜 2の整数を表し、 111 3は〇〜 4の整数を表す。 ) で表される化合物、 および/または、 一般式 (2) :
(In the formula, 8 represents a hydrogen atom or an organic group,
Figure imgf000036_0002
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen,
Figure imgf000036_0003
2 is the same or different and represents a substituent,
Figure imgf000036_0004
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen, 01 1 represents an integer of 0 to 4, 0 12 represents an integer of 0 to 2, 111 3 represents an integer of 0 to 4. Represent ) And/or the general formula (2):
〇 2020/174972 35 2020 /002820 〇 2020/174972 35 2020/002820
[化 2] [Chemical 2]
Figure imgf000037_0005
Figure imgf000037_0005
(式中、 八は水素原子または有機基を表し、
Figure imgf000037_0001
は同一または異なっ て窒素を含有しない有機基からなる置換基を表し、
Figure imgf000037_0002
5は同一または 異なって窒素を含有しない有機基からなる置換基を表し、
Figure imgf000037_0003
は同一 または異なって置換基を表し、
Figure imgf000037_0004
を表し、 5は0 〜 3の整数を表し、 〇! 6は〇〜 3の整数を表す。 ) で表される化合物であり、
(In the formula, 8 represents a hydrogen atom or an organic group,
Figure imgf000037_0001
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen,
Figure imgf000037_0002
5 is the same or different and represents a substituent consisting of a nitrogen-free organic group,
Figure imgf000037_0003
Are the same or different and represent a substituent,
Figure imgf000037_0004
, 5 represents an integer of 0 to 3, and 0! 6 represents an integer of 0 to 3. ) Is a compound represented by
前記光吸収層に対して前記正孔輸送層が配置される側から光を入射 させる、 Light is incident on the light absorption layer from the side where the hole transport layer is arranged,
光電変換素子。 Photoelectric conversion element.
[請求項 2] 前記正孔輸送層の吸収端波長が 4 5 0 n 以下である、 請求項 1 に 記載の光電変換素子。 2. The photoelectric conversion element according to claim 1, wherein the hole transport layer has an absorption edge wavelength of 450 n or less.
[請求項 3] 前記有機材料の分子量が 2 7 0以上 2 0 0 0以下である、 請求項 1 または 2に記載の光電変換素子。 [Claim 3] The photoelectric conversion element according to claim 1 or 2, wherein the organic material has a molecular weight of 270 or more and 200 or less.
[請求項 4] 前記正孔輸送層がドーパントを実質的に含有しない、 請求項 1から 4. The hole transport layer is substantially free of a dopant.
3のいずれかに記載の光電変換素子。 4. The photoelectric conversion element according to any one of 3.
[請求項 5] 前記正孔輸送層の前記光吸収層が配置される側とは反対側に配置さ れる透明電極を有する、 請求項 1から 4のいずれかに記載の光電変換 素子。 5. The photoelectric conversion element according to claim 1, further comprising a transparent electrode arranged on a side of the hole transport layer opposite to a side on which the light absorption layer is arranged.
[請求項 6] 前記正孔輸送層と前記透明電極との間に配置されるバッファ層を有 する、 請求項 5に記載の光電変換素子。 〇 2020/174972 36 卩(:171? 2020 /002820 6. The photoelectric conversion element according to claim 5, further comprising a buffer layer arranged between the hole transport layer and the transparent electrode. 〇 2020/174972 36 卩 (:171? 2020 /002820
[請求項 7] 前記電子輸送層の前記光吸収層が配置される側とは反対側に配置さ れる透明電極を有する、 請求項 1から 6のいずれかに記載の光電変換 素子。 7. The photoelectric conversion element according to claim 1, further comprising a transparent electrode arranged on a side of the electron transport layer opposite to a side on which the light absorption layer is arranged.
[請求項 8] 光電変換する別の光電変換ユニッ トをさらに有する、 請求項 1から [Claim 8] further comprising another photoelectric conversion unit for photoelectric conversion
7のいずれかに記載の光電変換素子。 7. The photoelectric conversion element according to any one of 7.
[請求項 9] 前記別の光電変換ユニッ トが結晶シリコン基板を含む、 請求項 8に 記載の光電変換素子。 9. The photoelectric conversion element according to claim 8, wherein the other photoelectric conversion unit includes a crystalline silicon substrate.
[請求項 10] 基板の片側に、 ベロブスカイ ト型構造を有する化合物を含む光吸収 層を形成すること、 および、 10. A light absorption layer containing a compound having a belovskite structure is formed on one side of a substrate, and
前記基板の片側に、 有機材料を含む蒸着材料を蒸着させて、 厚み 5 0门 以下で吸収ピーク波長が 4 0 0 n 以下の正孔輸送層を形成す ること、 を含み、 Depositing a vapor deposition material containing an organic material on one side of the substrate to form a hole transport layer having a thickness of 50 or less and an absorption peak wavelength of 400 n or less;
前記有機材料は、 下記一般式 (1) : The organic material has the following general formula (1):
[化 3] [Chemical 3]
Figure imgf000038_0001
Figure imgf000038_0001
(式中、 八は水素原子または有機基を表し、
Figure imgf000038_0002
は同一または異なっ て窒素を含有しない有機基からなる置換基を表し、
Figure imgf000038_0003
2は同一または 異なって置換基を表し、
Figure imgf000038_0004
は同一または異なって窒素を含有しない 有機基からなる置換基を表し、
Figure imgf000038_0005
を表し、 2は0 〜 2の整数を表し、 〇! 3は〇〜 4の整数を表す。 ) で表される化合物、 および/または、 一般式 (2) : 〇 2020/174972 37 卩(:171? 2020 /002820
(In the formula, 8 represents a hydrogen atom or an organic group,
Figure imgf000038_0002
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen,
Figure imgf000038_0003
2 is the same or different and represents a substituent,
Figure imgf000038_0004
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen,
Figure imgf000038_0005
, 2 represents an integer of 0 to 2, and 0! 3 represents an integer of 0 to 4. ) And/or the general formula (2): 〇 2020/174972 37 卩(:171? 2020/002820
[化 4] [Chemical 4]
Figure imgf000039_0001
Figure imgf000039_0001
(式中、 八は水素原子または有機基を表し、
Figure imgf000039_0002
は同一または異なっ て窒素を含有しない有機基からなる置換基を表し、
Figure imgf000039_0003
5は同一または 異なって窒素を含有しない有機基からなる置換基を表し、
Figure imgf000039_0004
は同一 または異なって置換基を表し、
Figure imgf000039_0005
を表し、 5は0 〜 3の整数を表し、 〇! 6は〇〜 3の整数を表す。 ) で表される化合物である、
(In the formula, 8 represents a hydrogen atom or an organic group,
Figure imgf000039_0002
Are the same or different and represent a substituent consisting of an organic group containing no nitrogen,
Figure imgf000039_0003
5 is the same or different and represents a substituent consisting of a nitrogen-free organic group,
Figure imgf000039_0004
Are the same or different and represent a substituent,
Figure imgf000039_0005
, 5 represents an integer of 0 to 3, and 0! 6 represents an integer of 0 to 3. ) Is a compound represented by
光電変換素子の製造方法。 Method for manufacturing photoelectric conversion element.
[請求項 11] 前記正孔輸送層の前記光吸収層が配置される側とは反対側に、 透明 電極を形成することを含む、 請求項 1 〇に記載の光電変換素子の製造 方法。 11. The method for manufacturing a photoelectric conversion element according to claim 10, further comprising forming a transparent electrode on a side of the hole transport layer opposite to a side on which the light absorption layer is arranged.
PCT/JP2020/002820 2019-02-27 2020-01-27 Photoelectric conversion element and production method for photoelectric conversion element WO2020174972A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021501760A JP7244031B2 (en) 2019-02-27 2020-01-27 Photoelectric conversion element and method for manufacturing photoelectric conversion element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019034248 2019-02-27
JP2019-034248 2019-02-27

Publications (1)

Publication Number Publication Date
WO2020174972A1 true WO2020174972A1 (en) 2020-09-03

Family

ID=72238424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002820 WO2020174972A1 (en) 2019-02-27 2020-01-27 Photoelectric conversion element and production method for photoelectric conversion element

Country Status (2)

Country Link
JP (1) JP7244031B2 (en)
WO (1) WO2020174972A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162982A (en) * 2015-03-04 2016-09-05 国立大学法人名古屋大学 Organic photoelectric conversion element and organic thin film solar cell including same
WO2016194717A1 (en) * 2015-06-05 2016-12-08 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element, photoelectric conversion film, electron blocking layer, imaging device and electronic device
JP2017069508A (en) * 2015-10-02 2017-04-06 住友化学株式会社 Photoelectric conversion element and method of manufacturing photoelectric conversion element
WO2017195722A1 (en) * 2016-05-09 2017-11-16 株式会社カネカ Stacked photoelectric conversion device and method for producing same
WO2018166934A1 (en) * 2017-03-15 2018-09-20 Merck Patent Gmbh Materials for organic electroluminescent devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118164A1 (en) * 2011-03-03 2012-09-07 国立大学法人九州大学 Novel compound, charge transport material, and organic device
EP2846371A1 (en) * 2013-09-10 2015-03-11 Ecole Polytechnique Fédérale de Lausanne (EPFL) Inverted solar cell and process for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162982A (en) * 2015-03-04 2016-09-05 国立大学法人名古屋大学 Organic photoelectric conversion element and organic thin film solar cell including same
WO2016194717A1 (en) * 2015-06-05 2016-12-08 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element, photoelectric conversion film, electron blocking layer, imaging device and electronic device
JP2017069508A (en) * 2015-10-02 2017-04-06 住友化学株式会社 Photoelectric conversion element and method of manufacturing photoelectric conversion element
WO2017195722A1 (en) * 2016-05-09 2017-11-16 株式会社カネカ Stacked photoelectric conversion device and method for producing same
WO2018166934A1 (en) * 2017-03-15 2018-09-20 Merck Patent Gmbh Materials for organic electroluminescent devices

Also Published As

Publication number Publication date
JP7244031B2 (en) 2023-03-22
JPWO2020174972A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
Alsalloum et al. 22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap
Raiford et al. Atomic layer deposition of vanadium oxide to reduce parasitic absorption and improve stability in n–i–p perovskite solar cells for tandems
Wang et al. High‐performance perovskite solar cells with large grain‐size obtained by using the Lewis acid‐base adduct of thiourea
JP6968066B2 (en) Mixed cation perovskite
US10937972B2 (en) Complex and perovskite material, and perovskite-type solar cell using complex or perovskite material
US10333016B2 (en) Multi-junction photoelectric conversion device and photoelectric conversion module
US20220367739A1 (en) Solar cell comprising a metal-oxide buffer layer and method of fabrication
JP6670377B2 (en) Stacked photoelectric conversion device and method of manufacturing the same
KR102289127B1 (en) UV Harvesting Transparent Photocell
CN104871331B (en) Organic photosensitive devices with reflector
US20220037407A1 (en) Multi-junction optoelectronic device comprising device interlayer
Rafizadeh et al. Efficiency enhancement and hysteresis mitigation by manipulation of grain growth conditions in hybrid evaporated–spin-coated perovskite solar cells
JP6986418B2 (en) Manufacturing method of laminated photoelectric conversion device and laminated photoelectric conversion device module
KR20160004220A (en) Perovskite solar cell and preparing method thereof
KR102496459B1 (en) Perovskite/Gallium Arsenide tandem type solar cell and preparation method thereof
JP2017126737A (en) Photoelectric conversion element and method of manufacturing photoelectric conversion element
JP6960233B2 (en) Solar cell module
Fan et al. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact
WO2020174972A1 (en) Photoelectric conversion element and production method for photoelectric conversion element
WO2020246074A1 (en) Four-terminal tandem solar cell
Jiang et al. Enhancing light harvesting in planar halide perovskite film solar cells by silicon nanorods
US20230223205A1 (en) Multijunction photovoltaic devices with metal oxynitride layer
WO2017195746A1 (en) Stacked photoelectric conversion device and method for producing same
JP2023046212A (en) Solar cell and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501760

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763358

Country of ref document: EP

Kind code of ref document: A1