WO2020174918A1 - Nucleic acid amplification device - Google Patents

Nucleic acid amplification device Download PDF

Info

Publication number
WO2020174918A1
WO2020174918A1 PCT/JP2020/001355 JP2020001355W WO2020174918A1 WO 2020174918 A1 WO2020174918 A1 WO 2020174918A1 JP 2020001355 W JP2020001355 W JP 2020001355W WO 2020174918 A1 WO2020174918 A1 WO 2020174918A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sample
control unit
nucleic acid
temperature control
Prior art date
Application number
PCT/JP2020/001355
Other languages
French (fr)
Japanese (ja)
Inventor
玉置 裕一
満田 綾子
理太郎 小熊
章人 澤井
吉田 正樹
Original Assignee
Phcホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phcホールディングス株式会社 filed Critical Phcホールディングス株式会社
Publication of WO2020174918A1 publication Critical patent/WO2020174918A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control

Definitions

  • the present invention relates to a nucleic acid amplification device.
  • PCR Polymerase Chain Reaction
  • a nucleic acid such as DNA (Doxyribonucleic Acid: deoxyribonucleic acid)
  • a nucleic acid amplification device for amplification is known.
  • a nucleic acid amplification device that includes a nucleic acid detection unit in addition to a nucleic acid amplification mechanism and can detect the amplified nucleic acid in real time (see, for example, Patent Document 1).
  • a nucleic acid amplification device is called a real-time PCR device.
  • a real-time PCR device controls the temperature of a reaction sample containing DNA, a fluorescent substance, etc. to amplify DNA.
  • the real-time PC device irradiates with excitation light that excites the reaction sample, and quantitatively measures the amplified DNA based on the fluorescence generated from the reaction sample.
  • the real-time PCR apparatus is widely used not only in the research field but also in various inspection fields.
  • Patent Document 1 Japanese Patent Laid-Open No. 201 0 _ 81 898
  • nucleic acid amplification is performed by repeating a cycle including a heat denaturation step, an annealing step, and an extension reaction step a plurality of times. Therefore, it takes a relatively long time (for example, 40 minutes) to react one sample. Therefore, if the number of samples is large, it will take a long time. ⁇ 02020/174918 2 ⁇ (: 170?2020/001355
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a nucleic acid amplification device capable of efficiently reacting a plurality of samples in a short time.
  • a nucleic acid amplification apparatus comprises: a first temperature control unit for heating and cooling a first sample containing nucleic acid; and a second temperature control unit for heating and cooling a second sample containing nucleic acid. And a control that controls the first temperature control unit and the second temperature control unit, and starts the control of the second temperature control unit during the control of the first temperature control unit. And a section.
  • nucleic acid amplifier capable of efficiently reacting a plurality of samples in a short time.
  • FIG. 1 A schematic vertical cross-sectional view of a nucleic acid amplification device according to an embodiment.
  • FIG. 2 A schematic cross-sectional view of a nucleic acid amplification device according to an embodiment.
  • FIG. 4 A plan view of the area around the container.
  • FIG. 58 A plan view of an example of the container.
  • FIG. 58 A side view of an example of the container.
  • FIG. 68 A plan view of an example of the container.
  • FIG. 68 A side view of an example of the container.
  • FIG. 7 Time chart showing the temperature cycle in the polymerase chain reaction.
  • FIG. 8 An evening chart showing a temperature cycle of control executed by the nucleic acid amplification device according to the embodiment.
  • FIG. 90 Display example on the operation display unit included in the nucleic acid amplification device according to the embodiment.
  • FIG. 9 A display example on the operation display unit included in the nucleic acid amplification device according to the embodiment.
  • FIG. 9D _ Display example on the operation display unit included in the nucleic acid amplification device according to the embodiment.
  • FIG. 90] _ Display example on the operation display unit included in the nucleic acid amplification device according to the embodiment.
  • FIG. 10 A front view of the vicinity of a portion where a container is placed in a nucleic acid amplification device according to another embodiment.
  • FIG. 1 is a vertical cross-sectional view of a nucleic acid amplification device 1 according to an embodiment.
  • 2 is a cross-sectional view of the nucleic acid amplification device 1 according to the embodiment.
  • the nucleic acid amplification device 1 has an opening, a housing 11 for receiving a sample, and a cover 12 for opening and closing the opening of the housing 11. Covers 1 and 2 are lockable and cannot be opened when locked.
  • an optical measuring device 13 Inside the housing 11, an optical measuring device 13, a reflecting mirror 14 and a Fresnel lens 15 are arranged.
  • the optical measuring device 13 includes a lamp that emits excitation light that is irradiated onto the sample, and a plurality of two-dimensionally arranged photodetection elements that receive the fluorescence emitted from the sample (for example, 0000 or 001 ⁇ /1 ⁇ 3) etc.
  • the reflecting mirror 14 reflects the excitation light emitted from the optical measurement device 13 toward the Fresnel lens 15 and reflects the fluorescence emitted from the sample toward the optical measurement device 13.
  • the Fresnel lens 15 corrects the excitation light reflected by the reflecting mirror 14 so that the plurality of samples are uniformly irradiated with the excitation light. Further, the Fresnel lens 15 corrects the optical path of the fluorescence so that the fluorescence emitted from the sample can be uniformly measured by the optical measuring device 13.
  • An operation display unit 16 including a touch panel or the like is attached to the outside of the housing 11.
  • the operation display unit 16 receives an input operation to the nucleic acid amplification device 1 and displays the state of the nucleic acid amplification device 1.
  • the operation display unit 16 includes an operation unit including buttons for accepting operations and a liquid crystal panel for displaying. ⁇ 02020/174918 4 ⁇ (: 170?2020/001355
  • a control unit 17 that integrally controls the nucleic acid amplification device 1 is arranged inside the housing 11.
  • the nucleic acid amplification device 1 may be connected to an external computer by wire or wirelessly and controlled by this computer instead of being provided with the control unit 17.
  • a first mounting part 21 on which a container containing a sample is mounted.
  • a first temperature control unit 3 1 is arranged below the first placement unit 21.
  • a heat radiating section 40 is arranged below the first temperature control section 31.
  • FIG. 3 is a front view of the vicinity of the portion on which the container knife is placed
  • FIG. 4 is a plan view of the vicinity of the portion on which the container knife is placed.
  • a first temperature control unit 31, a second temperature control unit 3 2, and a third temperature control unit 33 are provided on one heat dissipation unit 40. , Are arranged adjacent to each other in this order.
  • the first temperature control unit 3 1, the second temperature control unit 3 2, and the third temperature control unit 33 are cooled on the lower surface side when the upper surface side is heated and on the lower surface when the upper surface side is cooled. It is composed of a Peltier element whose side is heated.
  • the heat dissipation part 40 has a large number of fins formed of a material having a high thermal conductivity such as metal.
  • the heat radiating section 40 promotes heat exchange between the lower surface of the first temperature adjusting section 31, the second temperature adjusting section 32, and the lower surface of the third temperature adjusting section 33 and the ambient air.
  • the first placement unit 21 is arranged on the first temperature control unit 31.
  • the second mounting portion 2 2 is arranged on the second temperature control portion 32.
  • a third mounting portion 23 is arranged on the third temperature control portion 33.
  • the first placing part 21, the second placing part 22 and the third placing part 23 are each formed of a material having a high thermal conductivity such as metal.
  • the upper surface of each of the first placing portion 21, the second placing portion 2 2 and the third placing portion 2 3 has a first depression 2 1 3 and a second depression 2 2 ⁇ 02020/174918 5 ⁇ (: 170?2020/001355
  • a plurality of 2 3 and 3rd recesses 2 3 3 are formed.
  • the first depression 2 1 3, the second depression 2 2 3 and the third depression 2 3 3 are parts where the wells of the container containing the sample are placed.
  • a first thermometer 5 1 is attached to the first mounting portion 21.
  • a second thermometer 5 2 is attached to the second mounting portion 22.
  • a third thermometer 5 3 is attached to the third mounting portion 23.
  • the first thermometer 51, the second thermometer 52, and the third thermometer 53 are each, for example, a thermocouple.
  • the first thermometer 5 1 detects the temperature of the first mounting portion 2 1. Since the first placing part 21 is made of a material having a high thermal conductivity, the temperature of the first placing part 21 will not be affected by the temperature of the container placed on the first placing part 21. It can be regarded as the temperature of the contained sample. The same applies to the temperature of the second mounting portion 22 and the temperature of the third mounting portion 23.
  • the first mounting portion 21 has a plurality of first depressions 21.
  • first depressions 2 1 3 are arranged in a matrix. Specifically, four rows of eight first depressions 2 1 3 are arranged. The intervals between the first depressions 2 1 3 arranged in the row direction are equal at any position. Also, the intervals between the first depressions 2 1 3 arranged in the row direction are equal at any position.
  • the second support 2 2, a plurality of second recesses 2 2 3 are arranged in a matrix. Specifically, four rows of eight second recesses 2 2 3 are arranged. The intervals between the second depressions 2 2 3 arranged in the row direction are equal at any position. Also, the intervals between the second depressions 2 2 3 arranged in the row direction are equal at any position.
  • a plurality of third recesses 2 3 3 are arranged in a matrix on the third mounting portion 23. Specifically, four rows of eight third depressions 2 3 3 are arranged. The intervals between the third depressions 2 3 3 arranged in the row direction are equal at any position. Also, the intervals between the third depressions 2 3 3 arranged in the row direction are equal at any position.
  • first depression 2 1 3 and the second depression 2 2 3 which are adjacent to each other (Fig. 4 ⁇ 02020/174918 6 In the case of (: 170?2020/001355, the distance between the first depression 2 1 3 in the rightmost row and the second depression 2 2 3 in the leftmost row) is adjacent in the row direction. The distance between the first depressions 2 1 3 and the distance between the second depressions 2 2 3 are equal to each other.
  • the second recess 2 2 3 and the third recess 2 3 3 that are adjacent to each other Is equal to the distance between the second depressions 2 2 3 adjacent to each other in the row direction and the distance between the third depressions 2 3 3 adjacent to each other.
  • Figs. 5 and 5 are a plan view and a side view, respectively, showing an example of a container knife used with the nucleic acid amplification device 1 according to the present embodiment.
  • the container knife has eight wells in which the sample is stored, and the eight wells are arranged in a row at equal intervals.
  • the spacing between wells adjacent to each other is the spacing between the first depressions 2 1 3 adjacent to each other in the row direction, the spacing between the second depressions 2 2 3 and the spacing between the third depressions 2 3 3 Is equal to
  • the container knife shown in FIGS. 58 and 5 is placed on the first placing portion 21, the second placing portion 22 and the third placing portion 23. Can be placed one by one. It goes without saying that it is not always necessary to mount four container knives on each mounting part. If necessary, 3 or less container knives may be placed on each mounting part, or no container knives may be mounted on either mounting part.
  • FIG. 6 and FIG. 6 are a plan view and a side view showing another example of the container knife that can be used with the nucleic acid amplification device 1 according to the present embodiment. ⁇ 02020/174918 7 ⁇ (: 170?2020/001355
  • the container has wells in which the samples are placed in a matrix. Specifically, it has 12 rows of 8 wells.
  • the spacing between the wells that are adjacent to each other in the column direction is equal to the spacing between the first depressions 2 1 3 that are adjacent to each other at any position. Also, the distance between the wells that are adjacent to each other in the row direction is equal to the distance between the first depressions 2 1 3 that are adjacent to each other in the row direction at any position.
  • One container knife shown in FIGS. 6 and 6 can be placed on the second placing portion 22 and the third placing portion 23. That is, the nucleic acid amplification device 1 according to the present embodiment can be used with the container knife shown in FIGS. 68 and 6 if necessary.
  • FIG. 7 is a time chart 100 showing the temperature cycle at ⁇ .
  • the horizontal axis represents time and the vertical axis represents sample temperature.
  • the control unit 17 controls the first temperature control unit 31 to raise the temperature of the upper surface of the first temperature control unit 3 1. At the same time, the temperature of the sample in the container rises, and [ ⁇ ] shifts to the enzyme activation step 10 1. In the enzyme activation step 101, the temperature of the sample reaches a predetermined temperature (for example, 95 ° ⁇ ).
  • the state where the temperature of the sample is kept constant continues for a predetermined time. ⁇ 02020/174918 8 ⁇ (: 170?2020/001355
  • control unit 17 controls the first temperature adjusting unit 31 to reduce the temperature on the upper surface side of the first temperature adjusting unit 31. At the same time, the temperature of the sample in the container falls.
  • a predetermined temperature for example, 55°
  • the annealing step 103 is completed when a predetermined time (for example, 10 seconds) elapses while the temperature of the sample is kept constant after shifting to the annealing step 103.
  • control unit 17 controls the first temperature adjustment unit 31 to raise the temperature on the upper surface side of the first temperature adjustment unit 3 1. At the same time, the temperature of the sample in the container rises.
  • the process proceeds to the extension reaction step 104.
  • a predetermined temperature for example, 72°
  • the temperature of the sample is kept constant for a predetermined time (for example, 20 seconds).
  • the optical measurement device 13 performs optical measurement. Therefore, the extension reaction step 104 is also an optical measurement step.
  • a cycle 100000 is constituted by the heat denaturation step 102, the annealing step 103, and the extension reaction step 104. This cycle 100,000 is repeated multiple times, for example 40 times, to complete one sample.
  • the nucleic acid amplification device 1 since it is possible to start the ⁇ of the next sample before the ⁇ [3 ⁇ 4 of one sample is completed, a plurality of samples can be obtained in a short time. of It can be performed.
  • the nucleus according to the present embodiment ⁇ 02020/174918 9 ⁇ (: 170?2020/001355
  • the sample placed on the first placing part 21 is referred to as a first sample.
  • the sample placed on the second placing part 22 is referred to as a second sample.
  • a sample placed on the third placing part 23 is referred to as a third sample.
  • FIG. 8 is a time chart showing a temperature cycle of control executed by the nucleic acid amplification device 1 according to one embodiment.
  • the horizontal axis is the time and the vertical axis is the sample temperature.
  • the time chart 110 is a time chart showing the temperature cycle of the first sample at ⁇ .
  • the time chart 120 is a time chart showing the temperature cycle of the second sample at 0.
  • the time chart 1300 is a time chart showing the temperature cycle at 0 of the third sample.
  • FIGS. 9 to 90 are display examples on the operation display unit 16 provided in the nucleic acid amplification device 1 according to the embodiment, respectively.
  • the cover 12 is opened, and the first sample at room temperature is placed on the first placing part 21. Then, the cover 12 is closed and locked, and the operation display unit 16 is operated to set the condition of ⁇ for the first sample.
  • the temperature of the first sample is room temperature, which means that
  • FIG. 9-8 A display example of the operation display unit 16 at this time is shown in FIG. In Figure 9-8, a polygonal line imitating Time Chart 110 is shown.
  • condition setting of ⁇ of the first sample can be executed, for example, by pressing the "edit" button shown in Fig. 9. It should be noted that the above-mentioned condition setting of the first sample may be performed before the first sample is mounted on the first mounting part 21.
  • the control of the temperature control unit 31 of 1 is started, that is, the temperature of the first sample is started. Then, the controller 17 performs the first temperature adjustment according to a predetermined sequence. ⁇ 02020/174918 10 box (: 170?2020/001355
  • Heat or cool part 3 Heat or cool part 3 1.
  • the enzyme activation step 1 1 1 is performed, followed by the heat denaturation step 1 1 2, annealing step 1 1 3 and extension reaction step 1 1 1.
  • Cycle 1 1 0 ⁇ 3 including 4 is repeated.
  • FIG. 9 shows a display example of the operation display unit 16 when the first sample is subjected to the heat denaturation step 11 2.
  • FIG. 90 shows a display example of the operation display unit 16 of the second sample when the condition [0] is set.
  • the polygonal line imitating Time Chart 1100 is shown on the upper side
  • the polygonal line imitating Time Chart 120 is shown on the lower side.
  • the "pause" button on the operation display unit 16 cannot be pressed.
  • the temperature of the second sample at this time is room temperature.
  • the cover 12 When the second sample is placed on the second placing section 22, the cover 12 is opened, so that the temperature inside the housing 11 is lowered.
  • annealing step 113 is the coldest process in the first sample, ⁇ . Therefore, the adverse effect of opening the cover 12 and lowering the temperature inside the housing 11 is minimized.
  • Fig. 8 shows that the 0 cycle 1 1 1 00 of the first sample and the 0 cycle 1 2 0 0 of the second sample are synchronized.
  • control unit 17 controls the temperature of the first sample to increase and the temperature of the first sample to decrease while the temperature of the first sample increases.
  • the first temperature control unit 3 1 and the second temperature control unit 3 2 are controlled so that the temperature of the second sample decreases when the temperature is high.
  • the control unit 17 determines that the temperature of the first temperature adjustment unit 3 1 is the temperature at which the first sample is subjected to the heat denaturation step 1 1 2.
  • the temperature of the second temperature control unit 3 2 should be the temperature at which the second sample is subjected to the heat denaturation step 1 2 2 so that the temperature of the first temperature control unit 3 1 and the second temperature control unit 3 2 Control 3 2
  • the control unit 17 determines that the temperature of the first temperature adjusting unit 3 1 is the temperature at which the first sample is subjected to the annealing step 1 1 3.
  • the temperature of the second temperature control unit 32 is set to the temperature when the second sample is subjected to the annealing process 1 23, so that the temperature of the first temperature control unit 31 ⁇ 02020/174918 12 ((170?2020/001355
  • control unit 17 controls the temperature of the first temperature adjusting unit 31 to be the temperature at which the first sample is subjected to the extension reaction step 1 14.
  • the temperature of the second temperature control unit 3 2 is adjusted to the temperature at which the second sample is subjected to the extension reaction step 1 2 4, so that the first temperature control unit 3 1 and the second temperature control unit 3 2 Control part 32.
  • the display of the operation display unit 16 becomes, for example, the display shown in FIG. FIG. 9 shows that 0 of the first sample is in the heat denaturation step 1 12 and 0 of the second sample is in the heat denaturation step 12 2.
  • the optical measurement device 13 irradiates the first sample and the second sample with excitation light at one time, and Detect fluorescence at once.
  • the optical measuring device 13 has a plurality of photodetecting elements arranged two-dimensionally. Therefore, the fluorescence emitted from the first sample and the second sample arranged in a matrix can be detected simultaneously for each sample separately.
  • the fluorescence detection result is analyzed by the controller 17.
  • the information on the amplification status of the nucleic acid contained in the first sample and the information on the amplification status of the nucleic acid contained in the second sample, which are obtained as a result of the analysis, are as follows: ⁇ for the first sample and ⁇ for the second sample. During operation, it is displayed on the operation display box ⁇ 16 at all times or at the request of the user. Alternatively, this information can be obtained from the first sample ⁇ 02020/174918 13 ⁇ (: 170?2020/001355
  • the display of the operation display unit 16 becomes the state shown in FIG.
  • the nucleic acid amplification device 1 continues the second ⁇ [3 ⁇ 4 until the second ⁇ [3 ⁇ 4 is completed and follows the predetermined sequence to display information on the amplification status of the nucleic acid contained in the second sample. Keep getting.
  • nucleic acid amplification apparatus 1 has been described when the first sample O and the second sample O are performed in parallel.
  • the nucleic acid amplification apparatus 1 according to this embodiment can further perform the third sample ⁇ in parallel.
  • the operation of the nucleic acid amplification device 1 when performing is described.
  • the control unit 17 controls the first temperature control unit 3 1 and the second temperature control unit 3 2. If a predetermined operation is performed on the operation display unit 16 while the operation is in progress (for example, the “Add reaction” button in Figure 9 is pressed) It is possible to set the conditions of.
  • the operation display unit 16 displays the broken line of the time chart 1 10 and the broken line of the time chart 1 20. A line that shows Time Chart 1300 is displayed below.
  • control unit 17 controls the first temperature control unit 31, the second temperature control unit 32, and the third temperature control unit 33 to operate the 1st cycle 11 of the first sample. Control so that the ⁇ cycle, the ⁇ cycle of the second sample 1 200, and the ⁇ cycle of the 3rd sample 1300 are synchronized.
  • Fig. 8 shows that 1 200, and the cycle of 130 of the third sample 1300 are synchronized. As shown in FIG. 8, at the timing 204, the extension reaction step 1 1 4 of the first sample, the extension reaction step 1 2 4 of the second sample, and the extension reaction step 1 3 of the third sample 1 3 4 will be carried out simultaneously.
  • the optical measurement device 13 irradiates the first sample, the second sample, and the third sample with excitation light at a time, and at the same time, the first sample, Fluorescence is detected at once from the second and third samples.
  • the optical measuring device 13 has a plurality of photodetecting elements arranged two-dimensionally. Therefore, the fluorescence emitted from the first sample, the second sample, and the third sample arranged in a matrix can be detected simultaneously for each sample separately.
  • the ⁇ of the first sample is in the extension reaction step 1 1 4
  • the ⁇ of the second sample is in the extension reaction step 1 2 4
  • the ⁇ of the third sample is in the extension reaction step 1 3 4.
  • the optical measurement device 13 executes the fluorescence detection from each sample each time the timing 204 is reached.
  • the fluorescence detection result is analyzed by the controller 17.
  • the analysis provides information on the amplification status of the nucleic acid contained in the first sample, information on the amplification status of the nucleic acid contained in the second sample, and information on the amplification status of the nucleic acid contained in the third sample. ..
  • These pieces of information can be used at any time during the operation of ⁇ [3 ⁇ 4 for the first sample, ⁇ [3 ⁇ 4 for the second sample and ⁇ for the third sample, or at any time during the operation of the user. Displayed on display unit 16.
  • the information may be collected from the user each time the information is obtained while ⁇ [3 ⁇ 4 of the first sample, ⁇ of the second sample and ⁇ of the third sample are being performed.
  • On request ⁇ 02020/174918 15 ⁇ (: 170?2020/001355
  • the nucleic acid amplification device 1 Even when the first 0 is completed, the nucleic acid amplification device 1 continues the second ⁇ [3 ⁇ 4 to the second sample according to a predetermined sequence until the second ⁇ is completed. Continue to obtain information on the amplification status of the included nucleic acids. Also, the first Even if is completed, the nucleic acid amplification device 1 continues the third ⁇ [3 ⁇ 4 until the third ⁇ [3 ⁇ 4 is completed, according to a predetermined sequence, and Continue to get information.
  • the nucleic acid amplification device 1 Even if the second ⁇ is completed in addition to the first ⁇ , the nucleic acid amplification device 1 continues the third ⁇ [3 ⁇ 4 according to a predetermined sequence until the third ⁇ is completed. And continue to obtain information on the amplification status of the nucleic acid contained in the third sample.
  • nucleic acid amplification device 1 of the present embodiment a plurality of samples Can be started sequentially. Therefore, it is possible to efficiently perform ⁇ of a plurality of samples in a short time.
  • FIG. 10 is a front view of the vicinity of the portion where the container is placed in the nucleic acid amplification device 1 according to another embodiment, and is a view corresponding to FIG.
  • the first heat radiation section 41 is arranged below the first temperature control section 31.
  • the second heat radiation section 42 is arranged below the second temperature control section 32.
  • the third heat dissipation section 43 is arranged below the third temperature control section 33.
  • the first placing part 21, the first temperature adjusting part 31 and the first heat releasing part 41, the second placing part 22 and the second temperature adjusting part 41 are arranged.
  • a heat insulating material between the second mounting section 23, the third mounting section 23, the third temperature control section 33, and the third heat dissipating section 43.
  • the nucleic acid amplification device according to the present invention is not limited to the above embodiments.
  • the optical measurement device 13 detects fluorescence individually and continuously from each of a plurality of samples arranged in a matrix by scanning one or a plurality of photodetection elements. You may. Also in this case, the optical measuring device 13 can detect light emitted from a plurality of samples, for example, the first sample and the second sample, at one time.
  • the second sample when the temperature of the first temperature control unit 31 is the temperature at which the first sample is subjected to the annealing step 113, the second sample is set to the casing.
  • the cover 1 2 was unlocked to fit inside 11.
  • the unlocking of the cover 12 may be performed at another timing. For example, even if the cover 1 2 is unlocked when the temperature 3 1 of the first temperature control unit is decreasing toward the temperature at which the first sample is subjected to the annealing step 1 13 3. Good.
  • the second sample can be set at an early timing, and the temperature of the first temperature control unit 31 and thus the temperature of the first sample can be lowered more quickly. You can
  • the unlocking of the cover 12 may be performed at another timing.
  • the control unit 17 may unlock the cover 1 2. Yes.
  • the additional sample can be set at a relatively arbitrary timing, which improves user pity. Unlocking with such a timing will reduce the temperature drop of the sample placed in the housing. ⁇ 02020/174918 17 ⁇ (: 170?2020/001355
  • the nucleic acid amplification device 1 may be provided with a notifying unit for notifying by sound or light that 0 of one of the samples is completed. If the nucleic acid amplification device 1 is equipped with a notification unit, The user can immediately know the inspection result of the completed sample.
  • the mounting unit includes a first mounting unit 21 and a second mounting unit 2
  • the second and third mounting portions 23 are divided into three in the column direction.
  • the placement section may be divided into a plurality of rows.
  • the container may be composed of one well or may be composed of a plurality of wells connected at equal intervals in the row direction.
  • the first placing part 21, the second placing part 22 and the third placing part 23 may be further divided into a plurality of columns or rows. As a result, the temperature distribution of each mounting portion can be controlled more finely.
  • the nucleic acid amplification device 1 according to the present invention is not limited to the so-called 3 step ⁇ consisting of three steps of a thermal denaturation step, an annealing step and an extension reaction step, and an annealing and extension reaction are performed in one step. It goes without saying that the so-called 2 steps can be performed.
  • the present invention contributes to improving the efficiency of inspection in a nucleic acid amplification device such as a real-time device, and its industrial applicability is great. Explanation of symbols ⁇ 02020/174918 18 ?01/1?2020/001355

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A nucleic acid amplification device comprises: a first temperature regulating unit for heating and cooling a first sample containing a nucleic acid; a second temperature regulating unit for heating and cooling a second sample containing a nucleic acid; and a control unit for controlling the first temperature regulating unit and the second temperature regulating unit and starting the control of the second temperature regulating unit in the course of controlling the first temperature regulating unit.

Description

明 細 書 Specification
発明の名称 : 核酸増幅装置 Title of invention: Nucleic acid amplification apparatus
技術分野 Technical field
[0001] 本発明は、 核酸増幅装置に関する。 The present invention relates to a nucleic acid amplification device.
背景技術 Background technology
[0002] 従来、 熱変性工程、 アニーリングエ程及び伸長反応工程を経て、 DNA (D eoxyribonucleic Acid :デオキシリボ核酸) 等の核酸にポリメラーゼ連鎖反 応 (PCR : Polymerase Chain Reaction) を起こさせて、 核酸を増幅させる 核酸増幅装置が知られている。 また、 核酸の増幅機構に加えて核酸の検出部 を備え、 増幅した核酸をリアルタイムに検出することができる核酸増幅装置 が知られている (例えば、 特許文献 1参照) 。 このような核酸増幅装置は、 リアルタイム PC R装置と呼ばれている。 [0002] Conventionally, through a heat denaturation step, an annealing step and an extension reaction step, a polymerase chain reaction (PCR: Polymerase Chain Reaction) is caused to a nucleic acid such as DNA (Doxyribonucleic Acid: deoxyribonucleic acid) to generate a nucleic acid. A nucleic acid amplification device for amplification is known. Further, there is known a nucleic acid amplification device that includes a nucleic acid detection unit in addition to a nucleic acid amplification mechanism and can detect the amplified nucleic acid in real time (see, for example, Patent Document 1). Such a nucleic acid amplification device is called a real-time PCR device.
[0003] リアルタイム P C R装置は、 D N Aや蛍光物質等を含む反応試料の温度を 制御して DN Aを増幅させる。 また、 リアルタイム PC R装置は、 反応試料 を励起させる励起光を照射し、 その際に反応試料から発生する蛍光に基づい て増幅された D N Aを定量的に測定する。 [0003] A real-time PCR device controls the temperature of a reaction sample containing DNA, a fluorescent substance, etc. to amplify DNA. In addition, the real-time PC device irradiates with excitation light that excites the reaction sample, and quantitatively measures the amplified DNA based on the fluorescence generated from the reaction sample.
[0004] リアルタイム PC R装置は、 研究分野はもちろん、 各種検査分野でも広く 用いられている。 [0004] The real-time PCR apparatus is widely used not only in the research field but also in various inspection fields.
先行技術文献 Prior art documents
特許文献 Patent literature
[0005] 特許文献 1 :特開 201 0 _ 81 898号公報 Patent Document 1: Japanese Patent Laid-Open No. 201 0 _ 81 898
発明の概要 Summary of the invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0006] リアルタイム PC R装置においては、 熱変性工程、 アニーリングエ程及び 伸長反応工程を含むサイクルが複数回繰り返されることによって、 核酸の増 幅が行われる。 よって、 1つの試料の反応に、 比較的長時間 (例えば 40分 ) を要する。 そのため、 試料の数が多い場合、 かなりの長時間が必要となる \¥02020/174918 2 卩(:170?2020/001355 [0006] In a real-time PCR device, nucleic acid amplification is performed by repeating a cycle including a heat denaturation step, an annealing step, and an extension reaction step a plurality of times. Therefore, it takes a relatively long time (for example, 40 minutes) to react one sample. Therefore, if the number of samples is large, it will take a long time. \¥02020/174918 2 卩(: 170?2020/001355
[0007] 本発明は、 このような状況に鑑みてなされたものであり、 複数の試料を短 時間で効率よく反応させることが可能な核酸増幅装置を提供することを課題 とする。 [0007] The present invention has been made in view of such circumstances, and an object of the present invention is to provide a nucleic acid amplification device capable of efficiently reacting a plurality of samples in a short time.
課題を解決するための手段 Means for solving the problem
[0008] 本発明に係る核酸増幅装置は、 核酸を含む第 1の試料を加熱及び冷却する 第 1の温度調節部と、 核酸を含む第 2の試料を加熱及び冷却する第 2の温度 調節部と、 前記第 1の温度調節部及び前記第 2の温度調節部を制御し、 前記 第 1の温度調節部の制御をしている途中で、 前記第 2の温度調節部の制御を 開始する制御部と、 を備える。 [0008] A nucleic acid amplification apparatus according to the present invention comprises: a first temperature control unit for heating and cooling a first sample containing nucleic acid; and a second temperature control unit for heating and cooling a second sample containing nucleic acid. And a control that controls the first temperature control unit and the second temperature control unit, and starts the control of the second temperature control unit during the control of the first temperature control unit. And a section.
発明の効果 Effect of the invention
[0009] 本発明によれば、 複数の試料を短時間で効率よく反応させることが可能な 核酸増幅装置を提供することができる。 [0009] According to the present invention, it is possible to provide a nucleic acid amplifier capable of efficiently reacting a plurality of samples in a short time.
図面の簡単な説明 Brief description of the drawings
[0010] [図 1]_実施形態に係る核酸増幅装置の縦断面模式図。 [0010] [FIG. 1]-A schematic vertical cross-sectional view of a nucleic acid amplification device according to an embodiment.
[図 2]—実施形態に係る核酸増幅装置の横断面模式図。 [FIG. 2]—A schematic cross-sectional view of a nucleic acid amplification device according to an embodiment.
[図 3]容器が載置される部位周辺の正面図。 [Figure 3] Front view of the area around the container.
[図 4]容器が載置される部位周辺の平面図。 [Fig. 4] A plan view of the area around the container.
[図 5八]容器の一例の平面図。 [Fig. 58] A plan view of an example of the container.
[図 58]容器の一例の側面図。 [FIG. 58] A side view of an example of the container.
[図 6八]容器の一例の平面図。 [Fig. 68] A plan view of an example of the container.
[図 68]容器の一例の側面図。 [FIG. 68] A side view of an example of the container.
[図 7]ポリメラーゼ連鎖反応における温度サイクルを示すタイムチヤート。 [Fig. 7] Time chart showing the temperature cycle in the polymerase chain reaction.
[図 8]_実施形態に係る核酸増幅装置が実行する制御の温度サイクルを示す夕 イムチヤート。 [Fig. 8] _ An evening chart showing a temperature cycle of control executed by the nucleic acid amplification device according to the embodiment.
[図 9八]_実施形態に係る核酸増幅装置が備える操作表示部における表示例。 [図 98]_実施形態に係る核酸増幅装置が備える操作表示部における表示例。 [図%]_実施形態に係る核酸増幅装置が備える操作表示部における表示例。 \¥02020/174918 3 卩(:170?2020/001355 [Fig. 98]_Display example on the operation display unit included in the nucleic acid amplification device according to the embodiment. [Fig. 98] _ Display example on the operation display unit included in the nucleic acid amplification device according to the embodiment. [Fig.%]_Display example on the operation display unit included in the nucleic acid amplification device according to the embodiment. \¥02020/174918 3 卩 (: 170?2020/001355
[図 90]_実施形態に係る核酸増幅装置が備える操作表示部における表示例。 [図 9£]_実施形態に係る核酸増幅装置が備える操作表示部における表示例。 [図 9ド]_実施形態に係る核酸増幅装置が備える操作表示部における表示例。 [図 90]_実施形態に係る核酸増幅装置が備える操作表示部における表示例。 [図 10]他の実施形態に係る核酸増幅装置において容器が載置される部位周辺 の正面図。 [Fig. 90] _ Display example on the operation display unit included in the nucleic acid amplification device according to the embodiment. [Fig. 9] A display example on the operation display unit included in the nucleic acid amplification device according to the embodiment. [Fig. 9D] _ Display example on the operation display unit included in the nucleic acid amplification device according to the embodiment. [Fig. 90] _ Display example on the operation display unit included in the nucleic acid amplification device according to the embodiment. [FIG. 10] A front view of the vicinity of a portion where a container is placed in a nucleic acid amplification device according to another embodiment.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[001 1] 以下、 図面を参照しながら、 本発明に係る核酸増幅装置について説明する [001 1] Hereinafter, a nucleic acid amplification device according to the present invention will be described with reference to the drawings.
[0012] 図 1は、 一実施形態に係る核酸増幅装置 1の縦断面図である。 また、 図 2 は、 _実施形態に係る核酸増幅装置 1の横断面図である。 [0012] FIG. 1 is a vertical cross-sectional view of a nucleic acid amplification device 1 according to an embodiment. 2 is a cross-sectional view of the nucleic acid amplification device 1 according to the embodiment.
[0013] 核酸増幅装置 1は、 開口を有し、 試料を受け入れる筐体 1 1 と、 筐体 1 1 の開口を開閉するカバー 1 2を備える。 カバー 1 2はロック可能に構成され ており、 ロックされているときには開くことができない。 [0013] The nucleic acid amplification device 1 has an opening, a housing 11 for receiving a sample, and a cover 12 for opening and closing the opening of the housing 11. Covers 1 and 2 are lockable and cannot be opened when locked.
[0014] 筐体 1 1の内部には、 光学計測デバイス 1 3、 反射鏡 1 4及びフレネルレ ンズ 1 5が配置されている。 光学計測デバイス 1 3は、 試料に照射される励 起光を発するランプ、 試料から発せられる蛍光を受ける二次元的に配置され た複数の光検知素子 (例えば、 〇〇0又は〇1\/1〇3) 等から構成されている 。 反射鏡 1 4は、 光学計測デバイス 1 3から発せられた励起光を、 フレネル レンズ 1 5に向けて反射し、 試料から発せられた蛍光を、 光学計測デバイス 1 3に向けて反射する。 フレネルレンズ 1 5は、 励起光が複数の試料に均等 に照射されるように、 反射鏡 1 4で反射された励起光を矯正する。 また、 フ レネルレンズ 1 5は、 試料から発せられる蛍光が光学計測デバイス 1 3で均 質に測定することができるように、 蛍光の光路を矯正する。 [0014] Inside the housing 11, an optical measuring device 13, a reflecting mirror 14 and a Fresnel lens 15 are arranged. The optical measuring device 13 includes a lamp that emits excitation light that is irradiated onto the sample, and a plurality of two-dimensionally arranged photodetection elements that receive the fluorescence emitted from the sample (for example, 0000 or 001\/1 〇 3) etc. The reflecting mirror 14 reflects the excitation light emitted from the optical measurement device 13 toward the Fresnel lens 15 and reflects the fluorescence emitted from the sample toward the optical measurement device 13. The Fresnel lens 15 corrects the excitation light reflected by the reflecting mirror 14 so that the plurality of samples are uniformly irradiated with the excitation light. Further, the Fresnel lens 15 corrects the optical path of the fluorescence so that the fluorescence emitted from the sample can be uniformly measured by the optical measuring device 13.
[0015] 筐体 1 1の外部には、 タッチパネル等で構成される操作表示部 1 6が取り 付けられている。 操作表示部 1 6は、 核酸増幅装置 1 に対する入力操作を受 け付けるとともに、 核酸増幅装置 1の状態を表示する。 なお、 操作表示部 1 6は、 操作を受け付けるボタン等からなる操作部と、 表示を行う液晶パネル \¥02020/174918 4 卩(:170?2020/001355 [0015] An operation display unit 16 including a touch panel or the like is attached to the outside of the housing 11. The operation display unit 16 receives an input operation to the nucleic acid amplification device 1 and displays the state of the nucleic acid amplification device 1. The operation display unit 16 includes an operation unit including buttons for accepting operations and a liquid crystal panel for displaying. \¥02020/174918 4 卩 (: 170?2020/001355
等からなる表示部とから構成されていても良い。 It may also be configured with a display unit including, for example.
[0016] 筐体 1 1の内部には、 核酸増幅装置 1 を統括制御する制御部 1 7が配置さ れている。 なお、 核酸増幅装置 1は、 制御部 1 7を備える代わりに、 外部の コンピュータと有線または無線で接続されて、 このコンピュータによって制 御されても良い。 Inside the housing 11, a control unit 17 that integrally controls the nucleic acid amplification device 1 is arranged. Note that the nucleic acid amplification device 1 may be connected to an external computer by wire or wirelessly and controlled by this computer instead of being provided with the control unit 17.
[0017] フレネルレンズ 1 5の下方には、 試料が入った容器丁が載置される第 1の 載置部 2 1が配置されている。 第 1の載置部 2 1の下には、 第 1の温度調節 部 3 1が配置されている。 第 1の温度調節部 3 1の下には、 放熱部 4 0が配 置されている。 Below the Fresnel lens 15 is arranged a first mounting part 21 on which a container containing a sample is mounted. A first temperature control unit 3 1 is arranged below the first placement unit 21. A heat radiating section 40 is arranged below the first temperature control section 31.
[0018] 第 1の載置部 2 1、 第 1の温度調節部 3 1、 放熱部 4 0及びこれらの部材 の周辺に配置される部材について、 図 3及び図 4を参照しながら、 詳しく説 明する。 図 3は、 容器丁が載置される部位周辺の正面図であり、 図 4は、 容 器丁が載置される部位周辺の平面図である。 [0018] The first placing section 21, the first temperature adjusting section 31, the heat radiating section 40, and members arranged around these members will be described in detail with reference to Figs. 3 and 4. Reveal. FIG. 3 is a front view of the vicinity of the portion on which the container knife is placed, and FIG. 4 is a plan view of the vicinity of the portion on which the container knife is placed.
[0019] 図 3に示されるように、 1つの放熱部 4 0の上に、 第 1の温度調節部 3 1 、 第 2の温度調節部 3 2、 及び、 第 3の温度調節部 3 3が、 この順序で隣接 して配置されている。 第 1の温度調節部 3 1、 第 2の温度調節部 3 2、 及び 、 第 3の温度調節部 3 3は、 上面側が加熱されるときに下面側が冷却され、 上面側が冷却されるときに下面側が加熱されるペルチェ素子で構成されてい る。 また、 放熱部 4 0は、 金属等の熱伝導率の良い素材で形成された多数の フィンを有している。 放熱部 4 0は、 第 1の温度調節部 3 1、 第 2の温度調 節部 3 2、 及び、 第 3の温度調節部 3 3の下面と周辺空気との間の熱交換を 促進する。 As shown in FIG. 3, a first temperature control unit 31, a second temperature control unit 3 2, and a third temperature control unit 33 are provided on one heat dissipation unit 40. , Are arranged adjacent to each other in this order. The first temperature control unit 3 1, the second temperature control unit 3 2, and the third temperature control unit 33 are cooled on the lower surface side when the upper surface side is heated and on the lower surface when the upper surface side is cooled. It is composed of a Peltier element whose side is heated. Further, the heat dissipation part 40 has a large number of fins formed of a material having a high thermal conductivity such as metal. The heat radiating section 40 promotes heat exchange between the lower surface of the first temperature adjusting section 31, the second temperature adjusting section 32, and the lower surface of the third temperature adjusting section 33 and the ambient air.
[0020] 第 1の温度調節部 3 1の上には、 第 1の載置部 2 1が配置されている。 第 [0020] The first placement unit 21 is arranged on the first temperature control unit 31. First
2の温度調節部 3 2の上には、 第 2の載置部 2 2が配置されている。 第 3の 温度調節部 3 3の上には、 第 3の載置部 2 3が配置されている。 第 1の載置 部 2 1、 第 2の載置部 2 2及び第 3の載置部 2 3は、 それぞれ、 金属等の熱 伝導率の高い素材で形成されている。 第 1の載置部 2 1、 第 2の載置部 2 2 及び第 3の載置部 2 3の各上面には、 第 1のくぼみ 2 1 3、 第 2のくぼみ 2 \¥02020/174918 5 卩(:170?2020/001355 The second mounting portion 2 2 is arranged on the second temperature control portion 32. A third mounting portion 23 is arranged on the third temperature control portion 33. The first placing part 21, the second placing part 22 and the third placing part 23 are each formed of a material having a high thermal conductivity such as metal. The upper surface of each of the first placing portion 21, the second placing portion 2 2 and the third placing portion 2 3 has a first depression 2 1 3 and a second depression 2 2 \¥02020/174918 5 卩 (: 170?2020/001355
2 3及び第 3のくぼみ 2 3 3が、 複数個ずつ形成されている。 第 1のくぼみ 2 1 3、 第 2のくぼみ 2 2 3及び第 3のくぼみ 2 3 3は、 試料が収容された 容器丁のウエル が載置される部位である。 A plurality of 2 3 and 3rd recesses 2 3 3 are formed. The first depression 2 1 3, the second depression 2 2 3 and the third depression 2 3 3 are parts where the wells of the container containing the sample are placed.
[0021 ] 第 1の載置部 2 1 には、 第 1の温度計 5 1が取り付けられている。 第 2の 載置部 2 2には、 第 2の温度計 5 2が取り付けられている。 第 3の載置部 2 3には、 第 3の温度計 5 3が取り付けられている。 第 1の温度計 5 1、 第 2 の温度計 5 2及び第 3の温度計 5 3は、 それぞれ例えば熱電対である。 第 1 の温度計 5 1は、 第 1の載置部 2 1の温度を検出する。 第 1の載置部 2 1は 熱伝導率の高い素材で形成されているので、 第 1の載置部 2 1の温度は、 第 1の載置部 2 1 に載置された容器丁に入っている試料の温度と見なすことが できる。 第 2の載置部 2 2の温度及び第 3の載置部 2 3の温度についても同 様である。 [0021] A first thermometer 5 1 is attached to the first mounting portion 21. A second thermometer 5 2 is attached to the second mounting portion 22. A third thermometer 5 3 is attached to the third mounting portion 23. The first thermometer 51, the second thermometer 52, and the third thermometer 53 are each, for example, a thermocouple. The first thermometer 5 1 detects the temperature of the first mounting portion 2 1. Since the first placing part 21 is made of a material having a high thermal conductivity, the temperature of the first placing part 21 will not be affected by the temperature of the container placed on the first placing part 21. It can be regarded as the temperature of the contained sample. The same applies to the temperature of the second mounting portion 22 and the temperature of the third mounting portion 23.
[0022] 図 4に示されるように、 第 1の載置部 2 1 には、 複数の第 1のくぼみ 2 1 As shown in FIG. 4, the first mounting portion 21 has a plurality of first depressions 21.
3がマトリクス状に配置されている。 具体的には、 8個の第 1のくぼみ 2 1 3からなる列が 4列配置されている。 列方向に並ぶ第 1のくぼみ 2 1 3同士 の間隔はどの位置でも等しい。 また、 行方向に並ぶ第 1のくぼみ 2 1 3同士 の間隔もどの位置でも等しい。 3 are arranged in a matrix. Specifically, four rows of eight first depressions 2 1 3 are arranged. The intervals between the first depressions 2 1 3 arranged in the row direction are equal at any position. Also, the intervals between the first depressions 2 1 3 arranged in the row direction are equal at any position.
[0023] また、 第 2の載置部 2 2には、 複数の第 2のくぼみ 2 2 3がマトリクス状 に配置されている。 具体的には、 8個の第 2のくぼみ 2 2 3からなる列が 4 列配置されている。 列方向に並ぶ第 2のくぼみ 2 2 3同士の間隔はどの位置 でも等しい。 また、 行方向に並ぶ第 2のくぼみ 2 2 3同士の間隔もどの位置 でも等しい。 [0023] Further, the second support 2 2, a plurality of second recesses 2 2 3 are arranged in a matrix. Specifically, four rows of eight second recesses 2 2 3 are arranged. The intervals between the second depressions 2 2 3 arranged in the row direction are equal at any position. Also, the intervals between the second depressions 2 2 3 arranged in the row direction are equal at any position.
[0024] また、 第 3の載置部 2 3には、 複数の第 3のくぼみ 2 3 3がマトリクス状 に配置されている。 具体的には、 8個の第 3のくぼみ 2 3 3からなる列が 4 列配置されている。 列方向に並ぶ第 3のくぼみ 2 3 3同士の間隔はどの位置 でも等しい。 また、 行方向に並ぶ第 3のくぼみ 2 3 3同士の間隔もどの位置 でも等しい。 [0024] In addition, a plurality of third recesses 2 3 3 are arranged in a matrix on the third mounting portion 23. Specifically, four rows of eight third depressions 2 3 3 are arranged. The intervals between the third depressions 2 3 3 arranged in the row direction are equal at any position. Also, the intervals between the third depressions 2 3 3 arranged in the row direction are equal at any position.
[0025] さらに、 互いに隣接する第 1のくぼみ 2 1 3と第 2のくぼみ 2 2 3 (図 4 \¥02020/174918 6 卩(:170?2020/001355 では、 右端列の第 1のくぼみ 2 1 3と左端列の第 2のくぼみ 2 2 3) との間 隔は、 行方向に並んで隣接する第 1のくぼみ 2 1 3同士の間隔、 及び、 第 2 のくぼみ 2 2 3同士の間隔と等しい。 [0025] Furthermore, the first depression 2 1 3 and the second depression 2 2 3 which are adjacent to each other (Fig. 4 \¥02020/174918 6 In the case of (: 170?2020/001355, the distance between the first depression 2 1 3 in the rightmost row and the second depression 2 2 3 in the leftmost row) is adjacent in the row direction. The distance between the first depressions 2 1 3 and the distance between the second depressions 2 2 3 are equal to each other.
[0026] また、 互いに隣接する第 2のくぼみ 2 2 3と第 3のくぼみ 2 3 3 (図 4で は、 右端列の第 2のくぼみ 2 2 3と左端列の第 3のくぼみ 2 3 3) との間隔 は、 行方向に並んで隣接する第 2のくぼみ 2 2 3同士の間隔、 及び、 第 3の くぼみ 2 3 3同士の間隔と等しい。 [0026] Also, the second recess 2 2 3 and the third recess 2 3 3 that are adjacent to each other (in Fig. 4, the second recess 2 2 3 in the right end row and the third recess 2 3 3 in the left end row) ) Is equal to the distance between the second depressions 2 2 3 adjacent to each other in the row direction and the distance between the third depressions 2 3 3 adjacent to each other.
[0027] つまり、 行方向に関しては、 互いに隣接する第 1のくぼみ 2 1 3同士の間 隔、 第 1のくぼみ 2 1 3と第 2のくぼみ 2 2 3との間隔、 第 2のくぼみ 2 2 3同士の間隔、 第 2のくぼみ 2 2 3と第 3のくぼみ 2 3 3との間隔、 及び、 第 3のくぼみ 2 3 3同士の間隔が、 全て等しい。 [0027] That is, in the row direction, the distance between the first depressions 2 1 3 adjacent to each other, the distance between the first depression 2 1 3 and the second depression 2 2 3 and the second depression 2 2 3 The distance between the three recesses, the distance between the second recess 2 2 3 and the third recess 2 3 3 and the distance between the third recesses 2 3 3 are all equal.
[0028] また、 列方向に関しては、 互いに隣接する第 1のくぼみ 2 1 3同士の間隔 、 第 2のくぼみ 2 2 3同士の間隔、 及び、 第 3のくぼみ 2 3 3同士の間隔が 、 全て等しい。 [0028] In the column direction, the distance between the first depressions 2 1 3 adjacent to each other, the distance between the second depressions 2 2 3 and the distance between the third depressions 2 3 3 are all equal.
[0029] 図 5 及び図 5巳は、 それぞれ、 本実施形態に係る核酸増幅装置 1 ととも に使用される容器丁の_例を示す平面図及び側面図である。 容器丁は、 試料 が収容されるウエル を 8個有しており、 8個のウエル は等間隔で 1列に 並んでいる。 互いに隣接するウエル 同士の間隔は、 列方向に隣接して並ぶ 第 1のくぼみ 2 1 3同士の間隔、 第 2のくぼみ 2 2 3同士の間隔、 及び、 第 3のくぼみ 2 3 3同士の間隔と等しい。 [0029] Figs. 5 and 5 are a plan view and a side view, respectively, showing an example of a container knife used with the nucleic acid amplification device 1 according to the present embodiment. The container knife has eight wells in which the sample is stored, and the eight wells are arranged in a row at equal intervals. The spacing between wells adjacent to each other is the spacing between the first depressions 2 1 3 adjacent to each other in the row direction, the spacing between the second depressions 2 2 3 and the spacing between the third depressions 2 3 3 Is equal to
[0030] よって、 第 1の載置部 2 1、 第 2の載置部 2 2及び第 3の載置部 2 3の上 に、 図 5八及び図 5巳に示される容器丁を、 4つずつ載置することができる 。 必ずしも各載置部に容器丁を 4つずつ載置しなければならないわけではな いことは言うまでもない。 必要に応じて、 各載置部に容器丁を 3つ以下ずつ 載置しても良いし、 いずれかの載置部に容器丁を 1つも載置しなくても良い Therefore, the container knife shown in FIGS. 58 and 5 is placed on the first placing portion 21, the second placing portion 22 and the third placing portion 23. Can be placed one by one. It goes without saying that it is not always necessary to mount four container knives on each mounting part. If necessary, 3 or less container knives may be placed on each mounting part, or no container knives may be mounted on either mounting part.
[0031 ] 図 6 及び図 6巳は、 それぞれ、 本実施形態に係る核酸増幅装置 1 ととも に使用することが可能な容器丁の他の一例を示す平面図及び側面図である。 \¥02020/174918 7 卩(:170?2020/001355 FIG. 6 and FIG. 6 are a plan view and a side view showing another example of the container knife that can be used with the nucleic acid amplification device 1 according to the present embodiment. \¥02020/174918 7 卩(: 170?2020/001355
図 6 に示されるように、 容器丁は、 マトリクス状に配置された試料が入れ られるウエル を有している。 具体的には、 8個のウエル からなる列を 1 2列有している。 As shown in Figure 6, the container has wells in which the samples are placed in a matrix. Specifically, it has 12 rows of 8 wells.
[0032] 列方向に互いに隣接して並ぶウエル 同士の間隔は、 どの位置でも、 列方 向に隣接して並ぶ第 1のくぼみ 2 1 3同士の間隔と等しい。 また、 行方向に 互いに隣接して並ぶウエル 同士の間隔は、 どの位置でも、 行方向に互いに 隣接する第 1のくぼみ 2 1 3同士の間隔に等しい。 [0032] The spacing between the wells that are adjacent to each other in the column direction is equal to the spacing between the first depressions 2 1 3 that are adjacent to each other at any position. Also, the distance between the wells that are adjacent to each other in the row direction is equal to the distance between the first depressions 2 1 3 that are adjacent to each other in the row direction at any position.
[0033] よって、 本実施形態に係る核酸増幅装置 1が備える第 1の載置部 2 1、 第 [0033] Therefore, the first placement unit 21 and the first placement unit 21 included in the nucleic acid amplification device 1 according to the present embodiment
2の載置部 2 2及び第 3の載置部 2 3の上に、 図 6 及び図 6巳に示される 容器丁を 1つ載置することができる。 つまり、 本実施形態に係る核酸増幅装 置 1は、 必要ならば、 図 6八及び図 6巳に示される容器丁とともに使用する ことが可能である。 One container knife shown in FIGS. 6 and 6 can be placed on the second placing portion 22 and the third placing portion 23. That is, the nucleic acid amplification device 1 according to the present embodiment can be used with the container knife shown in FIGS. 68 and 6 if necessary.
[0034] 以上のような構成を有する本実施形態に係る核酸増幅装置 1 を用いて実行 される 〇 について簡単に説明する。 ここでは、 試料が収容された容器丁 が第 1の載置部 2 1 に載置されたものとして説明する。 この説明は、 第 2の 載置部 2 2または第 3の載置部 2 3に容器丁が載置された場合にも同様に当 てはまる。 [0034] ◯ that is executed by using the nucleic acid amplification device 1 according to the present embodiment having the above configuration will be briefly described. Here, it is assumed that the container containing the sample is placed on the first placing part 21. This description also applies to the case where the container knife is placed on the second placing section 22 or the third placing section 23.
[0035] 図 7は、 〇 における温度サイクルを示すタイムチヤート 1 0 0である 。 図 7において、 横軸は時間、 縦軸は試料の温度である。 [0035] FIG. 7 is a time chart 100 showing the temperature cycle at ◯. In Fig. 7, the horizontal axis represents time and the vertical axis represents sample temperature.
[0036] カバー 1 2が開いた状態で、 室温である試料が収容された容器丁が、 筐体 [0036] With the cover 12 open, the container containing the sample at room temperature is
1 1内の第 1の載置部 2 1の上に載置される。 カバー 1 2が閉じられ、 ロッ クされた後、 制御部 1 7によって第 1の温度調節部 3 1が制御され、 第 1の 温度調節部 3 1の上面側の温度が上昇する。 同時に、 容器丁内の試料の温度 が上昇し、 〇[¾は酵素活性化工程 1 0 1 に移行する。 酵素活性化工程 1 0 1 において、 試料の温度が予め定められた所定の温度 (例えば 9 5 °〇 に達 する。 It is placed on the first placing part 2 1 in 1 1. After the cover 12 is closed and locked, the control unit 17 controls the first temperature control unit 31 to raise the temperature of the upper surface of the first temperature control unit 3 1. At the same time, the temperature of the sample in the container rises, and [○] shifts to the enzyme activation step 10 1. In the enzyme activation step 101, the temperature of the sample reaches a predetermined temperature (for example, 95 ° 〇).
[0037] 酵素活性化工程 1 0 1では、 試料の温度が一定に維持された状態が所定時 間継続する。 \¥02020/174918 8 卩(:170?2020/001355 [0037] In the enzyme activation step 101, the state where the temperature of the sample is kept constant continues for a predetermined time. \¥02020/174918 8 卩 (: 170?2020/001355
[0038] 続いて、 試料の温度が維持されたまま、 〇 は熱変性工程 1 0 2に移行 する。 熱変性工程 1 0 2に移行し、 試料の温度が一定に維持された状態で所 定時間 (例えば 1 〇秒) が経過すると、 熱変性工程 1 0 2は完了する。[0038] Then, while the temperature of the sample is maintained, ◯ moves to the heat denaturation step 102. When the process proceeds to the heat denaturation step 102 and the temperature of the sample is kept constant for a predetermined time (for example, 10 seconds), the heat denaturation step 102 is completed.
[0039] 続いて、 制御部 1 7は、 第 1の温度調節部 3 1 を制御し、 第 1の温度調節 部 3 1の上面側の温度を低下させる。 同時に、 容器丁内の試料の温度が低下 する。 [0039] Subsequently, the control unit 17 controls the first temperature adjusting unit 31 to reduce the temperature on the upper surface side of the first temperature adjusting unit 31. At the same time, the temperature of the sample in the container falls.
[0040] 試料の温度が予め定められた所定の温度 (例えば 5 5 °〇) に達すると、 はアニーリングエ程 1 0 3に移行する。 アニーリングエ程 1 0 3に移行 し、 試料の温度が一定に維持された状態で所定時間 (例えば 1 〇秒) が経過 すると、 アニーリングエ程 1 0 3は完了する。 [0040] When the temperature of the sample reaches a predetermined temperature (for example, 55°), shifts to the annealing step 103. The annealing step 103 is completed when a predetermined time (for example, 10 seconds) elapses while the temperature of the sample is kept constant after shifting to the annealing step 103.
[0041] 続いて、 制御部 1 7は、 第 1の温度調節部 3 1 を制御し、 第 1の温度調節 部 3 1の上面側の温度を上昇させる。 同時に、 容器丁内の試料の温度が上昇 する。 [0041] Subsequently, the control unit 17 controls the first temperature adjustment unit 31 to raise the temperature on the upper surface side of the first temperature adjustment unit 3 1. At the same time, the temperature of the sample in the container rises.
[0042] 試料の温度が予め定められた所定の温度 (例えば 7 2 °〇) に達すると、 は伸長反応工程 1 0 4に移行する。 伸長反応工程 1 0 4においては、 試 料の温度が一定に維持された状態が所定時間 (例えば 2 0秒) 継続される。 伸長反応工程 1 0 4の最中に、 光学計測デバイス 1 3は、 光学計測を行う。 よって、 伸長反応工程 1 0 4は、 光学計測工程でもある。 [0042] When the temperature of the sample reaches a predetermined temperature (for example, 72°), the process proceeds to the extension reaction step 104. In the elongation reaction step 104, the temperature of the sample is kept constant for a predetermined time (for example, 20 seconds). During the elongation reaction step 104, the optical measurement device 13 performs optical measurement. Therefore, the extension reaction step 104 is also an optical measurement step.
[0043] 熱変性工程 1 0 2、 ァニーリングエ程 1 0 3及び伸長反応工程 1 0 4によ つて、 1つのサイクル 1 0〇〇が構成されている。 このサイクル 1 0〇〇が 複数回、 例えば 4 0回繰り返されて、 1つの試料の 〇 が完了する。 [0043] A cycle 100000 is constituted by the heat denaturation step 102, the annealing step 103, and the extension reaction step 104. This cycle 100,000 is repeated multiple times, for example 40 times, to complete one sample.
[0044] この間、 例えば 4 0分程度の時間が掛かる。 仮に、 1つの試料の 〇[¾が 完了してから次の試料の 〇 が開始されるとすると、 合計で 8 0分程度の 時間が掛かることになる。 また、 更にその後に、 その次の試料の 〇[¾が開 始されるとすると、 合計で 1 2 0分程度の時間が掛かることになる。 [0044] During this time, for example, it takes about 40 minutes. If ◯ of one sample is completed and then ◯ of the next sample is started, it will take about 80 minutes in total. Further, if the next sample ◯[¾ is started after that, it will take about 120 minutes in total.
[0045] しかしながら、 本実施形態に係る核酸増幅装置 1 によれば、 1つの試料の 〇[¾が完了する前に、 次の試料の 〇 を開始することができるので、 短 時間で複数の試料の
Figure imgf000010_0001
を行うことができる。 以下、 本実施形態に係る核 \¥02020/174918 9 卩(:170?2020/001355
[0045] However, according to the nucleic acid amplification device 1 according to the present embodiment, since it is possible to start the ◯ of the next sample before the ◯ [¾ of one sample is completed, a plurality of samples can be obtained in a short time. of
Figure imgf000010_0001
It can be performed. Hereinafter, the nucleus according to the present embodiment \¥02020/174918 9 卩 (: 170?2020/001355
酸増幅装置 1 による、 複数の試料の の実行について、 図 8及び図 9八 から図 9◦を参照しながら説明する。 The execution of a plurality of samples by the acid amplifier 1 will be described with reference to FIGS. 8 and 98 to 9°.
[0046] 以下、 第 1の載置部 2 1の上に載置される試料を、 第 1の試料と記載する 。 第 2の載置部 2 2の上に載置される試料を、 第 2の試料と記載する。 第 3 の載置部 2 3の上に載置される試料を、 第 3の試料と記載する。 [0046] Hereinafter, the sample placed on the first placing part 21 is referred to as a first sample. The sample placed on the second placing part 22 is referred to as a second sample. A sample placed on the third placing part 23 is referred to as a third sample.
[0047] 図 8は、 一実施形態に係る核酸増幅装置 1が実行する制御の温度サイクル を示すタイムチヤートである。 図 8において、 横軸は時間、 縦軸は試料の温 度である。 タイムチヤート 1 1 0は、 第 1の試料の 〇 における温度サイ クルを示すタイムチヤートである。 タイムチヤート 1 2 0は、 第 2の試料の 〇 における温度サイクルを示すタイムチヤートである。 タイムチヤート 1 3 0は、 第 3の試料の 〇 における温度サイクルを示すタイムチヤート である。 FIG. 8 is a time chart showing a temperature cycle of control executed by the nucleic acid amplification device 1 according to one embodiment. In Fig. 8, the horizontal axis is the time and the vertical axis is the sample temperature. The time chart 110 is a time chart showing the temperature cycle of the first sample at ◯. The time chart 120 is a time chart showing the temperature cycle of the second sample at 0. The time chart 1300 is a time chart showing the temperature cycle at 0 of the third sample.
[0048] また、 図 9 から図 9 0は、 それぞれ、 一実施形態に係る核酸増幅装置 1 が備える操作表示部 1 6における表示例である。 Further, FIGS. 9 to 90 are display examples on the operation display unit 16 provided in the nucleic acid amplification device 1 according to the embodiment, respectively.
[0049] 最初に、 カバー 1 2が開かれるとともに、 室温である第 1の試料が、 第 1 の載置部 2 1の上に載置される。 続いて、 カバー 1 2が閉じられ、 ロックさ れるとともに、 操作表示部 1 6が操作され、 第 1の試料の 〇 の条件が設 定される。 First, the cover 12 is opened, and the first sample at room temperature is placed on the first placing part 21. Then, the cover 12 is closed and locked, and the operation display unit 16 is operated to set the condition of ◯ for the first sample.
[0050] このときの第 1の試料の温度が室温であることが、 図 8のタイムチヤート [0050] At this time, the temperature of the first sample is room temperature, which means that
1 1 0の左端に示されている。 また、 このときの操作表示部 1 6の表示例が 、 図 9八に示されている。 図 9八には、 タイムチヤート 1 1 0を模した折れ 線が^^されている。 It is shown at the far left of 1 1 0. A display example of the operation display unit 16 at this time is shown in FIG. In Figure 9-8, a polygonal line imitating Time Chart 110 is shown.
[0051 ] 第 1の試料の 〇 の条件設定は、 例えば、 図 9 に示される 「編集」 ボ タンを押すことで実行することができる。 なお、 第 1の試料の 〇[¾の条件 設定は、 第 1の試料が第 1の載置部 2 1 に載置される前であってもよい。 [0051] The condition setting of ◯ of the first sample can be executed, for example, by pressing the "edit" button shown in Fig. 9. It should be noted that the above-mentioned condition setting of the first sample may be performed before the first sample is mounted on the first mounting part 21.
[0052] 図 9八に示される 「反応開始」 ボタンが押されると、 制御部 1 7による第 [0052] When the "start reaction" button shown in FIG.
1の温度調節部 3 1の制御、 つまり、 第 1の試料の 〇[¾が開始される。 す ると、 制御部 1 7は、 予め定められたシーケンスに従って、 第 1の温度調節 \¥02020/174918 10 卩(:170?2020/001355 The control of the temperature control unit 31 of 1 is started, that is, the temperature of the first sample is started. Then, the controller 17 performs the first temperature adjustment according to a predetermined sequence. \¥02020/174918 10 box (: 170?2020/001355
部 3 1 を加熱したり冷却したりする。 その結果、 図 8のタイムチヤート 1 1 0に示されるように、 酵素活性化工程 1 1 1が行われ、 続いて、 熱変性工程 1 1 2、 アニーリングエ程 1 1 3及び伸長反応工程 1 1 4を含むサイクル 1 1 0 <3が繰り返される。 Heat or cool part 3 1. As a result, as shown in the time chart 1 110 of FIG. 8, the enzyme activation step 1 1 1 is performed, followed by the heat denaturation step 1 1 2, annealing step 1 1 3 and extension reaction step 1 1 1. Cycle 1 1 0 <3 including 4 is repeated.
[0053] 第 1の試料が熱変性工程 1 1 2にかけられているときの操作表示部 1 6の 表示例が、 図 9巳に示されている。 [0053] FIG. 9 shows a display example of the operation display unit 16 when the first sample is subjected to the heat denaturation step 11 2.
[0054] 第 1の試料の 〇 が行われている途中、 つまり、 制御部 1 7が第 1の温 度調節部 3 1の制御をしている途中で、 操作表示部 1 6で所定の操作が行わ れる (例えば図 9巳の 「反応追加」 ボタンが押される) と、 第 2の試料の 〇 の条件設定を行うことが可能となる。 [0054] While the ◯ of the first sample is being performed, that is, while the control unit 17 is controlling the first temperature adjusting unit 31, the operation display unit 16 performs a predetermined operation. When the “Add reaction” button in Fig. 9 is pressed, it is possible to set the ◯ condition for the second sample.
[0055] 第 2の試料の 〇[¾の条件が設定されているときの操作表示部 1 6の表示 例が、 図 9〇に示されている。 図 9〇には、 タイムチヤート 1 1 〇を模した 折れ線が上側に、 タイムチヤート 1 2 0を摸した折れ線が下側に示されてい る。 なお、 図 9〇に示される状態では、 操作表示部 1 6上の 「一時停止」 ボ タンは、 押すことができない。 [0055] FIG. 90 shows a display example of the operation display unit 16 of the second sample when the condition [0] is set. In Fig. 90, the polygonal line imitating Time Chart 1100 is shown on the upper side, and the polygonal line imitating Time Chart 120 is shown on the lower side. In the state shown in Fig. 90, the "pause" button on the operation display unit 16 cannot be pressed.
[0056] なお、 第 2の試料の 〇 の条件設定の間、 第 1の試料の 〇 は継続さ れる。 [0056] Note that, while setting the condition of ◯ of the second sample, ◯ of the first sample is continued.
[0057] 第 1の試料の 〇 がアニーリングエ程 1 1 3に移行すると (一例ではあ るが、 図 8に示されるタイミング 2 0 1 に達すると) 、 操作表示部 1 6の表 示は、 図 9 0の状態となる。 すると、 それまで押すことができなかった図 9 口に示される 「一時停止」 ボタンを押すことが可能となる。 そして、 「一時 停止」 ボタンが押されると、 操作表示部 1 6の表示は、 図 9巳の状態となる [0057] When the ◯ of the first sample shifts to the annealing step 1 13 (as an example, when the timing 2 0 1 shown in FIG. 8 is reached), the display of the operation display unit 16 is as follows. The state shown in Fig. 90 is obtained. Then, it becomes possible to press the "pause" button shown in Fig. 9 that could not be pressed until then. Then, when the "pause" button is pressed, the display on the operation display unit 16 becomes the state shown in Fig. 9.
[0058] 操作表示部 1 6の表示が図 9巳の状態となるとき、 カバー 1 2のロックは 解除される。 よって、 カバー 1 2を開き、 第 2の載置部 2 2の上に、 第 2の 試料を載置することが可能となる。 [0058] When the display on the operation display unit 16 is in the state shown in Fig. 9, the cover 12 is unlocked. Therefore, the cover 12 can be opened and the second sample can be placed on the second placing section 22.
[0059] このときの第 2の試料の温度が室温であることが、 図 8のタイムチヤート [0059] The temperature of the second sample at this time is room temperature.
1 2 0の左端に示されている。 \¥02020/174918 11 卩(:170?2020/001355 It is shown at the far left of 120. \¥02020/174918 11 卩 (: 170?2020/001355
[0060] 第 2の試料が第 2の載置部 2 2の上に載置される際、 カバー 1 2が開かれ るので、 筐体 1 1内の温度が低下する。 しかしながら、 アニーリングエ程 1 1 3は、 第 1の試料の 〇 における最も低温の工程である。 よって、 カバ - 1 2が開かれて筐体 1 1内の温度が低下することの悪影響は最小限ですむ When the second sample is placed on the second placing section 22, the cover 12 is opened, so that the temperature inside the housing 11 is lowered. However, annealing step 113 is the coldest process in the first sample, ◯. Therefore, the adverse effect of opening the cover 12 and lowering the temperature inside the housing 11 is minimized.
[0061 ] 第 2の載置部 2 2の上に、 第 2の試料が載置され、 カバー 1 2が閉じられ 、 図 9巳に示される 「完了」 ボタンが押されると、 カバー 1 2がロックされ る。 [0061] When the second sample is placed on the second placing section 22 and the cover 12 is closed and the "completion" button shown in Fig. 9 is pressed, the cover 12 is removed. Locked
[0062] 続いて、 図 9巳に示される 「再開」 ボタンが押されると、 第 1の 〇[¾が 再開され、 更に、 新たに第 2の 〇 が開始される。 つまり、 制御部 1 7は 、 第 1の温度調節部 3 1の制御をしている途中で、 第 2の温度調節部 3 2の 制御を開始する。 第 2の試料は、 室温から、 酵素活性化工程 1 2 1が行われ る温度まで、 第 2の温度調節部 3 2によって加熱される。 [0062] Then, when the "Resume" button shown in Fig. 9 is pressed, the first ◯[¾ is restarted, and further, the second ◯ is newly started. That is, the control unit 17 starts controlling the second temperature adjusting unit 32 while it is controlling the first temperature adjusting unit 31. The second sample is heated by the second temperature controller 32 from room temperature to the temperature at which the enzyme activation step 1 21 is performed.
[0063] 第 1の試料の 〇 のサイクル 1 1 〇〇と、 第 2の試料の 〇 のサイク ル 1 2〇〇とが同期している様子が、 図 8に示されている。 [0063] Fig. 8 shows that the 0 cycle 1 1 1 00 of the first sample and the 0 cycle 1 2 0 0 of the second sample are synchronized.
[0064] これらのサイクルを同期させるとき、 制御部 1 7は、 第 1の試料の温度が 上昇しているときに第 2の試料の温度が上昇し、 第 1の試料の温度が低下し ているときに第 2の試料の温度が低下するように、 第 1の温度調節部 3 1及 び第 2の温度調節部 3 2を制御する。 [0064] When synchronizing these cycles, the control unit 17 controls the temperature of the first sample to increase and the temperature of the first sample to decrease while the temperature of the first sample increases. The first temperature control unit 3 1 and the second temperature control unit 3 2 are controlled so that the temperature of the second sample decreases when the temperature is high.
[0065] また、 これらのサイクルを同期させるとき、 制御部 1 7は、 第 1の温度調 節部 3 1の温度が第 1の試料を熱変性工程 1 1 2にかけるときの温度である ときに、 第 2の温度調節部 3 2の温度が第 2の試料を熱変性工程 1 2 2にか けるときの温度となるように、 第 1の温度調節部 3 1及び第 2の温度調節部 3 2を制御する。 [0065] Further, when these cycles are synchronized, the control unit 17 determines that the temperature of the first temperature adjustment unit 3 1 is the temperature at which the first sample is subjected to the heat denaturation step 1 1 2. In addition, the temperature of the second temperature control unit 3 2 should be the temperature at which the second sample is subjected to the heat denaturation step 1 2 2 so that the temperature of the first temperature control unit 3 1 and the second temperature control unit 3 2 Control 3 2
[0066] また、 これらのサイクルを同期させるとき、 制御部 1 7は、 第 1の温度調 節部 3 1の温度が第 1の試料をアニーリングエ程 1 1 3にかけるときの温度 であるときに、 第 2の温度調節部 3 2の温度が第 2の試料をアニーリングエ 程 1 2 3にかけるときの温度となるように、 第 1の温度調節部 3 1及び第 2 \¥02020/174918 12 卩(:170?2020/001355 [0066] Further, when synchronizing these cycles, the control unit 17 determines that the temperature of the first temperature adjusting unit 3 1 is the temperature at which the first sample is subjected to the annealing step 1 1 3. In addition, the temperature of the second temperature control unit 32 is set to the temperature when the second sample is subjected to the annealing process 1 23, so that the temperature of the first temperature control unit 31 \¥02020/174918 12 ((170?2020/001355
の温度調節部 3 2を制御する。 Controls the temperature control unit 32.
[0067] また、 これらのサイクルを同期させるとき、 制御部 1 7は、 第 1の温度調 節部 3 1の温度が第 1の試料を伸長反応工程 1 1 4にかけるときの温度であ るときに、 第 2の温度調節部 3 2の温度が第 2の試料を伸長反応工程 1 2 4 にかけるときの温度となるように、 第 1の温度調節部 3 1及び第 2の温度調 節部 3 2を制御する。 [0067] Further, when synchronizing these cycles, the control unit 17 controls the temperature of the first temperature adjusting unit 31 to be the temperature at which the first sample is subjected to the extension reaction step 1 14. At the same time, the temperature of the second temperature control unit 3 2 is adjusted to the temperature at which the second sample is subjected to the extension reaction step 1 2 4, so that the first temperature control unit 3 1 and the second temperature control unit 3 2 Control part 32.
[0068] また、 これらのサイクルが同期しているとき、 操作表示部 1 6の表示は、 例えば、 図 9 に示されている表示となる。 図 9 は、 第 1の試料の 〇[¾ が熱変性工程 1 1 2にあり、 第 2の試料の 0 が熱変性工程 1 2 2にある ことを示している。 [0068] Further, when these cycles are synchronized, the display of the operation display unit 16 becomes, for example, the display shown in FIG. FIG. 9 shows that 0 of the first sample is in the heat denaturation step 1 12 and 0 of the second sample is in the heat denaturation step 12 2.
[0069] 第 1の試料の 〇 のサイクル 1 1 〇〇と、 第 2の試料の 〇 のサイク ル 1 2〇〇とが同期すると、 タイミング 2 0 2において、 第 1の試料の伸長 反応工程 1 1 4と、 第 2の試料の伸長反応工程 1 2 4が同時に実施されるこ とになる。 [0069] When the ∘ cycle 1 1 ∘ ∘ of the first sample and the ∘ cycle 1 2 ∘ 0 0 of the second sample are synchronized, the extension reaction step 1 of the first sample 1 4 and the extension reaction step 1 2 4 of the second sample are carried out at the same time.
[0070] これらの伸長反応工程が実施されるとき、 光学計測デバイス 1 3は、 第 1 の試料及び第 2の試料に一度に励起光を照射するとともに、 第 1の試料及び 第 2の試料から一度に蛍光を検出する。 上述のとおり、 光学計測デバイス 1 3は、 二次元的に配置された複数の光検出素子を有している。 よって、 マト リクス状に配置されている第 1の試料及び第 2の試料から発せられる蛍光を 、 試料毎に区別して同時に検出することができる。 [0070] When these extension reaction steps are performed, the optical measurement device 13 irradiates the first sample and the second sample with excitation light at one time, and Detect fluorescence at once. As described above, the optical measuring device 13 has a plurality of photodetecting elements arranged two-dimensionally. Therefore, the fluorescence emitted from the first sample and the second sample arranged in a matrix can be detected simultaneously for each sample separately.
[0071] 第 1の試料の 〇 が伸長反応工程 1 1 4にあり、 第 2の試料の 〇[¾が 伸長反応工程 1 2 4にあるタイミングであるタイミング 2 0 2を迎える毎に 、 光学計測デバイス 1 3は、 各試料からの蛍光検出を実行する。 [0071] Optical measurement was carried out every time the ◯ of the first sample was in the extension reaction step 1 1 4 and the ◯ of the second sample was ¾ in the extension reaction step 1 2 4 Device 13 performs fluorescence detection from each sample.
[0072] 蛍光検出結果は、 制御部 1 7にて解析される。 解析の結果得られる第 1の 試料に含まれる核酸の増幅状況に関する情報、 及び、 第 2の試料に含まれる 核酸の増幅状況に関する情報は、 第 1の試料の 〇 及び第 2の試料の 〇 が行われている途中で、 常時、 又はユーザからの要求に応じて、 操作表示 咅^ 1 6に表示される。 あるいは、 これらの情報は、 第 1の試料の 〇[¾及び \¥02020/174918 13 卩(:170?2020/001355 [0072] The fluorescence detection result is analyzed by the controller 17. The information on the amplification status of the nucleic acid contained in the first sample and the information on the amplification status of the nucleic acid contained in the second sample, which are obtained as a result of the analysis, are as follows: ◯ for the first sample and ◯ for the second sample. During operation, it is displayed on the operation display box ^ 16 at all times or at the request of the user. Alternatively, this information can be obtained from the first sample \¥02020/174918 13 卩 (: 170?2020/001355
第 2の試料の 〇 が行われている途中で、 これらの情報が得られる度に、 又はユーザからの要求に応じて、 外部、 例えば核酸増幅装置 1 に接続された コンビユータに出力される。 Each time such information is obtained while the second sample is being measured, or in response to a request from the user, it is output to the outside, for example, to a computer connected to the nucleic acid amplification device 1.
[0073] 第 1の 〇 が完了すると、 操作表示部 1 6の表示は、 図 9 0に示される 状態となる。 この後、 核酸増幅装置 1は、 所定のシーケンスに従って、 第 2 の 〇[¾が完了するまで、 第 2の 〇[¾を継続し、 第 2の試料に含まれる核 酸の増幅状況に関する情報を取得し続ける。 [0073] When the first ◯ is completed, the display of the operation display unit 16 becomes the state shown in FIG. After that, the nucleic acid amplification device 1 continues the second ◯[¾ until the second ◯[¾ is completed and follows the predetermined sequence to display information on the amplification status of the nucleic acid contained in the second sample. Keep getting.
[0074] ここまで、 第 1の試料の 〇 及び第 2の試料の 〇 が並行して行われ るときの、 核酸増幅装置 1の動作を説明してきた。 本実施形態に係る核酸増 幅装置 1は、 更に、 第 3の試料の 〇 を並行して行うことができる。 以下 、 更に第
Figure imgf000015_0001
を行うときの、 核酸増幅装置 1の動作について説 明する。
[0074] Up to this point, the operation of the nucleic acid amplification apparatus 1 has been described when the first sample O and the second sample O are performed in parallel. The nucleic acid amplification apparatus 1 according to this embodiment can further perform the third sample ◯ in parallel. Below,
Figure imgf000015_0001
The operation of the nucleic acid amplification device 1 when performing is described.
[0075] 第 1の試料の 〇 及び第 2の試料の 〇 が行われている途中、 つまり 、 制御部 1 7が第 1の温度調節部 3 1及び第 2の温度調節部 3 2の制御をし ている途中で、 操作表示部 1 6で所定の操作が行われる (例えば図 9 の 「 反応追加」 ボタンが押される) と、
Figure imgf000015_0002
の条件設定を行うこ とが可能となる。
[0075] While the ◯ of the first sample and the ◯ of the second sample are being performed, that is, the control unit 17 controls the first temperature control unit 3 1 and the second temperature control unit 3 2. If a predetermined operation is performed on the operation display unit 16 while the operation is in progress (for example, the “Add reaction” button in Figure 9 is pressed)
Figure imgf000015_0002
It is possible to set the conditions of.
[0076] 図示はないが、 第 3の試料の 〇 の条件設定が行われるとき、 操作表示 部 1 6は、 タイムチヤート 1 1 0を摸した折れ線、 及び、 タイムチヤート 1 2 0を摸した折れ線の下に、 タイムチヤート 1 3 0を摸した折れ線を表示す る。 [0076] Although not shown in the drawing, when the condition of 0 of the third sample is set, the operation display unit 16 displays the broken line of the time chart 1 10 and the broken line of the time chart 1 20. A line that shows Time Chart 1300 is displayed below.
[0077] 第 3の試料の第 3の載置部への載置は、 第 1の試料の 〇 がアニーリン グエ程 1 1 3にあり、 第 2の試料の 〇 がアニーリングエ程 1 2 3にある とき、 つまり、 図 8中のタイミング 2 0 3で行われる。 [0077] When the third sample is placed on the third placement part, ◯ of the first sample is in the annealing step 11 13 and ◯ of the second sample is in the annealing step 1 2 3. At some point, that is, at timing 203 in FIG.
[0078] 第 2の試料が第 2の載置部 2 2に載置されるときの操作及び動作と同様の 操作及び動作が行われ、 第 3の試料が第 3の載置部 2 3に載置されると、 元 々同期していた第 1の試料の 〇 及び第 2の試料の 〇 と、 第 3の試料 の 〇 が同期して実行される。 \¥02020/174918 14 卩(:170?2020/001355 [0078] The same operation and action as when the second sample is placed on the second placing part 22 are performed, and the third sample is placed on the third placing part 23. When placed, the ◯ of the first sample and the ◯ of the second sample, which were originally synchronized, and the ◯ of the third sample are executed in synchronization. \¥02020/174918 14 卩 (: 170?2020/001355
[0079] つまり、 制御部 1 7は、 第 1の温度調節部 3 1、 第 2の温度調節部 3 2、 及び第 3の温度調節部 3 3を、 第 1の試料の 〇 のサイクル 1 1 〇〇、 第 2の試料の 〇 のサイクル 1 2 0〇、 及び第 3の試料の 〇 のサイクル 1 3〇〇が同期するように制御する。 [0079] That is, the control unit 17 controls the first temperature control unit 31, the second temperature control unit 32, and the third temperature control unit 33 to operate the 1st cycle 11 of the first sample. Control so that the ○ cycle, the ○ cycle of the second sample 1 200, and the ○ cycle of the 3rd sample 1300 are synchronized.
[0080] 第 1の試料の 〇 のサイクル 1 1 〇〇、 第 2の試料の 〇 のサイクル [0080] ○ cycle of the first sample 1 1 ○ ○, ○ cycle of the second sample
1 2 0 0 , 及び、 第 3の試料の 〇 のサイクル 1 3〇〇が同期している様 子が、 図 8に示されている。 図 8に示されるように、 タイミング 2 0 4にお いて、 第 1の試料の伸長反応工程 1 1 4、 第 2の試料の伸長反応工程 1 2 4 、 及び、 第 3の試料の伸長反応工程 1 3 4が同時に実施されることになる。 Fig. 8 shows that 1 200, and the cycle of 130 of the third sample 1300 are synchronized. As shown in FIG. 8, at the timing 204, the extension reaction step 1 1 4 of the first sample, the extension reaction step 1 2 4 of the second sample, and the extension reaction step 1 3 of the third sample 1 3 4 will be carried out simultaneously.
[0081] これらの伸長反応工程が実施されるとき、 光学計測デバイス 1 3は、 第 1 の試料、 第 2の試料及び第 3の試料に一度に励起光を照射するとともに、 第 1の試料、 第 2の試料及び第 3の試料から一度に虽光を検出する。 上述のと おり、 光学計測デバイス 1 3は、 二次元的に配置された複数の光検出素子を 有している。 よって、 マトリクス状に配置されている第 1の試料、 第 2の試 料及び第 3の試料から発せられる蛍光を、 試料毎に区別して同時に検出する ことができる。 [0081] When these extension reaction steps are performed, the optical measurement device 13 irradiates the first sample, the second sample, and the third sample with excitation light at a time, and at the same time, the first sample, Fluorescence is detected at once from the second and third samples. As described above, the optical measuring device 13 has a plurality of photodetecting elements arranged two-dimensionally. Therefore, the fluorescence emitted from the first sample, the second sample, and the third sample arranged in a matrix can be detected simultaneously for each sample separately.
[0082] 第 1の試料の 〇 が伸長反応工程 1 1 4にあり、 第 2の試料の 〇 が 伸長反応工程 1 2 4にあり、 第 3の試料の 〇 が伸長反応工程 1 3 4にあ るタイミング 2 0 4を迎える毎に、 光学計測デバイス 1 3は、 各試料からの 蛍光検出を実行する。 [0082] The ◯ of the first sample is in the extension reaction step 1 1 4, the ◯ of the second sample is in the extension reaction step 1 2 4, and the ◯ of the third sample is in the extension reaction step 1 3 4. The optical measurement device 13 executes the fluorescence detection from each sample each time the timing 204 is reached.
[0083] 蛍光検出結果は、 制御部 1 7にて解析される。 解析によって、 第 1の試料 に含まれる核酸の増幅状況に関する情報、 第 2の試料に含まれる核酸の増幅 状況に関する情報、 及び、 第 3の試料に含まれる核酸の増幅状況に関する情 報が得られる。 これらの情報は、 第 1の試料の 〇[¾、 第 2の試料の 〇[¾ 及び第 3の試料の 〇 が行われている途中で、 常時、 又はユーザからの要 求に応じて、 操作表示部 1 6に表示される。 あるいは、 これらの情報は、 第 1の試料の 〇[¾、 第 2の試料の 〇 及び第 3の試料の 〇 が行われて いる途中で、 これらの情報が得られる度に、 又はユーザからの要求に応じて \¥02020/174918 15 卩(:170?2020/001355 [0083] The fluorescence detection result is analyzed by the controller 17. The analysis provides information on the amplification status of the nucleic acid contained in the first sample, information on the amplification status of the nucleic acid contained in the second sample, and information on the amplification status of the nucleic acid contained in the third sample. .. These pieces of information can be used at any time during the operation of ◯[¾ for the first sample, 〇[¾ for the second sample and 〇 for the third sample, or at any time during the operation of the user. Displayed on display unit 16. Alternatively, the information may be collected from the user each time the information is obtained while ◯[¾ of the first sample, ◯ of the second sample and 〇 of the third sample are being performed. On request \¥02020/174918 15 卩(: 170?2020/001355
、 外部、 例えば核酸増幅装置 1 に接続されたコンピュータに出力される。, To the outside, for example, to a computer connected to the nucleic acid amplification device 1.
[0084] 第 1の 0 が完了しても、 核酸増幅装置 1は、 所定のシーケンスに従っ て、 第 2の 〇 が完了するまで、 第 2の 〇[¾を継続し、 第 2の試料に含 まれる核酸の増幅状況に関する情報を取得し続ける。 また、 第 1
Figure imgf000017_0001
が 完了しても、 核酸増幅装置 1は、 所定のシーケンスに従って、 第 3の 〇[¾ が完了するまで、 第 3の 〇[¾を継続し、 第 3の試料に含まれる核酸の増幅 状況に関する情報を取得し続ける。
[0084] Even when the first 0 is completed, the nucleic acid amplification device 1 continues the second ◯ [¾ to the second sample according to a predetermined sequence until the second ◯ is completed. Continue to obtain information on the amplification status of the included nucleic acids. Also, the first
Figure imgf000017_0001
Even if is completed, the nucleic acid amplification device 1 continues the third ◯[¾ until the third ◯[¾ is completed, according to a predetermined sequence, and Continue to get information.
[0085] 第 1の 〇 に加えて第 2の 〇 が完了しても、 核酸増幅装置 1は、 所 定のシーケンスに従って、 第 3の 〇 が完了するまで、 第 3の 〇[¾を継 続し、 第 3の試料に含まれる核酸の増幅状況に関する情報を取得し続ける。 [0085] Even if the second ○ is completed in addition to the first ○, the nucleic acid amplification device 1 continues the third ○ [¾ according to a predetermined sequence until the third ○ is completed. And continue to obtain information on the amplification status of the nucleic acid contained in the third sample.
[0086] 以上から明らかなように、 本実施形態に係る核酸増幅装置 1 によれば、 複 数の試料の
Figure imgf000017_0002
を、 順次開始することができる。 よって、 複数の試料の 〇 を短時間で効率よく行うことができる。
[0086] As is clear from the above, according to the nucleic acid amplification device 1 of the present embodiment, a plurality of samples
Figure imgf000017_0002
Can be started sequentially. Therefore, it is possible to efficiently perform ◯ of a plurality of samples in a short time.
[0087] 次に、 他の実施形態に係る核酸増幅装置 1 について、 図 1 0を参照しなが ら説明する。 図 1 〇は、 他の実施形態に係る核酸増幅装置 1 において容器が 載置される部位周辺の正面図であり、 図 3に対応する図である。 [0087] Next, a nucleic acid amplification device 1 according to another embodiment will be described with reference to FIG. FIG. 10 is a front view of the vicinity of the portion where the container is placed in the nucleic acid amplification device 1 according to another embodiment, and is a view corresponding to FIG.
[0088] 先に説明した核酸増幅装置 1 との違いは、 放熱部 4 0が、 第 1の放熱部 4 [0088] The difference from the nucleic acid amplification device 1 described above is that the heat dissipation unit 40 is the first heat dissipation unit 4
1、 第 2の放熱部 4 2及び第 3の放熱部 4 3に分割されており、 それぞれの 間に空間があることである。 第 1の放熱部 4 1は、 第 1の温度調節部 3 1の 下に配置されている。 第 2の放熱部 4 2は、 第 2の温度調節部 3 2の下に配 置されている。 第 3の放熱部 4 3は、 第 3の温度調節部 3 3の下に配置され ている。 It is divided into 1, 2nd heat dissipation part 4 2 and 3rd heat dissipation part 43, and there is a space between each. The first heat radiation section 41 is arranged below the first temperature control section 31. The second heat radiation section 42 is arranged below the second temperature control section 32. The third heat dissipation section 43 is arranged below the third temperature control section 33.
[0089] このように構成されることによって、 第 1の温度調節部 3 1、 第 2の温度 調節部 3 2及び第 3の温度調節部 3 3の温度制御を、 互いの影響をより排除 して、 より厳密に行うことが可能となる。 [0089] With such a configuration, the temperature control of the first temperature control unit 31, the second temperature control unit 32, and the third temperature control unit 33 can be more effectively eliminated. It becomes possible to do it more strictly.
[0090] また、 この場合、 第 1の載置部 2 1、 第 1の温度調節部 3 1及び第 1の放 熱部 4 1 と、 第 2の載置部 2 2、 第 2の温度調節部 3 2及び第 2の放熱部 4 2との間と、 第 2の載置部 2 2、 第 2の温度調節部 3 2及び第 2の放熱部 4 \¥02020/174918 16 卩(:170?2020/001355 [0090] Also, in this case, the first placing part 21, the first temperature adjusting part 31 and the first heat releasing part 41, the second placing part 22 and the second temperature adjusting part 41. Between the part 32 and the second heat dissipation part 42, the second mounting part 22, the second temperature adjustment part 32 and the second heat dissipation part 4 \¥02020/174918 16 卩(: 170?2020/001355
2と、 第 3の載置部 2 3、 第 3の温度調節部 3 3及び第 3の放熱部 4 3との 間に、 断熱材を配置することが好ましい。 このような断熱材を配置すること により、 第 1の温度調節部 3 1、 第 2の温度調節部 3 2及び第 3の温度調節 部 3 3の温度制御を、 互いの影響をより確実に排除して、 いっそう厳密に行 うことが可能となる。 したがって、 第 1の試料、 第 2の試料及び第 3の試料 の温度制御を、 いっそう厳密に行うことが可能となる。 It is preferable to dispose a heat insulating material between the second mounting section 23, the third mounting section 23, the third temperature control section 33, and the third heat dissipating section 43. By arranging such a heat insulating material, the temperature control of the first temperature control section 31, the second temperature control section 32, and the third temperature control section 33 can be more reliably eliminated from the mutual influence. Then, it becomes possible to do it more strictly. Therefore, the temperature control of the first sample, the second sample, and the third sample can be performed more strictly.
[0091 ] なお、 本発明に係る核酸増幅装置が、 上記各実施形態に限られないことは 言うまでも無い。 Needless to say, the nucleic acid amplification device according to the present invention is not limited to the above embodiments.
[0092] 例えば、 光学計測デバイス 1 3は、 1つ又は複数の光検出素子を走査する ことによって、 マトリクス状に配置された複数の試料の 1つ 1つから個別に かつ連続的に蛍光を検出してもよい。 この場合も、 光学計測デバイス 1 3は 、 複数の試料、 例えば第 1の試料及び第 2の試料から発せられる光を、 一度 に検出することができる。 [0092] For example, the optical measurement device 13 detects fluorescence individually and continuously from each of a plurality of samples arranged in a matrix by scanning one or a plurality of photodetection elements. You may. Also in this case, the optical measuring device 13 can detect light emitted from a plurality of samples, for example, the first sample and the second sample, at one time.
[0093] また、 上記実施形態では、 第 1の温度調節部 3 1の温度が、 第 1の試料を アニーリングエ程 1 1 3にかけるときの温度であるときに、 第 2の試料を筐 体 1 1内に入れるためのカバー 1 2のロックの解除が行われていた。 しかし ながら、 カバー 1 2のロックの解除は、 他のタイミングで行われてもよい。 例えば、 第 1の温度調節部の温度 3 1が、 第 1の試料をアニーリングエ程 1 1 3にかけるときの温度に向けて低下しているときに、 カバー 1 2のロック が解除されてもよい。 こうすることで、 早いタイミングで、 第 2の試料のセ ッ トを行うことができるとともに、 より早く、 第 1の温度調節部 3 1の温度 、 ひいては、 第 1の試料の温度を低下させることができる。 Further, in the above embodiment, when the temperature of the first temperature control unit 31 is the temperature at which the first sample is subjected to the annealing step 113, the second sample is set to the casing. The cover 1 2 was unlocked to fit inside 11. However, the unlocking of the cover 12 may be performed at another timing. For example, even if the cover 1 2 is unlocked when the temperature 3 1 of the first temperature control unit is decreasing toward the temperature at which the first sample is subjected to the annealing step 1 13 3. Good. By doing so, the second sample can be set at an early timing, and the temperature of the first temperature control unit 31 and thus the temperature of the first sample can be lowered more quickly. You can
[0094] また、 カバー 1 2のロックの解除は、 更に他のタイミングでも良い。 例え ば、 第 1の温度調節部 3 1の温度が、 第 1の試料を光学計測工程にかけると きの温度ではないときに、 制御部 1 7はカバー 1 2のロックを解除しても良 い。 このようにすれば、 比較的任意のタイミングで追加試料をセッ トするこ とができるようになるので、 ユーザピリティが向上する。 このようなタイミ ングでのロック解除は、 筐体内に載置されている試料の温度低下が 〇 に \¥02020/174918 17 卩(:170?2020/001355 [0094] Further, the unlocking of the cover 12 may be performed at another timing. For example, when the temperature of the first temperature adjustment unit 31 is not the temperature at which the first sample is subjected to the optical measurement process, the control unit 17 may unlock the cover 1 2. Yes. In this way, the additional sample can be set at a relatively arbitrary timing, which improves user pity. Unlocking with such a timing will reduce the temperature drop of the sample placed in the housing. \¥02020/174918 17 卩(: 170?2020/001355
大きな悪影響を及ぼさない場合、 又は、 各温度調節部及び各載置部の間に断 熱材が配置されている場合等に行うことができる。 This can be performed when there is no significant adverse effect, or when a heat insulating material is arranged between each temperature control section and each mounting section.
[0095] また、 並行して行われる各 〇 反応が同期している限り、 各 〇[¾反応 間において、 熱変性工程、 アニーリングエ程、 又は伸長反応工程が行われる ときの温度は、 互いに異なっていてもよい。 [0095] In addition, as long as each ◯ reaction performed in parallel is synchronized, the temperature at which the heat denaturation step, the annealing step, or the extension reaction step is performed is different between each ◯ reaction. May be.
[0096] また、 核酸増幅装置 1は、 いずれかの試料の 0 が完了したことを音又 は光等で報知する報知部を備えていても良い。 核酸増幅装置 1が報知部を備 えていれば、 並行して行われている複数の試料のうち、 早く
Figure imgf000019_0001
が完了し た試料の検査結果を、 ユーザはすぐに知ることができる。
[0096] Further, the nucleic acid amplification device 1 may be provided with a notifying unit for notifying by sound or light that 0 of one of the samples is completed. If the nucleic acid amplification device 1 is equipped with a notification unit,
Figure imgf000019_0001
The user can immediately know the inspection result of the completed sample.
[0097] また、 載置部は、 図 4に示すように、 第 1の載置部 2 1、 第 2の載置部 2 [0097] Further, as shown in Fig. 4, the mounting unit includes a first mounting unit 21 and a second mounting unit 2
2および第 3の載置部 2 3に、 列方向に三分割されている。 しかしながら、 これに限定されるものではない。 例えば、 載置部が行方向に複数分割される ものでもよい。 この場合、 容器丁は、 一つのウエル で構成されても良いし 、 ウエル を行方向に等間隔で複数つなげたもので構成されても良い。 また 、 第 1の載置部 2 1、 第 2の載置部 2 2および第 3の載置部 2 3が、 さらに 列方向または行方向に複数分割されてもよい。 これにより、 それぞれの載置 部の温度分布を更に細やかに制御することができる。 The second and third mounting portions 23 are divided into three in the column direction. However, it is not limited to this. For example, the placement section may be divided into a plurality of rows. In this case, the container may be composed of one well or may be composed of a plurality of wells connected at equal intervals in the row direction. Further, the first placing part 21, the second placing part 22 and the third placing part 23 may be further divided into a plurality of columns or rows. As a result, the temperature distribution of each mounting portion can be controlled more finely.
[0098] なお、 本発明にかかる核酸増幅装置 1は、 熱変性工程、 アニーリングエ程 及び伸長反応工程の 3つの工程からなる所謂 3ステップ 〇 のみならず、 アニーリングと伸長反応が 1つのステップで行われる、 所謂 2ステップ 〇 を行うことができることは言うまでもない。 The nucleic acid amplification device 1 according to the present invention is not limited to the so-called 3 step ◯ consisting of three steps of a thermal denaturation step, an annealing step and an extension reaction step, and an annealing and extension reaction are performed in one step. It goes without saying that the so-called 2 steps can be performed.
[0099] 2 0 1 9年 2月 2 7日出願の特願 2 0 1 9 - 0 3 4 1 5 9の日本出願に含 まれる明細書、 特許請求の範囲、 図面および要約書の開示内容は、 すべて本 願に援用される。 [0099] Disclosure contents of Japanese Patent Application No. 2 0 1 9-0 3 4 1 59, filed on February 27, 2010, including the description, claims, drawings and abstract included in the Japanese application Are incorporated herein by reference.
産業上の利用可能性 Industrial availability
[0100] 本発明は、 リアルタイム 〇 装置等の核酸増幅装置における検査の効率 化向上に寄与するものであり、 その産業上の利用可能性は多大である。 符号の説明 \¥02020/174918 18 ?01/1?2020/001355 INDUSTRIAL APPLICABILITY [0100] The present invention contributes to improving the efficiency of inspection in a nucleic acid amplification device such as a real-time device, and its industrial applicability is great. Explanation of symbols \¥02020/174918 18 ?01/1?2020/001355
[0101] 1 核酸増幅装置 [0101] 1 Nucleic acid amplification device
1 1 筐体 1 1 case
1 2 カバー 1 2 cover
1 3 光学計測デバイス 1 3 Optical measuring device
1 4 反射鏡 1 4 reflector
1 5 フレネルレンズ 1 5 Fresnel lens
1 6 操作表示部 1 6 Operation display section
1 7 制御部 1 7 Control part
2 1 第 1の載置部 2 1 1st platform
2 1 3 第 1のくぼみ 2 1 3 1st hollow
22 第 2の載置部 22 Second mount
223 第 2のくぼみ 223 Second dimple
23 第 3の載置部 23 Third rest
233 第 3のくぼみ 233 Third dimple
3 1 第 1の温度調節部 3 1 1st temperature controller
32 第 2の温度調節部 32 Second temperature controller
33 第 3の温度調節部 33 Third temperature controller
40 放熱部 40 Heat sink
4 1 第 1の放熱部 4 1 1st heat sink
42 第 2の放熱部 42 Second heat sink
43 第 3の放熱部 43 Third heat dissipation part
5 1 第 1の温度計 5 1 First thermometer
52 第 2の温度計 52 Second thermometer
53 第 3の温度計 53 Third thermometer
1 00、 1 1 0、 1 20、 1 30 タイムチヤート 1 00, 1 1 0, 1 20, 1 30 Time chart
1 00〇、 1 1 00, 1 20〇、 1 300 サイクル 1 00 〇, 1 1 00, 1 20 〇, 1 300 cycles
1 01、 1 1 1、 1 2 1、 1 3 1 酵素活性化工程 101, 1 1 1, 1 2 1, 1 3 1 Enzyme activation process
1 02、 1 1 2、 1 22、 1 32 熱変性工程 \¥02020/174918 19 卩(:170?2020/001355 10 02, 1 1 2, 1 2 2, 1 32 Heat denaturation process \¥02020/174918 19 卩(: 170?2020/001355
1 03、 1 1 3、 1 23、 1 33 アニーリングエ程 1 03, 1 1 3, 1 23, 1 33 Annealing process
1 04、 1 1 4、 1 24、 1 34 伸長反応工程 104, 1 14, 4, 1 24, 1 34 Extension reaction process
201、 202、 203、 204 タイミング 201, 202, 203, 204 Timing
丁 容器 Ting container
\/\/ ウエル \/\/ well

Claims

\¥02020/174918 20 卩(:170?2020/001355 請求の範囲 \¥02020/174918 20 units (: 170?2020/001355 Claims
[請求項 1 ] 核酸を含む第 1の試料を加熱及び冷却する第 1の温度調節部と、 核酸を含む第 2の試料を加熱及び冷却する第 2の温度調節部と、 前記第 1の温度調節部及び前記第 2の温度調節部を制御し、 前記第 1の温度調節部の制御をしている途中で、 前記第 2の温度調節部の制 御を開始する制御部と、 を備える、 [Claim 1] A first temperature controller for heating and cooling a first sample containing nucleic acid, a second temperature controller for heating and cooling a second sample containing nucleic acid, and the first temperature A control unit that controls the adjustment unit and the second temperature adjustment unit, and starts control of the second temperature adjustment unit while the first temperature adjustment unit is being controlled.
核酸増幅装置。 Nucleic acid amplification device.
[請求項 2] 前記制御部は、 前記第 1の温度調節部の温度が上昇するときに、 前 記第 2の温度調節部の温度が上昇し、 前記第 1の温度調節部の温度が 低下するときに、 前記第 2の温度調節部の温度が低下するように、 前 記第 1の温度調節部及び前記第 2の温度調節部を制御する、 [Claim 2] When the temperature of the first temperature adjusting unit rises, the temperature of the second temperature adjusting unit rises and the temperature of the first temperature adjusting unit falls. When controlling, the first temperature control unit and the second temperature control unit are controlled so that the temperature of the second temperature control unit decreases.
請求項 1 に記載の核酸増幅装置。 The nucleic acid amplification device according to claim 1.
[請求項 3] 前記制御部は、 前記第 1の温度調節部の温度が前記第 1の試料を熱 変性工程にかけるときの温度であるときに、 前記第 2の温度調節部の 温度が前記第 2の試料を熱変性工程にかけるときの温度となるように 、 前記第 1の温度調節部及び前記第 2の温度調節部を制御し、 前記制御部は、 前記第 1の温度調節部の温度が前記第 1の試料をア 二ーリングエ程にかけるときの温度であるときに、 前記第 2の温度調 節部の温度が前記第 2の試料をアニーリングエ程にかけるときの温度 となるように、 前記第 1の温度調節部及び前記第 2の温度調節部を制 御する、 [Claim 3] When the temperature of the first temperature control unit is the temperature at which the first sample is subjected to the thermal denaturation step, the temperature of the second temperature control unit is controlled by the control unit. The second temperature control unit controls the first temperature control unit and the second temperature control unit so that the temperature of the second sample is subjected to the heat denaturation step, and the control unit controls the temperature of the first temperature control unit. When the temperature is the temperature at which the first sample is subjected to the annealing step, the temperature of the second temperature adjustment section is the temperature at which the second sample is subjected to the annealing step. And controlling the first temperature control unit and the second temperature control unit,
請求項 1 または 2に記載の核酸増幅装置。 The nucleic acid amplification device according to claim 1 or 2.
[請求項 4] 前記制御部は、 前記第 1の温度調節部の温度が前記第 1の試料を伸 長反応工程にかけるときの温度であるときに、 前記第 2の温度調節部 の温度が前記第 2の試料を伸長反応工程にかけるときの温度となるよ うに、 前記第 1の温度調節部及び前記第 2の温度調節部を制御する、 請求項 1から 3のいずれかに記載の核酸増幅装置。 [Claim 4] When the temperature of the first temperature control unit is the temperature when the first sample is subjected to the elongation reaction step, the temperature of the second temperature control unit is The nucleic acid according to any one of claims 1 to 3, wherein the first temperature control unit and the second temperature control unit are controlled so that the temperature when the second sample is subjected to the extension reaction step is achieved. Amplification device.
[請求項 5] 前記第 1の試料及び前記第 2の試料が内部に載置される筐体と、 \¥02020/174918 21 卩(:170?2020/001355 [Claim 5] A housing in which the first sample and the second sample are placed, \¥02020/174918 21 卩(: 170?2020/001355
前記筐体の開口を開閉するロック可能なカバーと、 を更に備える、 請求項 1から 4のいずれかに記載の核酸増幅装置。 The nucleic acid amplification device according to claim 1, further comprising a lockable cover that opens and closes the opening of the housing.
[請求項 6] 前記制御部は、 前記第 1の温度調節部の温度が、 前記第 1の試料を アニーリングエ程にかけるときの温度であるとき、 または、 前記第 1 の試料をアニーリングエ程にかけるときの温度に向けて低下している ときに、 前記カバーのロックを解除する、 [Claim 6] When the temperature of the first temperature controller is the temperature at which the first sample is subjected to an annealing step, the controller controls the first sample by an annealing step. Unlock the cover when the temperature is dropping towards the
請求項 5に記載の核酸増幅装置。 The nucleic acid amplification device according to claim 5.
[請求項 7] 前記制御部は、 前記第 1の温度調節部の温度が、 前記第 1の試料を 光学計測工程にかけるときの温度ではないときに、 前記カバーのロッ クを解除する、 [Claim 7] The control unit unlocks the cover when the temperature of the first temperature adjusting unit is not the temperature at which the first sample is subjected to the optical measurement step,
請求項 5または 6に記載の核酸増幅装置。 The nucleic acid amplification device according to claim 5 or 6.
[請求項 8] 二次元的に配置された複数の光検知素子を有し、 前記第 1の試料か ら発せられる光と前記第 2の試料から発せられる光を一度に検出する 光学計測デバイス、 を更に備える、 [Claim 8] An optical measuring device comprising a plurality of two-dimensionally arranged photo-sensing elements, for detecting the light emitted from the first sample and the light emitted from the second sample at a time. Further comprises,
請求項 1から 7のいずれかに記載の核酸増幅装置。 The nucleic acid amplification device according to claim 1.
[請求項 9] 前記第 1の温度調節部の上に配置された第 1の載置部と、 [Claim 9] A first mounting portion disposed on the first temperature control portion,
前記第 2の温度調節部の上に配置された第 2の載置部と、 を更に備 え、 A second mounting portion disposed on the second temperature control portion, and
前記第 1の載置部は、 前記第 1の試料を収容する第 1の容器が載置 され、 等間隔で並ぶ複数の第 1のくぼみを有し、 The first mounting portion has a first container in which the first sample is placed, and has a plurality of first recesses arranged at equal intervals,
前記第 2の載置部は、 前記第 2の試料を収容する第 2の容器が載置 され、 等間隔で並ぶ複数の第 2のくぼみを有し、 かつ、 前記第 1の載 置部と隣接して配置されており、 The second mounting section has a second container in which the second sample is placed, has a plurality of second recesses arranged at equal intervals, and includes the first mounting section. They are located adjacent to each other,
前記第 1のくぼみ同士の間隔、 前記第 2のくぼみ同士の間隔、 及び 、 前記第 1のくぼみのうち前記第 2のくぼみに隣接するくぼみと前記 第 2のくぼみのうち前記第 1のくぼみに隣接するくぼみとの間隔は、 すべて等しい、 A space between the first recesses, a space between the second recesses, and a recess of the first recesses adjacent to the second recess and the first recess of the second recesses The intervals between adjacent depressions are all equal,
請求項 1から 8のいずれかに記載の核酸増幅装置。 \¥02020/174918 22 卩(:170?2020/001355 The nucleic acid amplification device according to claim 1. \¥02020/174918 22 卩 (: 170?2020/001355
[請求項 10] 前記第 1の温度調節部の制御が終了したことを報知する報知部を更 に備える、 [Claim 10] A notification unit is further provided for notifying that the control of the first temperature control unit has ended,
請求項 1から 9のいずれかに記載の核酸増幅装置。 The nucleic acid amplification device according to claim 1.
[請求項 1 1 ] 表示部、 を更に備え、 [Claim 11] A display part is further provided,
前記制御部は、 前記第 1の温度調節部及び前記第 2の温度調節部の 少なくとも一方の制御が行われている途中で、 前記表示部に、 前記第 1の試料に含まれる核酸の増幅状況に関する情報、 及び、 前記第 2の 試料に含まれる核酸の増幅状況に関する情報の少なくとも一方を表示 させる、 The control unit displays the amplification status of the nucleic acid contained in the first sample on the display unit while the control of at least one of the first temperature control unit and the second temperature control unit is being performed. And at least one of information on the amplification status of the nucleic acid contained in the second sample,
請求項 1から 1 〇のいずれかに記載の核酸増幅装置。 The nucleic acid amplification device according to any one of claims 1 to 10.
[請求項 12] 前記制御部は、 前記第 1の温度調節部及び前記第 2の温度調節部の 少なくとも一方の制御が行われている途中で、 前記第 1の試料に含ま れる核酸の増幅状況に関する情報、 及び、 前記第 2の試料に含まれる 核酸の増幅状況に関する情報の少なくとも一方を外部に出力する、 請求項 1から 1 1のいずれかに記載の核酸増幅装置。 12. The amplification state of the nucleic acid contained in the first sample while the control unit controls at least one of the first temperature control unit and the second temperature control unit. 12. The nucleic acid amplification device according to claim 1, wherein at least one of information regarding the amplification status of the nucleic acid contained in the second sample is output to the outside.
PCT/JP2020/001355 2019-02-27 2020-01-16 Nucleic acid amplification device WO2020174918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019034159 2019-02-27
JP2019-034159 2019-02-27

Publications (1)

Publication Number Publication Date
WO2020174918A1 true WO2020174918A1 (en) 2020-09-03

Family

ID=72239339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001355 WO2020174918A1 (en) 2019-02-27 2020-01-16 Nucleic acid amplification device

Country Status (1)

Country Link
WO (1) WO2020174918A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501665A (en) * 2007-10-12 2011-01-13 レオニックス,インコーポレイテッド Integrated microfluidic device and method
WO2011138925A1 (en) * 2010-05-07 2011-11-10 株式会社日立ハイテクノロジーズ Nucleic acid amplifier and nucleic acid inspection device using same
JP2011239688A (en) * 2010-05-14 2011-12-01 Hitachi High-Technologies Corp Nucleic acid amplification apparatus and method for amplifying nucleic acid
WO2012011379A1 (en) * 2010-07-21 2012-01-26 株式会社日立ハイテクノロジーズ Method for detecting nucleic acid amplification in sample and device therefor
JP2017121245A (en) * 2011-04-15 2017-07-13 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501665A (en) * 2007-10-12 2011-01-13 レオニックス,インコーポレイテッド Integrated microfluidic device and method
WO2011138925A1 (en) * 2010-05-07 2011-11-10 株式会社日立ハイテクノロジーズ Nucleic acid amplifier and nucleic acid inspection device using same
JP2011239688A (en) * 2010-05-14 2011-12-01 Hitachi High-Technologies Corp Nucleic acid amplification apparatus and method for amplifying nucleic acid
WO2012011379A1 (en) * 2010-07-21 2012-01-26 株式会社日立ハイテクノロジーズ Method for detecting nucleic acid amplification in sample and device therefor
JP2017121245A (en) * 2011-04-15 2017-07-13 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection

Similar Documents

Publication Publication Date Title
US11442258B2 (en) Compact optical system for substantially simultaneous monitoring of samples in a sample array
JP5553367B2 (en) Incubator and gene detection / judgment device
US9956559B2 (en) Instrument and method for the automated thermal treatment of liquid samples
EP2061866B1 (en) Rapid thermocycler
JP5207231B2 (en) Nucleic acid amplification apparatus, method and cell culture / nucleic acid amplification method
KR101949829B1 (en) Thermal cycler
US20150140645A1 (en) Microfluidic Analysis System
US20150165439A1 (en) Device and method for Thermal Cycling
JP2005534342A (en) Sample block apparatus and method for maintaining a microcard on a sample block
US20090099045A1 (en) Methods and devices for molecular association and imaging
CN115074241A (en) Amplification device for PCR instrument, control method thereof and PCR instrument
WO2020174918A1 (en) Nucleic acid amplification device
US11761032B2 (en) Methods and devices for performing real time digital PCR
JP2011072263A (en) Gene analyzer
WO2015189695A1 (en) Nucleic acid amplification device
US20160265029A1 (en) Quantitative real-time and end-point colorimetric pcr device
CA2897919A1 (en) Biological sample analytical instrument
TWI596332B (en) High-throughput fluorescence imaging system and device with sample heating capability, and associated methods
US10815524B2 (en) Nucleic acid analyzer
CN112469809B (en) Thermal cycler and real-time PCR device provided with same
JP7366247B2 (en) Nucleic acid testing device and nucleic acid testing method
US20220025450A1 (en) Methods and Devices for Performing Real Time Digital PCR
US20220048033A1 (en) Apparatus and methods for multiplexed amplification and detection of dna using convectional heating and label-free microarray
JP2023024099A (en) Nucleic acid amplification device and nucleic acid inspection system
CN107209121B (en) Detector for measuring fluorescence in a liquid sample

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP