WO2020174804A1 - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
WO2020174804A1
WO2020174804A1 PCT/JP2019/048021 JP2019048021W WO2020174804A1 WO 2020174804 A1 WO2020174804 A1 WO 2020174804A1 JP 2019048021 W JP2019048021 W JP 2019048021W WO 2020174804 A1 WO2020174804 A1 WO 2020174804A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
heat conduction
batteries
heat
cooling unit
Prior art date
Application number
PCT/JP2019/048021
Other languages
French (fr)
Japanese (ja)
Inventor
謙一 今井
貴大 百田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2020174804A1 publication Critical patent/WO2020174804A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module.
  • Patent Document 1 discloses a battery stack in which a plurality of batteries are stacked, a separator arranged between adjacent batteries, and metal ends arranged at both ends of the battery stack.
  • a battery module including a plate, end separators disposed between the end plates and batteries located at both ends of the battery stack, and a cooling plate connected to each battery in a heat transfer state. ..
  • the contact area between the end plate and the end separator was reduced by providing a gap in the joint surface between the end plate and the end separator.
  • the batteries located on both end surfaces of the battery stack are prevented from being cooled by the end plates having excellent heat conductivity more than other batteries, and the variation in the temperature distribution of the plurality of batteries is reduced.
  • the temperature of a certain battery may rise excessively, the heat may be transmitted to the adjacent battery, and the temperature of this adjacent battery may also rise excessively.
  • higher capacity of batteries has been advanced. As the capacity of the battery increases, the temperature rise of the battery tends to increase, and thus the chain of overheating is more likely to occur.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a technique of suppressing a chain of overheating while reducing variations in temperature distribution among a plurality of batteries.
  • One aspect of the present invention is a battery module.
  • This battery module is a separator that is disposed between a plurality of stacked batteries and two adjacent batteries and electrically insulates the two batteries, and has a heat conduction suppressing portion and a heat conduction promoting portion.
  • a separator and a cooling unit that is thermally connected to the plurality of batteries are provided.
  • the heat conduction suppressing unit has lower heat conductivity than the heat conduction promoting unit and suppresses heat conduction between the two adjacent batteries, and the heat conduction promoting unit abuts the cooling unit and between the two adjacent batteries. It promotes heat conduction and conducts heat from the battery to the cooling unit.
  • FIG. 3 is a perspective view of the battery module according to the first embodiment. It is an exploded perspective view of a battery module. It is a perspective view which shows a part of battery module typically. It is sectional drawing which shows a part of battery module typically. It is a top view which shows a part of battery module typically. It is sectional drawing which shows a part of battery module typically.
  • FIG. 7 is a cross-sectional view schematically showing a part of the battery module according to the second embodiment.
  • FIG. 9 is a perspective view schematically showing a part of the battery module according to the third embodiment.
  • FIG. 8 is a plan view schematically showing a part of the battery module according to Modification 1.
  • FIG. 1 is a perspective view of the battery module according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the battery module.
  • the battery module 1 includes a battery stack 2, a pair of end plates 4, a cooling unit 6, a heat conduction layer 10, and a restraining member 12.
  • the battery stack 2 has a plurality of batteries 14 and a separator 16.
  • Each battery 14 is a rechargeable secondary battery such as a lithium-ion battery, a nickel-hydrogen battery, a nickel-cadmium battery, or the like.
  • Each battery 14 is a so-called prismatic battery, and has a flat rectangular parallelepiped outer can 18.
  • a not-shown substantially rectangular opening is provided on one surface of the outer can 18, and an electrode body, an electrolytic solution and the like are accommodated in the outer can 18 through this opening.
  • the opening of the outer can 18 is provided with a sealing plate 20 that closes the opening.
  • the sealing plate 20 has a positive output terminal 22 arranged near one end in the longitudinal direction and a negative output terminal 22 arranged near the other end.
  • Each of the pair of output terminals 22 is electrically connected to a positive electrode plate and a negative electrode plate that form an electrode body.
  • the positive output terminal 22 is referred to as a positive terminal 22a
  • the negative output terminal 22 is referred to as a negative terminal 22b.
  • the positive electrode terminal 22a and the negative electrode terminal 22b are collectively referred to as the output terminal 22.
  • the outer can 18, the sealing plate 20, and the output terminal 22 are conductors, and are made of metal, for example.
  • the sealing plate 20 and the opening of the outer can 18 are joined by, for example, laser welding.
  • Each output terminal 22 is inserted into a through hole (not shown) formed in the sealing plate 20.
  • An insulating seal member (not shown) is interposed between each output terminal 22 and each through hole.
  • the sealing plate 20 will be referred to as the upper surface of the battery 14, and the bottom surface of the outer can 18 facing the sealing plate 20 will be referred to as the lower surface of the battery 14.
  • Battery 14 also has two main surfaces that connect the upper surface and the lower surface.
  • the main surface has the largest area among the six surfaces of the battery 14.
  • the main surface is a long side surface connected to the long sides of the upper surface and the lower surface.
  • the remaining two surfaces excluding the upper surface, the lower surface and the two main surfaces are the side surfaces of the battery 14.
  • the side surfaces are a pair of short side surfaces connected to the short sides of the upper surface and the lower surface.
  • the surface on the upper surface side of the battery 14 is the upper surface of the battery stack 2
  • the surface on the lower surface side of the battery 14 is the lower surface of the battery stack 2
  • the surface on the side surface side of the battery 14 is the battery.
  • the side surface of the laminated body 2 is used.
  • the sealing plate 20 is provided with a valve portion 24 between a pair of output terminals 22.
  • the valve unit 24 is also called a safety valve, and is a mechanism for releasing gas inside the battery 14.
  • the valve portion 24 is configured to open when the internal pressure of the outer can 18 rises above a predetermined value to release the gas inside.
  • the valve portion 24 is composed of, for example, a thin portion provided in a part of the sealing plate 20 and having a smaller thickness than other portions, and a linear groove formed on the surface of the thin portion. In this configuration, when the internal pressure of the outer can 18 rises, the thin portion tears from the groove to open the valve.
  • the valve portion 24 of each battery 14 is connected to an exhaust duct 38 described later, and the gas inside the battery is discharged from the valve portion 24 to the exhaust duct 38.
  • Each battery 14 also has an insulating film 26.
  • the insulating film 26 is, for example, a cylindrical shrink tube, and is heated after the outer can 18 is passed inside. As a result, the insulating film 26 contracts and covers the two main surfaces, the two side surfaces, and the bottom surface of the outer can 18.
  • the insulating film 26 can suppress a short circuit between the adjacent batteries 14 or between the batteries 14 and the end plate 4 or the restraining member 12.
  • the plurality of batteries 14 are stacked at a predetermined interval so that the main surfaces of the adjacent batteries 14 face each other.
  • stacking means arranging a plurality of members in any one direction. Therefore, stacking the batteries 14 also includes horizontally arranging the plurality of batteries 14.
  • the batteries 14 are horizontally stacked. Therefore, the stacking direction X of the battery 14 is a direction that extends horizontally. In the following, a direction that is horizontal and perpendicular to the stacking direction X is referred to as a horizontal direction Y, and a direction perpendicular to the stacking direction X and the horizontal direction Y is referred to as a vertical direction Z.
  • the batteries 14 are arranged so that the output terminals 22 face the same direction.
  • Each of the batteries 14 of the present embodiment is arranged such that the output terminal 22 faces upward in the vertical direction.
  • the pair of output terminals 22 of each battery 14 are arranged in the horizontal direction Y.
  • the positive electrode terminal 22a of one battery 14 and the negative electrode terminal 22b of the other battery 14 are laminated so as to be adjacent to each other.
  • the positive electrode terminal 22a of one battery 14 and the positive electrode terminal 22a of the other battery 14 are laminated so as to be adjacent to each other.
  • the separator 16 is also called an insulating spacer and is made of, for example, an insulating sheet.
  • the separator 16 is arranged between two adjacent batteries 14 and electrically insulates the two batteries 14 from each other. The structure of the separator 16 will be described in detail later.
  • the battery stack 2 is sandwiched between a pair of end plates 4.
  • the pair of end plates 4 are arranged at both ends of the battery stack 2 in the stacking direction X.
  • the pair of end plates 4 are adjacent to the batteries 14 located at both ends in the stacking direction X with the outer end separator 5 interposed therebetween.
  • the outer edge separator 5 is an insulating resin sheet made of a thermoplastic resin such as polypropylene (PP), polybutylene terephthalate (PBT), polycarbonate (PC), Noryl (registered trademark) resin (modified PPE). ..
  • Each end plate 4 is a metal plate made of metal such as iron, stainless steel, and aluminum.
  • the outer end separator 5 is interposed between the end plate 4 and the battery 14 to insulate the both.
  • Each end plate 4 has a fastening hole 4a on two surfaces facing the horizontal direction Y.
  • the three fastening holes 4a are arranged in the vertical direction Z at a predetermined interval.
  • the surface provided with the fastening hole 4a faces a flat surface portion 54 of the restraint member 12 which will be described later.
  • a bus bar plate 28 is placed on the upper surface of the battery stack 2.
  • the bus bar plate 28 is a plate-shaped member that covers the upper surfaces of the plurality of batteries 14.
  • the bus bar plate 28 has a plurality of openings 32 that expose the valve portions 24 at positions corresponding to the valve portions 24 of each battery 14.
  • the bus bar plate 28 has a duct top plate 34 that covers the upper side of the opening 32 and a side wall 36 that surrounds the side of the opening 32.
  • An exhaust duct 38 is formed in the bus bar plate 28 by fixing the duct top plate 34 to the upper end of the side wall 36.
  • Each valve portion 24 communicates with the exhaust duct 38 via the opening 32.
  • the bus bar plate 28 has an opening 40 at a position corresponding to the output terminal 22 of each battery 14 to expose the output terminal 22.
  • a bus bar 42 is placed in each opening 40.
  • the plurality of bus bars 42 are supported by the bus bar plate 28.
  • the bus bar 42 placed in each opening 40 electrically connects the positive electrode terminal 22a and the negative electrode terminal 22b of the adjacent batteries 14 to each other.
  • the bus bar 42 is a substantially strip-shaped member made of metal such as copper or aluminum.
  • the bus bar 42 has one end connected to the positive electrode terminal 22a of the one battery 14 and the other end connected to the negative terminal 22b of the other battery 14.
  • the output terminals 22 of the same polarity in the adjacent batteries 14 may be connected in parallel to form a battery block, and the battery blocks may be connected in series.
  • the bus bar 42 connected to the output terminals 22 of the batteries 14 located at both ends in the stacking direction X has external connection terminals 44.
  • the external connection terminal 44 is connected to an external load (not shown).
  • the voltage detection line 46 is mounted on the bus bar plate 28.
  • the voltage detection line 46 is electrically connected to the plurality of batteries 14 and detects the voltage of each battery 14.
  • the voltage detection line 46 has a plurality of conducting wires (not shown). One end of each conductive wire is connected to each bus bar 42, and the other end is connected to the connector 48.
  • the connector 48 is connected to an external battery ECU (not shown) or the like.
  • the battery ECU controls detection of the voltage of each battery 14, charging and discharging of each battery 14, and the like.
  • the cooling unit 6 is a mechanism that is thermally connected to the plurality of batteries 14, that is, is connected to each battery 14 in a heat exchangeable manner and cools each battery 14.
  • Cooling unit 6 of the present embodiment has a structure in which cooling plate 6a and intervening layer 6b are stacked.
  • the cooling plate 6a and the intervening layer 6b are flat plates extending in the stacking direction X and the horizontal direction Y, and are stacked in the vertical direction Z.
  • the cooling plate 6a is made of a metal material having high thermal conductivity such as aluminum.
  • the intervening layer 6b is formed of a known resin sheet having good thermal conductivity and insulating properties such as an acrylic rubber sheet or a silicone rubber sheet.
  • the intervening layer 6b may be made of a known adhesive or grease having good thermal conductivity and insulating properties.
  • the intervening layer 6b may not have insulating properties.
  • a sheet having no insulating property, an adhesive, grease or the like can be used as the intervening layer 6b.
  • the outer can 18 is insulated with the insulating film 26 or the like and a sheet or the like having good thermal conductivity and insulating properties is used as the intervening layer 6b, more reliable insulation can be realized.
  • the cooling unit 6 is arranged on the lower surface side of the battery stack 2, and the battery stack 2 is placed on the main surface of the cooling unit 6. Therefore, the battery stack 2 and the cooling unit 6 are arranged in the vertical direction Z.
  • the intervening layer 6b is interposed between the battery stack 2 and the cooling plate 6a. That is, the cooling plate 6a is thermally connected to the battery stack 2 via the intervening layer 6b.
  • the intervening layer 6b has an insulating property, it is possible to prevent the battery stack 2 and the cooling plate 6a from being electrically connected.
  • the intervening layer 6b is made of an adhesive or a resin sheet, the intervening layer 6b can also be expected to have an effect of suppressing the displacement between the battery stack 2 and the cooling plate 6a in the extending direction of the XY plane.
  • the cooling plate 6a is thermally connected to a heat absorbing section 76 (see FIG. 3) described later.
  • the heat absorbing section 76 has a flow path (not shown) inside which a coolant such as water or ethylene glycol flows. This flow path is thermally connected to the outside of the battery module 1.
  • the heat absorbing section 76 absorbs heat from the cooling plate 6a and moves it to the outside of the battery module 1 via the refrigerant. As a result, the cooling efficiency of each battery 14 can be further increased.
  • the heat conduction layer 10 is disposed between the restraint member 12 and the battery stack 2, and conducts the heat of each battery 14 to the restraint member 12. Further, the heat conduction layer 10 has an insulating property and also functions as a side separator that insulates the restraint member 12 and the battery stack 2.
  • Each of the plurality of batteries 14 has a first surface 14a facing the cooling unit 6 and a second surface 14b different from the first surface 14a.
  • the heat conduction layer 10 is arranged between the restraint member 12 and the second surface 14b of each battery 14.
  • the cooling unit 6 faces the lower surface of each battery 14, and the restraint member 12 faces the side surface of each battery 14. Therefore, the first surface 14 a is the lower surface of the battery 14 and the second surface 14 b is the side surface of the battery 14. Therefore, the second surface 14b is a surface continuous with the first surface 14a.
  • a pair of heat conduction layers 10 are arranged in the horizontal direction Y.
  • Each heat conduction layer 10 has a flat plate shape that is long in the stacking direction X of the batteries 14.
  • the battery stack 2 is arranged between the pair of heat conductive layers 10.
  • the heat conducting layer 10 can be made of a resin sheet, an adhesive, grease or the like, like the intervening layer 6b.
  • the restraint member 12 is also called a bind bar, and is a long member extending in the stacking direction X of the batteries 14.
  • the restraint member 12 is arranged so as to face the second surface 14b (side surface) of each battery 14.
  • a pair of restraint members 12 are arranged in the horizontal direction Y.
  • Each restraint member 12 is made of metal. Examples of the metal forming the restraint member 12 include iron and stainless steel.
  • the battery stack 2, the pair of end plates 4, the cooling unit 6, and the pair of heat conduction layers 10 are arranged between the pair of restraining members 12.
  • the restraint member 12 of the present embodiment has a flat surface portion 54 and a pair of arm portions 56.
  • the plane portion 54 has a rectangular shape and extends in the stacking direction X along the side surface of the battery stack 2.
  • the pair of arm portions 56 protrude toward the battery stack 2 from the end regions on both sides of the flat surface portion 54 in the vertical direction Z. That is, the one arm portion 56 projects from the upper side of the flat surface portion 54 toward the battery stack 2 side, and the other arm portion 56 projects from the lower side of the flat surface portion 54 toward the battery stack body 2 side. Therefore, the pair of arms 56 oppose each other in the arrangement direction of the battery stack 2 and the cooling unit 6.
  • the battery stack 2, the cooling unit 6, and the heat conduction layer 10 are arranged between the pair of arms 56.
  • a contact plate 68 is fixed by welding or the like to a region of the flat surface portion 54 that faces each end plate 4.
  • the contact plate 68 is a member long in the vertical direction Z.
  • the contact plate 68 is provided with a through hole 70 penetrating the contact plate 68 in the horizontal direction Y at a position corresponding to the fastening hole 4a of the end plate 4.
  • the plane portion 54 has a through hole 58 penetrating the plane portion 54 in the horizontal direction Y at a position corresponding to the through hole 70 of the contact plate 68.
  • the plurality of batteries 14 are sandwiched in the stacking direction X by the pair of end plates 4 engaging with the flat surface portion 54 of each restraint member 12.
  • the plurality of batteries 14 and the plurality of separators 16 are alternately arranged to form the battery laminated body 2, and the battery laminated body 2 is laminated with the pair of end plates 4 via the outer end separator 5 in the laminating direction X. Sandwiched between.
  • the cooling unit 6 is arranged on the lower surface of the battery stack 2. In this state, the battery stack 2 is sandwiched between the pair of heat conduction layers 10 in the horizontal direction Y. Further, the pair of restraint members 12 sandwich the whole in the horizontal direction Y from the outside of the pair of heat conduction layers 10.
  • the pair of end plates 4 and the pair of restraint members 12 are aligned with each other such that the fastening holes 4a, the through holes 70, and the through holes 58 overlap each other. Then, a fastening member 59 such as a screw is inserted into the through hole 58 and the through hole 70 and screwed into the fastening hole 4a. As a result, the pair of end plates 4 and the pair of restraint members 12 are fixed. By engaging the pair of end plates 4 and the pair of restraint members 12, the plurality of batteries 14 are tightened and restrained in the stacking direction X. As a result, each battery 14 is positioned in the stacking direction X.
  • the restraint member 12 sandwiches the plurality of batteries 14 in the stacking direction X and also sandwiches the battery stack 2 and the cooling unit 6 in the arrangement direction thereof. Specifically, the restraint member 12 sandwiches the plurality of batteries 14 in the stacking direction X by engaging both ends of the flat portion 54 in the stacking direction X of the batteries 14 with the pair of end plates 4. Further, the restraint member 12 sandwiches the battery stack 2 and the cooling unit 6 in the vertical direction Z by the pair of arms 56. That is, the restraint member 12 has both the function of fastening the plurality of batteries 14 and the function of fastening the battery stack 2 and the cooling unit 6. Therefore, unlike the conventional structure, the battery stack 2 and the cooling unit 6 are not fastened with screws.
  • the intervening layer 6b is pressed by the battery stack 2 and the cooling plate 6a to elastically or plastically deform.
  • the thermal connection between the battery stack 2 and the cooling plate 6a can be obtained more reliably.
  • uniform cooling of the entire battery stack 2 can be achieved.
  • the deviation of the battery stack 2 and the cooling plate 6a in the XY plane direction can be further suppressed.
  • the bus bar plate 28 is placed on the battery stack 2 after the assembly is completed. Then, the bus bar 42 is attached to the output terminal 22 of each battery 14, and the output terminals 22 of the plurality of batteries 14 are electrically connected to each other. For example, the bus bar 42 is fixed to the output terminal 22 by welding.
  • a top cover 60 is laminated on the upper surface of the bus bar plate 28.
  • the top cover 60 suppresses contact of dew condensation water, dust, or the like with the output terminal 22, the valve portion 24, the bus bar 42, etc. of the battery 14.
  • the top cover 60 is made of, for example, an insulating resin.
  • the top cover 60 has an insulating cover portion 62 at a position overlapping the external connection terminal 44 in the vertical direction Z.
  • the top cover 60 is fixed to the bus bar plate 28 by, for example, snap fitting.
  • the external connection terminals 44 are covered with the insulating cover portion 62 while the top cover 60 is placed on the bus bar plate 28.
  • FIG. 3 is a perspective view schematically showing a part of the battery module 1.
  • FIG. 4 is a sectional view schematically showing a part of the battery module 1. In FIG. 4, illustration of the internal structure of the battery 14 is omitted.
  • the separator 16 has a heat conduction suppressing portion 72 and a heat conduction promoting portion 74.
  • the heat conduction suppressing portion 72 and the heat conduction promoting portion 74 both have an insulating property and are interposed between two adjacent batteries 14. Both the heat conduction suppressing portion 72 and the heat conduction promoting portion 74 are in contact with the main surfaces of two adjacent batteries 14.
  • the heat conduction suppressing unit 72 has lower heat conductivity than the heat conduction promoting unit 74, and suppresses heat conduction between two adjacent batteries 14.
  • the heat conduction promoting unit 74 has higher heat conductivity than the heat conduction suppressing unit 72, and promotes heat conduction between two adjacent batteries 14. That is, the amount of heat transfer between the two batteries 14 via the heat conduction suppressing unit 72 (the amount of heat passing per unit time or unit area) is smaller than the amount of heat transfer via the heat conduction promoting unit 74. Further, the heat conduction promoting unit 74 contacts the cooling unit 6 and conducts the heat of the battery 14 to the cooling unit 6.
  • the heat conduction suppressing portion 72 is in the form of a sheet, and is composed of a heat insulating material and a laminated film as an example.
  • the heat insulating material is in the form of a sheet and has a structure in which a porous material such as silica xerogel is carried between the fibers of a fiber sheet made of a non-woven fabric or the like.
  • Silica xerogel has a nano-sized void structure that regulates the movement of air molecules, and has low thermal conductivity.
  • the thermal conductivity of the heat insulating material is about 0.018 to 0.024 W/m ⁇ K, which is lower than the thermal conductivity of air.
  • the heat conduction suppressing portion 72 it is possible to further suppress the heat conduction between the batteries 14 as compared with the case where the air layer is provided as the heat insulating layer between the two adjacent batteries 14.
  • the heat insulating material is particularly useful as a heat insulating material used in a narrow space.
  • silica xerogel can stably maintain its structure against external pressure. Therefore, even if the restraint member 12 tightens in the stacking direction X, the heat insulating performance of the heat insulating material can be stably maintained. Therefore, the battery module 1 can suppress the heat conduction between the batteries 14 more stably by including the heat conduction suppressing portion 72 than in the case where the air layer is provided between the batteries 14 as the heat insulating layer. Furthermore, since the heat insulating material has a lower thermal conductivity than that of air, it is possible to obtain the same heat insulating effect with a thinner layer thickness than that of the air layer. Therefore, upsizing of the battery module 1 can be suppressed.
  • Laminate film is a member that wraps and protects the entire heat insulating material.
  • the laminated film can prevent the porous material in the heat insulating material from falling off from the fiber sheet.
  • the laminate film is made of, for example, polyethylene terephthalate (PET).
  • the heat conduction suppressing portion 72 has high heat resistance. More specifically, the heat resistance of the heat insulating material is high. More specifically, the fiber sheet contains fibers having a high melting point, the porous material is made of a material having a high melting point, or both.
  • the heat insulating material has a melting point of 300° C. or higher. Specifically, the melting point of the fiber sheet and/or the porous material forming the heat insulating material is 300° C. or higher. In particular, it is preferable to set the melting point of the fibers constituting the fiber sheet to 300° C. or higher. Thereby, even when the heat insulating material is exposed to a high temperature, the fiber sheet can maintain the state of carrying the porous material.
  • the heat conduction suppressing portion 72 can remain even if the battery 14 generates heat. Therefore, the heat conduction suppressing portion 72 can maintain the insulation between the batteries 14. Moreover, the state in which the heat conduction between the adjacent batteries 14 is suppressed can be maintained for a longer period of time.
  • the heat conduction promoting unit 74 is in the form of a sheet, and is made of, for example, a resin sheet such as polypropylene (PP), polystyrene (PS), polyethylene (PE), and silicone rubber.
  • the heat conductivity of the heat conduction promoting unit 74 is higher than that of the heat conduction suppressing unit 72 and air.
  • the thickness of the heat conduction promoting portion 74 is equal to or larger than the thickness of the heat conduction suppressing portion 72.
  • the heat conduction suppressing portion 72 and the heat conduction promoting portion 74 are fixed to each other by adhesion, insert molding, or the like.
  • the upper area in the vertical direction Z is formed by the heat conduction suppressing portion 72, and the lower area is formed by the heat conduction promoting portion 74. That is, the heat conduction suppressing portion 72 and the heat conduction promoting portion 74 are arranged in the vertical direction Z. Therefore, in the region above each of the batteries 14 in contact with the heat conduction suppressing portion 72, heat transfer to the adjacent batteries 14 is suppressed. On the other hand, in the lower region of each battery 14 which is in contact with the heat conduction promoting portion 74, the transfer of heat to the adjacent battery 14 is promoted.
  • the first surface 14a of each battery 14, that is, the lower surface, is in direct contact with the intervening layer 6b of the cooling unit 6. Therefore, most of the heat of each battery 14 moves to the intervening layer 6b from each first surface 14a. In addition, a part of the heat of each battery 14 moves to the adjacent battery 14 via the heat conduction promoting unit 74, and moves from the first surface 14a of the moved battery 14 to the intervening layer 6b. Further, the heat conduction promoting portion 74 is in direct contact with the intervening layer 6b. Therefore, a part of the heat of each battery 14 not only moves to the adjacent battery 14 via the heat conduction promoting unit 74, but also moves from the heat conduction promoting unit 74 to the intervening layer 6b. The heat transferred to the intervening layer 6b moves to the cooling plate 6a and is dissipated from the cooling plate 6a to the heat absorbing section 76.
  • the heat conduction promoting unit 74 arranged between the second battery 14Q and the first battery 14P promotes the transfer of heat from the first battery 14P to the second battery 14Q.
  • transfer of heat from the first battery 14P to the third battery 14R is promoted by the heat conduction promoting unit 74 arranged between the third battery 14R and the first battery 14P.
  • the heat of the first battery 14P moves from the first surface 14a of the first battery 14P to the cooling unit 6 and also to the second battery 14Q and the third battery 14R on both sides via the heat conduction promoting unit 74.
  • the second battery 14Q and the third battery 14R move from the first surface 14a to the cooling unit 6.
  • part of the heat transferred to the second battery 14Q moves to the fourth battery 14S adjacent to the second battery 14Q via the heat conduction promoting unit 74, and is also cooled from the first surface 14a of the fourth battery 14S.
  • part of the heat transferred to the third battery 14R moves to the fifth battery 14T adjacent to the third battery 14R via the heat conduction promoting unit 74, and also from the first surface 14a of the fifth battery 14T.
  • a part of the heat moves from the heat conduction promoting unit 74 to the cooling unit 6 in the process of moving between the adjacent batteries 14.
  • the heat conduction promoting unit 74 in the region of each battery 14 on the cooling unit 6 side and promoting the transfer of heat to the adjacent batteries 14, the temperature difference between the batteries 14 can be reduced. it can.
  • the heat of each battery 14 is transferred not only from the first surface 14 a of itself but also from the first surface 14 a of the other stacked batteries 14 and the heat conduction promoting unit 74 between the batteries 14 to the cooling unit 6. be able to. Therefore, the cooling efficiency of each battery 14 can be improved.
  • the heat conduction suppressing portion 72 is arranged between two adjacent batteries 14 to limit the area where the heat transfer between the batteries 14 is allowed. Thereby, the temperature of the other battery 14 excessively rises due to the thermal runaway of one of the batteries 14, that is, the chain of overheating can be suppressed.
  • the size ratio, shape and arrangement of the heat conduction suppressing portion 72 and the heat conduction promoting portion 74 in each separator 16 are appropriately set based on the results of experiments and simulations in consideration of the amount of heat transfer between the adjacent batteries 14. can do.
  • the size ratio of the heat conduction suppressing part 72 and the heat conduction promoting part 74 is the ratio of the areas of the heat conduction suppressing part 72 and the heat conduction promoting part 74 when the separator 16 is viewed from the stacking direction X.
  • the entire separator 16 including the heat conduction suppressing portion 72 and the heat conduction promoting portion 74 has a substantially uniform thickness.
  • FIG. 5 is a plan view schematically showing a part of the battery module 1.
  • FIG. 6 is a sectional view schematically showing a part of the battery module 1. In FIG. 6, illustration of the internal structure of the battery 14 is omitted.
  • the heat of each battery 14 moves to the restraint member 12 through the heat conduction layer 10 and is radiated from the restraint member 12 to the outside of the battery module 1. Thereby, the cooling efficiency of the battery 14 can be improved.
  • a part of the heat of each battery 14 moves to another battery 14 via the restraining member 12.
  • a part of the heat of each battery 14 can move to another battery 14 through the heat conductive layer 10.
  • the temperature difference between the batteries 14 can be reduced.
  • the heat transferred to the restraint member 12 moves inside the restraint member 12 in the direction in which the heat conduction suppressing portion 72 and the heat conduction promoting portion 74 are arranged, that is, in the vertical direction Z. Thereby, the temperature difference in the vertical direction Z in each battery 14 can be reduced.
  • the restraint member 12 is thermally connected to the cooling unit 6.
  • the flat surface portion 54 of the restraint member 12 contacts the side surface of the cooling portion 6, and the lower arm portion 56 contacts the lower main surface of the cooling plate 6a.
  • the heat of each battery 14 can be transferred to the cooling unit 6 via the restraining member 12.
  • An insulating sheet (not shown) is interposed between the restraint member 12 and the cooling plate 6a to electrically insulate them.
  • the heat conduction layer 10 is thermally connected to the cooling unit 6.
  • the lower end of heat conduction layer 10 abuts on intervening layer 6b. Thereby, the heat of each battery 14 can be transferred to the cooling unit 6 via the heat conduction layer 10. As a result, the cooling efficiency of each battery 14 can be further improved.
  • the amount of heat transfer from each second surface 14b of the battery 14 to the restraining member 12 is smaller than the amount of heat transfer from the first surface 14a of the battery 14 to the cooling unit 6. More preferably, the total heat transfer amount from the two second surfaces 14b to the restraining member 12 is smaller than the heat transfer amount from the first surface 14a to the cooling unit 6.
  • the thermal conductivity and dimensions of the heat conductive layer 10 are set so that the amount of heat transfer from the second surface 14b to the restraining member 12 is smaller than the amount of heat transfer from the first surface 14a to the cooling unit 6.
  • the heat conduction layer 10 is made of a material having lower heat conductivity than the intervening layer 6b.
  • a heat absorbing portion 76 is directly connected to the cooling portion 6. Therefore, the cooling unit 6 has higher heat dissipation efficiency than the restraining member 12. Therefore, by conducting more heat of the battery 14 to the cooling unit 6 than to the restraining member 12, it is possible to more reliably suppress the chain of overheating.
  • the battery module 1 is arranged between a plurality of stacked batteries 14 and two adjacent batteries 14, and is a separator that electrically insulates the two batteries 14. 16.
  • the separator 16 includes the heat conduction suppressing portion 72 and the heat conduction promoting portion 74, and the cooling portion 6 that is thermally connected to the plurality of batteries 14.
  • the heat conduction suppressing portion 72 has lower heat conductivity than the heat conduction promoting portion 74, and suppresses heat conduction between two adjacent batteries 14.
  • the heat conduction promoting unit 74 contacts the cooling unit 6, promotes heat conduction between two adjacent batteries 14, and conducts heat of the batteries 14 to the cooling unit 6.
  • the heat conduction promoting portion 74 is adapted to the expansion and contraction of each battery 14. It is difficult to track the position of.
  • the position of the heat conduction promoting portion 74 can be favorably followed with respect to the expansion and contraction of each battery 14.
  • Each of the plurality of batteries 14 has a first surface 14a facing the cooling unit 6 and a second surface 14b different from the first surface 14a.
  • the battery module 1 is a restraint member 12 that extends in the stacking direction X of the batteries 14, and is placed so as to face the second surface 14b of each battery 14 and sandwiches the plurality of batteries 14 in the stacking direction X.
  • a heat conduction layer that is disposed between the restraint member 12 and the second surface 14b of each battery 14 and that conducts the heat of each battery 14 to the restraint member 12.
  • the amount of heat transfer from the second surface 14b of the battery 14 to the restraining member 12 is smaller than the amount of heat transfer from the first surface 14a of the battery 14 to the cooling unit 6.
  • the amount of heat transferred between the adjacent batteries 14 via the restraint member 12 can be suppressed.
  • the chain of overheating can be further suppressed.
  • the restraint member 12 is thermally connected to the cooling unit 6. Thereby, the cooling efficiency of each battery 14 can be further improved and the chain of overheating can be further suppressed.
  • FIG. 7 is a sectional view schematically showing a part of the battery module according to the second embodiment. In FIG. 7, illustration of the internal structure of the battery 14 is omitted.
  • the battery module 1 is arranged between a plurality of stacked batteries 14 and two adjacent batteries 14, and a separator 16 that electrically insulates between the two batteries 14 and is thermally connected to the plurality of batteries 14.
  • the cooling unit 6 is provided.
  • the separator 16 has a heat conduction suppressing portion 72 and a heat conduction promoting portion 74.
  • the heat conduction promoting unit 74 of the present embodiment has a first portion 78 and a second portion 80.
  • the first portion 78 extends between two adjacent batteries 14.
  • the second portion 80 continuously extends from the first portion 78 between one of the two batteries 14 and the cooling unit 6. Therefore, the separator 16 and the heat conduction promoting portion 74 of this embodiment are L-shaped when viewed in the horizontal direction Y.
  • the first portion 78 extends parallel to the YZ plane and abuts on the main surfaces of two adjacent batteries 14. Further, the upper end of the first portion 78 is connected to the lower end of the heat conduction suppressing portion 72.
  • the second portion 80 extends parallel to the XY plane, and one end portion in the stacking direction X is connected to the lower end of the first portion 78.
  • the upper main surface of the second portion 80 contacts the first surface 14a, and the lower main surface of the second portion 80 contacts the intervening layer 6b.
  • the first surface 14 a of the battery 14 is substantially entirely covered with the second portion 80.
  • the other end of the second portion 80 in the stacking direction X abuts the second portion 80 of the adjacently disposed separator 16.
  • the present embodiment it is possible to more reliably obtain the state where the heat conduction promoting unit 74 and the cooling unit 6 are in contact with each other. Further, the contact area between the heat conduction promoting portion 74 and the cooling portion 6 can be increased. As a result, the cooling efficiency of each battery 14 can be further improved.
  • FIG. 8 is a perspective view schematically showing a part of the battery module according to the third embodiment.
  • the battery module 1 is arranged between a plurality of stacked batteries 14 and two adjacent batteries 14, and a separator 16 that electrically insulates between the two batteries 14 and is thermally connected to the plurality of batteries 14.
  • the cooling unit 6 is provided.
  • the separator 16 has a heat conduction suppressing portion 72 and a heat conduction promoting portion 74.
  • the heat conduction promoting unit 74 of the present embodiment has a protrusion 82 that fits into the heat conduction suppressing unit 72.
  • the protruding portion 82 is fitted in the heat conduction suppressing portion 72.
  • the projecting portion 82 projects into the heat conduction suppressing portion 72 from the boundary line between the heat conduction suppressing portion 72 and the heat conduction promoting portion 74. Accordingly, the temperature difference in the direction in which the heat conduction suppressing portion 72 and the heat conduction promoting portion 74 in each battery 14 are arranged can be reduced. Further, the protrusion 82 of the present embodiment abuts on the main surfaces of two adjacent batteries 14.
  • FIG. 9 is a plan view schematically showing a part of the battery module according to Modification 1.
  • the heat conductive layer 10 has a plurality of first members 84 and a second member 86.
  • Each of the plurality of first members 84 has a strip shape that is long in the vertical direction Z, and is arranged in the stacking direction X at a predetermined interval.
  • Each first member 84 contacts the second surface 14b of each battery 14.
  • the second member 86 has a flat plate shape and is interposed between the restraining member 12 and each of the first members 84.
  • At least one of the first member 84 and the second member 86 has an insulating property.
  • both the first member 84 and the second member 86 have insulating properties.
  • each first member 84 has higher thermal conductivity than the second member 86.
  • the number of batteries 14 included in the battery module 1 is not particularly limited.
  • the fixing structure of the end plate 4 and the restraint member 12 is not particularly limited, and a well-known structure can be adopted.
  • fixing structures other than the structures disclosed in the embodiments include fixing using bolts and rivets, welding, and mechanical clinch.
  • the battery 14 may be cylindrical or the like. When sufficient heat conduction and frictional force between the battery stack 2 and the cooling plate 6a can be ensured, the intervening layer 6b is omitted, and an insulating sheet made of PET or PC is used as the battery stack 2 and the cooling plate 6a. It may be interposed between and.

Abstract

In order to suppress a chain reaction of overheating while reducing variations in temperature distribution among a plurality of batteries, a battery module (1) is provided with: a plurality of batteries (14) that are stacked; a separator (16) that is disposed between two adjacent batteries (14), and provides electrical isolation between these two batteries (14), the separator (16) comprising a heat conduction suppression part (72) and a heat conduction acceleration part (74); and a cooling part (6) that is thermally connected to the plurality of batteries (14). The heat conduction suppression part (72) has lower heat conductivity than the heat conduction acceleration part (74), and suppresses heat conduction between the two adjacent batteries (14). The heat acceleration part (74) is in contact with the cooling part (6), accelerates heat conduction between the two adjacent batteries (14), and conducts the heat of the batteries (14) to the cooling part (6).

Description

電池モジュールBattery module
 本発明は、電池モジュールに関する。 The present invention relates to a battery module.
 例えば車両用等の、高い出力電圧が要求される電源として、複数個の電池が電気的に接続された電池モジュールが知られている。このような電池モジュールに関して、特許文献1には、複数の電池が積層された電池積層体と、隣り合う電池の間に配置されたセパレータと、電池積層体の両端に配置された金属製のエンドプレートと、電池積層体の両端に位置する電池とエンドプレートとの間に配置されたエンドセパレータと、各電池に伝熱状態に連結された冷却プレートと、を備えた電池モジュールが開示されている。 For example, a battery module in which a plurality of batteries are electrically connected is known as a power source for vehicles, which requires a high output voltage. Regarding such a battery module, Patent Document 1 discloses a battery stack in which a plurality of batteries are stacked, a separator arranged between adjacent batteries, and metal ends arranged at both ends of the battery stack. Disclosed is a battery module including a plate, end separators disposed between the end plates and batteries located at both ends of the battery stack, and a cooling plate connected to each battery in a heat transfer state. ..
 この電池モジュールでは、エンドプレートとエンドセパレータとの接合面に空隙を設けて、エンドプレートとエンドセパレータとの接触面積を低減していた。これにより、電池積層体の両端面に位置する電池が伝熱性に優れたエンドプレートによって他の電池よりも冷却されることを阻止して、複数の電池の温度分布のばらつきを低減していた。 In this battery module, the contact area between the end plate and the end separator was reduced by providing a gap in the joint surface between the end plate and the end separator. As a result, the batteries located on both end surfaces of the battery stack are prevented from being cooled by the end plates having excellent heat conductivity more than other batteries, and the variation in the temperature distribution of the plurality of batteries is reduced.
特開2015-111493号公報Japanese Unexamined Patent Publication No. 2015-111493
 電池モジュールでは、ある電池の温度が過度に上昇し、その熱が隣接する電池にも伝わってこの隣接する電池の温度も過度に上昇するという、過熱の連鎖が生じるおそれがある。特に、近年は電池モジュールのさらなる高容量化が求められており、この要求を満たすために電池の高容量化が進んでいる。電池が高容量化すると電池の温度上昇が大きくなる傾向にあるため、過熱の連鎖がより起こりやすくなる。 In a battery module, the temperature of a certain battery may rise excessively, the heat may be transmitted to the adjacent battery, and the temperature of this adjacent battery may also rise excessively. In particular, in recent years, there has been a demand for higher capacity of battery modules, and in order to meet this demand, higher capacity of batteries has been advanced. As the capacity of the battery increases, the temperature rise of the battery tends to increase, and thus the chain of overheating is more likely to occur.
 過熱の連鎖を抑制する方法としては、例えば各電池の間に断熱材を挟んで、隣り合う電池間での熱の移動を抑制することが考えられる。しかしながら、隣り合う電池間での熱の移動を抑制すると、電池間に温度分布のばらつきが生じやすくなる。複数の電池の寿命を揃え、電池モジュール全体の寿命を延ばす観点からは、電池間の温度分布のばらつきは回避することが望まれる。 As a method of suppressing the chain of overheating, for example, sandwiching a heat insulating material between each battery and suppressing the transfer of heat between adjacent batteries can be considered. However, if the heat transfer between adjacent batteries is suppressed, the temperature distribution tends to vary between the batteries. From the viewpoint of aligning the lives of a plurality of batteries and extending the life of the entire battery module, it is desirable to avoid variations in temperature distribution among the batteries.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、複数の電池間における温度分布のばらつきを低減しながら過熱の連鎖を抑制する技術を提供することにある。 The present invention has been made in view of such a situation, and an object thereof is to provide a technique of suppressing a chain of overheating while reducing variations in temperature distribution among a plurality of batteries.
 本発明のある態様は、電池モジュールである。この電池モジュールは、積層された複数の電池と、隣接する2つの電池間に配置され、当該2つの電池間を電気的に絶縁するセパレータであって、熱伝導抑制部および熱伝導促進部を有するセパレータと、複数の電池に熱的に接続される冷却部と、を備える。熱伝導抑制部は、熱伝導促進部よりも熱伝導性が低く、隣接する2つの電池間の熱伝導を抑制し、熱伝導促進部は、冷却部に当接し、隣接する2つの電池間の熱伝導を促進するとともに電池の熱を冷却部に伝導する。 One aspect of the present invention is a battery module. This battery module is a separator that is disposed between a plurality of stacked batteries and two adjacent batteries and electrically insulates the two batteries, and has a heat conduction suppressing portion and a heat conduction promoting portion. A separator and a cooling unit that is thermally connected to the plurality of batteries are provided. The heat conduction suppressing unit has lower heat conductivity than the heat conduction promoting unit and suppresses heat conduction between the two adjacent batteries, and the heat conduction promoting unit abuts the cooling unit and between the two adjacent batteries. It promotes heat conduction and conducts heat from the battery to the cooling unit.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above constituent elements and one obtained by converting the expression of the present invention among methods, devices, systems, etc. are also effective as an aspect of the present invention.
 本発明によれば、複数の電池間における温度分布のばらつきを低減しながら過熱の連鎖を抑制することができる。 According to the present invention, it is possible to suppress a chain of overheating while reducing variations in temperature distribution among a plurality of batteries.
実施の形態1に係る電池モジュールの斜視図である。FIG. 3 is a perspective view of the battery module according to the first embodiment. 電池モジュールの分解斜視図である。It is an exploded perspective view of a battery module. 電池モジュールの一部を模式的に示す斜視図である。It is a perspective view which shows a part of battery module typically. 電池モジュールの一部を模式的に示す断面図である。It is sectional drawing which shows a part of battery module typically. 電池モジュールの一部を模式的に示す平面図である。It is a top view which shows a part of battery module typically. 電池モジュールの一部を模式的に示す断面図である。It is sectional drawing which shows a part of battery module typically. 実施の形態2に係る電池モジュールの一部を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a part of the battery module according to the second embodiment. 実施の形態3に係る電池モジュールの一部を模式的に示す斜視図である。FIG. 9 is a perspective view schematically showing a part of the battery module according to the third embodiment. 変形例1に係る電池モジュールの一部を模式的に示す平面図である。FIG. 8 is a plan view schematically showing a part of the battery module according to Modification 1.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、特に言及がない限りこの用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The embodiments do not limit the invention and are exemplifications, and all the features and combinations thereof described in the embodiments are not necessarily essential to the invention. The same or equivalent constituent elements, members, and processes shown in each drawing will be denoted by the same reference numerals, and duplicated description will be appropriately omitted. Further, the scales and shapes of the respective parts shown in the drawings are set for the sake of convenience of description, and should not be construed as limiting unless otherwise specified. In addition, when terms such as “first” and “second” are used in the present specification or claims, the terms do not indicate any order or importance, and have a certain configuration unless otherwise specified. And to distinguish it from other configurations. In addition, in each drawing, some of the members that are not important for explaining the embodiment are omitted.
(実施の形態1)
 図1は、実施の形態1に係る電池モジュールの斜視図である。図2は、電池モジュールの分解斜視図である。電池モジュール1は、電池積層体2と、一対のエンドプレート4と、冷却部6と、熱伝導層10と、拘束部材12と、を備える。
(Embodiment 1)
FIG. 1 is a perspective view of the battery module according to the first embodiment. FIG. 2 is an exploded perspective view of the battery module. The battery module 1 includes a battery stack 2, a pair of end plates 4, a cooling unit 6, a heat conduction layer 10, and a restraining member 12.
 電池積層体2は、複数の電池14と、セパレータ16と、を有する。各電池14は、例えば、リチウムイオン電池、ニッケル-水素電池、ニッケル-カドミウム電池等の充電可能な二次電池である。各電池14は、いわゆる角形電池であり、扁平な直方体形状の外装缶18を有する。外装缶18の一面には図示しない略長方形状の開口が設けられ、この開口を介して外装缶18に電極体や電解液等が収容される。外装缶18の開口には、開口を塞ぐ封口板20が設けられる。 The battery stack 2 has a plurality of batteries 14 and a separator 16. Each battery 14 is a rechargeable secondary battery such as a lithium-ion battery, a nickel-hydrogen battery, a nickel-cadmium battery, or the like. Each battery 14 is a so-called prismatic battery, and has a flat rectangular parallelepiped outer can 18. A not-shown substantially rectangular opening is provided on one surface of the outer can 18, and an electrode body, an electrolytic solution and the like are accommodated in the outer can 18 through this opening. The opening of the outer can 18 is provided with a sealing plate 20 that closes the opening.
 封口板20には、長手方向の一端寄りに正極の出力端子22が配置され、他端寄りに負極の出力端子22が配置される。一対の出力端子22はそれぞれ、電極体を構成する正極板、負極板と電気的に接続される。以下では適宜、正極の出力端子22を正極端子22aと称し、負極の出力端子22を負極端子22bと称する。また、出力端子22の極性を区別する必要がない場合、正極端子22aと負極端子22bとをまとめて出力端子22と称する。 The sealing plate 20 has a positive output terminal 22 arranged near one end in the longitudinal direction and a negative output terminal 22 arranged near the other end. Each of the pair of output terminals 22 is electrically connected to a positive electrode plate and a negative electrode plate that form an electrode body. Hereinafter, the positive output terminal 22 is referred to as a positive terminal 22a, and the negative output terminal 22 is referred to as a negative terminal 22b. Further, when it is not necessary to distinguish the polarities of the output terminal 22, the positive electrode terminal 22a and the negative electrode terminal 22b are collectively referred to as the output terminal 22.
 外装缶18、封口板20および出力端子22は導電体であり、例えば金属製である。封口板20と外装缶18の開口とは、例えばレーザー溶接により接合される。各出力端子22は、封口板20に形成された貫通孔(図示せず)に挿通される。各出力端子22と各貫通孔との間には、絶縁性のシール部材(図示せず)が介在する。 The outer can 18, the sealing plate 20, and the output terminal 22 are conductors, and are made of metal, for example. The sealing plate 20 and the opening of the outer can 18 are joined by, for example, laser welding. Each output terminal 22 is inserted into a through hole (not shown) formed in the sealing plate 20. An insulating seal member (not shown) is interposed between each output terminal 22 and each through hole.
 本実施の形態の説明では、便宜上、封口板20を電池14の上面、封口板20と対向する外装缶18の底面を電池14の下面とする。また、電池14は、上面および下面をつなぐ2つの主表面を有する。この主表面は、電池14が有する6つの面のうち面積の最も大きい面である。また、主表面は、上面および下面の長辺と接続される長側面である。上面、下面および2つの主表面を除いた残り2つの面は、電池14の側面とする。この側面は、上面および下面の短辺と接続される一対の短側面である。 In the description of the present embodiment, for convenience, the sealing plate 20 will be referred to as the upper surface of the battery 14, and the bottom surface of the outer can 18 facing the sealing plate 20 will be referred to as the lower surface of the battery 14. Battery 14 also has two main surfaces that connect the upper surface and the lower surface. The main surface has the largest area among the six surfaces of the battery 14. The main surface is a long side surface connected to the long sides of the upper surface and the lower surface. The remaining two surfaces excluding the upper surface, the lower surface and the two main surfaces are the side surfaces of the battery 14. The side surfaces are a pair of short side surfaces connected to the short sides of the upper surface and the lower surface.
 また、便宜上、電池積層体2において電池14の上面側の面を電池積層体2の上面とし、電池14の下面側の面を電池積層体2の下面とし、電池14の側面側の面を電池積層体2の側面とする。これらの方向および位置は、便宜上規定したものである。したがって、例えば、本発明において上面と規定された部分は、下面と規定された部分よりも必ず上方に位置することを意味するものではない。 Further, for convenience, in the battery stack 2, the surface on the upper surface side of the battery 14 is the upper surface of the battery stack 2, the surface on the lower surface side of the battery 14 is the lower surface of the battery stack 2, and the surface on the side surface side of the battery 14 is the battery. The side surface of the laminated body 2 is used. These directions and positions are defined for convenience. Therefore, for example, in the present invention, the portion defined as the upper surface does not necessarily mean that it is located above the portion defined as the lower surface.
 封口板20には、一対の出力端子22の間に弁部24が設けられる。弁部24は、安全弁とも呼ばれ、電池14の内部のガスを放出するための機構である。弁部24は、外装缶18の内圧が所定値以上に上昇した際に開弁して、内部のガスを放出できるように構成される。弁部24は、例えば、封口板20の一部に設けられる、他部よりも厚さが薄い薄肉部と、この薄肉部の表面に形成される線状の溝とで構成される。この構成では、外装缶18の内圧が上昇すると、溝を起点に薄肉部が裂けることで開弁される。各電池14の弁部24は、後述する排気ダクト38に接続され、電池内部のガスは弁部24から排気ダクト38に排出される。 The sealing plate 20 is provided with a valve portion 24 between a pair of output terminals 22. The valve unit 24 is also called a safety valve, and is a mechanism for releasing gas inside the battery 14. The valve portion 24 is configured to open when the internal pressure of the outer can 18 rises above a predetermined value to release the gas inside. The valve portion 24 is composed of, for example, a thin portion provided in a part of the sealing plate 20 and having a smaller thickness than other portions, and a linear groove formed on the surface of the thin portion. In this configuration, when the internal pressure of the outer can 18 rises, the thin portion tears from the groove to open the valve. The valve portion 24 of each battery 14 is connected to an exhaust duct 38 described later, and the gas inside the battery is discharged from the valve portion 24 to the exhaust duct 38.
 また、各電池14は、絶縁フィルム26を有する。絶縁フィルム26は、例えば筒状のシュリンクチューブであり、外装缶18を内部に通した後に加熱される。これにより、絶縁フィルム26は収縮し、外装缶18の2つの主表面、2つの側面および底面を被覆する。絶縁フィルム26により、隣り合う電池14間、あるいは電池14とエンドプレート4や拘束部材12との間の短絡を抑制することができる。 Each battery 14 also has an insulating film 26. The insulating film 26 is, for example, a cylindrical shrink tube, and is heated after the outer can 18 is passed inside. As a result, the insulating film 26 contracts and covers the two main surfaces, the two side surfaces, and the bottom surface of the outer can 18. The insulating film 26 can suppress a short circuit between the adjacent batteries 14 or between the batteries 14 and the end plate 4 or the restraining member 12.
 複数の電池14は、隣り合う電池14の主表面同士が対向するようにして所定の間隔で積層される。なお、「積層」は、任意の1方向に複数の部材を並べることを意味する。したがって、電池14の積層には、複数の電池14を水平に並べることも含まれる。本実施の形態では、電池14は水平に積層されている。したがって、電池14の積層方向Xは、水平に延びる方向である。以下では適宜、水平で且つ積層方向Xに垂直な方向を水平方向Yとし、積層方向Xおよび水平方向Yに対し垂直な方向を鉛直方向Zとする。 The plurality of batteries 14 are stacked at a predetermined interval so that the main surfaces of the adjacent batteries 14 face each other. Note that “stacking” means arranging a plurality of members in any one direction. Therefore, stacking the batteries 14 also includes horizontally arranging the plurality of batteries 14. In this embodiment, the batteries 14 are horizontally stacked. Therefore, the stacking direction X of the battery 14 is a direction that extends horizontally. In the following, a direction that is horizontal and perpendicular to the stacking direction X is referred to as a horizontal direction Y, and a direction perpendicular to the stacking direction X and the horizontal direction Y is referred to as a vertical direction Z.
 また、各電池14は、出力端子22が同じ方向を向くように配置される。本実施の形態の各電池14は、出力端子22が鉛直方向上方を向くように配置される。この状態で、各電池14における一対の出力端子22は水平方向Yに並ぶ。典型的には、隣接する電池14を直列に接続する場合、一方の電池14の正極端子22aと他方の電池14の負極端子22bとが隣り合うように積層される。また、隣接する電池14を並列に接続する場合、一方の電池14の正極端子22aと他方の電池14の正極端子22aとが隣り合うように積層される。 Also, the batteries 14 are arranged so that the output terminals 22 face the same direction. Each of the batteries 14 of the present embodiment is arranged such that the output terminal 22 faces upward in the vertical direction. In this state, the pair of output terminals 22 of each battery 14 are arranged in the horizontal direction Y. Typically, when the adjacent batteries 14 are connected in series, the positive electrode terminal 22a of one battery 14 and the negative electrode terminal 22b of the other battery 14 are laminated so as to be adjacent to each other. When the adjacent batteries 14 are connected in parallel, the positive electrode terminal 22a of one battery 14 and the positive electrode terminal 22a of the other battery 14 are laminated so as to be adjacent to each other.
 セパレータ16は、絶縁スペーサとも呼ばれ、例えば絶縁性を有するシートからなる。セパレータ16は、隣接する2つの電池14間に配置され、当該2つの電池14間を電気的に絶縁する。セパレータ16の構造については後に詳細に説明する。 The separator 16 is also called an insulating spacer and is made of, for example, an insulating sheet. The separator 16 is arranged between two adjacent batteries 14 and electrically insulates the two batteries 14 from each other. The structure of the separator 16 will be described in detail later.
 電池積層体2は、一対のエンドプレート4で挟まれる。一対のエンドプレート4は、積層方向Xにおける電池積層体2の両端に配置される。一対のエンドプレート4は、積層方向Xにおける両端に位置する電池14と、外端セパレータ5を介して隣り合う。外端セパレータ5は、例えばポリプロピレン(PP)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)、ノリル(登録商標)樹脂(変性PPE)等の熱可塑性樹脂で構成される絶縁性の樹脂シートである。各エンドプレート4は、鉄、ステンレス鋼、アルミニウム等の金属で構成される金属板である。エンドプレート4と電池14との間に外端セパレータ5が介在することで、両者が絶縁される。 The battery stack 2 is sandwiched between a pair of end plates 4. The pair of end plates 4 are arranged at both ends of the battery stack 2 in the stacking direction X. The pair of end plates 4 are adjacent to the batteries 14 located at both ends in the stacking direction X with the outer end separator 5 interposed therebetween. The outer edge separator 5 is an insulating resin sheet made of a thermoplastic resin such as polypropylene (PP), polybutylene terephthalate (PBT), polycarbonate (PC), Noryl (registered trademark) resin (modified PPE). .. Each end plate 4 is a metal plate made of metal such as iron, stainless steel, and aluminum. The outer end separator 5 is interposed between the end plate 4 and the battery 14 to insulate the both.
 各エンドプレート4は、水平方向Yを向く2つの面に締結孔4aを有する。本実施の形態では、3つの締結孔4aが鉛直方向Zに所定の間隔をあけて配置されている。締結孔4aが設けられる面は、拘束部材12の後述する平面部54と対向する。 Each end plate 4 has a fastening hole 4a on two surfaces facing the horizontal direction Y. In the present embodiment, the three fastening holes 4a are arranged in the vertical direction Z at a predetermined interval. The surface provided with the fastening hole 4a faces a flat surface portion 54 of the restraint member 12 which will be described later.
 電池積層体2の上面には、バスバープレート28が載置される。バスバープレート28は、複数の電池14の上面を覆う板状の部材である。バスバープレート28は、各電池14の弁部24に対応する位置に、弁部24を露出させる複数の開口部32を有する。また、バスバープレート28は、開口部32の上方を覆うダクト天板34と、開口部32の側方を囲う側壁36と、を有する。ダクト天板34が側壁36の上端に固定されることで、バスバープレート28に排気ダクト38が形成される。各弁部24は、開口部32を介して排気ダクト38に連通される。 A bus bar plate 28 is placed on the upper surface of the battery stack 2. The bus bar plate 28 is a plate-shaped member that covers the upper surfaces of the plurality of batteries 14. The bus bar plate 28 has a plurality of openings 32 that expose the valve portions 24 at positions corresponding to the valve portions 24 of each battery 14. Further, the bus bar plate 28 has a duct top plate 34 that covers the upper side of the opening 32 and a side wall 36 that surrounds the side of the opening 32. An exhaust duct 38 is formed in the bus bar plate 28 by fixing the duct top plate 34 to the upper end of the side wall 36. Each valve portion 24 communicates with the exhaust duct 38 via the opening 32.
 また、バスバープレート28は、各電池14の出力端子22に対応する位置に、出力端子22を露出させる開口部40を有する。各開口部40には、バスバー42が載置される。複数のバスバー42は、バスバープレート28によって支持される。各開口部40に載置されたバスバー42によって、隣り合う電池14の正極端子22aと負極端子22bとが電気的に接続される。 Further, the bus bar plate 28 has an opening 40 at a position corresponding to the output terminal 22 of each battery 14 to expose the output terminal 22. A bus bar 42 is placed in each opening 40. The plurality of bus bars 42 are supported by the bus bar plate 28. The bus bar 42 placed in each opening 40 electrically connects the positive electrode terminal 22a and the negative electrode terminal 22b of the adjacent batteries 14 to each other.
 バスバー42は、銅やアルミニウム等の金属で構成される略帯状の部材である。バスバー42は、一方の端部が一方の電池14の正極端子22aに接続され、他方の端部が他方の電池14の負極端子22bに接続される。なお、バスバー42は、隣接する複数個の電池14における同極性の出力端子22どうしを並列接続して電池ブロックを形成し、さらに電池ブロックどうしを直列接続してもよい。 The bus bar 42 is a substantially strip-shaped member made of metal such as copper or aluminum. The bus bar 42 has one end connected to the positive electrode terminal 22a of the one battery 14 and the other end connected to the negative terminal 22b of the other battery 14. In the bus bar 42, the output terminals 22 of the same polarity in the adjacent batteries 14 may be connected in parallel to form a battery block, and the battery blocks may be connected in series.
 積層方向Xにおいて両端に位置する電池14の出力端子22に接続されるバスバー42は、外部接続端子44を有する。外部接続端子44は、外部負荷(図示せず)に接続される。また、バスバープレート28には、電圧検出線46が載置される。電圧検出線46は、複数の電池14に電気的に接続されて各電池14の電圧を検出する。電圧検出線46は、複数の導線(図示せず)を有する。各導線は、一端が各バスバー42に接続され、他端がコネクタ48に接続される。コネクタ48は、外部の電池ECU(図示せず)等に接続される。電池ECUは、各電池14の電圧等の検知、各電池14の充放電等を制御する。 The bus bar 42 connected to the output terminals 22 of the batteries 14 located at both ends in the stacking direction X has external connection terminals 44. The external connection terminal 44 is connected to an external load (not shown). Further, the voltage detection line 46 is mounted on the bus bar plate 28. The voltage detection line 46 is electrically connected to the plurality of batteries 14 and detects the voltage of each battery 14. The voltage detection line 46 has a plurality of conducting wires (not shown). One end of each conductive wire is connected to each bus bar 42, and the other end is connected to the connector 48. The connector 48 is connected to an external battery ECU (not shown) or the like. The battery ECU controls detection of the voltage of each battery 14, charging and discharging of each battery 14, and the like.
 冷却部6は、複数の電池14に熱的に接続されて、つまり各電池14に熱交換可能に接続されて、各電池14を冷却する機構である。本実施の形態の冷却部6は、冷却プレート6aと介在層6bとが積層された構造を有する。冷却プレート6aおよび介在層6bは、積層方向Xおよび水平方向Yに延在する平板状であり、鉛直方向Zに積層されている。例えば冷却プレート6aは、アルミニウム等の熱伝導性の高い金属材料で構成される。また、例えば介在層6bは、アクリルゴムシートやシリコーンゴムシート等の良好な熱伝導性および絶縁性を有する公知の樹脂シートで構成される。介在層6bは、良好な熱伝導性および絶縁性を有する公知の接着剤やグリス等で構成されてもよい。 The cooling unit 6 is a mechanism that is thermally connected to the plurality of batteries 14, that is, is connected to each battery 14 in a heat exchangeable manner and cools each battery 14. Cooling unit 6 of the present embodiment has a structure in which cooling plate 6a and intervening layer 6b are stacked. The cooling plate 6a and the intervening layer 6b are flat plates extending in the stacking direction X and the horizontal direction Y, and are stacked in the vertical direction Z. For example, the cooling plate 6a is made of a metal material having high thermal conductivity such as aluminum. Further, for example, the intervening layer 6b is formed of a known resin sheet having good thermal conductivity and insulating properties such as an acrylic rubber sheet or a silicone rubber sheet. The intervening layer 6b may be made of a known adhesive or grease having good thermal conductivity and insulating properties.
 介在層6bは絶縁性を有していなくてもよい。例えば、外装缶18が絶縁フィルム26等で十分に絶縁されている場合には、介在層6bとして絶縁性を有しないシート、接着剤、グリス等を採用することができる。なお、外装缶18を絶縁フィルム26等で絶縁するとともに、介在層6bとして良好な熱伝導性および絶縁性を有するシート等を用いる場合には、より確実な絶縁を実現することができる。 The intervening layer 6b may not have insulating properties. For example, when the outer can 18 is sufficiently insulated by the insulating film 26 or the like, a sheet having no insulating property, an adhesive, grease or the like can be used as the intervening layer 6b. When the outer can 18 is insulated with the insulating film 26 or the like and a sheet or the like having good thermal conductivity and insulating properties is used as the intervening layer 6b, more reliable insulation can be realized.
 冷却部6は電池積層体2の下面側に配置され、冷却部6の主表面に電池積層体2が載置される。したがって、電池積層体2と冷却部6とは鉛直方向Zに並ぶ。介在層6bは、電池積層体2と冷却プレート6aとの間に介在する。つまり、冷却プレート6aは、介在層6bを介して電池積層体2に熱的に接続される。介在層6bを電池積層体2と冷却プレート6aとの間に配置することで、各電池14と冷却プレート6aとの熱的な接続をより確実に得ることができる。このため、各電池14の冷却効率を高めることができるとともに、各電池14をより均一に冷却することができる。また、介在層6bが絶縁性を有することで、電池積層体2と冷却プレート6aとが電気的に接続されてしまうことを回避することができる。介在層6bを接着剤や樹脂シートで構成した場合は、さらに、介在層6bによって、XY平面の延在方向における電池積層体2と冷却プレート6aとのずれを抑制するという効果も期待できる。 The cooling unit 6 is arranged on the lower surface side of the battery stack 2, and the battery stack 2 is placed on the main surface of the cooling unit 6. Therefore, the battery stack 2 and the cooling unit 6 are arranged in the vertical direction Z. The intervening layer 6b is interposed between the battery stack 2 and the cooling plate 6a. That is, the cooling plate 6a is thermally connected to the battery stack 2 via the intervening layer 6b. By arranging intervening layer 6b between battery stack 2 and cooling plate 6a, thermal connection between each battery 14 and cooling plate 6a can be obtained more reliably. Therefore, the cooling efficiency of each battery 14 can be improved, and each battery 14 can be cooled more uniformly. Further, since the intervening layer 6b has an insulating property, it is possible to prevent the battery stack 2 and the cooling plate 6a from being electrically connected. When the intervening layer 6b is made of an adhesive or a resin sheet, the intervening layer 6b can also be expected to have an effect of suppressing the displacement between the battery stack 2 and the cooling plate 6a in the extending direction of the XY plane.
 冷却プレート6aは、後述する吸熱部76(図3参照)に熱的に接続される。例えば吸熱部76は、水やエチレングリコール等の冷媒が流れる流路(図示せず)を内部に有する。この流路は、電池モジュール1の外部に熱的に接続されている。吸熱部76は、冷却プレート6aから熱を吸収し、冷媒を介して電池モジュール1の外部に移動させる。これにより、各電池14の冷却効率をより高めることができる。 The cooling plate 6a is thermally connected to a heat absorbing section 76 (see FIG. 3) described later. For example, the heat absorbing section 76 has a flow path (not shown) inside which a coolant such as water or ethylene glycol flows. This flow path is thermally connected to the outside of the battery module 1. The heat absorbing section 76 absorbs heat from the cooling plate 6a and moves it to the outside of the battery module 1 via the refrigerant. As a result, the cooling efficiency of each battery 14 can be further increased.
 熱伝導層10は、拘束部材12と電池積層体2との間に配置されて、各電池14の熱を拘束部材12に伝導する。また熱伝導層10は、絶縁性を有し、拘束部材12と電池積層体2とを絶縁するサイドセパレータとしても機能する。複数の電池14はそれぞれ、冷却部6と対向する第1面14aと、第1面14aとは異なる第2面14bと、を有する。そして、熱伝導層10は、拘束部材12と各電池14の第2面14bとの間に配置される。本実施の形態では、冷却部6が各電池14の下面と対向し、拘束部材12が各電池14の側面と対向する。このため、第1面14aは電池14の下面であり、第2面14bは電池14の側面である。したがって、第2面14bは第1面14aから連続する面である。 The heat conduction layer 10 is disposed between the restraint member 12 and the battery stack 2, and conducts the heat of each battery 14 to the restraint member 12. Further, the heat conduction layer 10 has an insulating property and also functions as a side separator that insulates the restraint member 12 and the battery stack 2. Each of the plurality of batteries 14 has a first surface 14a facing the cooling unit 6 and a second surface 14b different from the first surface 14a. The heat conduction layer 10 is arranged between the restraint member 12 and the second surface 14b of each battery 14. In the present embodiment, the cooling unit 6 faces the lower surface of each battery 14, and the restraint member 12 faces the side surface of each battery 14. Therefore, the first surface 14 a is the lower surface of the battery 14 and the second surface 14 b is the side surface of the battery 14. Therefore, the second surface 14b is a surface continuous with the first surface 14a.
 本実施の形態では、水平方向Yに一対の熱伝導層10が配列される。各熱伝導層10は、電池14の積層方向Xに長い平板状である。一対の熱伝導層10の間には、電池積層体2が配置される。熱伝導層10は、介在層6bと同様に樹脂シートや、接着剤、グリス等で構成することができる。 In the present embodiment, a pair of heat conduction layers 10 are arranged in the horizontal direction Y. Each heat conduction layer 10 has a flat plate shape that is long in the stacking direction X of the batteries 14. The battery stack 2 is arranged between the pair of heat conductive layers 10. The heat conducting layer 10 can be made of a resin sheet, an adhesive, grease or the like, like the intervening layer 6b.
 拘束部材12は、バインドバーとも呼ばれ、電池14の積層方向Xに延びる長尺状の部材である。拘束部材12は、各電池14の第2面14b(側面)と対向するように配置される。本実施の形態では、水平方向Yに一対の拘束部材12が配列される。各拘束部材12は金属製である。拘束部材12を構成する金属としては、鉄やステンレス鋼等が例示される。一対の拘束部材12の間には、電池積層体2、一対のエンドプレート4、冷却部6および一対の熱伝導層10が配置される。 The restraint member 12 is also called a bind bar, and is a long member extending in the stacking direction X of the batteries 14. The restraint member 12 is arranged so as to face the second surface 14b (side surface) of each battery 14. In the present embodiment, a pair of restraint members 12 are arranged in the horizontal direction Y. Each restraint member 12 is made of metal. Examples of the metal forming the restraint member 12 include iron and stainless steel. The battery stack 2, the pair of end plates 4, the cooling unit 6, and the pair of heat conduction layers 10 are arranged between the pair of restraining members 12.
 本実施の形態の拘束部材12は、平面部54と、一対の腕部56と、を有する。平面部54は矩形状であり、電池積層体2の側面に沿って積層方向Xに延びる。一対の腕部56は、鉛直方向Zにおける平面部54の両側の端部領域から電池積層体2側に突出する。つまり、一方の腕部56は、平面部54の上辺から電池積層体2側に突出し、他方の腕部56は、平面部54の下辺から電池積層体2側に突出する。したがって、一対の腕部56は、電池積層体2および冷却部6の配列方向で互いに対向する。一対の腕部56の間には、電池積層体2、冷却部6および熱伝導層10が配置される。 The restraint member 12 of the present embodiment has a flat surface portion 54 and a pair of arm portions 56. The plane portion 54 has a rectangular shape and extends in the stacking direction X along the side surface of the battery stack 2. The pair of arm portions 56 protrude toward the battery stack 2 from the end regions on both sides of the flat surface portion 54 in the vertical direction Z. That is, the one arm portion 56 projects from the upper side of the flat surface portion 54 toward the battery stack 2 side, and the other arm portion 56 projects from the lower side of the flat surface portion 54 toward the battery stack body 2 side. Therefore, the pair of arms 56 oppose each other in the arrangement direction of the battery stack 2 and the cooling unit 6. The battery stack 2, the cooling unit 6, and the heat conduction layer 10 are arranged between the pair of arms 56.
 平面部54における各エンドプレート4と対向する領域には、コンタクトプレート68が溶接等により固定される。コンタクトプレート68は、鉛直方向Zに長い部材である。コンタクトプレート68には、エンドプレート4の締結孔4aに対応する位置に、コンタクトプレート68を水平方向Yに貫通する貫通孔70が設けられる。また、平面部54は、コンタクトプレート68の貫通孔70に対応する位置に、平面部54を水平方向Yに貫通する貫通孔58を有する。 A contact plate 68 is fixed by welding or the like to a region of the flat surface portion 54 that faces each end plate 4. The contact plate 68 is a member long in the vertical direction Z. The contact plate 68 is provided with a through hole 70 penetrating the contact plate 68 in the horizontal direction Y at a position corresponding to the fastening hole 4a of the end plate 4. Further, the plane portion 54 has a through hole 58 penetrating the plane portion 54 in the horizontal direction Y at a position corresponding to the through hole 70 of the contact plate 68.
 各拘束部材12の平面部54に一対のエンドプレート4が係合することで、複数の電池14が積層方向Xに挟み込まれる。具体的には、複数の電池14と複数のセパレータ16とが交互に配列されて電池積層体2が形成され、電池積層体2が外端セパレータ5を介して一対のエンドプレート4で積層方向Xに挟まれる。また、電池積層体2の下面に冷却部6が配置される。この状態で、電池積層体2が一対の熱伝導層10で水平方向Yに挟まれる。さらに、一対の熱伝導層10の外側から、一対の拘束部材12が全体を水平方向Yに挟み込む。 The plurality of batteries 14 are sandwiched in the stacking direction X by the pair of end plates 4 engaging with the flat surface portion 54 of each restraint member 12. Specifically, the plurality of batteries 14 and the plurality of separators 16 are alternately arranged to form the battery laminated body 2, and the battery laminated body 2 is laminated with the pair of end plates 4 via the outer end separator 5 in the laminating direction X. Sandwiched between. Further, the cooling unit 6 is arranged on the lower surface of the battery stack 2. In this state, the battery stack 2 is sandwiched between the pair of heat conduction layers 10 in the horizontal direction Y. Further, the pair of restraint members 12 sandwich the whole in the horizontal direction Y from the outside of the pair of heat conduction layers 10.
 一対のエンドプレート4と一対の拘束部材12とは、締結孔4a、貫通孔70および貫通孔58が重なり合うように、互いに位置合わせされる。そして、ねじ等の締結部材59が貫通孔58および貫通孔70に挿通され、締結孔4aに螺合される。これにより、一対のエンドプレート4と一対の拘束部材12とが固定される。一対のエンドプレート4と一対の拘束部材12とが係合されることで、複数の電池14は、積層方向Xにおいて締め付けられて拘束される。これにより、各電池14は、積層方向Xにおいて位置決めされる。 The pair of end plates 4 and the pair of restraint members 12 are aligned with each other such that the fastening holes 4a, the through holes 70, and the through holes 58 overlap each other. Then, a fastening member 59 such as a screw is inserted into the through hole 58 and the through hole 70 and screwed into the fastening hole 4a. As a result, the pair of end plates 4 and the pair of restraint members 12 are fixed. By engaging the pair of end plates 4 and the pair of restraint members 12, the plurality of batteries 14 are tightened and restrained in the stacking direction X. As a result, each battery 14 is positioned in the stacking direction X.
 また、拘束部材12は、複数の電池14を積層方向Xに挟み込むとともに、電池積層体2および冷却部6をこれらの配列方向に挟み込む。具体的には、拘束部材12は、電池14の積層方向Xにおける平面部54の両端部が一対のエンドプレート4と係合することで、複数の電池14を積層方向Xに挟み込む。また、拘束部材12は、一対の腕部56で電池積層体2および冷却部6を鉛直方向Zに挟み込む。つまり、拘束部材12は、複数の電池14を締結する機能と、電池積層体2と冷却部6とを締結する機能とを兼ね備えている。したがって、電池積層体2と冷却部6とは、従来の構造とは異なり、ねじで非締結である。 Further, the restraint member 12 sandwiches the plurality of batteries 14 in the stacking direction X and also sandwiches the battery stack 2 and the cooling unit 6 in the arrangement direction thereof. Specifically, the restraint member 12 sandwiches the plurality of batteries 14 in the stacking direction X by engaging both ends of the flat portion 54 in the stacking direction X of the batteries 14 with the pair of end plates 4. Further, the restraint member 12 sandwiches the battery stack 2 and the cooling unit 6 in the vertical direction Z by the pair of arms 56. That is, the restraint member 12 has both the function of fastening the plurality of batteries 14 and the function of fastening the battery stack 2 and the cooling unit 6. Therefore, unlike the conventional structure, the battery stack 2 and the cooling unit 6 are not fastened with screws.
 一対の腕部56によって電池積層体2および冷却部6が鉛直方向Zに挟み込まれた状態で、介在層6bは、電池積層体2および冷却プレート6aに押圧されて、弾性変形または塑性変形する。これにより、電池積層体2と冷却プレート6aとの熱的な接続をより確実に得ることができる。また、電池積層体2全体の冷却の均一化を図ることができる。さらに、電池積層体2と冷却プレート6aとのXY平面方向のずれをより一層抑制することができる。 In a state where the battery stack 2 and the cooling unit 6 are sandwiched in the vertical direction Z by the pair of arms 56, the intervening layer 6b is pressed by the battery stack 2 and the cooling plate 6a to elastically or plastically deform. Thereby, the thermal connection between the battery stack 2 and the cooling plate 6a can be obtained more reliably. Further, uniform cooling of the entire battery stack 2 can be achieved. Further, the deviation of the battery stack 2 and the cooling plate 6a in the XY plane direction can be further suppressed.
 一例として、これらの組み付けが完了した後に、電池積層体2にバスバープレート28が載置される。そして、各電池14の出力端子22にバスバー42が取り付けられて、複数の電池14の出力端子22どうしが電気的に接続される。例えばバスバー42は、溶接により出力端子22に固定される。 As an example, the bus bar plate 28 is placed on the battery stack 2 after the assembly is completed. Then, the bus bar 42 is attached to the output terminal 22 of each battery 14, and the output terminals 22 of the plurality of batteries 14 are electrically connected to each other. For example, the bus bar 42 is fixed to the output terminal 22 by welding.
 バスバープレート28の上面には、トップカバー60が積層される。トップカバー60により、電池14の出力端子22や弁部24、バスバー42等への結露水や塵埃等の接触が抑制される。トップカバー60は、例えば絶縁性を有する樹脂からなる。トップカバー60は、鉛直方向Zで外部接続端子44と重なる位置に絶縁カバー部62を有する。トップカバー60は、例えばスナップフィットによりバスバープレート28に固定される。トップカバー60がバスバープレート28に載置された状態で、外部接続端子44が絶縁カバー部62で覆われる。 A top cover 60 is laminated on the upper surface of the bus bar plate 28. The top cover 60 suppresses contact of dew condensation water, dust, or the like with the output terminal 22, the valve portion 24, the bus bar 42, etc. of the battery 14. The top cover 60 is made of, for example, an insulating resin. The top cover 60 has an insulating cover portion 62 at a position overlapping the external connection terminal 44 in the vertical direction Z. The top cover 60 is fixed to the bus bar plate 28 by, for example, snap fitting. The external connection terminals 44 are covered with the insulating cover portion 62 while the top cover 60 is placed on the bus bar plate 28.
 図3は、電池モジュール1の一部を模式的に示す斜視図である。図4は、電池モジュール1の一部を模式的に示す断面図である。図4では、電池14の内部構造の図示を省略している。 FIG. 3 is a perspective view schematically showing a part of the battery module 1. FIG. 4 is a sectional view schematically showing a part of the battery module 1. In FIG. 4, illustration of the internal structure of the battery 14 is omitted.
 セパレータ16は、熱伝導抑制部72および熱伝導促進部74を有する。熱伝導抑制部72および熱伝導促進部74はともに絶縁性を有し、隣り合う2つの電池14の間に介在する。熱伝導抑制部72および熱伝導促進部74はともに、隣り合う2つの電池14の主表面に当接する。 The separator 16 has a heat conduction suppressing portion 72 and a heat conduction promoting portion 74. The heat conduction suppressing portion 72 and the heat conduction promoting portion 74 both have an insulating property and are interposed between two adjacent batteries 14. Both the heat conduction suppressing portion 72 and the heat conduction promoting portion 74 are in contact with the main surfaces of two adjacent batteries 14.
 熱伝導抑制部72は、熱伝導促進部74よりも熱伝導性が低く、隣接する2つの電池14間の熱伝導を抑制する。一方、熱伝導促進部74は、熱伝導抑制部72よりも熱伝導性が高く、隣接する2つの電池14間の熱伝導を促進する。つまり、熱伝導抑制部72を介した2つの電池14間の伝熱量(単位時間、単位面積当たりの通過熱量)は、熱伝導促進部74を介した当該伝熱量よりも小さい。また、熱伝導促進部74は、冷却部6に当接して、電池14の熱を冷却部6に伝導する。 The heat conduction suppressing unit 72 has lower heat conductivity than the heat conduction promoting unit 74, and suppresses heat conduction between two adjacent batteries 14. On the other hand, the heat conduction promoting unit 74 has higher heat conductivity than the heat conduction suppressing unit 72, and promotes heat conduction between two adjacent batteries 14. That is, the amount of heat transfer between the two batteries 14 via the heat conduction suppressing unit 72 (the amount of heat passing per unit time or unit area) is smaller than the amount of heat transfer via the heat conduction promoting unit 74. Further, the heat conduction promoting unit 74 contacts the cooling unit 6 and conducts the heat of the battery 14 to the cooling unit 6.
 熱伝導抑制部72は、シート状であり、一例として断熱材およびラミネートフィルムで構成される。断熱材は、シート状であり、不織布等からなる繊維シートの繊維間に、シリカキセロゲル等の多孔質材が担持された構造を有する。シリカキセロゲルは、空気分子の運動を規制するナノサイズの空隙構造を有し、熱伝導率が低い。断熱材の熱伝導率は、約0.018~0.024W/m・Kであり、空気の熱伝導率よりも低い。このため、熱伝導抑制部72を設けることで、隣接する2つの電池14間に断熱層として空気の層を備える場合よりも、当該電池14間の熱伝導をより抑制することができる。断熱材は、特に狭スペースで使用される断熱材として有用である。 The heat conduction suppressing portion 72 is in the form of a sheet, and is composed of a heat insulating material and a laminated film as an example. The heat insulating material is in the form of a sheet and has a structure in which a porous material such as silica xerogel is carried between the fibers of a fiber sheet made of a non-woven fabric or the like. Silica xerogel has a nano-sized void structure that regulates the movement of air molecules, and has low thermal conductivity. The thermal conductivity of the heat insulating material is about 0.018 to 0.024 W/m·K, which is lower than the thermal conductivity of air. Therefore, by providing the heat conduction suppressing portion 72, it is possible to further suppress the heat conduction between the batteries 14 as compared with the case where the air layer is provided as the heat insulating layer between the two adjacent batteries 14. The heat insulating material is particularly useful as a heat insulating material used in a narrow space.
 また、シリカキセロゲルは外部からの押圧に対してその構造を安定的に維持することができる。このため、拘束部材12による積層方向Xの締め付けがあっても、断熱材の断熱性能を安定的に維持することができる。したがって、電池モジュール1は、熱伝導抑制部72を備えることで、電池14間に断熱層として空気の層を備える場合よりも、電池14間の熱伝導をより安定的に抑制することができる。さらに、断熱材は空気よりも熱伝導率が低いため、空気の層に比べてより薄い層厚で同程度の断熱効果を得ることができる。よって、電池モジュール1の大型化を抑制することができる。 Also, silica xerogel can stably maintain its structure against external pressure. Therefore, even if the restraint member 12 tightens in the stacking direction X, the heat insulating performance of the heat insulating material can be stably maintained. Therefore, the battery module 1 can suppress the heat conduction between the batteries 14 more stably by including the heat conduction suppressing portion 72 than in the case where the air layer is provided between the batteries 14 as the heat insulating layer. Furthermore, since the heat insulating material has a lower thermal conductivity than that of air, it is possible to obtain the same heat insulating effect with a thinner layer thickness than that of the air layer. Therefore, upsizing of the battery module 1 can be suppressed.
 ラミネートフィルムは、断熱材の全体を包んで保護するための部材である。ラミネートフィルムにより、断熱材における多孔質材が繊維シートから脱落することを抑制することができる。ラミネートフィルムは、例えばポリエチレンテレフタレート(PET)等からなる。 Laminate film is a member that wraps and protects the entire heat insulating material. The laminated film can prevent the porous material in the heat insulating material from falling off from the fiber sheet. The laminate film is made of, for example, polyethylene terephthalate (PET).
 また、熱伝導抑制部72は耐熱性が高い。より具体的には、断熱材の耐熱性が高い。さらに具体的には、繊維シートが融点の高い繊維を含むか、多孔質材が融点の高い物質からなるか、あるいはその両方である。例えば、断熱材は、融点が300℃以上である。具体的には、断熱材を構成する繊維シートおよび/または多孔質材の融点が300℃以上である。特に、繊維シートを構成する繊維の融点を300℃以上とすることが好ましい。これにより、断熱材が高温に曝された場合であっても、繊維シートが多孔質材を担持した状態を維持することができる。 Also, the heat conduction suppressing portion 72 has high heat resistance. More specifically, the heat resistance of the heat insulating material is high. More specifically, the fiber sheet contains fibers having a high melting point, the porous material is made of a material having a high melting point, or both. For example, the heat insulating material has a melting point of 300° C. or higher. Specifically, the melting point of the fiber sheet and/or the porous material forming the heat insulating material is 300° C. or higher. In particular, it is preferable to set the melting point of the fibers constituting the fiber sheet to 300° C. or higher. Thereby, even when the heat insulating material is exposed to a high temperature, the fiber sheet can maintain the state of carrying the porous material.
 熱伝導抑制部72の耐熱性を高めることで、電池14が発熱しても熱伝導抑制部72を残存させることができる。このため、熱伝導抑制部72により電池14間の絶縁を維持することができる。また、隣り合う電池14間の熱伝導が抑制された状態を、より長期間維持することができる。 By increasing the heat resistance of the heat conduction suppressing portion 72, the heat conduction suppressing portion 72 can remain even if the battery 14 generates heat. Therefore, the heat conduction suppressing portion 72 can maintain the insulation between the batteries 14. Moreover, the state in which the heat conduction between the adjacent batteries 14 is suppressed can be maintained for a longer period of time.
 熱伝導促進部74は、シート状であり、例えばポリプロピレン(PP)、ポリスチレン(PS)、ポリエチレン(PE)、シリコーンゴム等の樹脂シートで構成される。熱伝導促進部74の熱伝導率は、熱伝導抑制部72および空気の熱伝導率よりも高い。また好ましくは、熱伝導促進部74の厚さは熱伝導抑制部72の厚さ以上である。これにより、熱伝導促進部74をより確実に電池14に当接させることができる。よって、隣り合う電池14間でより確実に熱を移動させることができる。熱伝導抑制部72と熱伝導促進部74とは、接着やインサート成形等により互いに固定される。 The heat conduction promoting unit 74 is in the form of a sheet, and is made of, for example, a resin sheet such as polypropylene (PP), polystyrene (PS), polyethylene (PE), and silicone rubber. The heat conductivity of the heat conduction promoting unit 74 is higher than that of the heat conduction suppressing unit 72 and air. Further, preferably, the thickness of the heat conduction promoting portion 74 is equal to or larger than the thickness of the heat conduction suppressing portion 72. As a result, the heat conduction promoting portion 74 can be brought into more reliable contact with the battery 14. Therefore, heat can be transferred more reliably between the adjacent batteries 14. The heat conduction suppressing portion 72 and the heat conduction promoting portion 74 are fixed to each other by adhesion, insert molding, or the like.
 本実施の形態のセパレータ16では、鉛直方向Zにおける上方の領域が熱伝導抑制部72で構成され、下方の領域が熱伝導促進部74で構成されている。つまり、熱伝導抑制部72と熱伝導促進部74とは、鉛直方向Zに配列される。したがって、各電池14における熱伝導抑制部72と接する上方の領域においては、隣接する電池14への熱の移動が抑制される。一方、各電池14における熱伝導促進部74と接する下方の領域においては、隣接する電池14への熱の移動が促進される。 In the separator 16 of the present embodiment, the upper area in the vertical direction Z is formed by the heat conduction suppressing portion 72, and the lower area is formed by the heat conduction promoting portion 74. That is, the heat conduction suppressing portion 72 and the heat conduction promoting portion 74 are arranged in the vertical direction Z. Therefore, in the region above each of the batteries 14 in contact with the heat conduction suppressing portion 72, heat transfer to the adjacent batteries 14 is suppressed. On the other hand, in the lower region of each battery 14 which is in contact with the heat conduction promoting portion 74, the transfer of heat to the adjacent battery 14 is promoted.
 各電池14の第1面14a、すなわち下面は冷却部6の介在層6bに直に接している。このため、各電池14の大部分の熱は、それぞれの第1面14aから介在層6bに移動する。また、各電池14の一部の熱は、熱伝導促進部74を介して隣の電池14に移動し、移動した先の電池14の第1面14aから介在層6bに移動する。さらに、熱伝導促進部74は、介在層6bに直に接している。このため、各電池14の熱の一部は、熱伝導促進部74を介して隣の電池14に移動するだけでなく、熱伝導促進部74から介在層6bに移動する。介在層6bに移動した熱は冷却プレート6aに移動し、冷却プレート6aから吸熱部76に放散される。 The first surface 14a of each battery 14, that is, the lower surface, is in direct contact with the intervening layer 6b of the cooling unit 6. Therefore, most of the heat of each battery 14 moves to the intervening layer 6b from each first surface 14a. In addition, a part of the heat of each battery 14 moves to the adjacent battery 14 via the heat conduction promoting unit 74, and moves from the first surface 14a of the moved battery 14 to the intervening layer 6b. Further, the heat conduction promoting portion 74 is in direct contact with the intervening layer 6b. Therefore, a part of the heat of each battery 14 not only moves to the adjacent battery 14 via the heat conduction promoting unit 74, but also moves from the heat conduction promoting unit 74 to the intervening layer 6b. The heat transferred to the intervening layer 6b moves to the cooling plate 6a and is dissipated from the cooling plate 6a to the heat absorbing section 76.
 例えば図4に示すように、第2電池14Qと第3電池14Rとで挟まれた第1電池14Pが熱暴走したとする。この場合、第2電池14Qと第1電池14Pとの間に配置される熱伝導抑制部72によって、第1電池14Pから第2電池14Qへの熱の移動が妨げられる。同様に、第3電池14Rと第1電池14Pとの間に配置される熱伝導抑制部72によって、第1電池14Pから第3電池14Rへの熱の移動が妨げられる。 For example, as shown in FIG. 4, it is assumed that the first battery 14P sandwiched between the second battery 14Q and the third battery 14R undergoes thermal runaway. In this case, transfer of heat from the first battery 14P to the second battery 14Q is hindered by the heat conduction suppressing portion 72 arranged between the second battery 14Q and the first battery 14P. Similarly, transfer of heat from the first battery 14P to the third battery 14R is hindered by the heat conduction suppressing unit 72 arranged between the third battery 14R and the first battery 14P.
 一方、第2電池14Qと第1電池14Pとの間に配置される熱伝導促進部74によって、第1電池14Pから第2電池14Qへの熱の移動が促される。同様に、第3電池14Rと第1電池14Pとの間に配置される熱伝導促進部74によって、第1電池14Pから第3電池14Rへの熱の移動が促される。これにより、第1電池14Pの熱は、第1電池14Pの第1面14aから冷却部6に移動するとともに、熱伝導促進部74を介して両隣の第2電池14Qおよび第3電池14Rに移動する。そして、第2電池14Qおよび第3電池14Rの第1面14aから冷却部6に移動する。 On the other hand, the heat conduction promoting unit 74 arranged between the second battery 14Q and the first battery 14P promotes the transfer of heat from the first battery 14P to the second battery 14Q. Similarly, transfer of heat from the first battery 14P to the third battery 14R is promoted by the heat conduction promoting unit 74 arranged between the third battery 14R and the first battery 14P. As a result, the heat of the first battery 14P moves from the first surface 14a of the first battery 14P to the cooling unit 6 and also to the second battery 14Q and the third battery 14R on both sides via the heat conduction promoting unit 74. To do. Then, the second battery 14Q and the third battery 14R move from the first surface 14a to the cooling unit 6.
 さらに、第2電池14Qに移動した熱の一部は、第2電池14Qに隣接する第4電池14Sに熱伝導促進部74を介して移動し、第4電池14Sの第1面14aからも冷却部6に移動する。同様に、第3電池14Rに移動した熱の一部は、第3電池14Rに隣接する第5電池14Tに熱伝導促進部74を介して移動し、第5電池14Tの第1面14aからも冷却部6に移動する。また、一部の熱は、隣接する電池14間を移動する過程で熱伝導促進部74から冷却部6に移動する。 Further, part of the heat transferred to the second battery 14Q moves to the fourth battery 14S adjacent to the second battery 14Q via the heat conduction promoting unit 74, and is also cooled from the first surface 14a of the fourth battery 14S. Move to Part 6. Similarly, part of the heat transferred to the third battery 14R moves to the fifth battery 14T adjacent to the third battery 14R via the heat conduction promoting unit 74, and also from the first surface 14a of the fifth battery 14T. Move to the cooling unit 6. Further, a part of the heat moves from the heat conduction promoting unit 74 to the cooling unit 6 in the process of moving between the adjacent batteries 14.
 このように、各電池14の冷却部6側の領域に熱伝導促進部74を配置し、隣接する電池14への熱の移動を促進させることで、各電池14の温度差を小さくすることができる。また、各電池14の熱を自身の第1面14aからだけでなく、積層された他の電池14の第1面14aや、各電池14間の熱伝導促進部74から冷却部6に移動させることができる。このため、各電池14の冷却効率を向上させることができる。また、隣り合う2つの電池14間に熱伝導抑制部72を配置し、電池14間での熱の移動が許容される領域を制限している。これにより、いずれかの電池14の熱暴走に起因して他の電池14の温度が過度に上昇すること、つまり過熱の連鎖を抑制することができる。 In this way, by disposing the heat conduction promoting unit 74 in the region of each battery 14 on the cooling unit 6 side and promoting the transfer of heat to the adjacent batteries 14, the temperature difference between the batteries 14 can be reduced. it can. In addition, the heat of each battery 14 is transferred not only from the first surface 14 a of itself but also from the first surface 14 a of the other stacked batteries 14 and the heat conduction promoting unit 74 between the batteries 14 to the cooling unit 6. be able to. Therefore, the cooling efficiency of each battery 14 can be improved. Further, the heat conduction suppressing portion 72 is arranged between two adjacent batteries 14 to limit the area where the heat transfer between the batteries 14 is allowed. Thereby, the temperature of the other battery 14 excessively rises due to the thermal runaway of one of the batteries 14, that is, the chain of overheating can be suppressed.
 各セパレータ16における熱伝導抑制部72および熱伝導促進部74の大きさの比率、形状ならびに配置は、隣り合う電池14間の伝熱量等を考慮して、実験やシミュレーションの結果に基づいて適宜設定することができる。熱伝導抑制部72および熱伝導促進部74の大きさの比率は、言い換えれば積層方向Xからセパレータ16を見たときの熱伝導抑制部72および熱伝導促進部74の面積の比率である。なお、好ましくは、セパレータ16は熱伝導抑制部72および熱伝導促進部74を含めた全体が実質的に均一な厚みを有する。 The size ratio, shape and arrangement of the heat conduction suppressing portion 72 and the heat conduction promoting portion 74 in each separator 16 are appropriately set based on the results of experiments and simulations in consideration of the amount of heat transfer between the adjacent batteries 14. can do. In other words, the size ratio of the heat conduction suppressing part 72 and the heat conduction promoting part 74 is the ratio of the areas of the heat conduction suppressing part 72 and the heat conduction promoting part 74 when the separator 16 is viewed from the stacking direction X. In addition, preferably, the entire separator 16 including the heat conduction suppressing portion 72 and the heat conduction promoting portion 74 has a substantially uniform thickness.
 また、本実施の形態では、拘束部材12と各電池14の第2面14b、すなわち側面との間に配置される熱伝導層10によって、各電池14の熱が拘束部材12に移動する。図5は、電池モジュール1の一部を模式的に示す平面図である。図6は、電池モジュール1の一部を模式的に示す断面図である。図6では、電池14の内部構造の図示を省略している。 In addition, in the present embodiment, the heat of each battery 14 is transferred to the restraining member 12 by the heat conduction layer 10 arranged between the restraining member 12 and the second surface 14b of each battery 14, that is, the side surface. FIG. 5 is a plan view schematically showing a part of the battery module 1. FIG. 6 is a sectional view schematically showing a part of the battery module 1. In FIG. 6, illustration of the internal structure of the battery 14 is omitted.
 図5に示すように、各電池14の熱は、熱伝導層10を介して拘束部材12に移動し、拘束部材12から電池モジュール1の外部に放熱される。これにより、電池14の冷却効率を向上させることができる。この際、各電池14の熱の一部は、拘束部材12を介して他の電池14に移動する。また、各電池14の熱の一部は、熱伝導層10を介しても他の電池14に移動し得る。これにより、各電池14の温度差を小さくすることができる。また、図6に示すように、拘束部材12に移動した熱は、熱伝導抑制部72および熱伝導促進部74が並ぶ方向、つまり鉛直方向Zに拘束部材12内を移動する。これにより、各電池14における鉛直方向Zでの温度差を小さくすることができる。 As shown in FIG. 5, the heat of each battery 14 moves to the restraint member 12 through the heat conduction layer 10 and is radiated from the restraint member 12 to the outside of the battery module 1. Thereby, the cooling efficiency of the battery 14 can be improved. At this time, a part of the heat of each battery 14 moves to another battery 14 via the restraining member 12. Further, a part of the heat of each battery 14 can move to another battery 14 through the heat conductive layer 10. As a result, the temperature difference between the batteries 14 can be reduced. Further, as shown in FIG. 6, the heat transferred to the restraint member 12 moves inside the restraint member 12 in the direction in which the heat conduction suppressing portion 72 and the heat conduction promoting portion 74 are arranged, that is, in the vertical direction Z. Thereby, the temperature difference in the vertical direction Z in each battery 14 can be reduced.
 さらに、拘束部材12は、冷却部6に熱的に接続される。本実施の形態では、拘束部材12の平面部54が冷却部6の側面に当接し、下側の腕部56が冷却プレート6aの下側の主表面に当接する。これにより、各電池14の熱を拘束部材12を介して冷却部6に移動させることができる。この結果、各電池14の冷却効率をより向上させることができる。なお、拘束部材12と冷却プレート6aとの間には絶縁シート(図示せず)が介在し、両者は電気的に絶縁される。 Further, the restraint member 12 is thermally connected to the cooling unit 6. In the present embodiment, the flat surface portion 54 of the restraint member 12 contacts the side surface of the cooling portion 6, and the lower arm portion 56 contacts the lower main surface of the cooling plate 6a. As a result, the heat of each battery 14 can be transferred to the cooling unit 6 via the restraining member 12. As a result, the cooling efficiency of each battery 14 can be further improved. An insulating sheet (not shown) is interposed between the restraint member 12 and the cooling plate 6a to electrically insulate them.
 また、各電池14の熱の一部は、熱伝導層10内を鉛直方向Zに移動し得る。このため、各電池14における鉛直方向Zでの温度差をより小さくすることができる。さらに、熱伝導層10は、冷却部6に熱的に接続される。本実施の形態では、熱伝導層10の下端が介在層6bに当接する。これにより、各電池14の熱を熱伝導層10を介して冷却部6に移動させることができる。この結果、各電池14の冷却効率をより向上させることができる。 Also, a part of the heat of each battery 14 can move in the vertical direction Z in the heat conductive layer 10. Therefore, the temperature difference in the vertical direction Z in each battery 14 can be further reduced. Further, the heat conduction layer 10 is thermally connected to the cooling unit 6. In the present embodiment, the lower end of heat conduction layer 10 abuts on intervening layer 6b. Thereby, the heat of each battery 14 can be transferred to the cooling unit 6 via the heat conduction layer 10. As a result, the cooling efficiency of each battery 14 can be further improved.
 本実施の形態では、電池14の各第2面14bから拘束部材12への伝熱量は、電池14の第1面14aから冷却部6への伝熱量よりも小さい。より好ましくは、2つの第2面14bから拘束部材12への合計の伝熱量が第1面14aから冷却部6への伝熱量よりも小さい。例えば、第2面14bから拘束部材12への伝熱量が第1面14aから冷却部6への伝熱量よりも小さくなるように、熱伝導層10の熱伝導性や寸法が設定される。一例として、熱伝導層10は、介在層6bよりも熱伝導性の低い材料で構成される。冷却部6には吸熱部76が直に接続されている。このため、冷却部6は拘束部材12に比べて放熱効率が高い。よって、電池14の熱を拘束部材12よりも冷却部6により多く伝導させることで、過熱の連鎖をより確実に抑制することができる。 In the present embodiment, the amount of heat transfer from each second surface 14b of the battery 14 to the restraining member 12 is smaller than the amount of heat transfer from the first surface 14a of the battery 14 to the cooling unit 6. More preferably, the total heat transfer amount from the two second surfaces 14b to the restraining member 12 is smaller than the heat transfer amount from the first surface 14a to the cooling unit 6. For example, the thermal conductivity and dimensions of the heat conductive layer 10 are set so that the amount of heat transfer from the second surface 14b to the restraining member 12 is smaller than the amount of heat transfer from the first surface 14a to the cooling unit 6. As an example, the heat conduction layer 10 is made of a material having lower heat conductivity than the intervening layer 6b. A heat absorbing portion 76 is directly connected to the cooling portion 6. Therefore, the cooling unit 6 has higher heat dissipation efficiency than the restraining member 12. Therefore, by conducting more heat of the battery 14 to the cooling unit 6 than to the restraining member 12, it is possible to more reliably suppress the chain of overheating.
 以上説明したように、本実施の形態に係る電池モジュール1は、積層された複数の電池14と、隣接する2つの電池14間に配置され、当該2つの電池14間を電気的に絶縁するセパレータ16であって、熱伝導抑制部72および熱伝導促進部74を有するセパレータ16と、複数の電池14に熱的に接続される冷却部6と、を備える。熱伝導抑制部72は、熱伝導促進部74よりも熱伝導性が低く、隣接する2つの電池14間の熱伝導を抑制する。熱伝導促進部74は、冷却部6に当接し、隣接する2つの電池14間の熱伝導を促進するとともに電池14の熱を冷却部6に伝導する。 As described above, the battery module 1 according to the present embodiment is arranged between a plurality of stacked batteries 14 and two adjacent batteries 14, and is a separator that electrically insulates the two batteries 14. 16. The separator 16 includes the heat conduction suppressing portion 72 and the heat conduction promoting portion 74, and the cooling portion 6 that is thermally connected to the plurality of batteries 14. The heat conduction suppressing portion 72 has lower heat conductivity than the heat conduction promoting portion 74, and suppresses heat conduction between two adjacent batteries 14. The heat conduction promoting unit 74 contacts the cooling unit 6, promotes heat conduction between two adjacent batteries 14, and conducts heat of the batteries 14 to the cooling unit 6.
 このように、熱伝導抑制部72と熱伝導促進部74とを組み合わせて、隣り合う電池14間の熱の移動を制御することで、複数の電池14間における温度分布のばらつきを低減しながら、背反となる過熱の連鎖を抑制することができる。また、熱伝導促進部74を冷却部6に当接させているため、各電池14の冷却効率を高めることができる。これにより、過熱の連鎖をより抑制することができる。 In this way, by combining the heat conduction suppressing portion 72 and the heat conduction promoting portion 74 to control the movement of heat between the adjacent batteries 14, while reducing the variation in the temperature distribution among the plurality of batteries 14, It is possible to suppress the contradictory chain of overheating. Further, since the heat conduction promoting portion 74 is in contact with the cooling portion 6, the cooling efficiency of each battery 14 can be improved. Thereby, the chain of overheating can be further suppressed.
 また、例えば介在層6bの主表面に電池14の間隔に合わせて仕切り壁を設け、この仕切り壁を熱伝導促進部74として利用する場合、各電池14の膨張収縮に対して熱伝導促進部74の位置を追従させることは困難である。これに対し、各セパレータ16に熱伝導促進部74を設けることで、各電池14の膨張収縮に対して熱伝導促進部74の位置を良好に追従させることができる。 Further, for example, when a partition wall is provided on the main surface of the intervening layer 6b so as to match the space between the batteries 14, and this partition wall is used as the heat conduction promoting portion 74, the heat conduction promoting portion 74 is adapted to the expansion and contraction of each battery 14. It is difficult to track the position of. On the other hand, by providing the heat conduction promoting portion 74 in each separator 16, the position of the heat conduction promoting portion 74 can be favorably followed with respect to the expansion and contraction of each battery 14.
 また、複数の電池14はそれぞれ、冷却部6と対向する第1面14aと、第1面14aとは異なる第2面14bと、を有する。電池モジュール1は、電池14の積層方向Xに延びる拘束部材12であって、各電池14の第2面14bと対向するように配置されて複数の電池14を積層方向Xに挟み込む拘束部材12と、拘束部材12と各電池14の第2面14bとの間に配置されて、各電池14の熱を拘束部材12に伝導する熱伝導層と、を備える。これにより、複数の電池14の温度分布のばらつきをより低減することができる。また、各電池14の冷却効率を高めて、過熱の連鎖をより抑制することができる。 Each of the plurality of batteries 14 has a first surface 14a facing the cooling unit 6 and a second surface 14b different from the first surface 14a. The battery module 1 is a restraint member 12 that extends in the stacking direction X of the batteries 14, and is placed so as to face the second surface 14b of each battery 14 and sandwiches the plurality of batteries 14 in the stacking direction X. And a heat conduction layer that is disposed between the restraint member 12 and the second surface 14b of each battery 14 and that conducts the heat of each battery 14 to the restraint member 12. Thereby, the variation in the temperature distribution of the plurality of batteries 14 can be further reduced. In addition, the cooling efficiency of each battery 14 can be increased to further suppress the chain of overheating.
 また、本実施の形態の電池モジュール1では、電池14の第2面14bから拘束部材12への伝熱量は、電池14の第1面14aから冷却部6への伝熱量よりも小さい。これにより、拘束部材12を介して隣接する電池14間を移動する熱の量を抑えることができる。この結果、過熱の連鎖をより抑制することができる。また、拘束部材12は、冷却部6に熱的に接続される。これにより、各電池14の冷却効率をより向上させることができ、過熱の連鎖をより抑制することができる。 Further, in the battery module 1 of the present embodiment, the amount of heat transfer from the second surface 14b of the battery 14 to the restraining member 12 is smaller than the amount of heat transfer from the first surface 14a of the battery 14 to the cooling unit 6. Thereby, the amount of heat transferred between the adjacent batteries 14 via the restraint member 12 can be suppressed. As a result, the chain of overheating can be further suppressed. Further, the restraint member 12 is thermally connected to the cooling unit 6. Thereby, the cooling efficiency of each battery 14 can be further improved and the chain of overheating can be further suppressed.
(実施の形態2)
 実施の形態2に係る電池モジュールは、熱伝導促進部74の形状を除き、実施の形態1と共通の構成を有する。以下、本実施の形態に係る電池モジュール1について実施の形態1と異なる構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。図7は、実施の形態2に係る電池モジュールの一部を模式的に示す断面図である。図7では、電池14の内部構造の図示を省略している。
(Embodiment 2)
The battery module according to the second embodiment has the same configuration as that of the first embodiment except for the shape of the heat conduction promoting portion 74. Hereinafter, the battery module 1 according to the present embodiment will be described focusing on the configuration different from that of the first embodiment, and common configurations will be briefly described or description thereof will be omitted. FIG. 7 is a sectional view schematically showing a part of the battery module according to the second embodiment. In FIG. 7, illustration of the internal structure of the battery 14 is omitted.
 電池モジュール1は、積層された複数の電池14と、隣接する2つの電池14間に配置され、当該2つの電池14間を電気的に絶縁するセパレータ16と、複数の電池14に熱的に接続される冷却部6と、を備える。セパレータ16は、熱伝導抑制部72および熱伝導促進部74を有する。 The battery module 1 is arranged between a plurality of stacked batteries 14 and two adjacent batteries 14, and a separator 16 that electrically insulates between the two batteries 14 and is thermally connected to the plurality of batteries 14. The cooling unit 6 is provided. The separator 16 has a heat conduction suppressing portion 72 and a heat conduction promoting portion 74.
 本実施の形態の熱伝導促進部74は、第1部分78と、第2部分80と、を有する。第1部分78は、隣接する2つの電池14間に延在する。第2部分80は、第1部分78から連続して2つの電池14のうち一方の電池14と冷却部6との間に延在する。したがって、本実施の形態のセパレータ16および熱伝導促進部74は、水平方向Yから見てL字形状である。 The heat conduction promoting unit 74 of the present embodiment has a first portion 78 and a second portion 80. The first portion 78 extends between two adjacent batteries 14. The second portion 80 continuously extends from the first portion 78 between one of the two batteries 14 and the cooling unit 6. Therefore, the separator 16 and the heat conduction promoting portion 74 of this embodiment are L-shaped when viewed in the horizontal direction Y.
 より具体的には、第1部分78は、YZ平面に対して平行に延在し、隣接する2つの電池14の主表面に当接する。また、第1部分78の上端は、熱伝導抑制部72の下端に接続される。第2部分80は、XY平面に対して平行に延在し、積層方向Xにおける一方の端部が第1部分78の下端に接続される。第2部分80の上側の主表面は第1面14aに当接し、第2部分80の下側の主表面は介在層6bに当接する。電池14の第1面14aは、実質的に全体が第2部分80で覆われる。積層方向Xにおける第2部分80の他方の端部は、隣に配置されたセパレータ16の第2部分80に突き当たる。 More specifically, the first portion 78 extends parallel to the YZ plane and abuts on the main surfaces of two adjacent batteries 14. Further, the upper end of the first portion 78 is connected to the lower end of the heat conduction suppressing portion 72. The second portion 80 extends parallel to the XY plane, and one end portion in the stacking direction X is connected to the lower end of the first portion 78. The upper main surface of the second portion 80 contacts the first surface 14a, and the lower main surface of the second portion 80 contacts the intervening layer 6b. The first surface 14 a of the battery 14 is substantially entirely covered with the second portion 80. The other end of the second portion 80 in the stacking direction X abuts the second portion 80 of the adjacently disposed separator 16.
 本実施の形態によれば、熱伝導促進部74と冷却部6とが接触する状態をより確実に得ることができる。また、熱伝導促進部74と冷却部6との接触面積を増やすことができる。この結果、各電池14の冷却効率をより高めることができる。 According to the present embodiment, it is possible to more reliably obtain the state where the heat conduction promoting unit 74 and the cooling unit 6 are in contact with each other. Further, the contact area between the heat conduction promoting portion 74 and the cooling portion 6 can be increased. As a result, the cooling efficiency of each battery 14 can be further improved.
(実施の形態3)
 実施の形態3に係る電池モジュールは、熱伝導促進部74の形状を除き、実施の形態1と共通の構成を有する。以下、本実施の形態に係る電池モジュール1について実施の形態1と異なる構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。図8は、実施の形態3に係る電池モジュールの一部を模式的に示す斜視図である。
(Embodiment 3)
The battery module according to the third embodiment has the same configuration as that of the first embodiment except for the shape of the heat conduction promoting portion 74. Hereinafter, the battery module 1 according to the present embodiment will be described focusing on the configuration different from that of the first embodiment, and common configurations will be briefly described or description thereof will be omitted. FIG. 8 is a perspective view schematically showing a part of the battery module according to the third embodiment.
 電池モジュール1は、積層された複数の電池14と、隣接する2つの電池14間に配置され、当該2つの電池14間を電気的に絶縁するセパレータ16と、複数の電池14に熱的に接続される冷却部6と、を備える。セパレータ16は、熱伝導抑制部72および熱伝導促進部74を有する。 The battery module 1 is arranged between a plurality of stacked batteries 14 and two adjacent batteries 14, and a separator 16 that electrically insulates between the two batteries 14 and is thermally connected to the plurality of batteries 14. The cooling unit 6 is provided. The separator 16 has a heat conduction suppressing portion 72 and a heat conduction promoting portion 74.
 本実施の形態の熱伝導促進部74は、熱伝導抑制部72に嵌入する突出部82を有する。セパレータ16を積層方向Xから見たとき、突出部82は、熱伝導抑制部72に嵌入している。突出部82は、熱伝導抑制部72と熱伝導促進部74との境界線から熱伝導抑制部72内に突出する。これにより、各電池14における熱伝導抑制部72と熱伝導促進部74とが並ぶ方向での温度差を小さくすることができる。また、本実施の形態の突出部82は、隣接する2つの電池14の主表面に当接する。 The heat conduction promoting unit 74 of the present embodiment has a protrusion 82 that fits into the heat conduction suppressing unit 72. When the separator 16 is viewed from the stacking direction X, the protruding portion 82 is fitted in the heat conduction suppressing portion 72. The projecting portion 82 projects into the heat conduction suppressing portion 72 from the boundary line between the heat conduction suppressing portion 72 and the heat conduction promoting portion 74. Accordingly, the temperature difference in the direction in which the heat conduction suppressing portion 72 and the heat conduction promoting portion 74 in each battery 14 are arranged can be reduced. Further, the protrusion 82 of the present embodiment abuts on the main surfaces of two adjacent batteries 14.
 以上、本発明の実施の形態について詳細に説明した。前述した実施の形態は、本発明を実施するにあたっての具体例を示したものにすぎない。実施の形態の内容は、本発明の技術的範囲を限定するものではなく、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施の形態は、組み合わされる実施の形態および変形それぞれの効果をあわせもつ。前述の実施の形態では、このような設計変更が可能な内容に関して、「本実施の形態の」、「本実施の形態では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。各実施の形態に含まれる構成要素の任意の組み合わせも、本発明の態様として有効である。図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。 The embodiments of the present invention have been described above in detail. The above-described embodiments are merely specific examples for implementing the present invention. The contents of the embodiments do not limit the technical scope of the present invention, and many design changes such as changes, additions and deletions of components are made without departing from the spirit of the invention defined in the claims. Is possible. The new embodiment in which the design change is added has the effect of each of the combined embodiment and the modification. In the above-mentioned embodiment, the contents such as “design change” are emphasized with the notation “of this embodiment”, “in this embodiment”, etc. Design changes are allowed even if there is no content. Any combination of the constituent elements included in each embodiment is also effective as an aspect of the present invention. The hatching attached to the cross section of the drawing does not limit the material to which the hatching is attached.
(変形例1)
 図9は、変形例1に係る電池モジュールの一部を模式的に示す平面図である。熱伝導層10は、複数の第1部材84と、第2部材86と、を有する。複数の第1部材84はそれぞれ、鉛直方向Zに長い帯状であり、積層方向Xに所定の間隔をあけて配列される。各第1部材84は、各電池14の第2面14bに当接する。第2部材86は、平板状であり、拘束部材12と各第1部材84との間に介在する。
(Modification 1)
FIG. 9 is a plan view schematically showing a part of the battery module according to Modification 1. The heat conductive layer 10 has a plurality of first members 84 and a second member 86. Each of the plurality of first members 84 has a strip shape that is long in the vertical direction Z, and is arranged in the stacking direction X at a predetermined interval. Each first member 84 contacts the second surface 14b of each battery 14. The second member 86 has a flat plate shape and is interposed between the restraining member 12 and each of the first members 84.
 第1部材84および第2部材86は、少なくとも一方が絶縁性を有する。好ましくは、第1部材84および第2部材86の両方が絶縁性を有する。また好ましくは、各第1部材84は、第2部材86に比べて高い熱伝導性を有する。これにより、各電池14から拘束部材12への熱伝導を促進しながら、熱伝導層10内で積層方向Xに移動する熱の量を減らすことができる。これにより、過熱の連鎖をより抑制することができる。 At least one of the first member 84 and the second member 86 has an insulating property. Preferably, both the first member 84 and the second member 86 have insulating properties. Further, preferably, each first member 84 has higher thermal conductivity than the second member 86. As a result, the amount of heat transferred in the stacking direction X in the heat conductive layer 10 can be reduced while promoting heat transfer from each battery 14 to the restraining member 12. Thereby, the chain of overheating can be further suppressed.
(その他)
 電池モジュール1が備える電池14の数は特に限定されない。エンドプレート4と拘束部材12との固定構造は特に限定されず、周知の構造を採用することができる。典型的には、実施の形態に開示する構造以外の固定構造として、ボルトやリベットを用いた固定や、溶接、メカニカルクリンチ等が挙げられる。電池14は、円筒状等であってもよい。電池積層体2と冷却プレート6aとの間の熱伝導と摩擦力とが十分に確保できる場合には、介在層6bを省略し、PETやPCからなる絶縁シートを電池積層体2と冷却プレート6aとの間に介在させてもよい。
(Other)
The number of batteries 14 included in the battery module 1 is not particularly limited. The fixing structure of the end plate 4 and the restraint member 12 is not particularly limited, and a well-known structure can be adopted. Typically, fixing structures other than the structures disclosed in the embodiments include fixing using bolts and rivets, welding, and mechanical clinch. The battery 14 may be cylindrical or the like. When sufficient heat conduction and frictional force between the battery stack 2 and the cooling plate 6a can be ensured, the intervening layer 6b is omitted, and an insulating sheet made of PET or PC is used as the battery stack 2 and the cooling plate 6a. It may be interposed between and.
 1 電池モジュール、 6 冷却部、 10 熱伝導層、 12 拘束部材、 14 電池、 14a 第1面、 14b 第2面、 16 セパレータ、 72 熱伝導抑制部、 74 熱伝導促進部、 78 第1部分、 80 第2部分、 82 突出部。 1 battery module, 6 cooling section, 10 heat conduction layer, 12 restraint member, 14 battery, 14a first side, 14b second side, 16 separator, 72 heat conduction suppressing section, 74 heat conduction promoting section, 78 heat conduction promoting section, 78 first section, 80 second part, 82 protruding part.

Claims (6)

  1.  積層された複数の電池と、
     隣接する2つの電池間に配置され、当該2つの電池間を電気的に絶縁するセパレータであって、熱伝導抑制部および熱伝導促進部を有するセパレータと、
     前記複数の電池に熱的に接続される冷却部と、を備え、
     前記熱伝導抑制部は、前記熱伝導促進部よりも熱伝導性が低く、隣接する2つの電池間の熱伝導を抑制し、
     前記熱伝導促進部は、前記冷却部に当接し、隣接する2つの前記電池間の熱伝導を促進するとともに前記電池の熱を前記冷却部に伝導することを特徴とする電池モジュール。
    A plurality of stacked batteries,
    A separator that is arranged between two adjacent batteries and electrically insulates the two batteries from each other, the separator having a heat conduction suppressing portion and a heat conduction promoting portion,
    A cooling unit thermally connected to the plurality of batteries,
    The heat conduction suppressing portion has lower heat conductivity than the heat conduction promoting portion, and suppresses heat conduction between two adjacent batteries,
    The battery module, wherein the heat conduction promoting unit is in contact with the cooling unit, promotes heat conduction between two adjacent batteries, and conducts heat of the battery to the cooling unit.
  2.  前記熱伝導促進部は、隣接する2つの前記電池間に延在する第1部分と、前記第1部分から連続して2つの前記電池のうち一方の電池と前記冷却部との間に延在する第2部分と、を有する請求項1に記載の電池モジュール。 The heat conduction promoting unit extends between a first portion extending between two adjacent batteries, and between one battery of the two batteries and the cooling unit continuously from the first portion. The battery module according to claim 1, further comprising:
  3.  前記熱伝導促進部は、前記熱伝導抑制部に嵌入する突出部を有する請求項1または2に記載の電池モジュール。 The battery module according to claim 1 or 2, wherein the heat conduction promoting portion has a protrusion that fits into the heat conduction suppressing portion.
  4.  前記複数の電池はそれぞれ、前記冷却部と対向する第1面と、前記第1面とは異なる第2面と、を有し、
     前記電池モジュールは、電池の積層方向に延びる拘束部材であって、各電池の前記第2面と対向するように配置されて前記複数の電池を前記積層方向に挟み込む拘束部材と、
     前記拘束部材と各電池の前記第2面との間に配置されて、各電池の熱を前記拘束部材に伝導する熱伝導層と、を備える請求項1乃至3のいずれか1項に記載の電池モジュール。
    Each of the plurality of batteries has a first surface facing the cooling unit and a second surface different from the first surface,
    The battery module is a restraint member extending in the stacking direction of the batteries, the restraint member being arranged so as to face the second surface of each battery and sandwiching the plurality of batteries in the stacking direction.
    The heat conductive layer which is arrange|positioned between the said restraint member and the said 2nd surface of each battery, and which conducts the heat|fever of each battery to the said restraint member is provided. Battery module.
  5.  前記電池の前記第2面から前記拘束部材への伝熱量は、前記電池の前記第1面から前記冷却部への伝熱量よりも小さい請求項4に記載の電池モジュール。 The battery module according to claim 4, wherein a heat transfer amount from the second surface of the battery to the restraining member is smaller than a heat transfer amount from the first surface of the battery to the cooling unit.
  6.  前記拘束部材は、前記冷却部に熱的に接続される請求項4または5に記載の電池モジュール。 The battery module according to claim 4 or 5, wherein the restraint member is thermally connected to the cooling unit.
PCT/JP2019/048021 2019-02-27 2019-12-09 Battery module WO2020174804A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-034108 2019-02-27
JP2019034108A JP2022062288A (en) 2019-02-27 2019-02-27 Battery module

Publications (1)

Publication Number Publication Date
WO2020174804A1 true WO2020174804A1 (en) 2020-09-03

Family

ID=72238869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048021 WO2020174804A1 (en) 2019-02-27 2019-12-09 Battery module

Country Status (2)

Country Link
JP (1) JP2022062288A (en)
WO (1) WO2020174804A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968230A (en) * 2021-04-14 2021-06-15 中航锂电(洛阳)有限公司 Battery pack
CN113611933A (en) * 2021-06-03 2021-11-05 安徽千航新能源科技有限公司 Battery pack with heat management and control function and management and control system thereof
WO2022202697A1 (en) * 2021-03-22 2022-09-29 いすゞ自動車株式会社 Battery unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248299A (en) * 2011-05-25 2012-12-13 Sanyo Electric Co Ltd Battery module, battery system, electric vehicle, mobile object, power storage device and power supply device
JP2013125617A (en) * 2011-12-13 2013-06-24 Sanyo Electric Co Ltd Power supply device and vehicle having the same, and power storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248299A (en) * 2011-05-25 2012-12-13 Sanyo Electric Co Ltd Battery module, battery system, electric vehicle, mobile object, power storage device and power supply device
JP2013125617A (en) * 2011-12-13 2013-06-24 Sanyo Electric Co Ltd Power supply device and vehicle having the same, and power storage device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202697A1 (en) * 2021-03-22 2022-09-29 いすゞ自動車株式会社 Battery unit
JP2022146123A (en) * 2021-03-22 2022-10-05 いすゞ自動車株式会社 battery unit
JP7347466B2 (en) 2021-03-22 2023-09-20 いすゞ自動車株式会社 battery unit
CN112968230A (en) * 2021-04-14 2021-06-15 中航锂电(洛阳)有限公司 Battery pack
CN113611933A (en) * 2021-06-03 2021-11-05 安徽千航新能源科技有限公司 Battery pack with heat management and control function and management and control system thereof

Also Published As

Publication number Publication date
JP2022062288A (en) 2022-04-20

Similar Documents

Publication Publication Date Title
US11437664B2 (en) Battery module
JP7418410B2 (en) battery module
JP7418405B2 (en) battery module
JP7438147B2 (en) battery module
JP7373753B2 (en) Energy storage module
WO2020188949A1 (en) Battery module
WO2020174804A1 (en) Battery module
JP2020113361A (en) Power supply device, vehicle with the same, power storage device and separator for power supply device
JP7418409B2 (en) battery module
JP7276896B2 (en) battery module
JP7307086B2 (en) battery module
JP7325442B2 (en) battery module
WO2020110448A1 (en) Battery module
WO2021060222A1 (en) Power storage pack
WO2020218222A1 (en) Support plate and voltage detection line module
WO2021241419A1 (en) Electric power storage module
US20220214402A1 (en) Voltage detection line and voltage detection line module
JP2021140914A (en) Battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP