WO2020174690A1 - Surface antigen protein of babesia protozoa, method for detecting antibody against babesia protozoa, and diagnostic method for babesiosis - Google Patents

Surface antigen protein of babesia protozoa, method for detecting antibody against babesia protozoa, and diagnostic method for babesiosis Download PDF

Info

Publication number
WO2020174690A1
WO2020174690A1 PCT/JP2019/008255 JP2019008255W WO2020174690A1 WO 2020174690 A1 WO2020174690 A1 WO 2020174690A1 JP 2019008255 W JP2019008255 W JP 2019008255W WO 2020174690 A1 WO2020174690 A1 WO 2020174690A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
amino acid
babesia
acid sequence
babesiosis
Prior art date
Application number
PCT/JP2019/008255
Other languages
French (fr)
Japanese (ja)
Inventor
宜宏 日下部
新川 武
志博 玉城
辻 尚利
Original Assignee
Kaico株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaico株式会社 filed Critical Kaico株式会社
Priority to JP2021501521A priority Critical patent/JPWO2020174690A1/ja
Priority to PCT/JP2019/008255 priority patent/WO2020174690A1/en
Publication of WO2020174690A1 publication Critical patent/WO2020174690A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/002Protozoa antigens
    • A61K39/015Hemosporidia antigens, e.g. Plasmodium antigens
    • A61K39/018Babesia antigens, e.g. Theileria antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/44Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from protozoa
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention is a surface antigen protein of Babesia parasite, a polynucleotide encoding the protein, a reagent for detecting an antibody against Babesia parasite and a detection method using the reagent, and a reagent for diagnosing Babesiosis, and the reagent.
  • the present invention relates to a method for diagnosing babesiosis.
  • Babesiosis is a tick-borne infection caused by a parasite (Protozoa genus Babesia).
  • a parasite Protozoa genus Babesia
  • Babesiosis pathogen Protozoa of the genus Babesia
  • Babesia gibsoni B. canis
  • B. Vogeli B.I. Rossi and the like
  • Symptoms are paralysis of red blood cells by protozoa and anemia due to destruction of red blood cells and the associated fever.
  • Treatment since there are effective drugs, if an accurate diagnosis can be made, it is possible to promptly perform anti-Babesia drug therapy after the diagnosis.
  • microscopic examination is adopted as a main method for definitive diagnosis of babesiosis.
  • Babesia protozoa are detected by observing a Giemsa-stained blood smear.
  • Giemsa-stained blood smear there are various forms, stains due to staining, and forms that are difficult to distinguish. Therefore, it is essential to have skill and experience to diagnose Babesiosis.
  • the parasite parasite rate is not high, the appearance of worms is intermittent and may be overlooked by microscopic examination, making it difficult to distinguish from similar symptoms (misdiagnosis of hemolytic anemia and thrombocytopenia).
  • Patent Documents 1 and 2 describe that a dog Babesia antigen protein was produced in Escherichia coli, and Patent Document 2 describes that a truncated dog Babesia surface protein was produced.
  • the present inventors have conducted extensive studies in order to solve the above-mentioned problems, and as a result, among the full-length surface antigen proteins of Babesia protozoa, the N-terminal signal peptide and the protein excluding the region from the transmembrane region to the C-terminus have been identified. I succeeded in synthesizing. Then, they have found that the protein can be used for highly accurate detection of an antibody against the Babesia parasite surface antigen protein, and thus for the diagnosis of Babesiosis, and completed the present invention.
  • the present invention is as follows.
  • [1] A protein in which the amino acid sequence of the N-terminal signal peptide and the amino acid sequence of the region from the transmembrane region to the C-terminal have been removed from the amino acid sequence of the full-length surface antigen protein of Babesia parasite.
  • [2] The following protein (a), (b) or (c).
  • A a protein consisting of any amino acid sequence represented by SEQ ID NO: 2n (n represents an integer of 1 to 4)
  • (c) SEQ ID NO: 2n (n is an integer of 1 to 4) which has a homology of 80% or more with any of the amino acid sequences represented by the formula (1) and which reacts with an antibody against Babesia protozoa [3] (1) or (2)
  • a polynucleotide A polynucleotide.
  • 2n-1 (n represents an integer of 1 to 4) and a protein comprising a nucleotide sequence having a homology of 80% or more with a polynucleotide comprising any of the nucleotide sequences represented by 2n-1 and reacting with an antibody against a Babesia parasite.
  • the vector according to (5) which is a viral vector.
  • a silkworm host containing the polynucleotide according to (3) or (4) or the vector according to (5) or (6).
  • a method for producing the protein comprising the step of culturing or breeding the silkworm host according to (7) and recovering the protein according to (1) or (2) from the silkworm host after culturing or breeding.
  • a reagent for detecting an antibody against Babesia parasite which comprises the protein according to (1), (2) or (9).
  • Babesia which comprises reacting a sample collected from a test animal with the protein described in (1), (2) or (9) or the reagent described in (10) or (11). Method for detecting antibody to protozoa.
  • a method for treating babesiosis which comprises administering a therapeutic drug for babesiosis to a test animal in which babesiosis is diagnosed by the method according to (14).
  • a vaccine for treating or preventing babesiosis which comprises the protein according to (1), (2) or (9).
  • a kit for detecting an antibody against Babesia parasite which comprises the protein according to (1), (2), or (9).
  • a diagnostic kit for babesiosis containing the protein according to (1), (2) or (9).
  • A a protein consisting of any amino acid sequence represented by SEQ ID NO: 2n (n represents an integer of 1 to 4)
  • INDUSTRIAL APPLICABILITY it becomes possible to detect an antibody against Babesia protozoa with high accuracy and to diagnose babesiosis.
  • the present invention by establishing a method for detecting antibodies to Babesia protozoa by immunochromatography, it is possible to easily detect the presence or absence of infection with Babesia protozoa in a veterinary hospital or at home, and in a short period of time, and also a similar symptom (for example, filararia). It is possible to diagnose Babesiosis.
  • FIG. 1 is a construction diagram of a recombinant donor plasmid for producing a baculovirus using the Gateway LR reaction. It is a figure which shows the expression result in the silkworm of recombinant PChi protein. It is a figure which shows the purification result of vector pDEST8-30K6G-BgTRAP-dH8STREP-1274-8 and BgTRAP. It is a figure which shows the purification result of vector pDEST8-30K6G-dH8STREP-BgTRAP-1381-9 and BgTRAP. It is a figure which shows the purification result of vector pDEST8-30K6G-dH8STREP-BgTRAP-1381-9 and BgTRAP.
  • FIG. 3 is a diagram of a plasmid for expressing BgTRAP in E. coli. It is a figure which shows the result of SDS-polyacrylamide gel electrophoresis of the expression product by Escherichia coli. It is a figure which shows the result of the immuno chromatography using a half strip. It is a figure which shows the result of the immuno chromatography using a full strip.
  • the present invention artificially removes the amino acid sequence of the N-terminal signal peptide and the amino acid sequence of the region from the transmembrane region to the C-terminus, from the amino acid sequence of the full-length surface antigen protein of Babesia parasite (natural surface antigen protein).
  • Surface antigen proteins having different amino acid sequences.
  • a protein obtained by removing the amino acid sequence of the N-terminal signal peptide and the amino acid sequence of the region from the transmembrane region to the C-terminal in the amino acid sequence of the full-length surface antigen protein of Babesia parasite is referred to as “the surface of the present invention”. It is called an antigen protein.
  • the surface antigen protein of the present invention has the N-terminal signal peptide and the region from the transmembrane region to the C-terminal removed, but includes all the regions that appear on the surface of Babesia parasite.
  • an antibody against the Babesia parasite surface antigen protein is produced in the infected animal.However, since the antibody is any region of the surface antigen protein that appears on the surface of the Babesia protozoa, it becomes an antigen in the body. There will be many types of antibodies to these regions.
  • the surface antigen protein of the present invention is the entire antigen protein (entire region) that appears on the surface of Babesia parasite, the above problems can be solved. That is, the antibody produced in the infected animal body reacts by using the surface antigen protein of the present invention as an antigen, regardless of which area is present on the surface of the Babesia parasite of the surface antigen protein, Since it can be detected, it becomes possible to detect the infection of Babesia parasite with high accuracy.
  • the surface antigen protein of the present invention is produced by a protein expression system using silkworm.
  • the surface antigen protein of Babesia parasite has heretofore been difficult to express, and the protein produced in Escherichia coli or the like was a partial fragment protein that does not include a partial region of the surface antigen protein. If the antigenic protein contains all the regions appearing on the surface of Babesia protozoa, it can react with the antibody against all the regions appearing on the surface of Babesia protozoa of the surface antigen protein produced in the infected animal body, so that The diagnosis can be performed accurately.
  • the present invention diagnoses Babesiosis by detecting an antibody against a surface protein of Babesia protozoa in a biological sample (specimen) by an immunochromatography method. Also, the kit used for the detection was successfully developed.
  • the protozoan from which the surface antigen protein of the present invention is derived is a protozoan belonging to the genus Babesia. Examples of animals infected with the protozoa include dogs, sheep, horses, and cows.
  • the amino acid sequence of the full-length surface antigen protein of the dog Babesia protozoa (Babesia gibbsoni) is shown in SEQ ID NO: 10
  • the polynucleotide sequence encoding the protein is shown in SEQ ID NO: 9.
  • amino acid sequence of the full-length surface protein SEQ ID NO: 10 and FIG.
  • the region from the 1st methionine (M) to the 23rd glycine (G) is the N-terminal signal sequence
  • the 672nd alanine The region from A) to the 694th valine (V) is a transmembrane region.
  • the surface antigen protein of the present invention comprises the amino acid sequence of the region of the N-terminal signal sequence (first to 23rd) and the amino acid sequence of the region from the transmembrane region to the C-terminal (672nd to 735th). Is a protein having a sequence in which is deleted.
  • the surface antigen protein of the present invention is obtained by removing the amino acid sequence of the N-terminal signal sequence region and the region from the transmembrane region to the C-terminus from the full-length protein of Babesia parasites that infect various animals. It can be prepared.
  • the amino acid sequence of the surface antigen protein of the present invention, and the polynucleotide sequence (base sequence) encoding the antigen protein of the present invention, and the full length, the signal sequence region, and the base sequence and amino acid sequence from the transmembrane region to the C terminus, The results are shown in Table 1 below.
  • the origin of the surface antigen protein of the present invention is not limited to the above-mentioned Babesia protozoa, but it is not limited to Babesia canis (protozoan dog Babesia), Babesia vogeli (protozoan dog Babesia), Babesia rossi (protozoan dog Babesia), and Babesia dia (Babesia disia). It is also possible to use a surface antigen protein derived from bovine Babesia protozoa).
  • the surface antigen protein of the present invention is the amino acid sequence of the region of the N-terminal signal sequence and the amino acid sequence of the region from the transmembrane region to the C-terminal in the amino acid sequence of the full-length surface protein of various Babesia parasites (which encodes a surface antigen protein). In the case of a gene, it can be obtained by removing the nucleotide sequence encoding the region.
  • the base sequences shown in SEQ ID NOs: 1, 3, 5 and 7 are represented by the general formula 2n-1 (n represents an integer of 1 to 4), and the amino acids shown in SEQ ID NOs: 2, 4, 6 and 8 are shown.
  • the surface antigen protein of the present invention is the following protein (a), (b) or (c).
  • A a protein consisting of any amino acid sequence represented by SEQ ID NO: 2n (n represents an integer of 1 to 4)
  • amino acid sequence in which one or several amino acids are deleted, substituted or added is, for example, 1 to 15, 1 to 14, 1 to 13, 1 to 12, 1 to 11 pieces, 1-10 pieces, 1-9 pieces, 1-8 pieces, 1-7 pieces, 1-6 pieces, 1-5 pieces, 1-4 pieces, 1-3 pieces, 1-2 pieces or
  • An amino acid sequence in which one amino acid is deleted, substituted or added is included, but not limited to.
  • a mutation introduction kit utilizing a site-directed mutagenesis method for example, GeneTailor TM Site-Directed Mutagenesis System is used. (Invitrogen), TaKaRa Site-Directed Mutagenesis System (Mutan-K, Mutan-Super Express Km, etc.: manufactured by Takara Bio Inc.) and the like.
  • the surface antigen protein of the present invention is represented by SEQ ID NO: 2n (n represents an integer of 1 to 4) in addition to the amino acid sequence represented by SEQ ID NO: 2n (n represents an integer of 1 to 4).
  • proteins that react with can be searched by using BLAST on a homology search site using the Internet, for example, National Center for Biotechnology Information (NCBI) (for example, refer to the following URL: https: //blast.ncbi. .Nlm.nih.gov/Blast.cgi).
  • amino acid sequence represented by SEQ ID NO: 2n (n represents an integer of 1 to 4)
  • the present invention having an amino acid sequence having homology (identity) and reacting with an antibody against Babesia protozoa has an amino acid sequence represented by SEQ ID NO: 2n (n represents an integer of 1 to 4).
  • Surface antigen protein compared to the binding amount or binding activity of binding to an antibody against Babesia parasite, that is, substantially equivalent activity, that is, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more Alternatively, it is a protein having a binding amount or binding activity of 95% or more.
  • polynucleotide encoding surface antigen protein of the present invention examples include the following polynucleotides (d), (e) or (f).
  • D Polynucleotide consisting of any of the base sequences represented by SEQ ID NO: 2n-1 (n represents an integer of 1 to 4)
  • SEQ ID NO: 2n-1 n represents an integer of 1 to 4
  • Polynucleotide (f) SEQ ID NO: which encodes a protein which hybridizes under stringent conditions with a polynucleotide consisting of a nucleotide sequence complementary to any of the nucleotide sequences shown in FIG.
  • 2n-1 (n represents an integer of 1 to 4) and a protein comprising a nucleotide sequence having a homology of 80% or more with a polynucleotide comprising any of the nucleotide sequences represented by 2n-1 and reacting with an antibody against a Babesia parasite.
  • polynucleotide means a polymer composed of bases or base pairs such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), and includes DNA, cDNA, genomic DNA, chemically synthesized DNA and RNA. It also includes polynucleotides containing non-natural bases as necessary.
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • non-natural bases include 4-acetylcytidine, 5-(carboxyhydroxymethyl)uridine, 2'-0-methylcytidine, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluridine, Dihydrouridine, 2'-0-methylpseudouridine, 2'-0-methylguanosine, inosine, N6-isopentenyladenosine, 1-methyladenosine, 1-methylpseudouridine, 1-methylguanosine, 1-methylinosine , 2,2-dimethylguanosine, 2-methyladenosine, 2-methylguanosine, 3-methylcytidine, 5-methylcytidine, N6-methyladenosine, 7-methylguanosine, 5-methylaminomethyluridine, 5-methoxyaminomethyl
  • 2-thiouridine ⁇ -D-mannosylkyueosin, 5-methoxycarbonylmethyl-2-thiouridine, 5-methoxy
  • the polynucleotide encoding the surface antigen protein of the present invention may be the polynucleotide of (d), (e) or (f) above, or may be required for gene expression in addition to the nucleotide sequence. It may be a polynucleotide containing a known base sequence (transcription promoter, SD sequence, Kozak sequence, terminator, etc.) and is not limited.
  • the “stringent conditions” may be any of low stringent conditions, medium stringent conditions and high stringent conditions
  • the “low stringent conditions” include, for example, 5 ⁇ SSC, 5 X Denhardt's solution, 0.5% SDS, 50% formamide, 32°C.
  • the “moderate stringent conditions” are, for example, 5 x SSC, 5 x Denhardt's solution, 0.5% SDS, 50% formamide, and 42°C.
  • the “highly stringent conditions” are, for example, 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, and 50° C. Under these conditions, it can be expected that DNA having high homology can be efficiently obtained as the temperature is increased.
  • factors that affect the stringency of hybridization include multiple factors such as temperature, concentration of polynucleotide, length of polynucleotide, ionic strength, time, and salt concentration, and those skilled in the art can use these factors. It is possible to realize the same stringency by appropriately selecting.
  • a polynucleotide encoding a protein that reacts with an antibody against is a polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 2n-1 (n represents an integer of 1 to 4), and 80% or more, 90% or more, 95 %, 96% or more, 97% or more, 98% or more or 99% or more of a nucleotide sequence having a homology (identity), wherein the protein encoded by the nucleotide sequence is SEQ ID NO: 2n.
  • the protein encoded by the nucleotide sequence represented by -1 is substantially equivalent to the binding amount or binding activity of binding to the Babesia antibody, ie, 50% or more
  • Vector The method for producing the vector of the present invention is not particularly limited, but, for example, different restriction enzymes on the 5′ side of the start codon and the 3′ side of the stop codon of the nucleotide encoding the surface antigen protein of the present invention, respectively.
  • a primer having a sequence is set, and this coding region is gene-amplified.
  • the vector of the present invention can be obtained by cutting out the amplified region with a restriction enzyme and incorporating it into a plasmid vector or a viral vector.
  • a plasmid containing a polynucleotide encoding the surface antigen protein of the present invention cloned from a PCR product is cleaved with a restriction enzyme.
  • the vector fragment of the present invention can be obtained by purifying the cleaved polynucleotide fragment by agarose gel electrophoresis or the like and incorporating this polynucleotide fragment into an expression vector using a known method (Sambrook J. et al. , Molecular Cloning, A Laboratory Manual (4th edition) (Cold Spring Harbor Laboratory Press (2012)).
  • a silkworm individual, cell or tissue can be used as a silkworm host for producing the surface antigen protein of the present invention.
  • the silkworm host refers to an individual, cell or tissue of Bombyx mori, and the individual includes not only larvae but also eggs, pupae, cocoons or adults.
  • the silkworm host may be a cell, a cell mass or a tissue, and the cell may be single or plural. Strains can be distinguished from other strain sets by all or part of their traits (eggs, larvae, pupae, cocoons, adult traits, genotypes) and origins, and retain all of their traits. A single set of silkworms that can be propagated while being reproduced.
  • the silkworm host is “susceptible” to a virus refers to the ability to infect the virus and to propagate it. Whether or not it is susceptible is determined, for example, by preparing a recombinant virus into which a gene for a marker protein (eg, luciferase, GFP) that allows easy evaluation of growth is introduced, and infecting a target silkworm, It can be judged by evaluating the amount of the marker protein in the silkworm at various times.
  • a marker protein eg, luciferase, GFP
  • the silkworm host used in the present invention is, for example, BmNPV-sensitive or AcNPV-sensitive.
  • a BmNPV-sensitive strain more preferably a BmNPV-sensitive strain, is used as the silkworm.
  • silkworm strains that can be preferably used include a49, c11, c51, c60, d17, e15, f10, f38, g05, g30, g32, 131, 1311, 1312, n41, r02, r21, t70, w601 and fylu, as well as variants thereof having the same biological properties as those of the c11, d17, f10 or f38 lines.
  • the breeding and breeding of these strains can be performed under the conditions commonly used by those skilled in the art.
  • the description in JP2007-159406A can be referred to.
  • a polynucleotide encoding the protein or a vector containing the polynucleotide is inoculated into or infected with a silkworm host, and the silkworm host (for example, silkworm individual In vivo, in cells, in tissues, etc.).
  • the polynucleotide encoding the surface antigen protein of the present invention can be directly inoculated into a silkworm host, inoculated as a plasmid vector, or inoculated as a viral vector.
  • a virus When using a virus as a vector, prepare a recombinant virus that incorporates the polynucleotide into the virus and infect the silkworm host with this recombinant virus.
  • Conventional techniques can be used in the step of producing a recombinant viral vector (Sambrook J. et al., Molecular Cloning, A Laboratory Manual (4th edition) (Cold Spring Harbor Laboratory virus (2012)). Since its genome is usually a circular DNA of 130 kbp, it is impossible to directly introduce the target gene.Therefore, the target gene is once integrated into a transfer plasmid and introduced by homologous recombination or transfer reaction. Regarding the point, various techniques have been developed, and a commercially available construction system (for example, Bac-to-Bac system) may be used in the present invention.
  • a recombinant viral vector can be obtained by incorporating a polynucleotide encoding the surface antigen protein of the present invention into BmNPV or AcNPV, but not only BmNPV or AcNPV, but also mutants thereof, for example, for suppressing disease expression. Those lacking a specific gene, those overexpressing a specific gene for easy entry into cells, and the like can be used in the present invention.
  • the recombinant virus can be used in the subsequent infection step after being propagated using cultured cells, if necessary. Further, the obtained virus may be in the form of suspension, freeze-dried powder or the like.
  • Inoculation or infection of a silkworm individual with a recombinant vector (virus vector, plasmid vector, etc.) into which a polynucleotide encoding the surface antigen protein of the present invention has been introduced can be carried out, for example, to approximately 5th instar larvae.
  • a recombinant vector virus vector, plasmid vector, etc.
  • Those skilled in the art can appropriately set the amount of inoculation, the route of infection, and the like.
  • 10 ⁇ L of recombinant virus solution prepared to 1 ⁇ 10 6 pfu/mL can be subcutaneously injected into the chest using an injection needle.
  • a method in which it is mixed with feed and orally inoculated is also possible (see Japanese Patent No. 3030430).
  • the time for collecting the surface antigen protein of the present invention from the silkworm host can be determined by the recombinant protein concentration in the silkworm body fluid, the absolute amount of the target protein per silkworm individual, etc. .. Normally, the absolute amount of protein production per head increases as the larval body grows over time. On the other hand, however, some individuals may die after the 7th day. The state of the silkworms at the time of recovery is almost the same as that when they were not infected with the virus, but they may be slightly different depending on the silkworm strains. Virus-infected silkworms usually do not become pupae, even after long term breeding.
  • the surface antigen protein of the present invention can be recovered from all tissues of the silkworm host (eg, individual). Collection is performed by a method of directly obtaining a body fluid from an individual by using an injection needle or the like, a method of grinding an individual by adding an appropriate solution as necessary, and a body fluid utilizing a contraction phenomenon by freezing and thawing the individual. A method of extracting or the like can be used. In the secretory system, the body fluid containing the secreted surface antigen protein of the present invention can also be collected.
  • the recovered liquid containing the surface antigen protein of the present invention may be subjected to steps such as separation, purification, lyophilization, and crystallization, if necessary. Whether the recovered protein is the target surface antigen protein of the present invention can be confirmed by, for example, SDS-polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting and the like.
  • SDS-PAGE SDS-polyacrylamide gel electrophoresis
  • an immunologically effective amount of the surface antigen protein of the present invention, or a vector incorporating a polynucleotide encoding the surface antigen protein of the present invention so as to express the protein in vivo is used.
  • a vaccine preparation for treating or preventing Babesiosis (infection against Babesia parasite) can be prepared.
  • the vaccine may include a pharmaceutically acceptable carrier.
  • An "immunologically effective amount” means an amount that is effective in the treatment or prevention of babesiosis, as administered in a single dose or as part of a continuous dose, which amount is the health condition of the individual, It can be adjusted according to the vaccine prescription and the like.
  • the pharmaceutically acceptable carrier examples include aluminum compounds such as aluminum hydroxide and aluminum phosphate, Freund's adjuvant, muramyl peptide and the like.
  • Vaccine preparations further include sodium phosphate, potassium phosphate, sodium hydroxide, pH adjusting agents such as hydrochloric acid, kanamycin sulfate, antibiotics such as erythromycin, lactose, potassium glutamate, D-sorbitol and aminoacetic acid. It is possible to add stabilizers, tonicity agents such as sodium chloride and the like.
  • the Babesia protozoa is, for example, Babesia gibbsoni (Babesia gibbsoni), Babesia canis (Babesia canis), Babesia vogelige (Babesia variae), rossi (Babesia Rossi), Babesia divergens (Babesia divergence), Babesia bovis (Babesia bovis), Babesia motasi (Babesia motashi), and Babesia equii (Babesia equi).
  • the antibody to be detected is of the merozoite stage in the Schizogony stage of the life cycle of Babesia parasite.
  • the body cannot be detected in the merozoite stage, but by using the surface antigen protein of the present invention, an antibody against the protein can be detected.
  • the method for detecting anti-Babesia protozoa antibody is to contact a biological sample (eg, blood, serum, plasma) obtained from a subject with the purified surface antigen protein of the present invention, and detect the antigen-antibody reaction as an index. ..
  • a biological sample eg, blood, serum, plasma
  • the antibody can be detected by a known immunological test method such as an ELISA method and an indirect fluorescent antibody method (IFA), but it is advantageous in that immunochromatography is simple and convenient.
  • Immunochromatography is an immunoassay measurement method that utilizes an antigen-antibody reaction.
  • the surface antigen protein of the present invention which is an antigen, is applied to the determination part.
  • the antibody against the Babesia parasite contained in the specimen (biological sample) binds to the surface antigen protein of the present invention in the determination part, it is visualized by the coloring component of the reagent.
  • the method for developing the color is not particularly limited, and examples thereof include a gold colloid method (a method in which gold colloid is bonded as colored particles).
  • An antibody against the Babesia parasite is detected by the color development in the determination part. Then, when the determination part develops color, it can be diagnosed as being positive, that is, having Babesiosis or being infected with the dog Babesia protozoa.
  • the "diagnosis" in addition to a definitive diagnosis that it is Babesiosis, or infected with Babesia protozoa, there is a possibility or risk of Babesiosis, or it can be infected with Babesia protozoa Includes preliminary diagnosis of sex or risk.
  • the surface antigen protein of the present invention is used as a reagent for detecting an antibody against Babesia protozoa or as a diagnostic reagent for Babesia disease.
  • the present invention also provides a kit containing the protein.
  • the kit of the present invention include a kit for immunochromatography.
  • the kit of the present invention contains, in addition to the above-mentioned surface antigen protein of the present invention, a diluent, a color former, etc., but is not limited thereto.
  • the immunochromatographic test strip is composed of, for example, a sample pad, a coating membrane, a conjugate pad, a sample absorption pad, and the like.
  • the sample pad is, for example, a member where a sample (including a test substance) is dropped.
  • the characteristics of the sample pad control the flow rate of the spread of the dropped sample.
  • the conjugate pad is a member for binding the target antibody contained in the sample solution and its antigen by an immunochemical reaction.
  • the conjugate pad carries an antigen (labeled surface antigen protein of the present invention) labeled by an appropriate detection means.
  • the coating membrane is a member for detecting a target antibody, and includes a determination unit in which the labeled surface antigen protein of the present invention for the target antibody is fixed, and a control unit in which the antibody for the surface antigen protein of the present invention is fixed. It is provided.
  • the sample absorption pad is a member for absorbing unreacted labeled antigen, developing solvent and the like.
  • the labeling substance for detection examples include colored particles, metal colloids (gold colloid, platinum colloid, etc.), colored latex, dyes, and fluorescent dyes. Any one of them may be used alone, or two or more of them may be appropriately combined. Can be used. In the present invention, for example, gold colloid, platinum colloid and the like can be mentioned.
  • the kit of the present invention can include, for example, a container (housing case) for an immunochromatographic test strip used for installing an immunochromatographic test strip, an instruction manual, and the like.
  • the present invention administers a therapeutic agent for Babesiosis to an individual whose anti-Babescia parasite antibody has been detected by the above detection method or an individual who has been diagnosed with Babesiosis (is positive) by the above diagnosis method.
  • the present invention provides a method for treating babesiosis, which comprises: The dose and administration period of the drug for treating babesiosis to the individual can be set according to the usual usage and dose of the drug for treating babesiosis.
  • Examples of the drug for treating babesiosis include diminazene (trade name Ganazec), clindamycin (trade name dalasin, antilobe), ST mixture (trade name tribrissen, etc.) and the like.
  • diminazene trade name Ganazec
  • clindamycin trade name dalasin, antilobe
  • ST mixture trade name tribrissen, etc.
  • a combination therapy of clindamycin, doxycycline and nitromedazole can be adopted.
  • BgTRAP Production of BgTRAP using a baculovirus-silkworm protein expression system
  • An entry plasmid for transfer which artificially synthesizes a cDNA encoding a region excluding a secretory signal and a transmembrane region in a full-length surface protein of the merozoite of the canine Babesia protozoa Babesia gibsoni Inserted in.
  • the protein (surface antigen protein of the present invention) in the region excluding the secretory signal and the transmembrane region from the full-length surface protein of the canine Babesia protozoan merozoite is referred to as “BgTRAP”.
  • the polynucleotide encoding BgTRAP may be referred to as “BgTRAP”.
  • a vector (N-terminal tag vector) in which the H8-STREP-H6-TEV sequence was inserted between the 30K secretion signal and BgTRAP, which was inserted downstream of the DNA sequence encoding the silkworm 30K protein secretion signal, and BgTRAP Two types of entry vectors, a vector (C-terminal tag vector) into which the H8-STREP-H6-TEV sequence was inserted downstream, were prepared. Then, the protein coding region containing BgTRAP was inserted into the pDEST8 plasmid for baculovirus transfer by the Gateway LR reaction.
  • a protein coding region containing BgTRAP is inserted into the region sandwiched between the B1 and B2 sequences as shown in FIG. 1 and placed under the control of the polyhedrin promoter derived from baculovirus.
  • the synthetic gene region containing BgTRAP on this pDEST8 plasmid was inserted into Bacmid containing the baculovirus genome by Tn7 transfer reaction.
  • an Escherichia coli strain carrying a plasmid containing baculovirus Bacmid and Tn7 transferase is transformed with pDEST8 plasmid containing a BgTRAP synthetic gene region, and a recombinant Bacmid having a multidrug drug resistance as a marker for a transposition reaction was selected.
  • recombinant Bacmid was extracted from Escherichia coli by the alkali method, and purified recombinant Bacmid was introduced into the silkworm-derived cultured cells by the lipofection method.
  • the germinated recombinant baculovirus (P1 virus) was collected in the cell culture supernatant, and the culture cells derived from silkworm were repeatedly infected twice to prepare a stock solution of P3 virus having a high virus concentration. .. 10 microliters of this virus was inoculated into the 5th instar larva of the silkworm, and the serum was collected. The result of confirming the expression level of BgTRAP in this serum by Western blotting is shown in FIG.
  • WB was blocked with 5% skim milk at room temperature for 1 hour, primary antibody (anti-GST-tag antibody, 1000-fold dilution) was incubated at 4°C for 2 days, and secondary antibody (anti-rabbit IgG-HRP, 2500-fold dilution) was incubated at room temperature for 1 hour. ..
  • BgTRAP antigen and anti-BgTRAP antibody were applied to the membrane, and the reaction with the colloidal gold-sensitized BgTRAP antigen was confirmed.
  • Example 3 Reaction confirmation test by full strip (a strip composed of a membrane coated with BgTRAP antigen and anti-BgTRAP antibody and an absorption pad, a conjugate pad, and a sample pad)
  • BgTRAP antigen and anti-BgTRAP antibody were tested. It was applied to a membrane and the reaction with colloidal gold-sensitized BgTRAP antigen was confirmed.
  • BgTRAP antigen BgTRAP antigen
  • Anti-BgTRAP polyclonal antibody Anti-BgTRAP antibody
  • Positive and negative dog serum 5 types each, 10 types in total
  • Gold colloid BBI
  • Membrane Millipore
  • Absorption pad Millipore
  • Sample Pad Pall Corporation
  • Glass fiber pad Millipore
  • Backing sheet Nippon Engineering
  • Test method Negative serum (1 individual), other infection negative serum (4 individuals) and dog Babesia positive serum (5 individuals) were diluted 100-fold with a diluent, and 60 ⁇ L of each was dispensed into microwells. A full strip (3 mm width) was inserted into the microwell and 5 minutes later, the presence or absence of a red line was confirmed.
  • the "other infection negative serum” is serum of a dog that is not infected with Babesia parasite but is infected with other infectious diseases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plant Pathology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)

Abstract

The present invention provides: a protein obtained by removing, from the amino acid sequence of the full-length surface antigen protein of a Babesia protozoa, the amino acid sequence of the N-terminal signal peptide thereof and the amino acid sequence of the region from a transmembrane region to the C-terminus thereof; and a detection or diagnostic method for Babesiosis using the protein.

Description

バベシア原虫の表面抗原タンパク質、バベシア原虫に対する抗体の検出方法、バベシア症の診断方法Surface antigen protein of Babesia parasite, method for detecting antibody to Babesia parasite, method for diagnosing babesiosis
 本発明は、バベシア原虫の表面抗原タンパク質、当該タンパク質をコードするポリヌクレオチド、バベシア原虫に対する抗体の検出用試薬及び当該試薬を用いた検出方法、並びに、バベシア症の診断用試薬、及び当該試薬を用いたバベシア症の診断方法等に関する。 The present invention is a surface antigen protein of Babesia parasite, a polynucleotide encoding the protein, a reagent for detecting an antibody against Babesia parasite and a detection method using the reagent, and a reagent for diagnosing Babesiosis, and the reagent. The present invention relates to a method for diagnosing babesiosis.
 バベシア症は、寄生虫(バベシア属原虫)が原因のダニ媒介性の感染症である。バベシア症病原体(バベシア属原虫)にはBabesia gibsoni、B.canis、B.vogeli、B.rossi等が知られており、日本では主にBabesia gibsoniによる感染が多い。症状としては、原虫が赤血球に寄生し、赤血球を破壊することによる貧血とそれに伴う発熱が主徴である。治療に関しては、有効な薬剤があるため、正確な診断ができれば診断後に速やかな抗バベシア薬剤療法を行うことができる。 Babesiosis is a tick-borne infection caused by a parasite (Protozoa genus Babesia). For Babesiosis pathogen (Protozoa of the genus Babesia), Babesia gibsoni, B. canis, B. Vogeli, B.I. Rossi and the like are known, and in Japan, there are many infections mainly caused by Babesia gibsoni. Symptoms are paralysis of red blood cells by protozoa and anemia due to destruction of red blood cells and the associated fever. With respect to treatment, since there are effective drugs, if an accurate diagnosis can be made, it is possible to promptly perform anti-Babesia drug therapy after the diagnosis.
 バベシア症の確定診断には、現在は、顕微鏡検査(鏡検)が主な方法として採用されている。鏡検では、ギムザ染色した血液の塗抹標本の観察によりバベシア原虫の検出を行う。しかし、原虫によっては種々の形態を示すこと、染色による汚れが生じること、判別がつきにくい形態を呈すること等がある。このため、バベシア症の診断には技術及び経験による習熟が必須である。また、原虫寄生率が高くないため、虫体出現が間欠性で鏡検による見逃しがあり、類似症状との区別が難しいなどの問題(溶血性貧血や血小板減少症との誤診)がある。 さらに、フィラリア症とバベシア症とを区別して診断することが困難である。
 PCRによる分子学的診断やELISAや間接蛍光抗体(IFA)法による血清学的検査においても、検査時間を要する、設備の問題、感度の問題があり、迅速な診断は困難な状況にある。
At present, microscopic examination (microscopic examination) is adopted as a main method for definitive diagnosis of babesiosis. At microscopic examination, Babesia protozoa are detected by observing a Giemsa-stained blood smear. However, depending on the protozoa, there are various forms, stains due to staining, and forms that are difficult to distinguish. Therefore, it is essential to have skill and experience to diagnose Babesiosis. In addition, because the parasite parasite rate is not high, the appearance of worms is intermittent and may be overlooked by microscopic examination, making it difficult to distinguish from similar symptoms (misdiagnosis of hemolytic anemia and thrombocytopenia). Furthermore, it is difficult to make a distinctive diagnosis between filariasis and babesiosis.
Even in molecular diagnosis by PCR and serological test by ELISA or indirect fluorescent antibody (IFA) method, there are problems of equipment and sensitivity that require test time, and rapid diagnosis is difficult.
 ところで、バベシア症を検出するための手法として、バベシア原虫の表面タンパク質等を用いてバベシア原虫に対する抗体を検出する方法が検討されている(特許文献1、特許文献2)。
 特許文献1には、犬バベシア抗原タンパク質を大腸菌で製造したことが記載されており、また、特許文献2には、切断型の犬バベシア表面タンパク質を製造したことが記載されている。
By the way, as a method for detecting Babesiosis, a method of detecting an antibody against Babesia protozoa using a surface protein of Babesia protozoa has been studied (Patent Documents 1 and 2).
Patent Document 1 describes that a dog Babesia antigen protein was produced in Escherichia coli, and Patent Document 2 describes that a truncated dog Babesia surface protein was produced.
特表2008−500802号公報Japanese Patent Publication No. 2008-500802 CN102558332号公報CN 102558332 Publication
 バベシア原虫に感染すると、体内には多種類の抗体が産生されるため、その抗体を検出することで感染の有無を判断することができる。特許文献2に記載の発明は犬バベシア原虫の表面抗原タンパク質の一部を使用した抗体検出のため、その一部の領域以外の領域に対する抗体を検出することはできない。このため、検出結果として、偽陰性が出てしまう。
 上記の事情により、バベシア原虫の表面タンパク質に対する抗体を高精度に検出する方法の開発が望まれる。
When infected with Babesia protozoa, various kinds of antibodies are produced in the body, and thus the presence or absence of infection can be determined by detecting the antibodies. Since the invention described in Patent Document 2 uses a part of the surface antigen protein of canine Babesia protozoa to detect an antibody, it cannot detect an antibody to a region other than that part of the region. For this reason, a false negative will appear as the detection result.
Under the above circumstances, it is desired to develop a method for detecting an antibody against the surface protein of Babesia parasite with high accuracy.
 本発明者は、上記課題を解決するために鋭意検討を行った結果、バベシア原虫の全長の表面抗原タンパク質のうち、N末端シグナルペプチド、及び膜貫通領域からC末端までの領域を除いたタンパク質を合成することに成功した。そして、当該タンパク質がバベシア原虫表面抗原タンパク質に対する抗体の高精度検出、ひいてはバベシア症の診断に使用し得ることを見出し、本発明を完成するに至った。 The present inventors have conducted extensive studies in order to solve the above-mentioned problems, and as a result, among the full-length surface antigen proteins of Babesia protozoa, the N-terminal signal peptide and the protein excluding the region from the transmembrane region to the C-terminus have been identified. I succeeded in synthesizing. Then, they have found that the protein can be used for highly accurate detection of an antibody against the Babesia parasite surface antigen protein, and thus for the diagnosis of Babesiosis, and completed the present invention.
 すなわち、本発明は以下の通りである。
[1]バベシア原虫の全長表面抗原タンパク質のアミノ酸配列のうちN末端シグナルペプチドのアミノ酸配列及び膜貫通領域からC末端までの領域のアミノ酸配列が除去されたタンパク質。
[2]以下の(a)、(b)又は(c)のタンパク質。
 (a)配列番号2n(nは1~4の整数を表す。)で示されるいずれかのアミノ酸配列からなるタンパク質
 (b)配列番号2n(nは1~4の整数を表す。)で示されるいずれかのアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、バベシア原虫に対する抗体と反応するタンパク質
 (c)配列番号2n(nは1~4の整数を表す。)で示されるいずれかのアミノ酸配列と80%以上のホモロジーを有するアミノ酸配列からなり、かつバベシア原虫に対する抗体と反応するタンパク質
[3](1)又は(2)に記載のタンパク質をコードするポリヌクレオチド。
[4]以下の(d)、(e)又は(f)のポリヌクレオチド。
 (d)配列番号2n−1(nは1~4の整数を表す。)で示されるいずれかの塩基配列からなるポリヌクレオチド
 (e)配列番号2n−1(nは1~4の整数を表す。)で示されるいずれかの塩基配列に相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつバベシア原虫に対する抗体と反応するタンパク質をコードするポリヌクレオチド
 (f)配列番号2n−1(nは1~4の整数を表す。)で示されるいずれかの塩基配列からなるポリヌクレオチドと80%以上のホモロジーを有する塩基配列からなり、かつバベシア原虫に対する抗体と反応するタンパク質をコードするポリヌクレオチド
[5](3)又は(4)に記載のポリヌクレオチドを含有するベクター。
[6]ウイルスベクターである、(5)に記載のベクター。
[7](3)若しくは(4)に記載のポリヌクレオチド、又は(5)若しくは(6)に記載のベクターを含むカイコ宿主。
[8](7)に記載のカイコ宿主を培養又は飼育し、培養又は飼育後のカイコ宿主から、(1)又は(2)に記載のタンパク質を回収する工程を含む、当該タンパク質の製造方法。
[9] (8)に記載の方法によって製造されたタンパク質。
[10](1)、(2)又は(9)に記載のタンパク質を含む、バベシア原虫に対する抗体の検出用試薬。
[11] (1)、(2)又は(9)に記載のタンパク質を含む、バベシア症の診断用試薬。
[12] イムノクロマトグラフィーに用いるための(10)又は(11)に記載の試薬。
[13] 被験動物から採取された試料と、(1)、(2)若しくは(9)に記載のタンパク質又は(10)若しくは(11)に記載の試薬とを反応させることを特徴とする、バベシア原虫に対する抗体の検出方法。
[14] (13)に記載の方法により検出された検出結果を指標とする、バベシア症の診断方法。
[15] (14)に記載の方法によりバベシア症の診断がされた被験動物に、バベシア症治療薬を投与することを特徴とする、バベシア症の治療方法。
[16] (1)、(2)又は(9)に記載のタンパク質を含む、バベシア症の治療又は予防用ワクチン。
[17] (1)、(2)又は(9)に記載のタンパク質を含む、バベシア原虫に対する抗体の検出用キット。
[18] (1)、(2)又は(9)に記載のタンパク質を含む、バベシア症の診断用キット。
[19] イムノクロマトグラフィーに用いるための(17)又は(18)に記載のキット。
[20] バベシア症の検出又は診断のための、バベシア原虫の全長表面抗原タンパク質のアミノ酸配列のうちN末端シグナルペプチドのアミノ酸配列及び膜貫通領域からC末端までの領域のアミノ酸配列が除去されたタンパク質。
[21] バベシア症の検出又は診断のための、以下の(a)、(b)又は(c)のタンパク質。
 (a)配列番号2n(nは1~4の整数を表す。)で示されるいずれかのアミノ酸配列からなるタンパク質
 (b)配列番号2n(nは1~4の整数を表す。)で示されるいずれかのアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、バベシア原虫に対する抗体と反応するタンパク質
 (c)配列番号2n(nは1~4の整数を表す。)で示されるいずれかのアミノ酸配列と80%以上のホモロジーを示すアミノ酸配列からなり、かつバベシア原虫に対する抗体と反応するタンパク質
That is, the present invention is as follows.
[1] A protein in which the amino acid sequence of the N-terminal signal peptide and the amino acid sequence of the region from the transmembrane region to the C-terminal have been removed from the amino acid sequence of the full-length surface antigen protein of Babesia parasite.
[2] The following protein (a), (b) or (c).
(A) a protein consisting of any amino acid sequence represented by SEQ ID NO: 2n (n represents an integer of 1 to 4) (b) represented by SEQ ID NO: 2n (n represents an integer of 1 to 4) A protein consisting of an amino acid sequence in which one or several amino acids have been deleted, substituted or added in any amino acid sequence, and which reacts with an antibody against Babesia parasite (c) SEQ ID NO: 2n (n is an integer of 1 to 4) Which has a homology of 80% or more with any of the amino acid sequences represented by the formula (1) and which reacts with an antibody against Babesia protozoa [3] (1) or (2) A polynucleotide.
[4] The polynucleotide of (d), (e) or (f) below.
(D) Polynucleotide consisting of any base sequence represented by SEQ ID NO: 2n-1 (n represents an integer of 1 to 4) (e) SEQ ID NO: 2n-1 (n represents an integer of 1 to 4) (F) SEQ ID NO: which is a protein which hybridizes with a polynucleotide consisting of a nucleotide sequence complementary to any of the nucleotide sequences shown in (1) to (3) under stringent conditions and which reacts with an antibody against Babesia parasite (f). 2n-1 (n represents an integer of 1 to 4) and a protein comprising a nucleotide sequence having a homology of 80% or more with a polynucleotide comprising any of the nucleotide sequences represented by 2n-1 and reacting with an antibody against a Babesia parasite. A vector containing the polynucleotide described in [5] (3) or (4), which encodes the polynucleotide.
[6] The vector according to (5), which is a viral vector.
[7] A silkworm host containing the polynucleotide according to (3) or (4) or the vector according to (5) or (6).
[8] A method for producing the protein, comprising the step of culturing or breeding the silkworm host according to (7) and recovering the protein according to (1) or (2) from the silkworm host after culturing or breeding.
[9] A protein produced by the method according to (8).
[10] A reagent for detecting an antibody against Babesia parasite, which comprises the protein according to (1), (2) or (9).
[11] A reagent for diagnosing babesiosis containing the protein according to (1), (2) or (9).
[12] The reagent according to (10) or (11) for use in immunochromatography.
[13] Babesia, which comprises reacting a sample collected from a test animal with the protein described in (1), (2) or (9) or the reagent described in (10) or (11). Method for detecting antibody to protozoa.
[14] A method for diagnosing babesiosis using the detection result detected by the method described in (13) as an index.
[15] A method for treating babesiosis, which comprises administering a therapeutic drug for babesiosis to a test animal in which babesiosis is diagnosed by the method according to (14).
[16] A vaccine for treating or preventing babesiosis, which comprises the protein according to (1), (2) or (9).
[17] A kit for detecting an antibody against Babesia parasite, which comprises the protein according to (1), (2), or (9).
[18] A diagnostic kit for babesiosis containing the protein according to (1), (2) or (9).
[19] The kit according to (17) or (18) for use in immunochromatography.
[20] A protein in which the amino acid sequence of the N-terminal signal peptide and the amino acid sequence of the region from the transmembrane region to the C-terminus are removed from the amino acid sequence of the full-length surface antigen protein of Babesia parasite for the detection or diagnosis of Babesiosis ..
[21] The following protein (a), (b) or (c) for detecting or diagnosing babesiosis.
(A) a protein consisting of any amino acid sequence represented by SEQ ID NO: 2n (n represents an integer of 1 to 4) (b) represented by SEQ ID NO: 2n (n represents an integer of 1 to 4) A protein consisting of an amino acid sequence in which one or several amino acids have been deleted, substituted or added in any amino acid sequence, and which reacts with an antibody against Babesia parasite (c) SEQ ID NO: 2n (n is an integer of 1 to 4) A protein having an amino acid sequence showing 80% or more homology with any of the amino acid sequences represented by
 本発明により、バベシア原虫に対する抗体の高精度な検出、及びバベシア症の診断が可能となった。
 本発明においては、イムノクロマト法によるバベシア原虫に対する抗体の検出法を確立したことで、動物病院や家庭でも簡単に、かつ短時間でバベシア原虫の感染の有無を検出でき、また、類似症状(例えばフィラリア症)と区別してバベシア症を診断することができる。
INDUSTRIAL APPLICABILITY According to the present invention, it becomes possible to detect an antibody against Babesia protozoa with high accuracy and to diagnose babesiosis.
In the present invention, by establishing a method for detecting antibodies to Babesia protozoa by immunochromatography, it is possible to easily detect the presence or absence of infection with Babesia protozoa in a veterinary hospital or at home, and in a short period of time, and also a similar symptom (for example, filararia). It is possible to diagnose Babesiosis.
Gateway LR反応を用いたバキュロウイルスを作製するための組換えドナープラスミドの構築図である。FIG. 1 is a construction diagram of a recombinant donor plasmid for producing a baculovirus using the Gateway LR reaction. 組換えPChiタンパク質のカイコでの発現結果を示す図である。It is a figure which shows the expression result in the silkworm of recombinant PChi protein. ベクターpDEST8−30K6G−BgTRAP−dH8STREP−1274−8、及びBgTRAPの精製結果を示す図である。It is a figure which shows the purification result of vector pDEST8-30K6G-BgTRAP-dH8STREP-1274-8 and BgTRAP. ベクターpDEST8−30K6G−dH8STREP−BgTRAP−1381−9、及びBgTRAPの精製結果を示す図である。It is a figure which shows the purification result of vector pDEST8-30K6G-dH8STREP-BgTRAP-1381-9 and BgTRAP. ベクターpDEST8−30K6G−dH8STREP−BgTRAP−1381−9、及びBgTRAPの精製結果を示す図である。It is a figure which shows the purification result of vector pDEST8-30K6G-dH8STREP-BgTRAP-1381-9 and BgTRAP. BgTRAPのSDS−ポリアクリルアミドゲル電気泳動の結果を示す図である。It is a figure which shows the result of SDS-polyacrylamide gel electrophoresis of BgTRAP. 精製されたBgTRAPの定量結果を示す図である。It is a figure which shows the quantitative result of purified BgTRAP. BgTRAPの温度による影響を調べた結果を示す図である。It is a figure which shows the result of having investigated the influence by the temperature of BgTRAP. BgTRAPの全長アミノ酸配列を示す図である。It is a figure which shows the full length amino acid sequence of BgTRAP. 大腸菌でBgTRAPを発現させるためのプラスミドの図である。FIG. 3 is a diagram of a plasmid for expressing BgTRAP in E. coli. 大腸菌による発現産物のSDS−ポリアクリルアミドゲル電気泳動の結果を示す図である。It is a figure which shows the result of SDS-polyacrylamide gel electrophoresis of the expression product by Escherichia coli. ハーフストリップを用いたイムノクロマトグラフィーの結果を示す図である。It is a figure which shows the result of the immuno chromatography using a half strip. フルストリップを用いたイムノクロマトグラフィーの結果を示す図である。It is a figure which shows the result of the immuno chromatography using a full strip.
 本発明は、バベシア原虫の全長の表面抗原タンパク質(天然の表面抗原タンパク質)のアミノ酸配列から、N末端シグナルペプチドのアミノ酸配列及び膜貫通領域からC末端までの領域のアミノ酸配列が人工的に除去されたアミノ酸配列を有する表面抗原タンパク質に関する。本明細書において、バベシア原虫の全長の表面抗原タンパク質のアミノ酸配列のうちN末端シグナルペプチドのアミノ酸配列及び膜貫通領域からC末端までの領域のアミノ酸配列が除去されたタンパク質を、「本発明の表面抗原タンパク質」という。 The present invention artificially removes the amino acid sequence of the N-terminal signal peptide and the amino acid sequence of the region from the transmembrane region to the C-terminus, from the amino acid sequence of the full-length surface antigen protein of Babesia parasite (natural surface antigen protein). Surface antigen proteins having different amino acid sequences. In the present specification, a protein obtained by removing the amino acid sequence of the N-terminal signal peptide and the amino acid sequence of the region from the transmembrane region to the C-terminal in the amino acid sequence of the full-length surface antigen protein of Babesia parasite is referred to as “the surface of the present invention”. It is called an antigen protein.
 本発明の表面抗原タンパク質は、N末端シグナルペプチド及び膜貫通領域からC末端までの領域が除去されているが、バベシア原虫の表面に現れる領域は全て含まれる。バベシア原虫が感染すると、被感染動物においてはそのバベシア原虫表面抗原タンパク質に対する抗体が産生されるが、その抗体は、当該表面抗原タンパク質のうちバベシア原虫の表面に現れるあらゆる領域が抗原となるため、体内には、これらの領域に対する多種類の抗体が存在することになる。従って、表面抗原タンパク質の一部が切断された切断型の抗原タンパク質を抗体検出に用いた場合、体内で産生されたバベシア原虫の表面に現れる領域に対する多種類の抗体を検出することができない(偽陰性が生じる)という問題が生じる。 The surface antigen protein of the present invention has the N-terminal signal peptide and the region from the transmembrane region to the C-terminal removed, but includes all the regions that appear on the surface of Babesia parasite. When a Babesia parasite is infected, an antibody against the Babesia parasite surface antigen protein is produced in the infected animal.However, since the antibody is any region of the surface antigen protein that appears on the surface of the Babesia protozoa, it becomes an antigen in the body. There will be many types of antibodies to these regions. Therefore, when a truncated antigen protein in which a part of the surface antigen protein is cleaved is used for antibody detection, it is not possible to detect many kinds of antibodies against the region produced on the surface of Babesia parasite produced in the body (false Negative) occurs.
 本発明の表面抗原タンパク質は、バベシア原虫の表面に現れる抗原タンパク質全体(全領域)であるため、上記問題を解消することができる。すなわち、被感染動物体内において産生される抗体が、表面抗原タンパク質のバベシア原虫の表面に現れる領域のうちどの領域に対するものであっても、本発明の表面抗原タンパク質を抗原とすることで反応し、検出することができるため、バベシア原虫の感染を高精度に検出することが可能となる。 Since the surface antigen protein of the present invention is the entire antigen protein (entire region) that appears on the surface of Babesia parasite, the above problems can be solved. That is, the antibody produced in the infected animal body reacts by using the surface antigen protein of the present invention as an antigen, regardless of which area is present on the surface of the Babesia parasite of the surface antigen protein, Since it can be detected, it becomes possible to detect the infection of Babesia parasite with high accuracy.
 また、本発明では、カイコを用いたタンパク質発現系により本発明の表面抗原タンパク質を作製している。バベシア原虫の表面抗原タンパク質は、これまで発現させることが困難であり、大腸菌等で作製されたタンパク質は表面抗原タンパク質の一部の領域が含まれない部分断片のタンパク質であった。バベシア原虫の表面に現れる領域がすべて含まれる抗原タンパク質であれば、被感染動物体内において産生される表面抗原タンパク質のバベシア原虫の表面に現れるあらゆる領域に対する抗体と反応することができるため、バベシア症の診断を精度よく行うことができる。
 本発明は、バベシア原虫の表面タンパク質に対する抗体を検出対象として、イムノクロマトグラフィー法により生体試料(検体)中の当該抗体を検出することによりバベシア症を診断する。また、当該検出に使用するキットの開発に成功した。
Further, in the present invention, the surface antigen protein of the present invention is produced by a protein expression system using silkworm. The surface antigen protein of Babesia parasite has heretofore been difficult to express, and the protein produced in Escherichia coli or the like was a partial fragment protein that does not include a partial region of the surface antigen protein. If the antigenic protein contains all the regions appearing on the surface of Babesia protozoa, it can react with the antibody against all the regions appearing on the surface of Babesia protozoa of the surface antigen protein produced in the infected animal body, so that The diagnosis can be performed accurately.
The present invention diagnoses Babesiosis by detecting an antibody against a surface protein of Babesia protozoa in a biological sample (specimen) by an immunochromatography method. Also, the kit used for the detection was successfully developed.
1.本発明の表面抗原タンパク質
 本発明の表面抗原タンパク質の由来となる原虫はバベシア属に属する原虫である。当該原虫が感染する動物は、例えばイヌ、ヒツジ、ウマ、ウシなどが挙げられる。バベシア属に属する原虫のうち、イヌバベシア原虫(Babesia gibsoni(バベシア ギブソニ))の全長表面抗原タンパク質のアミノ酸配列を配列番号10に示し、当該タンパク質をコードするポリヌクレオチド配列を配列番号9に示す。全長表面タンパク質のアミノ酸配列(配列番号10及び図9)において、第1番目のメチオニン(M)から第23番目のグリシン(G)までの領域はN末端シグナル配列であり、第672番目のアラニン(A)から第694番目のバリン(V)までの領域は膜貫通領域である。本発明の表面抗原タンパク質は、このN末端シグナル配列の領域(第1番目~第23番目)のアミノ酸配列、及び膜貫通領域以降C末端までの領域(第672番目~第735番目)のアミノ酸配列を除去した配列を有するタンパク質である。
1. Surface Antigen Protein of the Present Invention The protozoan from which the surface antigen protein of the present invention is derived is a protozoan belonging to the genus Babesia. Examples of animals infected with the protozoa include dogs, sheep, horses, and cows. Among the protozoa belonging to the genus Babesia, the amino acid sequence of the full-length surface antigen protein of the dog Babesia protozoa (Babesia gibbsoni) is shown in SEQ ID NO: 10, and the polynucleotide sequence encoding the protein is shown in SEQ ID NO: 9. In the amino acid sequence of the full-length surface protein (SEQ ID NO: 10 and FIG. 9), the region from the 1st methionine (M) to the 23rd glycine (G) is the N-terminal signal sequence, and the 672nd alanine ( The region from A) to the 694th valine (V) is a transmembrane region. The surface antigen protein of the present invention comprises the amino acid sequence of the region of the N-terminal signal sequence (first to 23rd) and the amino acid sequence of the region from the transmembrane region to the C-terminal (672nd to 735th). Is a protein having a sequence in which is deleted.
 上記と同様にして、各種動物に感染するバベシア原虫の全長タンパク質から、N末端シグナル配列の領域及び膜貫通領域以降C末端までの領域のアミノ酸配列を除去することにより、本発明の表面抗原タンパク質を調製することができる。本発明の表面抗原タンパク質のアミノ酸配列、及び本発明の抗原タンパク質をコードするポリヌクレオチド配列(塩基配列)、並びに全長、シグナル配列領域、及び膜貫通領域からC末端までの塩基配列及びアミノ酸配列を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
In the same manner as described above, the surface antigen protein of the present invention is obtained by removing the amino acid sequence of the N-terminal signal sequence region and the region from the transmembrane region to the C-terminus from the full-length protein of Babesia parasites that infect various animals. It can be prepared. The amino acid sequence of the surface antigen protein of the present invention, and the polynucleotide sequence (base sequence) encoding the antigen protein of the present invention, and the full length, the signal sequence region, and the base sequence and amino acid sequence from the transmembrane region to the C terminus, The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 但し、本発明において、本発明の表面抗原タンパク質の由来は上記バベシア原虫に限定されるものではなく、Babesia canis(イヌバベシア原虫)、Babesia vogeli(イヌバベシア原虫)、Babesia rossi(イヌバベシア原虫)、Babesia divergens(ウシバベシア原虫)由来の表面抗原タンパク質などを使用することも可能である。
 本発明の表面抗原タンパク質は、各種バベシア原虫の全長表面タンパク質のアミノ酸配列において、N末端シグナル配列の領域のアミノ酸配列、及び膜貫通領域以降C末端までの領域のアミノ酸配列(表面抗原タンパク質をコードする遺伝子にあっては、当該領域をコードするヌクレオチド配列)を除去することにより、得ることができる。
However, in the present invention, the origin of the surface antigen protein of the present invention is not limited to the above-mentioned Babesia protozoa, but it is not limited to Babesia canis (protozoan dog Babesia), Babesia vogeli (protozoan dog Babesia), Babesia rossi (protozoan dog Babesia), and Babesia dia (Babesia disia). It is also possible to use a surface antigen protein derived from bovine Babesia protozoa).
The surface antigen protein of the present invention is the amino acid sequence of the region of the N-terminal signal sequence and the amino acid sequence of the region from the transmembrane region to the C-terminal in the amino acid sequence of the full-length surface protein of various Babesia parasites (which encodes a surface antigen protein). In the case of a gene, it can be obtained by removing the nucleotide sequence encoding the region.
 表1において、配列番号1、3、5及び7に示す塩基配列を一般式2n−1(nは1~4の整数を表す。)で表し、配列番号2、4、6及び8に示すアミノ酸配列を一般式2n(nは1~4の整数を表す。)で表すと、本発明の表面抗原タンパク質は、以下の(a)、(b)又は(c)のタンパク質である。 In Table 1, the base sequences shown in SEQ ID NOs: 1, 3, 5 and 7 are represented by the general formula 2n-1 (n represents an integer of 1 to 4), and the amino acids shown in SEQ ID NOs: 2, 4, 6 and 8 are shown. When the sequence is represented by the general formula 2n (n represents an integer of 1 to 4), the surface antigen protein of the present invention is the following protein (a), (b) or (c).
 (a)配列番号2n(nは1~4の整数を表す。)で示されるいずれかのアミノ酸配列からなるタンパク質
 (b)配列番号2n(nは1~4の整数を表す。)で示されるいずれかのアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、バベシア原虫に対する抗体と反応するタンパク質
 (c)配列番号2n(nは1~4の整数を表す。)で示されるいずれかのアミノ酸配列と80%以上のホモロジーを有するアミノ酸配列からなり、かつバベシア原虫に対する抗体と反応するタンパク質
(A) a protein consisting of any amino acid sequence represented by SEQ ID NO: 2n (n represents an integer of 1 to 4) (b) represented by SEQ ID NO: 2n (n represents an integer of 1 to 4) A protein consisting of an amino acid sequence in which one or several amino acids have been deleted, substituted or added in any amino acid sequence, and which reacts with an antibody against Babesia parasite (c) SEQ ID NO: 2n (n is an integer of 1 to 4) A protein consisting of an amino acid sequence having a homology of 80% or more with any of the amino acid sequences shown in (3) and reacting with an antibody against Babesia parasite
 ここで、上記「1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列」としては、例えば、1~15個、1~14個、1~13個、1~12個、1~11個、1~10個のほか、1~9個、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1~2個又は1個のアミノ酸が欠失、置換又は付加されたアミノ酸配列が挙げられ、限定はされない。
 前記欠失、置換又は付加等の変異の導入は、タンパク質を遺伝子工学的に製造する場合には、部位特異的突然変異誘発法を利用した変異導入用キット、例えば、GeneTailorTM Site−Directed Mutagenesis System(インビトロジェン社)、TaKaRa Site−Directed Mutagenesis System(Mutan−K、Mutan−Super Express Km等:タカラバイオ社製)等を用いて行うことができる。
Here, the above-mentioned “amino acid sequence in which one or several amino acids are deleted, substituted or added” is, for example, 1 to 15, 1 to 14, 1 to 13, 1 to 12, 1 to 11 pieces, 1-10 pieces, 1-9 pieces, 1-8 pieces, 1-7 pieces, 1-6 pieces, 1-5 pieces, 1-4 pieces, 1-3 pieces, 1-2 pieces or An amino acid sequence in which one amino acid is deleted, substituted or added is included, but not limited to.
In the case of introducing a mutation such as the deletion, substitution or addition, in the case of producing a protein by genetic engineering, a mutation introduction kit utilizing a site-directed mutagenesis method, for example, GeneTailor Site-Directed Mutagenesis System is used. (Invitrogen), TaKaRa Site-Directed Mutagenesis System (Mutan-K, Mutan-Super Express Km, etc.: manufactured by Takara Bio Inc.) and the like.
 本発明の表面抗原タンパク質には、配列番号2n(nは1~4の整数を表す。)で示されるアミノ酸配列のほか、配列番号2n(nは1~4の整数を表す。)で示されるアミノ酸配列と80%以上、90%以上、95%以上、96%以上、97%以上、98%以上又は99%以上の相同性(同一性)を有するアミノ酸配列を有し、かつバベシア原虫に対する抗体と反応するタンパク質も含まれる。相同性は、インターネットを利用したホモロジー検索サイト、例えばNational Center for Biotechnology Information(NCBI)において、BLASTを用いた検索を行うことができる(例えば以下のURLを参照のこと:https://blast.ncbi.nlm.nih.gov/Blast.cgi)。 The surface antigen protein of the present invention is represented by SEQ ID NO: 2n (n represents an integer of 1 to 4) in addition to the amino acid sequence represented by SEQ ID NO: 2n (n represents an integer of 1 to 4). An antibody having an amino acid sequence having 80% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more or 99% or more homology (identity) with the amino acid sequence, and an antibody against Babesia parasite Also included are proteins that react with. The homology can be searched by using BLAST on a homology search site using the Internet, for example, National Center for Biotechnology Information (NCBI) (for example, refer to the following URL: https: //blast.ncbi. .Nlm.nih.gov/Blast.cgi).
 「配列番号2n(nは1~4の整数を表す。)で示されるアミノ酸配列と80%以上、90%以上、95%以上、96%以上、97%以上、98%以上又は99%以上の相同性(同一性)を有するアミノ酸配列を有し、かつバベシア原虫に対する抗体と反応する」とは、配列番号2n(nは1~4の整数を表す。)に示されるアミノ酸配列を有する本発明の表面抗原タンパク質が、バベシア原虫に対する抗体に結合する結合量又は結合活性と比較して、実質的に同等の活性、すなわち50%以上、60%以上、70%以上、80%以上、90%以上又は95%以上の結合量又は結合活性を有するタンパク質である。 “80% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more or 99% or more of the amino acid sequence represented by SEQ ID NO: 2n (n represents an integer of 1 to 4) The present invention having an amino acid sequence having homology (identity) and reacting with an antibody against Babesia protozoa" has an amino acid sequence represented by SEQ ID NO: 2n (n represents an integer of 1 to 4). Surface antigen protein, compared to the binding amount or binding activity of binding to an antibody against Babesia parasite, that is, substantially equivalent activity, that is, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more Alternatively, it is a protein having a binding amount or binding activity of 95% or more.
2.本発明の表面抗原タンパク質をコードするポリヌクレオチド
 本発明の表面抗原タンパク質をコードするポリヌクレオチドとしては、以下の(d)、(e)又は(f)のポリヌクレオチドが挙げられる。
(d)配列番号2n−1(nは1~4の整数を表す。)で示されるいずれかの塩基配列からなるポリヌクレオチド
(e)配列番号2n−1(nは1~4の整数を表す。)で示されるいずれかの塩基配列に相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつバベシア原虫に対する抗体と反応するタンパク質をコードするポリヌクレオチド
(f)配列番号2n−1(nは1~4の整数を表す。)で示されるいずれかの塩基配列からなるポリヌクレオチドと80%以上のホモロジーを有する塩基配列からなり、かつバベシア原虫に対する抗体と反応するタンパク質をコードするポリヌクレオチド
2. Polynucleotide encoding surface antigen protein of the present invention Examples of the polynucleotide encoding surface antigen protein of the present invention include the following polynucleotides (d), (e) or (f).
(D) Polynucleotide consisting of any of the base sequences represented by SEQ ID NO: 2n-1 (n represents an integer of 1 to 4) (e) SEQ ID NO: 2n-1 (n represents an integer of 1 to 4) Polynucleotide (f) SEQ ID NO: which encodes a protein which hybridizes under stringent conditions with a polynucleotide consisting of a nucleotide sequence complementary to any of the nucleotide sequences shown in FIG. 2n-1 (n represents an integer of 1 to 4) and a protein comprising a nucleotide sequence having a homology of 80% or more with a polynucleotide comprising any of the nucleotide sequences represented by 2n-1 and reacting with an antibody against a Babesia parasite. Encoding polynucleotide
 ここで、「ポリヌクレオチド」とは、デオキシリボ核酸(DNA)又はリボ核酸(RNA)等の塩基又は塩基対からなる重合体を意味し、DNA、cDNA、ゲノムDNA、化学合成DNA及びRNAを含む。また、天然以外の塩基を必要に応じて含むポリヌクレオチドも包含する。天然以外の塩基としては、例えば、4−アセチルシチジン、5−(カルボキシヒドロキシメチル)ウリジン、2’−0−メチルシチジン、5−カルボキシメチルアミノメチル−2−チオウリジン、5−カルボキシメチルアミノメチルウリジン、ジヒドロウリジン、2’−0−メチルプソイドウリジン、2’−0−メチルグアノシン、イノシン、N6−イソペンテニルアデノシン、1−メチルアデノシン、1−メチルプソイドウリジン、1−メチルグアノシン、1−メチルイノシン、2,2−ジメチルグアノシン、2−メチルアデノシン、2−メチルグアノシン、3−メチルシチジン、5−メチルシチジン、N6−メチルアデノシン、7−メチルグアノシン、5−メチルアミノメチルウリジン、5−メトキシアミノメチル−2−チオウリジン、β−D−マンノシルキュェオシン、5−メトキシカルボニルメチル−2−チオウリジン、5−メトキシカルボニルメチルウリジン、5−メトキシウリジン等が挙げられる。 Here, the “polynucleotide” means a polymer composed of bases or base pairs such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), and includes DNA, cDNA, genomic DNA, chemically synthesized DNA and RNA. It also includes polynucleotides containing non-natural bases as necessary. Examples of non-natural bases include 4-acetylcytidine, 5-(carboxyhydroxymethyl)uridine, 2'-0-methylcytidine, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluridine, Dihydrouridine, 2'-0-methylpseudouridine, 2'-0-methylguanosine, inosine, N6-isopentenyladenosine, 1-methyladenosine, 1-methylpseudouridine, 1-methylguanosine, 1-methylinosine , 2,2-dimethylguanosine, 2-methyladenosine, 2-methylguanosine, 3-methylcytidine, 5-methylcytidine, N6-methyladenosine, 7-methylguanosine, 5-methylaminomethyluridine, 5-methoxyaminomethyl Examples include 2-thiouridine, β-D-mannosylkyueosin, 5-methoxycarbonylmethyl-2-thiouridine, 5-methoxycarbonylmethyluridine, 5-methoxyuridine and the like.
 また本発明の表面抗原タンパク質をコードするポリヌクレオチドは、前記(d)、(e)又は(f)のポリヌクレオチドであってもよいし、あるいは、当該塩基配列の他に、遺伝子発現に必要な公知の塩基配列(転写プロモーター、SD配列、Kozak配列、ターミネーター等)を含むポリヌクレオチドであってもよく、限定はされない。 The polynucleotide encoding the surface antigen protein of the present invention may be the polynucleotide of (d), (e) or (f) above, or may be required for gene expression in addition to the nucleotide sequence. It may be a polynucleotide containing a known base sequence (transcription promoter, SD sequence, Kozak sequence, terminator, etc.) and is not limited.
 ここで、「ストリンジェントな条件」とは、低ストリンジェントな条件、中ストリンジェントな条件及び高ストリンジェントな条件のいずれでもよく、「低ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、32℃の条件である。また、「中ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、42℃の条件である。「高ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、50℃の条件である。これらの条件において、温度を上げるほど高い相同性を有するDNAが効率的に得られることが期待できる。ただし、ハイブリダイゼーションのストリンジェンシーに影響する要素としては温度、ポリヌクレオチドの濃度、ポリヌクレオチドの長さ、イオン強度、時間、塩濃度等の複数の要素が考えられ、当業者であればこれらの要素を適宜選択することで同様のストリンジェンシーを実現することが可能である。 Here, the “stringent conditions” may be any of low stringent conditions, medium stringent conditions and high stringent conditions, and the “low stringent conditions” include, for example, 5×SSC, 5 X Denhardt's solution, 0.5% SDS, 50% formamide, 32°C. The "moderate stringent conditions" are, for example, 5 x SSC, 5 x Denhardt's solution, 0.5% SDS, 50% formamide, and 42°C. The “highly stringent conditions” are, for example, 5×SSC, 5×Denhardt's solution, 0.5% SDS, 50% formamide, and 50° C. Under these conditions, it can be expected that DNA having high homology can be efficiently obtained as the temperature is increased. However, factors that affect the stringency of hybridization include multiple factors such as temperature, concentration of polynucleotide, length of polynucleotide, ionic strength, time, and salt concentration, and those skilled in the art can use these factors. It is possible to realize the same stringency by appropriately selecting.
 「配列番号2n−1(nは1~4の整数を表す。)で示されるいずれかの塩基配列からなるポリヌクレオチドと80%以上のホモロジー(相同性)を有する塩基配列からなり、かつバベシア原虫に対する抗体と反応するタンパク質をコードするポリヌクレオチド」は、配列番号2n−1(nは1~4の整数を表す。)で示される塩基配列からなるポリヌクレオチドと80%以上、90%以上、95%以上、96%以上、97%以上、98%以上又は99%以上の相同性(同一性)を有する塩基配列からなるポリヌクレオチドであって、当該塩基配列によりコードされるタンパク質が、配列番号2n−1(nは1~4の整数を表す。)で示される塩基配列によりコードされるタンパク質がバベシア抗体に結合する結合量又は結合活性と比較して実質的に同等の活性、すなわち50%以上、60%以上、70%以上、80%以上、90%以上又は95%以上の結合量又は結合活性を有するタンパク質をコードするポリヌクレオチドである。 "A nucleotide sequence having a homology (homology) of 80% or more with a polynucleotide comprising any of the nucleotide sequences represented by SEQ ID NO: 2n-1 (n is an integer of 1 to 4), and a Babesia parasite "A polynucleotide encoding a protein that reacts with an antibody against" is a polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 2n-1 (n represents an integer of 1 to 4), and 80% or more, 90% or more, 95 %, 96% or more, 97% or more, 98% or more or 99% or more of a nucleotide sequence having a homology (identity), wherein the protein encoded by the nucleotide sequence is SEQ ID NO: 2n. -1 (n represents an integer of 1 to 4), the protein encoded by the nucleotide sequence represented by -1 (n is an integer of 1 to 4) is substantially equivalent to the binding amount or binding activity of binding to the Babesia antibody, ie, 50% or more A polynucleotide encoding a protein having a binding amount or binding activity of 60% or more, 70% or more, 80% or more, 90% or more, or 95% or more.
3.ベクター
 本発明のベクターを作製する方法は特に限定されるものではないが、例えば、本発明の表面抗原タンパク質をコードするヌクレオチドの開始コドンの5’側と終止コドンの3’側にそれぞれ異なる制限酵素配列を有するプライマーを設定し、本コード領域を遺伝子増幅する。増幅した領域を制限酵素で切り出してプラスミドベクター又はウイルスベクターに組み込むことで、本発明のベクターを得ることができる。
3. Vector The method for producing the vector of the present invention is not particularly limited, but, for example, different restriction enzymes on the 5′ side of the start codon and the 3′ side of the stop codon of the nucleotide encoding the surface antigen protein of the present invention, respectively. A primer having a sequence is set, and this coding region is gene-amplified. The vector of the present invention can be obtained by cutting out the amplified region with a restriction enzyme and incorporating it into a plasmid vector or a viral vector.
 具体的には、PCR産物からクローニングされた本発明の表面抗原タンパク質をコードするポリヌクレオチドを含有するプラスミドを、制限酵素を用いて切断する。切断後のポリヌクレオチド断片をアガロースゲル電気泳動等により精製し、このポリヌクレオチド断片を、発現用ベクターに公知の方法を用いて組み込むことで本発明のベクターを得ることができる(Sambrook J.et al.,Molecular Cloning,A Laboratory Manual(4th edition)(Cold Spring Harbor Laboratory Press(2012))。 Specifically, a plasmid containing a polynucleotide encoding the surface antigen protein of the present invention cloned from a PCR product is cleaved with a restriction enzyme. The vector fragment of the present invention can be obtained by purifying the cleaved polynucleotide fragment by agarose gel electrophoresis or the like and incorporating this polynucleotide fragment into an expression vector using a known method (Sambrook J. et al. , Molecular Cloning, A Laboratory Manual (4th edition) (Cold Spring Harbor Laboratory Press (2012)).
4.カイコ宿主
 本発明において、本発明の表面抗原タンパク質を生産するためのカイコ宿主として、カイコの個体、細胞又は組織を用いることができる。本発明の一つの態様において、カイコ宿主は、カイコガ(Bombyx mori)の個体、細胞又は組織を指し、個体としては、幼虫個体のみならず、卵、蛹、繭又は成虫である個体が挙げられる。また本発明において、カイコ宿主は、細胞、細胞塊又は組織でもよく、細胞は単一でも複数でもよい。
 系統は、その特性(卵、幼虫、蛹、繭、成虫の形質、遺伝子型)及び起源の全部又は一部によって他の系統の集合と区別することができ、かつ、その特性の全部を保持しつつ繁殖させることができる一のカイコの集合をいう。
4. Silkworm host In the present invention, a silkworm individual, cell or tissue can be used as a silkworm host for producing the surface antigen protein of the present invention. In one embodiment of the present invention, the silkworm host refers to an individual, cell or tissue of Bombyx mori, and the individual includes not only larvae but also eggs, pupae, cocoons or adults. In the present invention, the silkworm host may be a cell, a cell mass or a tissue, and the cell may be single or plural.
Strains can be distinguished from other strain sets by all or part of their traits (eggs, larvae, pupae, cocoons, adult traits, genotypes) and origins, and retain all of their traits. A single set of silkworms that can be propagated while being reproduced.
 なお、本明細書における系統分類は、遺伝資源開発研究センターの方法に従っている。系統はまずその主要目的形質によってアルファベットで分類され、それに2位数を附して、また同一起源の分枝系は3位数を附して、系統を表す。
 本発明において、カイコ宿主に本発明のベクターを導入するには、インジェクション法又はバキュロウイルス発現系など公知方法を利用することができる(Sambrook J.et al.,Molecular Cloning,A Laboratory Manual(4th edition)(Cold Spring Harbor Laboratory Press(2012))。例えばバキュロウイルス発現系を利用する場合には、ウイルスに対して感受性のカイコ宿主を用いることができる。
The systematic classification in this specification follows the method of the Genetic Resource Development Research Center. Strains are first classified alphabetically by their main purpose trait, with a 2-position attached to them, and a branch of the same origin with a 3-position to represent a strain.
In the present invention, in order to introduce the vector of the present invention into the silkworm host, a known method such as an injection method or a baculovirus expression system can be used (Sambrook J. et al., Molecular Cloning, A Laboratory Manual (4th edition). (Cold Spring Harbor Laboratory Press (2012)) For example, when a baculovirus expression system is used, a silkworm host sensitive to the virus can be used.
 カイコ宿主がウイルスに対して「感受性」であるとは、そのウイルスに感染することができ、かつ増殖させることができる能力をいう。感受性であるか否かは、例えば、増殖を容易に評価可能とするようなマーカータンパク質(例えば、ルシフェラーゼ、GFP)の遺伝子を組み込んだ組換えウイルスを作製し、対象とするカイコに感染させ、適切な時期にカイコ中の当該マーカータンパク質量を評価することにより、判断することができる。 “The silkworm host is “susceptible” to a virus refers to the ability to infect the virus and to propagate it. Whether or not it is susceptible is determined, for example, by preparing a recombinant virus into which a gene for a marker protein (eg, luciferase, GFP) that allows easy evaluation of growth is introduced, and infecting a target silkworm, It can be judged by evaluating the amount of the marker protein in the silkworm at various times.
 本発明に用いられるカイコ宿主は、例えばBmNPV感受性またはAcNPV感受性である。本発明の好ましい態様の一つにおいては、カイコとして、BmNPV感受性、より好ましくはBmNPV高感受性の系統を用いる。好ましく用いることのできるカイコ系統の例には、a49、c11、c51、c60、d17、e15、f10、f38、g05、g30、g32、131、1311、1312、n41、r02、r21、t70、w601及びfylu、並びにc11、d17、f10又はf38系統の生物学的特性と同一の生物学的特性を有するそれらの変異体が含まれる。これらの系統の飼育及び繁殖は、当業者に慣用の条件で行うことができる。生物学的特性については、特開2007−159406号公報の記載を参照することができる。 The silkworm host used in the present invention is, for example, BmNPV-sensitive or AcNPV-sensitive. In one of the preferable embodiments of the present invention, a BmNPV-sensitive strain, more preferably a BmNPV-sensitive strain, is used as the silkworm. Examples of silkworm strains that can be preferably used include a49, c11, c51, c60, d17, e15, f10, f38, g05, g30, g32, 131, 1311, 1312, n41, r02, r21, t70, w601 and fylu, as well as variants thereof having the same biological properties as those of the c11, d17, f10 or f38 lines. The breeding and breeding of these strains can be performed under the conditions commonly used by those skilled in the art. Regarding the biological characteristics, the description in JP2007-159406A can be referred to.
 カイコ系統は、ナショナルバイオリソースプロジェクト(NBRP)の中核機関である九州大学・遺伝資源開発研究センター(九州大学大学院農学研究院;〒819−0395 福岡市西区元岡744;(Tel)092−802−4820;(Fax)092−802−4820)として、出願人より、特許法施行規則の第27条の3の規定に準じて、又はブタペスト条約に基づく規則の第11規則に準じて、分譲可能である
(http://www.nbrp.jp/report/reportProject.jsp;jsessionid=BE73451C6E54680014762FD194C0F721?project=silkworm参照)。
The silkworm strain is a core institution of the National BioResource Project (NBRP), Kyushu University Genetic Resource Development and Research Center (Kyushu University Graduate School of Agriculture Research; Kyushu University Graduate School of Agricultural Research; (Fax) 092-802-4820) can be sold by the applicant in accordance with the provisions of Article 27-3 of the Patent Law Enforcement Regulations or in accordance with the 11th Regulation of the Budapest Treaty Regulations ( http://www.nbrp.jp/report/reportProject.jsp; jsessionid=BE73451C6E54680014762FDD194C0F721?project=silkworm).
5.タンパク質の生産方法
 本発明の表面抗原タンパク質を生産するためには、当該タンパク質をコードするポリヌクレオチド、又は当該ポリヌクレオチドを含むベクターをカイコ宿主に接種又は感染させて、カイコ宿主内(例えばカイコの個体内、細胞内、組織内等)で発現させる工程を含む。
 本発明の表面抗原タンパク質をコードするポリヌクレオチドは、カイコ宿主に、直接接種する、プラスミドベクターとして接種する、又はウイルスベクターとして接種することができる。
5. Method for Producing Protein In order to produce the surface antigen protein of the present invention, a polynucleotide encoding the protein or a vector containing the polynucleotide is inoculated into or infected with a silkworm host, and the silkworm host (for example, silkworm individual In vivo, in cells, in tissues, etc.).
The polynucleotide encoding the surface antigen protein of the present invention can be directly inoculated into a silkworm host, inoculated as a plasmid vector, or inoculated as a viral vector.
 ベクターとしてウイルスを用いる場合は、ポリヌクレオチドをウイルスに組み込んだ組換えウイルスを作製し、この組換えウイルスをカイコ宿主に感染させる。組換えウイルスベクターを作製する工程には、従来技術を用いることができる(Sambrook J.et al.,Molecular Cloning,A Laboratory Manual(4th edition)(Cold Spring Harbor Laboratory Press(2012))。バキュウロウイルスのゲノムは、通常130kbpの環状DNAであるため、直接目的遺伝子を導入することができない。このため、目的遺伝子を一旦トランスファープラスミドに組込み、相同組換え又は転移反応によって導入することとなるが、この点に関しては、種々の技術が開発されている。本発明においては、市販の構築システム(例えばBac−to−Bacシステム)を利用してもよい。 When using a virus as a vector, prepare a recombinant virus that incorporates the polynucleotide into the virus and infect the silkworm host with this recombinant virus. Conventional techniques can be used in the step of producing a recombinant viral vector (Sambrook J. et al., Molecular Cloning, A Laboratory Manual (4th edition) (Cold Spring Harbor Laboratory virus (2012)). Since its genome is usually a circular DNA of 130 kbp, it is impossible to directly introduce the target gene.Therefore, the target gene is once integrated into a transfer plasmid and introduced by homologous recombination or transfer reaction. Regarding the point, various techniques have been developed, and a commercially available construction system (for example, Bac-to-Bac system) may be used in the present invention.
 例えば、組換えウイルスベクターは、本発明の表面抗原タンパク質をコードするポリヌクレオチドをBmNPV又はAcNPVに組み込むことにより得られるが、BmNPV又はAcNPVのみならずこれらの変異体、例えば、病症発現を抑制するために特定の遺伝子を欠損させたもの、細胞にエントリーしやすくするために特定の遺伝子を過剰発現させたもの等を、本発明において用いることができる。
 組換えウイルスは、必要に応じ、培養細胞を用いて増殖させてから、次の感染工程に用いることができる。また、得られたウイルスを、懸濁液、凍結乾燥粉末等の形態としてもよい。
For example, a recombinant viral vector can be obtained by incorporating a polynucleotide encoding the surface antigen protein of the present invention into BmNPV or AcNPV, but not only BmNPV or AcNPV, but also mutants thereof, for example, for suppressing disease expression. Those lacking a specific gene, those overexpressing a specific gene for easy entry into cells, and the like can be used in the present invention.
The recombinant virus can be used in the subsequent infection step after being propagated using cultured cells, if necessary. Further, the obtained virus may be in the form of suspension, freeze-dried powder or the like.
 本発明の表面抗原タンパク質をコードするポリヌクレオチドを導入した組換えベクター(ウイルスベクター、プラスミドベクター等)のカイコ個体への接種又は感染は、例えば、概ね5齢の幼虫に対して行うことができる。接種量、感染経路等は当業者であれば適宜設定することができる。例えば、1×10pfu/mLに調製した組換えウイルス液10μLを注射針を用いて胸部皮下に注射することができる。飼料に混合して経口接種する方法も可能である(特許第3030430号等参照)。 Inoculation or infection of a silkworm individual with a recombinant vector (virus vector, plasmid vector, etc.) into which a polynucleotide encoding the surface antigen protein of the present invention has been introduced can be carried out, for example, to approximately 5th instar larvae. Those skilled in the art can appropriately set the amount of inoculation, the route of infection, and the like. For example, 10 μL of recombinant virus solution prepared to 1×10 6 pfu/mL can be subcutaneously injected into the chest using an injection needle. A method in which it is mixed with feed and orally inoculated is also possible (see Japanese Patent No. 3030430).
 カイコ宿主から本発明の表面抗原タンパク質を回収する時期は、カイコ個体を用いた場合は、カイコ体液中の組換えタンパク質濃度、カイコ一個体当たりの目的タンパク質の絶対量等により、決定することができる。通常、日が経つにつれ幼虫体が大きくなるので、1頭あたりのタンパク質生産の絶対量は増加する。しかし一方で、7日目以降は死亡する個体が出現することがある。回収時のカイコの状態は、外見上はウイルス感染させていない場合とほとんど同じであるが、カイコ系統によっては若干異なることがある。ウイルス感染したカイコは、通常、長期飼育しても通常蛹にならない。 When a silkworm individual is used, the time for collecting the surface antigen protein of the present invention from the silkworm host can be determined by the recombinant protein concentration in the silkworm body fluid, the absolute amount of the target protein per silkworm individual, etc. .. Normally, the absolute amount of protein production per head increases as the larval body grows over time. On the other hand, however, some individuals may die after the 7th day. The state of the silkworms at the time of recovery is almost the same as that when they were not infected with the virus, but they may be slightly different depending on the silkworm strains. Virus-infected silkworms usually do not become pupae, even after long term breeding.
 本発明の表面抗原タンパク質は、カイコ宿主(例えば個体)のすべての組織から回収することができる。回収は、注射針等を使用して個体から直接体液を得る方法、必要に応じ適当な溶液を加えて個体を磨砕する方法、個体を凍結・融解することにより収縮現象を利用して体液を抽出する方法等を利用することができる。分泌系では、分泌された本発明の表面抗原タンパク質を含む体液を回収することもできる。 The surface antigen protein of the present invention can be recovered from all tissues of the silkworm host (eg, individual). Collection is performed by a method of directly obtaining a body fluid from an individual by using an injection needle or the like, a method of grinding an individual by adding an appropriate solution as necessary, and a body fluid utilizing a contraction phenomenon by freezing and thawing the individual. A method of extracting or the like can be used. In the secretory system, the body fluid containing the secreted surface antigen protein of the present invention can also be collected.
 回収した本発明の表面抗原タンパク質を含む液は、必要に応じ、分離、精製、凍結乾燥、結晶化等の工程に供してもよい。
 回収したタンパク質が目的の本発明の表面抗原タンパク質であることは、例えばSDS−ポリアクリルアミドゲル電気泳動(SDS−PAGE)、ウエスタンブロッティング等により確認することができる。
The recovered liquid containing the surface antigen protein of the present invention may be subjected to steps such as separation, purification, lyophilization, and crystallization, if necessary.
Whether the recovered protein is the target surface antigen protein of the present invention can be confirmed by, for example, SDS-polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting and the like.
6.ワクチン
 本発明においては、免疫学的に有効量の本発明の表面抗原タンパク質、又は本発明の表面抗原タンパク質を生体内で発現するように当該タンパク質をコードするポリヌクレオチドを組込んだベクターを用いて、バベシア症(バベシア原虫に対する感染)の治療又は予防用ワクチン製剤を調製することができる。
 ワクチンには、薬学的に許容可能なキャリアを含んでもよい。
 「免疫学的に有効量」は、単回投与又は連続投与の一部として投与される量がバベシア症の治療又は予防に有効である量を意味するが、この量は、個体の健康状態、ワクチン処方等に応じて調整し得る。
6. Vaccine In the present invention, an immunologically effective amount of the surface antigen protein of the present invention, or a vector incorporating a polynucleotide encoding the surface antigen protein of the present invention so as to express the protein in vivo is used. A vaccine preparation for treating or preventing Babesiosis (infection against Babesia parasite) can be prepared.
The vaccine may include a pharmaceutically acceptable carrier.
An "immunologically effective amount" means an amount that is effective in the treatment or prevention of babesiosis, as administered in a single dose or as part of a continuous dose, which amount is the health condition of the individual, It can be adjusted according to the vaccine prescription and the like.
 薬学的に許容可能なキャリアとしては、例えば水酸化アルミニウム、リン酸アルミニウムなどのアルミニウム化合物、フロイントアジュバント、ムラミルペプチドなどが用いられる。
 ワクチン製剤には、さらに、リン酸ナトリウム塩、リン酸カリウム塩、水酸化ナトリウム、塩酸等のpH調節剤、硫酸カナマイシン、エリスロマイシン等の抗生物質、乳糖、グルタミン酸カリウム、D−ソルビトール、アミノ酢酸等の安定剤、塩化ナトリウム等の等張化剤などを加えることが可能である。
Examples of the pharmaceutically acceptable carrier include aluminum compounds such as aluminum hydroxide and aluminum phosphate, Freund's adjuvant, muramyl peptide and the like.
Vaccine preparations further include sodium phosphate, potassium phosphate, sodium hydroxide, pH adjusting agents such as hydrochloric acid, kanamycin sulfate, antibiotics such as erythromycin, lactose, potassium glutamate, D-sorbitol and aminoacetic acid. It is possible to add stabilizers, tonicity agents such as sodium chloride and the like.
7.バベシア原虫に対する抗体の検出、バベシア症の診断
 バベシア原虫に感染した個体は、本発明の表面抗原タンパク質に特異的な抗体を産生することから、当該抗体の検出を行うことにより、バベシア原虫感染動物を、高い信頼性をもって同定することが可能である。
7. Detection of antibodies to Babesia protozoa, diagnosis of babesiosis Individuals infected with Babesia protozoa produce antibodies specific to the surface antigen protein of the present invention, and by detecting the antibodies, Babesia protozoa-infected animals can be detected. It is possible to identify with high reliability.
 検出の対象となる抗バベシア原虫抗体、又は診断の対象となるバベシア症若しくはバベシア感染において、バベシア原虫は、例えばBabesia gibsoni(バベシア ギブソニ)、Babesia canis(バベシア キャニス)、Babesia vogeli(バベシア ヴォゲリ)、Babesia rossi(バベシア ロッシ)、Babesia divergens(バベシア ダイバージェンス)、Babesia bovis(バベシア ボビス)、Babesia motasi(バベシア モタシ)、Babesia equi(バベシア エクイ)等が挙げられる。また、検出の対象となる抗体は、バベシア原虫の生活環のシゾゴニー期のうちメロゾイト期のものである。メロゾイト期では虫体が検出できない場合もあるが、本発明の表面抗原タンパク質を用いることで、当該タンパク質に対する抗体を検出することができる。 In the anti-Babesia protozoan antibody to be detected, or the Babesiosis or Babesia infection to be diagnosed, the Babesia protozoa is, for example, Babesia gibbsoni (Babesia gibbsoni), Babesia canis (Babesia canis), Babesia vogelige (Babesia variae), rossi (Babesia Rossi), Babesia divergens (Babesia divergence), Babesia bovis (Babesia bovis), Babesia motasi (Babesia motashi), and Babesia equii (Babesia equi). Further, the antibody to be detected is of the merozoite stage in the Schizogony stage of the life cycle of Babesia parasite. In some cases, the body cannot be detected in the merozoite stage, but by using the surface antigen protein of the present invention, an antibody against the protein can be detected.
 抗バベシア原虫抗体の検出方法は、被検個体から得られた生体試料(例えば血液、血清、血漿)と上記精製された本発明の表面抗原タンパク質とを接触させ、抗原抗体反応を指標として検出する。抗体の検出は、ELISA法、間接蛍光抗体法(IFA)等の公知の免疫学的試験法によって実施することも可能であるが、イムノクロマトグラフィーにより行うことが簡便である点で有利である。 The method for detecting anti-Babesia protozoa antibody is to contact a biological sample (eg, blood, serum, plasma) obtained from a subject with the purified surface antigen protein of the present invention, and detect the antigen-antibody reaction as an index. .. The antibody can be detected by a known immunological test method such as an ELISA method and an indirect fluorescent antibody method (IFA), but it is advantageous in that immunochromatography is simple and convenient.
 イムノクロマトグラフィーは、抗原抗体反応を利用した免疫法による測定法である。判定部には、抗原である本発明の表面抗原タンパク質が塗布されている。検体(生体試料)に含まれるバベシア原虫に対する抗体が、判定部の本発明の表面抗原タンパク質と結合すると、試薬の発色成分によって可視化される。
 発色させる方法は特に限定されるものではないが、例えば金コロイド法(着色粒子として金コロイドを結合させたもの)が挙げられる。
 判定部における発色により、バベシア原虫に対する抗体が検出される。そして、判定部が発色した場合は、陽性、すなわちバベシア症である、又は犬バベシア原虫に感染していると診断することができる。
Immunochromatography is an immunoassay measurement method that utilizes an antigen-antibody reaction. The surface antigen protein of the present invention, which is an antigen, is applied to the determination part. When the antibody against the Babesia parasite contained in the specimen (biological sample) binds to the surface antigen protein of the present invention in the determination part, it is visualized by the coloring component of the reagent.
The method for developing the color is not particularly limited, and examples thereof include a gold colloid method (a method in which gold colloid is bonded as colored particles).
An antibody against the Babesia parasite is detected by the color development in the determination part. Then, when the determination part develops color, it can be diagnosed as being positive, that is, having Babesiosis or being infected with the dog Babesia protozoa.
 本発明において、「診断」には、バベシア症である、又はバベシア原虫に感染しているとの確定診断のほか、バベシア症である可能性若しくはリスクがある、又はバベシア原虫に感染している可能性若しくはリスクがあるとの予備的診断も含まれる。 In the present invention, the "diagnosis", in addition to a definitive diagnosis that it is Babesiosis, or infected with Babesia protozoa, there is a possibility or risk of Babesiosis, or it can be infected with Babesia protozoa Includes preliminary diagnosis of sex or risk.
8.キット
 本発明の表面抗原タンパク質は、バベシア原虫に対する抗体の検出用又はバベシア症の診断用試薬として使用される。また本発明は、当該タンパク質を含むキットを提供する。
 本発明のキットとしては、例えばイムノクロマトグラフィー用キットが挙げられる。また、本発明のキットには、上記本発明の表面抗原タンパク質のほか、希釈液、発色剤などが含まれるが、これらに限定されるものではない。
 本発明のキットにおいて、イムノクロマトグラフィー用試験片は、例えば、サンプルパッド、塗布メンブレン、コンジュゲートパッド、サンプル吸収パッドなどから構成される。
8. Kit The surface antigen protein of the present invention is used as a reagent for detecting an antibody against Babesia protozoa or as a diagnostic reagent for Babesia disease. The present invention also provides a kit containing the protein.
Examples of the kit of the present invention include a kit for immunochromatography. Further, the kit of the present invention contains, in addition to the above-mentioned surface antigen protein of the present invention, a diluent, a color former, etc., but is not limited thereto.
In the kit of the present invention, the immunochromatographic test strip is composed of, for example, a sample pad, a coating membrane, a conjugate pad, a sample absorption pad, and the like.
 本発明の一つの態様において、サンプルパッドは、例えば検体(被検物質を含む)を滴下する箇所の部材である。サンプルパッドの特性により滴下サンプルの展開の流量が調節される。また、コンジュゲートパッドは、サンプル液中に含まれる標的抗体とその抗原とを免疫化学反応により結合させるための部材である。コンジュゲートパッドには適当な検出手段で標識された抗原(標識された本発明の表面抗原タンパク質)が担持されている。塗布メンブレンは、標的抗体を検出するための部材であり、標的抗体に対する標識された本発明の表面抗原タンパク質が固定された判定部、及び本発明の表面抗原タンパク質に対する抗体が固定されたコントロール部が設けられている。サンプル吸収パッドは、未反応の標識抗原や展開溶媒などを吸収するための部材である。 In one aspect of the present invention, the sample pad is, for example, a member where a sample (including a test substance) is dropped. The characteristics of the sample pad control the flow rate of the spread of the dropped sample. Further, the conjugate pad is a member for binding the target antibody contained in the sample solution and its antigen by an immunochemical reaction. The conjugate pad carries an antigen (labeled surface antigen protein of the present invention) labeled by an appropriate detection means. The coating membrane is a member for detecting a target antibody, and includes a determination unit in which the labeled surface antigen protein of the present invention for the target antibody is fixed, and a control unit in which the antibody for the surface antigen protein of the present invention is fixed. It is provided. The sample absorption pad is a member for absorbing unreacted labeled antigen, developing solvent and the like.
 検出のための標識物質としては、例えば、着色粒子、金属コロイド(金コロイド、白金コロイド等)、着色ラテックス、色素、蛍光色素が挙げられ、いずれかを単独で、又は2種以上を適宜組み合わせて使用することができる。本発明においては、例えば金コロイド、白金コロイド等が挙げられる。
 本発明キットには、上記の他に、例えば、イムノクロマト試験片を設置するために用いられるイムノクロマト試験片用容器(ハウジングケース)、使用説明書等を含めることができる。
Examples of the labeling substance for detection include colored particles, metal colloids (gold colloid, platinum colloid, etc.), colored latex, dyes, and fluorescent dyes. Any one of them may be used alone, or two or more of them may be appropriately combined. Can be used. In the present invention, for example, gold colloid, platinum colloid and the like can be mentioned.
In addition to the above, the kit of the present invention can include, for example, a container (housing case) for an immunochromatographic test strip used for installing an immunochromatographic test strip, an instruction manual, and the like.
9.治療方法等
 本発明は、上記検出方法により抗バベシア原虫抗体が検出された個体、又は上記診断方法によりバベシア症である(陽性である)と診断された個体に対し、バベシア症治療薬を投与することを特徴とする、バベシア症の治療方法を提供する。
 上記個体へのバベシア症治療薬の投与量及び投与期間は、バベシア症治療薬の通常の用法・用量に従って設定することができる。例えば、バベシア症治療薬としては、ジミナゼン(商品名ガナゼック)、クリンダマイシン(商品名ダラシン、アンチローブ)、ST合剤(商品名トリブリッセン他)などが挙げられる。また、クリンダマイシン、ドキシサイクリン及びニトロメダゾールの多剤併用療法を採用することもできる。
9. Therapeutic method, etc. The present invention administers a therapeutic agent for Babesiosis to an individual whose anti-Babescia parasite antibody has been detected by the above detection method or an individual who has been diagnosed with Babesiosis (is positive) by the above diagnosis method. The present invention provides a method for treating babesiosis, which comprises:
The dose and administration period of the drug for treating babesiosis to the individual can be set according to the usual usage and dose of the drug for treating babesiosis. Examples of the drug for treating babesiosis include diminazene (trade name Ganazec), clindamycin (trade name dalasin, antilobe), ST mixture (trade name tribrissen, etc.) and the like. In addition, a combination therapy of clindamycin, doxycycline and nitromedazole can be adopted.
 以下、実施例により本発明をさらに具体的に説明する。但し、本発明の範囲はこれらの実施例により限定されるものではない。
[実施例1]
Hereinafter, the present invention will be described more specifically with reference to Examples. However, the scope of the present invention is not limited to these examples.
[Example 1]
 バキュロウイルス−カイコタンパク質発現系を用いたBgTRAPの製造
 犬バベシア原虫Babesia gibsoniのメロゾイトの全長表面タンパク質のうち、分泌シグナルと膜貫通領域を除く領域をコードするcDNAを人工合成し、転移用のエントリープラスミドに挿入した。
 本実施例では、上記犬バベシア原虫のメロゾイトの全長表面タンパク質から分泌シグナルと膜貫通領域を除く領域のタンパク質(本発明の表面抗原タンパク質)を、「BgTRAP」という。但し、BgTRAPをコードするポリヌクレオチドを「BgTRAP」と表示することもある。
Production of BgTRAP using a baculovirus-silkworm protein expression system An entry plasmid for transfer which artificially synthesizes a cDNA encoding a region excluding a secretory signal and a transmembrane region in a full-length surface protein of the merozoite of the canine Babesia protozoa Babesia gibsoni Inserted in.
In the present Example, the protein (surface antigen protein of the present invention) in the region excluding the secretory signal and the transmembrane region from the full-length surface protein of the canine Babesia protozoan merozoite is referred to as “BgTRAP”. However, the polynucleotide encoding BgTRAP may be referred to as “BgTRAP”.
 その際、カイコ30Kタンパク質分泌シグナルをコードするDNA配列の下流に挿入するが、30K分泌シグナルとBgTRAPとの間にH8−STREP−H6−TEV配列を挿入したベクター(N端タグベクター)とBgTRAPの下流にH8−STREP−H6−TEV配列を挿入したベクター(C端タグベクター)の2種のエントリーベクターを作製した。
 ついで、Gateway LR反応によりBgTRAPを含むタンパク質コード領域をバキュロウイルス転移用のpDEST8プラスミドに挿入した。この反応により、図1の様にB1とB2配列に挟まれた領域にBgTRAPを含むタンパク質コード領域が挿入され、バキュロウイルス由来のポリヘドリンプロモーターの制御下におかれる。
At that time, a vector (N-terminal tag vector) in which the H8-STREP-H6-TEV sequence was inserted between the 30K secretion signal and BgTRAP, which was inserted downstream of the DNA sequence encoding the silkworm 30K protein secretion signal, and BgTRAP. Two types of entry vectors, a vector (C-terminal tag vector) into which the H8-STREP-H6-TEV sequence was inserted downstream, were prepared.
Then, the protein coding region containing BgTRAP was inserted into the pDEST8 plasmid for baculovirus transfer by the Gateway LR reaction. As a result of this reaction, a protein coding region containing BgTRAP is inserted into the region sandwiched between the B1 and B2 sequences as shown in FIG. 1 and placed under the control of the polyhedrin promoter derived from baculovirus.
 このpDEST8プラスミド上のBgTRAPを含む合成遺伝子領域を、Tn7転移反応によりバキュロウイルスゲノムを含むBacmid上に挿入した。具体的には、バキュロウイルスBacmidとTn7転移酵素を含むプラスミドを保持する大腸菌株にBgTRAP合成遺伝子領域を含むpDEST8プラスミドを形質転換し、多剤薬剤耐性を指標に転移反応が生じている組換えBacmidを選抜した。次いで、大腸菌より組換えBacmidをアルカリ法を用いて抽出し、精製組換えBacmidをカイコ由来培養細胞へリポフェクション法により導入した。 The synthetic gene region containing BgTRAP on this pDEST8 plasmid was inserted into Bacmid containing the baculovirus genome by Tn7 transfer reaction. Specifically, an Escherichia coli strain carrying a plasmid containing baculovirus Bacmid and Tn7 transferase is transformed with pDEST8 plasmid containing a BgTRAP synthetic gene region, and a recombinant Bacmid having a multidrug drug resistance as a marker for a transposition reaction Was selected. Then, recombinant Bacmid was extracted from Escherichia coli by the alkali method, and purified recombinant Bacmid was introduced into the silkworm-derived cultured cells by the lipofection method.
 トランスフェクションして3日後、細胞培養上清に出芽した組換えバキュロウイルス(P1ウイルス)を回収し、カイコ由来培養細胞への感染を2回繰り返してウイルス濃度の高いP3ウイルスのストック溶液を作製した。このウイルス10マイクロリットルをカイコ5齢幼虫に接種し、その血清を回収した。この血清中のBgTRAP発現量をウエスタンブロット法により確認した結果を図2に示す。次に、この組換えウイルス感染幼虫血清(10ml又は8ml)から、His Trap Excelカラム(Hisタグ精製)、及びStrep−Tactin Superflowカラム(STREPタグ精製)を用いて2段階の精製を行った(図2~6)。 Three days after the transfection, the germinated recombinant baculovirus (P1 virus) was collected in the cell culture supernatant, and the culture cells derived from silkworm were repeatedly infected twice to prepare a stock solution of P3 virus having a high virus concentration. .. 10 microliters of this virus was inoculated into the 5th instar larva of the silkworm, and the serum was collected. The result of confirming the expression level of BgTRAP in this serum by Western blotting is shown in FIG. Next, two-step purification was performed from this recombinant virus-infected larval serum (10 ml or 8 ml) using a His Trap Excel column (His tag purification) and a Strep-Tactin Superflow column (STREP tag purification). 2-6).
 この精製産物を透析しタンパク質濃度を測定した結果を図7に示す。N端タグ型のBgTRAPが、それぞれ4.19、0.885mg、C端タグ型のBgTRAPを0.03mg回収することができた。以後の解析には、N端タグ型のBgTRAPを用いた。
 また、BgTRAPの温度による影響を調べた結果を図8に示す。図8より、0℃~42℃の範囲において、BgTRAPの精製に際して温度による影響はなかった。
[比較例1]
 大腸菌発現系BgTRAPの25℃および37℃培養の発現確認実験(SDS−PAGE/CBB・WB)
The result of dialysis of the purified product and measurement of the protein concentration is shown in FIG. 7. It was possible to recover 4.19 and 0.885 mg of N-terminal tag type BgTRAP and 0.03 mg of C-terminal tag type BgTRAP, respectively. N-terminal tag type BgTRAP was used for the subsequent analysis.
Moreover, the result of having investigated the influence by temperature of BgTRAP is shown in FIG. From FIG. 8, in the range of 0° C. to 42° C., there was no effect of temperature on the purification of BgTRAP.
[Comparative Example 1]
Experiment to confirm expression of E. coli expression system BgTRAP at 25°C and 37°C culture (SDS-PAGE/CBB/WB)
 本比較例では、Babesia gibsoniのBgTRAPを、大腸菌を用いて発現できるかどうか、検討を行った。
 Babesia gibsoniの天然の全長抗原タンパク質情報を図9、大腸菌発現BgTRAPコンストラクト構築法を図10に示す。
In this comparative example, it was examined whether BgTRAP of Babesia gibsoni could be expressed using Escherichia coli.
Information on the natural full-length antigen protein of Babesia gibsoni is shown in FIG. 9, and a method for constructing an E. coli-expressed BgTRAP construct is shown in FIG.
 培養条件
(1)37℃培養
 250mlフラスコに25mlのLB−Ampで200回/min 前培養液をOD600=0.02となるように加えてOD600=0.4(今回0.438)で各濃度のIPTGを添加。添加4時間後に菌体回収。
(2)25℃培養
 250mlフラスコに25mlのLB−Ampで200回/min 前培養液をOD600=0.02となるように加えて24時間培養後に菌体回収。IPTGは培養開始から添加。
Culture conditions (1) 37° C. culture In a 250 ml flask, 25 ml of LB-Amp was added at 200 times/min to a preculture solution to OD600=0.02, and each concentration was adjusted to OD600=0.4 (this time 0.438). Add IPTG. The cells were collected 4 hours after the addition.
(2) Culturing at 25° C. A pre-cultured solution at a rate of 200 times/min was added to a 250 ml flask with 25 ml of LB-Amp so that the OD600 was 0.02, and the cells were collected after culturing for 24 hours. IPTG was added from the start of culture.
(3)サンプル調製
 1ml培養分の各サンプルを200μlのバグバスターで溶解後に15,000rpmで10分遠心後の上清を可溶性画分とした。沈殿は更にバグバスターとPBSで洗浄後に200μlの1%SDSで溶解し、15,000rpmで10分遠心後の上清を不溶性画分とした。
(4)SDS−PAGE
 CBB用、WB用とも、上記サンプルを10ml/レーンで泳動。
 WBは5%スキムミルクで室温1時間ブロッキング、1次抗体(抗GST−tag抗体、1000倍希釈)は4℃2日間、2次抗体(抗ウサギIgG−HRP、2500倍希釈)は室温1時間インキュベート。
(3) Sample preparation Each sample of 1 ml culture was dissolved in 200 μl of bagbuster and then centrifuged at 15,000 rpm for 10 minutes, and the supernatant was used as a soluble fraction. The precipitate was further washed with bagbuster and PBS, dissolved with 200 μl of 1% SDS, and centrifuged at 15,000 rpm for 10 minutes, and the supernatant was used as an insoluble fraction.
(4) SDS-PAGE
The above sample was run at 10 ml/lane for both CBB and WB.
WB was blocked with 5% skim milk at room temperature for 1 hour, primary antibody (anti-GST-tag antibody, 1000-fold dilution) was incubated at 4°C for 2 days, and secondary antibody (anti-rabbit IgG-HRP, 2500-fold dilution) was incubated at room temperature for 1 hour. ..
 結果
 推定分子量は100kdaであるが、予想サイズに発現産物と思われるバンドは認められなかった(図11)。
[実施例2]
 ハーフストリップ(BgTRAP抗原および抗BgTRAP抗体が塗布されたメンブレンと吸収パッドの2つで構成されているストリップ)による反応確認試験
Results The estimated molecular weight was 100 kda, but no band that appeared to be an expression product was observed in the expected size (Fig. 11).
[Example 2]
Reaction confirmation test using half-strips (strips consisting of a membrane coated with BgTRAP antigen and anti-BgTRAP antibody and an absorbent pad)
 本実施例では、BgTRAP抗原、抗BgTRAP抗体をメンブレンに塗布し、金コロイド感作BgTRAP抗原による反応を確認した。
(1)試薬
 1)BgTRAP抗原
 2)抗BgTRAPポリクローナル抗体(抗BgTRAP抗体)
 4)金コロイド(BBI)
 5)メンブレン(Millipore)
 6)吸収パッド(Millipore)
 7)バッキングシート(ニップンエンジニアリング)
 8)希釈液 PIPES−0.1%Tween−0.1%BSA (PTB希釈液)
In this example, BgTRAP antigen and anti-BgTRAP antibody were applied to the membrane, and the reaction with the colloidal gold-sensitized BgTRAP antigen was confirmed.
(1) Reagent 1) BgTRAP antigen 2) Anti-BgTRAP polyclonal antibody (anti-BgTRAP antibody)
4) Gold colloid (BBI)
5) Membrane (Millipore)
6) Absorption pad (Millipore)
7) Backing sheet (Nippon Engineering)
8) Diluting liquid PIPES-0.1% Tween-0.1% BSA (PTB diluting liquid)
(2)方法
 1)金コロイド感作抗原作製
 BgTRAP抗原を、抗原濃度50μg/mLで感作した。
 2)ストリップ作製
 BgTRAP抗原、抗BgTRAP抗体を1mg/mLに調整しメンブレンに筆で塗布し、37℃で1時間乾燥させた後、ブロッキングした。
 抗体固相メンブレンをバッキングシートに貼り付け、上部に吸収パッドを貼り付けて
ストリップを作製した。
 3)ストリップ反応
 マイクロプレートのウェルに、金コロイド感作抗原を加え、希釈液のみと希釈液で10μg/mLに調整した抗BgTRAP抗体をそれぞれ加え、ストリップを挿してメンブレン上に反応溶液を展開した。
(2) Method 1) Preparation of colloidal gold-sensitized antigen BgTRAP antigen was sensitized at an antigen concentration of 50 μg/mL.
2) Strip preparation BgTRAP antigen and anti-BgTRAP antibody were adjusted to 1 mg/mL, coated on the membrane with a brush, dried at 37°C for 1 hour, and then blocked.
The antibody solid phase membrane was attached to a backing sheet, and an absorption pad was attached to the upper part to prepare a strip.
3) Strip reaction Gold colloid-sensitized antigen was added to the wells of the microplate, and the diluent alone and the anti-BgTRAP antibody adjusted to 10 μg/mL with the diluent were added, and the strip was inserted to develop the reaction solution on the membrane. ..
(3)結果
 反応によって生じたメンブレン上の赤色のラインを確認した結果を図12に示す。
 BgTRAP抗原、抗BgTRAP抗体と金コロイド感作BgTRAP抗原との反応を確認したところ、抗BgTRAP抗体の濃度が10μg/mLのサンプルで赤色の明瞭なテストラインが確認された(図12)。
 PTB希釈液のみでも薄くテストラインが生じた。これは非特異反応ラインであると思われる。
 コントロールラインはやや薄いが、明瞭なラインとして確認された。
(3) Results The results of confirming the red line on the membrane generated by the reaction are shown in FIG.
When the reaction between the BgTRAP antigen, the anti-BgTRAP antibody and the colloidal gold-sensitized BgTRAP antigen was confirmed, a clear red test line was confirmed in the sample having an anti-BgTRAP antibody concentration of 10 μg/mL (FIG. 12).
A thin test line was formed with only the PTB diluted solution. This seems to be a non-specific reaction line.
The control line was slightly thin, but it was confirmed as a clear line.
(4)まとめ
 本発明において作製されたBgTRAP抗原を用いたハーフストリップイムノクロマトグラフィーにより、抗BgTRAP抗体を良好に検出することができた。。
(4) Summary The anti-BgTRAP antibody was successfully detected by half-strip immunochromatography using the BgTRAP antigen prepared in the present invention. ..
[実施例3]
 フルストリップ(BgTRAP抗原および抗BgTRAP抗体が塗布されたメンブレンと吸収パッド、コンジュゲートパッド、サンプルパッドの4つで構成されているストリップ)による反応確認試験
 本実施例では、BgTRAP抗原、抗BgTRAP抗体をメンブレンに塗布し、金コロイド感作BgTRAP抗原による反応を確認した。
[Example 3]
Reaction confirmation test by full strip (a strip composed of a membrane coated with BgTRAP antigen and anti-BgTRAP antibody and an absorption pad, a conjugate pad, and a sample pad) In this example, BgTRAP antigen and anti-BgTRAP antibody were tested. It was applied to a membrane and the reaction with colloidal gold-sensitized BgTRAP antigen was confirmed.
(1)試薬
 1)BgTRAP抗原
 2)抗BgTRAPポリクローナル抗体(抗BgTRAP抗体)
 3)陽性、陰性犬血清(各5種、計10種)
 4)金コロイド(BBI)
 5)メンブレン(Millipore)
 6)吸収パッド(Millipore)
 7)サンプルパッド(Pall Corporation)
 8)グラスファイバーパッド(Millipore)
 9)バッキングシート(ニップンエンジニアリング)
 10)希釈液 (PIPES等含む)
(1) Reagent 1) BgTRAP antigen 2) Anti-BgTRAP polyclonal antibody (anti-BgTRAP antibody)
3) Positive and negative dog serum (5 types each, 10 types in total)
4) Gold colloid (BBI)
5) Membrane (Millipore)
6) Absorption pad (Millipore)
7) Sample Pad (Pall Corporation)
8) Glass fiber pad (Millipore)
9) Backing sheet (Nippon Engineering)
10) Diluent (including PIPES)
(2)イムノクロマトグラフィー用フルストリップの作製
 1)金コロイド感作抗原作製
 BgTRAP抗原を、抗原濃度50μg/mLで感作した。
 2)コンジュゲートパッド作製
 金コロイド感作BgTRAP抗原溶液を緩衝液で希釈し、グラスファイバーパッドに含浸し、一晩真空乾燥した。
 3)筆塗布メンブレン作製
 塗布溶液:抗BgTRAP抗体溶液(1.5mg/mL) コントロールライン用
       BgTRAP抗原溶液(1.0mg/mL) テストライン用
 各塗布溶液をメンブレン(Millipore HF120)に筆で塗布し、37℃で1時間乾燥後、ブロッキングした。
(2) Preparation of full strip for immunochromatography 1) Preparation of colloidal gold-sensitized antigen BgTRAP antigen was sensitized at an antigen concentration of 50 μg/mL.
2) Preparation of conjugate pad The colloidal gold-sensitized BgTRAP antigen solution was diluted with a buffer solution, impregnated in a glass fiber pad, and vacuum dried overnight.
3) Preparation of brush coating membrane Coating solution: anti-BgTRAP antibody solution (1.5 mg/mL) for control line BgTRAP antigen solution (1.0 mg/mL) for test line Each coating solution was coated on a membrane (Millipore HF120) with a brush. After drying at 37° C. for 1 hour, blocking was performed.
 4)フルストリップ組み立て
 バッキングシートに塗布メンブレン、吸収パッド、コンジュゲートパッド、サンプルパッドを貼り付けた。
 5)希釈サンプル調製
 各犬血清を、希釈液で100倍希釈した。
 下記希釈サンプルを調製し、マイクロウェルにそれぞれ分注した。これにフルストリップ(3mm幅)を挿入し、赤色ラインの有無を確認した。
4) Full strip assembly The coated membrane, the absorbent pad, the conjugate pad, and the sample pad were attached to the backing sheet.
5) Preparation of diluted sample Each dog serum was diluted 100-fold with a diluent.
The following diluted samples were prepared and dispensed into microwells. A full strip (3 mm width) was inserted into this, and the presence or absence of a red line was confirmed.
(3)試験方法
 陰性血清(1個体)、他感染陰性血清(4個体)及び犬バベシア陽性血清(5個体)を希釈液で100倍に希釈し、それぞれ60μLをマイクロウェルに分注した。フルストリップ(3mm幅)をマイクロウェルに挿入して5分後、赤色ラインの有無を確認した。
 なお、「他感染陰性血清」は、バベシア原虫には感染していないが他の感染症に感染している犬の血清である。
(3) Test method Negative serum (1 individual), other infection negative serum (4 individuals) and dog Babesia positive serum (5 individuals) were diluted 100-fold with a diluent, and 60 μL of each was dispensed into microwells. A full strip (3 mm width) was inserted into the microwell and 5 minutes later, the presence or absence of a red line was confirmed.
The "other infection negative serum" is serum of a dog that is not infected with Babesia parasite but is infected with other infectious diseases.
(4)結果
 反応によって生じたメンブレン上の赤色のラインを確認した結果を図13に示す。
 BgTRAP抗原、抗BgTRAP抗体と金コロイド感作BgTRAP抗原との反応を確認したところ、バベシア原虫感染(バベシア症)陽性犬血清サンプル全てで赤色の明瞭なテストラインが確認された(レーン6~10)。
 PTB希釈液のみでも薄くテストラインが生じた。(非特異反応ライン)
 コントロールラインは、全てのサンプルにおいて明瞭なラインとして確認された(レーン1~5)。なお、図13において、N−5(レーン5)はフィラリア原虫に感染している犬の血清の結果である。
(4) Results The results of confirming the red line on the membrane generated by the reaction are shown in FIG.
When the reaction between BgTRAP antigen, anti-BgTRAP antibody and colloidal gold-sensitized BgTRAP antigen was confirmed, a clear red test line was confirmed in all serum samples of Babesia protozoa-infected (Babeciasis)-positive dogs (lanes 6 to 10). ..
A thin test line was formed with only the PTB diluted solution. (Non-specific reaction line)
The control line was confirmed as a clear line in all samples (lanes 1 to 5). In addition, in FIG. 13, N-5 (lane 5) is the result of the serum of the dog infected with the filarial parasite.
(5)まとめ
 フルストリップイムノクロマトグラフィーにより、犬血清サンプルで良好に反応することを確認した。
(5) Summary It was confirmed by full strip immunochromatography that the dog serum sample reacted well.

Claims (21)

  1.  バベシア原虫の全長表面抗原タンパク質のアミノ酸配列のうちN末端シグナルペプチドのアミノ酸配列及び膜貫通領域からC末端までの領域のアミノ酸配列が除去されたタンパク質。 A protein in which the amino acid sequence of the N-terminal signal peptide and the amino acid sequence of the region from the transmembrane region to the C-terminus have been removed from the amino acid sequence of the full-length surface antigen protein of Babesia parasite.
  2.  以下の(a)、(b)又は(c)のタンパク質。
    (a)配列番号2n(nは1~4の整数を表す。)で示されるいずれかのアミノ酸配列からなるタンパク質
    (b)配列番号2n(nは1~4の整数を表す。)で示されるいずれかのアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、バベシア原虫に対する抗体と反応するタンパク質
    (c)配列番号2n(nは1~4の整数を表す。)で示されるいずれかのアミノ酸配列と80%以上のホモロジーを有するアミノ酸配列からなり、かつバベシア原虫に対する抗体と反応するタンパク質
    The following protein (a), (b) or (c).
    (A) a protein consisting of any of the amino acid sequences represented by SEQ ID NO: 2n (n represents an integer of 1 to 4); and (b) represented by SEQ ID NO: 2n (n represents an integer of 1 to 4). A protein (c) SEQ ID NO: 2n (n is an integer of 1 to 4) which consists of an amino acid sequence in which one or several amino acids have been deleted, substituted or added in any amino acid sequence, and which reacts with an antibody against Babesia parasite A protein consisting of an amino acid sequence having a homology of 80% or more with any of the amino acid sequences shown in (3) and reacting with an antibody against Babesia parasite
  3.  請求項1又は2に記載のタンパク質をコードするポリヌクレオチド。 A polynucleotide encoding the protein according to claim 1 or 2.
  4.  以下の(d)、(e)又は(f)のポリヌクレオチド。
    (d)配列番号2n−1(nは1~4の整数を表す。)で示されるいずれかの塩基配列からなるポリヌクレオチド
    (e)配列番号2n−1(nは1~4の整数を表す。)で示されるいずれかの塩基配列に相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつバベシア原虫に対する抗体と反応するタンパク質をコードするポリヌクレオチド
    (f)配列番号2n−1(nは1~4の整数を表す。)で示されるいずれかの塩基配列からなるポリヌクレオチドと80%以上のホモロジーを有する塩基配列からなり、かつバベシア原虫に対する抗体と反応するタンパク質をコードするポリヌクレオチド
    The polynucleotide of (d), (e) or (f) below.
    (D) Polynucleotide consisting of any of the base sequences represented by SEQ ID NO: 2n-1 (n represents an integer of 1 to 4) (e) SEQ ID NO: 2n-1 (n represents an integer of 1 to 4) Polynucleotide (f), which hybridizes with a polynucleotide consisting of a nucleotide sequence complementary to any of the nucleotide sequences shown in (4) under stringent conditions, and which encodes a protein which reacts with an antibody against Babesia parasite (f) SEQ ID NO: 2n-1 (n represents an integer of 1 to 4) and a protein comprising a nucleotide sequence having a homology of 80% or more with a polynucleotide comprising any of the nucleotide sequences represented by 2n-1 and reacting with an antibody against a Babesia parasite. Encoding polynucleotide
  5.  請求項3又は4に記載のポリヌクレオチドを含有するベクター。 A vector containing the polynucleotide according to claim 3 or 4.
  6.  ウイルスベクターである、請求項5に記載のベクター。 The vector according to claim 5, which is a viral vector.
  7.  請求項3若しくは4に記載のポリヌクレオチド、又は請求項5若しくは6に記載のベクターを含むカイコ宿主。 A silkworm host containing the polynucleotide according to claim 3 or 4, or the vector according to claim 5 or 6.
  8.  請求項7に記載のカイコ宿主を培養又は飼育し、培養又は飼育後のカイコ宿主から、請求項1又は2に記載のタンパク質を回収する工程を含む、当該タンパク質の製造方法。 A method for producing the silkworm host according to claim 7, which comprises a step of culturing or breeding the silkworm host and recovering the protein according to claim 1 from the silkworm host after the culture or breeding.
  9.  請求項8に記載の方法によって製造されたタンパク質。 A protein produced by the method according to claim 8.
  10.  請求項1、2又は9に記載のタンパク質を含む、バベシア原虫に対する抗体の検出用試薬。 A reagent for detecting an antibody against Babesia protozoa, which comprises the protein according to claim 1, 2 or 9.
  11.  請求項1、2又は9に記載のタンパク質を含む、バベシア症の診断用試薬。 A reagent for diagnosing babesiosis, which comprises the protein according to claim 1, 2 or 9.
  12.  イムノクロマトグラフィーに用いるための請求項10又は11に記載の試薬。 The reagent according to claim 10 or 11 for use in immunochromatography.
  13.  被験動物から採取された試料と、請求項1、2若しくは9に記載のタンパク質又は請求項10若しくは11に記載の試薬とを反応させることを特徴とする、バベシア原虫に対する抗体の検出方法。 A method for detecting an antibody against Babesia protozoa, which comprises reacting a sample collected from a test animal with the protein according to claim 1, 2 or 9 or the reagent according to claim 10 or 11.
  14.  請求項13に記載の方法により検出された検出結果を指標とする、バベシア症の診断方法。 A method for diagnosing babesiosis using the detection result detected by the method according to claim 13 as an index.
  15.  請求項14に記載の方法によりバベシア症の診断がされた被験動物に、バベシア症治療薬を投与することを特徴とする、バベシア症の治療方法。 A method for treating babesiosis, which comprises administering a therapeutic drug for babesiosis to a test animal in which babesiosis is diagnosed by the method according to claim 14.
  16.  請求項1、2又は9に記載のタンパク質を含む、バベシア症の治療又は予防用ワクチン。 A vaccine for treating or preventing babesiosis, which comprises the protein according to claim 1, 2 or 9.
  17.  請求項1、2又は9に記載のタンパク質を含む、バベシア原虫に対する抗体の検出用キット。 A kit for detecting an antibody against Babesia parasite, which comprises the protein according to claim 1, 2 or 9.
  18.  請求項1、2又は9に記載のタンパク質を含む、バベシア症の診断用キット。 A diagnostic kit for babesiosis, which comprises the protein according to claim 1, 2 or 9.
  19.  イムノクロマトグラフィーに用いるための請求項17又は18に記載のキット。 The kit according to claim 17 or 18 for use in immunochromatography.
  20.  バベシア症の検出又は診断のための、バベシア原虫の全長表面抗原タンパク質のアミノ酸配列のうちN末端シグナルペプチドのアミノ酸配列及び膜貫通領域からC末端までの領域のアミノ酸配列が除去されたタンパク質。 A protein obtained by removing the amino acid sequence of the N-terminal signal peptide and the amino acid sequence of the region from the transmembrane region to the C-terminal of the amino acid sequence of the full-length surface antigen protein of Babesia protozoa for the detection or diagnosis of Babesiosis.
  21.  バベシア症の検出又は診断のための、以下の(a)、(b)又は(c)のタンパク質。
    (a)配列番号2n(nは1~4の整数を表す。)で示されるいずれかのアミノ酸配列からなるタンパク質
    (b)配列番号2n(nは1~4の整数を表す。)で示されるいずれかのアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、バベシア原虫に対する抗体と反応するタンパク質
    (c)配列番号2n(nは1~4の整数を表す。)で示されるいずれかのアミノ酸配列と80%以上のホモロジーを示すアミノ酸配列からなり、かつバベシア原虫に対する抗体と反応するタンパク質
    The following protein (a), (b) or (c) for detecting or diagnosing babesiosis.
    (A) a protein consisting of any of the amino acid sequences represented by SEQ ID NO: 2n (n represents an integer of 1 to 4); and (b) represented by SEQ ID NO: 2n (n represents an integer of 1 to 4). A protein (c) SEQ ID NO: 2n (n is an integer of 1 to 4) which consists of an amino acid sequence in which one or several amino acids have been deleted, substituted or added in any amino acid sequence, and which reacts with an antibody against Babesia parasite A protein having an amino acid sequence showing 80% or more homology with any of the amino acid sequences represented by
PCT/JP2019/008255 2019-02-25 2019-02-25 Surface antigen protein of babesia protozoa, method for detecting antibody against babesia protozoa, and diagnostic method for babesiosis WO2020174690A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021501521A JPWO2020174690A1 (en) 2019-02-25 2019-02-25
PCT/JP2019/008255 WO2020174690A1 (en) 2019-02-25 2019-02-25 Surface antigen protein of babesia protozoa, method for detecting antibody against babesia protozoa, and diagnostic method for babesiosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008255 WO2020174690A1 (en) 2019-02-25 2019-02-25 Surface antigen protein of babesia protozoa, method for detecting antibody against babesia protozoa, and diagnostic method for babesiosis

Publications (1)

Publication Number Publication Date
WO2020174690A1 true WO2020174690A1 (en) 2020-09-03

Family

ID=72239740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008255 WO2020174690A1 (en) 2019-02-25 2019-02-25 Surface antigen protein of babesia protozoa, method for detecting antibody against babesia protozoa, and diagnostic method for babesiosis

Country Status (2)

Country Link
JP (1) JPWO2020174690A1 (en)
WO (1) WO2020174690A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022215742A1 (en) * 2021-04-09 2022-10-13

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527707A (en) * 2003-09-14 2007-10-04 ユニバーシテイ・ユトレヒト・ホールデイング・ベー・ベー Piroplasmid vaccine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527707A (en) * 2003-09-14 2007-10-04 ユニバーシテイ・ユトレヒト・ホールデイング・ベー・ベー Piroplasmid vaccine

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ABOGE, G. O. ET AL.: "Molecular characterization and expression of a 47-kDa merozoite surface protein of Babesia gibsoni for serodiagnosis by enzyme-linked immunosorbent assay", J. PROTOZOOL. RES., vol. 20, no. 1, 2010, pages 59 - 69, XP055735473 *
DATABASE UniProt [online] 5 December 2018 (2018-12-05), Database accession no. L0BIN1 *
DATABASE UniProt [online] 7 November 2018 (2018-11-07), Database accession no. A0A221SSH4 *
IRWIN PETER J: "Canine babesiosis: from molecular taxonomy to control", PARASITES & VECTORS, vol. 2, no. Sppl 1, pages 1 - 9, XP021052883, ISSN: 1756-3305, DOI: 10.1186/1756-3305-2-S1-S4 *
VERDIDA, R. A. ET AL.: "Serodiagnosis of Babesia gibsoni Infection in Dogs by an Improved Enzyme-Linked Immunosorbent Assay with Recombinant Truncated P50", JOURNAL OF VETERINARY MEDICAL SCIENCE, vol. 66, no. 12, 2004, pages 1517 - 1521, XP055735518 *
ZHOU, J. ET AL.: "Characterization of the Babesia gibsoni P18 as a homologue of thrombospondin related adhesive protein", MOLECULAR & BIOCHEMICAL PARASITOLOGY, vol. 148, 2006, pages 190 - 198, XP025032710, DOI: 10.1016/j.molbiopara.2006.03.015 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022215742A1 (en) * 2021-04-09 2022-10-13
WO2022215742A1 (en) * 2021-04-09 2022-10-13 Kaico株式会社 Oral vaccine composition

Also Published As

Publication number Publication date
JPWO2020174690A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
KR102570713B1 (en) Methods and reagents for diagnosis of SARS-CoV-2 infection
KR102019008B1 (en) A method for detecting mers coronavirus using mers coronavirus nucleocapsid fusion protein
Sako et al. Molecular characterization and diagnostic value of Taenia solium low-molecular-weight antigen genes
KR101630499B1 (en) Viruses associated with Severe Fever with Thrombocytopenia Syndrome and Methods and Kits for diagnosing SFTS using the same
KR20070028547A (en) Identifying virally infected and vaccinated organisms
US20070092938A1 (en) Diagnostics for sars virus
Sengupta et al. Expressed truncated N-terminal variable surface glycoprotein (VSG) of Trypanosoma evansi in E. coli exhibits immuno-reactivity
JP2009525740A (en) Polypeptides recognized by anti-Trichinella antibodies and their use
WO2000000615A2 (en) Compounds and methods for the diagnosis and treatment of ehrlichia infection
CN103917874B (en) The vaccine diagnosis improved
WO2020174690A1 (en) Surface antigen protein of babesia protozoa, method for detecting antibody against babesia protozoa, and diagnostic method for babesiosis
KR101920961B1 (en) Multiple Diagnostic kit
CN111848750B (en) Method and kit for rapidly enriching and detecting 2019-nCoV
JP2001507447A (en) H. pylori diagnostics
US10041132B2 (en) Pestivirus species
EP2626365A1 (en) Compounds and methods for the diagnosis of babesia canis canis infection
EP4139491A2 (en) Specificity enhancing reagents for covid-19 antibody testing
KR20100105974A (en) Rift valley fever competition elisa using monoclonal antibodies against recombinant n protein
KR20030052858A (en) Diagnostic methods of foot-and-mouth disease using recombinant 3abc non-structural protein expressed in insect cells and monoclonal antibody
CN109891246B (en) Composition for diagnosing hemorrhagic fever with renal syndrome comprising recombinant nucleocapsid protein derived from hancheng virus and pramavirus and recombinant glycoprotein derived from hantavirus, and diagnostic kit comprising same
KR102508574B1 (en) Virus-like particles comprising toxoplasma protein and influenza protein and diagnostic method using the same
KR100454727B1 (en) Diagnostic kit of hemorrhagic fever with renal syndrome using Baculovirus expressed nucleocapsid protein derived from Hantann virus 91011
WO2022158373A1 (en) Protein, hemolytic streptococcus vaccine, dna, vector, transformant, method for producing protein, baculovirus, agrobacterium, latex particle, kit, and method for measuring anti-streptolysin o antibody
JP2009108013A (en) Functional antibody against g protein conjugate receptor and its application
CN107501396A (en) A kind of protein and its application for being used to diagnose SFTS patient's prognosis situation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501521

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916972

Country of ref document: EP

Kind code of ref document: A1