WO2020174648A1 - Pod and drone system - Google Patents

Pod and drone system Download PDF

Info

Publication number
WO2020174648A1
WO2020174648A1 PCT/JP2019/007773 JP2019007773W WO2020174648A1 WO 2020174648 A1 WO2020174648 A1 WO 2020174648A1 JP 2019007773 W JP2019007773 W JP 2019007773W WO 2020174648 A1 WO2020174648 A1 WO 2020174648A1
Authority
WO
WIPO (PCT)
Prior art keywords
pod
drone
housing
wheel
pod housing
Prior art date
Application number
PCT/JP2019/007773
Other languages
French (fr)
Japanese (ja)
Inventor
佑 伊藤
竜司 加藤
麻里 林田
浩之 安田
Original Assignee
ヤマトホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマトホールディングス株式会社 filed Critical ヤマトホールディングス株式会社
Priority to PCT/JP2019/007773 priority Critical patent/WO2020174648A1/en
Priority to PCT/US2020/019505 priority patent/WO2020176415A1/en
Publication of WO2020174648A1 publication Critical patent/WO2020174648A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D9/00Equipment for handling freight; Equipment for facilitating passenger embarkation or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/20Vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports

Definitions

  • the present invention relates to a pod and a drone system equipped with this pod.
  • Patent Document 1 discloses an aircraft that suspends and conveys cargo by an arm.
  • Patent Document 1 can carry only one cargo and is not suitable for mass transportation. It is also conceivable to provide a cargo room in the body of the drone and load multiple cargoes in the cargo room, but in such a case the drone cannot be used during cargo handling work, and the drone The operating rate will decrease. Therefore, in order to carry multiple cargoes while maintaining the operating rate of the drone, it is conceivable that a cargo room is formed inside the pod and a removable pod is used for the drone. The pod has never existed.
  • the present invention has been made in view of the above problems, and is to provide a pod for carrying a cargo suitable for carrying by a carrying device such as a drone, and a drone system including the pod.
  • a pod for storing and transporting cargo which is an elongated or flat pod housing having a cargo compartment for storing the cargo formed therein, and a pod for grounding. And a support mechanism that supports the pod housing so that the axis of the pod housing is inclined with respect to the ground when installed.
  • the pod is removable from the carrier.
  • the axis of the pod is tilted with respect to the ground by the support mechanism. Supported by the state. Therefore, compared to the case where the axis line of the pod housing is placed horizontally with respect to the ground, the user (including the delivery person and the worker) can carry out cargo loading and unloading work without bending over. ..
  • the carrier is a drone.
  • the axis of the pod since the cargo is loaded with the axis of the pod housing inclined with respect to the ground, when the drone with the pod attached flies, the axis of the pod is substantially vertical or substantially Even if the flight state is directed in a substantially horizontal direction, which is orthogonal to the vertical direction, the direction of the cargo loaded in the pod housing does not change significantly from the time of loading, and damage to the cargo can be prevented.
  • the drone flies horizontally such that the head of the drone is located forward in the flight direction and the tail is located rearward in the flight direction, and the tail of the drone is located vertically downward. It is a tailsitter drone that takes off and land vertically.
  • the axis of the pod is vertically aligned during takeoff and landing. Even when facing the direction, the change in the direction of the cargo loaded in the pod can be suppressed to less than 90 degrees from the time of loading, and the cargo can be prevented from being damaged.
  • the pod housing has a streamlined shape extending in the axial direction. According to the above configuration, for example, when the drone is used as a transport device for a pod, the air resistance of the pod housing during flight of the drone is reduced, and long-distance transport is possible.
  • the pod housing has a head and a tail portion, and the pod is attached to the body of the drone so that the axis extends vertically and the tail portion of the pod housing is located downward when the drone is landed. It is installed.
  • the traveling direction of the drone during takeoff and landing coincides with the axis line, the air resistance of the pod housing is reduced, and long-distance transportation is possible.
  • the pod housing is supported by the support mechanism with its axis inclined with respect to the landing surface.Therefore, the attitude of the pod when it is attached to the aircraft and when it is removed Difference is very small. Therefore, it is possible to easily attach and remove the pod to and from the drone.
  • the support mechanism has a group of vehicles that come into contact with the ground when the pod is installed on the ground.
  • the present invention having the above-described configuration, for example, when the drone is used as a transporting means for the pod, the user can easily transport the pod to the ground even when the drone is detached from the transporting means.
  • the pod housing has a head and a tail
  • the wheel group includes a first wheel mounted on the tail of the pod housing.
  • the tail of the pod housing may collide with the ground and be damaged.
  • the first wheel first comes into contact with the ground when the carrier is detached from the transport means, so that the tail portion of the pod housing can be prevented from being damaged. Further, by pushing the tail portion of the pod housing horizontally with respect to the ground while the first wheel is grounded, the pod housing can be easily and safely removed from the drone while tilting.
  • the first wheel is configured to be retractable in the pod housing.
  • the first wheel when the drone is used as a transporting means for the pod, for example, the first wheel can be stored in the pod housing during flight, so that air resistance during flight can be reduced. In addition, the risk of parts falling during flight can be reduced.
  • the pod housing includes a main leg closer to the head than the first wheel, and the wheel group includes a second wheel supported by the main leg at a position separated from the pod housing.
  • the main leg supports the head side of the pod housing in a tilted state so that it is located above, so that the drone can be attached to the fuselage and removed.
  • Pod posture difference is small. Therefore, it is possible to easily attach/detach the pod to/from the drone.
  • the main leg and the second wheel are configured to be retractable in the pod housing.
  • the second wheel can be stored in the pod housing during flight, so that air resistance during flight can be reduced.
  • the risk of parts falling during flight can be reduced.
  • a handle for pushing and pulling by the user on the ground is further provided on the head side of the pod housing, and the handle can be attached to and detached from the pod housing or can be stored in the pod housing. is there.
  • the pod can be used as a carrier truck and can be transported on the ground.
  • a drone system includes a drone and the above-mentioned pod that is attachable to and detachable from the drone.
  • a cargo transport pod suitable for transport by a transport device such as a drone, and a drone system including the pod.
  • FIG. 3 is a side view in a take-off and landing posture showing an example of a drone used for transporting a pod in the pod transport system of the first embodiment, and a top view in a horizontal cruise posture.
  • the pod transport system of the first embodiment an example of a drone used for transporting pods is shown, and is a side view in a takeoff and landing posture, and is a side view in a horizontal cruise posture.
  • It is a fragmentary sectional view which expands and shows the connection part of the drone body and pod in the drone system of 1st Embodiment, and shows the cross section parallel to a connection member.
  • FIG. 4 is a longitudinal sectional view showing the pod according to the first embodiment, showing a state in which a support mechanism is stored.
  • FIG. 3 is a longitudinal sectional view showing the pod according to the first embodiment, showing a state in which the support mechanism is expanded and grounded. It is an elevation view showing the pod according to the first embodiment, and is an elevation view seen from the head side. It is an elevation view showing the pod according to the first embodiment, and is an elevation view seen from the tail side.
  • FIG. 4 is a longitudinal sectional view showing the pod according to the first embodiment, showing a state in which a support mechanism is stored.
  • FIG. 3 is a longitudinal sectional view showing the pod according to the first embodiment, showing a state in which the support mechanism is expanded and grounded. It is an elevation view showing the pod according to the first embodiment, and is an elevation view seen from the head side. It is an elevation view showing the pod according to the first embodiment, and is an elevation view seen from the tail side.
  • FIG. 4 is a longitudinal sectional view showing the pod according to the
  • FIG 3 is an enlarged cross-sectional view in a longitudinal direction showing an enlarged tail portion of the pod according to the first embodiment. It is a figure (the 1) for demonstrating the method to remove from a drone. It is a figure (the 2) for explaining the method of removing from a drone. It is a figure (the 3) for explaining how to remove from a drone. It is a figure (the 4) for explaining how to remove from a drone. It is a figure (the 5) for explaining how to remove from a drone. It is a figure (the 6) for explaining a method of removing from a drone. It is a figure which expands and shows the tail part of the pod housing
  • 6 shows a teardrop-shaped profile of a pod according to another embodiment.
  • 7 shows an airfoil profile of a pod according to another embodiment. 6 shows a vertically symmetrical airfoil profile of a pod according to another embodiment.
  • the pod and drone system according to the first embodiment of the present invention will be described in detail below.
  • the drone system of this embodiment includes a pod and a drone as a carrier device. It should be noted that not only a drone but also a movable device such as a manned airplane, a four-wheeled vehicle, a two-wheeled vehicle, or a railway is assumed as the transportation device.
  • FIG. 1 and 2 show an example of a drone used for carrying a pod in the pod carrying system according to the first embodiment.
  • FIG. 1 is a front view in a takeoff and landing attitude, and is a top view in a horizontal cruise attitude.
  • the vertical direction or the vertical direction is indicated by the X axis
  • the lateral direction or the horizontal direction is indicated by the Y axis.
  • FIG. 1 is viewed as a top view of the drone 1 in a horizontal cruising posture, the longitudinal direction is indicated by the X axis and the lateral direction is indicated by the Y axis.
  • FIG. 1 is viewed as a top view of the drone 1 in a horizontal cruising posture, the longitudinal direction is indicated by the X axis and the lateral direction is indicated by the Y axis.
  • FIG. 2 is a side view in a takeoff/landing attitude, and is a side view in a horizontal cruise attitude.
  • the vertical direction or the vertical direction is indicated by the X axis.
  • the front-rear direction or the horizontal direction is indicated by the X axis
  • the vertical direction or the vertical direction is indicated by the Z axis.
  • the upper side in the X-axis direction in FIGS. 1 and 2 is called the head or the head side, or the front, and the lower side is the tail, the tail side, or the rear.
  • Drone 1 is a so-called tailsitter drone. That is, the drone 1 performs takeoff and landing in the X-axis direction (that is, the vertical direction or the vertical direction) so that the tail contacts the landing surface. Further, the drone 1 horizontally cruises in a posture in which the XY plane is horizontal and the Z-axis direction is vertical, with the head positioned horizontally in the front and the tail positioned horizontally in the rear.
  • the X-axis direction that is, the vertical direction or the vertical direction
  • the drone 1 horizontally cruises in a posture in which the XY plane is horizontal and the Z-axis direction is vertical, with the head positioned horizontally in the front and the tail positioned horizontally in the rear.
  • the drone 1 shown in FIG. 1 and FIG. 2 is provided so as to extend in the XY plane of FIG. 1, and is a pair of horizontals arranged in parallel so as to be separated by a predetermined distance in the vertical direction (Z-axis direction) in FIG.
  • a pair of blades 2 are provided to extend in the XZ plane of FIG. 2 and are arranged in parallel so as to be separated by a predetermined distance in the lateral direction (Y-axis direction) of FIG.
  • the drone 1 includes four propulsion devices 6 attached to both lateral ends of the pair of horizontal wings 2 (Y-axis direction in FIG. 1).
  • the pair of horizontal wings 2 have a streamline shape or a wing shape that generates lift during horizontal flight, and the front (front side in the X-axis direction or front) tip has a curved shape, and the rear (X-axis direction). The end on the tail side or the rear) is sharper than the tip.
  • the pair of connecting members 4 are attached so as to connect the horizontal wings 2 at positions equidistant from each other at the center of the pair of horizontal wings 2.
  • the pair of connecting members 4 has, for example, a streamline shape or a wing shape extending in the cruise direction.
  • the propulsion device 6 shown in FIGS. 1 and 2 includes a propulsion device body 6A, a propeller 6D provided at a front end portion (a head side or a front end in the X-axis direction) of the propulsion device body 6A, and a propulsion device, respectively.
  • a pair of horizontal tail fins 6B provided so as to extend in the lateral direction (Y-axis direction) from the rear end of the main body 6A (the tail end side in the X-axis direction or the rear end) to the rear end of the propulsion device main body 6A.
  • Vertical tail 6C provided so as to extend in the up-down direction (Z-axis direction) from the section.
  • the propeller 6D is attached to the propulsion device main body 6A so as to be rotatable about a rotation axis in the Y-axis direction. Further, the horizontal stabilizers 6B are independently attached to the propulsion device main body 6A so that their angles can be changed with respect to the XY plane (horizontal plane during horizontal cruise). The vertical stabilizer 6C is configured so that the angle can be changed with respect to the XZ plane (vertical plane in the front-back direction during horizontal cruise).
  • Each propulsion device 6 includes a control device 6E, and the angle and rotation speed of the propeller 6D of each propulsion device 6, the angle of the horizontal stabilizer 6B, and the angle of the vertical stabilizer 6C are controlled by the control device 6E.
  • the drone 1 shown in FIG. 1 lands with the propeller 6D of the propulsion device 6 positioned above and the rear end of the propulsion device 6 including the horizontal stabilizer 6B and the vertical stabilizer 6C grounded on the ground.
  • the propeller 6D is rotated with the propeller 6D facing upward to take off.
  • a transition is made to horizontal cruise in which the X-axis direction in FIG. 2 is horizontal.
  • the head of the drone 1 is located in the front in the horizontal direction, and the tail is located in the rear in the horizontal direction.
  • the horizontal wing 2 receives lift. Also, by changing the angle of the rotation axis of the propeller 6D and adjusting the angle of the horizontal tail 6B from the horizontal cruising state, the head is located vertically above and the tail is located vertically below. Transition to. Then, by adjusting the number of revolutions of the propeller 6D, the propeller 6D gradually descends, and the rear end of the propulsion device 6 touches the ground to land.
  • FIGS. 3 and 4 are partial cross-sectional views showing, in an enlarged manner, the connecting portion between the drone body and the pod in the drone system of the first embodiment, and FIG. 3 shows a cross section (XZ plane) parallel to the connecting member. 4 shows a cross section (XY plane) parallel to the horizontal wing.
  • the pod 10 is provided as a detachable mechanism 14 for detachably fixing the drone 1 on the pair of guide rails 8 and the side portions of the pod 10 (pod housing 12).
  • the sliders 14A and 14B and the fixing pin 15 for fixing the pod 10 (pod housing 12) to the guide rail 8 are provided.
  • the guide rail 8 is made of a long material having a hollow rectangular cross section with a notch 8A extending in the longitudinal direction on one surface.
  • the pair of guide rails 8 extend in the front-rear direction (X-axis direction) in the middle portion (the middle portion in the Z direction) of the horizontal blade 2 of the connecting member 4, and the surface on which the notch 8A of the guide rail 8 is formed is formed. It is attached so as to face each other.
  • the pair of sliders 14A and 14B are arranged in the middle of the side walls 22 of the pod housing 12 in the Z-axis direction so as to be aligned in the direction of the longitudinal axis L (FIG. 5).
  • Each of the sliders 14A and 14B has a cylindrical shaft portion that is vertically connected to the side wall 22, and a head portion that is provided at the tip of the shaft portion and has a diameter larger than that of the shaft portion.
  • the sliders 14 ⁇ /b>A and 14 ⁇ /b>B on each side wall 22 of the attachment/detachment mechanism 14 are arranged in the guide rail 8.
  • the fixing pin 15 penetrates the connecting member 4 from the outside of the connecting member 4, and the tip is inserted into the pod housing 12.
  • the fixing pin is provided inside the pod casing 12, and is inserted into the guide rail 8 from the inside to the outside of the pod casing 12 to fix the pod 10 to the guide rail 8 and the connecting member 4. It may be configured to be fixed to.
  • the fixing pin may be of a claw type, provided on the pod housing 12, and fixed by hooking the guide rail 8 like a hook by rotation.
  • the fixing pin may be provided on the guide rail 8 in a claw shape, or may be configured to be hooked and fixed like a hook by rotation.
  • the pod 10 rotates together with the drone 1 so that the longitudinal axis L becomes substantially horizontal. Then, when the drone 1 cruises horizontally, the pod 10 also moves with the drone 1 with the longitudinal axis L being substantially horizontal.
  • the guide rail 8 is detachably attached to the drone.
  • the guide rail 8 when the guide rail 8 is removable from the drone 1, the guide rail 8 can also be included as a part of the attachment/detachment mechanism 14 provided in the pod 10.
  • the guide rail 8 can be attached to a drone of a different model as needed, and can be attached to a device other than the drone as a pod transport device.
  • the attachment/detachment mechanism may be an electric or manual mechanism having a configuration using gears, hydraulic pressure, screws (screw shafts) and/or spring assists. It can also be a mechanism.
  • the structure of the attachment/detachment mechanism may be any configuration that can detachably fix the pod 10 to the drone 1.
  • the drone 1 is a tailsitter type, it is preferable to have a function of guiding the pod in the vertical direction with respect to the drone in the landing state.
  • FIGS. 5 and 6 are longitudinal sectional views showing the pod according to the first embodiment, FIG. 5 shows a state in which the support mechanism is stored, and FIG. 6 shows a state in which the support mechanism is expanded and grounded.
  • the pod 10 is provided in the pod housing 12, the support mechanism 16 that supports the pod housing 12 when the pod 10 is removed from the body of the drone and lands, and the pod housing 12.
  • the portion located above the X-axis direction in FIG. 1, that is, above the longitudinal axis L in FIG. 5, is called the head of the pod 10, and is the X-axis direction.
  • a portion located below, that is, below the longitudinal axis L is referred to as a tail portion of the pod 10.
  • the pod 10 stands on its own with the longitudinal axis L being at an angle ⁇ of about 30° to 60°, preferably about 45°.
  • the upper part in the figure with the longitudinal axis L as the boundary is called the back part of the pod 10, and the lower part in the figure is called the abdomen of the pod 10.
  • the support mechanism 16 has a main leg 34, a main wheel 36, and a slave wheel 48.
  • FIG. 7 is an elevational view when facing the main wheel direction
  • FIG. 8 is facing the secondary wheel direction.
  • the pod housing 12 of the pod 10 has a main cargo compartment 18 for storing cargo and a sub cargo compartment 20 formed therein, and faces the head as a whole as a whole. It has an elongated shape along a longitudinal axis L that extends.
  • the pod housing 12 may have a flat shape as a whole, and in this case, the axis connecting the head and the tail.
  • the cross-sectional shape of the pod housing 12 as viewed from the side is streamlined. Specifically, the pod housing 12 has a curved head portion, and is tapered from the center toward the tail portion along the longitudinal axis.
  • the cross-sectional shape of the pod 12 may be a teardrop type whose outline is shown in FIG.
  • the pod housing 12 is provided so as to connect a pair of side walls 22 located on both sides of the pod 10 in the lateral direction (Y-axis direction) and edges of the pair of side walls 22 on the back side.
  • a back wall 24 has a back wall 24, an abdominal wall 26 provided so as to connect the abdominal side edges of the pair of side walls 22, and inner walls 28A, 28B, 28C defining the main cargo compartment 18 and the sub cargo compartment 20.
  • a rib 30 extending from the tail portion side of the auxiliary cargo compartment 20 to the tail portion of the pod housing 12 may be provided.
  • the rib 30 is provided to reinforce the pod 10 and is not an essential member.
  • a concave storage portion 32 corresponding to the main leg 34 and the main wheel 36 is formed on the abdomen on the head side of the pod housing 12, and as will be described later, this storage portion 32 is formed.
  • a main leg 34 and a main wheel 36 are stored in the storage section 32.
  • the pod casing 12 has a main leg cover 38, and the main leg cover 38 forms a continuous surface with the abdominal wall 26 of the pod casing 12 in a state where the main legs 34 and the main wheels 36 are stored in the storage section 32. It is like this.
  • the main cargo compartment 18 and the sub cargo compartment 20 are separated by a partition plate 40. Portions on the front back of the pod housing 12 that correspond to the main cargo compartment 18 and the sub cargo compartment 20 are open, and a cargo compartment door 42 is attached to this opening.
  • the cargo room door 42 has a tail-side edge rotatably connected to the pod housing 12, and has a front end portion provided with a knob 42A for opening and closing.
  • the cargo compartment door 42 is in a stored state in which the opening of the pod housing 12 is closed, and in a deployed state in which the cargo room door 42 is rotated about 90 degrees to the tail side and is substantially vertical to the surface of the pod housing 12. Can rotate between.
  • the upper surface of the cargo compartment door 42 can be used as a temporary cargo storage area.
  • the plane portion of the cargo compartment door 42 is horizontal with respect to the vertical direction (Fig. 6) (shown by a chain double-dashed line in FIG. 6).
  • the partition plate 40 is configured to be movable in the front-rear direction along the longitudinal axis L direction. Based on the weight of the cargo loaded in the main cargo room 18 and the sub cargo room 20, the position of the partition plate 40 can be moved so that the weight of the cargo becomes a predetermined position in the front-rear direction.
  • a configuration is used in which fixing members for a plurality of partition plates 40 are provided in the front and rear directions in the main cargo room 18 and the sub cargo room 20, and the fixing members for fixing the partition plates 40 are changed.
  • the partition plate 40 is manually moved, but the present invention is not limited to this, and a weight scale is provided in the main cargo room 18 and the sub cargo room 20 to automatically adjust the position of the partition board 40. You may. By changing the position of the partition plate 40, the position of the cargo can be adjusted, and the position of the center of gravity can be adjusted.
  • the main leg 34 is attached to the pod housing 12 so that it can be stored in the front abdomen of the pod housing 12.
  • the main leg 34 is a pair of main legs that are laterally (horizontally) spaced from each other so that the base end portion is located on the tail side when stored in the storage portion 32.
  • Each main leg main body 34A has a base end connected to the abdomen of the pod housing 12 so as to be rotatable in the front-rear direction by a corresponding hinge 34D.
  • the main leg 34 is rotatable and deployable on the tail side of the pod housing 12.
  • the shaft 34B is fixed to the tip of the main leg body 34A, and a pair of main wheels 36 are rotatably provided on the shaft 34B with respect to both ends thereof.
  • a stopper 34C is provided at the center of the tip end portion of the main leg main body 34A, and by depressing the stopper 34C, the pair of main wheels 36 can be fixed so as not to rotate.
  • the storage section 32 formed in the pod housing 12 is formed in a shape corresponding to the main leg 34 and the main wheel 36, and when the main leg 34 is rotated toward the pod housing 12, the storage section 32 is formed.
  • a handle 50 is formed inside the storage section 32.
  • the handle 50 may be pushed or pulled as it is, or an extension carried by the user may be attached. By pushing and pulling the handle 50 or the extension, the pod 10 can be moved back and forth, left and right, and swung.
  • the handle 50 is fixed to the pod housing 12 in the present embodiment, it may be detachably attached to the pod housing 12.
  • a main landing gear cover 38 is attached to the outer surface of the main landing gear 34 when stored in the pod housing 12. When the main landing gear 34 and the main wheel 36 are housed in the storage section 32, the main landing gear cover 38 is attached. It forms a surface continuous with the outer peripheral surface of the body 12.
  • the main leg 34 is retracted toward the front (head) and the main wheel 36 is located in front of the pod 10, so that the center of gravity balance can be maintained forward during flight. Further, since the main landing gear 34 and the main wheels 36 can all be stored in the pod housing 12 by the main landing gear cover 38, air resistance and separation during flight can be reduced.
  • FIG. 9 is an enlarged sectional view in the longitudinal axis L direction showing the tail portion of the pod 10 according to the first embodiment in an enlarged manner.
  • the follower wheel 48 is attached to the tail portion of the pod housing 12.
  • the ribs 30 are provided inside the pod housing 12 as in the present embodiment, they may be attached to both sides of the tail end of the ribs 30.
  • G1 the ground in which the pod 10 is grounded so that the longitudinal axis L is vertical
  • G2 the ground in which the pod housing 12 is supported by the support mechanism such that the longitudinal axis L is inclined
  • Each of the follower wheels 48 is a so-called caster-type wheel that can swing to the left and right, and is attached to the rib 30 so as to be able to rotate and rotate in a horizontal plane when the pod 10 is landed.
  • the pod housing 12 includes a follower wheel cover 52 rotatably attached to the tail portion on the back side.
  • the follower wheel cover 52 is rotatable in the front-rear direction between a retracted state in which the follower wheel 48 is rotated to cover the follower wheel 48 and a deployed state in which the follower wheel 48 is exposed by rotating to the back side (head side). is there.
  • the follower wheel cover 52 is hollow inside and is rotatably connected to the rear end of the back wall 24 of the pod housing 12 by a hinge member 52A.
  • the rear end of the side wall 22 on the abdomen side is cut out ahead of the rear end of the back side, and the rear end of the abdominal wall 26 ends ahead of the rear end of the back wall 24. .. Further, the abdomen side of the follower wheel cover 52 extends to the head side rather than the back side. As a result, when the subordinate wheel cover 52 is rotated, a sufficient clearance with the subordinate wheel 48 can be secured and contact can be prevented.
  • the pod 10 is removed from the drone 1 as described later, when the pod housing 12 is tilted to the ground from a state where the longitudinal axis L extends in the vertical direction to a tilted state, the driven wheel cover 52 and the pod housing 12 are provided. Can be prevented from contacting the ground.
  • the driven wheel cover 52 constitutes a surface continuous with the outer surface of the pod housing 12 in a state where the driven wheel 48 is covered.
  • An impact-resistant bumper 54 made of an elastic material such as rubber may be attached to a portion on the back portion side (a portion on the abdomen portion side in the stored state) of the driven wheel cover 52 in the expanded state.
  • the rear end of the side wall 22 on the abdomen side is cut out forward of the back portion side, and the abdomen side of the slave wheel cover 52 extends to the head portion side rather than the back portion side. Therefore, the slave wheel 48 can be stored by the slave wheel cover 52.
  • the pod 10 includes a lock mechanism 56 for fixing the swing of the driven wheel 48.
  • the lock mechanism 56 includes a lock button 56A provided on the tail portion on the back side of the pod housing 12, a push force transmission mechanism 56B connected to the lock button 56A, and a slide member 56C coupled to the push force transmission mechanism 56B.
  • a caster lock 56D attached to the tail end of the slide member 56C, a fixing member 56F fixed inside the pod housing 12, and a spring member 56E interposed between the fixing member 56F and the slide member 56C. , Is provided.
  • the slide member 56C is provided so as to be slidable in the front-rear direction (vertical direction in FIG. 9) along the surface of the pod housing 12 on the abdomen side.
  • the spring member 56E is interposed between the slide member 56C and the fixed member 56F in the stretched state, whereby the slide member 56C is urged toward the head side.
  • the pushing force transmission mechanism 56B can move the slide member 56C to the tail side by operating the lock button 56A.
  • the slide member 56C is normally biased toward the head side by the spring material 56E. Therefore, the caster lock 56D moves toward the head side and is separated from the follower wheel 48, and the follower wheel 48 can freely swing and rotate.
  • the lock button 56A is pressed, the slide member 56C is moved to the tail side via the pressing force transmission mechanism 56B. As a result, the caster lock 56D abuts on the driven wheel 48, and the swing of the driven wheel 48 can be locked.
  • 10 to 15 are views for explaining a method of removing the pod of the first embodiment from the drone.
  • the user pulls out the fixing pin 15 from the pod housing 12.
  • the fixing of the pod 10 is released, the sliders 14A and 14B are guided into the guide rails 8, and the pod housing 12 can move in the vertical direction.
  • the slave wheel cover 52 is rotated to the back side to expose the slave wheel 48.
  • the lower slider 14B is disengaged from the guide rail 8 and the driven wheel 48 contacts the ground G, as shown in FIG.
  • the driven wheel 48 contacts the ground G
  • the user pushes the tail of the pod 10 from the abdomen side toward the back side.
  • the pod 10 starts to rotate such that the abdomen is located below and the longitudinal axis L is inclined from the vertical direction.
  • the main leg 34 is rotated and fixed to a deployed state in which it is substantially orthogonal to the abdomen.
  • the upper slider 14A is disengaged from the guide rail 8 and the main wheel 36 is grounded.
  • the main wheel 36 and the slave wheel 48 of the support mechanism 16 are grounded, and the pod 10 can be landed.
  • the main wheels 36 are held at a position separated from the pod housing 12 by expanding the main legs 34, and the pod housing 12 is tilted with respect to the ground by the support mechanism 16 with respect to the longitudinal axis L. Supported by.
  • the cargo compartment door 42 is opened and the main cargo compartment 18 and the sub cargo compartment 18 are opened as shown in FIG.
  • the cargo is taken out of the cargo room 20 and a new cargo is loaded.
  • the upper surface of the cargo room door 42 can be used as a temporary cargo storage area.
  • the partition plate 40 may be moved forward in the direction of the longitudinal axis L so that the cargo to be loaded in the main cargo compartment 18 is loaded such that the center of gravity of the cargo is located in front of the main cargo compartment 18. it can.
  • the pod 10 may be attached to the drone 1 by performing the reverse process of the removal.
  • the user attaches an extension to the handle 50 as necessary. Since the main wheel 36 and the sub wheels 48 (wheel group) are grounded in the landing state of the pod 10, the user can use the pod 10 as a hand truck for ground transportation by pushing and pulling the handle. Further, when it is desired to fix the swing of the driven wheel 48 of the pod 10 at the time of ground transportation, the lock mechanism 56 is operated by pushing the lock button 56A shown in FIG. 8 to swing the driven wheel 48. Can be fixed. Further, by depressing the stopper 34C shown in FIGS. 6 and 7, the pair of main wheels 36 can be fixed so as not to rotate and the pod 10 can be stopped.
  • the guide rail 8 in the attachment/detachment mechanism 14 of the pod 10 is provided in a carrier device such as a manned airplane, a four-wheeled vehicle, a two-wheeled vehicle, or a railway, the pod 10 can be fixed to these carrier devices. .. As a result, after landing of the drone 1, it is possible to refill the carrying device.
  • the pod housing 12 when the pod 10 is removed from the drone 1 and installed on the ground, the pod housing 12 is supported by the support mechanism 16 with the longitudinal axis L inclined with respect to the ground. Compared to the case where the longitudinal axis L of the body 12 is placed horizontally with respect to the ground, the cargo can be loaded and unloaded without the user bending down. Further, since the cargo is loaded with the longitudinal axis L of the pod 10 inclined to the ground by ⁇ degrees, when the drone 1 with the pod 10 attached thereto flies, the longitudinal axis L of the pod 10 is vertically and horizontally aligned. No matter which direction the pod 10 is fixed or transported, the cargo can be prevented from being damaged without greatly exceeding the horizontal angle ⁇ of the cargo or 90°- ⁇ degrees, whichever is larger.
  • the pod 10 stores the cargo in a state where the longitudinal axis L is inclined with respect to the landing surface, so that even if the drone 1 to which the pod 10 is attached is a tailsitter type drone, a horizontal flight is performed. Both at the time of landing and at takeoff and landing, the direction of the cargo does not change significantly more than 90 degrees from the time of loading, and damage to the cargo can be prevented.
  • the pod 10 since the pod 10 has a streamlined shape extending in the direction of the longitudinal axis L, the air resistance of the pod 10 during flight of the drone 1 is small, and long-distance transportation is possible.
  • the present embodiment has a streamlined shape, the present invention is not limited to this, and a teardrop type, a wing type, and a vertically symmetrical wing type also have similar effects.
  • the pod 10 in the present embodiment is attached to the body of the drone 1 such that the longitudinal axis L extends in the vertical direction of the X axis and the tail portion of the pod 10 is located downward when the drone 1 is landed. ..
  • the traveling direction of the drone 1 at the time of takeoff and landing coincides with the longitudinal axis L
  • the air resistance of the pod housing 12 becomes small, and long-distance transportation becomes possible.
  • the pod housing 12 is detached from the drone 1, the pod housing 12 is supported by the support mechanism 16 in a state where the longitudinal axis L is inclined with respect to the landing surface.
  • the difference between the postures of the pod 10 and the pod 10 is smaller than that in the case where the pod 10 is supported in an uninclined state, and the work of attaching/detaching the pod 10 to/from the drone 1 can be easily performed.
  • the support mechanism 16 has a wheel group that comes into contact with the ground when the pod 10 is detached from the drone 1, so that the user can easily carry out the pod 10 even when the pod 10 is detached from the drone 1. Can be transported over the ground.
  • the wheel group includes the follower wheels 48 attached to the tail portion of the pod housing 12.
  • the tail of the pod housing 12 may collide with the ground and be damaged.
  • the trailing wheel 48 first comes into contact with the ground when the drone 1 is disengaged, so that the tail portion of the pod housing 12 can be prevented from being damaged. Furthermore, by pushing the tail of the pod housing 12 horizontally from the abdomen side to the back side while the follower wheel 48 is grounded, the pod 10 can be easily and safely removed from the drone 1 while tilting.
  • the driven wheel 48 is configured to be retractable in the pod housing 12, storing the driven wheel 48 in the pod housing 12 during flight can reduce air resistance during flight. In addition, the risk of parts falling during flight can be reduced.
  • the wheel group of the pod 10 includes the main wheel 36 supported at a position separated from the pod housing 12 by the main leg 34 attached to the head side of the subordinate wheel 48 of the pod 10. .. Accordingly, with the pod 10 removed from the drone 1, the pod housing 12 can be supported with the head side positioned above. Further, when the drone 1 is detached from the drone 1, it is supported by the main leg 34 in an inclined state so that the head side of the pod housing 12 is located above. The difference in the pod's posture from the state is small. Therefore, the work of attaching/detaching the pod 10 to/from the drone 1 can be easily performed.
  • the main leg 34 and the main wheel 36 are configured to be retractable in the pod housing 12.
  • the main wheels 36 can be stored in the pod housing 12 during flight, so that air resistance during flight can be reduced.
  • the risk of parts falling during flight can be reduced.
  • the pod 10 has a handle on the head side of the pod housing 12 for the user to push and pull in a landed state, and the handle is attachable to and detachable from the pod housing 12. ..
  • the pod 10 can be used as a carrier truck and can be transported on the ground.
  • the tail side end on the abdomen side of the pod housing 12 is cut out to the head side rather than the back side, and the follower wheel cover 52 is cut.
  • the abdomen side is extended to the head side rather than the back side, but the configurations of the slave wheel 48 and the slave wheel cover 52 of the present invention are not limited to this.
  • FIG. 16 is an enlarged view showing the tail portion of the pod casing in the pod according to the second embodiment of the present invention.
  • the ground is indicated by G1 when the pod 110 is grounded so that the longitudinal axis L of the pod housing 112 is perpendicular to the ground plane, and the pod housing 112 is supported by the supporting mechanism so that the longitudinal axis L of the pod housing 112 is L.
  • the ground which is supported so as to incline is indicated by G2.
  • the edge of the tail portion of the pod casing 112 in the pod 110 extends in the longitudinal axis L direction.
  • an advancing member 152B that can move forward and backward along the back wall 124 is provided.
  • a trailing wheel cover 152 is attached to the tail end of the advancing member 152B via a hinge 152A.
  • a rib 130 projects rearward from an edge on the tail side of the pod housing 112, and an inclined surface 130A parallel to the ground G2 when the main wheel and the sub-wheel are in contact with the ground is formed at the lower end of the rib 130.
  • a follower wheel 148 of this inclined surface 130A is attached so as to be able to swing to the left and right within a plane parallel to the inclined surface 130A.
  • FIG. 17 is a diagram for explaining a method of changing the subordinate wheel cover of the pod from the retracted state to the deployed state according to the second embodiment.
  • the advancing member 152B is advanced toward the tail side along the back wall 124 of the pod housing 112.
  • the driven wheel cover 152 is rotated toward the back side around the hinge 152A.
  • the advancing member 152B is pulled back to the tip side.
  • the driven wheel cover 152 can be switched to a deployed state in which the driven wheel 148 is exposed.
  • the driven wheel 148 can be stored in the driven wheel cover 152, the deployed state and the stored state can be switched. Therefore, the size and arrangement of the driven wheel 148 are not affected by the driven wheel cover 152. I can decide.
  • FIG. 18 is an enlarged view showing the tail portion of the pod casing in the pod according to the third embodiment of the present invention.
  • FIG. 19 is an enlarged view showing the tail portion of the pod housing in the state where the pod according to the third embodiment of the present invention is landed.
  • G1 the ground in which the pod housing 212 is grounded so that the longitudinal axis is vertical
  • G2 the ground in which the pod housing 212 is supported by the support mechanism such that the longitudinal axis is inclined. Is indicated by G2.
  • the edge of the tail portion of the pod housing 212 in the pod 210 according to the third embodiment extends in the longitudinal axis L direction.
  • a trailing wheel cover 252 is attached to the tail side edge of the back wall of the pod housing 212 via a first hinge 252A.
  • Inside the pod housing 212 there is provided an advancing member 248A that can move forward and backward along the direction of the longitudinal axis from the end on the tail side.
  • a second hinge 248B is provided at the lower end on the back side of the advancing member 248A, and a follower wheel 248 is provided which is rotatable around the second hinge 248B.
  • the follower wheel cover 252 When the follower wheel cover 252 is closed, the follower wheel 248 is rotated toward the tip side (head side) about the second hinge 248B, and the advancing member 248A is retracted toward the tip side (head side). In this state, the follower wheel cover 252 is closed.
  • the driven wheel cover 252 To open the driven wheel cover 252 and change the driven wheel 248 to the installable state, operate as follows. First, as shown in FIG. 18, the driven wheel cover 252 is rotated toward the back side around the first hinge 252A. Next, the advancing member 248A is advanced toward the rear. Then, the driven wheel 248 is rotated rearward about the second hinge 248B. As a result, as shown in FIG. 19, the follower wheel 248 can be exposed to the outside in a state of being rotatable in a plane parallel to the ground G2.
  • the follower wheel 248 of the tip of the advancing member 248A that can move forward and backward along the direction of the longitudinal axis is provided, the distance between the abdomen of the pod housing 212 and the ground can be reduced. Can be large.

Abstract

Provided is a pod that is for transporting goods and that is suitable for drone transport. A pod 10 comprises: a pod housing 12 that is narrow and long and that has formed therein a main goods-chamber 18 and a sub goods-chamber 20 which are for holding goods; and a support mechanism 16 that, when the pod is grounded after being separated from a drone 1 which has landed, supports the pod housing 12 so that the longitudinal axis of the pod housing is inclined with respect to the surface of the ground.

Description

ポッド、及び、ドローンシステムPod and drone system
 本発明は、ポッド、及び、このポッドを備えたドローンシステムに関する。 The present invention relates to a pod and a drone system equipped with this pod.
 近年、無人の飛行体であるドローンが様々な業種で利用され始めており、貨物を配達する配送業務においても貨物の搬送手段としてドローンの使用が検討されている。このようなドローンとして例えば、特許文献1には貨物をアームにより吊り下げて搬送する飛行体が開示されている。 In recent years, drones, which are unmanned aerial vehicles, have begun to be used in various industries, and the use of drones as transportation means for cargo is also being considered in the delivery business for delivering cargo. As such a drone, for example, Patent Document 1 discloses an aircraft that suspends and conveys cargo by an arm.
特開2018-203226号公報JP, 2008-203226, A
 特許文献1に記載された飛行体は貨物を一つしか搭載することができず、大量搬送には適していない。また、ドローンの機体内に貨物室を設けて、複数の貨物を貨物室内に搭載することも考えられるが、このような場合には荷役作業中にはドローンを使用することができず、ドローンの稼働率が低下してしまう。このため、ドローンの稼働率を維持しながら、複数の貨物を搬送するためには、ポッド内部に貨物室が形成され、ドローンに着脱可能なポッドを用いることが考えられるが、そのようなドローン用のポッドはこれまで存在しなかった。 The aircraft described in Patent Document 1 can carry only one cargo and is not suitable for mass transportation. It is also conceivable to provide a cargo room in the body of the drone and load multiple cargoes in the cargo room, but in such a case the drone cannot be used during cargo handling work, and the drone The operating rate will decrease. Therefore, in order to carry multiple cargoes while maintaining the operating rate of the drone, it is conceivable that a cargo room is formed inside the pod and a removable pod is used for the drone. The pod has never existed.
 本発明は、上記の問題に鑑みなされたものであり、例えばドローンのような搬送装置による搬送に適した貨物搬送用のポッド、及び、このポッドを備えたドローンシステムを提供することである。 The present invention has been made in view of the above problems, and is to provide a pod for carrying a cargo suitable for carrying by a carrying device such as a drone, and a drone system including the pod.
 本発明の一側面によれば、貨物を格納し搬送するためのポッドであって、貨物を格納するための貨物室が内部に形成された細長形状又は扁平形状のポッド筐体と、ポッドを地面に設置する際に、ポッド筐体の軸線が地面に対して傾斜した状態となるように、当該ポッド筐体を支持する支持機構と、を備える、ことを特徴とする。
 好ましくは、ポッドは搬送装置に着脱可能である。
According to one aspect of the present invention, there is provided a pod for storing and transporting cargo, which is an elongated or flat pod housing having a cargo compartment for storing the cargo formed therein, and a pod for grounding. And a support mechanism that supports the pod housing so that the axis of the pod housing is inclined with respect to the ground when installed.
Preferably, the pod is removable from the carrier.
 上記構成によれば、例えばドローンをポッドの搬送装置として使う場合に、ポッドが搬送装置から取り外されて地面に設置される際に、ポッド筐体が支持機構により、軸線が地面に対して傾斜した状態で支持される。このため、ポッド筐体の軸線が地面に対して水平に置かれる場合よりも、使用者(配達員や作業員を含む)が腰をかがめることなく、貨物の積載及び取出作業を行うことができる。 According to the above configuration, when the drone is used as a transport device for the pod, for example, when the pod is removed from the transport device and installed on the ground, the axis of the pod is tilted with respect to the ground by the support mechanism. Supported by the state. Therefore, compared to the case where the axis line of the pod housing is placed horizontally with respect to the ground, the user (including the delivery person and the worker) can carry out cargo loading and unloading work without bending over. ..
 好ましくは、搬送装置はドローンである。
 このような構成によれば、ポッド筐体の軸線が地面に対して傾斜した状態で貨物を積載するので、ポッドを取り付けたドローンが飛行する際に、ポッドの軸線が略鉛直方向、又は、略鉛直方向に直行する略水平方向に向いた飛行状態となっても、ポッド筐体内に積載された貨物の向きが積載時から大きく変化することがなく、貨物の破損を防止できる。
Preferably the carrier is a drone.
According to such a configuration, since the cargo is loaded with the axis of the pod housing inclined with respect to the ground, when the drone with the pod attached flies, the axis of the pod is substantially vertical or substantially Even if the flight state is directed in a substantially horizontal direction, which is orthogonal to the vertical direction, the direction of the cargo loaded in the pod housing does not change significantly from the time of loading, and damage to the cargo can be prevented.
 好ましくは、ドローンは、ドローンの頭部が飛行方向に沿って前方に位置し、尾部が飛行方向に沿って後方に位置するように水平飛行し、かつ、ドローンの尾部が鉛直方向下方に位置するように鉛直方向に離着陸するテイルシッター型ドローンである。 Preferably, the drone flies horizontally such that the head of the drone is located forward in the flight direction and the tail is located rearward in the flight direction, and the tail of the drone is located vertically downward. It is a tailsitter drone that takes off and land vertically.
 上記構成によれば、ポッド筐体の軸線が地面に対して傾斜した状態で貨物を格納することにより、ドローンの水平飛行時にポッドの軸線が水平方向に向いても、離着陸時にポッドの軸線が鉛直方向に向いても、ポッドに積載された貨物の向きの変化を積載時から90度未満に抑えられ、貨物の破損を防止できる。 According to the above configuration, by storing the cargo in a state where the axis of the pod housing is inclined with respect to the ground, even if the axis of the pod is oriented horizontally during horizontal flight of the drone, the axis of the pod is vertically aligned during takeoff and landing. Even when facing the direction, the change in the direction of the cargo loaded in the pod can be suppressed to less than 90 degrees from the time of loading, and the cargo can be prevented from being damaged.
 好ましくは、ポッド筐体は、軸線の方向に延びる流線形状を有する。
 上記構成によれば、例えばドローンをポッドの搬送装置として使う場合に、ドローンの飛行時におけるポッド筐体の空気抵抗が小さくなり、長距離搬送が可能になる。
Preferably, the pod housing has a streamlined shape extending in the axial direction.
According to the above configuration, for example, when the drone is used as a transport device for a pod, the air resistance of the pod housing during flight of the drone is reduced, and long-distance transport is possible.
 好ましくは、ポッド筐体は、頭部と尾部を有し、ポッドは、ドローンが着陸した状態で、軸線が上下方向に延び、ポッド筐体の尾部が下方に位置するように、ドローンの機体に取り付けられている。
 上記構成によれば、ドローンの離着陸時の進行方向と軸線が一致し、ポッド筐体の空気抵抗が小さくなり、長距離搬送が可能になる。また、ドローンから取り外された際にポッド筐体が支持機構により、軸線が着地面に対して傾斜した状態で支持されるため、ドローンの機体への取付状態と、取外状態とのポッドの姿勢の差が非常に小さい。このため、ポッドのドローンへの取付、取外作業を容易に行うことができる。
Preferably, the pod housing has a head and a tail portion, and the pod is attached to the body of the drone so that the axis extends vertically and the tail portion of the pod housing is located downward when the drone is landed. It is installed.
According to the above configuration, the traveling direction of the drone during takeoff and landing coincides with the axis line, the air resistance of the pod housing is reduced, and long-distance transportation is possible. In addition, when the pod is removed from the drone, the pod housing is supported by the support mechanism with its axis inclined with respect to the landing surface.Therefore, the attitude of the pod when it is attached to the aircraft and when it is removed Difference is very small. Therefore, it is possible to easily attach and remove the pod to and from the drone.
 好ましくは、支持機構は、ポッドを地面に設置する際に、地面に接地する車群を有する。
 上記構成の本発明によれば、例えばドローンをポッドの搬送手段として使うとき、搬送手段から取り外された際においても、使用者が容易にポッドを地上搬送することができる。
Preferably, the support mechanism has a group of vehicles that come into contact with the ground when the pod is installed on the ground.
According to the present invention having the above-described configuration, for example, when the drone is used as a transporting means for the pod, the user can easily transport the pod to the ground even when the drone is detached from the transporting means.
 好ましくは、ポッド筐体は、頭部と尾部を有し、車輪群は、ポッド筐体の尾部に取り付けられた第1の車輪を含む。
 例えばドローンをポッドの搬送手段として使うとき、ポッド筐体の軸線が上下方向に延びた状態のポッドを搬送手段から離脱させると、ポッド筐体の尾部が地面に衝突して破損するおそれがある。これに対して、上記構成によれば、搬送手段から離脱させた際に、まず第1の車輪が接地するため、ポッド筐体の尾部の破損を防止できる。さらに、第1の車輪が接地した状態で、ポッド筐体の尾部を地面に対して水平方向に押すことで、容易にかつ安全にポッド筐体を傾斜させながらドローンから取り外すことができる。
Preferably, the pod housing has a head and a tail, and the wheel group includes a first wheel mounted on the tail of the pod housing.
For example, when a drone is used as a transporting means for a pod, if the pod with the axis of the pod housing extending in the vertical direction is removed from the transporting means, the tail of the pod housing may collide with the ground and be damaged. On the other hand, according to the above configuration, the first wheel first comes into contact with the ground when the carrier is detached from the transport means, so that the tail portion of the pod housing can be prevented from being damaged. Further, by pushing the tail portion of the pod housing horizontally with respect to the ground while the first wheel is grounded, the pod housing can be easily and safely removed from the drone while tilting.
 好ましくは、第1の車輪は、ポッド筐体に格納可能に構成されている。
 上記構成によれば、例えばドローンをポッドの搬送手段として使う場合に、飛行時には第1の車輪をポッド筐体に格納することができるため、飛行時における空気抵抗を減らすことができる。また、飛行時における部品の落下などの危険性を小さくすることができる。
Preferably, the first wheel is configured to be retractable in the pod housing.
According to the above configuration, when the drone is used as a transporting means for the pod, for example, the first wheel can be stored in the pod housing during flight, so that air resistance during flight can be reduced. In addition, the risk of parts falling during flight can be reduced.
 好ましくは、ポッド筐体は、第1の車輪よりも頭部側に主脚を備え、車輪群は、主脚により、ポッド筐体から離間した位置に支持される第2の車輪を含む。
 上記構成によれば、例えばドローンをポッドの搬送装置として使うとき、ポッドをドローンから取り外した状態で、ポッド筐体を頭部側が上方に位置した状態で支持することができる。また、ドローンから取り外された際に、主脚により、ポッド筐体の頭部側が上方に位置するように傾斜した状態で支持されるため、ドローンの機体への取付状態と、取外状態とのポッドの姿勢の差が小さい。このため、ポッドのドローンへの着脱作業を容易に行うことができる。
Preferably, the pod housing includes a main leg closer to the head than the first wheel, and the wheel group includes a second wheel supported by the main leg at a position separated from the pod housing.
According to the above configuration, when the drone is used as a transport device for the pod, for example, it is possible to support the pod housing with the head side positioned upward with the pod removed from the drone. Also, when detached from the drone, the main leg supports the head side of the pod housing in a tilted state so that it is located above, so that the drone can be attached to the fuselage and removed. Pod posture difference is small. Therefore, it is possible to easily attach/detach the pod to/from the drone.
 好ましくは、主脚及び第2の車輪はポッド筐体に格納可能に構成されている。
 上記構成によれば、例えばドローンをポッドの搬送手段として使うとき、飛行時には第2の車輪をポッド筐体に格納することができるため、飛行時における空気抵抗を減らすことができる。また、飛行時における部品の落下などの危険性を小さくすることができる。
Preferably, the main leg and the second wheel are configured to be retractable in the pod housing.
According to the above configuration, when the drone is used as a transporting means for the pod, for example, the second wheel can be stored in the pod housing during flight, so that air resistance during flight can be reduced. In addition, the risk of parts falling during flight can be reduced.
 好ましくは、さらに、ポッド筐体の頭部側に、使用者が地面上で押し引きするためのハンドルを有し、ハンドルはポッド筐体に対して着脱可能、又は、ポッド筐体内に格納可能である。
 上記構成によれば、車輪群が接地した状態でハンドルを押し引きすることにより、ポッドを搬送台車として用いて地上搬送することができる。
Preferably, a handle for pushing and pulling by the user on the ground is further provided on the head side of the pod housing, and the handle can be attached to and detached from the pod housing or can be stored in the pod housing. is there.
According to the above configuration, by pushing and pulling the handle while the wheel group is grounded, the pod can be used as a carrier truck and can be transported on the ground.
 本発明の一側面によるドローンシステムは、ドローンとドローンに着脱可能な上記のポッドと、を備える。 A drone system according to one aspect of the present invention includes a drone and the above-mentioned pod that is attachable to and detachable from the drone.
 本発明によれば、ドローンのような搬送装置による搬送に適した貨物搬送用のポッド、及び、このポッドを備えたドローンシステムが提供される。 According to the present invention, there is provided a cargo transport pod suitable for transport by a transport device such as a drone, and a drone system including the pod.
第1実施形態のポッド搬送システムで、ポッドの搬送に用いられるドローンの一例を示し、離着陸姿勢における側面図であり、水平巡航姿勢における上面図である。FIG. 3 is a side view in a take-off and landing posture showing an example of a drone used for transporting a pod in the pod transport system of the first embodiment, and a top view in a horizontal cruise posture. 第1実施形態のポッド搬送システムで、ポッドの搬送に用いられるドローンの一例を示し、離着陸姿勢における側面図であり、水平巡行姿勢における側面図である。In the pod transport system of the first embodiment, an example of a drone used for transporting pods is shown, and is a side view in a takeoff and landing posture, and is a side view in a horizontal cruise posture. 第1実施形態のドローンシステムにおけるドローンの機体と、ポッドとの接続部を拡大して示す部分断面図であり、連結部材に平行な断面を示す。It is a fragmentary sectional view which expands and shows the connection part of the drone body and pod in the drone system of 1st Embodiment, and shows the cross section parallel to a connection member. 第1実施形態のドローンシステムにおけるドローンの機体と、ポッドとの接続部を拡大して示す部分断面図であり、水平翼に平行な断面を示す。It is a fragmentary sectional view which expands and shows the connection part of the drone body and pod in the drone system of 1st Embodiment, and shows the cross section parallel to a horizontal wing. 第1実施形態によるポッドを示す長手方向断面図であり、支持機構を格納した状態を示す。FIG. 4 is a longitudinal sectional view showing the pod according to the first embodiment, showing a state in which a support mechanism is stored. 第1実施形態によるポッドを示す長手方向断面図であり、支持機構を展開して接地した状態を示す。FIG. 3 is a longitudinal sectional view showing the pod according to the first embodiment, showing a state in which the support mechanism is expanded and grounded. 第1実施形態によるポッドを示す立面図であり、頭部側から見た立面図である。It is an elevation view showing the pod according to the first embodiment, and is an elevation view seen from the head side. 第1実施形態によるポッドを示す立面図であり、尾部側から見た立面図である。It is an elevation view showing the pod according to the first embodiment, and is an elevation view seen from the tail side. 第1実施形態によるポッドの尾部を拡大して示す長手方向の拡大断面図である。FIG. 3 is an enlarged cross-sectional view in a longitudinal direction showing an enlarged tail portion of the pod according to the first embodiment. ドローンから取り外す方法を説明するための図(その1)である。It is a figure (the 1) for demonstrating the method to remove from a drone. ドローンから取り外す方法を説明するための図(その2)である。It is a figure (the 2) for explaining the method of removing from a drone. ドローンから取り外す方法を説明するための図(その3)である。It is a figure (the 3) for explaining how to remove from a drone. ドローンから取り外す方法を説明するための図(その4)である。It is a figure (the 4) for explaining how to remove from a drone. ドローンから取り外す方法を説明するための図(その5)である。It is a figure (the 5) for explaining how to remove from a drone. ドローンから取り外す方法を説明するための図(その6)である。It is a figure (the 6) for explaining a method of removing from a drone. 第2実施形態によるポッドにおけるポッド筐体の尾部を拡大して示す図である。It is a figure which expands and shows the tail part of the pod housing|casing in the pod by 2nd Embodiment. 第2実施形態によるポッドの従輪カバーを格納状態から展開状態に変更する方法を説明するための図である。It is a figure for explaining a method of changing a follower wheel cover of a pod from a stowed state to a deployment state by a 2nd embodiment. 第3実施形態によるポッドにおけるポッド筐体の尾部を拡大して示す図である。It is a figure which expands and shows the tail part of the pod housing|casing in the pod by 3rd Embodiment. 第3実施形態によるポッドが着地した状態のポッド筐体の尾部を拡大して示す図である。It is a figure which expands and shows the tail part of the pod housing|casing in the state where the pod by 3rd Embodiment landed. 別の実施形態によるポッドのティアドロップ型の輪郭を示す。6 shows a teardrop-shaped profile of a pod according to another embodiment. 別の実施形態によるポッドの翼型の輪郭を示す。7 shows an airfoil profile of a pod according to another embodiment. 別の実施形態によるポッドの上下対称翼型の輪郭を示す。6 shows a vertically symmetrical airfoil profile of a pod according to another embodiment.
 以下、本発明の第1実施形態によるポッド及びドローンシステムについて詳細に説明する。本実施形態のドローンシステムは、ポッドと、搬送装置としてのドローンとにより構成される。なお、搬送装置としては、ドローンのみならず、有人の飛行機、四輪自動車、二輪自動車、鉄道などの移動可能な装置が想定される。 The pod and drone system according to the first embodiment of the present invention will be described in detail below. The drone system of this embodiment includes a pod and a drone as a carrier device. It should be noted that not only a drone but also a movable device such as a manned airplane, a four-wheeled vehicle, a two-wheeled vehicle, or a railway is assumed as the transportation device.
 図1及び図2は、第1実施形態のポッド搬送システムで、ポッドの搬送に用いられるドローンの一例を示す。図1は離着陸姿勢における正面図であり、水平巡航姿勢における上面図である。図1をドローン1の離着陸時の正面図としたとき、上下方向或いは鉛直方向をX軸で示し、横方向或いは水平方向をY軸で示す。図1をドローン1の水平巡行姿勢における上面図とみるとき、前後方向をX軸で示し、横方向をY軸で示す。図2は、離着陸姿勢における側面図であり、水平巡行姿勢における側面図である。図2を、離着陸姿勢における側面図としたとき、上下方向或いは鉛直方向をX軸で示す。図2をドローン1の水平巡航姿勢における側面図としたとき、前後方向或いは水平方向をX軸で示し、上下方向或いは鉛直方向をZ軸で示す。本実施形態のドローン1における、図1及び図2におけるX軸方向の上方を頭部又は頭部側、或いは前方といい、下方を尾部又は尾部側、或いは後方という。 1 and 2 show an example of a drone used for carrying a pod in the pod carrying system according to the first embodiment. FIG. 1 is a front view in a takeoff and landing attitude, and is a top view in a horizontal cruise attitude. When FIG. 1 is a front view of the drone 1 during takeoff and landing, the vertical direction or the vertical direction is indicated by the X axis, and the lateral direction or the horizontal direction is indicated by the Y axis. When FIG. 1 is viewed as a top view of the drone 1 in a horizontal cruising posture, the longitudinal direction is indicated by the X axis and the lateral direction is indicated by the Y axis. FIG. 2 is a side view in a takeoff/landing attitude, and is a side view in a horizontal cruise attitude. When FIG. 2 is a side view in the takeoff and landing attitude, the vertical direction or the vertical direction is indicated by the X axis. When FIG. 2 is a side view of the drone 1 in the horizontal cruising posture, the front-rear direction or the horizontal direction is indicated by the X axis, and the vertical direction or the vertical direction is indicated by the Z axis. In the drone 1 of the present embodiment, the upper side in the X-axis direction in FIGS. 1 and 2 is called the head or the head side, or the front, and the lower side is the tail, the tail side, or the rear.
 ドローン1は、いわゆるテイルシッター型ドローンである。すなわち、ドローン1は、尾部が着地面に接するようにX軸方向(すなわち上下方向或いは鉛直方向)に離着陸を行う。また、ドローン1は、XY平面が水平になり、Z軸方向が鉛直方向となるような姿勢で、頭部が水平方向前方に位置し、尾部が水平方向後方に位置した状態で水平巡航する。 Drone 1 is a so-called tailsitter drone. That is, the drone 1 performs takeoff and landing in the X-axis direction (that is, the vertical direction or the vertical direction) so that the tail contacts the landing surface. Further, the drone 1 horizontally cruises in a posture in which the XY plane is horizontal and the Z-axis direction is vertical, with the head positioned horizontally in the front and the tail positioned horizontally in the rear.
 図1及び図2に示すドローン1は、図1のXY平面内を伸びるように設けられ、図2における上下方向(Z軸方向)に所定の距離離間するように平行に配置された一対の水平翼2と、図2のXZ平面内を延びるように設けられ、図1における横方向(Y軸方向)に所定の距離離間するように平行に配置されて一対の水平翼2を連結する、一対の連結部材4を備える。更に、ドローン1は、一対の水平翼2の横方向(図1中のY軸方向)の両側端部に取り付けられた4機の推進装置6を備える。一対の水平翼2は、水平飛行時に揚力を生じるような流線形又は翼型を有しており、前方(X軸方向の頭部側或いは前方)先端が曲線形状であり、後方(X軸方向の尾部側或いは後方)の端部が先端より尖った形状となっている。一対の連結部材4は、一対の水平翼2の中心から左右等距離の位置において、水平翼2の間を結ぶように取り付けられている。一対の連結部材4は、例えば、巡航方向に延びる流線形状又は翼型になっている。第1実施形態におけるポッド10は、ドローン1に取り付けられる場合、一対の連結部材4の間に固定され、一対の水平翼2の間に位置する。 The drone 1 shown in FIG. 1 and FIG. 2 is provided so as to extend in the XY plane of FIG. 1, and is a pair of horizontals arranged in parallel so as to be separated by a predetermined distance in the vertical direction (Z-axis direction) in FIG. A pair of blades 2 are provided to extend in the XZ plane of FIG. 2 and are arranged in parallel so as to be separated by a predetermined distance in the lateral direction (Y-axis direction) of FIG. The connecting member 4 of FIG. Further, the drone 1 includes four propulsion devices 6 attached to both lateral ends of the pair of horizontal wings 2 (Y-axis direction in FIG. 1). The pair of horizontal wings 2 have a streamline shape or a wing shape that generates lift during horizontal flight, and the front (front side in the X-axis direction or front) tip has a curved shape, and the rear (X-axis direction). The end on the tail side or the rear) is sharper than the tip. The pair of connecting members 4 are attached so as to connect the horizontal wings 2 at positions equidistant from each other at the center of the pair of horizontal wings 2. The pair of connecting members 4 has, for example, a streamline shape or a wing shape extending in the cruise direction. When attached to the drone 1, the pod 10 in the first embodiment is fixed between the pair of connecting members 4 and is located between the pair of horizontal wings 2.
 図1及び図2に示す推進装置6は、それぞれ、推進装置本体6Aと、推進装置本体6Aの前端部(X軸方向の頭部側或いは前方の端)に設けられたプロペラ6Dと、推進装置本体6Aの後端部(X軸方向の尾部側或いは後方の端部)から横方向(Y軸方向)に両側に延びるように設けられた一対の水平尾翼6Bと、推進装置本体6Aの後端部から上下方向(Z軸方向)に延びるように設けられた垂直尾翼6Cと、を備える。プロペラ6DはY軸方向の回転軸を中心に回動可能に推進装置本体6Aに取り付けられている。また、水平尾翼6Bはそれぞれ独立にXY平面(水平巡航時の水平面)に対して角度を変更可能に推進装置本体6Aに取り付けられている。垂直尾翼6CはXZ平面(水平巡航時の前後方向の鉛直面)に対して角度を変更可に構成されている。各推進装置6は、制御装置6Eを備え、各推進装置6のプロペラ6Dの角度及び回転数と、水平尾翼6Bの角度と、垂直尾翼6Cの角度とは制御装置6Eにより制御される。 The propulsion device 6 shown in FIGS. 1 and 2 includes a propulsion device body 6A, a propeller 6D provided at a front end portion (a head side or a front end in the X-axis direction) of the propulsion device body 6A, and a propulsion device, respectively. A pair of horizontal tail fins 6B provided so as to extend in the lateral direction (Y-axis direction) from the rear end of the main body 6A (the tail end side in the X-axis direction or the rear end) to the rear end of the propulsion device main body 6A. Vertical tail 6C provided so as to extend in the up-down direction (Z-axis direction) from the section. The propeller 6D is attached to the propulsion device main body 6A so as to be rotatable about a rotation axis in the Y-axis direction. Further, the horizontal stabilizers 6B are independently attached to the propulsion device main body 6A so that their angles can be changed with respect to the XY plane (horizontal plane during horizontal cruise). The vertical stabilizer 6C is configured so that the angle can be changed with respect to the XZ plane (vertical plane in the front-back direction during horizontal cruise). Each propulsion device 6 includes a control device 6E, and the angle and rotation speed of the propeller 6D of each propulsion device 6, the angle of the horizontal stabilizer 6B, and the angle of the vertical stabilizer 6C are controlled by the control device 6E.
 図1に示すドローン1は、上方に推進装置6のプロペラ6Dが位置し、水平尾翼6Bと垂直尾翼6Cが備えられている推進装置6の後端部が地面に接地した状態で、着陸する。離陸時には、プロペラ6Dを上方に向けた状態で回転させることにより離陸する。そして、上空でプロペラ6Dの角度を変更するとともに、水平尾翼6Bの角度を調整することにより、図2のX軸方向が水平方向となる水平巡航へと移行する。ドローン1は、水平巡航状態では、頭部が水平方向前方に位置し、尾部が水平方向後方に位置する。そして、プロペラ6Dを回転させて機体を推進させることにより、水平翼2が揚力を受ける。また、水平巡航状態から、プロペラ6Dの回転軸の角度を変更するとともに、水平尾翼6Bの角度を調整することにより、頭部が鉛直方向上方に位置し、尾部が鉛直方向下方に位置する着陸状態へと移行する。そして、プロペラ6Dの回転数を調整することにより、徐々に降下し、推進装置6の後端部が地面に接地することにより着陸する。 The drone 1 shown in FIG. 1 lands with the propeller 6D of the propulsion device 6 positioned above and the rear end of the propulsion device 6 including the horizontal stabilizer 6B and the vertical stabilizer 6C grounded on the ground. At takeoff, the propeller 6D is rotated with the propeller 6D facing upward to take off. Then, by changing the angle of the propeller 6D in the sky and adjusting the angle of the horizontal stabilizer 6B, a transition is made to horizontal cruise in which the X-axis direction in FIG. 2 is horizontal. In the horizontal cruising state, the head of the drone 1 is located in the front in the horizontal direction, and the tail is located in the rear in the horizontal direction. Then, by rotating the propeller 6D and propelling the machine body, the horizontal wing 2 receives lift. Also, by changing the angle of the rotation axis of the propeller 6D and adjusting the angle of the horizontal tail 6B from the horizontal cruising state, the head is located vertically above and the tail is located vertically below. Transition to. Then, by adjusting the number of revolutions of the propeller 6D, the propeller 6D gradually descends, and the rear end of the propulsion device 6 touches the ground to land.
 図3及び図4は、第1実施形態のドローンシステムにおけるドローンの機体と、ポッドとの接続部を拡大して示す部分断面図であり、図3は連結部材に平行な断面(XZ平面)を示し、図4は水平翼に平行な断面(XY平面)を示す。図3及び図4に示すように、ポッド10は、ドローン1に着脱可能に固定するための着脱機構14として、一対のガイドレール8と、ポッド10(ポッド筐体12)の側部に設けられたスライダー14A、14Bと、ガイドレール8にポッド10(ポッド筐体12)を固定する固定ピン15と、を備える。ガイドレール8は、一方の面に長手方向に延びる切込8Aが形成された中空の矩形状断面を有する長尺材からなる。一対のガイドレール8は、連結部材4の水平翼2の中間部(Z方向の中間部)に前後方向(X軸方向)に延び、かつ、ガイドレール8の切込8Aが形成された面が対向するように取り付けられている。また、一対のスライダー14A、14Bはポッド筐体12の各側壁22のZ軸方向中間部に長手軸線L(図5)の方向に並ぶように配置されている。各スライダー14A、14Bは、側壁22に垂直に接続された円柱状の軸部と、軸部の先端に設けられ、軸部よりも径が大きな頭部とを有する。 3 and 4 are partial cross-sectional views showing, in an enlarged manner, the connecting portion between the drone body and the pod in the drone system of the first embodiment, and FIG. 3 shows a cross section (XZ plane) parallel to the connecting member. 4 shows a cross section (XY plane) parallel to the horizontal wing. As shown in FIGS. 3 and 4, the pod 10 is provided as a detachable mechanism 14 for detachably fixing the drone 1 on the pair of guide rails 8 and the side portions of the pod 10 (pod housing 12). The sliders 14A and 14B and the fixing pin 15 for fixing the pod 10 (pod housing 12) to the guide rail 8 are provided. The guide rail 8 is made of a long material having a hollow rectangular cross section with a notch 8A extending in the longitudinal direction on one surface. The pair of guide rails 8 extend in the front-rear direction (X-axis direction) in the middle portion (the middle portion in the Z direction) of the horizontal blade 2 of the connecting member 4, and the surface on which the notch 8A of the guide rail 8 is formed is formed. It is attached so as to face each other. The pair of sliders 14A and 14B are arranged in the middle of the side walls 22 of the pod housing 12 in the Z-axis direction so as to be aligned in the direction of the longitudinal axis L (FIG. 5). Each of the sliders 14A and 14B has a cylindrical shaft portion that is vertically connected to the side wall 22, and a head portion that is provided at the tip of the shaft portion and has a diameter larger than that of the shaft portion.
 ドローン1にポッド10を取り付ける際には、図3及び図4に示すように、着脱機構14の各側壁22のスライダー14A、14Bを、ガイドレール8内に配置する。そして、固定ピン15を連結部材4の外側から連結部材4を貫通し、先端をポッド筐体12に挿入させる。これにより、ポッド10がドローン1に固定される。なお、固定ピンは、ポッド筐体12の内側に備えられ、ポッド筐体12の内側から外側に向かって、ガイドレール8に挿入されて、ポッド10を、ガイドレール8と固定された連結部材4に固定するように構成してもよい。この場合、固定ピンは、爪型で、ポッド筐体12に備えられ、回転によってガイドレール8をフックのようにひっかけて固定するように構成してもよい。また、固定ピンは、爪型でガイドレール8に備えられていてもよく、回転によってポッド筐体12をフックのようにひっかけて固定するように構成してもよい。 When attaching the pod 10 to the drone 1, as shown in FIGS. 3 and 4, the sliders 14</b>A and 14</b>B on each side wall 22 of the attachment/detachment mechanism 14 are arranged in the guide rail 8. Then, the fixing pin 15 penetrates the connecting member 4 from the outside of the connecting member 4, and the tip is inserted into the pod housing 12. As a result, the pod 10 is fixed to the drone 1. The fixing pin is provided inside the pod casing 12, and is inserted into the guide rail 8 from the inside to the outside of the pod casing 12 to fix the pod 10 to the guide rail 8 and the connecting member 4. It may be configured to be fixed to. In this case, the fixing pin may be of a claw type, provided on the pod housing 12, and fixed by hooking the guide rail 8 like a hook by rotation. The fixing pin may be provided on the guide rail 8 in a claw shape, or may be configured to be hooked and fixed like a hook by rotation.
 このように固定されることで、離着陸時には、ドローン1が上昇又は下降すると、ポッド10の頭部が上方を向いた状態でドローン1とともに上昇する。そして、ドローン1が水平巡航に移行すると、ドローン1とともにポッド10も長手軸線Lが略水平になるように回動する。そして、ドローン1が水平巡航すると、ポッド10も長手軸線Lが略水平な状態でドローン1とともに移動する。 By being fixed in this way, when the drone 1 rises or descends during takeoff and landing, it rises with the drone 1 with the head of the pod 10 facing upward. Then, when the drone 1 shifts to the horizontal cruise, the pod 10 rotates together with the drone 1 so that the longitudinal axis L becomes substantially horizontal. Then, when the drone 1 cruises horizontally, the pod 10 also moves with the drone 1 with the longitudinal axis L being substantially horizontal.
 本実施形態において、ガイドレール8は、ドローンに着脱可能に取り付けられている。このように、ガイドレール8がドローン1から着脱可能な場合には、ガイドレール8もポッド10に設けられた着脱機構14の一部として含めることができる。そのようなポッドによれば、ガイドレール8を、必要に応じて異なる機種のドローンに取り付けることができ、またポッドの搬送装置としてドローン以外の装置に取り付けることもできる。また、着脱機構は、上述のガイドレール、スライダー及び固定ピンを使った構成の機構以外にも、歯車、油圧、ねじ(スクリューシャフト)及び/或いはバネによる補助を使った構成を持つ電動或いは手動の機構にすることもできる。すなわち、着脱機構の構成はポッド10をドローン1に着脱可能に固定できる構成であればよい。ただし、ドローン1がテイルシッター型である場合には、着地状態のドローンに対してポッドを上下方向にガイドする機能を備えているのが好ましい。 In this embodiment, the guide rail 8 is detachably attached to the drone. As described above, when the guide rail 8 is removable from the drone 1, the guide rail 8 can also be included as a part of the attachment/detachment mechanism 14 provided in the pod 10. According to such a pod, the guide rail 8 can be attached to a drone of a different model as needed, and can be attached to a device other than the drone as a pod transport device. In addition to the mechanism using the guide rail, slider and fixing pin described above, the attachment/detachment mechanism may be an electric or manual mechanism having a configuration using gears, hydraulic pressure, screws (screw shafts) and/or spring assists. It can also be a mechanism. That is, the structure of the attachment/detachment mechanism may be any configuration that can detachably fix the pod 10 to the drone 1. However, when the drone 1 is a tailsitter type, it is preferable to have a function of guiding the pod in the vertical direction with respect to the drone in the landing state.
 次に、第1実施形態のポッドについて説明する。
 図5及び図6は、第1実施形態によるポッドを示す長手方向断面図であり、図5は支持機構を格納した状態を示し、図6は支持機構を展開して接地した状態を示す。図5及び図6に示すように、ポッド10は、ポッド筐体12と、ドローンの機体から取り外されて着地した際にポッド筐体12を支持する支持機構16と、ポッド筐体12に設けられたドローン1への着脱機構14と、を備える。図1に示されるドローン1と同様に、ポッド10においても、図1におけるX軸方向上方、つまり、図5における長手軸線L上方に位置する部分を、ポッド10の頭部といい、X軸方向下方、つまり長手軸線Lの下方に位置する部分を、ポッド10の尾部という。図6に示す接地した状態において、ポッド10は接地面に対して長手軸線Lが略30度から60度、好ましくは略45度の角度α度をもって自立する。図6に示されるポッド10において、長手軸線Lを境界にして図中上方にある部分をポッド10の背部といい、図中下方にある部分をポッド10の腹部という。支持機構16は、主脚34、主輪36、及び従輪48を有する。図6に示すポッド10の接地状態において、従輪48に対して主輪36が位置する方向を主輪方向、主輪36に対する従輪48が位置する方向を従輪方向という。図7及び図8は、第1実施形態によるポッド10を示す立面図であり、図7は主輪方向に対峙して見たときの立面図であり、図8は従輪方向に対峙して見たときの立面図である。
Next, the pod of the first embodiment will be described.
5 and 6 are longitudinal sectional views showing the pod according to the first embodiment, FIG. 5 shows a state in which the support mechanism is stored, and FIG. 6 shows a state in which the support mechanism is expanded and grounded. As shown in FIGS. 5 and 6, the pod 10 is provided in the pod housing 12, the support mechanism 16 that supports the pod housing 12 when the pod 10 is removed from the body of the drone and lands, and the pod housing 12. And a mechanism 14 for attaching and detaching the drone 1. Similar to the drone 1 shown in FIG. 1, in the pod 10 as well, the portion located above the X-axis direction in FIG. 1, that is, above the longitudinal axis L in FIG. 5, is called the head of the pod 10, and is the X-axis direction. A portion located below, that is, below the longitudinal axis L is referred to as a tail portion of the pod 10. In the grounded state shown in FIG. 6, the pod 10 stands on its own with the longitudinal axis L being at an angle α of about 30° to 60°, preferably about 45°. In the pod 10 shown in FIG. 6, the upper part in the figure with the longitudinal axis L as the boundary is called the back part of the pod 10, and the lower part in the figure is called the abdomen of the pod 10. The support mechanism 16 has a main leg 34, a main wheel 36, and a slave wheel 48. In the grounded state of the pod 10 shown in FIG. 6, the direction in which the main wheel 36 is located with respect to the slave wheel 48 is called the main wheel direction, and the direction in which the slave wheel 48 is located with respect to the main wheel 36 is called the slave wheel direction. 7 and 8 are elevational views showing the pod 10 according to the first embodiment, FIG. 7 is an elevational view when facing the main wheel direction, and FIG. 8 is facing the secondary wheel direction. FIG.
 図5に示されるように、ポッド10のポッド筐体12は、貨物を格納するための主貨物室18と、副貨物室20とが内部に形成されており、全体として頭部から尾部に向かって延びる長手軸線Lに沿った細長形状である。なお、ポッド筐体12は全体として扁平形状であってもよく、この場合には頭部と尾部を結ぶ方向が軸線となる。また、ポッド筐体12は、側方から見た断面形状が、流線形状である。具体的には、ポッド筐体12は、頭部が曲線状で湾曲しており、長手軸線に沿って中央から尾部に向かって先細りになっている。なお、ポッド12の断面形状としては、図20Aに輪郭を示すティアドロップ型、図20Bに輪郭を示す翼型又は、図20Cに輪郭を示す上下対称翼型としてもよい。ポッド筐体12は、図5から図8に示すように、ポッド10の横方向(Y軸方向)両側に位置する一対の側壁22と、一対の側壁22の背部側の縁を結ぶように設けられた背部壁24と、一対の側壁22の腹部側の縁を結ぶように設けられた腹部壁26と、主貨物室18及び副貨物室20を画定する内部壁28A、28B、28Cとを有する。補強のために副貨物室20の尾部側からポッド筐体12の尾部まで延びるリブ30を有していても良い。なお、リブ30は、ポッド10を補強するために設けられており、必須の部材ではない。 As shown in FIG. 5, the pod housing 12 of the pod 10 has a main cargo compartment 18 for storing cargo and a sub cargo compartment 20 formed therein, and faces the head as a whole as a whole. It has an elongated shape along a longitudinal axis L that extends. The pod housing 12 may have a flat shape as a whole, and in this case, the axis connecting the head and the tail. In addition, the cross-sectional shape of the pod housing 12 as viewed from the side is streamlined. Specifically, the pod housing 12 has a curved head portion, and is tapered from the center toward the tail portion along the longitudinal axis. The cross-sectional shape of the pod 12 may be a teardrop type whose outline is shown in FIG. 20A, a wing type whose outline is shown in FIG. 20B, or a vertically symmetrical wing type whose outline is shown in FIG. 20C. As shown in FIGS. 5 to 8, the pod housing 12 is provided so as to connect a pair of side walls 22 located on both sides of the pod 10 in the lateral direction (Y-axis direction) and edges of the pair of side walls 22 on the back side. Has a back wall 24, an abdominal wall 26 provided so as to connect the abdominal side edges of the pair of side walls 22, and inner walls 28A, 28B, 28C defining the main cargo compartment 18 and the sub cargo compartment 20. .. For reinforcement, a rib 30 extending from the tail portion side of the auxiliary cargo compartment 20 to the tail portion of the pod housing 12 may be provided. The rib 30 is provided to reinforce the pod 10 and is not an essential member.
 図5及び図6に示されるように、ポッド筐体12の頭部側の腹部には主脚34及び主輪36に対応した凹形状の格納部32が形成されており、後述するようにこの格納部32には、主脚34及び主輪36が格納されている。ポッド筐体12は主脚カバー38を有し、主脚カバー38は、格納部32に主脚34及び主輪36を格納した状態で、ポッド筐体12の腹部壁26と連続面を形成するようになっている。 As shown in FIGS. 5 and 6, a concave storage portion 32 corresponding to the main leg 34 and the main wheel 36 is formed on the abdomen on the head side of the pod housing 12, and as will be described later, this storage portion 32 is formed. A main leg 34 and a main wheel 36 are stored in the storage section 32. The pod casing 12 has a main leg cover 38, and the main leg cover 38 forms a continuous surface with the abdominal wall 26 of the pod casing 12 in a state where the main legs 34 and the main wheels 36 are stored in the storage section 32. It is like this.
 主貨物室18及び副貨物室20は仕切板40により区切られている。ポッド筐体12の前方背部の主貨物室18及び副貨物室20に当たる部位は開口しており、この開口には貨物室扉42が取り付けられている。貨物室扉42は、尾部側の縁がポッド筐体12に対して回動可能に接続されており、前方端部に開閉用のつまみ42Aが設けられている。貨物室扉42は、ポッド筐体12の開口を閉鎖した格納状態と、格納状態から90度程度、尾部側に回転し、ポッド筐体12の表面に対して略垂直になった展開状態との間で回動できる。この貨物室扉42は、展開した状態において、貨物室扉42の上面を一時的な貨物置場として利用することもできる。貨物室扉42を一時的な貨物置場として利用するためには、ポッド10の着地状態(長手軸線Lが傾斜した状態)において、貨物室扉42の平面部が鉛直方向に対して水平状態(図6において二点鎖線で示す)にまで開くようにすることが好ましく、水平状態よりも開かないことが好ましい。 The main cargo compartment 18 and the sub cargo compartment 20 are separated by a partition plate 40. Portions on the front back of the pod housing 12 that correspond to the main cargo compartment 18 and the sub cargo compartment 20 are open, and a cargo compartment door 42 is attached to this opening. The cargo room door 42 has a tail-side edge rotatably connected to the pod housing 12, and has a front end portion provided with a knob 42A for opening and closing. The cargo compartment door 42 is in a stored state in which the opening of the pod housing 12 is closed, and in a deployed state in which the cargo room door 42 is rotated about 90 degrees to the tail side and is substantially vertical to the surface of the pod housing 12. Can rotate between. When the cargo compartment door 42 is deployed, the upper surface of the cargo compartment door 42 can be used as a temporary cargo storage area. In order to use the cargo compartment door 42 as a temporary cargo storage area, when the pod 10 is landed (the longitudinal axis L is inclined), the plane portion of the cargo compartment door 42 is horizontal with respect to the vertical direction (Fig. 6) (shown by a chain double-dashed line in FIG. 6).
 仕切板40は長手軸線L方向に沿って前後方向に移動可能に構成されている。主貨物室18及び副貨物室20に積み込まれる貨物の重量に基づき、貨物の重量が前後方向に所定の位置となるように仕切板40の位置を移動させることができる。このような構成としては、主貨物室18及び副貨物室20内に前後方向に複数の仕切板40の固定部材を設けておき、仕切板40を固定する固定部材を変更する構成などを用いることができる。本実施形態では、仕切板40の移動は手動で行うこととしているが、これに限らず、主貨物室18及び副貨物室20に重量計を設けておき、自動で仕切板40の位置を調整してもよい。仕切板40の位置を変更することにより、貨物の位置を調整することができ、重心位置を調整することができる。 The partition plate 40 is configured to be movable in the front-rear direction along the longitudinal axis L direction. Based on the weight of the cargo loaded in the main cargo room 18 and the sub cargo room 20, the position of the partition plate 40 can be moved so that the weight of the cargo becomes a predetermined position in the front-rear direction. As such a configuration, a configuration is used in which fixing members for a plurality of partition plates 40 are provided in the front and rear directions in the main cargo room 18 and the sub cargo room 20, and the fixing members for fixing the partition plates 40 are changed. You can In the present embodiment, the partition plate 40 is manually moved, but the present invention is not limited to this, and a weight scale is provided in the main cargo room 18 and the sub cargo room 20 to automatically adjust the position of the partition board 40. You may. By changing the position of the partition plate 40, the position of the cargo can be adjusted, and the position of the center of gravity can be adjusted.
 図5から図8に示されている、ポッド筐体12の尾部に取り付けられた一対の従輪(第1の車輪)48、及び、主脚34の先端に取り付けられた一対の主輪(第2の車輪)36は、ポッド筐体12を支持する支持機構16に含まれる車輪群を構成する。 5 to 8, a pair of sub wheels (first wheels) 48 attached to the tail of the pod housing 12 and a pair of main wheels (second wheel) attached to the ends of the main legs 34 (second wheel). Wheels 36 of a wheel group included in the support mechanism 16 that supports the pod housing 12.
 主脚34は、ポッド筐体12の前方腹部に格納可能に、ポッド筐体12に取り付けられている。主脚34は、図5に示されるように、格納部32に格納した状態で基端部が尾部側に位置するように、横方向(水平方向)に離間して設けられた一対の主脚本体34Aと、主輪36が設けられた主脚本体34Aの先端に横方向(水平方向)に延びるように設けられたシャフト34Bと、を備える。各主脚本体34Aは、基端部がポッド筐体12の腹部に前後方向に回動可能に、対応するヒンジ34Dにより接続されている。図6に示すように、主脚34は、ポッド筐体12の尾部側に回動して展開可能である。主脚34が展開した状態で、ポッド10は主脚34によって、長手軸線Lと地面とがα度をなすように支持される。シャフト34Bは、主脚本体34Aの先端部に固定されており、このシャフト34Bの両端部には一対の主輪36がシャフト34Bに対して回転自在に設けられている。主脚本体34Aの先端部の中央には、ストッパー34Cが設けられており、このストッパー34Cを踏み込むことにより、一対の主輪36を回転しないように固定することができる。ポッド筐体12に形成されている格納部32は、主脚34及び主輪36に対応する形状に形成されており、主脚34をポッド筐体12に向けて回動させると、格納部32に主脚34及び主輪36を収容することができる。また、格納部32内には、ハンドル50が形成されている。このハンドル50には、そのまま押し引きしてもよいし、使用者が所持するエクステンションを取り付けることができる。ハンドル50又はエクステンションを押し引きすることにより、ポッド10を前後左右に移動させ旋回させることができる。なお、本実施形態では、ハンドル50はポッド筐体12に固定されているが、ポッド筐体12に着脱可能に構成されていてもよい。ポッド筐体12内に格納時の主脚34の外面側には、主脚カバー38が取り付けられており、主脚34及び主輪36を格納部32に収容すると、主脚カバー38がポッド筐体12の外周面と連続した面を構成する。 The main leg 34 is attached to the pod housing 12 so that it can be stored in the front abdomen of the pod housing 12. As shown in FIG. 5, the main leg 34 is a pair of main legs that are laterally (horizontally) spaced from each other so that the base end portion is located on the tail side when stored in the storage portion 32. A main body 34A and a shaft 34B provided at the tip of the main leg main body 34A provided with the main wheel 36 so as to extend in the lateral direction (horizontal direction). Each main leg main body 34A has a base end connected to the abdomen of the pod housing 12 so as to be rotatable in the front-rear direction by a corresponding hinge 34D. As shown in FIG. 6, the main leg 34 is rotatable and deployable on the tail side of the pod housing 12. With the main leg 34 deployed, the pod 10 is supported by the main leg 34 such that the longitudinal axis L and the ground form an angle of α degrees. The shaft 34B is fixed to the tip of the main leg body 34A, and a pair of main wheels 36 are rotatably provided on the shaft 34B with respect to both ends thereof. A stopper 34C is provided at the center of the tip end portion of the main leg main body 34A, and by depressing the stopper 34C, the pair of main wheels 36 can be fixed so as not to rotate. The storage section 32 formed in the pod housing 12 is formed in a shape corresponding to the main leg 34 and the main wheel 36, and when the main leg 34 is rotated toward the pod housing 12, the storage section 32 is formed. The main leg 34 and the main wheel 36 can be accommodated in. A handle 50 is formed inside the storage section 32. The handle 50 may be pushed or pulled as it is, or an extension carried by the user may be attached. By pushing and pulling the handle 50 or the extension, the pod 10 can be moved back and forth, left and right, and swung. Although the handle 50 is fixed to the pod housing 12 in the present embodiment, it may be detachably attached to the pod housing 12. A main landing gear cover 38 is attached to the outer surface of the main landing gear 34 when stored in the pod housing 12. When the main landing gear 34 and the main wheel 36 are housed in the storage section 32, the main landing gear cover 38 is attached. It forms a surface continuous with the outer peripheral surface of the body 12.
 このように、本実施形態では主脚34が前方(頭部)に向かって格納され、主輪36がポッド10の前方に位置するため、飛行時に重心バランスを前方に維持することができる。また、主脚34及び主輪36を主脚カバー38によって全てポッド筐体12内に格納することができるため、飛行時の空気抵抗及び剥離を減らすことができる。 As described above, in the present embodiment, the main leg 34 is retracted toward the front (head) and the main wheel 36 is located in front of the pod 10, so that the center of gravity balance can be maintained forward during flight. Further, since the main landing gear 34 and the main wheels 36 can all be stored in the pod housing 12 by the main landing gear cover 38, air resistance and separation during flight can be reduced.
 図9は、第1実施形態によるポッド10の尾部を拡大して示す長手軸線L方向の拡大断面図である。従輪48は、ポッド筐体12の尾部に取り付けられている。本実施形態にように、ポッド筐体12の内部にリブ30が設けられている場合にはリブ30の尾部側端部の両側に取り付けるとよい。なお、図中、長手軸線Lが垂直になるようにポッド10が接地した状態の地面をG1で示し、ポッド筐体12が支持機構により長手軸線Lが傾斜するように支持された状態の地面をG2で示す。 FIG. 9 is an enlarged sectional view in the longitudinal axis L direction showing the tail portion of the pod 10 according to the first embodiment in an enlarged manner. The follower wheel 48 is attached to the tail portion of the pod housing 12. When the ribs 30 are provided inside the pod housing 12 as in the present embodiment, they may be attached to both sides of the tail end of the ribs 30. In the figure, the ground in which the pod 10 is grounded so that the longitudinal axis L is vertical is denoted by G1, and the ground in which the pod housing 12 is supported by the support mechanism such that the longitudinal axis L is inclined is shown. This is indicated by G2.
 従輪48はそれぞれ、左右に首振り旋回可能な、いわゆるキャスター型の車輪であり、ポッド10が着地した状態で水平面内を回転旋回可能にリブ30に取り付けられている。ポッド筐体12は、尾部に背部側に回動可能に取り付けられた従輪カバー52を含む。従輪カバー52は、尾部側に回転されて従輪48を覆った格納状態と、背部側(頭部側)に回動して従輪48が露出した展開状態との間で前後方向に回動可能である。従輪カバー52は内部が空洞になっており、ポッド筐体12の背部壁24の後方端部にヒンジ部材52Aにより回動可能に接続されている。側壁22の腹部側の後方端部は、背部側の後端部よりも前方に切り欠かれており、腹部壁26の後方端部は背部壁24の後方端部よりも前方で終端している。また、従輪カバー52の腹部側は背部側よりも頭部側まで延出している。これにより、従輪カバー52を回動させる際に、従輪48とのクリアランスを十分にとることができ、接触することを防止できる。また、後述するようにポッド10をドローン1から取り外した際に、長手軸線Lが鉛直方向に延びる状態から傾斜した状態までポッド筐体12を傾けて接地させる場合、従輪カバー52及びポッド筐体12が地面と接触するのを防ぐことができる。従輪カバー52は、従輪48を覆った状態においてポッド筐体12の外表面と連続した面を構成する。従輪カバー52の開口縁の展開状態における背部側の部分(格納状態における腹部側の部分)には、例えば、ゴムなどの弾性材からなる耐衝撃用バンパー54を取り付けてもよい。このように、本実施形態では、側壁22の腹部側の後方端部が背部側よりも前方に切り欠かれており、従輪カバー52の腹部側は背部側よりも頭部側まで延出しているため、従輪カバー52により従輪48を格納できる。 Each of the follower wheels 48 is a so-called caster-type wheel that can swing to the left and right, and is attached to the rib 30 so as to be able to rotate and rotate in a horizontal plane when the pod 10 is landed. The pod housing 12 includes a follower wheel cover 52 rotatably attached to the tail portion on the back side. The follower wheel cover 52 is rotatable in the front-rear direction between a retracted state in which the follower wheel 48 is rotated to cover the follower wheel 48 and a deployed state in which the follower wheel 48 is exposed by rotating to the back side (head side). is there. The follower wheel cover 52 is hollow inside and is rotatably connected to the rear end of the back wall 24 of the pod housing 12 by a hinge member 52A. The rear end of the side wall 22 on the abdomen side is cut out ahead of the rear end of the back side, and the rear end of the abdominal wall 26 ends ahead of the rear end of the back wall 24. .. Further, the abdomen side of the follower wheel cover 52 extends to the head side rather than the back side. As a result, when the subordinate wheel cover 52 is rotated, a sufficient clearance with the subordinate wheel 48 can be secured and contact can be prevented. When the pod 10 is removed from the drone 1 as described later, when the pod housing 12 is tilted to the ground from a state where the longitudinal axis L extends in the vertical direction to a tilted state, the driven wheel cover 52 and the pod housing 12 are provided. Can be prevented from contacting the ground. The driven wheel cover 52 constitutes a surface continuous with the outer surface of the pod housing 12 in a state where the driven wheel 48 is covered. An impact-resistant bumper 54 made of an elastic material such as rubber may be attached to a portion on the back portion side (a portion on the abdomen portion side in the stored state) of the driven wheel cover 52 in the expanded state. As described above, in the present embodiment, the rear end of the side wall 22 on the abdomen side is cut out forward of the back portion side, and the abdomen side of the slave wheel cover 52 extends to the head portion side rather than the back portion side. Therefore, the slave wheel 48 can be stored by the slave wheel cover 52.
 また、図9において、ポッド10は、従輪48の首振りを固定するロック機構56を備える。ロック機構56は、ポッド筐体12の背部側の尾部に設けられたロックボタン56Aと、ロックボタン56Aに連結された押力伝達機構56Bと、押力伝達機構56Bに連結されたスライド部材56Cと、スライド部材56Cの尾部側端部に取り付けられたキャスタロック56Dと、ポッド筐体12の内部に固定された固定部材56Fと、固定部材56F及びスライド部材56Cの間に介装されたばね材56Eと、を備える。スライド部材56Cは、ポッド筐体12の腹部側の表面に沿って前後方向(図9中において、上下方向)にスライド可能に設けられている。ばね材56Eは伸長状態で、スライド部材56Cと固定部材56Fとの間に介装されており、これにより、スライド部材56Cは頭部側に向けて付勢されている。押力伝達機構56Bは、ロックボタン56Aの操作によってスライド部材56Cを尾部側に移動させることができる。 Further, in FIG. 9, the pod 10 includes a lock mechanism 56 for fixing the swing of the driven wheel 48. The lock mechanism 56 includes a lock button 56A provided on the tail portion on the back side of the pod housing 12, a push force transmission mechanism 56B connected to the lock button 56A, and a slide member 56C coupled to the push force transmission mechanism 56B. A caster lock 56D attached to the tail end of the slide member 56C, a fixing member 56F fixed inside the pod housing 12, and a spring member 56E interposed between the fixing member 56F and the slide member 56C. , Is provided. The slide member 56C is provided so as to be slidable in the front-rear direction (vertical direction in FIG. 9) along the surface of the pod housing 12 on the abdomen side. The spring member 56E is interposed between the slide member 56C and the fixed member 56F in the stretched state, whereby the slide member 56C is urged toward the head side. The pushing force transmission mechanism 56B can move the slide member 56C to the tail side by operating the lock button 56A.
 ロック機構56において、常時は、ばね材56Eによりスライド部材56Cが頭部側に向かって付勢されている。このため、キャスタロック56Dが頭部側に移動して従輪48から離間しており、従輪48は自由に首振り回転旋回することができる。これに対して、ロックボタン56Aを押圧すると、押力伝達機構56Bを介してスライド部材56Cが尾部側に移動される。これにより、キャスタロック56Dが従輪48に当接し、従輪48の首振りをロックすることができる。 In the lock mechanism 56, the slide member 56C is normally biased toward the head side by the spring material 56E. Therefore, the caster lock 56D moves toward the head side and is separated from the follower wheel 48, and the follower wheel 48 can freely swing and rotate. On the other hand, when the lock button 56A is pressed, the slide member 56C is moved to the tail side via the pressing force transmission mechanism 56B. As a result, the caster lock 56D abuts on the driven wheel 48, and the swing of the driven wheel 48 can be locked.
 次に、ドローン1からポッド10を取り外す方法について説明する。図10~図15は、第1実施形態のポッドを、ドローンから取り外す方法を説明するための図である。
 まず、図10に示すように、ドローン1が所定の離着陸場に着陸すると、使用者はポッド筐体12から固定ピン15を引き抜く。これにより、ポッド10の固定が解除され、スライダー14A、14Bがガイドレール8内に案内されて、ポッド筐体12が上下方向に移動可能になる。
Next, a method of removing the pod 10 from the drone 1 will be described. 10 to 15 are views for explaining a method of removing the pod of the first embodiment from the drone.
First, as shown in FIG. 10, when the drone 1 lands at a predetermined takeoff/landing field, the user pulls out the fixing pin 15 from the pod housing 12. As a result, the fixing of the pod 10 is released, the sliders 14A and 14B are guided into the guide rails 8, and the pod housing 12 can move in the vertical direction.
 次に、図11に示すように、従輪カバー52を背部側へ回動させて、従輪48を露出させる。このような状態でポッド10を下方に移動させると、図12に示すように、下方のスライダー14Bがガイドレール8から離脱し、従輪48が地面Gに接地する。そして、従輪48が地面Gに接地したら、使用者はポッド10の尾部を腹部側から背部側に向かって押す。これにより、図13に示すように、腹部が下方に位置するように、長手軸線Lが鉛直方向から傾斜するように、ポッド10が回動し始める。 Next, as shown in FIG. 11, the slave wheel cover 52 is rotated to the back side to expose the slave wheel 48. When the pod 10 is moved downward in such a state, the lower slider 14B is disengaged from the guide rail 8 and the driven wheel 48 contacts the ground G, as shown in FIG. Then, when the driven wheel 48 contacts the ground G, the user pushes the tail of the pod 10 from the abdomen side toward the back side. As a result, as shown in FIG. 13, the pod 10 starts to rotate such that the abdomen is located below and the longitudinal axis L is inclined from the vertical direction.
 次に、図14に示すように、主脚34を腹部に対して略直交となる展開状態まで回動させて固定する。そして、ポッド筐体12がさらに傾斜することにより、上方のスライダー14Aがガイドレール8から離脱するとともに主輪36が接地する。これにより、図15に示すように、支持機構16の主輪36及び従輪48が接地し、ポッド10を着地させることができる。このように、主脚34を展開させることにより主輪36がポッド筐体12から離間した位置に保持され、ポッド筐体12が支持機構16により、長手軸線Lが着地面に対して傾斜した状態で支持される。このように長手軸線Lが着地面に対して傾斜するようにポッド筐体12が支持された状態で、図6に示されているように、貨物室扉42を開き、主貨物室18及び副貨物室20からの貨物の取り出し、及び、新たな貨物の積み込みを行う。この際、前述したように、貨物室扉42の上面を一時的な貨物置場として利用できる。なお、貨物が少ない場合などには、仕切板40を長手軸線L方向前方に移動して、主貨物室18に積載する貨物の重心が主貨物室18の前方に位置するように積載することもできる。仕切板40をそのように移動させることで、飛行中の貨物の移動を防止できるとともに、ポッド10の重心を前方に位置させることができ、安定した飛行が実現できる。なお、ポッド10のドローン1への取付は取り外しと逆の工程を行えばよい。 Next, as shown in FIG. 14, the main leg 34 is rotated and fixed to a deployed state in which it is substantially orthogonal to the abdomen. Then, as the pod housing 12 is further inclined, the upper slider 14A is disengaged from the guide rail 8 and the main wheel 36 is grounded. Thereby, as shown in FIG. 15, the main wheel 36 and the slave wheel 48 of the support mechanism 16 are grounded, and the pod 10 can be landed. In this way, the main wheels 36 are held at a position separated from the pod housing 12 by expanding the main legs 34, and the pod housing 12 is tilted with respect to the ground by the support mechanism 16 with respect to the longitudinal axis L. Supported by. With the pod housing 12 supported in such a manner that the longitudinal axis L is inclined with respect to the landing surface, the cargo compartment door 42 is opened and the main cargo compartment 18 and the sub cargo compartment 18 are opened as shown in FIG. The cargo is taken out of the cargo room 20 and a new cargo is loaded. At this time, as described above, the upper surface of the cargo room door 42 can be used as a temporary cargo storage area. When there is a small amount of cargo, the partition plate 40 may be moved forward in the direction of the longitudinal axis L so that the cargo to be loaded in the main cargo compartment 18 is loaded such that the center of gravity of the cargo is located in front of the main cargo compartment 18. it can. By moving the partition plate 40 in such a manner, it is possible to prevent movement of the cargo during flight, and to position the center of gravity of the pod 10 at the front, so that stable flight can be realized. The pod 10 may be attached to the drone 1 by performing the reverse process of the removal.
 また、このようにポッド10を着地させた後、使用者は必要に応じてハンドル50にエクステンションを取り付ける。ポッド10は着地状態で主輪36及び従輪48(車輪群)が接地しているため、使用者はハンドルを押し引きすることにより、ポッド10を地上搬送用の手押し台車として用いることができる。また、地上搬送時においてポッド10の従輪48の首振りを固定させたい場合には、図8に示されているロックボタン56Aを押圧することによりロック機構56が作動して従輪48の首振りを固定することができる。また、図6及び図7に示されているストッパー34Cを踏み込むことにより、一対の主輪36を回転しないように固定し、ポッド10を停止させることができる。 Also, after landing the pod 10 in this manner, the user attaches an extension to the handle 50 as necessary. Since the main wheel 36 and the sub wheels 48 (wheel group) are grounded in the landing state of the pod 10, the user can use the pod 10 as a hand truck for ground transportation by pushing and pulling the handle. Further, when it is desired to fix the swing of the driven wheel 48 of the pod 10 at the time of ground transportation, the lock mechanism 56 is operated by pushing the lock button 56A shown in FIG. 8 to swing the driven wheel 48. Can be fixed. Further, by depressing the stopper 34C shown in FIGS. 6 and 7, the pair of main wheels 36 can be fixed so as not to rotate and the pod 10 can be stopped.
 さらに、ポッド10の着脱機構14におけるガイドレール8を、有人の飛行機、四輪自動車、二輪自動車、鉄道などの搬送装置に設けておけば、ポッド10をこれら搬送装置に固定することも可能である。これにより、ドローン1の着陸後、これら搬送装置への詰め替えも可能である。 Furthermore, if the guide rail 8 in the attachment/detachment mechanism 14 of the pod 10 is provided in a carrier device such as a manned airplane, a four-wheeled vehicle, a two-wheeled vehicle, or a railway, the pod 10 can be fixed to these carrier devices. .. As a result, after landing of the drone 1, it is possible to refill the carrying device.
 以上説明したように、第1実施形態によれば、以下の効果が奏される。
 これまで、使用者の作業、貨物の破損防止、長距離移動、着脱作業などの効率や効果を考慮した構造を持つドローン用のポッドも、そのようなポッドを含むドローンシステムも、これまでに存在しなかった。また、そのようなドローン用のポッドが、ドローン以外のポッドの搬送装置でも搬送することができるような構造をしているポッドも、これまでに存在しなかった。
As described above, according to the first embodiment, the following effects are obtained.
So far, there are drone pods and drone systems that include such pods, which have a structure that takes into consideration the efficiency and effects of user work, cargo damage prevention, long-distance transfer, and attachment/detachment work. I didn't. Further, there has been no pod having such a structure that such a drone pod can be carried by a carrying device for a pod other than the drone.
 本実施形態では、ポッド10がドローン1から取り外されて地面に設置される際にポッド筐体12が支持機構16により、長手軸線Lが地面に対して傾斜した状態で支持されるため、ポッド筐体12の長手軸線Lが地面に対して水平に置かれる場合よりも、使用者が腰をかがめることなく、貨物の積載及び取出作業を行うことができる。また、ポッド10の長手軸線Lが地面に対してα度傾斜した状態で貨物を積載するので、ポッド10を取り付けたドローン1が飛行する際に、ポッド10の長手軸線Lが鉛直方向及び水平方向のどちらに向いた状態でポッド10が固定或いは搬送されても、貨物の水平角α度又は90度-α度のいずれか大きい角度を大きく超えることがなく、貨物の破損を防止できる。 In the present embodiment, when the pod 10 is removed from the drone 1 and installed on the ground, the pod housing 12 is supported by the support mechanism 16 with the longitudinal axis L inclined with respect to the ground. Compared to the case where the longitudinal axis L of the body 12 is placed horizontally with respect to the ground, the cargo can be loaded and unloaded without the user bending down. Further, since the cargo is loaded with the longitudinal axis L of the pod 10 inclined to the ground by α degrees, when the drone 1 with the pod 10 attached thereto flies, the longitudinal axis L of the pod 10 is vertically and horizontally aligned. No matter which direction the pod 10 is fixed or transported, the cargo can be prevented from being damaged without greatly exceeding the horizontal angle α of the cargo or 90°-α degrees, whichever is larger.
 また、本実施形態では、ポッド10が、長手軸線Lが着地面に対して傾斜した状態で貨物を格納することにより、ポッド10が取り付けられるドローン1がテイルシッター型ドローンであっても、水平飛行時及び離着陸時の両方において、貨物の向きが積載時から90度以上大きく変化することがなく、貨物の破損を防止できる。 Further, in this embodiment, the pod 10 stores the cargo in a state where the longitudinal axis L is inclined with respect to the landing surface, so that even if the drone 1 to which the pod 10 is attached is a tailsitter type drone, a horizontal flight is performed. Both at the time of landing and at takeoff and landing, the direction of the cargo does not change significantly more than 90 degrees from the time of loading, and damage to the cargo can be prevented.
 また、本実施形態では、ポッド10が長手軸線Lの方向に延びる流線形状を有しているため、ドローン1の飛行時におけるポッド10の空気抵抗が小さくなり、長距離搬送が可能になる。なお、本実施形態では、流線形状であるが、これに限らず、ティアドロップ型、翼型、上下対称翼型でも同様の効果が奏される。 In addition, in this embodiment, since the pod 10 has a streamlined shape extending in the direction of the longitudinal axis L, the air resistance of the pod 10 during flight of the drone 1 is small, and long-distance transportation is possible. Although the present embodiment has a streamlined shape, the present invention is not limited to this, and a teardrop type, a wing type, and a vertically symmetrical wing type also have similar effects.
 また、本実施形態におけるポッド10は、ドローン1が着陸した状態で、長手軸線LがX軸上下方向に延び、ポッド10の尾部が下方に位置するように、ドローン1の機体に取り付けられている。これにより、ドローン1の離着陸時の進行方向と長手軸線Lが一致し、ポッド筐体12の空気抵抗が小さくなり、長距離搬送が可能になる。また、ドローン1から取り外された際にポッド筐体12が支持機構16により、長手軸線Lが着地面に対して傾斜した状態で支持されるため、ドローン1の機体への取付状態と取外状態とのポッド10の姿勢の差が、傾斜していない状態で支持される場合よりも小さく、ポッド10のドローン1への着脱作業を容易に行うことができる。 Further, the pod 10 in the present embodiment is attached to the body of the drone 1 such that the longitudinal axis L extends in the vertical direction of the X axis and the tail portion of the pod 10 is located downward when the drone 1 is landed. .. As a result, the traveling direction of the drone 1 at the time of takeoff and landing coincides with the longitudinal axis L, the air resistance of the pod housing 12 becomes small, and long-distance transportation becomes possible. Further, when the pod housing 12 is detached from the drone 1, the pod housing 12 is supported by the support mechanism 16 in a state where the longitudinal axis L is inclined with respect to the landing surface. The difference between the postures of the pod 10 and the pod 10 is smaller than that in the case where the pod 10 is supported in an uninclined state, and the work of attaching/detaching the pod 10 to/from the drone 1 can be easily performed.
 また、本実施形態では、支持機構16は、ドローン1から取り外された際に地面に接地する車輪群を有するため、ポッド10がドローン1から取り外された際においても、使用者が容易にポッド10を地上搬送することができる。 Further, in the present embodiment, the support mechanism 16 has a wheel group that comes into contact with the ground when the pod 10 is detached from the drone 1, so that the user can easily carry out the pod 10 even when the pod 10 is detached from the drone 1. Can be transported over the ground.
 また、本実施形態では、車輪群がポッド筐体12の尾部に取り付けられた従輪48を含む。ドローン1の着陸後、ポッド筐体12の長手軸線Lが上下方向に延びた状態のポッド10をドローン1から離脱させると、ポッド筐体12の尾部が地面に衝突して破損するおそれがある。これに対して、本実施形態によれば、ドローン1から離脱させた際に、まず従輪48が接地するため、ポッド筐体12の尾部の破損を防止できる。さらに、従輪48が接地した状態で、ポッド筐体12の尾部を腹部側から背部側の水平方向に押すことで、容易にかつ安全にポッド10を傾斜させながらドローン1から取り外すことができる。 Further, in the present embodiment, the wheel group includes the follower wheels 48 attached to the tail portion of the pod housing 12. After landing of the drone 1, if the pod 10 with the longitudinal axis L of the pod housing 12 extending in the vertical direction is removed from the drone 1, the tail of the pod housing 12 may collide with the ground and be damaged. On the other hand, according to the present embodiment, the trailing wheel 48 first comes into contact with the ground when the drone 1 is disengaged, so that the tail portion of the pod housing 12 can be prevented from being damaged. Furthermore, by pushing the tail of the pod housing 12 horizontally from the abdomen side to the back side while the follower wheel 48 is grounded, the pod 10 can be easily and safely removed from the drone 1 while tilting.
 また、本実施形態では、従輪48がポッド筐体12に格納可能に構成されているため、飛行時には従輪48をポッド筐体12に格納することにより、飛行時における空気抵抗を減らすことができる。また、飛行時における部品の落下などの危険性を小さくすることができる。 Further, in the present embodiment, since the driven wheel 48 is configured to be retractable in the pod housing 12, storing the driven wheel 48 in the pod housing 12 during flight can reduce air resistance during flight. In addition, the risk of parts falling during flight can be reduced.
 また、本実施形態では、ポッド10の車輪群は、ポッド10の従輪48よりも頭部側に取り付けられた主脚34により、ポッド筐体12から離間した位置に支持される主輪36を含む。これにより、ポッド10をドローン1から取り外した状態で、ポッド筐体12を頭部側が上方に位置した状態で支持することができる。また、ドローン1から取り外された際に、主脚34により、ポッド筐体12の頭部側が上方に位置するように傾斜した状態で支持されるため、ドローン1の機体への取付状態と取外状態とのポッドの姿勢の差が小さい。このため、ポッド10のドローン1への着脱作業を容易に行うことができる。 Further, in the present embodiment, the wheel group of the pod 10 includes the main wheel 36 supported at a position separated from the pod housing 12 by the main leg 34 attached to the head side of the subordinate wheel 48 of the pod 10. .. Accordingly, with the pod 10 removed from the drone 1, the pod housing 12 can be supported with the head side positioned above. Further, when the drone 1 is detached from the drone 1, it is supported by the main leg 34 in an inclined state so that the head side of the pod housing 12 is located above. The difference in the pod's posture from the state is small. Therefore, the work of attaching/detaching the pod 10 to/from the drone 1 can be easily performed.
 また、本実施形態では、主脚34及び主輪36がポッド筐体12に格納可能に構成されている。これにより、飛行時には主輪36をポッド筐体12に格納することができるため、飛行時における空気抵抗を減らすことができる。また、飛行時における部品の落下などの危険性を小さくすることができる。 Further, in the present embodiment, the main leg 34 and the main wheel 36 are configured to be retractable in the pod housing 12. As a result, the main wheels 36 can be stored in the pod housing 12 during flight, so that air resistance during flight can be reduced. In addition, the risk of parts falling during flight can be reduced.
 また、本実施形態におけるポッド10は、着地した状態で、ポッド筐体12の頭部側に使用者が押し引きするためのハンドルを有し、ハンドルはポッド筐体12に対して着脱可能である。これにより、車輪群が接地した状態でハンドルを押し引きすることにより、ポッド10を搬送台車として用いて地上搬送することができる。 Further, the pod 10 according to the present embodiment has a handle on the head side of the pod housing 12 for the user to push and pull in a landed state, and the handle is attachable to and detachable from the pod housing 12. .. As a result, by pushing and pulling the handle while the wheel group is grounded, the pod 10 can be used as a carrier truck and can be transported on the ground.
 なお、上記の第1実施形態では、図9を参照して説明したように、ポッド筐体12の腹部側の尾部側端部を、背部側よりも頭部側に切り欠き、従輪カバー52の腹部側を背部側よりも頭部側まで延出させたが本願発明の従輪48及び従輪カバー52の構成はこれに限られない。 In the first embodiment described above, as described with reference to FIG. 9, the tail side end on the abdomen side of the pod housing 12 is cut out to the head side rather than the back side, and the follower wheel cover 52 is cut. The abdomen side is extended to the head side rather than the back side, but the configurations of the slave wheel 48 and the slave wheel cover 52 of the present invention are not limited to this.
 図16は、本発明の第2実施形態によるポッドにおけるポッド筐体の尾部を拡大して示す図である。なお、図16において、ポッド110が、ポッド筐体112が長手軸線Lが接地面に対して垂直になるように接地した状態の地面をG1で示し、ポッド筐体112が支持機構により長手軸線Lが傾斜するように支持された状態の地面をG2で示す。 FIG. 16 is an enlarged view showing the tail portion of the pod casing in the pod according to the second embodiment of the present invention. In FIG. 16, the ground is indicated by G1 when the pod 110 is grounded so that the longitudinal axis L of the pod housing 112 is perpendicular to the ground plane, and the pod housing 112 is supported by the supporting mechanism so that the longitudinal axis L of the pod housing 112 is L. The ground which is supported so as to incline is indicated by G2.
 図16に示すように、第2実施形態によるポッド110におけるポッド筐体112の尾部の縁は、長手軸線L方向に延びている。ポッド筐体112の尾部には、背部壁124に沿って進退可能な進出部材152Bが設けられている。また、進出部材152Bの尾部側端部にはヒンジ152Aを介して従輪カバー152が取り付けられている。ポッド筐体112の尾部側の縁から後方にリブ130が突出しており、このリブ130の下端部には主輪及び従輪が接地した際の地面G2と平行な傾斜面130Aが形成されている。この傾斜面130Aに従輪148が傾斜面130Aに平行な面内で左右に首振り旋回可能に取り付けられている。 As shown in FIG. 16, the edge of the tail portion of the pod casing 112 in the pod 110 according to the second embodiment extends in the longitudinal axis L direction. At the tail of the pod housing 112, an advancing member 152B that can move forward and backward along the back wall 124 is provided. A trailing wheel cover 152 is attached to the tail end of the advancing member 152B via a hinge 152A. A rib 130 projects rearward from an edge on the tail side of the pod housing 112, and an inclined surface 130A parallel to the ground G2 when the main wheel and the sub-wheel are in contact with the ground is formed at the lower end of the rib 130. A follower wheel 148 of this inclined surface 130A is attached so as to be able to swing to the left and right within a plane parallel to the inclined surface 130A.
 従輪カバー152を格納状態から展開状態に変更するには、以下の通り操作する。図17は第2実施形態によるポッドの従輪カバーを格納状態から展開状態に変更する方法を説明するための図である。まず、図17に示すように、進出部材152Bをポッド筐体112の背部壁124に沿って尾部側へ進出させる。そして、この状態で従輪カバー152を、ヒンジ152Aを中心として背部側へと回転させる。そして、進出部材152Bを先端側へと引き戻す。これにより、従輪カバー152を、従輪148が露出する展開状態へと切り替えることができる。 To change the secondary wheel cover 152 from the retracted state to the deployed state, operate as follows. FIG. 17 is a diagram for explaining a method of changing the subordinate wheel cover of the pod from the retracted state to the deployed state according to the second embodiment. First, as shown in FIG. 17, the advancing member 152B is advanced toward the tail side along the back wall 124 of the pod housing 112. Then, in this state, the driven wheel cover 152 is rotated toward the back side around the hinge 152A. Then, the advancing member 152B is pulled back to the tip side. As a result, the driven wheel cover 152 can be switched to a deployed state in which the driven wheel 148 is exposed.
 第2実施形態の構成によれば、従輪カバー152内に従輪148が格納できれば、展開状態と格納状態とを切り替えることができるため、従輪カバー152の影響を受けずに従輪148の大きさや配置を決定できる。 According to the configuration of the second embodiment, if the driven wheel 148 can be stored in the driven wheel cover 152, the deployed state and the stored state can be switched. Therefore, the size and arrangement of the driven wheel 148 are not affected by the driven wheel cover 152. I can decide.
 また、図18は、本発明の第3実施形態によるポッドにおけるポッド筐体の尾部を拡大して示す図である。また、図19は、本発明の第3実施形態によるポッドが着地した状態のポッド筐体の尾部を拡大して示す図である。なお、図19において、ポッド筐体212が長手軸線が垂直になるように接地した状態の地面をG1で示し、ポッド筐体212が支持機構により長手軸線が傾斜するように支持された状態の地面をG2で示す。 Further, FIG. 18 is an enlarged view showing the tail portion of the pod casing in the pod according to the third embodiment of the present invention. FIG. 19 is an enlarged view showing the tail portion of the pod housing in the state where the pod according to the third embodiment of the present invention is landed. In FIG. 19, the ground in which the pod housing 212 is grounded so that the longitudinal axis is vertical is indicated by G1, and the ground in which the pod housing 212 is supported by the support mechanism such that the longitudinal axis is inclined. Is indicated by G2.
 図18に示すように、第3実施形態によるポッド210におけるポッド筐体212の尾部の縁は、長手軸線L方向に延びている。ポッド筐体212の背部壁の尾部側の縁には第1のヒンジ252Aを介して従輪カバー252が取り付けられている。ポッド筐体212内には、尾部側の端部から長手軸線の方向に沿って進退可能な進出部材248Aが設けられている。進出部材248Aの背部側の下端部には第2のヒンジ248Bが設けられ、この第2のヒンジ248Bを中心に回動可能に従輪248が設けられている。 As shown in FIG. 18, the edge of the tail portion of the pod housing 212 in the pod 210 according to the third embodiment extends in the longitudinal axis L direction. A trailing wheel cover 252 is attached to the tail side edge of the back wall of the pod housing 212 via a first hinge 252A. Inside the pod housing 212, there is provided an advancing member 248A that can move forward and backward along the direction of the longitudinal axis from the end on the tail side. A second hinge 248B is provided at the lower end on the back side of the advancing member 248A, and a follower wheel 248 is provided which is rotatable around the second hinge 248B.
 従輪カバー252が閉鎖された状態では、従輪248を、第2のヒンジ248Bを中心として先端側(頭部側)へ回動させ、さらに、進出部材248Aが先端側(頭部側)へ退行させた状態で従輪カバー252が閉鎖されている。 When the follower wheel cover 252 is closed, the follower wheel 248 is rotated toward the tip side (head side) about the second hinge 248B, and the advancing member 248A is retracted toward the tip side (head side). In this state, the follower wheel cover 252 is closed.
 従輪カバー252を開放し、従輪248を設置可能な状態に変更するには、以下の通り操作する。まず、図18に示すように、従輪カバー252を、第1のヒンジ252Aを中心として背部側へと回転させる。次に、進出部材248Aを後方に向かって進出させる。そして、従輪248を後方に向かって第2のヒンジ248Bを中心として回動させる。これにより、図19に示すように、従輪248を、地面G2に対して平行な平面内を回転可能な状態で、外部に露出させることができる。 To open the driven wheel cover 252 and change the driven wheel 248 to the installable state, operate as follows. First, as shown in FIG. 18, the driven wheel cover 252 is rotated toward the back side around the first hinge 252A. Next, the advancing member 248A is advanced toward the rear. Then, the driven wheel 248 is rotated rearward about the second hinge 248B. As a result, as shown in FIG. 19, the follower wheel 248 can be exposed to the outside in a state of being rotatable in a plane parallel to the ground G2.
 このような第3実施形態の構成によれば、長手軸線の方向に沿って進退可能な進出部材248Aの先端に従輪248が設けられているため、ポッド筐体212の腹部と地面との距離を大きくすることができる。 According to the configuration of the third embodiment as described above, since the follower wheel 248 of the tip of the advancing member 248A that can move forward and backward along the direction of the longitudinal axis is provided, the distance between the abdomen of the pod housing 212 and the ground can be reduced. Can be large.
1    ドローン
2    水平翼
4    連結部材
6    推進装置
6A   推進装置本体
6B   水平尾翼
6C   垂直尾翼
6D   プロペラ
8    ガイドレール
8A   切込
10   ポッド
12   ポッド筐体
14   着脱機構
14A  スライダー
14B  スライダー
15   固定ピン
16   支持機構
18   主貨物室
20   副貨物室
22   側壁
24   背部壁
26   腹部壁
28A  内部壁
28B  内部壁
28C  内部壁
30   リブ
32   格納部
34   主脚
34A  主脚本体
34B  シャフト
34C  ストッパー
34D  ヒンジ
36   主輪
38   主脚カバー
40   仕切板
42   貨物室扉
42A  つまみ
48   従輪
50   接続ポート
52   従輪カバー
52A  ヒンジ部材
54   耐衝撃用バンパー
56   ロック機構
56A  ロックボタン
56B  押力伝達機構
56C  スライド部材
56D  キャスタロック
56E  ばね材
56F  固定部材
110  ポッド
112  ポッド筐体
124  背部壁
130  リブ
130A 傾斜面
148  従輪
152  従輪カバー
152A ヒンジ
152B 進出部材
210  ポッド
212  ポッド筐体
248  従輪
248A 進出部材
248B 第2のヒンジ
252  従輪カバー
252A 第1のヒンジ
1 Drone 2 Horizontal Wing 4 Connecting Member 6 Propulsion Device 6A Propulsion Device Main Body 6B Horizontal Tail 6C Vertical Tail 6D Propeller 8 Guide Rail 8A Notch 10 Pod 12 Pod Housing 14 Attachment/Detachment Mechanism 14A Slider 14B Slider 15 Fixing Pin 16 Support Mechanism 18 Main Cargo compartment 20 Sub cargo compartment 22 Side wall 24 Back wall 26 Back wall 28A Inner wall 28A Inner wall 28B Inner wall 28C Inner wall 30 Rib 32 Storage section 34 Main landing gear 34A Main landing gear body 34B Shaft 34C Stopper 34D Hinge 36 Main wheel 38 Main landing gear cover 40 Partition Plate 42 Cargo compartment door 42A Knob 48 Subordinate wheel 50 Connection port 52 Subordinate wheel cover 52A Hinge member 54 Impact resistant bumper 56 Lock mechanism 56A Lock button 56B Push force transmission mechanism 56C Slide member 56D Castor lock 56E Spring material 56F Fixing member 110 Pod 112 Pod Housing 124 Back wall 130 Rib 130A Inclined surface 148 Follower wheel 152 Follower wheel cover 152A Hinge 152B Advance member 210 Pod 212 Pod housing 248 Follower wheel 248A Advance member 248B Second hinge 252 Follower wheel cover 252A First hinge

Claims (20)

  1.  貨物を格納し搬送するためのポッドであって、
     貨物を格納するための貨物室が内部に形成された細長形状又は扁平形状のポッド筐体と、
     前記ポッドを地面に設置する際に、前記ポッド筐体の軸線が地面に対して傾斜した状態となるように、当該ポッド筐体を支持する支持機構と、を備える、
     ことを特徴とするポッド。
    A pod for storing and transporting cargo,
    An elongated or flat pod housing having a cargo compartment formed therein for storing cargo,
    A support mechanism that supports the pod housing so that the axis of the pod housing is inclined with respect to the ground when the pod is installed on the ground.
    Pod that is characterized.
  2.  前記ポッドは搬送装置に着脱可能である、
     請求項1に記載のポッド。
    The pod is attachable to and detachable from a carrier device,
    The pod according to claim 1.
  3.  前記搬送装置はドローンである、
     請求項2に記載のポッド。
    The carrier is a drone,
    The pod according to claim 2.
  4.  前記ドローンは、当該ドローンの頭部が飛行方向に沿って前方に位置し、尾部が飛行方向に沿って後方に位置するように水平飛行し、かつ、当該ドローンの尾部が鉛直方向下方に位置するように鉛直方向に離着陸するテイルシッター型ドローンである、
     請求項3に記載のポッド。
    The drone flies horizontally such that the head of the drone is located forward along the flight direction and the tail is located rearward along the flight direction, and the tail of the drone is located vertically downward. Is a tailsitter drone that takes off and land vertically.
    The pod according to claim 3.
  5.  前記ポッド筐体は、前記軸線の方向に延びる流線形状を有する、
     請求項4に記載のポッド。
    The pod housing has a streamlined shape extending in the direction of the axis.
    The pod according to claim 4.
  6.  前記ポッド筐体は、頭部と尾部を有し、
     前記ポッドは、前記ドローンが着陸した状態で、前記軸線が上下方向に延び、前記ポッド筐体の前記尾部が下方に位置するように、前記ドローンの機体に取り付けられている、
     請求項4又は5に記載のポッド。
    The pod housing has a head and a tail,
    The pod is attached to the body of the drone so that the axis extends vertically and the tail portion of the pod housing is located downward when the drone is landed.
    The pod according to claim 4 or 5.
  7.  前記支持機構は、前記ポッドを地面に設置する際に、地面に接地する車輪群を有する、
     請求項6に記載のポッド。
    The support mechanism has a wheel group that contacts the ground when the pod is installed on the ground.
    The pod according to claim 6.
  8.  前記ポッド筐体は、頭部と尾部を有し、
     前記車輪群は、前記ポッド筐体の尾部に取り付けられた第1の車輪を含む、
     請求項7に記載のポッド。
    The pod housing has a head and a tail,
    The wheel group includes a first wheel attached to a tail portion of the pod housing,
    The pod according to claim 7.
  9.  前記第1の車輪は、前記ポッド筐体に格納可能に備えられている、
     請求項8に記載のポッド。
    The first wheel is provided so as to be retractable in the pod housing,
    The pod according to claim 8.
  10.  前記ポッド筐体は、前記第1の車輪よりも頭部側に主脚を備え、
     前記車輪群は、前記主脚により、前記ポッド筐体から離間した位置に支持される第2の車輪を含む、
     請求項8又は9に記載のポッド。
    The pod housing includes a main leg on the head side of the first wheel,
    The wheel group includes a second wheel supported by the main leg at a position separated from the pod housing.
    The pod according to claim 8 or 9.
  11.  前記主脚及び前記第2の車輪は前記ポッド筐体に格納可能に構成されている、
     請求項10に記載のポッド。
    The main leg and the second wheel are configured to be retractable in the pod housing,
    The pod according to claim 10.
  12.  さらに、前記ポッド筐体の頭部側に、使用者が地面上で押し引きするためのハンドルを有し、
     前記ハンドルは前記ポッド筐体に対して着脱可能、又は、前記ポッド筐体内に格納可能である、
     請求項7~11の何れか1項に記載のポッド。
    Furthermore, on the head side of the pod housing, there is a handle for the user to push and pull on the ground,
    The handle can be attached to and detached from the pod housing, or can be stored in the pod housing.
    The pod according to any one of claims 7 to 11.
  13.  ドローンと、
     当該ドローンに着脱可能な請求項1~12の何れか1項に記載のポッドと、
     を備える、
     ドローンシステム。
    Drone,
    The pod according to any one of claims 1 to 12, which is attachable to and detachable from the drone,
    With
    Drone system.
  14.  前記ポッド筐体は、前記軸線の方向に延びる流線形状を有する、
     請求項1に記載のポッド。
    The pod housing has a streamlined shape extending in the direction of the axis.
    The pod according to claim 1.
  15.  前記支持機構は、前記ポッドを地面に設置する際に、地面に接地する車輪群を有する、
     請求項1、又は、14に記載のポッド。
    The support mechanism has a wheel group that contacts the ground when the pod is installed on the ground.
    The pod according to claim 1 or 14.
  16.  前記ポッド筐体は、頭部と尾部を有し、
     前記車輪群は、前記ポッド筐体の尾部に取り付けられた第1の車輪を含む、
     請求項15に記載のポッド。
    The pod housing has a head and a tail,
    The wheel group includes a first wheel attached to a tail portion of the pod housing,
    The pod according to claim 15.
  17.  前記第1の車輪は、前記ポッド筐体に格納可能に備えられている、
     請求項16に記載のポッド。
    The first wheel is provided so as to be retractable in the pod housing,
    The pod according to claim 16.
  18.  前記ポッド筐体は、前記第1の車輪よりも頭部側に主脚を備え、
     前記車輪群は、前記主脚により、前記ポッド筐体から離間した位置に支持される第2の車輪を含む、
     請求項16又は17に記載のポッド。
    The pod housing includes a main leg on the head side of the first wheel,
    The wheel group includes a second wheel supported by the main leg at a position separated from the pod housing.
    The pod according to claim 16 or 17.
  19.  前記主脚及び前記第2の車輪は前記ポッド筐体に格納可能に構成されている、
     請求項18に記載のポッド。
    The main leg and the second wheel are configured to be retractable in the pod housing,
    The pod according to claim 18.
  20.  さらに、前記ポッド筐体の頭部側に、使用者が地面上で押し引きするためのハンドルを有し、
     前記ハンドルは前記ポッド筐体に対して着脱可能、又は、前記ポッド筐体内に格納可能である、
     請求項15~19の何れか1項に記載のポッド。
    Furthermore, on the head side of the pod housing, there is a handle for the user to push and pull on the ground,
    The handle can be attached to and detached from the pod housing, or can be stored in the pod housing.
    The pod according to any one of claims 15 to 19.
PCT/JP2019/007773 2019-02-28 2019-02-28 Pod and drone system WO2020174648A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/007773 WO2020174648A1 (en) 2019-02-28 2019-02-28 Pod and drone system
PCT/US2020/019505 WO2020176415A1 (en) 2019-02-28 2020-02-24 Methods, systems, and pods use with an aerial vehicle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/007773 WO2020174648A1 (en) 2019-02-28 2019-02-28 Pod and drone system

Publications (1)

Publication Number Publication Date
WO2020174648A1 true WO2020174648A1 (en) 2020-09-03

Family

ID=72239676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007773 WO2020174648A1 (en) 2019-02-28 2019-02-28 Pod and drone system

Country Status (1)

Country Link
WO (1) WO2020174648A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238278A (en) * 2021-05-31 2021-08-10 中国工程物理研究院激光聚变研究中心 Laser fusion neutron activation transfer device based on unmanned aerial vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179914A (en) * 2009-02-03 2010-08-19 Honeywell Internatl Inc Transforming unmanned aerial-to-ground vehicle
US20180002027A1 (en) * 2016-07-01 2018-01-04 Bell Helicopter Textron Inc. Aircraft having a Fault Tolerant Distributed Propulsion System

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179914A (en) * 2009-02-03 2010-08-19 Honeywell Internatl Inc Transforming unmanned aerial-to-ground vehicle
US20180002027A1 (en) * 2016-07-01 2018-01-04 Bell Helicopter Textron Inc. Aircraft having a Fault Tolerant Distributed Propulsion System

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238278A (en) * 2021-05-31 2021-08-10 中国工程物理研究院激光聚变研究中心 Laser fusion neutron activation transfer device based on unmanned aerial vehicle
CN113238278B (en) * 2021-05-31 2022-03-01 中国工程物理研究院激光聚变研究中心 Laser fusion neutron activation transfer device based on unmanned aerial vehicle

Similar Documents

Publication Publication Date Title
US10472064B2 (en) VTOL fixed-wing aerial drone with interchangeable cabins
EP2046637B1 (en) Aerodynamic integration of a payload container with a vertical take-off and landing aircraft
US8231083B2 (en) System and methods for airborne launch and recovery of aircraft
US7900866B2 (en) System and methods for airborne launch and recovery of aircraft
US11167848B2 (en) Unmanned aerial vehicle with enhanced cargo storage
US20190233077A1 (en) Vtol fixed-wing flying platform system
JP6509835B2 (en) Vertical take-off and landing aircraft
US20150183519A1 (en) Canard aircraft with rear loading
CN111688920B (en) VTOL fixed wing flight platform system
US10793271B2 (en) Drone and associated airborne intervention equipment
US20060196992A1 (en) Cycloidal hybrid advanced surface effects vehicle
WO2020176415A1 (en) Methods, systems, and pods use with an aerial vehicle system
US20170183094A1 (en) Convertible Payload Transport Aircraft
US20230077891A1 (en) Quad Tilt Rotor Unmanned Aircraft
JP4220521B2 (en) Winged spacecraft
CN213974457U (en) Vertical take-off and landing aerial unmanned aerial vehicle
US2557962A (en) Cargo airplane
EP2822853B1 (en) Fuselage mounted landing gear
WO2020174648A1 (en) Pod and drone system
CN105667790A (en) General layout of unmanned aerial vehicle capable of taking off with catapult assisted and being recovered by bumping net
CN109911230A (en) The aerocraft system for sliding, taking off and climbing with auxiliary
US1992941A (en) Airplane construction
WO2011002309A1 (en) Flying, gliding and/or airdrop craft
CN112478157B (en) Freight unmanned aerial vehicle
CN114945509A (en) Electrically propelled aircraft comprising a central wing and two rotatable lateral wings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP