WO2020174517A1 - Refrigerant pipe joint structure - Google Patents

Refrigerant pipe joint structure Download PDF

Info

Publication number
WO2020174517A1
WO2020174517A1 PCT/JP2019/006982 JP2019006982W WO2020174517A1 WO 2020174517 A1 WO2020174517 A1 WO 2020174517A1 JP 2019006982 W JP2019006982 W JP 2019006982W WO 2020174517 A1 WO2020174517 A1 WO 2020174517A1
Authority
WO
WIPO (PCT)
Prior art keywords
flare
female screw
union
joint structure
communication hole
Prior art date
Application number
PCT/JP2019/006982
Other languages
French (fr)
Japanese (ja)
Inventor
宗介 西田
牧野 浩招
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/006982 priority Critical patent/WO2020174517A1/en
Priority to JP2021501380A priority patent/JP7123232B2/en
Publication of WO2020174517A1 publication Critical patent/WO2020174517A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L19/00Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts
    • F16L19/02Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member
    • F16L19/025Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member the pipe ends having integral collars or flanges
    • F16L19/028Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member the pipe ends having integral collars or flanges the collars or flanges being obtained by deformation of the pipe wall

Definitions

  • the present invention relates to a refrigerant pipe joint structure of a refrigeration cycle device, and particularly to a water drain hole provided in the refrigerant pipe joint structure.
  • a flare joint is used to connect the indoor and outdoor connecting pipes that connect the indoor unit and the outdoor unit to the indoor unit and the outdoor unit.
  • a combustible refrigerant such as R32 has been used as a refrigerant for an air conditioner to prevent global warming. If such a flammable refrigerant leaks and stays in the closed space, it may be mixed with air and reach a concentration at which the refrigerant burns. Therefore, in order to reduce the refrigerant leakage, a joint having high reliability against the refrigerant leakage is required.
  • Flare joint seals by flaring a copper tube between the union and flare nut seat surface. As a result, the coolant flowing in the copper pipe is sealed so as not to leak outside.
  • the flare nut and the union are fastened with a screw and fastened with a predetermined torque.
  • the seal structure is formed by completely adhering the seat surface of the flare nut and the seat surface of the union to the flare portion of the copper tube (see, for example, Patent Document 1).
  • the temperature of the flare joint may decrease due to the operation of the air conditioner.
  • dew condensation water may be generated in the flare joint portion, and the dew condensation water may be collected in the space where the tip of the flare portion provided in the flare nut escapes.
  • the temperature of the flare joint portion drops to below the freezing point, the accumulated water freezes and expands, and the tip of the flare portion of the copper tube is pushed by the expanded ice.
  • the flare portion of the copper tube is finally pushed out from the sheet surface.
  • the sealing property is lost, and the refrigerant flowing in the copper pipe is released into the atmosphere.
  • the flammable refrigerant may stay in the closed space and be mixed with air to a concentration at which the refrigerant burns.
  • a drainage hole is provided from the side surface of the flare nut so as to connect the space for allowing the tip of the flare portion to communicate with the external space, and the pressure generated by the expansion of ice due to freezing is released. ..
  • the flare nut is processed by rotating the flare nut or a tool around the central axis of the screw.
  • the drainage hole is provided from the side surface of the flare nut, it is necessary to apply a tool from the side surface of the flare nut to perform perforation processing. In this case, for example, the process of forming the screw of the flare nut and the process of forming the water drain hole are performed in different processing steps, so that there is a problem that productivity is reduced.
  • the present invention is to solve the above problems, and an object of the present invention is to obtain a refrigerant pipe joint structure with improved productivity of flare nuts provided with drain holes.
  • the refrigerant pipe joint structure according to the present invention is a copper pipe provided with a pipe portion and a flare portion in which an end portion of the pipe portion is expanded in a tapered shape, and a tapered portion is formed at a tip end portion on a central axis.
  • a flare nut including a union including a coolant channel and a female screw portion that is screwed into the union, wherein the flare nut includes a through hole through which the pipe portion of the copper pipe is passed, and the female screw portion.
  • the union includes a tapered seat surface at a tip and a male screw portion formed on a side surface, and is screwed and fastened to the female screw portion, and the flare portion of the copper tube is the flare sheet. Sandwiched between a surface and the seat surface of the union, the communication hole is opened at an end face where the female screw portion is formed, and the central axis of the communication hole is the central axis of the female screw portion. Parallel to.
  • FIG. 1 is an external view of a refrigerant pipe joint structure 100 according to a first embodiment.
  • FIG. 3 is a cross-sectional view illustrating the refrigerant pipe joint structure 100 according to the first embodiment.
  • FIG. 3 is a plan view and a sectional view of the flare nut 1 of FIG. 2. It is sectional drawing of the edge part of the copper tube 10 of FIG. It is sectional drawing of the edge part of the union 7 of FIG.
  • FIG. 3 is a sectional view of a structure of a refrigerant pipe joint structure 1000 as a comparative example of the refrigerant pipe joint structure 100 according to the first embodiment.
  • 5A and 5B are a plan view and a sectional view of a flare nut 1 of a refrigerant pipe joint structure 200 according to a second embodiment. It is an enlarged view of the B section of FIG.
  • FIG. 1 is an external view of a refrigerant pipe joint structure 100 according to the first embodiment.
  • the refrigerant pipe joint structure 100 according to the first embodiment is used for a refrigeration cycle device such as an air conditioner.
  • a refrigeration cycle device such as an air conditioner.
  • an air conditioner including an outdoor unit and an indoor unit
  • the refrigerant pipe joint structure 100 shown in FIG. 1 connects the inside/outside connection pipe and the refrigerant pipe of the outdoor unit or the indoor unit.
  • the refrigerant pipe joint structure 100 connects the union 7 provided at the end of the refrigerant pipe of the outdoor unit or the indoor unit, the copper pipe 10 provided at the end of the inside/outside connection pipe, and the copper pipe 10 and the union 7 to each other. And a flare nut 1 for sealing the refrigerant.
  • flare joints are used to connect the indoor and outdoor connecting pipes that connect the indoor unit and the outdoor unit to the indoor unit, and the outdoor unit.
  • refrigerants having a small global warming potential such as R32 and R290
  • GWP global warming potential
  • R32 and R290 refrigerants having a small global warming potential
  • the flare joint is required to have higher reliability against refrigerant leakage from the joint than in the case of using a nonflammable refrigerant such as R410A.
  • the refrigerant pipe joint structure 100 secures the sealing property and suppresses the refrigerant leakage by the structure described below.
  • FIG. 2 is a cross-sectional view illustrating the refrigerant pipe joint structure 100 according to the first embodiment.
  • FIG. 3 is a plan view and a sectional view of the flare nut 1 of FIG.
  • FIG. 4 is a cross-sectional view of the end portion of the copper tube 10 of FIG.
  • FIG. 5 is a cross-sectional view of the end portion of the union 7 of FIG.
  • the refrigerant pipe joint structure 100 includes a copper pipe 10 having a flare portion 11 whose end portion is expanded in a conical shape, a through hole 6 through which the copper pipe 10 is inserted, and a flare portion 11.
  • the flare nut 1 having a flare seat surface 2 that is a conical surface that contacts with a union 7 having a conical seat surface 8 at the tip end is combined.
  • the copper tube 10 is passed through the through hole 6 of the flare nut 1 and extends to the one end surface 13 side of the flare nut 1, and the flare portion 11 is in contact with the flare sheet surface 2 of the flare nut 1.
  • the union 7 is screwed from the other end surface 14 side where the female screw portion 4 of the flare nut 1 is formed, and the seat surface 8 at the tip is in contact with the flare portion 11 on the flare sheet surface 2.
  • the flare portion 11 of the copper tube 10 is compressed between the flare sheet surface 2 of the flare nut 1 and the seat surface 8 at the tip of the union 7. ..
  • the flare portion 11 is compressed and deformed between the flare sheet surface 2 and the sheet surface 8 of the union 7 and comes into close contact with the flare sheet surface 2 and the sheet surface 8, whereby the sealing property is secured.
  • the flare nut 1 is a main body having a hexagonal outer peripheral surface 15 in a plan view and a through hole provided at the center of the hexagon from one end surface 13 side. And a female screw portion 4 provided at the center of the hexagon from the other end face 14 side.
  • a flared sheet surface 2 having a tapered shape and a relief shape 3 for preventing the tip portion 12 of the flared portion 11 from coming into contact with the inner peripheral surface 16 of the flare nut 1. And are provided.
  • the flare sheet surface 2 is formed from the end of the through hole 6 and is a tapered surface that expands with respect to the inner diameter of the through hole 6. Furthermore, the flare sheet surface 2 is a conical surface.
  • the escape shape 3 is formed between the flare sheet surface 2 and the female screw portion 4.
  • a cylindrical inner peripheral surface 16 larger than the inner diameter dimension of the end of the flare sheet surface 2 on the side where the diameter is expanded is formed.
  • the tip portion 12 of the flare portion 11 is configured to escape into the formed space.
  • the inner peripheral surface 16 of the escape shape 3 is larger than the inner diameter of the female screw portion 4.
  • a communication hole 5 is formed from the end surface 14 of the flare nut 1 on which the female screw portion 4 is formed toward the relief shape 3. The communication hole 5 is opened in the end surface 14 and communicates the external space with the space formed inside the flare nut 1 formed by the relief shape 3.
  • the copper pipe 10 has an enlarged flare nut 1 side end portion, and forms a flared portion 11 that is enlarged in a tapered shape.
  • the union 7 is provided with a coolant passage 17 which is a hole through which a coolant flows in the central portion, and the tip portion is formed in a truncated cone shape whose outer diameter is reduced toward the tip. ing.
  • a coolant passage 17 that is a hole through which a coolant flows is opened in a truncated cone-shaped end surface at the tip of the union 7.
  • the tapered surface at the tip of the union 7 is the seat surface 8 that contacts the flare portion 11. That is, the union 7 is provided with a tapered seat surface 8 at the tip.
  • flare sheet surface 2, sheet surface 8 and flare portion 11 are formed so as to form an angle of 45 degrees with the central axis in the cross sections shown in FIGS.
  • the flare sheet surface 2, the sheet surface 8 and the flare portion 11 are not limited to the conical surface having this angle, and can be appropriately changed in shape as long as they are tapered.
  • the refrigerant pipe joint structure 100 is a flare joint, and the conical flare portion 11 of the copper pipe 10 is sandwiched between the flare seat surface 2 of the flare nut 1 and the seat surface 8 of the union 7.
  • the sealability is secured by.
  • the female screw portion 4 of the flare nut 1 and the male screw portion 9 of the union 7 are screwed together, and the flare nut 1 is rotated and tightened by a tool or the like, and the flare portion 11 of the copper tube 10 is compressed by the axial force of the screw, It comes into close contact with the flare sheet surface 2 of the flare nut 1 and the seat surface 8 of the union 7. As a result, the refrigerant flowing in the copper tube 10 is sealed.
  • the flare portion 11 of the copper tube 10 When tightening the screw, the flare portion 11 of the copper tube 10 is compressed by the seat surface 8 of the union 7 and the flare sheet surface 2 of the flare nut 1, so that the flare portion 11 of the copper tube 10 becomes slightly thinner. It deforms and extends in the direction of the tip 12 of the flare 11 of the copper tube 10. Since the flare nut 1 is formed with the relief shape 3 that allows the tip 12 of the flare portion 11 of the copper tube 10 to escape, even if the tip 12 of the flare portion 11 of the copper tube 10 extends, the flare nut 1 It is configured so as not to collide with the inner peripheral surface 16.
  • the temperature of the refrigerant pipe joint structure 100 may decrease due to the operation of the air conditioner.
  • condensed water may be generated inside the refrigerant pipe joint structure 100, and condensed water may be accumulated in the escape shape 3 for allowing the tip 12 of the flare portion 11 of the copper pipe 10 to escape.
  • the temperature of the refrigerant pipe joint structure 100 is lowered to a temperature below the freezing point, the frozen water of the condensed dew condensation water expands, and the tip 12 of the flare portion 11 of the copper pipe 10 is pressed against the expanded ice. Be done.
  • the flare portion 11 of the copper pipe 10 is finally pushed out between the flare sheet surface 2 of the flare nut 1 and the seat surface 8 of the union 7. Be done. Then, the flare portion 11 comes out between the flare sheet surface 2 and the sheet surface 8, the sealing property is lost, and the refrigerant flowing in the copper tube 10 is ejected and released into the atmosphere. At this time, the flammable refrigerant may leak from the refrigerant pipe joint structure 100 and stay in the closed space to form a refrigerant atmosphere having a flammable concentration.
  • the refrigerant pipe joint structure 100 used for indoor connection is a process in which the refrigerant pipe joint structure 100 is submerged in water to allow water to penetrate into the inside, left in that state below freezing to be frozen, and then thawed and then frozen again. Repeatedly, it is configured not to be damaged under the environment.
  • FIG. 6 is a sectional view of a structure of a refrigerant pipe joint structure 1000 as a comparative example of the refrigerant pipe joint structure 100 according to the first embodiment.
  • the flare nut 1001, the copper pipe 10 and the union 7 are combined as in the refrigerant pipe joint structure 100 according to the first embodiment. That is, the flare portion 11 of the copper tube 10 is sandwiched between the flare sheet surface 2 and the sheet surface 8 to ensure the sealing property.
  • the refrigerant pipe joint structure 1000 of the comparative example includes a relief shape 3 that allows the tip portion 12 of the flare portion 11 of the copper pipe 10 to escape, and from the outer peripheral surface 15 of the flare nut 1001 so that the relief shape 3 communicates with the external space.
  • a communication hole 1005 is formed toward the relief shape 3.
  • the communication hole 1005 is a water draining hole and releases the pressure when dew condensation water is generated in the escape shape 3 and freezes and expands.
  • the communication hole 1005 is formed in a direction orthogonal to the central axis of the cylindrical through hole 6, the female screw portion 4, and the relief shape 3. Therefore, when forming the flare nut 1001, it is necessary to apply a tool from a direction different from the direction of the tool that forms the through hole 6, the female screw portion 4, and the relief shape 3.
  • the material or tool of the flare nut 1 is rotated around the central axis thereof and processed.
  • the communication hole 1005 needs to be formed in the outer peripheral surface 15 of the flare nut 1001. As described above, since the process of forming the communication hole 1005 is a process different from the process of forming the shape of the flare nut 1001, there is a problem that productivity is reduced.
  • the flare nut 1 has a communication hole having central axes parallel to the central axes of the through hole 6, the female screw portion 4, and the escape shape 3.
  • a hole 5 is provided.
  • the communication hole 5 opens in the end surface 14 of the flare nut 1 on the side where the union 7 is inserted, and communicates the external space with the relief shape 3.
  • the communication hole 5 has a central axis that is parallel to the central axis of the processing that forms the flare nut 1. Therefore, the through hole 6 through which the copper tube 10 of the flare nut 1 passes, the flare sheet surface 2, the relief shape 3, and the processing of the female screw portion 4 for screwing with the union 7 and the processing of the communication hole 5 are a series. It becomes possible to process in the process.
  • the communication hole 5 is for discharging condensed water inside the refrigerant pipe joint structure 100. Therefore, the flare nut 1 can be drained from the communication hole 5 at any angle in the rotation direction, so that the flare nut 1 can be drained from the communication hole 5 at three positions every 120° on the circumference around the central axis of the flare nut 1. It is provided.
  • the communication hole 5 is drilled with a drill, metal chips, which are the material of the flared nut 1 that has been scraped, may be generated, and may remain inside the communication hole 5 and in the flare nut 1.
  • openings 5a of communication holes 5 face the same direction. Therefore, when the cutting powder is blown away with compressed air to be removed, the compressed air can be poured into the three communication holes 5 at the same time by closing the hole in which the female screw portion 4 is formed, and the cutting powder can be efficiently removed. It can be removed.
  • the refrigerant pipe joint structure 100 has the copper pipe 10 including the pipe portion 18 and the flare portion 11 in which the end portion of the pipe portion 18 is expanded in a conical shape, and the tip.
  • the portion is formed in a conical shape, and includes a union 7 having a coolant channel 17 on the central axis thereof, and a flare nut 1 having a female screw portion 4 screwed with a male screw portion 9 of the union 7.
  • the flare nut 1 is formed between the through hole 6 through which the pipe portion 18 of the copper pipe 10 passes, the relief shape 3 formed at the end of the female screw portion 4, and the escape shape 3 and the through hole 6.
  • a conical flare sheet surface 2 and a communication hole 5 that communicates the relief shape 3 with the external space.
  • the union 7 is screwed and fastened to the female screw portion 4.
  • the flare portion 11 of the copper tube 10 is sandwiched between the flare sheet surface 2 and the sheet surface 8 of the union 7.
  • the communication hole 5 is opened in the end surface 14 on which the female screw portion 4 is formed, and its central axis is parallel to the central axis of the female screw portion 4.
  • the structure of the female screw portion 4 and the like of the flare nut 1 can be made in the same processing step. It becomes possible to process the communication hole 5. As a result, it is not necessary to provide a separate process for processing the communication hole 5, and the productivity of the flare nut 1 is improved. That is, according to the refrigerant pipe joint structure 100 according to the first embodiment, by providing the above configuration, it is possible to reduce the cost while ensuring reliability against refrigerant leakage.
  • Refrigerant pipe joint structure 200 according to Embodiment 2 of the present invention differs from refrigerant pipe joint structure 100 according to Embodiment 1 in that the arrangement of communication holes 5 is changed.
  • the refrigerant pipe joint structure 200 according to the second embodiment will be described with a focus on the changes from the first embodiment.
  • those having the same function in each drawing will be denoted by the same reference numerals as those in the drawings used in the description of the first embodiment.
  • FIG. 7 is a plan view and a sectional view of the flare nut 1 of the refrigerant pipe joint structure 200 according to the second embodiment.
  • FIG. 8 is an enlarged view of portion B in FIG. 7.
  • the refrigerant pipe joint structure 200 according to the second embodiment is obtained by replacing the flare nut 1 of the refrigerant pipe joint structure 100 according to the first embodiment with a flare nut 201 shown in FIG. 7.
  • the flare portion 11 of the copper pipe 10 is sandwiched between the flare sheet surface 2 of the flare nut 1 and the seat surface 8 of the union 7 to ensure sealing performance.
  • the female screw portion 4 of the flare nut 201 and the male screw portion 9 of the union 7 are engaged with each other, and the flare nut 1 is rotated by a tool or the like to tighten the flare nut 11 and the flare sheet surface of the flare nut 201. 2 and the seat surface 8 of the union 7 are in close contact with each other.
  • the refrigerant flowing in the copper tube 10 is sealed inside the refrigerant circuit.
  • the flare portion 11 of the copper tube 10 is compressed by the seat surface 8 of the union 7 and the flare sheet surface 2 of the flare nut 201 and extends in the direction of the tip portion 12 of the flare portion 11. ..
  • a relief shape 3 is provided which forms a space for the portion 12 to escape.
  • the flare nut 201 is provided with an opening 205a in the end surface 14 provided with the female screw portion 4, and is a center for processing the female screw portion 4 and the like.
  • the communication hole 205 is arranged so that the central axis is parallel to the axis.
  • the communication hole 205 communicates the relief shape 3 with the external space.
  • the communication hole 205 can be processed by the flare sheet surface 2, the relief shape 3, the female screw portion 4, and the through hole 6 in a series of steps.
  • the communication hole 205 is provided, and the communication hole 205 is provided on a virtual line connecting the corner portion 19 and the central axis of the flare nut 201.
  • the inner diameter dimension 20 of the inner peripheral surface 16 of the escape shape 3 is set to be equal to or more than the distance 21 between the central axis of the communication hole 205 and the central axis of the flare nut 201. As a result, the opening area of the opening 22 through which the relief shape 3 and the communication hole 205 communicate can be secured.
  • the distance between the center axis of the communication hole 205 and the center axis of the female screw portion 4 is equal to or less than the inner diameter dimension 20 of the inner peripheral surface 16 of the relief shape 3.
  • the flare nut 201 has a hexagonal outer peripheral surface 15 when viewed in the direction of the central axis of the female screw portion 4, and the communication hole 205 defines the apex of the outer peripheral surface 15 of the flare nut 201 and the central axis of the female screw portion 4. It is located on the virtual line that connects the two.
  • the present invention has been described above based on the embodiments, the present invention is not limited to the configurations of the above-described embodiments.
  • the communication holes 5 and 205 may be provided in more places.
  • the present invention may be configured by combining the embodiments.
  • the scope of the present invention also includes various modifications, applications, and ranges of use that are required by those skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Joints With Pressure Members (AREA)

Abstract

The purpose of the present invention is to obtain a refrigerant pipe joint structure in which the productivity of a flare nut provided with a water-draining hole is improved, and cost is minimized while maintaining reliability against refrigerant leakage. This invention comprises: a copper pipe provided with a pipe part and a flare part in which both ends of the pipe part are enlarged into tapers; a union formed into a taper at a distal end part and provided with a refrigerant flow channel along a center axis; and a flare nut provided with a female screw part that threads together with the union. The flare nut is provided with a through-hole through which the pipe part of the copper pipe is passed, a relief shape formed in an end part of the female screw part, a tapered flare seat surface formed between the relief shape and the through-hole, and a communication hole allowing communication between the relief shape and an external space. The union is provided with a tapered seat surface at the distal end and a male screw part formed in a side surface and is fastened by threading together with the female screw part, the flare part of the copper pipe is held between the flare seat surface and the seat surface of the union, the communication hole opens into the end surface in which the female screw part is formed, and the center axis of the communication hole is parallel to the center axis of the female screw part.

Description

冷媒配管継手構造Refrigerant piping joint structure
 本発明は、冷凍サイクル装置の冷媒配管継手構造に関し、特に冷媒配管継手構造に設けられた水抜き用の孔に関する。 The present invention relates to a refrigerant pipe joint structure of a refrigeration cycle device, and particularly to a water drain hole provided in the refrigerant pipe joint structure.
 スプリット型の空気調和機等の冷凍サイクル装置においては、室内機と室外機を接続する内外接続配管と室内機及び室外機とを接続するためにフレア継手が使用される。近年、地球温暖化対策のため、空気調和機の冷媒としてR32のように燃焼性を持つ冷媒が使用されている。このような燃焼性を持つ冷媒が漏洩して閉空間に滞留すると、空気と混合されて冷媒が燃焼する濃度に達する可能性がある。このため、冷媒漏洩を低減するために、冷媒漏洩に対して信頼性が高い継ぎ手が求められる。 In a refrigeration cycle device such as a split type air conditioner, a flare joint is used to connect the indoor and outdoor connecting pipes that connect the indoor unit and the outdoor unit to the indoor unit and the outdoor unit. In recent years, a combustible refrigerant such as R32 has been used as a refrigerant for an air conditioner to prevent global warming. If such a flammable refrigerant leaks and stays in the closed space, it may be mixed with air and reach a concentration at which the refrigerant burns. Therefore, in order to reduce the refrigerant leakage, a joint having high reliability against the refrigerant leakage is required.
 フレア継手は、フレア加工された銅管を、ユニオンとフレアナットのシート面とで挟み込むことでシールする。これにより、銅管内を流れる冷媒を外部に漏洩しないように封止する構造になっている。フレアナットとユニオンとはネジで締結され、所定のトルクで締め付けられる。シール構造は、フレアナットのシート面及びユニオンのシート面を銅管のフレア部に完全に密着させて形成される(例えば特許文献1を参照)。 Flare joint seals by flaring a copper tube between the union and flare nut seat surface. As a result, the coolant flowing in the copper pipe is sealed so as not to leak outside. The flare nut and the union are fastened with a screw and fastened with a predetermined torque. The seal structure is formed by completely adhering the seat surface of the flare nut and the seat surface of the union to the flare portion of the copper tube (see, for example, Patent Document 1).
特開2015-155726号公報JP, 2005-155726, A
 特許文献1の配管継手構造においては、ネジを締め付ける際に、銅管のフレア部はユニオンとフレアナットのシート面との間で圧縮されるため、銅管のフレア部はネジを締め付けた際の軸力により圧縮され薄くなり、銅管のフレア部の先端方向に延伸する。このため、フレアナットは、フレア部の先端が延伸しても、フレアナットの内周面に当接しないように構成される。シール性を向上させるために銅管のフレア部とユニオン及びフレアナットのシート面との接触面積を大きく取る場合は、フレアナットは、延伸するフレア部の先端を逃がす空間が設けられる。 In the pipe joint structure of Patent Document 1, when the screw is tightened, the flare portion of the copper pipe is compressed between the union and the seat surface of the flare nut. It is compressed by the axial force, becomes thinner, and extends toward the tip of the flare portion of the copper tube. Therefore, the flare nut is configured so as not to contact the inner peripheral surface of the flare nut even if the tip of the flare portion extends. When the contact area between the flare portion of the copper tube and the seat surfaces of the union and the flare nut is set large in order to improve the sealing property, the flare nut is provided with a space for allowing the tip of the extending flare portion to escape.
 空気調和機の運転によりフレア継手の温度が低下する場合がある。このとき、フレア継手部に結露水が発生し、フレアナットに設けられたフレア部の先端を逃がす空間に結露水が溜まることがある。また、フレア継手部の温度が低下し氷点下になった場合には、溜まった水が凍結して膨張し、銅管のフレア部の先端が膨張した氷により押される。フレアナットの内部で結露水の氷結と融解とが繰り返し発生すると、最終的には銅管のフレア部がシート面から押し出される。継手から銅管のフレア部が抜けるとシール性が無くなり、銅管内を流れる冷媒が大気中に放出される。可燃性を持つ冷媒が閉空間に滞留し、空気と混合されて冷媒が燃焼する濃度になる可能性がある。 The temperature of the flare joint may decrease due to the operation of the air conditioner. At this time, dew condensation water may be generated in the flare joint portion, and the dew condensation water may be collected in the space where the tip of the flare portion provided in the flare nut escapes. Further, when the temperature of the flare joint portion drops to below the freezing point, the accumulated water freezes and expands, and the tip of the flare portion of the copper tube is pushed by the expanded ice. When the frozen water freezes and melts repeatedly inside the flare nut, the flare portion of the copper tube is finally pushed out from the sheet surface. When the flare portion of the copper pipe comes out of the joint, the sealing property is lost, and the refrigerant flowing in the copper pipe is released into the atmosphere. The flammable refrigerant may stay in the closed space and be mixed with air to a concentration at which the refrigerant burns.
 この対策として、従来のフレアナットでは、フレア部の先端を逃がす空間と外部空間とを連通するようにフレアナットの側面から水抜き孔を設け、凍結により氷が膨張して生じる圧力を逃がしている。フレアナットは、ネジの中心軸周りにフレアナット又は工具を回転させて加工される。一方、フレアナットの側面から水抜き孔が設けられているフレアナットにおいては、フレアナットの側面から工具を当てて穿孔加工する必要がある。この場合、例えばフレアナットのネジを形成する加工と水抜き孔をあける加工とは、異なる加工工程で行われるため、生産性が低くなるという課題があった。 As a countermeasure against this, in the conventional flare nut, a drainage hole is provided from the side surface of the flare nut so as to connect the space for allowing the tip of the flare portion to communicate with the external space, and the pressure generated by the expansion of ice due to freezing is released. .. The flare nut is processed by rotating the flare nut or a tool around the central axis of the screw. On the other hand, in the flare nut in which the drainage hole is provided from the side surface of the flare nut, it is necessary to apply a tool from the side surface of the flare nut to perform perforation processing. In this case, for example, the process of forming the screw of the flare nut and the process of forming the water drain hole are performed in different processing steps, so that there is a problem that productivity is reduced.
 本発明は、上記のような課題を解決するためのものであり、水抜き孔が設けられたフレアナットの生産性を向上させた冷媒配管継手構造を得ることを目的とする。 The present invention is to solve the above problems, and an object of the present invention is to obtain a refrigerant pipe joint structure with improved productivity of flare nuts provided with drain holes.
 本発明に係る冷媒配管継手構造は、管部と、該管部の端部がテーパ状に拡張されたフレア部と、を備える銅管と、先端部にテーパ状に形成され、中心軸上に冷媒流路を備えるユニオンと、前記ユニオンと螺合する雌ネジ部を備えるフレアナットと、を備え、前記フレアナットは、前記銅管の前記管部が通される貫通孔と、前記雌ネジ部の端部に形成された逃がし形状と、前記逃がし形状と前記貫通孔との間に形成されたテーパ状のフレアシート面と、前記逃がし形状と外部空間とを連通する連通孔と、を備え、前記ユニオンは、先端にテーパ状のシート面と、側面に形成された雄ネジ部と、を備え、前記雌ネジ部と螺合して締結され、前記銅管の前記フレア部は、前記フレアシート面と前記ユニオンの前記シート面との間に挟まれ、前記連通孔は、前記雌ネジ部が形成されている端面に開口しており、当該連通孔の中心軸が前記雌ネジ部の中心軸と平行である。 The refrigerant pipe joint structure according to the present invention is a copper pipe provided with a pipe portion and a flare portion in which an end portion of the pipe portion is expanded in a tapered shape, and a tapered portion is formed at a tip end portion on a central axis. A flare nut including a union including a coolant channel and a female screw portion that is screwed into the union, wherein the flare nut includes a through hole through which the pipe portion of the copper pipe is passed, and the female screw portion. An escape shape formed at an end portion of, a tapered flare sheet surface formed between the escape shape and the through hole, and a communication hole that communicates the escape shape and an external space, The union includes a tapered seat surface at a tip and a male screw portion formed on a side surface, and is screwed and fastened to the female screw portion, and the flare portion of the copper tube is the flare sheet. Sandwiched between a surface and the seat surface of the union, the communication hole is opened at an end face where the female screw portion is formed, and the central axis of the communication hole is the central axis of the female screw portion. Parallel to.
 本発明によれば、フレアナット内部に滞留した水が凍結して膨張しても連通孔から膨張圧力を逃がすことで、銅管のフレア部が凍結した氷により押し出されて脱落しないようにする効果を有する。それとともに、連通孔を加工する方向とフレアナットのネジ等の構造を加工する中心軸の方向を同一とすることで、同一加工工程の中で連通孔を加工できるようになる。これにより、フレアナットを加工するにあたり、連通孔の加工のために別工程を設ける必要がなくなり、フレアナットの生産性が向上する。 ADVANTAGE OF THE INVENTION According to this invention, even if the water accumulated inside the flare nut freezes and expands, the expansion pressure is released from the communication hole, so that the flare portion of the copper pipe is pushed out by the frozen ice and does not fall off. Have. At the same time, by making the direction of processing the communication hole and the direction of the central axis for processing the structure such as the flare nut screw, the communication hole can be processed in the same processing step. As a result, when processing the flare nut, there is no need to provide a separate process for processing the communication hole, and the productivity of the flare nut is improved.
実施の形態1に係る冷媒配管継手構造100の外観図である。1 is an external view of a refrigerant pipe joint structure 100 according to a first embodiment. 実施の形態1に係る冷媒配管継手構造100を説明する断面図である。FIG. 3 is a cross-sectional view illustrating the refrigerant pipe joint structure 100 according to the first embodiment. 図2のフレアナット1の平面図及び断面図である。FIG. 3 is a plan view and a sectional view of the flare nut 1 of FIG. 2. 図2の銅管10の端部の断面図である。It is sectional drawing of the edge part of the copper tube 10 of FIG. 図2のユニオン7の端部の断面図である。It is sectional drawing of the edge part of the union 7 of FIG. 実施の形態1に係る冷媒配管継手構造100の比較例としての冷媒配管継手構造1000の構造の断面図である。FIG. 3 is a sectional view of a structure of a refrigerant pipe joint structure 1000 as a comparative example of the refrigerant pipe joint structure 100 according to the first embodiment. 実施の形態2に係る冷媒配管継手構造200のフレアナット1の平面図及び断面図である。5A and 5B are a plan view and a sectional view of a flare nut 1 of a refrigerant pipe joint structure 200 according to a second embodiment. 図7のB部の拡大図である。It is an enlarged view of the B section of FIG.
 以下に、冷媒配管継手構造の実施の形態について説明する。なお、図面の形態は一例であり、本発明を限定するものではない。また、各図において同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 An embodiment of the refrigerant pipe joint structure will be described below. The drawings are merely examples, and the present invention is not limited thereto. In addition, the same reference numerals in the drawings are the same or equivalent, and this is common to all the texts in the specification. Furthermore, in the following drawings, the size relationship of each component may be different from the actual one.
 実施の形態1.
 図1は、実施の形態1に係る冷媒配管継手構造100の外観図である。実施の形態1に係る冷媒配管継手構造100は、空気調和装置などの冷凍サイクル装置に用いられるものである。例えば、室外機及び室内機を備える空気調和装置において、室外機及び室内機と、室外機と室内機とを接続する内外接続配管とを接続する必要がある。図1に示される冷媒配管継手構造100は、内外接続配管と室外機又は室内機の冷媒配管とを接続するものである。冷媒配管継手構造100は、室外機又は室内機の冷媒配管の端部に設けられたユニオン7と、内外接続配管の端部に設けられた銅管10と、銅管10とユニオン7とを接続し冷媒をシールするフレアナット1と、から構成されている。
Embodiment 1.
FIG. 1 is an external view of a refrigerant pipe joint structure 100 according to the first embodiment. The refrigerant pipe joint structure 100 according to the first embodiment is used for a refrigeration cycle device such as an air conditioner. For example, in an air conditioner including an outdoor unit and an indoor unit, it is necessary to connect the outdoor unit and the indoor unit to an inside/outside connection pipe that connects the outdoor unit and the indoor unit. The refrigerant pipe joint structure 100 shown in FIG. 1 connects the inside/outside connection pipe and the refrigerant pipe of the outdoor unit or the indoor unit. The refrigerant pipe joint structure 100 connects the union 7 provided at the end of the refrigerant pipe of the outdoor unit or the indoor unit, the copper pipe 10 provided at the end of the inside/outside connection pipe, and the copper pipe 10 and the union 7 to each other. And a flare nut 1 for sealing the refrigerant.
 スプリット型の空気調和機では室内機と室外機を接続する内外接続配管と室内機、および、室外機とを接続するためにフレア継ぎ手が使用される。近年は空気調和機の冷媒として地球温暖化係数(GWP)が小さい冷媒、例えばR32やR290などが使用されるように成ってきている。GWPが小さい冷媒は一般的に燃焼性を持つため、大気中に漏洩して閉空間に滞留し、空気と混合されて冷媒が燃焼する濃度になる可能性がある。このため、フレア継ぎ手には、R410Aなどの不燃冷媒を使用した場合よりも、継ぎ手からの冷媒漏洩に対してより高い信頼性が求められる。冷媒配管継手構造100は、以下に説明刷る構造により、シール性を確保し、冷媒漏洩を抑制している。  In split type air conditioners, flare joints are used to connect the indoor and outdoor connecting pipes that connect the indoor unit and the outdoor unit to the indoor unit, and the outdoor unit. In recent years, refrigerants having a small global warming potential (GWP), such as R32 and R290, have come to be used as refrigerants for air conditioners. Since a refrigerant having a small GWP is generally combustible, there is a possibility that the refrigerant leaks into the atmosphere, stays in a closed space, is mixed with air, and has a concentration at which the refrigerant burns. For this reason, the flare joint is required to have higher reliability against refrigerant leakage from the joint than in the case of using a nonflammable refrigerant such as R410A. The refrigerant pipe joint structure 100 secures the sealing property and suppresses the refrigerant leakage by the structure described below.
 図2は、実施の形態1に係る冷媒配管継手構造100を説明する断面図である。図3は、図2のフレアナット1の平面図及び断面図である。図4は、図2の銅管10の端部の断面図である。図5は、図2のユニオン7の端部の断面図である。図2においては、上側の半分のみ全体の断面構造を示しており、下側の半分は、フレアナット1のみの断面構造を示している。図2に示される様に、冷媒配管継手構造100は、端部が円錐面状に拡径されたフレア部11を備える銅管10と、内部に銅管10を通す貫通孔6とフレア部11が接触する円錐面であるフレアシート面2を備えたフレアナット1と、先端部に円錐形のシート面8を備えるユニオン7を組み合わせて構成される。 FIG. 2 is a cross-sectional view illustrating the refrigerant pipe joint structure 100 according to the first embodiment. FIG. 3 is a plan view and a sectional view of the flare nut 1 of FIG. FIG. 4 is a cross-sectional view of the end portion of the copper tube 10 of FIG. FIG. 5 is a cross-sectional view of the end portion of the union 7 of FIG. In FIG. 2, only the upper half shows the entire sectional structure, and the lower half shows the sectional structure of only the flare nut 1. As shown in FIG. 2, the refrigerant pipe joint structure 100 includes a copper pipe 10 having a flare portion 11 whose end portion is expanded in a conical shape, a through hole 6 through which the copper pipe 10 is inserted, and a flare portion 11. The flare nut 1 having a flare seat surface 2 that is a conical surface that contacts with a union 7 having a conical seat surface 8 at the tip end is combined.
 銅管10は、フレアナット1の貫通孔6に通されフレアナット1の一方の端面13側に延びており、フレア部11がフレアナット1のフレアシート面2に接している。ユニオン7は、フレアナット1の雌ネジ部4が形成されている他方の端面14側から螺合しており、先端のシート面8がフレアシート面2上のフレア部11と接している。ユニオン7とフレアナット1とを所定のトルクで締結することにより、銅管10のフレア部11は、フレアナット1のフレアシート面2とユニオン7の先端のシート面8との間で圧縮される。フレア部11は、フレアシート面2とユニオン7のシート面8との間で圧縮変形し、フレアシート面2とシート面8とに密着することにより、シール性が確保される。 The copper tube 10 is passed through the through hole 6 of the flare nut 1 and extends to the one end surface 13 side of the flare nut 1, and the flare portion 11 is in contact with the flare sheet surface 2 of the flare nut 1. The union 7 is screwed from the other end surface 14 side where the female screw portion 4 of the flare nut 1 is formed, and the seat surface 8 at the tip is in contact with the flare portion 11 on the flare sheet surface 2. By fastening the union 7 and the flare nut 1 with a predetermined torque, the flare portion 11 of the copper tube 10 is compressed between the flare sheet surface 2 of the flare nut 1 and the seat surface 8 at the tip of the union 7. .. The flare portion 11 is compressed and deformed between the flare sheet surface 2 and the sheet surface 8 of the union 7 and comes into close contact with the flare sheet surface 2 and the sheet surface 8, whereby the sealing property is secured.
 図3に示される様に、フレアナット1は、平面視において六角形の外周面15を有する本体と、一方の端面13側から六角形の中心に設けられた貫通した孔であり、銅管10が通される貫通孔6と、他方の端面14側から六角形の中心に設けられた雌ネジ部4と、を備える。貫通孔6と雌ネジ部4との間には、テーパ状のフレアシート面2と、フレア部11の先端部12がフレアナット1の内周面16に接触しないようにするための逃がし形状3とが設けられている。フレアシート面2は、貫通孔6の端から形成され、貫通孔6の内径寸法に対して拡大する方向のテーパ状の面となっている。更に言うと、フレアシート面2は円錐面となっている。逃がし形状3は、フレアシート面2と雌ネジ部4との間に形成されている。フレアシート面2の雌ネジ部4側は、フレアシート面2の拡径されている側の端の内径寸法よりも大きい円筒形状の内周面16が形成されており、その内周面16により形成される空間にフレア部11の先端部12が逃げられるように構成されている。また、逃がし形状3の内周面16は、雌ネジ部4の内径よりも大きい。また、フレアナット1の雌ネジ部4が形成されている端面14から逃がし形状3に向かって連通孔5が形成されている。連通孔5は、端面14に開口して外部空間と逃がし形状3により形成されるフレアナット1の内部に形成される空間とを連通するものである。 As shown in FIG. 3, the flare nut 1 is a main body having a hexagonal outer peripheral surface 15 in a plan view and a through hole provided at the center of the hexagon from one end surface 13 side. And a female screw portion 4 provided at the center of the hexagon from the other end face 14 side. Between the through hole 6 and the female threaded portion 4, a flared sheet surface 2 having a tapered shape and a relief shape 3 for preventing the tip portion 12 of the flared portion 11 from coming into contact with the inner peripheral surface 16 of the flare nut 1. And are provided. The flare sheet surface 2 is formed from the end of the through hole 6 and is a tapered surface that expands with respect to the inner diameter of the through hole 6. Furthermore, the flare sheet surface 2 is a conical surface. The escape shape 3 is formed between the flare sheet surface 2 and the female screw portion 4. On the female screw portion 4 side of the flare sheet surface 2, a cylindrical inner peripheral surface 16 larger than the inner diameter dimension of the end of the flare sheet surface 2 on the side where the diameter is expanded is formed. The tip portion 12 of the flare portion 11 is configured to escape into the formed space. The inner peripheral surface 16 of the escape shape 3 is larger than the inner diameter of the female screw portion 4. Further, a communication hole 5 is formed from the end surface 14 of the flare nut 1 on which the female screw portion 4 is formed toward the relief shape 3. The communication hole 5 is opened in the end surface 14 and communicates the external space with the space formed inside the flare nut 1 formed by the relief shape 3.
 図4に示される様に、銅管10は、フレアナット1側の端部が拡径されており、テーパ状に拡大したフレア部11を形成している。図5に示される様に、ユニオン7は、中央部に冷媒が流通する孔である冷媒流路17が設けられており、先端部は先端に向かうに従い外径が縮小する円錐台形状に形成されている。ユニオン7の先端の円錐台形状の端面には冷媒が流通する孔である冷媒流路17が開口されている。ユニオン7の先端のテーパ状の面は、フレア部11と当接するシート面8である。即ち、ユニオン7は、先端部にテーパ状のシート面8を備える。なお、実施の形態1において、フレアシート面2、シート面8、及びフレア部11は、図2~5に示される断面において、中心軸と45度の角度を成すように形成されている。しかし、フレアシート面2、シート面8、及びフレア部11は、この角度を有する円錐面に限定されるものではなく、テーパ状であれば適宜形状を変更することができる。 As shown in FIG. 4, the copper pipe 10 has an enlarged flare nut 1 side end portion, and forms a flared portion 11 that is enlarged in a tapered shape. As shown in FIG. 5, the union 7 is provided with a coolant passage 17 which is a hole through which a coolant flows in the central portion, and the tip portion is formed in a truncated cone shape whose outer diameter is reduced toward the tip. ing. A coolant passage 17 that is a hole through which a coolant flows is opened in a truncated cone-shaped end surface at the tip of the union 7. The tapered surface at the tip of the union 7 is the seat surface 8 that contacts the flare portion 11. That is, the union 7 is provided with a tapered seat surface 8 at the tip. In Embodiment 1, flare sheet surface 2, sheet surface 8 and flare portion 11 are formed so as to form an angle of 45 degrees with the central axis in the cross sections shown in FIGS. However, the flare sheet surface 2, the sheet surface 8 and the flare portion 11 are not limited to the conical surface having this angle, and can be appropriately changed in shape as long as they are tapered.
 図2に戻り、冷媒配管継手構造100は、フレア継手であり、銅管10の円錐形状のフレア部11を、フレアナット1のフレアシート面2とユニオン7のシート面8との間に挟み込むことによってシール性を確保している。フレアナット1の雌ネジ部4とユニオン7の雄ネジ部9とが螺合し、フレアナット1を工具等で回転させて締め付け、銅管10のフレア部11がネジの軸力により圧縮し、フレアナット1のフレアシート面2及びユニオン7のシート面8に密着する。これにより、銅管10内を流れる冷媒が封止される。ネジを締め付ける際に、銅管10のフレア部11がユニオン7のシート面8とフレアナット1のフレアシート面2とで圧縮されるため、銅管10のフレア部11は、若干薄くなる方向に変形し、銅管10のフレア部11の先端部12の方向に延伸する。フレアナット1には、銅管10のフレア部11の先端部12を逃がす逃がし形状3が形成されているため、銅管10のフレア部11の先端部12が延伸しても、フレアナット1の内周面16に衝突しないように構成されている。 Returning to FIG. 2, the refrigerant pipe joint structure 100 is a flare joint, and the conical flare portion 11 of the copper pipe 10 is sandwiched between the flare seat surface 2 of the flare nut 1 and the seat surface 8 of the union 7. The sealability is secured by. The female screw portion 4 of the flare nut 1 and the male screw portion 9 of the union 7 are screwed together, and the flare nut 1 is rotated and tightened by a tool or the like, and the flare portion 11 of the copper tube 10 is compressed by the axial force of the screw, It comes into close contact with the flare sheet surface 2 of the flare nut 1 and the seat surface 8 of the union 7. As a result, the refrigerant flowing in the copper tube 10 is sealed. When tightening the screw, the flare portion 11 of the copper tube 10 is compressed by the seat surface 8 of the union 7 and the flare sheet surface 2 of the flare nut 1, so that the flare portion 11 of the copper tube 10 becomes slightly thinner. It deforms and extends in the direction of the tip 12 of the flare 11 of the copper tube 10. Since the flare nut 1 is formed with the relief shape 3 that allows the tip 12 of the flare portion 11 of the copper tube 10 to escape, even if the tip 12 of the flare portion 11 of the copper tube 10 extends, the flare nut 1 It is configured so as not to collide with the inner peripheral surface 16.
 空気調和機が運転することにより冷媒配管継手構造100の温度が低下する場合がある。温度が低下すると冷媒配管継手構造100の内部に結露水が発生し、銅管10のフレア部11の先端部12を逃がすための逃がし形状3に結露水が溜まることがある。また、冷媒配管継手構造100の温度が低下し氷点下になった場合には、溜まった結露水が凍結した氷が膨張し、銅管10のフレア部11の先端部12は、膨張した氷に押される。冷媒配管継手構造100の内部で結露水が氷結と融解とを繰り返すと、最終的には銅管10のフレア部11がフレアナット1のフレアシート面2とユニオン7のシート面8の間から押し出される。そして、フレアシート面2とシート面8との間からフレア部11が抜けてシール性が無くなり、銅管10内を流れる冷媒が噴出し、大気中に放出される。このとき、冷媒配管継手構造100から可燃性を持つ冷媒が漏洩し、閉空間に滞留し、可燃濃度の冷媒雰囲気を形成する場合がある。 The temperature of the refrigerant pipe joint structure 100 may decrease due to the operation of the air conditioner. When the temperature decreases, condensed water may be generated inside the refrigerant pipe joint structure 100, and condensed water may be accumulated in the escape shape 3 for allowing the tip 12 of the flare portion 11 of the copper pipe 10 to escape. In addition, when the temperature of the refrigerant pipe joint structure 100 is lowered to a temperature below the freezing point, the frozen water of the condensed dew condensation water expands, and the tip 12 of the flare portion 11 of the copper pipe 10 is pressed against the expanded ice. Be done. When the condensed water repeatedly freezes and melts inside the refrigerant pipe joint structure 100, the flare portion 11 of the copper pipe 10 is finally pushed out between the flare sheet surface 2 of the flare nut 1 and the seat surface 8 of the union 7. Be done. Then, the flare portion 11 comes out between the flare sheet surface 2 and the sheet surface 8, the sealing property is lost, and the refrigerant flowing in the copper tube 10 is ejected and released into the atmosphere. At this time, the flammable refrigerant may leak from the refrigerant pipe joint structure 100 and stay in the closed space to form a refrigerant atmosphere having a flammable concentration.
 そのため、可燃性を持つ冷媒を使用している空気調和機においては、冷媒漏洩に対する信頼性を確保する必要がある。そのため、屋内の接続に使用される冷媒配管継手構造100は、水中に水没させて内部に水を浸入させ、その状態で氷点下に放置して氷結させた後に、解凍し、再度氷結させる、という行程を繰り返し、その環境下で破損しないように構成される。 Therefore, in air conditioners that use flammable refrigerant, it is necessary to ensure reliability against refrigerant leakage. Therefore, the refrigerant pipe joint structure 100 used for indoor connection is a process in which the refrigerant pipe joint structure 100 is submerged in water to allow water to penetrate into the inside, left in that state below freezing to be frozen, and then thawed and then frozen again. Repeatedly, it is configured not to be damaged under the environment.
 図6は、実施の形態1に係る冷媒配管継手構造100の比較例としての冷媒配管継手構造1000の構造の断面図である。比較例の冷媒配管継手構造1000は、実施の形態1に係る冷媒配管継手構造100と同様にフレアナット1001と銅管10とユニオン7とが組み合わさっている。すなわち、銅管10のフレア部11がフレアシート面2とシート面8とにより挟まれてシール性を確保している。 FIG. 6 is a sectional view of a structure of a refrigerant pipe joint structure 1000 as a comparative example of the refrigerant pipe joint structure 100 according to the first embodiment. In the refrigerant pipe joint structure 1000 of the comparative example, the flare nut 1001, the copper pipe 10 and the union 7 are combined as in the refrigerant pipe joint structure 100 according to the first embodiment. That is, the flare portion 11 of the copper tube 10 is sandwiched between the flare sheet surface 2 and the sheet surface 8 to ensure the sealing property.
 比較例の冷媒配管継手構造1000は、銅管10のフレア部11の先端部12を逃がす逃がし形状3を備え、逃がし形状3と外部空間とが連通するように、フレアナット1001の外周面15から逃がし形状3に向かって連通孔1005が形成されている。連通孔1005は、水抜き孔であり、逃がし形状3において結露水が生じ、それが凍結し膨張したときの圧力を逃がす。連通孔1005は、円筒形状である貫通孔6、雌ネジ部4、及び逃がし形状3の中心軸に対し直交する方向から穿孔されている。従って、フレアナット1001を形成するにあたり、貫通孔6、雌ネジ部4、及び逃がし形状3を形成する工具とは異なる方向から工具を当てて加工する必要がある。 The refrigerant pipe joint structure 1000 of the comparative example includes a relief shape 3 that allows the tip portion 12 of the flare portion 11 of the copper pipe 10 to escape, and from the outer peripheral surface 15 of the flare nut 1001 so that the relief shape 3 communicates with the external space. A communication hole 1005 is formed toward the relief shape 3. The communication hole 1005 is a water draining hole and releases the pressure when dew condensation water is generated in the escape shape 3 and freezes and expands. The communication hole 1005 is formed in a direction orthogonal to the central axis of the cylindrical through hole 6, the female screw portion 4, and the relief shape 3. Therefore, when forming the flare nut 1001, it is necessary to apply a tool from a direction different from the direction of the tool that forms the through hole 6, the female screw portion 4, and the relief shape 3.
 つまり、フレアナット1001の貫通孔6、雌ネジ部4、及び逃がし形状3を形成するためにはそれらの中心軸周りにフレアナット1の素材又は工具を回転して加工する。しかし、連通孔1005は、フレアナット1001の外周面15に穿孔加工する必要がある。このように、連通孔1005をあける加工は、フレアナット1001の形状を作る加工と別の加工工程になるため、生産性が低くなるという課題があった。 That is, in order to form the through hole 6, the female screw portion 4, and the escape shape 3 of the flare nut 1001, the material or tool of the flare nut 1 is rotated around the central axis thereof and processed. However, the communication hole 1005 needs to be formed in the outer peripheral surface 15 of the flare nut 1001. As described above, since the process of forming the communication hole 1005 is a process different from the process of forming the shape of the flare nut 1001, there is a problem that productivity is reduced.
 一方、実施の形態1に係るフレアナット1は、図2及び図3に示される様に、貫通孔6、雌ネジ部4、及び逃がし形状3のそれぞれの中心軸と平行な中心軸を持つ連通孔5を備える。連通孔5は、フレアナット1のユニオン7が挿入される側の端面14に開口しており、外部空間と逃がし形状3とを連通している。そして、連通孔5がフレアナット1を形成する加工の中心軸と平行な中心軸を有する。そのため、フレアナット1の銅管10を通す貫通孔6、フレアシート面2、逃がし形状3、及びユニオン7と螺合するための雌ネジ部4の加工と連通孔5の加工とは、一連の工程で加工することが可能となる。 On the other hand, as shown in FIGS. 2 and 3, the flare nut 1 according to the first embodiment has a communication hole having central axes parallel to the central axes of the through hole 6, the female screw portion 4, and the escape shape 3. A hole 5 is provided. The communication hole 5 opens in the end surface 14 of the flare nut 1 on the side where the union 7 is inserted, and communicates the external space with the relief shape 3. The communication hole 5 has a central axis that is parallel to the central axis of the processing that forms the flare nut 1. Therefore, the through hole 6 through which the copper tube 10 of the flare nut 1 passes, the flare sheet surface 2, the relief shape 3, and the processing of the female screw portion 4 for screwing with the union 7 and the processing of the communication hole 5 are a series. It becomes possible to process in the process.
 連通孔5は、冷媒配管継手構造100の内部の結露水を排出するためのものである。そのため、フレアナット1が回転方向においてどの角度で設置されても連通孔5から排水が可能となるように、フレアナット1の中心軸を中心とした円周上において、120°ごとに3箇所に設けられている。 The communication hole 5 is for discharging condensed water inside the refrigerant pipe joint structure 100. Therefore, the flare nut 1 can be drained from the communication hole 5 at any angle in the rotation direction, so that the flare nut 1 can be drained from the communication hole 5 at three positions every 120° on the circumference around the central axis of the flare nut 1. It is provided.
 また、連通孔5は、ドリルで穿孔するため、削られたフレアナット1の素材である金属の切粉が発生し、連通孔5の内部及びフレアナット1内に残留する可能性がある。実施の形態1に係るフレアナット1は連通孔5の開口部5aが同一方向を向いている。そのため、切粉を圧搾空気で吹き飛ばして除去する場合に、雌ネジ部4が形成される孔を塞ぐことにより、同時に3つの連通孔5に圧搾空気を流し込むことができ、効率的に切粉の除去を行うことが出来る。 Further, since the communication hole 5 is drilled with a drill, metal chips, which are the material of the flared nut 1 that has been scraped, may be generated, and may remain inside the communication hole 5 and in the flare nut 1. In flare nut 1 according to the first embodiment, openings 5a of communication holes 5 face the same direction. Therefore, when the cutting powder is blown away with compressed air to be removed, the compressed air can be poured into the three communication holes 5 at the same time by closing the hole in which the female screw portion 4 is formed, and the cutting powder can be efficiently removed. It can be removed.
 以上のように、実施の形態1に係る冷媒配管継手構造100は、管部18と、該管部18の端部が円錐形状に拡張されたフレア部11と、を備える銅管10と、先端部が円錐形状に形成され、中心軸上に冷媒流路17を備えるユニオン7と、ユニオン7の雄ネジ部9と螺合する雌ネジ部4を備えるフレアナット1と、を備える。フレアナット1は、銅管10の管部18が通される貫通孔6と、雌ネジ部4の端部に形成された逃がし形状3と、逃がし形状3と貫通孔6との間に形成された円錐形状のフレアシート面2と、逃がし形状3と外部空間とを連通する連通孔5と、を備える。ユニオン7は、雌ネジ部4と螺合して締結される。銅管10のフレア部11は、フレアシート面2とユニオン7のシート面8との間に挟まれる。連通孔5は、雌ネジ部4が形成されている端面14に開口しており、中心軸が雌ネジ部4の中心軸と平行である。このように構成されることにより、フレアナット1の内部に滞留した水が凍結して膨張しても連通孔5から膨張圧力を逃がすことで、銅管10のフレア部11が凍結した氷により押し出されて脱落しないようにする効果を有する。また、連通孔5が加工される方向とフレアナット1の雌ネジ部4等の構造を加工する中心軸の方向を同一とすることで、同一加工工程の中で雌ネジ部4等の構造と連通孔5とを加工できるようになる。これにより、連通孔5を加工するために別工程を設ける必要がなくなり、フレアナット1の生産性が向上する。つまり、実施の形態1に係る冷媒配管継手構造100によれば、上記構成を備えることにより、冷媒漏洩に対する信頼性を確保しつつ、コストを抑えることが可能となる。 As described above, the refrigerant pipe joint structure 100 according to the first embodiment has the copper pipe 10 including the pipe portion 18 and the flare portion 11 in which the end portion of the pipe portion 18 is expanded in a conical shape, and the tip. The portion is formed in a conical shape, and includes a union 7 having a coolant channel 17 on the central axis thereof, and a flare nut 1 having a female screw portion 4 screwed with a male screw portion 9 of the union 7. The flare nut 1 is formed between the through hole 6 through which the pipe portion 18 of the copper pipe 10 passes, the relief shape 3 formed at the end of the female screw portion 4, and the escape shape 3 and the through hole 6. And a conical flare sheet surface 2 and a communication hole 5 that communicates the relief shape 3 with the external space. The union 7 is screwed and fastened to the female screw portion 4. The flare portion 11 of the copper tube 10 is sandwiched between the flare sheet surface 2 and the sheet surface 8 of the union 7. The communication hole 5 is opened in the end surface 14 on which the female screw portion 4 is formed, and its central axis is parallel to the central axis of the female screw portion 4. With such a configuration, even if the water accumulated inside the flare nut 1 freezes and expands, the expansion pressure is released from the communication hole 5, and the flare portion 11 of the copper pipe 10 is pushed out by the frozen ice. It has the effect of not falling off. Further, by making the direction in which the communication hole 5 is processed and the direction of the central axis for processing the structure of the female screw portion 4 and the like of the flare nut 1 the same, the structure of the female screw portion 4 and the like can be made in the same processing step. It becomes possible to process the communication hole 5. As a result, it is not necessary to provide a separate process for processing the communication hole 5, and the productivity of the flare nut 1 is improved. That is, according to the refrigerant pipe joint structure 100 according to the first embodiment, by providing the above configuration, it is possible to reduce the cost while ensuring reliability against refrigerant leakage.
 実施の形態2.
 本発明の実施の形態2に係る冷媒配管継手構造200は、実施の形態1に係る冷媒配管継手構造100に対し、連通孔5の配置を変更したものである。実施の形態2に係る冷媒配管継手構造200においては、実施の形態1に対する変更点を中心に説明する。実施の形態2に係る冷媒配管継手構造200の各部については、各図面において同一の機能を有するものは実施の形態1の説明で使用した図面と同一の符号を付して表示するものとする。
Embodiment 2.
Refrigerant pipe joint structure 200 according to Embodiment 2 of the present invention differs from refrigerant pipe joint structure 100 according to Embodiment 1 in that the arrangement of communication holes 5 is changed. The refrigerant pipe joint structure 200 according to the second embodiment will be described with a focus on the changes from the first embodiment. Regarding the respective parts of the refrigerant pipe joint structure 200 according to the second embodiment, those having the same function in each drawing will be denoted by the same reference numerals as those in the drawings used in the description of the first embodiment.
 図7は、実施の形態2に係る冷媒配管継手構造200のフレアナット1の平面図及び断面図である。図8は、図7のB部の拡大図である。実施の形態2に係る冷媒配管継手構造200は、実施の形態1に係る冷媒配管継手構造100のフレアナット1を、図7に示されるフレアナット201と置き換えたものである。冷媒配管継手構造200は、銅管10のフレア部11を、フレアナット1のフレアシート面2とユニオン7のシート面8とで挟み込みシール性を確保している。つまり、フレアナット201の雌ネジ部4とユニオン7の雄ネジ部9とが噛み合い、フレアナット1を工具等で回転することで締め付け、銅管10のフレア部11とフレアナット201のフレアシート面2及びユニオン7のシート面8が密着する。これにより、銅管10内を流れる冷媒が冷媒回路の内部に封止される。また、ネジを締め付ける際に、銅管10のフレア部11は、ユニオン7のシート面8とフレアナット201のフレアシート面2で圧縮されフレア部11の先端部12の方向に延伸することになる。このため、フレアナット201には、銅管10のフレア部11の先端部12が延伸しても、フレアナット201の内周面16に当接しないように、銅管10のフレア部11の先端部12を逃がす空間を形成する逃がし形状3が設けられている。 FIG. 7 is a plan view and a sectional view of the flare nut 1 of the refrigerant pipe joint structure 200 according to the second embodiment. FIG. 8 is an enlarged view of portion B in FIG. 7. The refrigerant pipe joint structure 200 according to the second embodiment is obtained by replacing the flare nut 1 of the refrigerant pipe joint structure 100 according to the first embodiment with a flare nut 201 shown in FIG. 7. In the refrigerant pipe joint structure 200, the flare portion 11 of the copper pipe 10 is sandwiched between the flare sheet surface 2 of the flare nut 1 and the seat surface 8 of the union 7 to ensure sealing performance. That is, the female screw portion 4 of the flare nut 201 and the male screw portion 9 of the union 7 are engaged with each other, and the flare nut 1 is rotated by a tool or the like to tighten the flare nut 11 and the flare sheet surface of the flare nut 201. 2 and the seat surface 8 of the union 7 are in close contact with each other. As a result, the refrigerant flowing in the copper tube 10 is sealed inside the refrigerant circuit. Further, when tightening the screw, the flare portion 11 of the copper tube 10 is compressed by the seat surface 8 of the union 7 and the flare sheet surface 2 of the flare nut 201 and extends in the direction of the tip portion 12 of the flare portion 11. .. Therefore, even if the tip portion 12 of the flare portion 11 of the copper tube 10 extends to the flare nut 201, the tip of the flare portion 11 of the copper tube 10 does not come into contact with the inner peripheral surface 16 of the flare nut 201. A relief shape 3 is provided which forms a space for the portion 12 to escape.
 フレアナット201は、実施の形態1に係るフレアナット1の連通孔5と同様に、雌ネジ部4が設けられている端面14に開口部205aが設けられ、雌ネジ部4等を加工する中心軸と平行な中心軸になるように連通孔205を配置している。そして、連通孔205は、逃がし形状3と外部空間とを連通している。連通孔205は、フレアシート面2、逃がし形状3、雌ネジ部4、及び貫通孔6と一連の工程で加工することが出来る。 Like the communication hole 5 of the flare nut 1 according to the first embodiment, the flare nut 201 is provided with an opening 205a in the end surface 14 provided with the female screw portion 4, and is a center for processing the female screw portion 4 and the like. The communication hole 205 is arranged so that the central axis is parallel to the axis. The communication hole 205 communicates the relief shape 3 with the external space. The communication hole 205 can be processed by the flare sheet surface 2, the relief shape 3, the female screw portion 4, and the through hole 6 in a series of steps.
 実施の形態2のフレアナット201では連通孔205を、角部19とフレアナット201の中心軸とを結んだ仮想線上に連通孔205を設けている。これにより、フレアナット201の角部19が厚肉になっていることを利用し、フレアナット201の雌ネジ部4と連通孔205の間の距離を離すことができる。これにより、雌ネジ部4と連通孔205との間の肉厚が増加するため、フレアナット201の強度を高めることが出来る。 In the flare nut 201 of the second embodiment, the communication hole 205 is provided, and the communication hole 205 is provided on a virtual line connecting the corner portion 19 and the central axis of the flare nut 201. This makes it possible to increase the distance between the female screw portion 4 of the flare nut 201 and the communication hole 205 by utilizing the fact that the corner portion 19 of the flare nut 201 is thick. As a result, the wall thickness between the female screw portion 4 and the communication hole 205 increases, so that the strength of the flare nut 201 can be increased.
 また、銅管10のフレア部11の先端部12を逃がすための逃がし形状3の内周面16の内径寸法20を小さくすることで、逃がし形状3の内周面16とフレアナット201の外周面15との距離を離すことが出来る。そのため、フレアナット201の強度を高めることが出来る。このとき、逃がし形状3の内径寸法20は、連通孔205の中心軸とフレアナット201の中心軸との距離21と同等以上に設定される。これにより、逃がし形状3と連通孔205が連通する開口部22の開口面積を確保することができる。また、連通孔205を加工することによる強度の低下を抑制しつつ、逃がし形状3に滞留した水が氷結する際に膨張する際の圧力を逃がすための経路を確保することができる。これにより、銅管10のフレア部11の先端部12が氷に押し出されてシール性が低下するのを抑制できる。 Further, by reducing the inner diameter dimension 20 of the inner peripheral surface 16 of the escape shape 3 for allowing the tip portion 12 of the flare portion 11 of the copper pipe 10 to escape, the inner peripheral surface 16 of the escape shape 3 and the outer peripheral surface of the flare nut 201. The distance from 15 can be separated. Therefore, the strength of the flare nut 201 can be increased. At this time, the inner diameter dimension 20 of the relief shape 3 is set to be equal to or more than the distance 21 between the central axis of the communication hole 205 and the central axis of the flare nut 201. As a result, the opening area of the opening 22 through which the relief shape 3 and the communication hole 205 communicate can be secured. In addition, it is possible to secure a path for releasing the pressure when the water retained in the escape shape 3 expands when it freezes, while suppressing the decrease in strength due to the processing of the communication hole 205. As a result, it is possible to prevent the tip portion 12 of the flare portion 11 of the copper tube 10 from being pushed out by ice and the sealing performance being deteriorated.
 実施の形態2に係る冷媒配管継手構造200は、連通孔205の中心軸と雌ネジ部4の中心軸との距離は、逃がし形状3の内周面16の内径寸法20と同等以下である。フレアナット201は、雌ネジ部4の中心軸方向に見たときに外周面15が六角形であり、連通孔205は、フレアナット201の外周面15の頂点と雌ネジ部4の中心軸とを結んだ仮想線上に位置する。これにより、冷媒配管継手構造200は、実施の形態1に係る冷媒配管継手構造100と同じ効果を得つつ、フレアナット201の強度を向上させることができる。 In the refrigerant pipe joint structure 200 according to the second embodiment, the distance between the center axis of the communication hole 205 and the center axis of the female screw portion 4 is equal to or less than the inner diameter dimension 20 of the inner peripheral surface 16 of the relief shape 3. The flare nut 201 has a hexagonal outer peripheral surface 15 when viewed in the direction of the central axis of the female screw portion 4, and the communication hole 205 defines the apex of the outer peripheral surface 15 of the flare nut 201 and the central axis of the female screw portion 4. It is located on the virtual line that connects the two. Thereby, refrigerant pipe joint structure 200 can improve the strength of flare nut 201 while obtaining the same effect as refrigerant pipe joint structure 100 according to the first embodiment.
 以上に本発明を実施の形態に基づいて説明したが、本発明は上述した実施の形態の構成のみに限定されるものではない。例えば、連通孔5、205は、さらに多く箇所に設けられていても良い。また、本発明は各実施の形態を組み合わせて構成されていても良い。要するに、いわゆる当業者が必要に応じてなす種々なる変更、応用、利用の範囲をも本発明の要旨(技術的範囲)に含むことを念のため申し添える。 Although the present invention has been described above based on the embodiments, the present invention is not limited to the configurations of the above-described embodiments. For example, the communication holes 5 and 205 may be provided in more places. Further, the present invention may be configured by combining the embodiments. In short, it should be added that the scope of the present invention (technical scope) also includes various modifications, applications, and ranges of use that are required by those skilled in the art.
 1 フレアナット、2 フレアシート面、3 逃がし形状、4 雌ネジ部、5 連通孔、5a 開口部、6 貫通孔、7 ユニオン、8 シート面、9 雄ネジ部、10 銅管、11 フレア部、12 先端部、13 端面、14 端面、15 外周面、16 内周面、17 冷媒流路、18 管部、19 角部、20 内径寸法、21 距離、22 開口部、100 冷媒配管継手構造、200 冷媒配管継手構造、201 フレアナット、205 連通孔、205a 開口部、1000 冷媒配管継手構造、1001 フレアナット、1005 連通孔。 1 flare nut, 2 flare seat surface, 3 relief shape, 4 female screw part, 5 communicating hole, 5a opening part, 6 through hole, 7 union, 8 seat surface, 9 male screw part, 10 copper pipe, 11 flare part, 12 tip part, 13 end face, 14 end face, 15 outer peripheral face, 16 inner peripheral face, 17 refrigerant flow passage, 18 pipe part, 19 corner part, 20 inner diameter dimension, 21 distance, 22 opening part, 100 refrigerant pipe joint structure, 200 Refrigerant pipe joint structure, 201 flare nut, 205 communication hole, 205a opening, 1000 refrigerant pipe joint structure, 1001 flare nut, 1005 communication hole.

Claims (3)

  1.  管部と、該管部の端部がテーパ状に拡張されたフレア部と、を備える銅管と、
     先端部にテーパ状に形成され、中心軸上に冷媒流路を備えるユニオンと、
     前記ユニオンと螺合する雌ネジ部を備えるフレアナットと、を備え、
     前記フレアナットは、
     前記銅管の前記管部が通される貫通孔と、
     前記雌ネジ部の端部に形成された逃がし形状と、
     前記逃がし形状と前記貫通孔との間に形成されたテーパ状のフレアシート面と、
     前記逃がし形状と外部空間とを連通する連通孔と、を備え、
     前記ユニオンは、
     先端にテーパ状のシート面と、側面に形成された雄ネジ部と、を備え、
     前記雌ネジ部と螺合して締結され、
     前記銅管の前記フレア部は、
     前記フレアシート面と前記ユニオンの前記シート面との間に挟まれ、
     前記連通孔は、
     前記雌ネジ部が形成されている端面に開口しており、当該連通孔の中心軸が前記雌ネジ部の中心軸と平行である、冷媒配管継手構造。
    A copper pipe comprising a pipe portion and a flare portion in which an end portion of the pipe portion is expanded in a tapered shape;
    With a union that is formed in a tapered shape at the tip and has a refrigerant channel on the central axis,
    A flare nut having a female screw portion that is screwed into the union,
    The flare nut is
    A through hole through which the tube portion of the copper tube is passed,
    A relief shape formed at the end of the female screw portion,
    A tapered flare sheet surface formed between the escape shape and the through hole,
    A communication hole that communicates the escape shape with the external space,
    The union is
    A tapered seat surface at the tip, and a male screw portion formed on the side surface,
    It is screwed and fastened with the female screw portion,
    The flare portion of the copper tube,
    Sandwiched between the flare sheet surface and the union sheet surface,
    The communication hole is
    A refrigerant pipe joint structure having an opening on an end surface on which the female screw portion is formed, and a central axis of the communication hole is parallel to a central axis of the female screw portion.
  2.  前記連通孔の中心軸と前記雌ネジ部の中心軸との距離は、
     前記逃がし形状の内周面の内径寸法と同等以下に設定される、請求項1に記載の冷媒配管継手構造。
    The distance between the central axis of the communication hole and the central axis of the female screw portion is
    The refrigerant pipe joint structure according to claim 1, wherein the refrigerant pipe joint structure is set to be equal to or smaller than the inner diameter dimension of the inner peripheral surface of the relief shape.
  3.  前記フレアナットは、
     前記雌ネジ部の中心軸方向に見たときに外周面が六角形であり、
     前記連通孔は、
     前記フレアナットの前記外周面の頂点と前記雌ネジ部の中心軸とを結んだ仮想線上に位置する、請求項1又は2に記載の冷媒配管継手構造。
    The flare nut is
    The outer peripheral surface is a hexagon when viewed in the central axis direction of the female screw portion,
    The communication hole is
    The refrigerant pipe joint structure according to claim 1, wherein the refrigerant pipe joint structure is located on an imaginary line connecting the apex of the outer peripheral surface of the flare nut and the central axis of the female screw portion.
PCT/JP2019/006982 2019-02-25 2019-02-25 Refrigerant pipe joint structure WO2020174517A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/006982 WO2020174517A1 (en) 2019-02-25 2019-02-25 Refrigerant pipe joint structure
JP2021501380A JP7123232B2 (en) 2019-02-25 2019-02-25 Refrigerant piping joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/006982 WO2020174517A1 (en) 2019-02-25 2019-02-25 Refrigerant pipe joint structure

Publications (1)

Publication Number Publication Date
WO2020174517A1 true WO2020174517A1 (en) 2020-09-03

Family

ID=72239469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006982 WO2020174517A1 (en) 2019-02-25 2019-02-25 Refrigerant pipe joint structure

Country Status (2)

Country Link
JP (1) JP7123232B2 (en)
WO (1) WO2020174517A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1775199A1 (en) * 1968-07-16 1971-07-22 Dev Des Ind Modernes Soc Et Device for the watertight or airtight connection of two pipes or the like.
JPS545817U (en) * 1977-06-15 1979-01-16
JPS5582578U (en) * 1978-12-04 1980-06-06
JPS5693585U (en) * 1979-12-20 1981-07-25
JPS58180893A (en) * 1982-04-16 1983-10-22 三菱重工業株式会社 Method of preventing deformation by freezing of flare worked connected section
JPS60116485U (en) * 1984-01-13 1985-08-06 サンデン株式会社 flare pipe fittings
JPS61188089U (en) * 1985-05-15 1986-11-22
JPH06147372A (en) * 1992-11-10 1994-05-27 Daikin Ind Ltd Gas leakage detecting structure for flare type pipe connection section
JP2000161548A (en) * 1998-11-26 2000-06-16 Matsushita Electric Ind Co Ltd Piping connecting device
US20050275222A1 (en) * 2004-06-14 2005-12-15 Yoakam John A Gasket for a fluid connection
JP2009085430A (en) * 2007-09-11 2009-04-23 Daikin Ind Ltd Pipe fitting and refrigeration system using the same
JP2016065614A (en) * 2014-09-25 2016-04-28 三菱電機株式会社 Pipe connection structure

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1775199A1 (en) * 1968-07-16 1971-07-22 Dev Des Ind Modernes Soc Et Device for the watertight or airtight connection of two pipes or the like.
JPS545817U (en) * 1977-06-15 1979-01-16
JPS5582578U (en) * 1978-12-04 1980-06-06
JPS5693585U (en) * 1979-12-20 1981-07-25
JPS58180893A (en) * 1982-04-16 1983-10-22 三菱重工業株式会社 Method of preventing deformation by freezing of flare worked connected section
JPS60116485U (en) * 1984-01-13 1985-08-06 サンデン株式会社 flare pipe fittings
JPS61188089U (en) * 1985-05-15 1986-11-22
JPH06147372A (en) * 1992-11-10 1994-05-27 Daikin Ind Ltd Gas leakage detecting structure for flare type pipe connection section
JP2000161548A (en) * 1998-11-26 2000-06-16 Matsushita Electric Ind Co Ltd Piping connecting device
US20050275222A1 (en) * 2004-06-14 2005-12-15 Yoakam John A Gasket for a fluid connection
JP2009085430A (en) * 2007-09-11 2009-04-23 Daikin Ind Ltd Pipe fitting and refrigeration system using the same
JP2016065614A (en) * 2014-09-25 2016-04-28 三菱電機株式会社 Pipe connection structure

Also Published As

Publication number Publication date
JP7123232B2 (en) 2022-08-22
JPWO2020174517A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP4007391B2 (en) Biting-in type pipe connection structure, pipe joint, valve, closing valve, refrigeration cycle apparatus, and hot water supply apparatus
KR101879248B1 (en) Connecting structure of refrigerant pipe
KR101740444B1 (en) Structure for connecting refrigerant tube in air conditioner
US20110006517A1 (en) Duplex pipe fitting, exclusive tool for the duplex pipe fitting, refrigeration system employing the duplex pipe fitting, and separation type air conditioner
AU2006320057A1 (en) Pipe joint
WO2005008119A1 (en) Pipe joint
US20060244257A1 (en) Pipe joint
CN103629456A (en) Connecting nut special for refrigerating fluid connecting line of split-type air conditioner
WO2020166219A1 (en) Joint member and unit for air conditioning device
WO2020174517A1 (en) Refrigerant pipe joint structure
KR101479288B1 (en) Connecting structure of refrigerant pipe
JP2010048373A (en) Flare nut, and coolant piping, air conditioner, and freezing equipment equipped with the flare nut
JP3232909B2 (en) Piping structure
EP3376138B1 (en) Air conditioner
KR101949436B1 (en) Connecting structure of refrigerant pipe
JP2018146027A (en) Fitting type pipe joint and air conditioning system
KR20210153522A (en) Gasket for connecting refrigerant pipes
KR101005637B1 (en) Joint Structure of Refrigerants Pipe of Air Conditioning System And Jointing Method of Refrigerants Pipe Comprised in Air Conditioning System
KR20160004609A (en) Flare bolt for leak test of refrigerant pipe of air conditioner
JP2007162743A (en) Flared joint and refrigerating cycle device using the same
WO2021109287A1 (en) Joint structure for refrigerant pipe
JP2008232201A (en) Pipe joint structure
KR101069979B1 (en) Joint Structure of Refrigerants Pipe of Air Conditioning System
KR20210002648U (en) Tool foe Pipe expanding
JP3124758U (en) Piping connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501380

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917130

Country of ref document: EP

Kind code of ref document: A1