WO2020174185A1 - Production of glazing with reduced extension stress - Google Patents

Production of glazing with reduced extension stress Download PDF

Info

Publication number
WO2020174185A1
WO2020174185A1 PCT/FR2020/050376 FR2020050376W WO2020174185A1 WO 2020174185 A1 WO2020174185 A1 WO 2020174185A1 FR 2020050376 W FR2020050376 W FR 2020050376W WO 2020174185 A1 WO2020174185 A1 WO 2020174185A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
support
separation tool
gravity
edge
Prior art date
Application number
PCT/FR2020/050376
Other languages
French (fr)
Inventor
Hervé Thellier
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to EP20713729.0A priority Critical patent/EP3931157A1/en
Priority to CN202080001468.6A priority patent/CN111867991B/en
Publication of WO2020174185A1 publication Critical patent/WO2020174185A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0258Gravity bending involving applying local or additional heating, cooling or insulating means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0252Re-forming glass sheets by bending by gravity by gravity only, e.g. sagging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to a method for manufacturing curved glazing, in particular laminated, and proposes an improvement in the step of cooling the glass after it has been bent with a view to obtaining reduced extension stresses.
  • the invention relates to bending processes involving a bending step on a gravity bending support called gravity support.
  • the invention relates in particular to the production of laminated glazing of the windshield or roof type for a road vehicle (automobile, truck, bus), but also any glazing for aeronautics or buildings.
  • Gravity support In gravity bending processes, the tooling supporting the so-called “gravity support” glass, with a shape adapted to the final geometry of the glass, is in contact with the periphery of the underside of the glass during all the shaping phases c that is, the preforming of the bending, the bending and the cooling.
  • Gravity support is usually in the form of a frame. It is preferably coated with a refractory fibrous material well known to those skilled in the art to come into contact with glass.
  • the width of its contact track with the glass is generally in the range from 2 to 20 mm, including refractory fibrous material.
  • the glass When the glass leaves the bending step to start the cooling phase, it is, according to the prior art, usually in contact through its periphery with the last gravity support, in particular between 5 and 10 mm from the edge of the glass.
  • the glass freezes and cools a physical phenomenon of the genesis of permanent stresses is created which corresponds to the conversion of the temperature distribution within the glass into a stress field. This phenomenon is initiated when the glass freezes and ends at the end of cooling when a homogeneous temperature distribution is reached. It can be considered that the glass freezes substantially at the strain point temperature.
  • the parts where the glass is fixed in the first place correspond to the parts where the compressive stresses are concentrated, while the parts where the glass is fixed with delay concentrate the stress zones in extension.
  • the edge stresses described in the present invention are membrane stresses which can be defined at any point of the material and for a given direction, as the average of the stress field at this point and in this direction, the average being taken over the whole of the material. 'glass thickness. At the glass edge, only the membrane stress component parallel to the edge is appropriate; the perpendicular component has a zero value. Also any measurement method allowing a measurement of the average stresses along an edge and through the thickness of the glass is relevant.
  • the methods for measuring edge stresses use photoelasticimetry techniques. The two methods described in the ASTM standards cited below make it possible to measure the edge stress values:
  • Both of these methods use polarized light that passes through the measured sample. It is therefore impossible to implement them directly when the product to be analyzed has an opaque peripheral decoration, usually in black enamel as is customary for automotive glazing. In this case, it is possible to remove the opaque layer either by mechanical abrasion or by chemical attack and then carry out the measurement.
  • VRP-100 the VRP-100, manufactured by the company Strainoptics, 108 W. Montgomery Ave., North Wales, PA 19454 USA.
  • the values of compressive stresses are determined by the method described in standard ASTM F218-2005-01, optionally adapted in order to measure only the stress of the glass outside the laminated glazing as mounted on the vehicle. .
  • the stresses can therefore be either measured on the outer glass sheet alone before laminated assembly or on the outer glass sheet after laminated assembly using the Sharples S-69 or VRP-100 devices mentioned above.
  • This sheet in the external position on the vehicle corresponds to the sheet in the lower position during the bending by gravity by the method according to the invention.
  • the extension measurements are carried out by the same method in an area parallel to the edge of the glazing but located slightly more towards the interior of its main face.
  • edge compressive stress values are determined between 0.1 and 2 mm from an edge and preferably between 0.1 and 1 mm from an edge.
  • an extended edge stress zone is generally identified which is included in a peripheral zone between 3 and 100 mm from the edge of the glass.
  • EP2532625 teaches a device for supporting glass after having cooled its surface below its strain point.
  • the central area of the glass is cooled under the strain point before the border.
  • This technique is applied to annealing glass. Cooling of the interior of the glass is necessary in order to be able to lift the glass from its support. This causes the compression of this central zone, which must necessarily be counterbalanced by an extension zone at the periphery thereof. The cooling of the central zone therefore runs the risk of resulting in the creation of greater peripheral extension constraints which may possibly weaken the glass.
  • the annealing step is insufficiently controlled and the periphery of the glazing remains too long at too high temperature during this phase, the level of edge compressions could be insufficient.
  • US5071461 teaches the bending of a stack of glass sheet then its cooling during which the glass is lifted from the bending mold by means of lifting rods supporting an area adjacent to the peripheral area in order to rapidly cool the more strongly convex part. glass.
  • WO2018154247 teaches a device and a method for the bending and cooling of glass sheets comprising the gravity bending of the glass on a gravity support during which the glass rests on the gravity support in the peripheral zone consisting of the 50 mm from the edge of its lower face, then the separation of the glass from the gravity support while the glass is at more than 560 ° C, then cooling of the glass during which its lower face is free of any contact in its peripheral zone between at least 560 ° C and 500 ° C.
  • the glass is never rested on its gravity support during cooling and after separation, so that the shape of the glass may possibly deviate a little from that desired during cooling.
  • the invention makes it possible to reduce the disturbance of the temperature distribution induced by the presence of the gravity support in the vicinity of the periphery of the glass.
  • the desired edge compression levels cited above are more readily achievable with larger safety margins, and extension stress levels are reduced.
  • the desired shape for the glass and corresponding to that of the gravity support is well preserved during cooling.
  • the invention relates to a method for bending and cooling a glass sheet or a stack of glass sheets, called glass, comprising the bending by gravity of the glass heated to a maximum temperature in its plastic deformation temperature range on a gravity support during which the glass rests on the gravity support in the peripheral zone of its lower face, said peripheral zone consisting of 50 mm from the edge of the underside, the glass bulging by sagging under the effect of its own weight, then said process comprising cooling the glass leading to its freezing, the following sequencing being carried out at least once during said cooling leading to its freezing:
  • cooling leading to freezing of the glass means cooling before the complete freezing of the glass and therefore at a temperature higher than its freezing temperature.
  • the contact areas of the glass with the separation tool and with the gravity support are areas not yet fixed at the time of sequencing.
  • the glass hardens, loses its malleable state and internal stresses in the glass are created. These stresses are formed as a result of the fact that the entire mass of the glass does not cool simultaneously. It is considered that the freezing is completed when the glass has reached the temperature of 450 ° C and even 480 ° C during cooling, that is to say substantially its glass transition temperature.
  • the cooling leading to the freezing of the glass is generally controlled cooling, that is, the speed of which is controlled.
  • the sequencing is carried out while the glass is cooling leading to its freezing, at least once when its temperature is between the maximum bending temperature and 480 ° C and preferably between 560 and 500 ° C.
  • the sequencing is carried out during the cooling of the glass leading to its freezing at least twice and preferably at least 3 times and preferably at least 4 times and preferably at least 5 times, or even at least 6 times, or even at least 6 times. minus 7 times when its temperature is between the maximum bending temperature and 480 ° C.
  • the separation / (resupport) sequencing is preferably carried out at least 2 times between 560 and 500 ° C. Even more preferably, the sequencing is carried out at least once between the maximum bending temperature and 560 ° C, at least twice between 560 and 500 ° C, and at least once between 500 and 480 ° C.
  • the bending is thermal, the glass being brought to a temperature allowing its plastic deformation.
  • the maximum glass gravity bending temperature is greater than 560 ° C and generally greater than 570 ° C, and is generally less than 680 ° C.
  • the central region of the lower face of the lens in particular the region at a distance greater than 200 mm from the edge, is generally at a temperature at least equal to that of the peripheral zone of the lower face of the lens.
  • glass when the glass is taken over by a separation tool before freezing of the glass, whether it is a first sequencing or a subsequent sequencing. Thus, the entire glass is not yet frozen at the time of sequencing and its temperature in any zone is therefore higher than that of its strain point.
  • the "strain point" is determined by the method of measuring the viscous elongation rate of a fiberglass, by extrapolation from the annealing point, and in accordance with standard ASTM C336-71 (re-approved in 2005).
  • strain point can also optionally be said “point of constraint” in French, but the expression “Strain Point” has passed into the everyday language of those skilled in the French art who no longer uses the expression French. One thus speaks of temperature of strain point or more simply of “strain point”.
  • the gravity support influences the temperature of the glass in its contact zone.
  • glass is separated from the gravity support into 1 time sequencing, glass is homogenized in temperature in this zone. In doing so, without contact with the gravity support, its shape risks deviating slightly from the desired final convex shape.
  • the glass found the desired bulging final shape. Thanks to the sequencing, which is preferably repeated during the cooling of the glass leading to its freezing, one obtains both a homogenization of the temperature of the glass in its contact zone with the gravity support, and a shape faithful to the desired final shape. .
  • Permanent contact with one support as produced according to the prior art, detrimental for the extension constraints is, within the framework of the present invention, “shared” on two tools (gravity support and separation tool) touching the glass in two different places and at different times. At each separation of the gravity support and redeposit on the gravity support, there is a succession of thermal gradient removal and regeneration (this is also true for the gravity support and the separation tool).
  • the extension levels in the glass are thereby reduced and the mechanical strength improved.
  • the homogenization of the temperature of the glass in its zone of contact with the gravity support makes it possible to obtain reduced extension stresses while maintaining good edge compressive stresses.
  • the average cooling rate during the cooling leading to the freezing of the glass is preferably in the range from 0.3 to 3 ° C / second and preferably in the range from 0, 4 to 2.7 ° C / second.
  • the cooling leading to the freezing of the glass is advantageously controlled cooling, which is advantageously carried out in a series of controlled cooling chambers traversed by the glass and its gravity support, the temperature of these chambers decreasing from one chamber to the other during of the glass path.
  • the glass passes from one chamber to another while being supported by its gravity support, then in a chamber, a separation tool separates it from the gravity support for a separation period then rests it on top, then the gravity support supporting the glass go to the next room.
  • Each controlled cooling chamber is at a lower temperature than the one before it.
  • the separation time is generally in the range from 1 to 45 seconds and more generally in the range from 2 to 30 seconds.
  • the rooms can be separated by sliding doors that open to let a gravity support pass carrying its glass and close to keep the room at the desired temperature.
  • the train of gravity supports crosses the suite of chambers making stops so that each glass stops successively in all the chambers. Below 400 ° C, the glass can be considered as completely frozen and it can then be cooled quickly or slowly without any particular precaution as to its areas of contact with a tool.
  • the glass is in contact only with the gravity support or a separation tool.
  • the glass can rest on the gravity support without further contact with another tool.
  • the peripheral zone of the underside of the lens is in contact only with ambient air and with no tools. While the gravity support of any part only touches the lens in the peripheral area of the underside of the lens, the separation tool does not touch it in this area.
  • air cooler than the glass can be blown over the peripheral area of the underside of the glass while the glass is being taken over by the separation tool.
  • This blowing can be done using an air blowing ramp to cool the periphery of the glass more strongly.
  • the blown air is at a lower temperature than that of glass. It was found that by blowing in this way on the peripheral zone of the underside of the lens, the extension stresses were even more reduced. Blowing is carried out on the contact area with the gravity support, in the absence of contact with the gravity support.
  • the device according to the invention can comprise an air blowing ramp capable of blowing on the peripheral zone of the underside of the glass during the taking up of the glass by the separation tool.
  • the separation tool may include an upper form capable of acting on the upper face of the lens for its handling, such as that referenced 33 in FIG. 1 of WO2018 / 154247.
  • a homogenization of the temperature of the glass is obtained by maintaining the glass by suction on its upper face and without any contact with its lower face, thanks to this upper form provided with a skirt and a suction means sucking the air between the edge of the glass and the skirt, the suction of the skirt providing the force to hold the glass against the form (even a stack of sheets of glass).
  • the air sucked in by the skirt and circulating in the vicinity of the edge of the lens promotes the homogenization of the temperature of the peripheral zone of the lower face of the lens. If necessary, we can equip the skirt with an air blowing ramp to cool the peripheral zone of the underside of the glass more strongly.
  • the upper form is preferably in the form of a frame, this frame preferably being covered with a refractory fibrous material in order to reduce the risk of marking the surface of the upper face of the glass.
  • This frame may have a width within the range of 2 to 20 mm, including the fibrous material.
  • this upper form comes into contact with the glass without protruding from the edge of the glass.
  • This upper form can come into contact with the glass so that its outer edge comes at a distance from the edge of the glass (towards the inside of the glass) in the range of 3 to 20 mm.
  • a top form as a separation tool and the gravity support can be animated with a relative vertical movement allowing them to move towards each other so that one of these tools takes up the glass or leaves it take over by the other, as part of performing separation / sequencing (support again).
  • relative vertical movement means that only one of the two tools (the separation tool and gravity support) can move vertically, or that both can move vertically for the passage of the glass from one to the other. 'other.
  • the suction of the upper form is triggered and the upper form then takes charge of the glass , then the upper form (holding the glass against it) and the gravity support move away, then, with a view to “support again” these two tools come together, the suction is stopped and the glass is dropped on the gravity support , then the two tools move away from each other again.
  • the separation tool is advantageously a tool coming into contact with the glass via its lower face and only coming into contact with the glass at a distance greater than 50 mm from the edge of the glass.
  • the separation tool does not come into contact with the lens in the peripheral zone of the underside of the lens.
  • the separation tool can come into contact with the glass in an area between 50 mm from the edge of the glass and 200 mm from the edge of the glass and preferably between 50 mm and 150 mm from the edge of the glass.
  • the separation tool comes into contact with the glass exclusively in this zone.
  • the separation tool can be a support coming into contact with the underside of the glass; it could be :
  • the pads of the supports b) above can be mounted to move by means of a spring placed under their contact surface for the glass, like the pads of Figures 1, 2, 3, 4, 10 of WO2018 / 154248.
  • the term “support” in the context of the present application designates a tool on which the glass rests and is therefore in contact with the underside of the glass.
  • the separation tool if it supports the glass, preferably has a discontinuous support surface, and therefore provides the glass with a plurality of support zones. This discontinuity favors the circulation of air and the more homogeneous cooling of the underside of the glass.
  • the separation tool if it supports the glass, can form an on-board assembly with the gravity support.
  • the separation tool then circulates with the gravity support in an on-board manner on a “gravity support / separation tool” assembly.
  • the separation tool and the gravity support can be animated with a relative vertical movement allowing one to pass above the other or to pass below the other in order to take charge the glass or let it take over by the other, as part of the separation / sequencing performance (support again).
  • relative vertical movement means that only one of the two members (the separation tool and the gravity support) can move vertically, or that both can move vertically for the passage of the glass from one to the other. 'other.
  • the difference in height dimension of the contact track of one of the two members with respect to the other, when they are not in motion is at least 10 mm and preferably at least. less 30 mm.
  • Such a distance makes it possible, on the one hand, to eliminate heat transfers by conduction but also to sufficiently minimize heat transfers by radiation between the glass and the component (either the separation tool or the gravity support) that we have just separated from the glass.
  • the gravity support supporting the glass is placed in an oven for the thermal bending of the glass. The bending being carried out, the gravity support carrying the glass is moved into a cooling zone to cool the glass.
  • the controlled cooling first leads to the freezing of the glass, then the geometry of the glass being fixed, the glass is cooled to room temperature.
  • the bending and the controlled cooling leading to the freezing of the glass are advantageously carried out in a succession of chambers arranged one behind the other on the path of the glass. These chambers are at different temperatures in order to apply the desired thermal profile to the glass.
  • a plurality of glasses circulate one behind the other, each glass being on a different gravity support.
  • the device according to the invention can comprise both at least one separation tool coming into contact with the glass via its lower face as already described and also at least one separation tool of the upper form type provided with a suction means and coming into contact with the glass via its upper face as described above.
  • Each of these separation tools is used as part of a different "separation / (support again)" sequencing applied one after another. These different sequencing are preferably applied in different chambers, which have different temperatures.
  • a separation tool comprising an upper form provided with a suction means acting on the upper face of the glass for its handling
  • at least one sequencing in a second chamber by a separation tool coming into contact with the underside of the glass in an area between on the one hand 50 mm from the edge of the glass and on the other hand 200 mm and preferably 150 mm from the edge of the glass, the second chamber being disposed after the first chamber on the path of the glass, the second chamber being at a temperature lower than that of the first chamber.
  • the device according to the invention then comprises a first chamber comprising at least one separation tool of the upper form type provided with a suction means coming to the contact of the glass via its upper face and a second chamber comprising at least one separation tool coming into contact with the glass via its lower face.
  • a first chamber comprising at least one separation tool of the upper form type provided with a suction means coming to the contact of the glass via its upper face
  • a second chamber comprising at least one separation tool coming into contact with the glass via its lower face.
  • the first chamber precedes the second chamber on the glass path.
  • the separation tool generally has the shape corresponding to its desired final shape, it being understood that its shape may deviate from the desired final shape as soon as it has members capable of orienting itself in order to take the shape of the glass when it is picked up and under the effect of the weight of the glass.
  • the glass just before coming into contact with the separation tool, the glass had just been curved on the gravity support and therefore took the desired final convex shape, so that a separation tool having organs allowing it to orient itself with respect to the shape of the glass therefore takes in contact with the latter substantially the final shape desired for the glass.
  • Supports offering the glass a discontinuous surface by pads and capable of modifying the orientation of the pad contact zone and / or damping the reception of the lens under the effect of the weight of the lens when it is received by the support have been described in WO2018 / 154248 and can be used as a separation tool in the context of the present invention.
  • the sum of the areas of all the contact areas of the pads may represent 0.2 to 5% of the area of the underside of the lens.
  • the contact area of each pad contact zone can be in the range from 50 mm 2 to 5500 mm 2 and preferably from 500 mm 2 to 4000 mm 2 .
  • the separation tool comprises 4 to 20 or even 6 to 20 contact zones of relatively high area each, that is to say of area each within the range from 500 mm 2 to 4000 mm 2. .
  • the separation tool as a support capable of supporting the lens by coming into contact with its lower face, can therefore include a discontinuous contact surface for the lens.
  • the separation tool can also be a continuous or crenellated frame.
  • the separation tool if it supports the glass by its 1 st main face (that is to say the outer face of the outer glass of the glazing as it is mounted on the vehicle), may have a contact surface for glass having a shape, called a compensation shape, deviating from the final shape desired for the glass in order to compensate for a possible defect in shape that the glass could take if the separation tool had exactly the desired shape for the glass .
  • a separation tool supports the glass in a relatively internal zone of the underside of the glass and at a temperature at which the glass is not completely fixed. As a result, the portion of the glass outside the separation tool may have a tendency to collapse.
  • the support-type separation tool may have a contact surface for the lens, which is concave when viewed from above and more curved than that of the gravity support which is to support the lens in the same region at the end of bending.
  • refractory fibrous material well known to man of the trade to reduce the risk of marking hot glass with a tool.
  • This fibrous material may be a fabric or felt or knit and in particular a “tempering knit” usually used to coat the tempering frames of the glass and having the advantage of being very perforated.
  • the refractory fibrous material contains refractory fibers and has a large open porosity which gives it a thermal insulating property.
  • the gravity support generally has, at least at the end of bending, a shape corresponding to the final geometry desired for the glass. During the bending of the glass, it is in contact with the periphery of the underside of the glass.
  • the gravity support generally has the shape of a frame and can be called a skeleton by those skilled in the art.
  • a skeleton is a metal strip, one edge of which serves as a contact track for the glass.
  • the gravity support is generally continuous at least at the end of bending. It is preferably coated with a refractory fibrous material well known to those skilled in the art to come into contact with the glass.
  • the width of its contact track with the glass is generally in the range from 2 to 20 mm, including refractory fibrous material.
  • the gravity support can include articulated parts that rise during bending and / or several frames supporting the glass one after the other during bending.
  • Such gravity supports have been described in WO2015 / 128573, WO2013132174, W02007077371, EP448447, EP0705798.
  • the separation of the glass from the gravity support takes place after the glass has taken its final shape at the periphery and therefore once the gravity support has taken the final shape desired for the glass. This shape offered to the glass by the gravity support does not change until its last separation from the glass.
  • the separation / sequencing (support again) takes place with the gravity support in its final form.
  • the separation tool supports the lens from its underside, then it touches it in its zone inside its peripheral zone, that is to say at more than 50 mm from the edge of the lens (without contact at less than 50 mm from the edge) and preferably more than 60 mm from the edge of the glass (contactless less than 60 mm from the edge).
  • the contact area of the separation tool is entirely within 200 mm of the edge of the glass (contactless then more than 200 mm from the edge of the glass) and preferably less than 150 mm from the edge of the glass (contactless then more than 150 mm from the edge of the glass).
  • Such a tool can be integrated into a device comprising the gravity support, in which case all the contact areas of the separation tool are circumscribed in top view by the gravity support when the latter has its final shape.
  • the device according to the invention can comprise an oven and a plurality of gravity supports each capable of supporting a glass, said gravity supports forming a train of gravity supports able to circulate in the oven.
  • a plurality of gravity supports are produced for producing a batch of glasses having a specific shape. These supports, each carrying a glass (a sheet or several stacked sheets) are conveyed one behind the other, forming a train of gravity supports, in a bending furnace in order to bend the glass and then cool it in a controlled manner at least until it freezes.
  • the controlled cooling zone leading to the freezing of the glass is considered to be part of the furnace. In fact, this zone generally comprises thermal insulation and heating means in order to regulate and maintain the desired temperature.
  • the furnace generally comprises a plurality of chambers crossed one after the other by the gravity supports following one after the other, and this, for the bending and controlled cooling. After removal from the oven and when the glass is frozen, the gravity supports can be unloaded from their glass and returned empty to the loading station. They then take over a non-curved glass and return to the oven for the bending of this new glass.
  • These gravity supports can be part of a device integrating them as well as a separation tool. In this case, it is a plurality of such gravity support / separation tool devices which are manufactured and circulate in the furnace.
  • the invention relates in particular to the production of laminated glazings combining two sheets of glass, the thickness of one of which is in the range from 1.4 to 3.15 mm and the thickness of the other of which is included in the range ranging from 0.5 to 3.15 mm.
  • the face 1 of the laminated glazing is one side of the thicker sheet.
  • the glass can be a stack of two sheets of glass of different thickness, the thinner preferably being the thicker.
  • these two sheets can be intended to be assembled together in a laminated glazing, in which case, the fact that they are the one on the other of the bending until the freezing guarantees an excellent compatibility of form.
  • Each sheet of glass may be covered before bending with one or more layers of enamel or one or more thin layers of the anti-solar (low-e), conductive or other type usually applied to automotive glazing.
  • the curved glass produced according to the invention relates more particularly to the production of glazing, in particular laminated, of the windshield or roof of a road vehicle type.
  • the area of one of their main surface is generally greater than 0.5 m 2 , especially between 0.5 and 4 m 2 .
  • Glass generally has four edges (also called bands), the distance between two opposite edges being generally greater than 500 mm and more generally greater than 600 mm and more generally greater than 900 mm.
  • the edge compressive stresses of the final glass in its sheet comprising the underside are greater than 8 MPa, or even greater than 10 MPa.
  • the extension levels are low, less than 5 MPa and even less than 4 MPa, or even less than 3 MPa.
  • the maximum stress in extension is generally located at a distance from the edge of between 5 and 40 mm and more generally between 10 and 40 mm.
  • the sheet in the lower position during bending and cooling therefore exhibits remarkable mechanical properties making this sheet well suited to be mounted in an external position facing the outside, of an automobile glazing. Indeed, the face of the glazing facing outward (face 1 convex) is the one most likely to receive projectiles such as, for example, gravel.
  • the invention makes it possible to obtain a curved glazing, in particular laminated, comprising at least one sheet of glass comprising an edge compressive stress greater than 8 MPa, a maximum extension stress of less than 5 MPa or even less than 4 MPa.
  • a visible trace in polariscopy is observed at the places of contact with the 'separation tool, i.e. more than 50 mm from the edge.
  • the trace visible in polariscopy has the shape of the separation tool, that is to say that of a frame or a discontinuous set of tasks located between on the one hand 50 mm from the edge of the glass and on the other hand 200 mm and if necessary 150 mm from the edge of the glass.
  • the glazing can be laminated and include two sheets of glass, the thickness of one being in the range from 1.4 to 3.15 mm and the thickness of the other being in the range from 0 , 5 to 3.15 mm.
  • the separation tool is an upper form of the frame type as already mentioned above and coming into contact with the area peripheral of the upper face of the lens without touching the lens beyond this peripheral zone
  • this upper shape does not cause any trace in polariscopy beyond the peripheral zone from the edge of the lens in the final lens, and therefore also beyond 150 mm from the edge of the glass, and therefore also beyond 200 mm from the edge of the glass.
  • the invention also relates to a curved glazing, in particular laminated, comprising at least one sheet of glass comprising an edge compressive stress greater than 8 MPa, a maximum extension stress of less than 5 MPa or even less than 4 MPa and without visible trace in polariscopy more than 200 mm from the edge and even more than 150 mm from the edge and even more than 50 mm from the edge of the glass.
  • the glazing can be laminated and comprise two sheets of glass, the thickness of one being in the range from 1.4 to 3.15 mm and the thickness of the other being in the range from from 0.5 to 3.15 mm.
  • FIG. 1 shows a gravity bending device 1 comprising a gravity support with double skeleton (2, 3) and a separation tool 4 in the form of a continuous ring.
  • FIG. 1a shows the device in top view and FIGS. 1 b and 1 c show, along the section plane AA 'of FIG. 1 a, the device seen from the side at two different times.
  • the dashed lines correspond to the contact surface for the glass of the various supports 2, 3, 4.
  • the gravity support comprises a blank skeleton 3 supporting the glass at the start of bending and a finishing skeleton 2 supporting the glass at the end of bending.
  • the curvatures of the blank skeleton 3 are concave seen from above and less pronounced than those of the finishing skeleton 2.
  • the separation tool 4 is circumscribed by the blank skeleton 3 and the blank skeleton 3 is circumscribed by the finishing skeleton 2.
  • Glass is not shown for clarity.
  • Figure 1 b) shows the relative position of the various elements (2,3,4) of the device at the end of bending, the glass then following the entire periphery of the contact track of the finishing skeleton, which is in a higher position than the two other elements 3 and 4. This figure therefore does not show the relative position of the elements 1, 2,4 in the prebombing phase on the blank skeleton 3, this phase being prior to the representations of this figure 1.
  • Figure 1 c) shows the relative position of the different elements (2, 3, 4) of the device just after separation of the glass from the finisher skeleton 2 following the lifting of the separation tool 4, the glass then hugging the entire periphery of the tool separation 4.
  • first step of the “separation / (support again)” sequencing which is followed by the second step of the same sequencing according to which the separation tool descends and the glass is again supported by the skeleton finisher 2.
  • FIG. 2 shows a gravity bending device 20 comprising a gravity support with double skeleton (21, 22) and a discontinuous separation tool 23 comprising a plurality of pads 24 mounted on a common frame 25.
  • the gravity support comprises a blank skeleton 21 supporting the glass at the start of bending and a finishing skeleton 22 supporting the glass at the end of bending.
  • the set of pads 24 forming a discontinuous contact surface for the lens is circumscribed by the blank skeleton 21 and the blank skeleton 21 is itself circumscribed by the finishing skeleton 22.
  • the lens is not shown. for the sake of clarity.
  • the frame 25 moves up or down to move up or down all of the pads, depending on the "separation / (support again)" sequencing step to be performed.
  • the frame 25 rises so that the runners 24 support the glass and frees the finisher skeleton.
  • the pads 24 touch the lens in an area inside the peripheral area of the underside of the lens.
  • the frame 25 then descends to replace the glass on the finishing skeleton.
  • FIG. 3 represents in a) a lens 30 resting on a finishing skeleton 31, then in b) its separation from this skeleton following the raising of a separation tool 33, then in c) the redeposition of the lens 30 on the skeleton finisher following the descent of the separation tool 33.
  • This figure 3 represents in section in a transverse plane of the furnace (that is to say seen in the longitudinal axis of the furnace) and very schematically, a lifting system 40 itself composed of two sub-assemblies: the part upper 41 and lower part 42. These two sub-assemblies 41 and 42 form an integral part of the oven and are surrounded by a layer of fibrous insulation 39 which provides thermal insulation of the oven.
  • the upper part 41 can be translated vertically using bars 36 which pass through the roof of the oven.
  • a coupling system 37 makes it possible, in the low position, to separate the upper 41 and lower 42 parts of the lifting system 40 in order to accommodate any differential expansion of the two sub-assemblies or in order to separate them during a maintenance operation.
  • This coupling system makes it possible to translate the sub-assembly 42 upwards during the ascent of the sub-assembly 41.
  • the separation tool 33 rests on the lower part of the lower sub-assembly 42 of the lifting system which can therefore give it a series of vertical movements up or down.
  • the separation tool 33 is here resident in a chamber 43 of the furnace whose atmosphere is at a specific temperature. More precisely, the separation tool 33 is introduced into this chamber 43 during the change of manufacture and it remains there immobile in the low position when the glass 30 and its skeleton are translated into the following chamber. The separation tool 33 will leave its chamber 43 during the next production change when all the tooling specific to the glazing that has just been produced is removed from the installation.
  • the separation tool 33 comprises a structure having vertical and horizontal bars 34 and an upper part provided with pads 35.
  • a glass 30 has been bent on a gravity support of the double skeleton type and rests in a) on the finishing skeleton 31 gravity support.
  • the blank skeleton 32 has already supported the lens at the start of bending and therefore appears here retracted and below the level of the finishing skeleton 31.
  • the double skeleton rests on the member 38 which makes it possible to support it vertically and to perform a longitudinal horizontal translation. thus allowing the skeleton and the glass 30 to pass from one chamber of the furnace to the next.
  • the member 38 may be a movable carriage which rolls on a fixed rail, a chain which translates in the oven, or a bed of rollers which pass through the side walls of the oven.
  • the separation tool 40 After bending the lens in a), the separation tool 40 is raised and the lens is supported (see FIG. 3b) in a zone inside its peripheral zone by the contact surfaces 35 of the separation tool 33.
  • This lifting is actuated here by the vertical translation of the lower sub-assembly 42 of the lifting system, itself driven upwards by the upper sub-assembly 41, itself pulled upwards thanks to the bars 36 which are connected to a motorization system not shown.
  • the glass After holding for a period of separation on the separation tool, the glass is rested in c) on the finishing skeleton of the gravity support.
  • the separation tool and its lifting system are here permanently in the chamber 43 whose atmosphere is at a specific temperature.
  • Several bedrooms, each with a specific temperature, can be juxtaposed and be equipped with their own separation tool and their own lifting system.
  • a plurality of gravity supports can thus circulate one behind the other, each carrying a glass and pass from one chamber to another, in particular the chamber 43, as part of the glass cooling cycle.
  • the separation tool is resident in a cooling chamber, that is to say that it does not circulate with the gravity support but that it processes the glasses in circulation. one after the other.
  • a lifting system similar to that in Figure 3 except that the separation tools would be on board with the gravity supports.
  • the separation tool 34 of Figures 3a), 3b) and 3c) would be reduced to a simple frame with taller vertical bars and which would lift the on-board separation tool with the gravity skeleton.
  • a simpler lifting system consisting of four vertical bars passing through the bottom of the furnace.
  • the hearth can then be closer to the gravity skeleton, just below organ 38.
  • Figure 4 shows schematically the kinematics of separation and support again glass on a skeleton of a gravity support.
  • This graph represents the dimension (z) of the lifting bars 36 of FIG. 3, in millimeters as a function of time.
  • the glass is on the separation tool.
  • the glass is successively and according to a defined and regular cycle:
  • FIG. 5 represents the temperature T of the glass in ° C as a function of time in the controlled cooling phase.
  • the temperatures indicated are those recorded at each of 6 separations of the glass from the gravity support taking place approximately at the instants t mi ,, t m 3, etc., as defined in FIG. 4.
  • FIG. 6 represents the influence of the contact surface of a support-type separation tool coming into contact with the underside of the glass on the collapse or not of the zone of the glass outside the separation tool.
  • the glass 60 has already been curved on a skeleton 61 of a gravity support.
  • the separation tool 64 includes a contact surface 62 for the lens, which substantially matches the shape desired for the lens at the point of contact. In b1, the separation tool 64 is mounted and supports the glass during the separation time.
  • FIGS. 6a1 and 6b1 represent the case where the separation tool offers the lens a surface having exactly the final shape desired for the lens at the point of contact. An unwanted collapse can therefore result.
  • FIGS. 6a2 and 6b2 show how this collapse can be combated by varying the shape of the contact surface 62 of the separation tool 64. In fact, the contact surface 62 of the separation tool here has a concavity.
  • the concavity corresponding to the desired shape of the glazing is shown in dashed lines 66 in Figures 6a2) and 6b2). Rather, this accentuated concavity causes the z zone of the lens to rise or even reduce or prevent this collapse.
  • a dotted curve 67 in FIG. 6b2) is represented by the curvature taken by the glass in the situation of FIG. 6b1).
  • the separation tool here has a form of compensation to compensate for the effect of the collapse and therefore to avoid too great a collapse of the zone z.
  • FIG. 7 schematically represents a method according to which a plurality of devices 70 each comprising a gravity support supporting a glass passes one after the other in a tunnel furnace 71, which ensures the heating of the glass, its bending by gravity then its controlled cooling then its forced cooling.
  • the furnace is shown in top view at 72 and in side view at 73.
  • the vacuum gravity supports 75 are each loaded with a flat glass 74 at the loading station 76 before entering the furnace 77.
  • a loaded gravity support. of a glass 70 then enters the oven and is then conveyed into the furnace to pass successively through chambers 1 to 13.
  • This entire cycle is carried out by a plurality of bending supports, each loaded with a glass and running one behind the other, forming a train in the process. They move through the oven so that each of the chambers 1 to 13 can be occupied by a support loaded with glass and they move step by step in the oven after having spent a defined time in a chamber.
  • the glass undergoes twice in each of the chambers 9 to 11 (that is to say 6 times) the sequencing separation / (support again) according to the invention.
  • the separation tool can be loaded and conveyed together with the gravity support on the same device.
  • Each room can also include its own separation system and remain permanently assigned to its room. From room 9 to room 11, each room is less hot than the one before it.
  • the glass is frozen on leaving the chamber 11, its temperature being about 480 ° C or lower. It can then be cooled more rapidly in chambers 12 and 13 in which it undergoes forced cooling, that is to say by convection of relatively cold air. The glass comes out of the oven at 78 at about 220 ° C.
  • FIG. 8 represents the different stages of a separation / sequencing (support again), the separation of the glass 80 being carried out by virtue of an upper form 82 in the form of a frame provided with a skirt 81 as suction means.
  • the skirt is provided with a blowing ramp 83.
  • the glass is on a gravity support 84 of the skeleton type and supports the glass in the peripheral zone of its lower face.
  • the upper form 82 and the gravity support supporting the glass are approached by a relative vertical movement. The suction through the skirt was then triggered and the glass was fixed to frame 82 as shown in c).
  • the upper form 82 carrying the glass and the gravity support moved away and the ramp 83 began to blow air on the peripheral zone of the lower face of the glass in order to exert a stronger cooling in this. zoned.
  • the blowing is carried out on the contact zone with the gravity support 84, in the absence of contact with the gravity support.
  • the upper form 82 and the gravity support 84 then approached by a relative vertical movement, the suction by the skirt 81 was stopped and as a consequence, the upper form dropped the glass 80 on the gravity support 84 as shown in d ).
  • the last 2 columns are the results of a test consisting in indenting a glazing using a 3.4 gram Vickers point and the radius of curvature at point level 0.2 mm and dropping from a height of 700 or 900 mm.
  • the indentation was performed on the main surface of the glazing at the level of the maximum edge extension. This is a% of breakages.
  • the performance in extension (the lower the value, the better the result) and in indentation (the lower the value, the better the result) are better from V1 to V4.

Abstract

The invention relates to a device and a method for bending and cooling a glass sheet or a stack of glass sheets, referred to as glass, comprising gravity bending of the glass heated to a maximum bending temperature on a gravity support, during which the glass rests on the gravity support in the peripheral zone of the lower surface thereof, said peripheral zone comprising 50 mm from the edge of the lower surface, then said method comprising the cooling of the glass leading to its solidification, the subsequent sequence being performed at least once during said cooling leading to its solidification, picking up of the glass by a separation tool separating it from the gravity support and leaving the lower surface thereof free from any contact in the peripheral zone thereof, then supporting of the glass again on the gravity support in the peripheral zone of the lower surface thereof.

Description

FABRICATION DE VITRAGES A CONTRAINTE CONSTRUCTION GLASS MANUFACTURING
D’EXTENSION REDUITE REDUCED EXTENSION
L'invention concerne un procédé de fabrication de vitrages bombés, notamment feuilletés, et propose une amélioration de l’étape de refroidissement du verre après son bombage en vue de l’obtention de contraintes d’extension réduites. L’invention concerne les procédés de bombage faisant intervenir une étape de bombage sur un support de bombage par gravité dit support gravitaire. L’invention concerne notamment la réalisation de vitrages feuilletés du type parebrise ou pavillon pour véhicule routier (automobile, camion, bus), mais aussi tout vitrage pour l'aéronautique ou le bâtiment. The invention relates to a method for manufacturing curved glazing, in particular laminated, and proposes an improvement in the step of cooling the glass after it has been bent with a view to obtaining reduced extension stresses. The invention relates to bending processes involving a bending step on a gravity bending support called gravity support. The invention relates in particular to the production of laminated glazing of the windshield or roof type for a road vehicle (automobile, truck, bus), but also any glazing for aeronautics or buildings.
Dans les procédés de bombage gravitaire, l'outillage supportant le verre dit « support gravitaire », de forme adaptée à la géométrie finale du verre, est en contact avec la périphérie de la face inférieure du verre pendant toutes les phases de mises en forme c'est-à-dire l'ébauche du bombage, le bombage et le refroidissement. Ainsi, pour chaque modèle de vitrage, il est nécessaire de disposer d'un train de supports gravitaire particuliers dont le nombre est au moins égal au nombre d'étapes différentes effectuées dans le procédé. Un support gravitaire a généralement la forme d’un cadre. Il est de préférence revêtu d’un matériau fibreux réfractaire bien connu de l’homme du métier pour venir au contact du verre. La largeur de sa piste de contact avec le verre est généralement comprise dans le domaine allant de 2 à 20 mm, matériau fibreux réfractaire compris. In gravity bending processes, the tooling supporting the so-called “gravity support” glass, with a shape adapted to the final geometry of the glass, is in contact with the periphery of the underside of the glass during all the shaping phases c that is, the preforming of the bending, the bending and the cooling. Thus, for each glazing model, it is necessary to have available a train of particular gravity supports, the number of which is at least equal to the number of different steps carried out in the process. Gravity support is usually in the form of a frame. It is preferably coated with a refractory fibrous material well known to those skilled in the art to come into contact with glass. The width of its contact track with the glass is generally in the range from 2 to 20 mm, including refractory fibrous material.
Lorsque le verre sort de l'étape de bombage pour démarrer la phase de refroidissement, il est, selon l’art antérieur, habituellement au contact par sa périphérie avec le dernier support gravitaire, notamment entre 5 et 10 mm du bord du verre. Lorsque le verre se fige et se refroidit, il se crée un phénomène physique de genèse de contraintes permanentes qui correspond à la conversion de la distribution de température au sein du verre en un champ de contrainte. Ce phénomène s'initie lors du figeage du verre et se termine en fin de refroidissement lorsqu’une distribution homogène de température est atteinte. On peut considérer que le verre se fige sensiblement à la température de strain point. Qualitativement, les parties où le verre s’est figé en premier lieu correspondent aux parties où se concentrent les contraintes de compression alors que les parties où le verre s’est figé avec retard concentrent les zones de contraintes en extension. Les contraintes de bord décrites dans la présente invention sont des contraintes de membrane qui peuvent se définir en tout point du matériau et pour une direction donnée, comme la moyenne du champ contrainte en ce point et selon cette direction, la moyenne étant effectuée dans toute l’épaisseur du verre. En bord de verre, seule la composante de contraintes de membrane parallèle au bord est appropriée ; la composante perpendiculaire a une valeur nulle. Aussi toute méthode de mesure permettant une mesure des contraintes moyennes le long d’un bord et à travers l’épaisseur du verre est pertinente. Les méthodes de mesure des contraintes de bord utilisent les techniques de photoélasticimétrie. Les deux méthodes décrites dans des normes ASTM citées ci-dessous permettent de mesurer les valeurs de contraintes de bord : When the glass leaves the bending step to start the cooling phase, it is, according to the prior art, usually in contact through its periphery with the last gravity support, in particular between 5 and 10 mm from the edge of the glass. When the glass freezes and cools, a physical phenomenon of the genesis of permanent stresses is created which corresponds to the conversion of the temperature distribution within the glass into a stress field. This phenomenon is initiated when the glass freezes and ends at the end of cooling when a homogeneous temperature distribution is reached. It can be considered that the glass freezes substantially at the strain point temperature. Qualitatively, the parts where the glass is fixed in the first place correspond to the parts where the compressive stresses are concentrated, while the parts where the glass is fixed with delay concentrate the stress zones in extension. The edge stresses described in the present invention are membrane stresses which can be defined at any point of the material and for a given direction, as the average of the stress field at this point and in this direction, the average being taken over the whole of the material. 'glass thickness. At the glass edge, only the membrane stress component parallel to the edge is appropriate; the perpendicular component has a zero value. Also any measurement method allowing a measurement of the average stresses along an edge and through the thickness of the glass is relevant. The methods for measuring edge stresses use photoelasticimetry techniques. The two methods described in the ASTM standards cited below make it possible to measure the edge stress values:
- la méthode utilisant le compensateur de Babinet et décrites dans la norme ASTM C1279 - 2009 - 01 , procédure B; - the method using the Babinet compensator and described in standard ASTM C1279 - 2009 - 01, procedure B;
- les mesures effectuées avec des appareils du commerce comme le Sharples modèle S-67 commercialisé par la société Sharples Stress Engineers, Preston, UK et utilisant un compensateur dit de Sénarmont ou Jessop-Friedel ; le principe de la mesure est décrit dans la norme ASTM F218-2005-01 ; - the measurements carried out with commercial devices such as the Sharples model S-67 marketed by the company Sharples Stress Engineers, Preston, UK and using a so-called Sénarmont or Jessop-Friedel compensator; the principle of measurement is described in standard ASTM F218-2005-01;
Ces deux méthodes utilisent une lumière polarisée qui traverse l’échantillon mesuré. Il est donc impossible de les mettre en œuvres directement lorsque le produit à analyser comporte un décors périphérique opaque, habituellement en émail de couleur noir comme c’est d’usage pour les vitrages automobiles. Dans ce cas, il est possible de retirer la couche opaque soit par abrasion mécanique, soit par une attaque chimique puis d’effectuer ensuite la mesure. Both of these methods use polarized light that passes through the measured sample. It is therefore impossible to implement them directly when the product to be analyzed has an opaque peripheral decoration, usually in black enamel as is customary for automotive glazing. In this case, it is possible to remove the opaque layer either by mechanical abrasion or by chemical attack and then carry out the measurement.
Une autre méthode de mesure de contraintes de membrane et adaptée des principes décrits dans la norme ASTM F218-2005-01 , a été développée par différents fournisseurs d’appareils de mesure et permet de mesurer les vitrages qui possèdent un décor périphérique sans avoir besoin de le retirer préalablement. Ces appareils fonctionnent selon le principe suivant : une source de lumière polarisée illumine l’échantillon à partir de sa face qui ne possède pas de décors. La lumière traverse l’échantillon et est partiellement réfléchie par le décor se situant sur la face opposée de l’échantillon. La lumière retraverse une seconde fois l’échantillon puis passe finalement dans un compensateur de Sénarmont. Les deux appareils suivants sont ainsi capables de mesurer les contraintes de bord sur des vitrages possédant un décors opaque périphérique : Another method of measuring membrane stresses and adapted from the principles described in standard ASTM F218-2005-01, has been developed by various suppliers of measuring devices and makes it possible to measure glazing that has a peripheral decoration without the need for remove it first. These devices operate according to the following principle: a polarized light source illuminates the sample from its face which has no decorations. The light passes through the sample and is partially reflected by the decoration. located on the opposite side of the sample. The light passes through the sample a second time and then finally passes through a Sénarmont compensator. The following two devices are thus able to measure the edge stresses on glazing having a peripheral opaque decoration:
- le Sharples modèle S-69 commercialisé par la société Sharples Stress - the Sharples model S-69 marketed by the company Sharples Stress
Engineers, Preston, UK ; Engineers, Preston, UK;
- le VRP-100, fabriqué par la société Strainoptics, 108 W. Montgomery Ave., North Wales, PA 19454 USA. - the VRP-100, manufactured by the company Strainoptics, 108 W. Montgomery Ave., North Wales, PA 19454 USA.
Dans le cadre de la présente demande, les valeurs de contraintes en compression sont déterminées par la méthode décrite dans la norme ASTM F218-2005-01 , éventuellement adaptée afin de ne mesurer que la contrainte du verre extérieur au vitrage feuilleté tel que monté sur véhicule. Les contraintes peuvent donc être soit mesurée sur la feuille de verre extérieure seule avant assemblage en feuilleté soit sur la feuille de verre extérieure après assemblage en feuilleté à l’aide des appareils Sharples S-69 ou bien VRP-100 mentionnés précédemment. Pour que la mesure effectuée après assemblage soit pertinente, il est nécessaire de colorer la surface intérieure de la feuille de verre extérieure du vitrage à l’aide d’une peinture ou d’un émail noir ou métallisée. Cette feuille en position extérieure sur le véhicule correspond à la feuille en position inférieure lors du bombage par gravité par le procédé selon l’invention. Les mesures en extension sont effectuées par la même méthode dans une zone parallèle au bord du vitrage mais située légèrement plus vers l’intérieur de sa face principale. In the context of the present application, the values of compressive stresses are determined by the method described in standard ASTM F218-2005-01, optionally adapted in order to measure only the stress of the glass outside the laminated glazing as mounted on the vehicle. . The stresses can therefore be either measured on the outer glass sheet alone before laminated assembly or on the outer glass sheet after laminated assembly using the Sharples S-69 or VRP-100 devices mentioned above. For the measurement carried out after assembly to be relevant, it is necessary to color the inner surface of the outer glass sheet of the glazing using a black or metallic paint or enamel. This sheet in the external position on the vehicle corresponds to the sheet in the lower position during the bending by gravity by the method according to the invention. The extension measurements are carried out by the same method in an area parallel to the edge of the glazing but located slightly more towards the interior of its main face.
Généralement les valeurs de contrainte en compression de bord sont déterminées entre 0,1 et 2 mm d’un bord et de préférence entre 0,1 et 1 mm d’un bord. Lorsque l’on effectue la mesure au voisinage du bord et à l’intérieur du vitrage, on identifie généralement une zone de contraintes de bord en extension qui est comprise dans une zone périphérique située entre 3 et 100 mm du bord du verre. Generally edge compressive stress values are determined between 0.1 and 2 mm from an edge and preferably between 0.1 and 1 mm from an edge. When taking the measurement near the edge and inside the glazing, an extended edge stress zone is generally identified which is included in a peripheral zone between 3 and 100 mm from the edge of the glass.
Les spécifications actuelles sur les propriétés des vitrages exigent des valeurs permanentes de compression de bord, supérieures à 8 MPa, et des extensions de bord les plus faibles possible pour préserver la robustesse mécanique du vitrage lors de son montage et de son utilisation. Current specifications for glazing properties require permanent edge compression values, greater than 8 MPa, and the smallest possible edge extensions to maintain the mechanical strength of the glazing during assembly and use.
Le EP2532625 enseigne un dispositif pour supporter du verre après avoir refroidi sa surface en dessous de son strain point. La zone centrale du verre est refroidie sous le strain point avant la bordure. Cette technique est appliquée au recuit de verre. Le refroidissement de l’intérieur du verre est nécessaire pour pouvoir soulever le verre de son support. Cela provoque la mise en compression de cette zone centrale, ce qui doit nécessairement être contrebalancé par une zone en extension à la périphérie de celle-ci. Le refroidissement de la zone centrale risque donc de se traduire par la création de contraintes d’extension périphériques plus importantes et qui peuvent éventuellement fragiliser le verre. De plus, si l’étape de recuit est insuffisamment maîtrisée et que la périphérie du vitrage reste trop longtemps à trop haute température lors de cette phase, le niveau des compressions de bord pourrait être insuffisant. EP2532625 teaches a device for supporting glass after having cooled its surface below its strain point. The central area of the glass is cooled under the strain point before the border. This technique is applied to annealing glass. Cooling of the interior of the glass is necessary in order to be able to lift the glass from its support. This causes the compression of this central zone, which must necessarily be counterbalanced by an extension zone at the periphery thereof. The cooling of the central zone therefore runs the risk of resulting in the creation of greater peripheral extension constraints which may possibly weaken the glass. In addition, if the annealing step is insufficiently controlled and the periphery of the glazing remains too long at too high temperature during this phase, the level of edge compressions could be insufficient.
Le US5071461 enseigne le bombage d’un empilement de feuille de verre puis son refroidissement au cours duquel le verre est relevé du moule de bombage au moyen de tiges de levage supportant une zone voisine de la zone périphérique afin de refroidir rapidement la partie plus fortement bombée du verre. US5071461 teaches the bending of a stack of glass sheet then its cooling during which the glass is lifted from the bending mold by means of lifting rods supporting an area adjacent to the peripheral area in order to rapidly cool the more strongly convex part. glass.
Le WO2018154247 enseigne un dispositif et un procédé pour le bombage et le refroidissement de feuilles de verre comprenant le bombage par gravité du verre sur un support gravitaire au cours duquel le verre repose sur le support gravitaire dans la zone périphérique constituée des 50 mm à partir du bord de sa face inférieure, puis la séparation du verre du support gravitaire alors que le verre est à plus de 560°C, puis le refroidissement du verre au cours duquel sa face inférieure est libre de tout contact dans sa zone périphérique entre au moins 560°C et 500°C. Selon ce document, le verre n’est jamais reposé sur son support gravitaire pendant le refroidissement et après la séparation, de sorte que la forme du verre peut éventuellement s’écarter un peu de celle souhaitée pendant le refroidissement. WO2018154247 teaches a device and a method for the bending and cooling of glass sheets comprising the gravity bending of the glass on a gravity support during which the glass rests on the gravity support in the peripheral zone consisting of the 50 mm from the edge of its lower face, then the separation of the glass from the gravity support while the glass is at more than 560 ° C, then cooling of the glass during which its lower face is free of any contact in its peripheral zone between at least 560 ° C and 500 ° C. According to this document, the glass is never rested on its gravity support during cooling and after separation, so that the shape of the glass may possibly deviate a little from that desired during cooling.
L’invention permet de réduire la perturbation de la distribution de température induite par la présence du support gravitaire au voisinage de la périphérie du verre. Les niveaux de compression des bords souhaités et cités ci- dessus sont plus aisément atteignables avec des marges de sécurité plus importantes, et les niveaux de contrainte d’extension sont réduits. La forme souhaitée pour le verre et correspondant à celle du support gravitaire est bien conservée au cours du refroidissement. The invention makes it possible to reduce the disturbance of the temperature distribution induced by the presence of the gravity support in the vicinity of the periphery of the glass. The desired edge compression levels cited above are more readily achievable with larger safety margins, and extension stress levels are reduced. The desired shape for the glass and corresponding to that of the gravity support is well preserved during cooling.
L’invention concerne un procédé de bombage et de refroidissement d’une feuille de verre ou d’un empilement de feuilles de verre, dit le verre, comprenant le bombage par gravité du verre chauffé jusqu’à une température maximale dans son domaine de température de déformation plastique sur un support gravitaire au cours duquel le verre repose sur le support gravitaire dans la zone périphérique de sa face inférieure, ladite zone périphérique étant constituée des 50 mm à partir du bord de la face inférieure, le verre se bombant par affaissement sous l’effet de son propre poids, puis, ledit procédé comprenant le refroidissement du verre menant à son figeage, le séquençage suivant étant effectué au moins une fois pendant ledit refroidissement menant à son figeage: The invention relates to a method for bending and cooling a glass sheet or a stack of glass sheets, called glass, comprising the bending by gravity of the glass heated to a maximum temperature in its plastic deformation temperature range on a gravity support during which the glass rests on the gravity support in the peripheral zone of its lower face, said peripheral zone consisting of 50 mm from the edge of the underside, the glass bulging by sagging under the effect of its own weight, then said process comprising cooling the glass leading to its freezing, the following sequencing being carried out at least once during said cooling leading to its freezing:
la prise en charge du verre par un outil de séparation le séparant du support gravitaire et laissant sa face inférieure libre de tout contact dans sa zone périphérique, puis the handling of the glass by a separation tool separating it from the gravity support and leaving its underside free of any contact in its peripheral zone, then
le supportage à nouveau du verre sur le support gravitaire dans la zone périphérique de sa face inférieure. the support again of the glass on the gravity support in the peripheral zone of its lower face.
L’expression « refroidissement menant au figeage du verre » désigne le refroidissement avant le figeage complet du verre et donc à plus haute température que sa température de figeage. Ainsi, les zones de contact du verre avec l’outil de séparation et avec le support gravitaire sont des zones non encore figées au moment du séquençage. Pendant le refroidissement menant au figeage du verre, le verre durcit, perd son état malléable et les contraintes internes au verre se créent. Ces contraintes se forment en conséquence de ce que toute la masse du verre ne se refroidit pas simultanément. On considère que le figeage est terminé quand le verre a atteint la température de 450°C et même 480°C lors du refroidissement, soit sensiblement sa température de transition vitreuse. Le refroidissement menant au figeage du verre est généralement un refroidissement contrôlé c’est-à-dire dont la vitesse est contrôlée. The expression "cooling leading to freezing of the glass" means cooling before the complete freezing of the glass and therefore at a temperature higher than its freezing temperature. Thus, the contact areas of the glass with the separation tool and with the gravity support are areas not yet fixed at the time of sequencing. During the cooling leading to the freezing of the glass, the glass hardens, loses its malleable state and internal stresses in the glass are created. These stresses are formed as a result of the fact that the entire mass of the glass does not cool simultaneously. It is considered that the freezing is completed when the glass has reached the temperature of 450 ° C and even 480 ° C during cooling, that is to say substantially its glass transition temperature. The cooling leading to the freezing of the glass is generally controlled cooling, that is, the speed of which is controlled.
De préférence, le séquençage est réalisé pendant le refroidissement du verre menant à son figeage, au moins une fois alors que sa température est entre la température maximale de bombage et 480°C et de préférence entre 560 et 500°C. Preferably, the sequencing is carried out while the glass is cooling leading to its freezing, at least once when its temperature is between the maximum bending temperature and 480 ° C and preferably between 560 and 500 ° C.
De préférence, le séquençage est réalisé pendant le refroidissement du verre menant à son figeage au moins deux fois et de préférence au moins 3 fois et de préférence au moins 4 fois et de préférence au moins 5 fois, voire au moins 6 fois, voire au moins 7 fois alors que sa température est entre la température maximale de bombage et 480°C. Le séquençage séparation/(supportage à nouveau) est de préférence réalisé au moins 2 fois entre 560 et 500°C. De manière encore préférée, le séquençage est réalisé au moins une fois entre la température maximale de bombage et 560°C, au moins deux fois entre 560 et 500°C, et au moins une fois entre 500 et 480°C. Preferably, the sequencing is carried out during the cooling of the glass leading to its freezing at least twice and preferably at least 3 times and preferably at least 4 times and preferably at least 5 times, or even at least 6 times, or even at least 6 times. minus 7 times when its temperature is between the maximum bending temperature and 480 ° C. The separation / (resupport) sequencing is preferably carried out at least 2 times between 560 and 500 ° C. Even more preferably, the sequencing is carried out at least once between the maximum bending temperature and 560 ° C, at least twice between 560 and 500 ° C, and at least once between 500 and 480 ° C.
Le bombage est thermique, le verre étant porté à une température permettant sa déformation plastique. La température maximale de bombage par gravité du verre est supérieure à 560°C et généralement supérieure à 570°C, et est généralement inférieure à 680°C. The bending is thermal, the glass being brought to a temperature allowing its plastic deformation. The maximum glass gravity bending temperature is greater than 560 ° C and generally greater than 570 ° C, and is generally less than 680 ° C.
Dans le cadre de la présente invention, la région centrale de la face inférieure du verre, notamment la région à une distance supérieure à 200 mm du bord, est généralement à une température au moins égale à celle de la zone périphérique de la face inférieure du verre au moment de la prise en charge du verre par un outil de séparation avant figeage du verre, qu’il s’agisse d’un premier séquençage ou d’un séquençage subséquent. Ainsi, l’intégralité du verre n’est pas encore figée au moment du séquençage et sa température en toute zone est donc supérieure à celle de son strain point. Le « strain point » est déterminé par la méthode de mesure de la vitesse d’élongation visqueuse d’une fibre de verre, par extrapolation à partir de l’annealing point, et conformément à la norme ASTM C336-71 (ré-approuvée en 2005). L’expression « strain point » peut également éventuellement se dire « point de contrainte » en français, mais l’expression « Strain Point » est passée dans le langage courant de l’homme du métier français qui n’utilise plus guère l’expression française. On parle donc de température de strain point ou plus simplement de « strain point ». In the context of the present invention, the central region of the lower face of the lens, in particular the region at a distance greater than 200 mm from the edge, is generally at a temperature at least equal to that of the peripheral zone of the lower face of the lens. glass when the glass is taken over by a separation tool before freezing of the glass, whether it is a first sequencing or a subsequent sequencing. Thus, the entire glass is not yet frozen at the time of sequencing and its temperature in any zone is therefore higher than that of its strain point. The "strain point" is determined by the method of measuring the viscous elongation rate of a fiberglass, by extrapolation from the annealing point, and in accordance with standard ASTM C336-71 (re-approved in 2005). The expression "strain point" can also optionally be said "point of constraint" in French, but the expression "Strain Point" has passed into the everyday language of those skilled in the French art who no longer uses the expression French. One thus speaks of temperature of strain point or more simply of “strain point”.
Le support gravitaire influence la température du verre dans sa zone de contact. Lorsque le verre est séparé du support gravitaire dans le 1er temps du séquençage, le verre s’homogénéise en température en cette zone. Ce faisant, sans contact avec le support gravitaire, sa forme risque de s’écarter un peu de la forme finale bombée souhaitée. En retrouvant le support gravitaire dans le 2ème temps du séquençage, le verre retrouve la forme finale bombée souhaitée. Grâce au séquençage, lequel est de préférence répété pendant le refroidissement du verre menant à son figeage, on obtient à la fois une homogénéisation de la température du verre en sa zone de contact avec le support gravitaire, et une forme fidèle à la forme finale souhaitée. Le contact permanent avec un seul support tel que réalisé selon l’art antérieur, néfaste pour les contraintes d’extension est, dans le cadre de la présente invention, « mutualisé » sur deux outillages (support gravitaire et outil de séparation) touchant le verre en deux endroits différents et à des moments différents. A chaque séparation du support gravitaire et redépose sur le support gravitaire, il y une succession de suppression et de régénération de gradient thermique (cela est également vrai pour le support gravitaire et l’outil de séparation). Les niveaux d’extension dans le verre s’en trouvent réduits et la résistance mécanique améliorée. L’homogénéisation de la température du verre en sa zone de contact avec le support gravitaire permet l’obtention de contraintes d’extension réduites tout en conservant de bonnes contraintes de compression de bord. The gravity support influences the temperature of the glass in its contact zone. When the glass is separated from the gravity support into 1 time sequencing, glass is homogenized in temperature in this zone. In doing so, without contact with the gravity support, its shape risks deviating slightly from the desired final convex shape. By finding the gravity carrier in the 2 nd time sequencing, the glass found the desired bulging final shape. Thanks to the sequencing, which is preferably repeated during the cooling of the glass leading to its freezing, one obtains both a homogenization of the temperature of the glass in its contact zone with the gravity support, and a shape faithful to the desired final shape. . Permanent contact with one support as produced according to the prior art, detrimental for the extension constraints is, within the framework of the present invention, “shared” on two tools (gravity support and separation tool) touching the glass in two different places and at different times. At each separation of the gravity support and redeposit on the gravity support, there is a succession of thermal gradient removal and regeneration (this is also true for the gravity support and the separation tool). The extension levels in the glass are thereby reduced and the mechanical strength improved. The homogenization of the temperature of the glass in its zone of contact with the gravity support makes it possible to obtain reduced extension stresses while maintaining good edge compressive stresses.
La vitesse moyenne de refroidissement pendant le refroidissement menant au figeage du verre, notamment entre 560 et 500°C, est de préférence comprise dans le domaine allant de 0,3 à 3°C/seconde et de préférence dans le domaine allant de 0,4 à 2,7°C/seconde. The average cooling rate during the cooling leading to the freezing of the glass, in particular between 560 and 500 ° C, is preferably in the range from 0.3 to 3 ° C / second and preferably in the range from 0, 4 to 2.7 ° C / second.
Le refroidissement menant au figeage du verre est avantageusement un refroidissement contrôlé, lequel est avantageusement réalisé dans une suite de chambres de refroidissement contrôlé traversées par le verre et son support gravitaire, la température de ces chambres diminuant d’une chambre à l’autre au cours du cheminement du verre. Le verre passe d’une chambre à l’autre en étant supporté par son support gravitaire, puis dans une chambre, un outil de séparation le sépare du support gravitaire pendant une durée de séparation puis le repose dessus, puis le support gravitaire supportant le verre passe dans la chambre suivante. Chaque chambre de refroidissement contrôlé est à une température inférieure à celle qui l’a précédée. La durée de séparation est généralement comprise dans le domaine allant de 1 à 45 secondes et plus généralement dans le domaine allant de 2 à 30 secondes. Les chambres peuvent être séparées par des portes coulissantes s’ouvrant pour laisser passer un support gravitaire portant son verre et se refermant pour garder la chambre à la température souhaitée. Généralement, le train de supports gravitaires traverse la suite de chambres en effectuant des arrêts pour que chaque verre s’arrête successivement dans toutes les chambres. En dessous de 400°C, le verre peut être considéré comme intégralement figé et il peut alors être refroidi de façon rapide ou lente sans précaution particulière quant à ses zones de contact avec un outil. The cooling leading to the freezing of the glass is advantageously controlled cooling, which is advantageously carried out in a series of controlled cooling chambers traversed by the glass and its gravity support, the temperature of these chambers decreasing from one chamber to the other during of the glass path. The glass passes from one chamber to another while being supported by its gravity support, then in a chamber, a separation tool separates it from the gravity support for a separation period then rests it on top, then the gravity support supporting the glass go to the next room. Each controlled cooling chamber is at a lower temperature than the one before it. The separation time is generally in the range from 1 to 45 seconds and more generally in the range from 2 to 30 seconds. The rooms can be separated by sliding doors that open to let a gravity support pass carrying its glass and close to keep the room at the desired temperature. Generally, the train of gravity supports crosses the suite of chambers making stops so that each glass stops successively in all the chambers. Below 400 ° C, the glass can be considered as completely frozen and it can then be cooled quickly or slowly without any particular precaution as to its areas of contact with a tool.
Généralement, de la fin du bombage à plus de 560°C et jusqu’à 400°C lors du refroidissement, le verre n’est au contact qu’avec le support gravitaire ou un outil de séparation. Généralement, en-dessous de 450°C et au moins jusqu’à 350°C, le verre peut reposer sur le support gravitaire sans autre contact avec un autre outil. Generally, from the end of the bending at over 560 ° C and up to 400 ° C during cooling, the glass is in contact only with the gravity support or a separation tool. Generally, below 450 ° C and at least up to 350 ° C, the glass can rest on the gravity support without further contact with another tool.
Pendant son contact avec l’outil de séparation, la zone périphérique de la face inférieure du verre n’est au contact qu’avec l’air ambiant et avec aucun outil. Alors que le support gravitaire, quel qu’en soit la partie, ne touche le verre que dans la zone périphérique de la face inférieure du verre, l’outil de séparation ne le touche pas en cette zone. While in contact with the separation tool, the peripheral zone of the underside of the lens is in contact only with ambient air and with no tools. While the gravity support of any part only touches the lens in the peripheral area of the underside of the lens, the separation tool does not touch it in this area.
Avantageusement, de l’air plus froid que le verre peut être soufflé sur la zone périphérique de la face inférieure du verre pendant la prise en charge du verre par l’outil de séparation. Ce soufflage peut être réalisé à l’aide d’une rampe de soufflage d’air pour refroidir plus fortement la périphérie du verre. L’air soufflé est à une température plus faible que celle du verre. On a constaté qu’en soufflant de la sorte sur la zone périphérique de la face inférieure du verre, les contraintes d’extension étaient encore plus réduites. Le soufflage est réalisé sur la zone de contact avec le support gravitaire, en l’absence de contact avec le support gravitaire. Ainsi, le dispositif selon l’invention peut comprendre une rampe de soufflage d’air apte à souffler sur la zone périphérique de la face inférieure du verre pendant la prise en charge du verre par l’outil de séparation. Advantageously, air cooler than the glass can be blown over the peripheral area of the underside of the glass while the glass is being taken over by the separation tool. This blowing can be done using an air blowing ramp to cool the periphery of the glass more strongly. The blown air is at a lower temperature than that of glass. It was found that by blowing in this way on the peripheral zone of the underside of the lens, the extension stresses were even more reduced. Blowing is carried out on the contact area with the gravity support, in the absence of contact with the gravity support. Thus, the device according to the invention can comprise an air blowing ramp capable of blowing on the peripheral zone of the underside of the glass during the taking up of the glass by the separation tool.
L’outil de séparation peut comprendre une forme supérieure apte à agir sur la face supérieure du verre pour sa prise en charge, telle que celle référencé 33 dans la figure 1 du WO2018/154247. Une homogénéisation de la température du verre est obtenue en maintenant le verre par aspiration sur sa face supérieure et sans aucun contact avec sa face inférieure, grâce à cette forme supérieure munie d’une jupe et d’un moyen d’aspiration aspirant l’air entre le bord du verre et la jupe, l’aspiration de la jupe procurant la force de maintien du verre contre la forme (même un empilement de feuilles de verre). L’air aspiré par la jupe et circulant au voisinage de la bordure du verre favorise l’homogénéisation de la température de la zone périphérique de la face inférieure du verre. Le cas échéant, on peut équiper la jupe d’une rampe de soufflage d’air pour refroidir plus fortement la zone périphérique de la face inférieure du verre. The separation tool may include an upper form capable of acting on the upper face of the lens for its handling, such as that referenced 33 in FIG. 1 of WO2018 / 154247. A homogenization of the temperature of the glass is obtained by maintaining the glass by suction on its upper face and without any contact with its lower face, thanks to this upper form provided with a skirt and a suction means sucking the air between the edge of the glass and the skirt, the suction of the skirt providing the force to hold the glass against the form (even a stack of sheets of glass). The air sucked in by the skirt and circulating in the vicinity of the edge of the lens promotes the homogenization of the temperature of the peripheral zone of the lower face of the lens. If necessary, we can equip the skirt with an air blowing ramp to cool the peripheral zone of the underside of the glass more strongly.
La forme supérieure a de préférence la forme d’un cadre, ce cadre étant de préférence recouvert d’un matériau fibreux réfractaire afin de réduire le risque de marquage de la surface de la face supérieure du verre. Ce cadre peut avoir une largeur comprise dans le domaine allant de 2 à 20 mm, y compris le matériau fibreux. De préférence, cette forme supérieure vient au contact du verre sans dépasser du bord du verre. Cette forme supérieure peut venir au contact du verre de sorte que son bord extérieur arrive à une distance du bord du verre (vers l’intérieur du verre) comprise dans le domaine allant de 3 à 20 mm. The upper form is preferably in the form of a frame, this frame preferably being covered with a refractory fibrous material in order to reduce the risk of marking the surface of the upper face of the glass. This frame may have a width within the range of 2 to 20 mm, including the fibrous material. Preferably, this upper form comes into contact with the glass without protruding from the edge of the glass. This upper form can come into contact with the glass so that its outer edge comes at a distance from the edge of the glass (towards the inside of the glass) in the range of 3 to 20 mm.
Une forme supérieure en tant qu’outil de séparation et le support gravitaire peuvent être animés d’un mouvement vertical relatif leur permettant d’aller l’un vers l’autre afin qu’un de ces outils prenne en charge le verre ou le laisse prendre en charge par l’autre, dans le cadre de la réalisation du séquençage séparation/(supportage à nouveau). L’expression « mouvement vertical relatif » signifie qu’un seul des deux outils (l’outil de séparation et support gravitaire) peut se déplacer verticalement, ou que les deux peuvent se déplacer verticalement pour le passage du verre de l’un à l’autre. Pour l’étape de séparation la forme supérieure et le support gravitaire se rapprochent (le verre étant entre ces deux outils, sur le support gravitaire), puis l’aspiration de la forme supérieure est déclenchée et la forme supérieure prend alors en charge le verre, puis la forme supérieure (maintenant le verre contre elle) et le support gravitaire s’éloignent, puis, en vue du « supportage à nouveau » ces deux outils se rejoignent, l’aspiration est arrêtée et le verre est largué sur le support gravitaire, puis les deux outils s’éloignent de nouveau l’un de l’autre. A top form as a separation tool and the gravity support can be animated with a relative vertical movement allowing them to move towards each other so that one of these tools takes up the glass or leaves it take over by the other, as part of performing separation / sequencing (support again). The expression "relative vertical movement" means that only one of the two tools (the separation tool and gravity support) can move vertically, or that both can move vertically for the passage of the glass from one to the other. 'other. For the separation step, the upper form and the gravity support approach (the glass being between these two tools, on the gravity support), then the suction of the upper form is triggered and the upper form then takes charge of the glass , then the upper form (holding the glass against it) and the gravity support move away, then, with a view to “support again” these two tools come together, the suction is stopped and the glass is dropped on the gravity support , then the two tools move away from each other again.
Pour une question de coût, l’outil de séparation est avantageusement un outil venant au contact du verre par sa face inférieure et ne venant au contact du verre qu’à une distance supérieure à 50 mm du bord du verre. L’outil de séparation ne vient pas au contact du verre dans la zone périphérique de la face inférieure du verre. L’outil de séparation peut venir au contact du verre dans une zone comprise entre 50 mm du bord du verre et 200 mm du bord du verre et de préférence entre 50 mm et 150 mm du bord du verre. Avantageusement l’outil de séparation vient au contact du verre exclusivement dans cette zone. L’outil de séparation peut être un support venant au contact de la face inférieure du verre ; il peut s’agir : For reasons of cost, the separation tool is advantageously a tool coming into contact with the glass via its lower face and only coming into contact with the glass at a distance greater than 50 mm from the edge of the glass. The separation tool does not come into contact with the lens in the peripheral zone of the underside of the lens. The separation tool can come into contact with the glass in an area between 50 mm from the edge of the glass and 200 mm from the edge of the glass and preferably between 50 mm and 150 mm from the edge of the glass. Advantageously, the separation tool comes into contact with the glass exclusively in this zone. The separation tool can be a support coming into contact with the underside of the glass; it could be :
a) d’un cadre continu ou crénelé comme celui référencé 10 de la figure 18 du WO2018/154247, ou a) a continuous or crenellated frame such as that referenced 10 in Figure 18 of WO2018 / 154247, or
b) d’un ensemble de patins supportés sur un châssis comme l’outil référencé 400 de la figure 20b du WO2018/154247, ou comme un des supports représentés aux figures 6 à 9 du WO2018/154248. b) of a set of pads supported on a frame such as the tool referenced 400 in Figure 20b of WO2018 / 154247, or as one of the supports shown in Figures 6 to 9 of WO2018 / 154248.
Les patins des supports b) ci-dessus peuvent être montés mobiles grâce à un ressort placé sous leur surface de contact pour le verre comme les patins des figures 1 , 2, 3, 4, 10 du WO2018/154248. Notons que le terme « support » dans le cadre de la présente demande désigne un outil sur lequel le verre repose et est donc en contact avec la face inférieure du verre. The pads of the supports b) above can be mounted to move by means of a spring placed under their contact surface for the glass, like the pads of Figures 1, 2, 3, 4, 10 of WO2018 / 154248. Note that the term “support” in the context of the present application designates a tool on which the glass rests and is therefore in contact with the underside of the glass.
L’outil de séparation, s’il supporte le verre est de préférence à surface de supportage discontinu, et il offre donc au verre une pluralité de zones d’appui. Cette discontinuité est favorable à la circulation de l’air et au refroidissement plus homogène de la face inférieure du verre. The separation tool, if it supports the glass, preferably has a discontinuous support surface, and therefore provides the glass with a plurality of support zones. This discontinuity favors the circulation of air and the more homogeneous cooling of the underside of the glass.
L’outil de séparation, s’il supporte le verre, peut former un ensemble embarqué avec le support gravitaire. L’outil de séparation circule alors avec le support gravitaire de façon embarquée sur un ensemble « support gravitaire/outil de séparation ». Dans ce cas l’outil de séparation et le support gravitaire peuvent être animés d’un mouvement vertical relatif permettant à l’un de passer au-dessus de l’autre ou de passer en-dessous de l’autre afin de prendre en charge le verre ou de le laisser prendre en charge par l’autre, dans le cadre de la réalisation du séquençage séparation/(supportage à nouveau). L’expression « mouvement vertical relatif » signifie qu’un seul des deux organes (l’outil de séparation et support gravitaire) peut se déplacer verticalement, ou que les deux peuvent se déplacer verticalement pour le passage du verre de l’un à l’autre. De préférence, la différence de cote en hauteur de la piste de contact de l’un des deux organes par rapport à l’autre, lorsqu’ils ne sont pas en mouvement, est d’au moins 10 mm et de préférence d’au moins 30 mm. Une telle distance permet en effet d’une part d’éliminer les transferts de chaleur par conduction mais aussi de suffisamment minimiser les transferts thermiques par rayonnement entre le verre et l’organe (soit l’outil de séparation, soit le support gravitaire) que l’on vient de séparer du verre. Le support gravitaire supportant le verre est placé dans un four en vue du bombage thermique du verre. Le bombage étant effectué, le support gravitaire portant le verre est déplacé dans une zone de refroidissement pour refroidir le verre. Le refroidissement contrôlé mène d’abord au figeage du verre, puis la géométrie du verre étant figée, le verre est refroidi jusqu’à la température ambiante. Le bombage et le refroidissement contrôlé conduisant au figeage du verre sont avantageusement réalisés dans une succession de chambres disposées les unes derrière les autres sur le chemin du verre. Ces chambres sont à des températures différentes afin d’appliquer au verre le profil thermique souhaité. Une pluralité de verres circule les uns derrière les autres, chaque verre étant sur un support gravitaire différent. The separation tool, if it supports the glass, can form an on-board assembly with the gravity support. The separation tool then circulates with the gravity support in an on-board manner on a “gravity support / separation tool” assembly. In this case the separation tool and the gravity support can be animated with a relative vertical movement allowing one to pass above the other or to pass below the other in order to take charge the glass or let it take over by the other, as part of the separation / sequencing performance (support again). The expression "relative vertical movement" means that only one of the two members (the separation tool and the gravity support) can move vertically, or that both can move vertically for the passage of the glass from one to the other. 'other. Preferably, the difference in height dimension of the contact track of one of the two members with respect to the other, when they are not in motion, is at least 10 mm and preferably at least. less 30 mm. Such a distance makes it possible, on the one hand, to eliminate heat transfers by conduction but also to sufficiently minimize heat transfers by radiation between the glass and the component (either the separation tool or the gravity support) that we have just separated from the glass. The gravity support supporting the glass is placed in an oven for the thermal bending of the glass. The bending being carried out, the gravity support carrying the glass is moved into a cooling zone to cool the glass. The controlled cooling first leads to the freezing of the glass, then the geometry of the glass being fixed, the glass is cooled to room temperature. The bending and the controlled cooling leading to the freezing of the glass are advantageously carried out in a succession of chambers arranged one behind the other on the path of the glass. These chambers are at different temperatures in order to apply the desired thermal profile to the glass. A plurality of glasses circulate one behind the other, each glass being on a different gravity support.
Le dispositif selon l’invention peut comprendre à la fois au moins un outil de séparation venant au contact du verre par sa face inférieure comme déjà décrit et également au moins un outil de séparation du type forme supérieure munie d’un moyen d’aspiration et venant au contact du verre par sa face supérieure comme décrit plus haut. Chacun de ces outils de séparation est utilisé dans le cadre d’un séquençage « séparation/(supportage à nouveau) » différent appliqué l’un après l’autre. Ces différents séquençages sont de préférence appliqués dans des chambres différentes, lesquelles ont des températures différentes. The device according to the invention can comprise both at least one separation tool coming into contact with the glass via its lower face as already described and also at least one separation tool of the upper form type provided with a suction means and coming into contact with the glass via its upper face as described above. Each of these separation tools is used as part of a different "separation / (support again)" sequencing applied one after another. These different sequencing are preferably applied in different chambers, which have different temperatures.
Notamment, on peut appliquer au moins un séquençage par contact avec la face supérieure, puis au moins un séquençage par contact avec la face inférieure, ces deux types de séquençage étant appliqués dans deux chambres différentes, la deuxième chambre étant à température plus basse que la première. In particular, it is possible to apply at least one sequencing by contact with the upper face, then at least one sequencing by contact with the lower face, these two types of sequencing being applied in two different chambers, the second chamber being at a lower temperature than the second chamber. first.
On peut également appliquer au moins un séquençage au verre dans une première chambre par un outil de séparation comprenant une forme supérieure munie d’un moyen d’aspiration agissant sur la face supérieure du verre pour sa prise en charge, et au moins un séquençage dans une deuxième chambre par un outil de séparation venant au contact de la face inférieure du verre dans une zone comprise entre d’une part 50 mm du bord du verre et d’autre part 200 mm et de préférence 150 mm du bord du verre, la deuxième chambre étant disposée après la première chambre sur le cheminement du verre, la deuxième chambre étant à une température inférieure à celle de la première chambre. Le dispositif selon l’invention comprend alors une première chambre comprenant au moins un outil de séparation du type forme supérieure munie d’un moyen d’aspiration venant au contact du verre par sa face supérieure et une deuxième chambre comprenant au moins un outil de séparation venant au contact du verre par sa face inférieure. Généralement, la première chambre précède la deuxième chambre sur le chemin du verre. It is also possible to apply at least one sequencing to the glass in a first chamber by a separation tool comprising an upper form provided with a suction means acting on the upper face of the glass for its handling, and at least one sequencing in a second chamber by a separation tool coming into contact with the underside of the glass in an area between on the one hand 50 mm from the edge of the glass and on the other hand 200 mm and preferably 150 mm from the edge of the glass, the second chamber being disposed after the first chamber on the path of the glass, the second chamber being at a temperature lower than that of the first chamber. The device according to the invention then comprises a first chamber comprising at least one separation tool of the upper form type provided with a suction means coming to the contact of the glass via its upper face and a second chamber comprising at least one separation tool coming into contact with the glass via its lower face. Usually the first chamber precedes the second chamber on the glass path.
On peut également appliquer au moins un séquençage par contact avec la face supérieure dans une première chambre, puis au moins un deuxième séquençage par contact avec la face supérieure dans une deuxième chambre, puis au moins un séquençage par contact avec la face inférieure dans une troisième chambre, la deuxième chambre étant à température plus basse que la première et la troisième chambre étant à température plus basse que la deuxième. It is also possible to apply at least one sequencing by contact with the upper face in a first chamber, then at least a second sequencing by contact with the upper face in a second chamber, then at least one sequencing by contact with the lower face in a third. chamber, the second chamber being at a lower temperature than the first and the third chamber being at a lower temperature than the second.
L’outil de séparation a pour le verre généralement la forme correspondant à sa forme finale souhaitée, étant entendu que sa forme peut s’écarter de la forme finale souhaitée dès lors qu’il dispose d’organes aptes à s’orienter pour prendre la forme du verre au moment de sa prise en charge et sous l’effet du poids du verre. En effet, juste avant d’entrer au contact de l’outil de séparation, le verre venait d’être bombé sur le support gravitaire et a donc pris la forme finale bombée souhaitée, de sorte qu’un outil de séparation disposant d’organes lui permettant de s’orienter par rapport à la forme du verre prend donc au contact de celui-ci sensiblement la forme finale souhaitée pour le verre. Des supports offrant au verre une surface discontinue par des patins et aptes à modifier l'orientation de la zone de contact de patins et/ou amortissant la réception du verre sous l'effet du poids du verre au moment de sa réception par le support ont été décrits dans WO2018/154248 et peuvent être utilisés en tant qu’outil de séparation dans le cadre de la présente invention. Plus le nombre de zones de contact de patins est élevé, plus l’aire de contact de chaque zone est réduite. La somme des aires de toutes les zones de contact des patins peut représenter 0,2 à 5% de l’aire de la face inférieure du verre. L’aire de contact de chaque zone de contact de patin peut être comprise dans le domaine allant de 50 mm2 à 5500 mm2 et de préférence de 500 mm2 à 4000 mm2. De préférence, l’outil de séparation comprend 4 à 20 voire 6 à 20 zones de contact d’aire relativement élevé chacune, c’est-à-dire d’aire comprise chacune dans le domaine allant de 500 mm2 à 4000 mm2. L’outil de séparation, en tant que support apte à supporter le verre en venant au contact de sa face inférieure, peut donc comporter une surface de contact discontinue pour le verre. L’outil de séparation peut également être un cadre continu ou crénelé. For the glass, the separation tool generally has the shape corresponding to its desired final shape, it being understood that its shape may deviate from the desired final shape as soon as it has members capable of orienting itself in order to take the shape of the glass when it is picked up and under the effect of the weight of the glass. In fact, just before coming into contact with the separation tool, the glass had just been curved on the gravity support and therefore took the desired final convex shape, so that a separation tool having organs allowing it to orient itself with respect to the shape of the glass therefore takes in contact with the latter substantially the final shape desired for the glass. Supports offering the glass a discontinuous surface by pads and capable of modifying the orientation of the pad contact zone and / or damping the reception of the lens under the effect of the weight of the lens when it is received by the support have been described in WO2018 / 154248 and can be used as a separation tool in the context of the present invention. The greater the number of pad contact zones, the smaller the contact area of each zone. The sum of the areas of all the contact areas of the pads may represent 0.2 to 5% of the area of the underside of the lens. The contact area of each pad contact zone can be in the range from 50 mm 2 to 5500 mm 2 and preferably from 500 mm 2 to 4000 mm 2 . Preferably, the separation tool comprises 4 to 20 or even 6 to 20 contact zones of relatively high area each, that is to say of area each within the range from 500 mm 2 to 4000 mm 2. . The separation tool, as a support capable of supporting the lens by coming into contact with its lower face, can therefore include a discontinuous contact surface for the lens. The separation tool can also be a continuous or crenellated frame.
L’outil de séparation, s’il supporte le verre par sa 1ère face principale (c’est- à-dire la face extérieure du verre extérieur du vitrage tel qu’il est monté sur véhicule), peut avoir une surface de contact pour le verre ayant une forme, dite forme de compensation, s’écartant de la forme finale souhaitée pour le verre afin de compenser un éventuel défaut de forme que pourrait prendre le verre si l’outil de séparation avait exactement la forme souhaitée pour le verre. En effet, un tel outil de séparation supporte le verre en une zone relativement intérieure de la face inférieure du verre et à une température à laquelle le verre n’est pas complètement figé. Il s’ensuit que la partie du verre extérieure à l’outil de séparation peut avoir tendance à s’effondrer. On peut éviter cet effondrement en donnant à l’outil de séparation une forme dite de compensation qui comprend des courbures concaves plus accentuées que celles du support gravitaire dans sa forme finale. Ainsi, l’outil de séparation du type support peut présenter une surface de contact pour le verre, concave vue de dessus et plus incurvée que celle du support gravitaire devant supporter le verre dans la même région en fin de bombage. The separation tool, if it supports the glass by its 1 st main face (that is to say the outer face of the outer glass of the glazing as it is mounted on the vehicle), may have a contact surface for glass having a shape, called a compensation shape, deviating from the final shape desired for the glass in order to compensate for a possible defect in shape that the glass could take if the separation tool had exactly the desired shape for the glass . In fact, such a separation tool supports the glass in a relatively internal zone of the underside of the glass and at a temperature at which the glass is not completely fixed. As a result, the portion of the glass outside the separation tool may have a tendency to collapse. This collapse can be avoided by giving the separation tool a so-called compensation form which comprises concave curvatures more accentuated than those of the gravity support in its final form. Thus, the support-type separation tool may have a contact surface for the lens, which is concave when viewed from above and more curved than that of the gravity support which is to support the lens in the same region at the end of bending.
Inversement, et pour corriger le même phénomène de déformation préférentiel de la périphérie du verre lorsqu’il est supporté par l’outil de séparation, il est possible de donner la forme de compensation non pas à l’outil de séparation mais au support gravitaire lui-même. Ce dernier a donc alors une forme concave vue de dessus légèrement plus galbée que la forme finale du verre. Conversely, and to correct the same phenomenon of preferential deformation of the periphery of the lens when it is supported by the separation tool, it is possible to give the form of compensation not to the separation tool but to the gravity support. -even. The latter therefore then has a concave shape, seen from above, which is slightly more curved than the final shape of the glass.
Tous les outils venant au contact du verre au-dessus de 400°C (support gravitaire, outil de séparation comme une forme supérieure ou un support discontinu) présentent à leur surface de contact pour le verre un matériau fibreux réfractaire bien connu de l'homme du métier pour réduire les risques de marquage du verre chaud avec un outil. Ce matériau fibreux peut être un tissu ou feutre ou tricot et notamment un « tricot de trempe » servant habituellement à revêtir les cadres de trempe du verre et présentant l'avantage d'être très ajouré. Le matériau fibreux réfractaire contient des fibres réfractaires et présente une importante porosité ouverte ce qui lui confère une propriété d'isolant thermique. All tools coming into contact with glass above 400 ° C (gravity support, separation tool such as a top form or discontinuous support) have at their contact surface for the glass a refractory fibrous material well known to man of the trade to reduce the risk of marking hot glass with a tool. This fibrous material may be a fabric or felt or knit and in particular a “tempering knit” usually used to coat the tempering frames of the glass and having the advantage of being very perforated. The refractory fibrous material contains refractory fibers and has a large open porosity which gives it a thermal insulating property.
Le support gravitaire présente généralement, au moins en fin de bombage, une forme correspondant à la géométrie finale voulue pour le verre. Lors du bombage du verre, il est en contact avec la périphérie de la face inférieure du verre. Le support gravitaire a généralement la forme d’un cadre et peut être appelé squelette par l’homme du métier. Un squelette est une bande métal dont une tranche sert de piste de contact pour le verre. Le support gravitaire est généralement continu au moins en fin de bombage. Il est de préférence revêtu d’un matériau fibreux réfractaire bien connu de l’homme du métier pour venir au contact du verre. La largeur de sa piste de contact avec le verre est généralement comprise dans le domaine allant de 2 à 20 mm, matériau fibreux réfractaire compris. The gravity support generally has, at least at the end of bending, a shape corresponding to the final geometry desired for the glass. During the bending of the glass, it is in contact with the periphery of the underside of the glass. The gravity support generally has the shape of a frame and can be called a skeleton by those skilled in the art. A skeleton is a metal strip, one edge of which serves as a contact track for the glass. The gravity support is generally continuous at least at the end of bending. It is preferably coated with a refractory fibrous material well known to those skilled in the art to come into contact with the glass. The width of its contact track with the glass is generally in the range from 2 to 20 mm, including refractory fibrous material.
Le support gravitaire peut comprendre des parties articulées se relevant au cours du bombage et/ou plusieurs cadres prenant en charge le verre l’un après l’autre au cours du bombage. De tels supports gravitaires ont été décrits dans les WO2015/128573, WO2013132174, W02007077371 , EP448447, EP0705798. La séparation du verre du support gravitaire intervient après que le verre ai pris sa forme finale en périphérie et donc une fois que le support gravitaire a pris la forme finale souhaitée pour le verre. Cette forme offerte au verre par le support gravitaire ne change plus jusqu’à sa dernière séparation du verre. Le séquençage séparation/(supportage à nouveau) a lieu avec le support gravitaire dans sa forme finale. The gravity support can include articulated parts that rise during bending and / or several frames supporting the glass one after the other during bending. Such gravity supports have been described in WO2015 / 128573, WO2013132174, W02007077371, EP448447, EP0705798. The separation of the glass from the gravity support takes place after the glass has taken its final shape at the periphery and therefore once the gravity support has taken the final shape desired for the glass. This shape offered to the glass by the gravity support does not change until its last separation from the glass. The separation / sequencing (support again) takes place with the gravity support in its final form.
Si l’outil de séparation supporte le verre par sa face inférieure, alors il le touche dans sa zone intérieure à sa zone périphérique, c’est-à-dire à plus de 50 mm du bord du verre (sans contact à moins de 50 mm du bord) et de préférence à plus de 60 mm du bord du verre (sans contact à moins de 60 mm du bord). Généralement, la zone de contact de l’outil de séparation se trouve intégralement à moins de 200 mm du bord du verre (sans contact alors à plus de 200 mm du bord du verre) et de préférence à moins de 150 mm du bord du verre (sans contact alors à plus de 150 mm du bord du verre). Un tel outil peut être intégré à un dispositif comprenant le support gravitaire, auquel cas toutes les zones de contact de l’outil de séparation sont circonscrites en vue de dessus par le support gravitaire lorsque celui-ci a sa forme finale. If the separation tool supports the lens from its underside, then it touches it in its zone inside its peripheral zone, that is to say at more than 50 mm from the edge of the lens (without contact at less than 50 mm from the edge) and preferably more than 60 mm from the edge of the glass (contactless less than 60 mm from the edge). Generally, the contact area of the separation tool is entirely within 200 mm of the edge of the glass (contactless then more than 200 mm from the edge of the glass) and preferably less than 150 mm from the edge of the glass (contactless then more than 150 mm from the edge of the glass). Such a tool can be integrated into a device comprising the gravity support, in which case all the contact areas of the separation tool are circumscribed in top view by the gravity support when the latter has its final shape.
Le dispositif selon l’invention peut comprendre un four et une pluralité de supports gravitaire aptes à supporter chacun un verre, lesdits supports gravitaire formant un train de supports gravitaires aptes à circuler dans le four. On réalise une pluralité de supports gravitaire pour la réalisation d’un lot de verres ayant une forme spécifique. Ces supports, portant chacun un verre (une feuille ou plusieurs feuilles empilées) sont convoyés les uns derrières les autres, en formant un train de supports gravitaires, dans un four de bombage afin de bomber le verre puis le refroidir de façon contrôlée au moins jusqu’à son figeage. On considère que la zone de refroidissement contrôlée menant au figeage du verre fait partie du four. En effet cette zone comprend généralement une isolation thermique et des moyens de chauffe afin de réguler et maintenir la température souhaitée. Le four comprend généralement une pluralité de chambres traversées l’une après l’autre par les supports gravitaires se suivant l’un après l’autre, et ce, pour le bombage et le refroidissement contrôlé. Après la sortie du four et lorsque le verre est figé, les supports gravitaires peuvent être déchargés de leur verre et renvoyés à vide au poste de chargement. Ils reprennent alors en charge un verre non bombé et retournent dans le four pour le bombage de ce nouveau verre. Ces supports gravitaires peuvent faire partie d’un dispositif les intégrant ainsi qu’un outil de séparation. Dans ce cas, c’est une pluralité de tels dispositifs support gravitaire/outil de séparation qui est fabriqué et circule dans le four. The device according to the invention can comprise an oven and a plurality of gravity supports each capable of supporting a glass, said gravity supports forming a train of gravity supports able to circulate in the oven. A plurality of gravity supports are produced for producing a batch of glasses having a specific shape. These supports, each carrying a glass (a sheet or several stacked sheets) are conveyed one behind the other, forming a train of gravity supports, in a bending furnace in order to bend the glass and then cool it in a controlled manner at least until it freezes. The controlled cooling zone leading to the freezing of the glass is considered to be part of the furnace. In fact, this zone generally comprises thermal insulation and heating means in order to regulate and maintain the desired temperature. The furnace generally comprises a plurality of chambers crossed one after the other by the gravity supports following one after the other, and this, for the bending and controlled cooling. After removal from the oven and when the glass is frozen, the gravity supports can be unloaded from their glass and returned empty to the loading station. They then take over a non-curved glass and return to the oven for the bending of this new glass. These gravity supports can be part of a device integrating them as well as a separation tool. In this case, it is a plurality of such gravity support / separation tool devices which are manufactured and circulate in the furnace.
L’invention concerne notamment la réalisation de vitrages feuilletés combinant deux feuilles de verre dont l’épaisseur de l’une est comprise dans le domaine allant de 1 ,4 à 3,15 mm et dont l’épaisseur de l’autre est comprise dans le domaine allant de 0,5 à 3,15 mm. Pour le cas où les feuilles ont des épaisseurs différentes, la face 1 du vitrage feuilleté (face convexe extérieure de la feuille en position extérieure quand le vitrage est monté sur le véhicule) est une face de la feuille la plus épaisse. Dans le procédé selon l’invention, le verre peut être un empilement de deux feuilles de verre d’épaisseur différente, la plus mince étant de préférence sur la plus épaisse. Notamment, ces deux feuilles peuvent être destinées à être assemblées ensemble dans un vitrage feuilleté, auquel cas, le fait qu’elles soient l’une sur l’autre du bombage jusqu’au figeage garantit une excellente compatibilité de forme. The invention relates in particular to the production of laminated glazings combining two sheets of glass, the thickness of one of which is in the range from 1.4 to 3.15 mm and the thickness of the other of which is included in the range ranging from 0.5 to 3.15 mm. For the case where the sheets have different thicknesses, the face 1 of the laminated glazing (outer convex face of the sheet in the outer position when the glazing is mounted on the vehicle) is one side of the thicker sheet. In the method according to the invention, the glass can be a stack of two sheets of glass of different thickness, the thinner preferably being the thicker. In particular, these two sheets can be intended to be assembled together in a laminated glazing, in which case, the fact that they are the one on the other of the bending until the freezing guarantees an excellent compatibility of form.
Chaque feuille de verre peut être recouverte avant bombage d’une ou plusieurs couches d’émail ou d’une ou plusieurs couches minces du type anti- solaire (low-e), conductrice ou autre habituellement appliquées aux vitrages automobile. Each sheet of glass may be covered before bending with one or more layers of enamel or one or more thin layers of the anti-solar (low-e), conductive or other type usually applied to automotive glazing.
Le verre bombé réalisé selon l’invention concerne plus particulièrement la réalisation de vitrages, notamment feuilletés, du type parebrise ou toit de véhicule routier. L’aire d’une de leur surface principale est généralement supérieure à 0,5 m2, notamment entre 0,5 et 4 m2. Généralement, dans la région centrale du verre, on peut placer un cercle virtuel de diamètre d’au moins 100 mm et même d’au moins 200 mm et même d’au moins 300 mm, dont tous les points sont plus éloignés que 200 mm de tous les bords du verre, ce qui caractérise une certaine grandeur du verre. Le verre présente généralement quatre bords (également appelés bandes), la distance entre deux bords opposés étant généralement supérieure à 500 mm et plus généralement supérieure à 600 mm et plus généralement supérieure à 900 mm. The curved glass produced according to the invention relates more particularly to the production of glazing, in particular laminated, of the windshield or roof of a road vehicle type. The area of one of their main surface is generally greater than 0.5 m 2 , especially between 0.5 and 4 m 2 . Usually, in the central region of the glass, one can place a virtual circle with a diameter of at least 100 mm and even at least 200 mm and even at least 300 mm, all of the points of which are farther than 200 mm away. of all the edges of the glass, which characterizes a certain size of the glass. Glass generally has four edges (also called bands), the distance between two opposite edges being generally greater than 500 mm and more generally greater than 600 mm and more generally greater than 900 mm.
Grâce à l’invention, les contraintes de compression de bords du verre final en sa feuille comprenant la face inférieure, sont supérieures à 8 MPa, voire supérieures à 10 MPa. Les niveaux d'extension sont faibles, inférieurs à 5 MPa et même inférieurs à 4 MPa, voire inférieurs à 3 MPa. Le maximum de contrainte en extension se situe généralement à une distance du bord comprise entre 5 et 40 mm et plus généralement entre 10 et 40 mm. La feuille en position inférieure lors du bombage et du refroidissement présente donc des propriétés mécaniques remarquables rendant cette feuille bien adaptée à être montée en position externe dirigée vers l’extérieur, d’un vitrage automobile. En effet, la face du vitrage tournée vers l’extérieur (face 1 convexe) est celle la plus susceptible de recevoir des projectiles comme par exemple des gravillons. Thanks to the invention, the edge compressive stresses of the final glass in its sheet comprising the underside are greater than 8 MPa, or even greater than 10 MPa. The extension levels are low, less than 5 MPa and even less than 4 MPa, or even less than 3 MPa. The maximum stress in extension is generally located at a distance from the edge of between 5 and 40 mm and more generally between 10 and 40 mm. The sheet in the lower position during bending and cooling therefore exhibits remarkable mechanical properties making this sheet well suited to be mounted in an external position facing the outside, of an automobile glazing. Indeed, the face of the glazing facing outward (face 1 convex) is the one most likely to receive projectiles such as, for example, gravel.
Notamment, l’invention permet l’obtention d’un vitrage bombé, notamment feuilleté, comprenant au moins une feuille de verre comprenant une contrainte de compression de bord supérieure à 8 MPa, un maximum de contrainte d’extension inférieur à 5MPa voire inférieure à 4 MPa. Pour le cas ou au moins un outil de séparation du type venant au contact du verre par en-dessous a été utilisé, et que cet outil a été embarqué avec le support gravitaire, on constate une trace visible en polariscopie aux endroits du contact avec l’outil de séparation, c’est-à-dire à plus de 50 mm du bord. La trace visible en polariscopie a la forme de l’outil de séparation, c’est-à-dire celle d’un cadre ou d’un ensemble discontinu de tâches situées entre d’une part 50 mm du bord du verre et d’autre part 200 mm et le cas échéant 150 mm du bord du verre. Le vitrage peut être feuilleté et comprendre deux feuilles de verre, l’épaisseur de l’une étant comprise dans le domaine allant de 1 ,4 à 3,15 mm et l’épaisseur de l’autre étant comprise dans le domaine allant de 0,5 à 3,15 mm. Pour le cas où l’outil de séparation est une forme supérieure du type cadre comme déjà mentionné plus haut et venant en contact avec la zone périphérique de la face supérieure du verre sans toucher le verre au-delà de cette zone périphérique, cette forme supérieure ne provoque pas de trace en polariscopie au-delà de la zone périphérique à partir du bord du verre dans le verre final, et donc également au-delà de 150 mm à partir du bord du verre, et donc également au-delà de 200 mm à partir du bord du verre. Ainsi, l’invention concerne également un vitrage bombé, notamment feuilleté, comprenant au moins une feuille de verre comprenant une contrainte de compression de bord supérieure à 8 MPa, un maximum de contrainte d’extension inférieur à 5 MPa voire inférieure à 4 MPa et sans trace visible en polariscopie à plus de 200 mm du bord et même à plus de 150 mm du bord et même à plus de 50 mm du bord du verre. Notamment, le vitrage peut être feuilleté et comprendre deux feuilles de verre, l’épaisseur de l’une étant comprise dans le domaine allant de 1 ,4 à 3,15 mm et l’épaisseur de l’autre étant comprise dans le domaine allant de 0,5 à 3,15 mm. In particular, the invention makes it possible to obtain a curved glazing, in particular laminated, comprising at least one sheet of glass comprising an edge compressive stress greater than 8 MPa, a maximum extension stress of less than 5 MPa or even less than 4 MPa. For the case where at least one separation tool of the type coming into contact with the glass from below has been used, and this tool has been loaded with the gravity support, a visible trace in polariscopy is observed at the places of contact with the 'separation tool, i.e. more than 50 mm from the edge. The trace visible in polariscopy has the shape of the separation tool, that is to say that of a frame or a discontinuous set of tasks located between on the one hand 50 mm from the edge of the glass and on the other hand 200 mm and if necessary 150 mm from the edge of the glass. The glazing can be laminated and include two sheets of glass, the thickness of one being in the range from 1.4 to 3.15 mm and the thickness of the other being in the range from 0 , 5 to 3.15 mm. For the case where the separation tool is an upper form of the frame type as already mentioned above and coming into contact with the area peripheral of the upper face of the lens without touching the lens beyond this peripheral zone, this upper shape does not cause any trace in polariscopy beyond the peripheral zone from the edge of the lens in the final lens, and therefore also beyond 150 mm from the edge of the glass, and therefore also beyond 200 mm from the edge of the glass. Thus, the invention also relates to a curved glazing, in particular laminated, comprising at least one sheet of glass comprising an edge compressive stress greater than 8 MPa, a maximum extension stress of less than 5 MPa or even less than 4 MPa and without visible trace in polariscopy more than 200 mm from the edge and even more than 150 mm from the edge and even more than 50 mm from the edge of the glass. In particular, the glazing can be laminated and comprise two sheets of glass, the thickness of one being in the range from 1.4 to 3.15 mm and the thickness of the other being in the range from from 0.5 to 3.15 mm.
La figure 1 représente un dispositif de bombage 1 par gravité comprenant un support gravitaire à double squelette (2, 3) et un outil de séparation 4 en forme d’anneau continu. La figure 1a montre le dispositif en vue de dessus et les figures 1 b et 1 c montre selon le plan de coupe AA’ de la figure 1 a, le dispositif vu de côté à deux moments différents. Dans les figures 1 b et 1 c, les traits en tirets correspondent à la surface de contact pour le verre des différents supports 2, 3, 4. Le support gravitaire comprend un squelette ébaucheur 3 supportant le verre en début de bombage et un squelette finisseur 2 supportant le verre en fin de bombage. Les courbures du squelette ébaucheur 3 sont concaves vue de dessus et moins prononcées que celles du squelette finisseur 2. En vue de dessus, l’outil de séparation 4 est circonscrit par le squelette ébaucheur 3 et le squelette ébaucheur 3 est circonscrit par le squelette finisseur 2. Le verre n’est pas représenté par soucis de clarté. La figure 1 b) montre la position relative des différents éléments (2,3,4) du dispositif en fin de bombage, le verre épousant alors tout le pourtour de la piste de contact du squelette finisseur, lequel est en position plus haute que les deux autres éléments 3 et 4. Cette figure ne montre donc pas la position relative des éléments 1 ,2,4 en phase de prébombage sur le squelette ébaucheur 3, cette phase étant préalable aux représentations de cette figure 1. La figure 1 c) montre la position relative des différents éléments (2,3,4) du dispositif juste après une séparation du verre d’avec le squelette finisseur 2 suite à la levée de l’outil de séparation 4, le verre épousant alors tout le pourtour de l’outil de séparation 4. On est ici à la première étape du séquençage « séparation/(supportage à nouveau) », laquelle est suivie par la deuxième étape du même séquençage selon laquelle l’outil de séparation descend et le verre est de nouveau supporté par le squelette finisseur 2. FIG. 1 shows a gravity bending device 1 comprising a gravity support with double skeleton (2, 3) and a separation tool 4 in the form of a continuous ring. FIG. 1a shows the device in top view and FIGS. 1 b and 1 c show, along the section plane AA 'of FIG. 1 a, the device seen from the side at two different times. In figures 1 b and 1 c, the dashed lines correspond to the contact surface for the glass of the various supports 2, 3, 4. The gravity support comprises a blank skeleton 3 supporting the glass at the start of bending and a finishing skeleton 2 supporting the glass at the end of bending. The curvatures of the blank skeleton 3 are concave seen from above and less pronounced than those of the finishing skeleton 2. In top view, the separation tool 4 is circumscribed by the blank skeleton 3 and the blank skeleton 3 is circumscribed by the finishing skeleton 2. Glass is not shown for clarity. Figure 1 b) shows the relative position of the various elements (2,3,4) of the device at the end of bending, the glass then following the entire periphery of the contact track of the finishing skeleton, which is in a higher position than the two other elements 3 and 4. This figure therefore does not show the relative position of the elements 1, 2,4 in the prebombing phase on the blank skeleton 3, this phase being prior to the representations of this figure 1. Figure 1 c) shows the relative position of the different elements (2, 3, 4) of the device just after separation of the glass from the finisher skeleton 2 following the lifting of the separation tool 4, the glass then hugging the entire periphery of the tool separation 4. Here we are at the first step of the “separation / (support again)” sequencing, which is followed by the second step of the same sequencing according to which the separation tool descends and the glass is again supported by the skeleton finisher 2.
La figure 2 représente un dispositif de bombage 20 par gravité comprenant un support gravitaire à double squelette (21 , 22) et un outil de séparation 23 discontinu comprenant une pluralité de patins 24 montés sur un châssis commun 25. Le support gravitaire comprend un squelette ébaucheur 21 supportant le verre en début de bombage et un squelette finisseur 22 supportant le verre en fin de bombage. En vue de dessus, l’ensemble des patins 24 formant une surface de contact discontinue pour le verre est circonscrit par le squelette ébaucheur 21 et le squelette ébaucheur 21 est lui-même circonscrit par le squelette finisseur 22. Le verre n’est pas représenté par soucis de clarté. Le châssis 25 monte ou descend pour monter ou descendre l’ensemble des patins, selon l’étape du séquençage « séparation/(supportage à nouveau) » devant être effectuée. Après que le verre a épousé tout le pourtour du squelette finisseur 22, le châssis 25 monte pour que les patins 24 prennent en charge le verre et libère le squelette finisseur. Les patins 24 touchent le verre dans une zone intérieure à la zone périphérique de la face inférieure du verre. Le châssis 25 descend ensuite pour replacer le verre sur le squelette finisseur. Figure 2 shows a gravity bending device 20 comprising a gravity support with double skeleton (21, 22) and a discontinuous separation tool 23 comprising a plurality of pads 24 mounted on a common frame 25. The gravity support comprises a blank skeleton 21 supporting the glass at the start of bending and a finishing skeleton 22 supporting the glass at the end of bending. In top view, the set of pads 24 forming a discontinuous contact surface for the lens is circumscribed by the blank skeleton 21 and the blank skeleton 21 is itself circumscribed by the finishing skeleton 22. The lens is not shown. for the sake of clarity. The frame 25 moves up or down to move up or down all of the pads, depending on the "separation / (support again)" sequencing step to be performed. After the glass has hugged the entire circumference of the finisher skeleton 22, the frame 25 rises so that the runners 24 support the glass and frees the finisher skeleton. The pads 24 touch the lens in an area inside the peripheral area of the underside of the lens. The frame 25 then descends to replace the glass on the finishing skeleton.
La figure 3 représente en a) un verre 30 reposant sur un squelette finisseur 31 , puis en b) sa séparation de ce squelette suite à la montée d’un outil de séparation 33, puis en c) la redépose du verre 30 sur le squelette finisseur suite à la descente de l’outil de séparation 33. On utilise les mêmes références de a) à c). Cette figure 3 représente en coupe dans un plan transversal du four (c’est-à-dire vu dans l’axe longitudinal du four) et très schématiquement, un système de levage 40 lui-même composé de deux sous-ensembles : la partie supérieure 41 et la partie inférieure 42. Ces deux sous-ensembles 41 et 42 font partie intégrante du four et sont entourés d’une couche d’isolant fibreux 39 qui assure l’isolation thermique du four. La partie supérieure 41 peut se translater verticalement à l’aide de barres 36 qui passent à travers la voûte du four. Un système de couplage 37 permet, en position basse, de désolidariser les parties supérieures 41 et inférieures 42 du système de levage 40 afin d’accommoder une éventuelle dilatation différentielle des deux sous-ensembles ou afin de les séparer lors d’une opération de maintenance. Ce système de couplage permet de translater vers le haut le sous ensemble 42 lors de la montée du sous-ensemble 41. FIG. 3 represents in a) a lens 30 resting on a finishing skeleton 31, then in b) its separation from this skeleton following the raising of a separation tool 33, then in c) the redeposition of the lens 30 on the skeleton finisher following the descent of the separation tool 33. The same references are used from a) to c). This figure 3 represents in section in a transverse plane of the furnace (that is to say seen in the longitudinal axis of the furnace) and very schematically, a lifting system 40 itself composed of two sub-assemblies: the part upper 41 and lower part 42. These two sub-assemblies 41 and 42 form an integral part of the oven and are surrounded by a layer of fibrous insulation 39 which provides thermal insulation of the oven. The upper part 41 can be translated vertically using bars 36 which pass through the roof of the oven. A coupling system 37 makes it possible, in the low position, to separate the upper 41 and lower 42 parts of the lifting system 40 in order to accommodate any differential expansion of the two sub-assemblies or in order to separate them during a maintenance operation. This coupling system makes it possible to translate the sub-assembly 42 upwards during the ascent of the sub-assembly 41.
L’outil de séparation 33 repose sur la partie basse du sous-ensemble inférieur 42 du système de levage qui pourra donc lui imprimer une suite de mouvements verticaux vers le haut ou vers le bas. L’outil de séparation 33 est ici résident dans une chambre 43 du four dont l’atmosphère est à une température spécifique. Plus précisément, l’outil de séparation 33 est introduit dans cette chambre 43 lors du changement de fabrication et il y reste immobile en position basse lorsque le verre 30 et son squelette sont translatés dans la chambre suivante. L’outil de séparation 33 quittera sa chambre 43 lors du changement de fabrication suivant lorsque l’ensemble des outillages spécifiques au vitrage venant d’être produit seront retirés de l’installation. The separation tool 33 rests on the lower part of the lower sub-assembly 42 of the lifting system which can therefore give it a series of vertical movements up or down. The separation tool 33 is here resident in a chamber 43 of the furnace whose atmosphere is at a specific temperature. More precisely, the separation tool 33 is introduced into this chamber 43 during the change of manufacture and it remains there immobile in the low position when the glass 30 and its skeleton are translated into the following chamber. The separation tool 33 will leave its chamber 43 during the next production change when all the tooling specific to the glazing that has just been produced is removed from the installation.
L’outil de séparation 33 comprend une structure ayant des barres verticales et horizontales 34 et une partie supérieure munie de patins 35. Un verre 30 a été bombé sur un support gravitaire du type à double squelette et repose en a) sur le squelette finisseur 31 du support gravitaire. Le squelette ébaucheur 32 a déjà supporté le verre en début de bombage et apparaît donc ici escamoté et sous le niveau du squelette finisseur 31. Le double squelette repose sur l’organe 38 qui permet de le supporter verticalement et d’effectuer une translation horizontale longitudinale permettant ainsi au squelette et au verre 30 de passer d’une chambre du four à la suivante. L’organe 38 peut être un chariot mobile qui roule sur un rail fixe, une chaîne qui se translate dans le four ou bien un lit de rouleaux qui passent à travers les parois latérales du four. The separation tool 33 comprises a structure having vertical and horizontal bars 34 and an upper part provided with pads 35. A glass 30 has been bent on a gravity support of the double skeleton type and rests in a) on the finishing skeleton 31 gravity support. The blank skeleton 32 has already supported the lens at the start of bending and therefore appears here retracted and below the level of the finishing skeleton 31. The double skeleton rests on the member 38 which makes it possible to support it vertically and to perform a longitudinal horizontal translation. thus allowing the skeleton and the glass 30 to pass from one chamber of the furnace to the next. The member 38 may be a movable carriage which rolls on a fixed rail, a chain which translates in the oven, or a bed of rollers which pass through the side walls of the oven.
Après bombage du verre en a), l’outil de séparation 40 est relevé et le verre est pris en charge (voir figure 3b) dans une zone intérieure à sa zone périphérique par les surfaces de contact 35 de l’outil de séparation 33. Ce levage est ici actionné par la translation verticale du sous-ensemble inférieur 42 du système de levage, lui-même entraîné vers le haut par le sous-ensemble supérieur 41 , lui- même tiré vers le haut grâce aux barres 36 qui sont reliées à un système de motorisation non représenté. After bending the lens in a), the separation tool 40 is raised and the lens is supported (see FIG. 3b) in a zone inside its peripheral zone by the contact surfaces 35 of the separation tool 33. This lifting is actuated here by the vertical translation of the lower sub-assembly 42 of the lifting system, itself driven upwards by the upper sub-assembly 41, itself pulled upwards thanks to the bars 36 which are connected to a motorization system not shown.
Après maintient pendant une durée de séparation sur l’outil de séparation, le verre est reposé en c) sur le squelette finisseur du support gravitaire. L’outil de séparation et son système de levage sont ici à demeure dans la chambre 43 dont l’atmosphère est à une température spécifique. Plusieurs chambres, chacune à une température spécifique, peuvent être juxtaposées et être muni de leur propre outil de séparation et de leur propre système de levage. Une pluralité de supports gravitaires peut ainsi circuler les uns derrière les autres en portant chacun un verre et passer d’une chambre à l’autre, notamment la chambre 43, dans le cadre du cycle de refroidissement du verre. After holding for a period of separation on the separation tool, the glass is rested in c) on the finishing skeleton of the gravity support. The separation tool and its lifting system are here permanently in the chamber 43 whose atmosphere is at a specific temperature. Several bedrooms, each with a specific temperature, can be juxtaposed and be equipped with their own separation tool and their own lifting system. A plurality of gravity supports can thus circulate one behind the other, each carrying a glass and pass from one chamber to another, in particular the chamber 43, as part of the glass cooling cycle.
Dans cette variante telle que représentée par cette figure 3, l’outil de séparation est résident dans une chambre de refroidissement, c’est-à-dire qu’il ne circule pas avec le support gravitaire mais qu’il traite les verres en circulation les uns après les autres. Il serait possible d’utiliser un système de levage similaire à celui de la figure 3 sauf que les outils de séparation seraient embarqués avec les supports gravitaires. Dans ce cas, l’outil de séparation 34 des figures 3a), 3b) et 3c) se réduirait à un simple châssis comportant des barres verticales plus grandes et qui lèveraient l’outil de séparation embarqué avec le squelette gravitaire. Dans une telle situation (outil de séparation embarqué dans le squelette gravitaire), on peut envisager un système de levage plus simple, constitué de quatre barres verticales passant au travers de la sole du four. Les cellules du four ne contenant pas d’outil de séparation de façon résidente, la sole peut alors être plus proche du squelette gravitaire, juste en dessous de l’organe 38. In this variant as represented by this FIG. 3, the separation tool is resident in a cooling chamber, that is to say that it does not circulate with the gravity support but that it processes the glasses in circulation. one after the other. It would be possible to use a lifting system similar to that in Figure 3 except that the separation tools would be on board with the gravity supports. In this case, the separation tool 34 of Figures 3a), 3b) and 3c) would be reduced to a simple frame with taller vertical bars and which would lift the on-board separation tool with the gravity skeleton. In such a situation (separation tool on board the gravity skeleton), it is possible to envisage a simpler lifting system, consisting of four vertical bars passing through the bottom of the furnace. As the kiln cells do not contain a resident separation tool, the hearth can then be closer to the gravity skeleton, just below organ 38.
La figure 4 représente schématiquement la cinématique de séparation et de supportage à nouveau du verre sur un squelette d’un support gravitaire. Ce graphe représente la cote (z) des barres de soulèvement 36 de la figure 3, en millimètres en fonction du temps. A Z>625 mm, le verre est sur l’outil de séparation. La différence de cote en hauteur des pistes de contact des deux outils (support gravitaire et outil de séparation) est de 35 mm (660-625=35). Le verre est successivement et selon un cycle défini et régulier : Figure 4 shows schematically the kinematics of separation and support again glass on a skeleton of a gravity support. This graph represents the dimension (z) of the lifting bars 36 of FIG. 3, in millimeters as a function of time. At Z> 625 mm, the glass is on the separation tool. The difference in height dimension of the contact tracks of the two tools (gravity support and separation tool) is 35 mm (660-625 = 35). The glass is successively and according to a defined and regular cycle:
séparé du support gravitaire 6 fois aux instants tmi, , tm3, etc, et replacé sur le support gravitaire 6 fois aux instants tdi, td2, td3, etc. separated from the gravity support 6 times at times t mi ,, t m 3, etc., and replaced on the gravity support 6 times at times t di , t d 2, t d 3, etc.
La figure 5 représente la température T du verre en °C en fonction du temps dans la phase de refroidissement contrôlé. Les températures indiquées sont celles enregistrées à chacune de 6 séparations du verre du support gravitaire ayant lieu approximativement aux instants tmi, , tm3, etc, comme définis sur la figure 4. La figure 6 représente l’influence de la surface de contact d’un outil de séparation du type support venant au contact de la face inférieure du verre sur l’effondrement ou non de la zone du verre extérieure à l’outil de séparation. Dans toutes les figures, le verre 60 a déjà été bombé sur un squelette 61 d’un support gravitaire. L’outil de séparation 64 comprend une surface de contact 62 pour le verre, laquelle correspond sensiblement à la forme souhaitée pour le verre à l’endroit de contact. En b1 , l’outil de séparation 64 est monté et supporte le verre pendant la durée de séparation. Pendant cette durée, la zone z extérieure du verre tend à s’effondrer, donnant au verre une courbure non-souhaitée en 63. On a représenté en surimpression sur la figure 6b1 la courbure souhaitée par une courbe 65 en tirets. Les figures 6a1 et 6b1 représentent le cas où l’outil de séparation offre au verre une surface ayant exactement la forme finale recherchée pour le verre à l’endroit du contact. Un effondrement non-souhaité peut donc en résulter. Les figures 6a2 et 6b2 montrent comment on peut lutter contre cet effondrement en jouant sur la forme de la surface de contact 62 de l’outil de séparation 64. En effet, la surface de contact 62 de l’outil de séparation présente ici une concavité accentuée dans la direction orthogonale au bord du verre par rapport à la concavité qu’elle aurait si elle avait la forme finale souhaitée pour le verre (la concavité correspondant à la forme souhaitée du vitrage est représentée en traits tiretés 66 sur les figures 6a2) et 6b2). Cette concavité accentuée provoque plutôt un relèvement de la zone z du verre ou réduit voire empêche cet effondrement. Afin de mieux visualiser la différence de géométrie des vitrages obtenus, on a représenté par une courbe en pointillés 67 sur la figure 6b2) la courbure prise par le verre dans la situation de la figure 6b1 ). L’outil de séparation présente ici une forme de compensation pour compenser l’effet de l’effondrement et donc éviter un effondrement trop important de la zone z. FIG. 5 represents the temperature T of the glass in ° C as a function of time in the controlled cooling phase. The temperatures indicated are those recorded at each of 6 separations of the glass from the gravity support taking place approximately at the instants t mi ,, t m 3, etc., as defined in FIG. 4. FIG. 6 represents the influence of the contact surface of a support-type separation tool coming into contact with the underside of the glass on the collapse or not of the zone of the glass outside the separation tool. In all the figures, the glass 60 has already been curved on a skeleton 61 of a gravity support. The separation tool 64 includes a contact surface 62 for the lens, which substantially matches the shape desired for the lens at the point of contact. In b1, the separation tool 64 is mounted and supports the glass during the separation time. During this period, the outer zone z of the lens tends to collapse, giving the lens an unwanted curvature at 63. The desired curvature is shown superimposed on FIG. 6b1 by a dashed curve 65. FIGS. 6a1 and 6b1 represent the case where the separation tool offers the lens a surface having exactly the final shape desired for the lens at the point of contact. An unwanted collapse can therefore result. FIGS. 6a2 and 6b2 show how this collapse can be combated by varying the shape of the contact surface 62 of the separation tool 64. In fact, the contact surface 62 of the separation tool here has a concavity. accentuated in the direction orthogonal to the edge of the glass with respect to the concavity it would have if it had the desired final shape for the glass (the concavity corresponding to the desired shape of the glazing is shown in dashed lines 66 in Figures 6a2) and 6b2). Rather, this accentuated concavity causes the z zone of the lens to rise or even reduce or prevent this collapse. In order to better visualize the difference in geometry of the glazing obtained, a dotted curve 67 in FIG. 6b2) is represented by the curvature taken by the glass in the situation of FIG. 6b1). The separation tool here has a form of compensation to compensate for the effect of the collapse and therefore to avoid too great a collapse of the zone z.
La figure 7 représente schématiquement un procédé selon lequel une pluralité de dispositifs 70 comprenant chacun un support gravitaire supportant un verre passe les uns après les autres dans un four tunnel 71 , lequel assure le chauffage du verre, son bombage par gravité puis son refroidissement contrôlé puis son refroidissement forcé. On a représenté le four en vue de dessus en 72 et en vue de côté en 73. Les supports gravitaires à vide 75 sont chargés chacun d’un verre plat 74 au poste de chargement 76 avant l’entrée four 77. Un support gravitaire chargé d’un verre 70 rentre ensuite dans le four puis est convoyé dans le four pour traverser successivement les chambres 1 à 13. Il passe d’abord dans une zone de chauffe « h » comprenant les chambres 1 à 4 faisant atteindre au verre sa température de bombage, puis dans une zone de bombage « b » comprenant les chambres 5 à 8, puis dans une zone de refroidissement contrôlé dite « cc » (controled cooling) dans les chambres 9 à 11 , puis dans une zone de refroidissement forcé dite « fc » (forced cooling) dans les chambres 12 et 13. Le support gravitaire chargé de son verre bombé et figé sort du four par la sortie four 78. Le verre est ensuite déchargé du support gravitaire au poste de déchargement 79 et le support à vide est renvoyé au poste de chargement 76 pour être chargé d’un nouveau verre plat et subir de nouveau le cycle de bombage et de refroidissement. Tout ce cycle est réalisé par une pluralité de supports de bombage chargé chacun d’un verre et cheminant les uns derrière les autres en formant un train dans le procédé. Ils cheminent dans le four de sorte que chacune des chambres 1 à 13 peut être occupée par un support chargé de verre et ils avancent pas à pas (step by step) dans le four après avoir passé un temps défini dans une chambre. Pendant le refroidissement contrôlé dans les chambres 9 à 11 , le verre subit deux fois dans chacune des chambre 9 à 11 (c’est-à-dire 6 fois) le séquençage séparation/(supportage à nouveau) selon l’invention. L’outil de séparation peut être embarqué et convoyé ensemble avec le support gravitaire sur un même dispositif. Chaque chambre peut également comprendre son propre système de séparation et rester à demeure affecté à sa chambre. De la chambre 9 à la chambre 11 , chaque chambre est moins chaude que celle qui l’a précédée. Le verre est figé en sortant de la chambre 11 , sa température étant d’environ 480°C ou inférieure. Il peut ensuite être refroidi plus rapidement dans les chambres 12 et 13 dans lesquelles il subit un refroidissement forcé, c’est-à-dire par une convection d’air relativement froid. Le verre sort du four en 78 à environ 220°C. FIG. 7 schematically represents a method according to which a plurality of devices 70 each comprising a gravity support supporting a glass passes one after the other in a tunnel furnace 71, which ensures the heating of the glass, its bending by gravity then its controlled cooling then its forced cooling. The furnace is shown in top view at 72 and in side view at 73. The vacuum gravity supports 75 are each loaded with a flat glass 74 at the loading station 76 before entering the furnace 77. A loaded gravity support. of a glass 70 then enters the oven and is then conveyed into the furnace to pass successively through chambers 1 to 13. It first passes through a heating zone "h" comprising chambers 1 to 4 causing the glass to reach its bending temperature, then into a bending zone "b" comprising the rooms 5 to 8, then in a controlled cooling zone called "cc" (controled cooling) in rooms 9 to 11, then in a forced cooling zone called "fc" (forced cooling) in rooms 12 and 13. The gravity support loaded with its curved and frozen glass leaves the furnace through the furnace outlet 78. The glass is then unloaded from the gravity support at the unloading station 79 and the vacuum support is returned to the loading station 76 to be loaded with a new one. flat glass and undergo the bending and cooling cycle again. This entire cycle is carried out by a plurality of bending supports, each loaded with a glass and running one behind the other, forming a train in the process. They move through the oven so that each of the chambers 1 to 13 can be occupied by a support loaded with glass and they move step by step in the oven after having spent a defined time in a chamber. During the controlled cooling in the chambers 9 to 11, the glass undergoes twice in each of the chambers 9 to 11 (that is to say 6 times) the sequencing separation / (support again) according to the invention. The separation tool can be loaded and conveyed together with the gravity support on the same device. Each room can also include its own separation system and remain permanently assigned to its room. From room 9 to room 11, each room is less hot than the one before it. The glass is frozen on leaving the chamber 11, its temperature being about 480 ° C or lower. It can then be cooled more rapidly in chambers 12 and 13 in which it undergoes forced cooling, that is to say by convection of relatively cold air. The glass comes out of the oven at 78 at about 220 ° C.
La figure 8 représente les différentes étapes d’un séquençage séparation/(supportage à nouveau), la séparation du verre 80 étant réalisée grâce à une forme supérieure 82 en forme de cadre munie d’une jupe 81 en tant que moyen d’aspiration. La jupe est munie d’une rampe de soufflage 83. En a), le verre est sur un support gravitaire 84 du type squelette et supporte le verre dans la zone périphérique de sa face inférieure. En b), la forme supérieure 82 et le support gravitaire supportant le verre se sont rapprochés par un mouvement vertical relatif. L’aspiration par la jupe a alors été déclenchée et le verre s’est fixée au cadre 82 comme représenté en c). La forme supérieure 82 portant le verre et le support gravitaire se sont éloignés et la rampe 83 s’est mise à souffler de l’air sur la zone périphérique de la face inférieure du verre dans le but d’exercer un refroidissement plus fort en cette zone. Le soufflage est réalisé sur la zone de contact avec le support gravitaire 84, en l’absence de contact avec le support gravitaire. La forme supérieure 82 et le support gravitaire 84 se sont ensuite rapprochés par un mouvement vertical relatif, l’aspiration par la jupe 81 a été stoppée et en conséquence, la forme supérieure a largué le verre 80 sur le support gravitaire 84 comme représenté en d). FIG. 8 represents the different stages of a separation / sequencing (support again), the separation of the glass 80 being carried out by virtue of an upper form 82 in the form of a frame provided with a skirt 81 as suction means. The skirt is provided with a blowing ramp 83. In a), the glass is on a gravity support 84 of the skeleton type and supports the glass in the peripheral zone of its lower face. In b), the upper form 82 and the gravity support supporting the glass are approached by a relative vertical movement. The suction through the skirt was then triggered and the glass was fixed to frame 82 as shown in c). The upper form 82 carrying the glass and the gravity support moved away and the ramp 83 began to blow air on the peripheral zone of the lower face of the glass in order to exert a stronger cooling in this. zoned. The blowing is carried out on the contact zone with the gravity support 84, in the absence of contact with the gravity support. The upper form 82 and the gravity support 84 then approached by a relative vertical movement, the suction by the skirt 81 was stopped and as a consequence, the upper form dropped the glass 80 on the gravity support 84 as shown in d ).
EXEMPLES EXAMPLES
On a réalisé une série de tests sur des verres du type empilement comprenant chacun une feuille de verre d’épaisseur 1 ,8 mm sur laquelle était superposée une feuille de verre d’épaisseur 1 ,4 mm. Les verres ont été bombés par gravité à 630 °C puis ils ont subi un refroidissement contrôlé avec un nombre variable de séquençage séparation/(supportage à nouveau), la séparation étant effectuée par un contact avec la face inférieure du verre commençant à 80 mm du bord du verre. Le refroidissement contrôlé était effectué selon le protocole montré sur les figures 4 (avec un nombre différent de séparation selon le verre) et 5. Quatre verres V1 à V4 ont été réalisés dans des conditions et avec des résultats donnés dans le tableau 1. A series of tests were carried out on stack type glasses each comprising a sheet of glass 1.8 mm thick on which was superimposed a sheet of glass 1.4 mm thick. The glasses were curved by gravity at 630 ° C then they underwent a controlled cooling with a variable number of sequencing / separation (support again), the separation being effected by contact with the underside of the glass starting at 80 mm from the edge of the glass. The controlled cooling was carried out according to the protocol shown in FIGS. 4 (with a different number of separations depending on the glass) and 5. Four glasses V1 to V4 were carried out under the conditions and with the results given in Table 1.
Figure imgf000025_0001
Figure imgf000025_0001
Tableau 1 Table 1
Les 2 dernières colonnes sont des résultats d’un test consistant à indenter un vitrage à l’aide d’une pointe Vickers de 3,4 gramme et de rayon de courbure au niveau de la pointe de 0,2 mm et chutant d’une hauteur de 700 ou 900 mm. L’indentation a été effectuée sur la surface principale du vitrage au niveau du maximum d’extension de bord. Il s’agit d’un % de casses. Les performances en extension (plus la valeur est faible meilleur est le résultat) et en indentation (plus la valeur est faible meilleur est le résultat) sont meilleures de V1 à V4. On voit une corrélation claire entre les valeurs de contraintes d’extension de bord et la performance à l’impact. Ainsi donc, plus le vitrage est séparé tôt (et à haute T°) du support gravitaire, plus le nombre de casses est faible et plus la valeur d’extension est réduite. The last 2 columns are the results of a test consisting in indenting a glazing using a 3.4 gram Vickers point and the radius of curvature at point level 0.2 mm and dropping from a height of 700 or 900 mm. The indentation was performed on the main surface of the glazing at the level of the maximum edge extension. This is a% of breakages. The performance in extension (the lower the value, the better the result) and in indentation (the lower the value, the better the result) are better from V1 to V4. We see a clear correlation between edge extension stress values and impact performance. Thus, the earlier the glazing is separated (and at high T °) from the gravity support, the lower the number of breaks and the lower the extension value.

Claims

REVENDICATIONS
1. Procédé de bombage et de refroidissement d’une feuille de verre ou d’un empilement de feuilles de verre, dit le verre, comprenant le bombage par gravité du verre chauffé jusqu’à une température maximale de bombage sur un support gravitaire (2) au cours duquel le verre repose sur le support gravitaire dans la zone périphérique de sa face inférieure, ladite zone périphérique étant constituée des 50 mm à partir du bord de la face inférieure, puis, ledit procédé comprenant le refroidissement du verre menant à son figeage, le séquençage suivant étant effectué au moins une fois pendant ledit refroidissement menant à son figeage: 1. Process for bending and cooling a sheet of glass or a stack of sheets of glass, called glass, comprising the bending by gravity of the glass heated to a maximum bending temperature on a gravity support (2 ) during which the glass rests on the gravity support in the peripheral zone of its lower face, said peripheral zone consisting of 50 mm from the edge of the lower face, then, said method comprising cooling the glass leading to its freezing , the following sequencing being carried out at least once during said cooling leading to its freezing:
- la prise en charge du verre par un outil de séparation (4) le séparant du support gravitaire et laissant sa face inférieure libre de tout contact dans sa zone périphérique, puis - the support of the glass by a separation tool (4) separating it from the gravity support and leaving its lower face free of any contact in its peripheral zone, then
- le supportage à nouveau du verre sur le support gravitaire dans la zone périphérique de sa face inférieure. - the support again of the glass on the gravity support in the peripheral zone of its lower face.
2. Procédé selon la revendication précédente, caractérisé en ce que le séquençage est réalisé pendant ledit refroidissement du verre au moins une fois alors que sa température est entre la température maximale de bombage et 480°C et de préférence entre 560 et 500°C. 2. Method according to the preceding claim, characterized in that the sequencing is carried out during said cooling of the glass at least once while its temperature is between the maximum bending temperature and 480 ° C and preferably between 560 and 500 ° C.
3. Procédé selon l’une des revendications précédentes, caractérisé en ce que le séquençage est réalisé pendant ledit refroidissement du verre au moins deux fois et de préférence au moins 3 fois et de préférence au moins 4 fois et de préférence au moins 5 fois, voire au moins 6 fois, voire au moins 7 fois alors que sa température est entre la température maximale de bombage et 480°C. 3. Method according to one of the preceding claims, characterized in that the sequencing is carried out during said cooling of the glass at least twice and preferably at least 3 times and preferably at least 4 times and preferably at least 5 times, or even at least 6 times, or even at least 7 times when its temperature is between the maximum bending temperature and 480 ° C.
4. Procédé selon l’une des revendications précédentes, caractérisé en ce que le séquençage est réalisé au moins 2 fois entre 560 et 500°C. 4. Method according to one of the preceding claims, characterized in that the sequencing is carried out at least twice between 560 and 500 ° C.
5. Procédé selon la revendication précédente, caractérisé en ce que le séquençage est réalisé au moins une fois entre la température maximale de bombage et 560°C, et au moins deux fois entre 560 et 500°C, et au moins une fois entre 500 et 480°C. 5. Method according to the preceding claim, characterized in that the sequencing is carried out at least once between the maximum bending temperature and 560 ° C, and at least twice between 560 and 500 ° C, and at least once between 500 and 480 ° C.
6. Procédé selon l’une des revendications précédentes, caractérisé en ce que la température maximale de bombage est supérieure à 570°C. 6. Method according to one of the preceding claims, characterized in that the maximum bending temperature is greater than 570 ° C.
7. Procédé selon l’une des revendications précédentes, caractérisé en ce que la température maximale de bombage est inférieure à 680°C. 7. Method according to one of the preceding claims, characterized in that the maximum bending temperature is less than 680 ° C.
8. Procédé selon l’une des revendications précédentes, caractérisé en ce que la région centrale de la face inférieure du verre, notamment la région à une distance supérieure à 200 mm du bord, est à une température au moins égale à celle de la zone périphérique de la face inférieure du verre au moment de la prise en charge du verre par l’outil de séparation. 8. Method according to one of the preceding claims, characterized in that the central region of the lower face of the lens, in particular the region at a distance greater than 200 mm from the edge, is at a temperature at least equal to that of the zone. peripheral of the underside of the lens when the lens is taken over by the separation tool.
9. Procédé selon l’une des revendications précédentes, caractérisé en ce que le verre est un empilement de deux feuilles de verre dont l’épaisseur de l’une est comprise dans le domaine allant de 1 ,4 à 3,15 mm et dont l’épaisseur de l’autre est comprise dans le domaine allant de 0,5 à 3,15 mm. 9. Method according to one of the preceding claims, characterized in that the glass is a stack of two sheets of glass, the thickness of one of which is in the range from 1.4 to 3.15 mm and of which the thickness of the other is in the range from 0.5 to 3.15 mm.
10. Procédé selon l’une des revendications précédentes, caractérisé en ce que le verre est un empilement de deux feuilles de verre d’épaisseur différente, la plus mince étant sur la plus épaisse. 10. Method according to one of the preceding claims, characterized in that the glass is a stack of two sheets of glass of different thickness, the thinner being on the thicker.
11. Procédé selon l’une des revendications précédentes, caractérisé en ce que la vitesse moyenne de refroidissement du verre entre 560 et 500°C est comprise dans le domaine allant de 0,3 à 3°C/seconde et de préférence dans le domaine allant de 0,4 à 2,7°C/seconde. 11. Method according to one of the preceding claims, characterized in that the average glass cooling speed between 560 and 500 ° C is in the range from 0.3 to 3 ° C / second and preferably in the range. ranging from 0.4 to 2.7 ° C / second.
12. Procédé selon l’une des revendications précédentes, caractérisé en ce que l’outil de séparation vient au contact de la face inférieure du verre dans une zone comprise entre 50 mm du bord du verre et 200 mm et de préférence entre 50 mm du bord du verre et 150 mm du bord du verre pour supporter le verre. 12. Method according to one of the preceding claims, characterized in that the separation tool comes into contact with the underside of the glass in an area between 50 mm from the edge of the glass and 200 mm and preferably between 50 mm from the glass. edge of the glass and 150mm from the edge of the glass to support the glass.
13. Procédé selon l’une des revendications 1 à 11 , caractérisé en ce que l’outil de séparation est une forme supérieure munie d’un moyen d’aspiration agissant sur la face supérieure du verre pour sa prise en charge. 13. Method according to one of claims 1 to 11, characterized in that the separation tool is an upper form provided with a suction means acting on the upper face of the glass for its support.
14. Procédé selon l’une des revendications précédentes, caractérisé en ce que pendant le refroidissement du verre menant à son figeage, le support gravitaire chargé du verre traverse une suite de chambres, la température des chambres diminuant d’une chambre à l’autre au cours du cheminement du verre. 14. Method according to one of the preceding claims, characterized in that during the cooling of the glass leading to its freezing, the gravity support charged with the glass passes through a series of chambers, the temperature of the chambers decreasing from one chamber to another. during the course of the glass.
15. Procédé selon la revendication précédente, caractérisé en ce que plusieurs séquençages sont réalisés successivement, au moins un séquençage étant réalisé dans une première chambre et au moins un séquençage étant réalisé dans une deuxième chambre. 15. Method according to the preceding claim, characterized in that several sequencing are carried out successively, at least one sequencing being carried out in a first chamber and at least one sequencing being carried out in a second chamber.
16. Procédé selon la revendication précédente, caractérisé en ce qu’au moins un séquençage est appliqué au verre dans une première chambre par un outil de séparation comprenant une forme supérieure munie d’un moyen d’aspiration agissant sur la face supérieure du verre pour sa prise en charge, et au moins un séquençage est appliqué au verre dans une deuxième chambre par un outil de séparation venant au contact de la face inférieure du verre dans une zone comprise entre d’une part 50 mm du bord du verre et d’autre part 200 mm et de préférence 150 mm du bord du verre, la deuxième chambre étant disposée après la première chambre sur le cheminement du verre, la deuxième chambre étant à une température inférieure à celle de la première chambre. 16. Method according to the preceding claim, characterized in that at least one sequencing is applied to the glass in a first chamber by a separation tool comprising an upper form provided with a suction means acting on the upper face of the glass for its handling, and at least one sequencing is applied to the glass in a second chamber by a separation tool coming into contact with the underside of the glass in an area between on the one hand 50 mm from the edge of the glass and from on the other hand 200 mm and preferably 150 mm from the edge of the glass, the second chamber being arranged after the first chamber on the path of the glass, the second chamber being at a temperature lower than that of the first chamber.
17. Procédé selon l’une des revendications précédentes, caractérisé en ce que pour le bombage et le refroidissement menant au figeage du verre, un train d’une pluralité dudit support gravitaire portant chacun un verre traverse une suite de chambres (5-11 ) en effectuant des arrêts pour que chaque verre s’arrête successivement dans toutes les chambres. 17. Method according to one of the preceding claims, characterized in that for the bending and cooling leading to the freezing of the glass, a train of a plurality of said gravity support each carrying a glass passes through a series of chambers (5-11) by making stops so that each glass stops successively in all the rooms.
18. Procédé selon l’une des revendications précédentes de procédé, caractérisé en que de l’air plus froid que le verre est soufflé sur la zone périphérique de la face inférieure du verre pendant la prise en charge du verre par l’outil de séparation. 18. Method according to one of the preceding method claims, characterized in that air cooler than the glass is blown onto the peripheral zone of the underside of the glass during the taking up of the glass by the separation tool .
19. Dispositif de bombage et de refroidissement d’une feuille de verre ou d’un empilement de feuilles de verre, dit le verre, comprenant un support gravitaire (2) apte à supporter le verre dans la zone périphérique de sa face inférieure, ladite zone périphérique étant constituée des 50 mm à partir du bord de sa face inférieure, et comprenant au moins un outil de séparation (4) apte à séparer le verre du support gravitaire sans entrer en contact avec la zone périphérique de sa face inférieure, ledit dispositif étant configuré pour effectuer au moins une fois après un premier supportage du verre par le support gravitaire, le séquençage suivant: 19. Device for bending and cooling a glass sheet or a stack of glass sheets, called glass, comprising a gravity support (2) capable of supporting the glass in the peripheral zone of its lower face, said peripheral zone consisting of 50 mm from the edge of its lower face, and comprising at least one separation tool (4) capable of separating the glass from the gravity support without coming into contact with the peripheral zone of its lower face, said device being configured to perform at least once after a first support of the glass by the gravity support, the following sequencing:
- prise en charge du verre par l’outil de séparation le séparant du support gravitaire et laissant sa face inférieure libre de tout contact dans sa zone périphérique, puis - handling of the glass by the separation tool separating it from the gravity support and leaving its underside free of any contact in its peripheral zone, then
- positionnement à nouveau du verre sur le support gravitaire dans la zone périphérique de sa face inférieure. - positioning of the glass again on the gravity support in the peripheral zone of its lower face.
20. Dispositif selon la revendication précédente, caractérisé en ce que l’outil de séparation est un support apte à supporter le verre en venant au contact de sa face inférieure à plus de 50 mm du bord du verre, et de préférence à moins de 200 mm et de préférence à moins de 150 mm du bord du verre. 20. Device according to the preceding claim, characterized in that the separation tool is a support capable of supporting the glass by coming into contact with its lower face more than 50 mm from the edge of the glass, and preferably less than 200 mm and preferably less than 150 mm from the edge of the glass.
21. Dispositif selon la revendication précédente, caractérisé en ce que l’outil de séparation comporte une surface de contact discontinue pour le verre. 21. Device according to the preceding claim, characterized in that the separation tool has a discontinuous contact surface for the glass.
22. Dispositif selon l’une des deux revendications précédentes, caractérisé en ce que l’outil de séparation circule avec le support gravitaire de façon embarquée sur un ensemble support gravitaire/outil de séparation. 22. Device according to one of the two preceding claims, characterized in that the separation tool circulates with the gravity support so embedded on a gravity support / separation tool assembly.
23. Dispositif selon l’une des trois revendications précédentes, caractérisé en ce qu’il comprend un outil de séparation (64) du type support présentant une surface de contact pour le verre plus incurvée que celle du support gravitaire (61 ) devant supporter le verre dans la même région en fin de bombage. 23. Device according to one of the three preceding claims, characterized in that it comprises a separation tool (64) of the support type having a contact surface for the glass more curved than that of the gravity support (61) to support the. glass in the same region at the end of bending.
24. Dispositif selon la revendication 19, caractérisé en ce que l’outil de séparation comprend une forme supérieure munie d’un moyen d’aspiration apte à agir sur la face supérieure du verre pour sa prise en charge. 24. Device according to claim 19, characterized in that the separation tool comprises an upper form provided with a suction means capable of acting on the upper face of the lens for its support.
25. Dispositif selon l’une des revendications précédentes de dispositif, caractérisé en ce qu’il comprend un four et une pluralité de supports gravitaire (70) aptes à supporter chacun un verre (74), lesdits supports gravitaire formant un train de supports gravitaires aptes à circuler dans le four. 25. Device according to one of the preceding device claims, characterized in that it comprises an oven and a plurality of gravity supports (70) each capable of supporting a glass (74), said gravity supports forming a train of gravity supports. suitable for circulation in the oven.
26. Dispositif selon la revendication précédente, caractérisé en ce que le four comprend une pluralité de chambres traversées l’une après l’autre par les supports gravitaires se suivant l’un après l’autre. 26. Device according to the preceding claim, characterized in that the furnace comprises a plurality of chambers crossed one after the other by the gravity supports following one after the other.
27. Dispositif selon l’une des revendications précédentes de dispositif, caractérisé en ce qu’il comprend une première chambre comprenant au moins un outil de séparation du type forme supérieure munie d’un moyen d’aspiration venant au contact du verre par sa face supérieure et une deuxième chambre comprenant au moins un outil de séparation venant au contact du verre par sa face inférieure. 27. Device according to one of the preceding device claims, characterized in that it comprises a first chamber comprising at least one separation tool of the upper form type provided with a suction means coming into contact with the glass via its face. upper and a second chamber comprising at least one separation tool coming into contact with the glass via its lower face.
28. Dispositif selon la revendication précédente, caractérisé en ce que la première chambre précède la deuxième chambre sur le chemin du verre. 28. Device according to the preceding claim, characterized in that the first chamber precedes the second chamber on the path of the glass.
29. Dispositif selon l’une des revendications précédentes de dispositif, caractérisé en ce qu’une rampe de soufflage d’air (83) est apte à souffler sur la zone périphérique de la face inférieure du verre pendant la prise en charge du verre par l’outil de séparation. 29. Device according to one of the preceding claims of the device, characterized in that an air blowing ramp (83) is adapted to blow on the peripheral zone of the underside of the lens during the taking up of the lens by the separation tool.
30. Vitrage bombé, notamment feuilleté, comprenant au moins une feuille de verre réalisé par le procédé ou le dispositif de l’une des revendications précédentes. 30. Curved glazing, in particular laminated, comprising at least one sheet of glass produced by the method or the device of one of the preceding claims.
31. Vitrage bombé, notamment feuilleté, comprenant au moins une feuille de verre comprenant une contrainte de compression de bord supérieure à 8 MPa, un maximum de contrainte d’extension inférieur à 5 MPa voire inférieure à 4 MPa et sans trace visible en polariscopie à plus de 200 mm du bord et même à plus de 150 mm du bord et même à plus de 50 mm du bord du verre. 31. Curved glazing, in particular laminated, comprising at least one sheet of glass comprising an edge compressive stress greater than 8 MPa, a maximum extension stress of less than 5 MPa or even less than 4 MPa and without visible trace in polariscopy at more than 200 mm from the edge and even more than 150 mm from the edge and even more than 50 mm from the edge of the glass.
32. Vitrage selon l’une des revendications de vitrage précédentes, caractérisé en ce qu’il est feuilleté et comprend deux feuilles de verre, l’épaisseur de l’une étant comprise dans le domaine allant de 1 ,4 à 3,15 mm et l’épaisseur de l’autre étant comprise dans le domaine allant de 0,5 à 3,15 mm. 32. Glazing according to one of the preceding glazing claims, characterized in that it is laminated and comprises two sheets of glass, the thickness of one being in the range from 1.4 to 3.15 mm. and the thickness of the other being in the range from 0.5 to 3.15 mm.
PCT/FR2020/050376 2019-02-28 2020-02-26 Production of glazing with reduced extension stress WO2020174185A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20713729.0A EP3931157A1 (en) 2019-02-28 2020-02-26 Production of glazing with reduced extension stress
CN202080001468.6A CN111867991B (en) 2019-02-28 2020-02-26 Manufacture of glazing with reduced elongation stress

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1902057 2019-02-28
FR1902057A FR3093333B1 (en) 2019-02-28 2019-02-28 MANUFACTURE OF GLAZING WITH REDUCED EXTENSION STRESS

Publications (1)

Publication Number Publication Date
WO2020174185A1 true WO2020174185A1 (en) 2020-09-03

Family

ID=67514763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/050376 WO2020174185A1 (en) 2019-02-28 2020-02-26 Production of glazing with reduced extension stress

Country Status (4)

Country Link
EP (1) EP3931157A1 (en)
CN (1) CN111867991B (en)
FR (1) FR3093333B1 (en)
WO (1) WO2020174185A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0448447A1 (en) 1990-03-20 1991-09-25 Saint Gobain Vitrage International Method and apparatus for bending glass-sheets
US5071461A (en) 1988-07-18 1991-12-10 Asahi Glass Company, Ltd. Method and apparatus for bending overlapping glass plates to form a laminated glass structure
EP0705798A1 (en) 1994-10-04 1996-04-10 Saint-Gobain Vitrage Method and apparatus for bending glass sheets
US20070039354A1 (en) * 2003-03-29 2007-02-22 Karl-Josef Ollfisch Method and device for crowning glass sheets
WO2007077371A1 (en) 2005-12-20 2007-07-12 Saint-Gobain Glass France Device for gravity-bending glass on several support moulds with controlled transition between moulds
US20110123730A1 (en) * 2003-05-19 2011-05-26 Saint-Gobain Glass France Process for bending a glass panel with a plurality of supports
US20120295072A1 (en) * 2010-02-03 2012-11-22 Asahi Glass Company, Limited Glass plate and process for producing glass plate
EP2532625A1 (en) 2010-02-03 2012-12-12 Asahi Glass Company, Limited Method and device for gradually cooling glass plate
WO2013132174A1 (en) 2012-03-06 2013-09-12 Saint-Gobain Glass France Jointed bending mount
WO2015128573A2 (en) 2014-02-27 2015-09-03 Saint-Gobain Glass France Gravity bending on dual mounting
WO2018154247A1 (en) 2017-02-27 2018-08-30 Saint-Gobain Glass France Glass panel with reduced extension strain
WO2018154248A1 (en) 2017-02-27 2018-08-30 Saint-Gobain Glass France Support comprising movable supporting elements

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811774B2 (en) * 2001-04-10 2011-11-09 旭硝子株式会社 Glass plate bending apparatus and forming method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071461A (en) 1988-07-18 1991-12-10 Asahi Glass Company, Ltd. Method and apparatus for bending overlapping glass plates to form a laminated glass structure
EP0448447A1 (en) 1990-03-20 1991-09-25 Saint Gobain Vitrage International Method and apparatus for bending glass-sheets
EP0705798A1 (en) 1994-10-04 1996-04-10 Saint-Gobain Vitrage Method and apparatus for bending glass sheets
US20070039354A1 (en) * 2003-03-29 2007-02-22 Karl-Josef Ollfisch Method and device for crowning glass sheets
US20110123730A1 (en) * 2003-05-19 2011-05-26 Saint-Gobain Glass France Process for bending a glass panel with a plurality of supports
WO2007077371A1 (en) 2005-12-20 2007-07-12 Saint-Gobain Glass France Device for gravity-bending glass on several support moulds with controlled transition between moulds
US20120295072A1 (en) * 2010-02-03 2012-11-22 Asahi Glass Company, Limited Glass plate and process for producing glass plate
EP2532625A1 (en) 2010-02-03 2012-12-12 Asahi Glass Company, Limited Method and device for gradually cooling glass plate
WO2013132174A1 (en) 2012-03-06 2013-09-12 Saint-Gobain Glass France Jointed bending mount
WO2015128573A2 (en) 2014-02-27 2015-09-03 Saint-Gobain Glass France Gravity bending on dual mounting
WO2018154247A1 (en) 2017-02-27 2018-08-30 Saint-Gobain Glass France Glass panel with reduced extension strain
WO2018154248A1 (en) 2017-02-27 2018-08-30 Saint-Gobain Glass France Support comprising movable supporting elements

Also Published As

Publication number Publication date
EP3931157A1 (en) 2022-01-05
CN111867991B (en) 2023-06-30
FR3093333B1 (en) 2023-01-20
FR3093333A1 (en) 2020-09-04
CN111867991A (en) 2020-10-30

Similar Documents

Publication Publication Date Title
EP0660809B1 (en) Method and device for shaping glass sheets, and use thereof for producing glazing with a complex shape
CA3053947A1 (en) Glass panel with reduced extension strain
EP1836136B1 (en) Method for cambering glass sheets by suction
EP3442913A1 (en) Glass sheet bending
EP3277640B1 (en) Apparatus for bending sheets of glass
EP1836137A1 (en) Glass-bending and cooling method and device comprising two support trains
FR2852951A1 (en) METHOD FOR BOMBING GLASS SHEETS BY PRESSING AND SUCTION
FR2909372A1 (en) Manufacturing non-planar glass-ceramic product useful in e.g. windows, comprises heating sheet in precursor glass of glass-ceramic in conventional furnace, forming heated sheet, cooling formed sheet, and ceramming formed and cooled sheet
FR2596751A1 (en) GLASS FORMING DEVICE
EP0404676B1 (en) Method and apparatus for bending and tempering by contact
EP0240418B1 (en) Method and apparatus for shaping glass
WO2014044516A1 (en) Method for cambering glass sheets
EP0553003A1 (en) Method for making a curved laminated windscreen of glass
EP3110767B1 (en) Gravity bending on dual mounting
WO2020174185A1 (en) Production of glazing with reduced extension stress
EP0373992B1 (en) Process and apparatus for producing convex tempered car windows
FR3059318A1 (en) THIN GLASS BOMBAGE
CA3067614A1 (en) Bending of glass sheets comprising localised cooling
BE1015700A3 (en) Bending glass laminated.
CA2006181A1 (en) Method and apparatus for producing curved glazing
CA2143650C (en) Method and device of forming laminated glass and application method of obtaining complex shaped glass
FR3050202A1 (en) BOMBAGE OF GLASS SHEETS
WO2021111084A1 (en) Tool for locally cooling a glass sheet
FR2546507A1 (en) System of openings for partial vacuum supports for shaping glass sheets
EP2090549A1 (en) Bending of sheets of glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20713729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020713729

Country of ref document: EP

Effective date: 20210928