WO2020172884A1 - 服务器各自生成密钥分量的密钥管理方法、电子设备 - Google Patents

服务器各自生成密钥分量的密钥管理方法、电子设备 Download PDF

Info

Publication number
WO2020172884A1
WO2020172884A1 PCT/CN2019/076580 CN2019076580W WO2020172884A1 WO 2020172884 A1 WO2020172884 A1 WO 2020172884A1 CN 2019076580 W CN2019076580 W CN 2019076580W WO 2020172884 A1 WO2020172884 A1 WO 2020172884A1
Authority
WO
WIPO (PCT)
Prior art keywords
key
servers
client
server
mpc
Prior art date
Application number
PCT/CN2019/076580
Other languages
English (en)
French (fr)
Inventor
颜泽
谢翔
傅志敬
孙立林
Original Assignee
云图有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云图有限公司 filed Critical 云图有限公司
Priority to PCT/CN2019/076580 priority Critical patent/WO2020172884A1/zh
Publication of WO2020172884A1 publication Critical patent/WO2020172884A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords

Definitions

  • This application belongs to the field of data security technology, and in particular relates to a key management method and electronic equipment for each server to generate key components.
  • a key server generally generates the key, and then distributes the generated key to the key users. This will inevitably increase the burden on the key server, and because a single key server The key server generates all key generation rules, which are specified and maintained by the key server itself, which is not flexible.
  • the purpose of this application is to provide a key management method and electronic device for each server to generate key components, which can achieve the technical effect of improving the key security and flexibility of the key system.
  • This application provides a key management method for each server to generate key components, and the electronic device is implemented as follows:
  • a key management method in which each server generates a key component is applied to a key system.
  • the key system includes: a client and N key servers, where N is an integer greater than or equal to 2, the method include:
  • the N key servers receive a key generation request sent by the client;
  • each of the N key servers In response to the key generation request of the client, each of the N key servers generates its own corresponding key components locally to obtain N key components;
  • the N key servers calculate the target private key according to the N key components, and calculate the target public key through the target private key.
  • the N key servers calculate the target private key according to the N key components, and calculate the target public key through the target private key, including:
  • Each of the N key servers except the MPC calculating party splits its corresponding key component into a first sub-private key and a second sub-private key, and is established between the key servers
  • the secure channel transmits the first private key to the first key server in the MPC calculation party, and transmits the second sub-private key to the second key server in the MPC calculation party;
  • the first key server and the second key server initiate an MPC calculation through a secure channel established between the key server, obtain a target public key, and send the target public key to the client.
  • the method further includes:
  • the N key servers receive a signature request sent by a client, where the signature request carries data to be signed;
  • Each of the N key servers except the MPC calculating party splits its corresponding key component into a first sub-private key and a second sub-private key, and is established between the key servers
  • the secure channel transmits the first private key to the first key server in the MPC calculation party, and transmits the second sub-private key to the second key server in the MPC calculation party;
  • the first key server and the second key server initiate MPC calculations through the secure channel established between the key servers to obtain the target private key, and sign the data to be signed by the target private key, and The signed data is sent to the client.
  • the method further includes:
  • the N key servers initiate an operation request
  • each of the N key servers except the MPC computing party splits its corresponding key component into a first sub-private key and a second sub-private key, and passes The secure channel established between the key servers transmits the first private key to the first key server in the MPC calculation party, and transmits the second sub-private key to the second key server in the MPC calculation party;
  • the first key server and the second key server initiate MPC calculations through the secure channel established between the key servers to obtain N new key components that are split based on the target private key, and compare the N new key components to the N new key components. Signing the key components to obtain N signature files, and respectively deliver the N new key components and the N signature files to each of the N key servers;
  • Each of the N key servers verifies whether the received signature file is correct, and if it is determined to be correct, executes the operation requested by the operation request and stores the received new key component.
  • the operation request includes at least one of the following: a backup request, a restore request, and an update request.
  • the N key servers calculate the target private key according to the N key components, and calculate the target public key through the target private key, including:
  • the N key servers initiate a multi-party MPC calculation through the secure channel to obtain a target public key, and send the target public key to the client.
  • the method after sending the target public key to the client, the method further includes:
  • the N key servers receive a signature request sent by a client, where the signature request carries the data to be signed and the target public key;
  • the N key servers initiate an MPC program to sign the data to be signed through the secure channel, and verify the correctness of the signature through the target public key.
  • the method further includes:
  • the N key servers initiate an operation request
  • the N key servers initiate a multi-party MPC calculation through the secure channel to obtain N new key components split based on the target private key, and sign the N new key components Obtain N signature files, and respectively deliver the N new key components and the N signature files to each of the N key servers;
  • Each of the N key servers verifies whether the received signature file is correct, and if it is determined to be correct, executes the operation requested by the operation request and stores the received new key component.
  • the operation request includes at least one of the following: a backup request, a restore request, and an update request.
  • the method before the N key servers receive the key generation request sent by the client, the method further includes:
  • the client generates a first key component
  • the N key servers calculate the target private key according to the N key components, and calculate the target public key through the target private key, including:
  • the N key servers and the client initiate a multi-party MPC calculation through the secure channel to obtain the target public key.
  • the N key servers receive a signature request sent by a client, where the signature request carries the data to be signed and the target public key;
  • the N key servers and the client initiate MPC calculation through the secure channel to sign the data to be signed, and verify the correctness of the signature through the target public key.
  • the N key servers receive the operation request initiated by the client;
  • the N key servers and the client initiate a multi-party MPC calculation through the secure channel to obtain N+1 new key components that are split based on the target private key, and compare +1 new key components are signed to obtain N+1 signature files, and the N+1 new key components and the N+1 signature files are respectively issued to the N key servers Each key server and the client;
  • Each of the N key servers and the client verify whether the received signature file is correct, and if it is determined to be correct, execute the operation requested by the operation request and store the received new secret Key component.
  • the operation request includes at least one of the following: a backup request, a restore request, and an update request.
  • An electronic device includes a processor and a memory for storing executable instructions of the processor, and the processor implements the steps of the following method when executing the instructions:
  • the N key servers receive a key generation request sent by the client;
  • each of the N key servers In response to the key generation request of the client, each of the N key servers generates its own corresponding key components locally to obtain N key components;
  • the N key servers calculate the target private key according to the N key components, and calculate the target public key through the target private key.
  • a computer-readable storage medium having computer instructions stored thereon, which implement the steps of the following method when the instructions are executed:
  • the N key servers receive a key generation request sent by the client;
  • each of the N key servers In response to the key generation request of the client, each of the N key servers generates its own corresponding key components locally to obtain N key components;
  • the N key servers calculate the target private key according to the N key components, and calculate the target public key through the target private key.
  • This application provides a key management method and electronic device for each server to generate a key component.
  • Each of the N key servers generates its own corresponding key component locally in response to the client's key generation request.
  • N key components are obtained, and then the target private key is calculated based on these N key components, and the target public key is calculated through the target private key, thereby achieving the generation of the key components and the target public key.
  • Figure 1 is an architectural diagram of the key system provided by this application.
  • Fig. 2 is a method flowchart of a key management method for each server to generate a key component provided by this application;
  • FIG. 3 is a schematic diagram of the interaction of the key generation of Example 1 provided by this application.
  • FIG. 4 is a schematic diagram of the interaction of the key usage of Example 1 provided by the present application.
  • FIG. 5 is a schematic diagram of the interaction of the key backup of Example 1 provided by this application.
  • Example 6 is a schematic diagram of the interaction of the key recovery of Example 1 provided by this application.
  • FIG. 7 is a schematic diagram of the interaction of the key refresh of Example 1 provided by the present application.
  • FIG. 8 is a schematic diagram of the interaction of the key generation of Example 2 provided by this application.
  • FIG. 9 is a schematic diagram of the interaction of the key usage of Example 2 provided by this application.
  • FIG. 10 is a schematic diagram of the interaction of the key backup of Example 2 provided by this application.
  • FIG. 11 is a schematic diagram of the interaction of the key recovery of Example 2 provided by this application.
  • FIG. 12 is a schematic diagram of the interaction of key refresh of Example 2 provided by the present application.
  • FIG. 13 is a schematic diagram of the interaction of the key generation of Example 3 provided by this application.
  • FIG. 14 is a schematic diagram of the interaction of the key usage of Example 3 provided by this application.
  • Example 15 is a schematic diagram of the interaction of the key backup of Example 3 provided by this application.
  • Example 16 is a schematic diagram of the interaction of key recovery of Example 3 provided by this application.
  • FIG. 17 is a schematic diagram of the interaction of the key refresh of Example 3 provided by the present application.
  • FIG. 18 is a schematic diagram of the structure of the server provided by this application.
  • the key management method for each server to generate a key component is applied to a key system, as shown in Figure 1.
  • the key system includes: a client and N key servers, among which, N is an integer greater than or equal to 2.
  • Fig. 2 is a method flowchart of an embodiment of a key management method for each server to generate a key component described in this application.
  • this application provides method operation steps or device structures as shown in the following embodiments or drawings, the method or device may include more or fewer operation steps or module units based on conventional or no creative labor. .
  • the execution order of these steps or the module structure of the device is not limited to the execution order or module structure shown in the description of the embodiments of this application and the drawings.
  • the described method or module structure is applied to an actual device or terminal product, it can be executed sequentially or in parallel according to the method or module structure connection shown in the embodiments or drawings (for example, parallel processor or multi-threaded processing Environment, even distributed processing environment).
  • a key management method for each server to generate key components may include:
  • Step 201 N key servers receive a key generation request sent by the client;
  • the above-mentioned client is a key user, including but not limited to App, application server, etc.
  • the specific form of the client can be selected according to actual needs, and this application does not limit this.
  • the above-mentioned key server is a key service party and is used to provide key related services.
  • Step 202 In response to the key generation request of the client, each of the N key servers respectively generates its own corresponding key components locally to obtain N key components;
  • the client and the key server complete mutual authentication through KYC, and issue authentication materials to complete the registration process.
  • the client generates and saves the private key component SKa.
  • the key server After saving, initiate a key generation request.
  • the key server After receiving the key generation request, the key server generates the key components respectively.
  • the key server 1 generates the key component SK1; the key server 2 generates the key component SK2; and so on, the key server n generates the key component SKn.
  • Step 203 N key servers calculate the target private key according to the N key components, and calculate the target public key through the target private key.
  • the key servers can be calculated through the MPC of two parties or through the MPC of multiple parties. The different situations are explained below:
  • N key servers calculate the target private key according to the N key components, and calculate the target public key through the target private key, which may include:
  • Each of the N key servers except the MPC computing party splits its corresponding key component into the first sub-private key and the second sub-private key, and is established between the key servers
  • the secure channel transmits the first private key to the first key server in the MPC calculation party, and transmits the second sub-private key to the second key server in the MPC calculation party;
  • S3 The first key server and the second key server initiate MPC calculation through the secure channel established between the key server to obtain the target public key, and send the target public key to the client.
  • a secure channel can be established between the client and the key server through KYC (Know your customer, identity confirmation procedure).
  • the identity confirmation procedure can include but is not limited to at least one of the following: SMS, email verification code, account number Password, fingerprint, face, certificate, etc.
  • the private key and the public key can be used for signing, and the signing process can include:
  • N key servers receive the signature request sent by the client, where the signature request carries data to be signed;
  • Each of the N key servers except the MPC computing party splits its corresponding key component into the first sub-private key and the second sub-private key, and is established between the key servers
  • the secure channel transmits the first private key to the first key server in the MPC calculation party, and transmits the second sub-private key to the second key server in the MPC calculation party;
  • S3 The first key server and the second key server initiate an MPC calculation to sign the data to be signed through the secure channel established between the key server, and send the signed data to the client.
  • each of the N key servers except the MPC computing party splits its corresponding key component into a first sub-private key and a second sub-private key, And transmitting the first private key to the first key server in the MPC computing party and the second sub-private key to the second key server in the MPC computing party through the secure channel established between the key servers;
  • the first key server and the second key server initiate MPC calculations through the secure channel established between the key servers to obtain N new key components split based on the target private key, and compare the N Signing new key components to obtain N signature files, and respectively deliver the N new key components and the N signature files to each of the N key servers;
  • Each of the N key servers verifies whether the received signature file is correct, and if it is determined to be correct, executes the operation requested by the operation request and stores the received new key component.
  • each key server splits its corresponding key component into a first sub-private key and a second sub-private key, which may include: each key server obtains the backed-up key through a backup method And verify whether the backup key component is correct. If it is correct, use the backup key component as its own corresponding key component for splitting.
  • N key servers calculate the target private key according to the N key components, and calculate the target public key through the target private key, which may include:
  • N key servers initiate a multi-party MPC calculation through the secure channel to obtain a target public key, and send the target public key to the client.
  • Signing based on the generated public key and private key can include:
  • N key servers receive a signature request sent by a client, where the signature request carries the data to be signed and the target public key;
  • N key servers initiate MPC calculations to sign the data to be signed through the secure channel, and verify the correctness of the signature through the target public key.
  • the N key servers In response to the operation request, the N key servers initiate a multi-party MPC calculation through the secure channel to obtain N new key components split based on the target private key, and compare the N new key components Signing to obtain N signature files, and respectively issuing the N new key components and the N signature files to each of the N key servers;
  • Each of the N key servers verifies whether the received signature file is correct, and if it is determined to be correct, executes the operation requested by the operation request and stores the received new key component.
  • each key server splits its corresponding key component into a first sub-private key and a second sub-private key including: each key server obtains the backed-up key component through a backup method , And verify whether the backup key component is correct, and if it is correct, use the backup key component as its corresponding key component for splitting.
  • the client Before the N key servers receive the key generation request sent by the client, the client generates the first key component
  • N key servers calculate the target private key according to the N key components, and calculate the target public key through the target private key, which may include:
  • S1 Establish a secure channel between N key servers and the client;
  • S3 N key servers and the client initiate a multi-party MPC calculation through the secure channel to obtain the target private key, and calculate the target public key through the target private key.
  • the private key and public key can be used for signing, and the signing process can include:
  • N key servers receive a signature request sent by a client, where the signature request carries the data to be signed and the target public key;
  • S2 The N key servers and the client initiate an MPC calculation through the secure channel to sign the data to be signed, and verify the correctness of the signature through the target public key.
  • N key servers receive the operation request initiated by the client
  • the N key servers and the client In response to the operation request, the N key servers and the client initiate a multi-party MPC calculation through the secure channel to obtain N+1 new key components split based on the target private key, and compare The N+1 new key components are signed to obtain N+1 signature files, and the N+1 new key components and the N+1 signature files are respectively issued to the N key servers Each key server in and the client;
  • each key server splits its corresponding key component into a first sub-private key and a second sub-private key including: each key server obtains the backed-up key component through a backup method , And verify whether the backup key component is correct, and if it is correct, use the backup key component as its corresponding key component for splitting.
  • a key management method based on secure two-party calculations generated and kept by multiple servers is provided, and a key management scheme based on secure multi-party calculations is applied to the key generation, Use, store, backup, restore, refresh and other operations.
  • S1 The client and the key server complete two-way authentication through KYC, and issue authentication materials to complete the registration process;
  • S3 The server selects two servers as the MPC calculating party, assuming that the key server 1 and key server 2 are selected as the MPC calculating party;
  • a random selection method or a preset algorithm may be used.
  • the specific method used to select the MPC calculation party may be determined according to actual needs and circumstances. Not limited.
  • S4 Key servers 1 ⁇ n complete two-way authentication through KYC and establish a secure channel, then split SK3 into SK3-1 and SK3-2, pass SK3-1 to the key server 1, and SK3-2 to the secret Key server 2.
  • SKn is split into SKn-1 and SKn-2, and SKn-1 is passed to key server 1, and SKn-2 is passed to key server 2;
  • the key servers 1 and 2 initiate a two-party MPC calculation through the secure channel: calculate the private key SK through the key components SK1, SK2, SK3-1 ⁇ n-1, and SK3-2 ⁇ n-2, and pass the private key SK calculates the public key PK, saves the PK and returns it to the client. Because the entire process is a complete MPC calculation, the private key SK has not actually been generated (either during calculation or during use), and SK1 ⁇ n did not appear in the process of computing interaction (that is, not in the network Layer transmission SK1-n is used for calculation).
  • S1 The client initiates a signature request and provides the public key PK as the unique identifier and the data to be signed;
  • S2 The server selects two servers as MPC calculating parties, assuming that key server 1 and key server 2 are selected as MPC calculating parties;
  • S3 Key servers 1 ⁇ n complete two-way authentication through KYC and establish a secure channel, then split SK3 into SK3-1 and SK3-2, pass SK3-1 to the key server 1, and SK3-2 to the secret Key server 2.
  • SKn is split into SKn-1 and SKn-2, and SKn-1 is passed to key server 1 and SKn-2 to key server 2.
  • the key servers 1 and 2 initiate MPC calculations through the secure channel: calculate the private key SK through the key components SK1, SK2, SK3-1 ⁇ n-1, SK3-2 ⁇ n-2, and treat them with the private key SK Sign the signature data, save the signature and return it to the client. Because the entire process is a complete MPC calculation, the private key SK has not actually been generated (either during calculation or during use), and SK1 ⁇ n did not appear in the process of computing interaction (that is, not in the network Layer transmission SK1-n is used for calculation).
  • Database Save the key or key component through the database, where the key or key component can be encrypted and stored;
  • Key file save the key or key component by exporting the key file, where the key or key component can be encrypted and stored;
  • HSM Save the key or key component through the hardware security module, where the key or key component can be encrypted and stored;
  • Mnemonic Convert the key and the key component to generate a series of mnemonics for storage
  • Two-dimensional code The corresponding two-dimensional code is generated by the key or key component for storage, where the key or key component can be encrypted and stored.
  • S1 The server initiates a backup request
  • S2 The server selects two servers as MPC calculating parties, assuming that key server 1 and key server 2 are selected as MPC calculating parties;
  • S3 Key servers 1 ⁇ n complete two-way authentication through KYC and establish a secure channel, then split SK3 into SK3-1 and SK3-2, pass SK3-1 to the key server 1, and SK3-2 to the secret Key server 2.
  • SKn is split into SKn-1 and SKn-2, and SKn-1 is passed to key server 1 and SKn-2 to key server 2.
  • the key servers 1 and 2 initiate MPC calculation through the secure channel: calculate the private key SK through the key components SK1, SK2, SK3-1 ⁇ n-1, and SK3-2 ⁇ n-2, and perform the calculation through the private key SK Secret sharing generates new SK1 ⁇ n. And sign the new SK1 ⁇ n. Send SK1 to SKn and their signatures to the corresponding key server respectively. Because the entire process is a complete MPC calculation, the private key SK has not actually been generated (either during calculation or during use), and SK1 ⁇ n did not appear in the process of computing interaction (that is, not in the network Layer transmission SK1-n is used for calculation).
  • each key server After receiving the relevant information, each key server verifies whether the received signature component is correct, and if the verification passes, backs up and saves the received key component. For example, after key server 1 receives the signatures of SK1 and SK1, it verifies the correctness of SK1's signature through PK. After the verification is passed, SK1 is saved, and key server 2 passes PK after receiving the signatures of SK2 and SK2. Verify the correctness of the signature of SK2, after the verification is passed, save SK2, and so on.
  • S1 The server initiates a recovery request
  • S2 The server selects two servers as MPC calculating parties, assuming that key server 1 and key server 2 are selected as MPC calculating parties;
  • S3 The key server 1 ⁇ n complete the two-way authentication through KYC and establish a secure channel, then obtain the backup key through the backup method, and split the backup key SK3 ⁇ into SK3-1 ⁇ , SK3-2 ⁇ , and SK3 -1 ⁇ to key server 1, SK3-2 ⁇ to key server 2.
  • SKn ⁇ is split into SKn-1 ⁇ and SKn-2 ⁇ , and SKn-1 ⁇ is passed to key server 1 and SKn-2 ⁇ to key server 2.
  • the key servers 1 and 2 initiate MPC calculation through the secure channel: calculate the private key SK through the backup key components SK1 ⁇ , SK2 ⁇ , SK3-1 ⁇ n-1 ⁇ , SK3-2 ⁇ n-2 ⁇ , and Perform secret sharing with the private key SK to generate new working keys SK1 ⁇ n, and sign the new SK1 ⁇ n. Send SK1 to SKn and their signatures to the corresponding servers respectively. Because the entire process is a complete MPC calculation, the private key SK has not actually been generated (either during calculation or during use), and SK1 ⁇ n ⁇ did not appear in the calculation interaction process (that is, it was not The network layer transmits SK1 ⁇ n ⁇ for calculation).
  • each key server After receiving the relevant information, each key server verifies whether the received signature component is correct, and if the verification passes, backs up and saves the received key component. For example, after key server 1 receives the signatures of SK1 and SK1, it verifies the correctness of SK1's signature through PK. After the verification is passed, SK1 is saved, and key server 2 passes PK after receiving the signatures of SK2 and SK2. Verify the correctness of the signature of SK2, after the verification is passed, save SK2, and so on.
  • S1 The client initiates a key refresh request
  • S2 The server selects two servers as MPC calculating parties, assuming that key server 1 and key server 2 are selected as MPC calculating parties;
  • Key servers 1 to n establish a secure channel through KYC, split SK3 into SK3-1 and SK3-2, and pass SK3-1 to key server 1 and SK3-2 to key server 2.
  • SKn is split into SKn-1 and SKn-2, and SKn-1 is passed to key server 1, and SKn-2 is passed to key server 2;
  • the key servers 1 and 2 initiate MPC calculations through the secure channel: calculate the private key SK through the key components SK1, SK2, SK-1 ⁇ n-1, SK1-2 ⁇ n-2, and perform the calculation through the private key SK Secret sharing generates new SK1 ⁇ n. And sign the new SK1 ⁇ n. Send SK1 to SKn and their signatures to the corresponding servers respectively. Because the entire process is a complete MPC calculation, the private key SK has not actually been generated (either during calculation or during use), and SK1 ⁇ n did not appear in the process of computing interaction (that is, not in the network Layer transmission SK1 ⁇ n are used for calculation);
  • each key server After receiving relevant information, each key server verifies whether the received signature component is correct, and if the verification passes, refreshes and saves the received key component. For example, after key server 1 receives the signatures of SK1 and SK1, it verifies the correctness of SK1's signature through PK. After the verification is passed, it refreshes and saves SK1. After key server 2 receives the signatures of SK2 and SK2, The correctness of SK2's signature is verified by PK, after verification, SK2 is refreshed and saved, and so on.
  • a key management method based on secure multi-party calculation generated and kept by multiple servers is provided, and a key management scheme based on secure multi-party calculation is applied in the key generation and use of the key management system. , Storage, backup, restore, refresh and other operations.
  • multiple servers respectively generate private key components to obtain public keys through MPC, through MPC, multiple servers calculate signatures, and perform MPC calculations through private key components to refresh multiple server components.
  • the instructions for key generation, use, storage, backup, restoration, and refresh in this situation are as follows:
  • S1 The client and the key server complete two-way authentication through KYC, and issue authentication materials to complete the registration process;
  • the key server After receiving the key generation request, the key server generates key components respectively, for example: key server 1 generates key component SK1, key server 2 generates key component SK2; and so on, key server n generates Key component SKn;
  • the key server establishes a secure channel through authentication material authentication, and initiates MPC calculation: calculates the private key SK through the key components SK1 ⁇ n, and calculates the public key PK through the private key SK. And return the public key to the key server and save them separately. Because the entire process is a complete MPC calculation, the private key SK has not actually been generated (either during calculation or during use), and SK1 ⁇ n did not appear in the process of computing interaction (that is, not in the network Layer transmission SK1 ⁇ n are used for calculation);
  • S4 The key server returns a key generation response, and returns public key information.
  • S1 The client initiates a signature request and provides the public key PK as the unique identifier and the data to be signed;
  • the key server initiates the MPC calculation through the secure channel: performs a signature operation on the data to be signed, and verifies the correctness of the signature through the PK public key.
  • Database Save the key or key component through the database, where the key or key component can be encrypted and stored;
  • Key file save the key or key component by exporting the key file, where the key or key component can be encrypted and stored;
  • HSM Save the key or key component through the hardware security module, where the key or key component can be encrypted and stored;
  • Mnemonic Convert the key and the key component to generate a series of mnemonics for storage
  • Two-dimensional code The corresponding two-dimensional code is generated by the key or key component for storage, where the key or key component can be encrypted and stored.
  • S1 The server initiates a backup key request
  • S2 Establish a secure channel between the key servers through KYC, and initiate MPC calculation: generate a private key SK, and generate SK1 ⁇ SKn through the secret sharing algorithm, use SK to sign SK1 ⁇ SKn, and generate signatures S1 ⁇ Sn. Send the signatures to different key servers, for example: send SK1 and S1 to key server 1; send SK2 and S2 to key server 2; and so on, send SKn and Sn to key server n . Because the whole process is a complete MPC calculation, the private key SK has not actually been generated (either during the calculation process or during use).
  • each key server After receiving the relevant information, each key server verifies whether the received signature component is correct. If the verification is passed, back up and save the received backup key component. For example, after receiving SK1 and S1, the key server 1 verifies the correctness of S1 through PK, and after the verification is passed, it saves SK1, and the key server 2 verifies the correctness of SK2 through PK after receiving SK2 and S2. After the verification is passed, SK2 is saved, and so on.
  • S1 The server initiates a recovery request
  • the MPC is performed to calculate the recovery key component: the private key SK is calculated, and SK1 ⁇ SKn are generated through the secret sharing algorithm, and SK1 ⁇ SKn are used to sign SK1 ⁇ SKn to generate signatures S1 ⁇ Sn.
  • Send the signatures to different key servers for example: send SK1 and S1 to key server 1; send SK2 and S2 to key server 2; and so on, send SKn and Sn to key server n . Because the entire process is a complete MPC calculation, the private key SK has not actually been generated (either during the calculation process or during use);
  • each key server After receiving relevant information, each key server verifies whether the received signature component is correct, and if the verification is passed, updates and saves the received key component. For example, after key server 1 receives the signatures of SK1 and SK1, it verifies the correctness of SK1's signature through PK. After the verification is passed, SK1 is saved, and key server 2 passes PK after receiving the signatures of SK2 and SK2. Verify the correctness of the signature of SK2, after the verification is passed, save SK2, and so on.
  • S1 The client initiates a key refresh request
  • S2 The key servers complete mutual authentication through KYC and establish a secure channel, and initiate MPC calculation: generate a private key SK, and generate SK1 ⁇ SKn through the secret sharing algorithm, use SK to sign SK1 ⁇ SKn, and generate signatures S1 ⁇ Sn. Send the signatures to different key servers, for example: send SK1 and S1 to key server 1; send SK2 and S2 to key server 2; and so on, send SKn and Sn to key server n . Because the entire process is a complete MPC calculation, the private key SK has not actually been generated (either during the calculation process or during use);
  • each key server After receiving the relevant information, each key server verifies whether the received signature component is correct, and if the verification passes, updates and saves the received key component. For example, after key server 1 receives the signatures of SK1 and SK1, it verifies the correctness of SK1's signature through PK. After the verification is passed, SK1 is saved, and key server 2 passes PK after receiving the signatures of SK2 and SK2. Verify the correctness of the signature of SK2, after the verification is passed, save SK2, and so on.
  • a key management method based on secure multi-party calculation generated and kept by multiple servers and one client is provided.
  • a key management scheme based on secure multi-party calculation is applied to the key management system. Generate, use, store, backup, restore, refresh and other operations.
  • a client and multiple servers respectively generate private key components and obtain public keys through MPC.
  • MPC the client and multiple servers are used to calculate the signature, and the private key components are used to perform MPC calculations to refresh the client and multiple services. End component.
  • the instructions for key generation, use, storage, backup, restoration, and refresh in this situation are as follows:
  • S1 The client and the key server complete two-way authentication through KYC, and issue authentication materials to complete the registration process;
  • S2 The client generates and saves the private key component SKa, and initiates a key generation request after saving;
  • the key server After receiving the key generation request, the key server generates key components respectively, for example: key server 1 generates key component SK1, key server 2 generates key component SK2, and so on, key server n generates Key component SKn;
  • S4 The client and the key server establish a secure channel through authentication material authentication, and initiate MPC calculation: calculate the private key SK through the key components SKa, SK1 ⁇ n, and calculate the public key PK through the private key SK. And return the public key to the client and the key server and save them separately. Because the entire process is a complete MPC calculation, the private key SK has not actually been generated (either during calculation or during use), and SKa and SK1 ⁇ n did not appear in the calculation interaction process (that is, no SKa, SK1 ⁇ n are transmitted at the network layer for calculation).
  • S1 The client initiates a signature request and provides the public key PK as the unique identifier and the data to be signed;
  • S3 The client and the key server initiate an MPC calculation through a secure channel: perform a signature operation on the data to be signed, and verify the correctness of the signature through the PK public key.
  • Database Save the key or key component through the database, where the key or key component can be encrypted and stored;
  • Key file save the key or key component by exporting the key file, where the key or key component can be encrypted and stored;
  • HSM Save the key or key component through the hardware security module, where the key or key component can be encrypted and stored;
  • Mnemonic Convert the key and the key component to generate a series of mnemonics for storage
  • Two-dimensional code The corresponding two-dimensional code is generated by the key or key component for storage, where the key or key component can be encrypted and stored.
  • S1 The client initiates a backup key request, completes two-way authentication through KYC and establishes a secure channel.
  • S2 The client and the key server initiate MPC calculations through a secure channel: generate a private key SK, and generate SK1 ⁇ SKn+1 through the secret sharing algorithm, use SK to sign SK1 ⁇ SKn+1, and generate signatures S1 ⁇ Sn+1 .
  • Send the signatures to different key servers for example: send SK1 and S1 to key server 1; send SK2 and S2 to key server 2; and so on, send SKn and Sn to key server n ; SKn+1, Sn+1 to the client. Because the whole process is a complete MPC calculation, the private key SK has not actually been generated (either during the calculation process or during use).
  • Each key server and client verify the validity of the signature through the previously stored public key PK, and if it is valid, save the backup key component.
  • S1 Obtain the backup key through backup, and use the backup key components SKa and PK to initiate a key recovery request;
  • S2 The client and the key server complete two-way authentication through KYC and establish a secure channel, and perform MPC calculation to verify whether the backup component is correct: calculate the private key SK, and generate the public key PK through SK. If the PK is the same as the saved PK, the verification is passed ;
  • Each key server and client verify the validity of the signature through the previously stored public key PK, and if it is valid, update and save the key component.
  • S1 The client or key server initiates a key refresh request, completes two-way authentication through KYC and establishes a secure channel;
  • S2 The client and the key server initiate MPC calculations through a secure channel: generate a private key SK, and generate SK1 ⁇ SKn+1 through the secret sharing algorithm, use SK to sign SK1 ⁇ SKn+1, and generate signatures S1 ⁇ Sn+1 .
  • Each key server and client verify the validity of the signature through the previously stored public key PK, and if it is valid, update and save the key component.
  • FIG. 18 is a hardware structural block diagram of the server side of a key management method in which each server generates a key component in an embodiment of the present invention.
  • the server side 10 may include one or more (only one is shown in the figure) processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA) , A memory 104 for storing data, and a transmission module 106 for communication functions.
  • the structure shown in FIG. 18 is only for illustration, and it does not limit the structure of the above electronic device.
  • the computer terminal 10 may also include more or fewer components than those shown in FIG. 18, or have a different configuration from that shown in FIG. 18.
  • the memory 104 may be used to store software programs and modules of application software, such as program instructions/modules corresponding to the key management method for each server to generate key components in the embodiment of the present invention.
  • the processor 102 runs the software stored in the memory 104 Programs and modules to execute various functional applications and data processing, that is, to implement the key management method in which the above-mentioned application programs generate key components respectively.
  • the memory 104 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory remotely provided with respect to the processor 102, and these remote memories may be connected to the computer terminal 10 via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission module 106 is used to receive or send data via a network.
  • the above-mentioned specific examples of the network may include a wireless network provided by the communication provider of the computer terminal 10.
  • the transmission module 106 includes a network adapter (Network Interface Controller, NIC), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission module 106 may be a radio frequency (RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF radio frequency
  • the key management device for each server to generate key components may include:
  • the receiving module is used to receive the key generation request sent by the client;
  • a generating module used for the key server to generate its own corresponding key components locally in response to the client's key generation request, and obtain N key components;
  • the calculation module is used to calculate the target private key according to the N key components, and calculate the target public key through the target private key.
  • the embodiment of the present application also provides a specific implementation manner of an electronic device that can implement all the steps in the key management method of each server generating a key component in the foregoing embodiment, and the electronic device specifically includes the following content:
  • Processor processor
  • memory memory
  • communication interface Communication Interface
  • bus bus
  • the processor, memory, and communication interface communicate with each other through the bus;
  • the processor 601 is used to call the computer program in the memory, and the above implementation is implemented when the processor executes the computer program
  • Step 1 N key servers receive the key generation request sent by the client;
  • Step 2 In response to the key generation request of the client, each of the N key servers respectively generates its own corresponding key components locally to obtain N key components;
  • Step 3 The N key servers calculate the target private key according to the N key components, and calculate the target public key through the target private key.
  • each key server of the N key servers in the embodiment of the present application in response to the client's key generation request, each key server of the N key servers in the embodiment of the present application generates its own corresponding key components locally to obtain N key components, and then, based on The N key components are calculated to obtain the target private key, and the target public key is calculated through the target private key, thereby achieving the generation of the key components and the target public key.
  • the above solution solves the technical problems of the existing key system that the security and flexibility of the key generated by only one key server are not high, and achieves the effective improvement of the security and flexibility of the key system Technical effect.
  • the embodiment of the present application also provides a computer-readable storage medium capable of realizing all the steps in the key management method of each server generating a key component in the above-mentioned embodiment, and a computer program is stored on the computer-readable storage medium, When the computer program is executed by the processor, all the steps of the key management method for each server to generate a key component in the above embodiment are implemented.
  • the processor implements the following steps when the computer program is executed:
  • Step 1 N key servers receive the key generation request sent by the client;
  • Step 2 In response to the key generation request of the client, each of the N key servers respectively generates its own corresponding key components locally to obtain N key components;
  • Step 3 The N key servers calculate the target private key according to the N key components, and calculate the target public key through the target private key.
  • each key server of the N key servers in the embodiment of the present application in response to the client's key generation request, each key server of the N key servers in the embodiment of the present application generates its own corresponding key components locally to obtain N key components, and then, based on The N key components are calculated to obtain the target private key, and the target public key is calculated through the target private key, thereby achieving the generation of the key components and the target public key.
  • the above solution solves the technical problems of the existing key system that the security and flexibility of the key generated by only one key server are not high, and achieves the effective improvement of the security and flexibility of the key system Technical effect.
  • a typical implementation device is a computer.
  • the computer may be, for example, a personal computer, a laptop computer, a vehicle-mounted human-computer interaction device, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, and a tablet.
  • Computers, wearable devices, or any combination of these devices may be specifically implemented by computer chips or entities, or implemented by products with certain functions.
  • the computer may be, for example, a personal computer, a laptop computer, a vehicle-mounted human-computer interaction device, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, and a tablet.
  • each module can be implemented in the same one or more software and/or hardware, or a module that implements the same function can be implemented by a combination of multiple sub-modules or sub-units.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • controllers in addition to implementing the controller in a purely computer-readable program code manner, it is entirely possible to program the method steps to make the controller use logic gates, switches, application specific integrated circuits, programmable logic controllers and embedded The same function can be realized in the form of a microcontroller, etc. Therefore, such a controller can be regarded as a hardware component, and the devices included in the controller for realizing various functions can also be regarded as a structure within the hardware component. Or even, the device for realizing various functions can be regarded as both a software module for realizing the method and a structure within a hardware component.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • the computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
  • processors CPU
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-permanent memory in computer readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of computer readable media.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer-readable media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices. According to the definition in this article, computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
  • the embodiments of this specification can be provided as methods, systems or computer program products. Therefore, the embodiments of this specification may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the embodiments of this specification may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • the embodiments of this specification can also be practiced in distributed computing environments. In these distributed computing environments, tasks are performed by remote processing devices connected through a communication network. In a distributed computing environment, program modules can be located in local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Storage Device Security (AREA)

Abstract

本申请提供了一种服务器各自生成密钥分量的密钥管理方法、电子设备,应用于密钥系统中,该密钥系统包括:一个客户端和N个密钥服务器,其中,N为大于等于2的整数,所述方法包括:所述N个密钥服务器接收所述客户端发送的密钥生成请求;所述N个密钥服务器中的各密钥服务器响应于所述客户端的密钥生成请求,分别在本地生成自身对应的密钥分量,得到N个密钥分量;所述N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥。通过上述方案解决了现有的密钥系统所存在的仅通过一个密钥服务器生成密钥所存在的安全性和灵活性不高的技术问题,达到了有效提升密钥系统安全性和灵活性的技术效果。

Description

服务器各自生成密钥分量的密钥管理方法、电子设备 技术领域
本申请属于数据安全技术领域,尤其涉及一种服务器各自生成密钥分量的密钥管理方法、电子设备。
背景技术
目前,针对密钥服务系统而言,一般都是由一个密钥服务器生成密钥,然后将生成的密钥分发给密钥使用方,这样势必会增加密钥服务器的负担,且因为是由单一密钥服务器生成的,导致所有的密钥生成规则都是密钥服务器自身指定和维护的,灵活性不高。
针对现有的密钥系统中所存在的上述问题,目前尚未提出有效的解决方案。
发明内容
本申请目的在于提供一种服务器各自生成密钥分量的密钥管理方法、电子设备,可以实现提升密钥系统的密钥安全性和灵活性的技术效果。
本申请提供一种服务器各自生成密钥分量的密钥管理方法、电子设备是这样实现的:
一种服务器各自生成密钥分量的密钥管理方法,应用于密钥系统中,该密钥系统包括:一个客户端和N个密钥服务器,其中,N为大于等于2的整数,所述方法包括:
所述N个密钥服务器接收所述客户端发送的密钥生成请求;
所述N个密钥服务器中的各密钥服务器响应于所述客户端的密钥生成请求,分别在本地生成自身对应的密钥分量,得到N个密钥分量;
所述N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥。
在一个实施方式中,所述N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥,包括:
所述N个密钥服务器中两个密钥服务器作为MPC计算方;
所述N个密钥服务器中除MPC计算方之外的各个密钥服务器将自身对应的密钥分量拆分为第一子私钥和第二子私钥,并通过密钥服务器之间建立的安全信道将第一私钥传送至MPC计算方中的第一密钥服务器,将第二子私钥传送至MPC计算方中的第二密钥服务器;
所述第一密钥服务器和所述第二密钥服务器通过密钥服务器之间建立的安全信道发 起MPC计算,得到目标公钥并将所述目标公钥发送至所述客户端。
在一个实施方式中,在发起MPC计算得到目标公钥并将所述目标公钥发送至所述客户端之后,还包括:
所述N个密钥服务器接收客户端发送的签名请求,其中,所述签名请求中携带有待签名数据;
所述N个密钥服务器中除MPC计算方之外的各个密钥服务器将自身对应的密钥分量拆分为第一子私钥和第二子私钥,并通过密钥服务器之间建立的安全信道将第一私钥传送至MPC计算方中的第一密钥服务器,将第二子私钥传送至MPC计算方中的第二密钥服务器;
所述第一密钥服务器和所述第二密钥服务器通过密钥服务器之间建立的安全信道发起MPC计算得到目标私钥,通过所述目标私钥对所述待签名数据进行签名,并将签名后的数据发送给所述客户端。
在一个实施方式中,在发起MPC计算得到目标公钥并将所述目标公钥发送至所述客户端之后,还包括:
所述N个密钥服务器发起操作请求;
响应于所述操作请求,所述N个密钥服务器中除MPC计算方之外的各个密钥服务器将自身对应的密钥分量拆分为第一子私钥和第二子私钥,并通过密钥服务器之间建立的安全信道将第一私钥传送至MPC计算方中的第一密钥服务器,将第二子私钥传送至MPC计算方中的第二密钥服务器;
所述第一密钥服务器和所述第二密钥服务器通过密钥服务器之间建立的安全信道发起MPC计算得到基于目标私钥拆分的N个新密钥分量,并对所述N个新密钥分量进行签名得到N个签名文件,将所述N个新密钥分量和所述N个签名文件分别下发给所述N个密钥服务器中的各个密钥服务器;
所述N个密钥服务器中的各个密钥服务器验证接收到的签名文件是否正确,在确定正确的情况下,执行所述操作请求所请求的操作并存储接收到的新密钥分量。
在一个实施方式中,所述操作请求包括以下至少之一:备份请求、恢复请求和更新请求。
在一个实施方式中,所述N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥,包括:
所述N个密钥服务器之间建立安全信道;
所述N个密钥服务器通过所述安全信道发起多方MPC计算,得到目标公钥,并将所述目标公钥发送至所述客户端。
在一个实施方式中,在将所述目标公钥发送至所述客户端之后,还包括:
所述N个密钥服务器接收客户端发送的签名请求,其中,所述签名请求中携带有待签名数据和所述目标公钥;
所述N个密钥服务器通过所述安全信道发起MPC计对所述待签名数据进行签名,并通过所述目标公钥验证签名的正确性。
在一个实施方式中,在发起多方MPC计算,得到目标公钥,并将所述目标公钥发送至所述客户端之后,还包括:
所述N个密钥服务器发起操作请求;
响应于所述操作请求,所述N个密钥服务器通过所述安全信道发起多方MPC计算得到基于目标私钥拆分的N个新密钥分量,并对所述N个新密钥分量进行签名得到N个签名文件,将所述N个新密钥分量和所述N个签名文件分别下发给所述N个密钥服务器中的各个密钥服务器;
所述N个密钥服务器中的各个密钥服务器验证接收到的签名文件是否正确,在确定正确的情况下,执行所述操作请求所请求的操作并存储接收到的新密钥分量。
在一个实施方式中,所述操作请求包括以下至少之一:备份请求、恢复请求和更新请求。
在一个实施方式中,在所述N个密钥服务器接收所述客户端发送的密钥生成请求之前,所述方法还包括:
所述客户端生成第一密钥分量;
相应的,所述N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥,包括:
所述N个密钥服务器和所述客户端之间建立安全信道;
所述N个密钥服务器和所述客户端通过所述安全信道发起多方MPC计算,得到目标公钥。
在一个实施方式中,在发起多方MPC计算,得到目标公钥之后,还包括:
所述N个密钥服务器接收客户端发送的签名请求,其中,所述签名请求中携带有待签名数据和所述目标公钥;
所述N个密钥服务器和所述客户端通过所述安全信道发起MPC计算对所述待签名 数据进行签名,并通过所述目标公钥验证签名的正确性。
在一个实施方式中,在发起多方MPC计算,得到目标公钥之后,还包括:
所述N个密钥服务器接收所述客户端发起的操作请求;
响应于所述操作请求,所述N个密钥服务器和所述客户端通过所述安全信道发起多方MPC计算得到基于目标私钥拆分的N+1个新密钥分量,并对所述N+1个新密钥分量进行签名得到N+1个签名文件,将所述N+1个新密钥分量和所述N+1个签名文件分别下发给所述N个密钥服务器中的各个密钥服务器和所述客户端;
所述N个密钥服务器中的各个密钥服务器和所述客户端验证接收到的签名文件是否正确,在确定正确的情况下,执行所述操作请求所请求的操作并存储接收到的新密钥分量。
在一个实施方式中,所述操作请求包括以下至少之一:备份请求、恢复请求和更新请求。
一种电子设备,包括处理器以及用于存储处理器可执行指令的存储器,所述处理器执行所述指令时实现如下方法的步骤:
所述N个密钥服务器接收所述客户端发送的密钥生成请求;
所述N个密钥服务器中的各密钥服务器响应于所述客户端的密钥生成请求,分别在本地生成自身对应的密钥分量,得到N个密钥分量;
所述N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥。
一种计算机可读存储介质,其上存储有计算机指令,所述指令被执行时实现如下方法的步骤:
所述N个密钥服务器接收所述客户端发送的密钥生成请求;
所述N个密钥服务器中的各密钥服务器响应于所述客户端的密钥生成请求,分别在本地生成自身对应的密钥分量,得到N个密钥分量;
所述N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥。
本申请提供的服务器各自生成密钥分量的密钥管理方法、电子设备,N个密钥服务器中的各密钥服务器响应于客户端的密钥生成请求,分别在本地生成自身对应的密钥分量,得到N个密钥分量,然后,基于这N个密钥分量计算得到目标私钥,并通过目标私钥计算得到目标公钥,从而实现密钥分量和目标公钥的生成。通过上述方案解决了现有 的密钥系统所存在的仅通过一个密钥服务器生成密钥所存在的安全性和灵活性不高的技术问题,达到了有效提升密钥系统安全性和灵活性的技术效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的密钥系统的架构图;
图2是本申请提供的服务器各自生成密钥分量的密钥管理方法的方法流程图;
图3是本申请提供的实例1的密钥生成的交互示意图;
图4是本申请提供的实例1的密钥使用的交互示意图;
图5是本申请提供的实例1的密钥备份的交互示意图;
图6是本申请提供的实例1的密钥恢复的交互示意图;
图7是本申请提供的实例1的密钥刷新的交互示意图;
图8是本申请提供的实例2的密钥生成的交互示意图;
图9是本申请提供的实例2的密钥使用的交互示意图;
图10是本申请提供的实例2的密钥备份的交互示意图;
图11是本申请提供的实例2的密钥恢复的交互示意图;
图12是本申请提供的实例2的密钥刷新的交互示意图;
图13是本申请提供的实例3的密钥生成的交互示意图;
图14是本申请提供的实例3的密钥使用的交互示意图;
图15是本申请提供的实例3的密钥备份的交互示意图;
图16是本申请提供的实例3的密钥恢复的交互示意图;
图17是本申请提供的实例3的密钥刷新的交互示意图;
图18是本申请提供的服务器的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实 施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
在本例中所提供的服务器各自生成密钥分量的密钥管理方法,应用于密钥系统中,如图1所示,该密钥系统包括:一个客户端和N个密钥服务器,其中,N为大于等于2的整数。
图2是本申请所述一种服务器各自生成密钥分量的密钥管理方法一个实施例的方法流程图。虽然本申请提供了如下述实施例或附图所示的方法操作步骤或装置结构,但基于常规或者无需创造性的劳动在所述方法或装置中可以包括更多或者更少的操作步骤或模块单元。在逻辑性上不存在必要因果关系的步骤或结构中,这些步骤的执行顺序或装置的模块结构不限于本申请实施例描述及附图所示的执行顺序或模块结构。所述的方法或模块结构的在实际中的装置或终端产品应用时,可以按照实施例或者附图所示的方法或模块结构连接进行顺序执行或者并行执行(例如并行处理器或者多线程处理的环境,甚至分布式处理环境)。
具体的如图2所示,本申请一种实施例提供的一种服务器各自生成密钥分量的密钥管理方法可以包括:
步骤201:N个密钥服务器接收所述客户端发送的密钥生成请求;
其中,上述的客户端为密钥使用方,包括但不限于App、应用服务器等,客户端具体以哪种形式存在可以根据实际需要选择,本申请对此不作限定。上述的密钥服务器为密钥服务方,用于提供密钥相关服务。
步骤202:N个密钥服务器中的各密钥服务器响应于所述客户端的密钥生成请求,分别在本地生成自身对应的密钥分量,得到N个密钥分量;
其中,客户端与密钥服务器通过KYC完成双向认证,并下发认证材料完成注册流程。客户端生成私钥分量SKa并保存,保存方式详见存储章节。保存后发起密钥生成请求。密钥服务器收到密钥生成请求后,分别生成密钥分量,如密钥服务器1生成密钥分量SK1;密钥服务器2生成密钥分量SK2;以此类推,密钥服务器n生成密钥分量SKn。
步骤203:N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥。
在实现的时候,密钥服务器之间可以通过两方的MPC也可以通过多方的MPC进行计算。下面对不同情况进行说明:
1)基于两方MPC:
N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥,可以包括:
S1:N个密钥服务器中两个密钥服务器作为MPC计算方;
S2:N个密钥服务器中除MPC计算方之外的各个密钥服务器将自身对应的密钥分量拆分为第一子私钥和第二子私钥,并通过密钥服务器之间建立的安全信道将第一私钥传送至MPC计算方中的第一密钥服务器,将第二子私钥传送至MPC计算方中的第二密钥服务器;
S3:第一密钥服务器和所述第二密钥服务器通过密钥服务器之间建立的安全信道发起MPC计算得到目标公钥,并将所述目标公钥发送至所述客户端。
其中,客户端与密钥服务器之间可以通过KYC(Know your customer,确认身份程序)来建立安全通道,其中,确认身份程序可以包括但不限于以下至少之一:手机短信、邮箱验证码、账号密码、指纹、人脸、证书等。
在上述步骤S3后,可以使用私钥和公钥进行签名,签名过程可以包括:
S1:N个密钥服务器接收客户端发送的签名请求,其中,所述签名请求中携带有待签名数据;
S2:N个密钥服务器中除MPC计算方之外的各个密钥服务器将自身对应的密钥分量拆分为第一子私钥和第二子私钥,并通过密钥服务器之间建立的安全信道将第一私钥传送至MPC计算方中的第一密钥服务器,将第二子私钥传送至MPC计算方中的第二密钥服务器;
S3:第一密钥服务器和所述第二密钥服务器通过密钥服务器之间建立的安全信道发起MPC计算对所述待签名数据进行签名,并将签名后的数据发送给所述客户端。
进一步的,基于生成的私钥和公钥等,可以进行其他的操作的,例如:备份请求、恢复请求和更新请求,具体的,可以包括如下步骤:
S1:N个密钥服务器发起操作请求;
S2:响应于所述操作请求,所述N个密钥服务器中除MPC计算方之外的各个密钥服务器将自身对应的密钥分量拆分为第一子私钥和第二子私钥,并通过密钥服务器之间建立的安全信道将第一私钥传送至MPC计算方中的第一密钥服务器,将第二子私钥传送至MPC计算方中的第二密钥服务器;
S3:第一密钥服务器和所述第二密钥服务器通过密钥服务器之间建立的安全信道发 起MPC计算得到基于所述目标私钥拆分的N个新密钥分量,并对所述N个新密钥分量进行签名得到N个签名文件,将所述N个新密钥分量和所述N个签名文件分别下发给所述N个密钥服务器中的各个密钥服务器;
S4:N个密钥服务器中的各个密钥服务器验证接收到的签名文件是否正确,在确定正确的情况下,执行所述操作请求所请求的操作并存储接收到的新密钥分量。
在操作请求为恢复请求的情况下,各个密钥服务器将自身对应的密钥分量拆分为第一子私钥和第二子私钥可以包括:各个密钥服务器通过备份方式获取备份的密钥分量,并验证备份密钥分量是否正确,在确定正确的情况下,以备份密钥分量作为自身对应的密钥分量进行拆分。
2)基于多方MPC:
N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥,可以包括:
S1:N个密钥服务器之间建立安全信道;
S2:N个密钥服务器通过所述安全信道发起多方MPC计算,得到目标公钥,并将所述目标公钥发送至所述客户端。
基于生成的公钥和私钥进行签名,可以包括:
S1:N个密钥服务器接收客户端发送的签名请求,其中,所述签名请求中携带有待签名数据和所述目标公钥;
S2:N个密钥服务器通过所述安全信道发起MPC计算对所述待签名数据进行签名,并通过所述目标公钥验证签名的正确性。
进一步的,基于生成的私钥和公钥等,可以进行其他的操作的,例如:备份请求、恢复请求和更新请求,具体的,可以包括如下步骤:
S1:N个密钥服务器发起操作请求;
S2:响应于所述操作请求,所述N个密钥服务器通过所述安全信道发起多方MPC计算得到基于目标私钥拆分的N个新密钥分量,并对所述N个新密钥分量进行签名得到N个签名文件,将所述N个新密钥分量和所述N个签名文件分别下发给所述N个密钥服务器中的各个密钥服务器;
S3:N个密钥服务器中的各个密钥服务器验证接收到的签名文件是否正确,在确定正确的情况下,执行所述操作请求所请求的操作并存储接收到的新密钥分量。
在操作请求为恢复请求的情况下,各个密钥服务器将自身对应的密钥分量拆分为第 一子私钥和第二子私钥包括:各个密钥服务器通过备份方式获取备份的密钥分量,并验证备份密钥分量是否正确,在确定正确的情况下,以备份密钥分量作为自身对应的密钥分量进行拆分。
3)多方MPC,且客户端也生成密钥分量:
在N个密钥服务器接收客户端发送的密钥生成请求之前,客户端生成第一密钥分量;
相应的,N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥,可以包括:
S1:N个密钥服务器和所述客户端之间建立安全信道;
S3:N个密钥服务器和所述客户端通过所述安全信道发起多方MPC计算得到目标私钥,并通过所述目标私钥计算得到目标公钥。
可以使用私钥和公钥进行签名,签名过程可以包括:
S1:N个密钥服务器接收客户端发送的签名请求,其中,所述签名请求中携带有待签名数据和所述目标公钥;
S2:N个密钥服务器和所述客户端通过所述安全信道发起MPC计算对所述待签名数据进行签名,并通过所述目标公钥验证签名的正确性。
进一步的,基于生成的私钥和公钥等,可以进行其他的操作的,例如:备份请求、恢复请求和更新请求,具体的,可以包括如下步骤:
S1:N个密钥服务器接收所述客户端发起的操作请求;
S2:响应于所述操作请求,所述N个密钥服务器和所述客户端通过所述安全信道发起多方MPC计算得到基于目标私钥拆分的N+1个新密钥分量,并对所述N+1个新密钥分量进行签名得到N+1个签名文件,将所述N+1个新密钥分量和所述N+1个签名文件分别下发给所述N个密钥服务器中的各个密钥服务器和所述客户端;
S3:N个密钥服务器中的各个密钥服务器和所述客户端验证接收到的签名文件是否正确,在确定正确的情况下,执行所述操作请求所请求的操作并存储接收到的新密钥分量。
在操作请求为恢复请求的情况下,各个密钥服务器将自身对应的密钥分量拆分为第一子私钥和第二子私钥包括:各个密钥服务器通过备份方式获取备份的密钥分量,并验证备份密钥分量是否正确,在确定正确的情况下,以备份密钥分量作为自身对应的密钥分量进行拆分。
下面结合几个具体实例对上述方法进行说明,然而,值得注意的是,该具体实例仅 是为了更好地说明本申请,并不构成对本申请的不当限定。
实例1
在本例中提供了一种基于安全两方计算通过多个服务端生成并保管的密钥管理方法,一种基于安全多方计算的密钥管理方案,应用在密钥管理系统的密钥生成、使用、存储、备份、恢复、刷新等操作。
具体的,不同服务端独立生成密钥分量,最后使用两方MPC生成公钥;通过两方MPC,使用服务端计算签名。对这种情境下的密钥生成、使用、存储、备份、恢复、刷新等操作说明如下:
1)生成:
如图3所示,可以包括如下步骤:
S1:客户端与密钥服务器通过KYC完成双向认证,并下发认证材料完成注册流程;
S2:密钥服务器1~n分别在本地生成密钥分量SK1~n;
S3:服务端选择两台服务器作为MPC计算方,假设选择密钥服务器1和密钥服务器2作为MPC计算方;
具体的,在选取MPC计算方的时候可以采用随机选取的方式,也可以是按照预设算法等选择的方式,具体采用哪种方式选取MPC计算方可以根据实际需要和情况确定,本申请对此不作限定。
S4:密钥服务器1~n通过KYC完成双向认证并建立安全信道,然后,将SK3拆分成SK3-1、SK3-2,将SK3-1传给密钥服务器1、SK3-2传给密钥服务器2。以此类推,SKn拆分成SKn-1、SKn-2,将SKn-1传给密钥服务器1、SKn-2传给密钥服务器2;
S5:密钥服务器1、2通过安全信道发起两方MPC计算:通过密钥分量SK1、SK2、SK3-1~n-1、SK3-2~n-2计算出私钥SK,并通过私钥SK计算出公钥PK,并将PK保存后返回给客户端。因为整个过程是完整的MPC计算,因此,私钥SK实际上并没有真正生成过(不管是计算过程中,还是使用过程中),SK1~n均没有在计算交互过程中出现(即没有在网络层传输SK1~n用于计算)。
2)使用:
如图4所示,可以包括如下步骤:
S1:客户端发起签名请求,并提供公钥PK作为唯一标识以及待签名数据;
S2:服务端选择两台服务器作为MPC计算方,假设选择密钥服务器1和密钥服务器2作为MPC计算方;
S3:密钥服务器1~n通过KYC完成双向认证并建立安全信道,然后,将SK3拆分成SK3-1、SK3-2,将SK3-1传给密钥服务器1、SK3-2传给密钥服务器2。以此类推,SKn拆分成SKn-1、SKn-2,将SKn-1传给密钥服务器1、SKn-2传给密钥服务器2。
S4:密钥服务器1、2通过安全信道发起MPC计算:通过密钥分量SK1、SK2、SK3-1~n-1、SK3-2~n-2计算出私钥SK,并通过私钥SK对待签名数据进行签名,将签名保存并返回给客户端。因为整个过程是完整的MPC计算,因此,私钥SK实际上并没有真正生成过(不管是计算过程中,还是使用过程中),SK1~n均没有在计算交互过程中出现(即没有在网络层传输SK1~n用于计算)。
3)存储:
将密钥或密钥分量通过但不限于以下形式之一保存下来:
数据库:通过数据库保存密钥或密钥分量,其中密钥或密钥分量可以加密保存;
密钥文件:通过导出密钥文件形式保存密钥或密钥分量,其中密钥或密钥分量可以加密保存;
HSM:通过硬件安全模块保存密钥或密钥分量,其中密钥或密钥分量可以加密保存;
助记词:将密钥活密钥分量通过转换生成一系列助记词进行保存;
二维码:通过密钥或密钥分量生成对应二维码进行保存,其中密钥或密钥分量可以加密保存。
4)备份:
如图5所示,可以包括如下步骤:
S1:服务端发起备份请求;
S2:服务端选择两台服务器作为MPC计算方,假设选择密钥服务器1和密钥服务器2作为MPC计算方;
S3:密钥服务器1~n通过KYC完成双向认证并建立安全信道,然后,将SK3拆分成SK3-1、SK3-2,将SK3-1传给密钥服务器1、SK3-2传给密钥服务器2。以此类推,SKn拆分成SKn-1、SKn-2,将SKn-1传给密钥服务器1、SKn-2传给密钥服务器2。
S4:密钥服务器1、2通过安全信道发起MPC计算:通过密钥分量SK1、SK2、SK3-1~n-1、SK3-2~n-2计算出私钥SK,并通过私钥SK进行secret sharing生成新的SK1~n。并将新的SK1~n进行签名。将SK1~SKn及其签名分别下发给对应的密钥服务器。因为整个过程是完整的MPC计算,因此,私钥SK实际上并没有真正生成过(不管是计算过程中,还是使用过程中),SK1~n均没有在计算交互过程中出现(即没有在网 络层传输SK1~n用于计算)。
S5:各密钥服务器在收到相关信息后,验证接收到的签名分量是否正确,在验证通过的情况下,备份并保存接收到的密钥分量。例如,密钥服务器1在接收到SK1和SK1的签名之后,通过PK验证SK1的签名的正确性,在验证通过后,保存SK1,密钥服务器2在接收到SK2和SK2的签名之后,通过PK验证SK2的签名的正确性,在验证通过后,保存SK2,以此类推。
5)恢复:
如图6所示,可以包括如下步骤:
S1:服务端发起恢复请求;
S2:服务端选择两台服务器作为MPC计算方,假设选择密钥服务器1和密钥服务器2作为MPC计算方;
S3:密钥服务器1~n通过KYC完成双向认证并建立安全信道,然后,通过备份方式获取备份密钥,并将备份密钥SK3`拆分成SK3-1`、SK3-2`,将SK3-1`传给密钥服务器1、SK3-2`传给密钥服务器2。以此类推,SKn`拆分成SKn-1`、SKn-2`,将SKn-1`传给密钥服务器1、SKn-2`传给密钥服务器2。
S4:密钥服务器1、2通过安全信道发起MPC计算:通过备份密钥分量SK1`、SK2`、SK3-1~n-1`、SK3-2~n-2`计算出私钥SK,并通过私钥SK进行secret sharing生成新的工作密钥SK1~n,并将新的SK1~n进行签名。将SK1~SKn及其签名分别下发给对应服务器。因为整个过程是完整的MPC计算,因此,私钥SK实际上并没有真正生成过(不管是计算过程中,还是使用过程中),SK1~n`均没有在计算交互过程中出现(即没有在网络层传输SK1~n`用于计算)。
S5:各密钥服务器在收到相关信息后,验证接收到的签名分量是否正确,在验证通过的情况下,备份并保存接收到的密钥分量。例如,密钥服务器1在接收到SK1和SK1的签名之后,通过PK验证SK1的签名的正确性,在验证通过后,保存SK1,密钥服务器2在接收到SK2和SK2的签名之后,通过PK验证SK2的签名的正确性,在验证通过后,保存SK2,以此类推。
6)刷新:
如图7所示,可以包括如下步骤:
S1:客户端发起刷新密钥请求;
S2:服务端选择两台服务器作为MPC计算方,假设选择密钥服务器1和密钥服务 器2作为MPC计算方;
S3:密钥服务器1~n通过KYC建立安全信道,将SK3拆分成SK3-1、SK3-2,将SK3-1传给密钥服务器1、SK3-2传给密钥服务器2。以此类推,SKn拆分成SKn-1、SKn-2,将SKn-1传给密钥服务器1、SKn-2传给密钥服务器2;
S4:密钥服务器1、2通过安全信道发起MPC计算:通过密钥分量SK1、SK2、SK-1~n-1、SK1-2~n-2计算出私钥SK,并通过私钥SK进行secret sharing生成新的SK1~n。并将新的SK1~n进行签名。将SK1~SKn及其签名分别下发给对应服务器。因为整个过程是完整的MPC计算,因此,私钥SK实际上并没有真正生成过(不管是计算过程中,还是使用过程中),SK1~n均没有在计算交互过程中出现(即没有在网络层传输SK1~n用于计算);
S5:各密钥服务器在收到相关信息后,验证接收到的签名分量是否正确,在验证通过的情况下,刷新并保存接收到的密钥分量。例如,密钥服务器1在接收到SK1和SK1的签名之后,通过PK验证SK1的签名的正确性,在验证通过后,刷新并保存SK1,密钥服务器2在接收到SK2和SK2的签名之后,通过PK验证SK2的签名的正确性,在验证通过后,刷新并保存SK2,以此类推。
实例2
在本例中提供了一种基于安全多方计算通过多个服务端生成并保管的密钥管理方法,一种基于安全多方计算的密钥管理方案,应用在密钥管理系统的密钥生成、使用、存储、备份、恢复、刷新等操作。
具体的,没有客户端参与,多个服务端分别生成私钥分量通过MPC获得公钥,通过MPC,多个服务端计算签名,通过私钥分量进行MPC计算刷新多个服务端分量。对这种情境下的密钥生成、使用、存储、备份、恢复、刷新等操作说明如下:
1)生成
如图8所示,可以包括如下步骤:
S1:客户端与密钥服务器通过KYC完成双向认证,并下发认证材料完成注册流程;
S2:密钥服务器收到密钥生成请求后,分别生成密钥分量,例如:密钥服务器1生成密钥分量SK1,密钥服务器2生成密钥分量SK2;以此类推,密钥服务器n生成密钥分量SKn;
S3:密钥服务器通过认证材料鉴权建立安全信道,发起MPC计算:通过密钥分量 SK1~n计算出私钥SK,并通过私钥SK算出公钥PK。并将公钥返回给密钥服务器,分别保存。因为整个过程是完整的MPC计算,因此,私钥SK实际上并没有真正生成过(不管是计算过程中,还是使用过程中),SK1~n均没有在计算交互过程中出现(即没有在网络层传输SK1~n用于计算);
S4:密钥服务器返回密钥生成响应,返回公钥信息。
2)使用:
如图9所示,可以包括如下步骤:
S1:客户端发起签名请求,并提供公钥PK作为唯一标识以及待签名数据;
S2:密钥服务器间通过KYC完成双向认证并建立安全信道;
S3:密钥服务器通过安全信道发起MPC计算:对待签名数据进行签名操作,并通过PK公钥验证签名正确性。
3)存储:
将密钥或密钥分量通过但不限于以下形式保存下来:
数据库:通过数据库保存密钥或密钥分量,其中密钥或密钥分量可以加密保存;
密钥文件:通过导出密钥文件形式保存密钥或密钥分量,其中密钥或密钥分量可以加密保存;
HSM:通过硬件安全模块保存密钥或密钥分量,其中密钥或密钥分量可以加密保存;
助记词:将密钥活密钥分量通过转换生成一系列助记词进行保存;
二维码:通过密钥或密钥分量生成对应二维码进行保存,其中密钥或密钥分量可以加密保存。
4)备份:
如图10所示,可以包括如下步骤:
S1:服务端发起备份密钥请求;
S2:密钥服务器间通过KYC建立安全信道,发起MPC计算:生成私钥SK,并通过secret sharing算法生成SK1~SKn,使用SK对SK1~SKn进行签名,生成签名S1~Sn。将签名分别下发给不同的密钥服务器,例如:下发SK1、S1至密钥服务器1;下发SK2、S2至密钥服务器2;以此类推,下发SKn、Sn至密钥服务器n。因为整个过程是完整的MPC计算,因此,私钥SK实际上并没有真正生成过(不管是计算过程中,还是使用过程中)。
S3:各密钥服务器在收到相关信息后,验证接收到的签名分量是否正确,在验证通 过的情况下,备份并保存接收到的备份密钥分量。例如,密钥服务器1在接收到SK1和S1之后,通过PK验证S1的正确性,在验证通过后,保存SK1,密钥服务器2在接收到SK2和S2之后,通过PK验证SK2的正确性,在验证通过后,保存SK2,以此类推。
5)恢复:
如图11所示,可以包括如下步骤:
S1:服务端发起恢复请求;
S2:密钥服务器间通过KYC完成双向认证并建立安全信道,通过备份方式获取备份密钥,进行MPC计算验证备份分量是否正确:计算私钥SK,通过SK生成公钥PK,若PK与保存PK相同,则验证通过;
S3:若通过验证,则进行MPC计算恢复密钥分量:计算私钥SK,并通过secret sharing算法生成SK1~SKn,使用SK对SK1~SKn进行签名,生成签名S1~Sn。将签名分别下发给不同的密钥服务器,例如:下发SK1、S1至密钥服务器1;下发SK2、S2至密钥服务器2;以此类推,下发SKn、Sn至密钥服务器n。因为整个过程是完整的MPC计算,因此,私钥SK实际上并没有真正生成过(不管是计算过程中,还是使用过程中);
S4:各密钥服务器在收到相关信息后,验证接收到的签名分量是否正确,在验证通过的情况下,更新并保存接收到的密钥分量。例如,密钥服务器1在接收到SK1和SK1的签名之后,通过PK验证SK1的签名的正确性,在验证通过后,保存SK1,密钥服务器2在接收到SK2和SK2的签名之后,通过PK验证SK2的签名的正确性,在验证通过后,保存SK2,以此类推。
6)刷新:
如图12所示,可以包括如下步骤:
S1:客户端发起刷新密钥请求;
S2:密钥服务器间通过KYC完成双向认证并建立安全信道,发起MPC计算:生成私钥SK,并通过secret sharing算法生成SK1~SKn,使用SK对SK1~SKn进行签名,生成签名S1~Sn。将签名分别下发给不同的密钥服务器,例如:下发SK1、S1至密钥服务器1;下发SK2、S2至密钥服务器2;以此类推,下发SKn、Sn至密钥服务器n。因为整个过程是完整的MPC计算,因此,私钥SK实际上并没有真正生成过(不管是计算过程中,还是使用过程中);
S3:各密钥服务器在收到相关信息后,验证接收到的签名分量是否正确,在验证通过的情况下,更新并保存接收到的密钥分量。例如,密钥服务器1在接收到SK1和SK1 的签名之后,通过PK验证SK1的签名的正确性,在验证通过后,保存SK1,密钥服务器2在接收到SK2和SK2的签名之后,通过PK验证SK2的签名的正确性,在验证通过后,保存SK2,以此类推。
实例3
在本例中提供了一种基于安全多方计算通过多个服务端一个客户端生成并保管的密钥管理方法,一种基于安全多方计算的密钥管理方案,应用在密钥管理系统的密钥生成、使用、存储、备份、恢复、刷新等操作。
具体的,一个客户端多个服务端分别生成私钥分量通过MPC获得公钥,通过MPC,使用客户端和多个服务端计算签名,通过私钥分量,进行MPC计算刷新客户端与多个服务端分量。对这种情境下的密钥生成、使用、存储、备份、恢复、刷新等操作说明如下:
1)生成:
如图13所示,可以包括如下步骤:
S1:客户端与密钥服务器通过KYC完成双向认证,并下发认证材料完成注册流程;
S2:客户端生成私钥分量SKa并保存,保存后发起密钥生成请求;
S3:密钥服务器收到密钥生成请求后,分别生成密钥分量,例如:密钥服务器1生成密钥分量SK1,密钥服务器2生成密钥分量SK2,以此类推,密钥服务器n生成密钥分量SKn;
S4:客户端与密钥服务器通过认证材料鉴权建立安全信道,发起MPC计算:通过密钥分量SKa、SK1~n计算出私钥SK,并通过私钥SK算出公钥PK。并将公钥返回给客户端与密钥服务器,分别保存。因为整个过程是完整的MPC计算,因此,私钥SK实际上并没有真正生成过(不管是计算过程中,还是使用过程中),SKa、SK1~n均没有在计算交互过程中出现(即没有在网络层传输SKa、SK1~n用于计算)。
2)使用:
如图14所示,可以包括如下步骤:
S1:客户端发起签名请求,并提供公钥PK作为唯一标识以及待签名数据;
S2:客户端与密钥服务器通过KYC完成双向认证并建立安全信道;
S3:客户端与密钥服务器通过安全信道发起MPC计算:对待签名数据进行签名操作,并通过PK公钥验证签名正确性。
3)存储:
将密钥或密钥分量通过如下形式中的一种或多种保存:
数据库:通过数据库保存密钥或密钥分量,其中密钥或密钥分量可以加密保存;
密钥文件:通过导出密钥文件形式保存密钥或密钥分量,其中密钥或密钥分量可以加密保存;
HSM:通过硬件安全模块保存密钥或密钥分量,其中密钥或密钥分量可以加密保存;
助记词:将密钥活密钥分量通过转换生成一系列助记词进行保存;
二维码:通过密钥或密钥分量生成对应二维码进行保存,其中密钥或密钥分量可以加密保存。
4)备份:
如图15所示,可以包括如下步骤:
S1:客户端发起备份密钥请求,通过KYC完成双向认证并建立安全信道。
S2:客户端与密钥服务器通过安全信道发起MPC计算:生成私钥SK,并通过secret sharing算法生成SK1~SKn+1,使用SK对SK1~SKn+1进行签名,生成签名S1~Sn+1。将签名分别下发给不同的密钥服务器,例如:下发SK1、S1至密钥服务器1;下发SK2、S2至密钥服务器2;以此类推,下发SKn、Sn至密钥服务器n;SKn+1、Sn+1至客户端。因为整个过程是完整的MPC计算,因此,私钥SK实际上并没有真正生成过(不管是计算过程中,还是使用过程中)。
S3:各个密钥服务器、客户端通过之前存储的公钥PK验证签名有效性,如果有效,则保存备份密钥分量。
5)恢复:
如图16所示,可以包括如下步骤:
S1:通过备份方式获取备份密钥,使用备份密钥分量SKa、PK发起密钥恢复请求;
S2:客户端与密钥服务器通过KYC完成双向认证并建立安全信道,进行MPC计算验证备份分量是否正确:计算私钥SK,通过SK生成公钥PK,如果PK与保存的PK相同,则验证通过;
S3:如果通过验证,则进行MPC计算恢复密钥分量:计算私钥SK,并通过secret sharing算法生成SK1~SKn+1,使用SK对SK1~SKn+1进行签名,生成签名S1~Sn+1。将密钥分量和签名分别下发给不同的密钥服务器,例如:下发SK1、S1至密钥服务器1;下发SK2、S2至密钥服务器2;以此类推,下发SKn、Sn至密钥服务器n;SKn+1、Sn+1至客户端。因为整个过程是完整的MPC计算,因此,私钥SK实际上并没有真正生成过 (不管是计算过程中,还是使用过程中);
S4:各个密钥服务器、客户端通过之前存储的公钥PK验证签名的有效性,若有效,则更新并保存密钥分量。
6)刷新:
如图17所示,可以包括如下步骤:
S1:客户端或密钥服务器发起刷新密钥请求,通过KYC完成双向认证并建立安全信道;
S2:客户端与密钥服务器通过安全信道发起MPC计算:生成私钥SK,并通过secret sharing算法生成SK1~SKn+1,使用SK对SK1~SKn+1进行签名,生成签名S1~Sn+1。将密钥分量和签名分别下发给不同的密钥服务器,例如:下发SK1、S1至密钥服务器1;下发SK2、S2至密钥服务器2;以此类推,下发SKn、Sn至密钥服务器n;下发SKn+1、Sn+1至客户端。因为整个过程是完整的MPC计算,因此,私钥SK实际上并没有真正生成过(不管是计算过程中,还是使用过程中);
S3:各个密钥服务器、客户端通过之前存储的公钥PK验证签名的有效性,如果有效,则更新并保存密钥分量。
本申请上述实施例所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在服务器端上为例,图18是本发明实施例的一种服务器各自生成密钥分量的密钥管理方法的服务器端的硬件结构框图。如图18所示,服务器端10可以包括一个或多个(图中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器104、以及用于通信功能的传输模块106。本领域普通技术人员可以理解,图18所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,计算机终端10还可包括比图18中所示更多或者更少的组件,或者具有与图18所示不同的配置。
存储器104可用于存储应用软件的软件程序以及模块,如本发明实施例中的服务器各自生成密钥分量的密钥管理方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的应用程序的服务器各自生成密钥分量的密钥管理方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至计算机终端10。上述网络的实例包括但不 限于互联网、企业内部网、局域网、移动通信网及其组合。
传输模块106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括计算机终端10的通信供应商提供的无线网络。在一个实例中,传输模块106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输模块106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
在软件层面,上述服务器各自生成密钥分量的密钥管理装置可以包括:
接收模块,用于接收客户端发送的密钥生成请求;
生成模块,用于密钥服务器响应于所述客户端的密钥生成请求,分别在本地生成自身对应的密钥分量,得到N个密钥分量;
计算模块,用于根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥。
本申请的实施例还提供能够实现上述实施例中的服务器各自生成密钥分量的密钥管理方法中全部步骤的一种电子设备的具体实施方式,所述电子设备具体包括如下内容:
处理器(processor)、存储器(memory)、通信接口(Communications Interface)和总线;
其中,所述处理器、存储器、通信接口通过所述总线完成相互间的通信;所述处理器601用于调用所述存储器中的计算机程序,所述处理器执行所述计算机程序时实现上述实施例中的服务器各自生成密钥分量的密钥管理方法中的全部步骤,例如,所述处理器执行所述计算机程序时实现下述步骤:
步骤1:N个密钥服务器接收所述客户端发送的密钥生成请求;
步骤2:所述N个密钥服务器中的各密钥服务器响应于所述客户端的密钥生成请求,分别在本地生成自身对应的密钥分量,得到N个密钥分量;
步骤3:所述N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥。
从上述描述可知,本申请实施例N个密钥服务器中的各密钥服务器响应于客户端的密钥生成请求,分别在本地生成自身对应的密钥分量,得到N个密钥分量,然后,基于这N个密钥分量计算得到目标私钥,并通过目标私钥计算得到目标公钥,从而实现密钥分量和目标公钥的生成。通过上述方案解决了现有的密钥系统所存在的仅通过一个密钥服务器生成密钥所存在的安全性和灵活性不高的技术问题,达到了有效提升密钥系统安 全性和灵活性的技术效果。
本申请的实施例还提供能够实现上述实施例中的服务器各自生成密钥分量的密钥管理方法中全部步骤的一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例中的服务器各自生成密钥分量的密钥管理方法的全部步骤,例如,所述处理器执行所述计算机程序时实现下述步骤:
步骤1:N个密钥服务器接收所述客户端发送的密钥生成请求;
步骤2:所述N个密钥服务器中的各密钥服务器响应于所述客户端的密钥生成请求,分别在本地生成自身对应的密钥分量,得到N个密钥分量;
步骤3:所述N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥。
从上述描述可知,本申请实施例N个密钥服务器中的各密钥服务器响应于客户端的密钥生成请求,分别在本地生成自身对应的密钥分量,得到N个密钥分量,然后,基于这N个密钥分量计算得到目标私钥,并通过目标私钥计算得到目标公钥,从而实现密钥分量和目标公钥的生成。通过上述方案解决了现有的密钥系统所存在的仅通过一个密钥服务器生成密钥所存在的安全性和灵活性不高的技术问题,达到了有效提升密钥系统安全性和灵活性的技术效果。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于硬件+程序类实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
虽然本申请提供了如实施例或流程图所述的方法操作步骤,但基于常规或者无创造性的劳动可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺序。在实际中的装置或客户端产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线 程处理的环境)。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、车载人机交互设备、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
虽然本说明书实施例提供了如实施例或流程图所述的方法操作步骤,但基于常规或者无创造性的手段可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺序。在实际中的装置或终端产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境,甚至为分布式数据处理环境)。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、产品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、产品或者设备所固有的要素。在没有更多限制的情况下,并不排除在包括所述要素的过程、方法、产品或者设备中还存在另外的相同或等同要素。
为了描述的方便,描述以上装置时以功能分为各种模块分别描述。当然,在实施本说明书实施例时可以把各模块的功能在同一个或多个软件和/或硬件中实现,也可以将实现同一功能的模块由多个子模块或子单元的组合实现等。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内部包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程 图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
本领域技术人员应明白,本说明书的实施例可提供为方法、系统或计算机程序产品。因此,本说明书实施例可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面 的实施例的形式。而且,本说明书实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书实施例可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本说明书实施例,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本说明书实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述仅为本说明书实施例的实施例而已,并不用于限制本说明书实施例。对于本领域技术人员来说,本说明书实施例可以有各种更改和变化。凡在本说明书实施例的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本说明书实施例的权利要求范围之内。

Claims (15)

  1. 一种服务器各自生成密钥分量的密钥管理方法,应用于密钥系统中,该密钥系统包括:一个客户端和N个密钥服务器,其中,N为大于等于2的整数,其特征在于,所述方法包括:
    所述N个密钥服务器接收所述客户端发送的密钥生成请求;
    所述N个密钥服务器中的各密钥服务器响应于所述客户端的密钥生成请求,分别在本地生成自身对应的密钥分量,得到N个密钥分量;
    所述N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥。
  2. 根据权利要求1所述的方法,其特征在于,所述N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥,包括:
    所述N个密钥服务器中两个密钥服务器作为MPC计算方;
    所述N个密钥服务器中除MPC计算方之外的各个密钥服务器将自身对应的密钥分量拆分为第一子私钥和第二子私钥,并通过密钥服务器之间建立的安全信道将第一私钥传送至MPC计算方中的第一密钥服务器,将第二子私钥传送至MPC计算方中的第二密钥服务器;
    所述第一密钥服务器和所述第二密钥服务器通过密钥服务器之间建立的安全信道发起MPC计算,得到目标公钥并将所述目标公钥发送至所述客户端。
  3. 根据权利要求2所述的方法,其特征在于,在发起MPC计算得到目标公钥并将所述目标公钥发送至所述客户端之后,还包括:
    所述N个密钥服务器接收客户端发送的签名请求,其中,所述签名请求中携带有待签名数据;
    所述N个密钥服务器中除MPC计算方之外的各个密钥服务器将自身对应的密钥分量拆分为第一子私钥和第二子私钥,并通过密钥服务器之间建立的安全信道将第一私钥传送至MPC计算方中的第一密钥服务器,将第二子私钥传送至MPC计算方中的第二密钥服务器;
    所述第一密钥服务器和所述第二密钥服务器通过密钥服务器之间建立的安全信道发起MPC计算,对所述待签名数据进行签名,并将签名后的数据发送给所述客户端。
  4. 根据权利要求2所述的方法,其特征在于,在发起MPC计算得到目标公钥并将所述目标公钥发送至所述客户端之后,还包括:
    所述N个密钥服务器发起操作请求;
    响应于所述操作请求,所述N个密钥服务器中除MPC计算方之外的各个密钥服务器将自身对应的密钥分量拆分为第一子私钥和第二子私钥,并通过密钥服务器之间建立的安全信道将第一私钥传送至MPC计算方中的第一密钥服务器,将第二子私钥传送至MPC计算方中的第二密钥服务器;
    所述第一密钥服务器和所述第二密钥服务器通过密钥服务器之间建立的安全信道发起MPC计算得到基于所述目标私钥拆分的N个新密钥分量,并对所述N个新密钥分量进行签名得到N个签名文件,将所述N个新密钥分量和所述N个签名文件分别下发给所述N个密钥服务器中的各个密钥服务器;
    所述N个密钥服务器中的各个密钥服务器验证接收到的签名文件是否正确,在确定正确的情况下,执行所述操作请求所请求的操作并存储接收到的新密钥分量。
  5. 根据权利要求4所述的方法,其特征在于,所述操作请求包括以下至少之一:备份请求、恢复请求和更新请求。
  6. 根据权利要求1所述的方法,其特征在于,所述N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥,包括:
    所述N个密钥服务器之间建立安全信道;
    所述N个密钥服务器通过所述安全信道发起多方MPC计算,得到目标公钥,并将所述目标公钥发送至所述客户端。
  7. 根据权利要求6所述的方法,其特征在于,在将所述目标公钥发送至所述客户端之后,还包括:
    所述N个密钥服务器接收客户端发送的签名请求,其中,所述签名请求中携带有待签名数据和所述目标公钥;
    所述N个密钥服务器通过所述安全信道发起MPC计算对所述待签名数据进行签名,并通过所述目标公钥验证签名的正确性。
  8. 根据权利要求6所述的方法,其特征在于,在发起多方MPC计算,得到目标公钥,并将所述目标公钥发送至所述客户端之后,还包括:
    所述N个密钥服务器发起操作请求;
    响应于所述操作请求,所述N个密钥服务器通过所述安全信道发起多方MPC计算得到基于所述目标私钥拆分的N个新密钥分量,并对所述N个新密钥分量进行签名得到N个签名文件,将所述N个新密钥分量和所述N个签名文件分别下发给所述N个密 钥服务器中的各个密钥服务器;
    所述N个密钥服务器中的各个密钥服务器验证接收到的签名文件是否正确,在确定正确的情况下,执行所述操作请求所请求的操作并存储接收到的新密钥分量。
  9. 根据权利要求8所述的方法,其特征在于,所述操作请求包括以下至少之一:备份请求、恢复请求和更新请求。
  10. 根据权利要求1所述的方法,其特征在于,在所述N个密钥服务器接收所述客户端发送的密钥生成请求之前,所述方法还包括:
    所述客户端生成第一密钥分量;
    相应的,所述N个密钥服务器根据N个密钥分量计算得到目标私钥,并通过所述目标私钥计算得到目标公钥,包括:
    所述N个密钥服务器和所述客户端之间建立安全信道;
    所述N个密钥服务器和所述客户端通过所述安全信道发起多方MPC计算,得到目标公钥。
  11. 根据权利要求10所述的方法,其特征在于,在发起多方MPC计算,得到目标公钥之后,还包括:
    所述N个密钥服务器接收客户端发送的签名请求,其中,所述签名请求中携带有待签名数据和所述目标公钥;
    所述N个密钥服务器和所述客户端通过所述安全信道发起MPC计算对所述待签名数据进行签名,并通过所述目标公钥验证签名的正确性。
  12. 根据权利要求10所述的方法,其特征在于,在发起多方MPC计算,得到目标公钥之后,还包括:
    所述N个密钥服务器接收所述客户端发起的操作请求;
    响应于所述操作请求,所述N个密钥服务器和所述客户端通过所述安全信道发起多方MPC计算得到基于所述目标私钥拆分的N+1个新密钥分量,并对所述N+1个新密钥分量进行签名得到N+1个签名文件,将所述N+1个新密钥分量和所述N+1个签名文件分别下发给所述N个密钥服务器中的各个密钥服务器和所述客户端;
    所述N个密钥服务器中的各个密钥服务器和所述客户端验证接收到的签名文件是否正确,在确定正确的情况下,执行所述操作请求所请求的操作并存储接收到的新密钥分量。
  13. 根据权利要求12所述的方法,其特征在于,所述操作请求包括以下至少之一: 备份请求、恢复请求和更新请求。
  14. 一种电子设备,包括处理器以及用于存储处理器可执行指令的存储器,所述处理器执行所述指令时实现权利要求1至13中任一项所述方法的步骤。
  15. 一种计算机可读存储介质,其上存储有计算机指令,所述指令被执行时实现权利要求1至13中任一项所述方法的步骤。
PCT/CN2019/076580 2019-02-28 2019-02-28 服务器各自生成密钥分量的密钥管理方法、电子设备 WO2020172884A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076580 WO2020172884A1 (zh) 2019-02-28 2019-02-28 服务器各自生成密钥分量的密钥管理方法、电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076580 WO2020172884A1 (zh) 2019-02-28 2019-02-28 服务器各自生成密钥分量的密钥管理方法、电子设备

Publications (1)

Publication Number Publication Date
WO2020172884A1 true WO2020172884A1 (zh) 2020-09-03

Family

ID=72238742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076580 WO2020172884A1 (zh) 2019-02-28 2019-02-28 服务器各自生成密钥分量的密钥管理方法、电子设备

Country Status (1)

Country Link
WO (1) WO2020172884A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105468986A (zh) * 2015-12-02 2016-04-06 深圳大学 一种保密信息检索方法及系统
CN105794145A (zh) * 2013-11-27 2016-07-20 微软技术许可有限责任公司 服务器辅助的具有数据传输的私有集交集(psi)
CN106961336A (zh) * 2017-04-18 2017-07-18 北京百旺信安科技有限公司 一种基于sm2算法的密钥分量托管方法和系统
WO2019027787A1 (en) * 2017-08-03 2019-02-07 Hrl Laboratories, Llc CLOUD-TYPE MULTI-CLIENT CALCULATION PRESERVING CONFIDENTIALITY WITH APPLICATION TO SAFE NAVIGATION
CN109377360A (zh) * 2018-08-31 2019-02-22 西安电子科技大学 基于加权门限签名算法的区块链资产交易转账方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105794145A (zh) * 2013-11-27 2016-07-20 微软技术许可有限责任公司 服务器辅助的具有数据传输的私有集交集(psi)
CN105468986A (zh) * 2015-12-02 2016-04-06 深圳大学 一种保密信息检索方法及系统
CN106961336A (zh) * 2017-04-18 2017-07-18 北京百旺信安科技有限公司 一种基于sm2算法的密钥分量托管方法和系统
WO2019027787A1 (en) * 2017-08-03 2019-02-07 Hrl Laboratories, Llc CLOUD-TYPE MULTI-CLIENT CALCULATION PRESERVING CONFIDENTIALITY WITH APPLICATION TO SAFE NAVIGATION
CN109377360A (zh) * 2018-08-31 2019-02-22 西安电子科技大学 基于加权门限签名算法的区块链资产交易转账方法

Similar Documents

Publication Publication Date Title
CN109714165B (zh) 客户端各自生成密钥分量的密钥管理方法和电子设备
CN109787762B (zh) 服务器各自生成密钥分量的密钥管理方法、电子设备
CN108989047B (zh) 一种基于sm2算法的通信双方协同签名方法与系统
CN113708930B (zh) 隐私数据的数据比较方法、装置、设备及介质
CN103152732B (zh) 一种云密码系统及其运行方法
US20220353074A1 (en) Systems and methods for minting a physical device based on hardware unique key generation
CN109818754B (zh) 客户端为多个客户端和单一服务器生成密钥的方法、设备
Zhao et al. Fuzzy identity-based dynamic auditing of big data on cloud storage
CN109981591B (zh) 单一客户端生成私钥的密钥管理方法、电子设备
CN109818753B (zh) 择一客户端为多客户端多服务器生成密钥的方法和设备
CN110910110A (zh) 一种数据处理方法、装置及计算机存储介质
Zhong et al. Authentication and key agreement based on anonymous identity for peer-to-peer cloud
CN110363528B (zh) 协同地址的生成、交易签名方法及装置、存储介质
WO2020172884A1 (zh) 服务器各自生成密钥分量的密钥管理方法、电子设备
CN110311881B (zh) 一种授权方法、加密方法和终端设备
WO2020172883A1 (zh) 多客户端多服务器联合生成密钥的方法和电子设备
WO2020172885A1 (zh) 单一客户端生成私钥的密钥管理方法、电子设备
WO2020172882A1 (zh) 择一客户端为多客户端多服务器生成密钥的方法和设备
CN115860741A (zh) 区块链数据加密验证方法、装置及系统
CN109981592B (zh) 多客户端多服务器联合生成密钥的方法和电子设备
WO2020172889A1 (zh) 客户端各自生成密钥分量的密钥管理方法和电子设备
WO2020172890A1 (zh) 客户端为多个客户端和单一服务器生成密钥的方法、设备
Yang et al. New Publicly Verifiable Data Deletion Supporting Efficient Tracking for Cloud Storage.
CN108737103B (zh) 一种应用于cs架构的sm2算法签名方法
CN109862008A (zh) 密钥恢复方法和装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916759

Country of ref document: EP

Kind code of ref document: A1