WO2020171671A1 - 이차 변환에 기반한 영상 코딩 방법 및 그 장치 - Google Patents

이차 변환에 기반한 영상 코딩 방법 및 그 장치 Download PDF

Info

Publication number
WO2020171671A1
WO2020171671A1 PCT/KR2020/002625 KR2020002625W WO2020171671A1 WO 2020171671 A1 WO2020171671 A1 WO 2020171671A1 KR 2020002625 W KR2020002625 W KR 2020002625W WO 2020171671 A1 WO2020171671 A1 WO 2020171671A1
Authority
WO
WIPO (PCT)
Prior art keywords
transform
block
target block
matrix
transformation
Prior art date
Application number
PCT/KR2020/002625
Other languages
English (en)
French (fr)
Inventor
구문모
임재현
김승환
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020217024617A priority Critical patent/KR20210102462A/ko
Publication of WO2020171671A1 publication Critical patent/WO2020171671A1/ko
Priority to US17/394,734 priority patent/US11483589B2/en
Priority to US17/947,047 priority patent/US20230035863A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/625Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using discrete cosine transform [DCT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • This document relates to an image coding technique, and more particularly, to a transform-based image coding method and apparatus thereof in an image coding system.
  • VR Virtual Reality
  • AR Artificial Realtiy
  • a high-efficiency video/video compression technique is required to effectively compress, transmit, store, and reproduce information of high-resolution and high-quality video/video having various characteristics as described above.
  • the technical problem of this document is to provide a method and apparatus for increasing image coding efficiency.
  • Another technical problem of this document is to provide a method and apparatus for increasing conversion efficiency.
  • Another technical problem of this document is to provide a method and apparatus for converting an image applied to a divided sub-block.
  • Another technical problem of this document is to provide a method and apparatus for increasing the efficiency of quadratic transformation by varying the arrangement of transform coefficients according to intra prediction modes.
  • Another technical problem of this document is to provide a method and apparatus for increasing the efficiency of the second-order transform by optimizing the transform kernel matrix applied to the second-order transform.
  • Another technical problem of this document is to provide an image coding method and apparatus based on a transform set capable of increasing coding efficiency.
  • a video decoding method performed by a decoding apparatus includes receiving a quantized transform coefficient for a target block and a transform index for a non-separated quadratic transform; Dequantizing the quantized transform coefficient to derive transform coefficients; Deriving a modified transform coefficient based on a transform kernel matrix in a predetermined transform set indicated by the transform index; Including the step of deriving residual samples for the target block based on an inverse linear transformation for the modified transform coefficients, wherein the target block is divided into a predetermined number of sub-blocks and is coded by intra prediction ,
  • the modified transform coefficient may be derived in units of the sub-block, and the transform index may be received for the target block.
  • the same transform kernel matrix may be applied to the sub-blocks.
  • the target block may be a coding unit, and the sub-block may be a transform unit.
  • the target block When the size (width x height) of the target block is 8x4, the target block is vertically divided, and when the size (width x height) of the target block is 4x8, the target block may be horizontally divided.
  • the horizontal and vertical lengths of (A) are greater than or equal to the horizontal and vertical lengths of (B), and the horizontal length of (A) is ( It may mean a case that is greater than the horizontal length of B) or the vertical length of (A) is greater than the vertical length of (B).
  • the size (width x height) of the target block is larger than 4x8 or 8x4
  • the size of the target block is 1) 4xN or Nx4 (N ⁇ 16) or 2) M x N (M ⁇ 8, N ⁇ 8 ) May be included.
  • the target block may be divided into four sub-blocks in a horizontal or vertical direction.
  • a video encoding method performed by an encoding device includes the steps of deriving prediction samples based on an intra prediction mode applied to a target block; Deriving residual samples for the target block based on the prediction sample; Deriving a transform coefficient by applying a first-order transform to the residual sample; Deriving modified transform coefficients by performing a non-separated quadratic transform on the transform coefficient using one of a transform set mapped to an intra mode of the target block and a transform kernel matrix included in the transform set; Deriving quantized transform coefficients by performing quantization based on the modified transform coefficients; Including the step of encoding a transform index indicating the transform kernel matrix and the quantized transform coefficients, and when the target block is a coding block that is intra-predicted by being divided into a predetermined number of sub-blocks, the modified transform coefficient is It is derived in units of the sub-blocks, and when performing the non-separated quadratic transform, the
  • a digital storage medium in which image data including a bitstream and encoded image information generated according to an image encoding method performed by an encoding apparatus is stored may be provided.
  • a digital storage medium in which image data including encoded image information and a bitstream causing the decoding apparatus to perform the image decoding method are stored may be provided.
  • image coding efficiency can be improved by applying a non-separated quadratic transform to a divided sub-block.
  • the efficiency of the second-order transform can be improved by optimizing the transform kernel matrix applied to the second-order transform.
  • FIG. 1 schematically shows an example of a video/video coding system to which this document can be applied.
  • FIG. 2 is a diagram schematically illustrating a configuration of a video/video encoding apparatus to which this document can be applied.
  • FIG. 3 is a diagram schematically illustrating a configuration of a video/video decoding apparatus to which the present document can be applied.
  • 5 exemplarily shows intra directional modes of 65 prediction directions.
  • FIG. 6 is a diagram for describing an RST according to an embodiment of the present document.
  • FIG. 7 is a diagram showing a scanning sequence of transform coefficients according to an embodiment of the present document.
  • FIG. 8 is a flowchart illustrating an inverse RST process according to an embodiment of the present document.
  • FIG. 9 is a diagram illustrating an example of a subblock into which one coding block is divided.
  • FIG. 10 is a diagram illustrating another example of a subblock into which one coding block is divided.
  • FIG. 11 is a flowchart illustrating an operation of a video decoding apparatus according to an embodiment of the present document.
  • FIG. 12 is a control flowchart illustrating a method of decoding an image by a decoding apparatus according to an embodiment of the present document.
  • FIG. 13 is a flowchart illustrating an operation of a video encoding apparatus according to an embodiment of the present document.
  • FIG. 14 is a flowchart illustrating a method of encoding an image by an encoding apparatus according to an embodiment of the present document.
  • each of the components in the drawings described in this document is independently illustrated for convenience of description of different characteristic functions, and does not mean that each component is implemented as separate hardware or separate software.
  • two or more of the configurations may be combined to form one configuration, or one configuration may be divided into a plurality of configurations.
  • Embodiments in which each configuration is integrated and/or separated are also included in the scope of the rights of this document, unless departing from the essence of this document.
  • VVC Very Video Coding
  • HEVC High Efficiency Video Coding
  • EMC essential video coding
  • video may mean a set of images over time.
  • a picture generally refers to a unit representing one image in a specific time period, and a slice/tile is a unit constituting a part of a picture in coding.
  • a slice/tile may include one or more coding tree units (CTU).
  • CTU coding tree units
  • One picture may be composed of one or more slices/tiles.
  • One picture may consist of one or more tile groups.
  • One tile group may include one or more tiles.
  • a pixel or pel may mean a minimum unit constituting one picture (or image).
  • sample' may be used as a term corresponding to a pixel.
  • a sample may generally represent a pixel or a value of a pixel, may represent only a pixel/pixel value of a luma component, or may represent only a pixel/pixel value of a chroma component.
  • the sample may mean a pixel value in the spatial domain, and when such a pixel value is converted to the frequency domain, it may mean a transform coefficient in the frequency domain.
  • a unit may represent a basic unit of image processing.
  • the unit may include at least one of a specific area of a picture and information related to the corresponding area.
  • One unit may include one luma block and two chroma (ex. cb, cr) blocks.
  • the unit may be used interchangeably with terms such as a block or an area depending on the case.
  • the MxN block may include samples (or sample arrays) consisting of M columns and N rows, or a set (or array) of transform coefficients.
  • A/B may mean “A and/or B.”
  • A, B may mean “A and/or B.”
  • A/B/C may mean “at least one of A, B, and/or C.”
  • A/B/C may mean “ at least one of A, B, and/or C.”
  • At least one of A and B may mean “only A”, “only B”, or “both A and B”.
  • the expression “at least one of A or B” or “at least one of A and/or B” means “at least one It can be interpreted the same as "at least one of A and B”.
  • At least one of A, B and C means “only A”, “only B”, “only C”, or “A, B and C Can mean any combination of A, B and C”.
  • at least one of A, B or C or “at least one of A, B and/or C” means It can mean “at least one of A, B and C”.
  • parentheses used in the present specification may mean "for example”. Specifically, when indicated as “prediction (intra prediction)”, “intra prediction” may be proposed as an example of “prediction”. In other words, “prediction” in the present specification is not limited to “intra prediction”, and “intra prediction” may be suggested as an example of “prediction”. In addition, even when displayed as “prediction (ie, intra prediction)”, “intra prediction” may be proposed as an example of “prediction”.
  • FIG. 1 schematically shows an example of a video/video coding system to which this document can be applied.
  • a video/image coding system may include a source device and a reception device.
  • the source device may transmit the encoded video/image information or data in a file or streaming form to the receiving device through a digital storage medium or a network.
  • the source device may include a video source, an encoding device, and a transmission unit.
  • the receiving device may include a receiving unit, a decoding device, and a renderer.
  • the encoding device may be referred to as a video/image encoding device, and the decoding device may be referred to as a video/image decoding device.
  • the transmitter may be included in the encoding device.
  • the receiver may be included in the decoding device.
  • the renderer may include a display unit, and the display unit may be configured as a separate device or an external component.
  • the video source may acquire a video/image through a process of capturing, synthesizing, or generating video/image.
  • the video source may include a video/image capturing device and/or a video/image generating device.
  • the video/image capture device may include, for example, one or more cameras, a video/image archive including previously captured video/images, and the like.
  • the video/image generating device may include, for example, a computer, a tablet and a smartphone, and may (electronically) generate a video/image.
  • a virtual video/image may be generated through a computer or the like, and in this case, a video/image capturing process may be substituted as a process of generating related data.
  • the encoding device may encode the input video/video.
  • the encoding apparatus may perform a series of procedures such as prediction, transformation, and quantization for compression and coding efficiency.
  • the encoded data (encoded video/video information) may be output in the form of a bitstream.
  • the transmission unit may transmit the encoded video/video information or data output in the form of a bitstream to the reception unit of the receiving device through a digital storage medium or a network in a file or streaming form.
  • Digital storage media may include various storage media such as USB, SD, CD, DVD, Blu-ray, HDD, and SSD.
  • the transmission unit may include an element for generating a media file through a predetermined file format, and may include an element for transmission through a broadcast/communication network.
  • the receiver may receive/extract the bitstream and transmit it to the decoding device.
  • the decoding device may decode the video/image by performing a series of procedures such as inverse quantization, inverse transformation, and prediction corresponding to the operation of the encoding device.
  • the renderer can render the decoded video/video.
  • the rendered video/image may be displayed through the display unit.
  • the video encoding device may include an image encoding device.
  • the encoding device 200 includes an image partitioner 210, a predictor 220, a residual processor 230, an entropy encoder 240, and It may be configured to include an adder 250, a filter 260, and a memory 270.
  • the prediction unit 220 may include an inter prediction unit 221 and an intra prediction unit 222.
  • the residual processing unit 230 may include a transform unit 232, a quantizer 233, an inverse quantizer 234, and an inverse transformer 235.
  • the residual processing unit 230 may further include a subtractor 231.
  • the addition unit 250 may be referred to as a reconstructor or a recontructged block generator.
  • the image segmentation unit 210, the prediction unit 220, the residual processing unit 230, the entropy encoding unit 240, the addition unit 250, and the filtering unit 260 described above may include one or more hardware components (for example, it may be configured by an encoder chipset or a processor).
  • the memory 270 may include a decoded picture buffer (DPB), and may be configured by a digital storage medium.
  • the hardware component may further include the memory 270 as an internal/external component.
  • the image segmentation unit 210 may divide an input image (or picture, frame) input to the encoding apparatus 200 into one or more processing units.
  • the processing unit may be referred to as a coding unit (CU).
  • the coding unit is recursively divided according to the QTBTTT (Quad-tree binary-tree ternary-tree) structure from a coding tree unit (CTU) or a largest coding unit (LCU).
  • QTBTTT Quad-tree binary-tree ternary-tree
  • CTU coding tree unit
  • LCU largest coding unit
  • one coding unit may be divided into a plurality of coding units of a deeper depth based on a quad tree structure, a binary tree structure, and/or a ternary structure.
  • a quad tree structure may be applied first, and a binary tree structure and/or a ternary structure may be applied later.
  • the binary tree structure may be applied first.
  • the coding procedure according to this document may be performed based on the final coding unit that is no longer divided. In this case, based on the coding efficiency according to the image characteristics, the maximum coding unit can be directly used as the final coding unit, or if necessary, the coding unit is recursively divided into coding units of lower depth to be optimal. A coding unit of the size of may be used as the final coding unit.
  • the coding procedure may include a procedure such as prediction, transformation, and restoration described later.
  • the processing unit may further include a prediction unit (PU) or a transform unit (TU).
  • the prediction unit and the transform unit may be divided or partitioned from the above-described final coding unit, respectively.
  • the prediction unit may be a unit of sample prediction
  • the transform unit may be a unit for inducing a transform coefficient and/or a unit for inducing a residual signal from the transform coefficient.
  • the unit may be used interchangeably with terms such as a block or an area depending on the case.
  • the MxN block may represent a set of samples or transform coefficients consisting of M columns and N rows.
  • a sample may represent a pixel or a value of a pixel, may represent only a pixel/pixel value of a luminance component, or may represent only a pixel/pixel value of a saturation component.
  • a sample may be used as a term corresponding to one picture (or image) as a pixel or pel.
  • the subtraction unit 231 subtracts the prediction signal (predicted block, prediction samples, or prediction sample array) output from the prediction unit 220 from the input image signal (original block, original samples, or original sample array) to make a residual.
  • a signal residual block, residual samples, or residual sample array
  • the prediction unit 220 may perform prediction on a block to be processed (hereinafter referred to as a current block) and generate a predicted block including prediction samples for the current block.
  • the predictor 220 may determine whether intra prediction or inter prediction is applied in units of a current block or CU.
  • the prediction unit may generate various information related to prediction, such as prediction mode information, as described later in the description of each prediction mode, and transmit it to the entropy encoding unit 240.
  • the information on prediction may be encoded by the entropy encoding unit 240 and output in the form of a bitstream.
  • the intra prediction unit 222 may predict the current block by referring to samples in the current picture.
  • the referenced samples may be located in the vicinity of the current block or may be located apart according to the prediction mode.
  • prediction modes may include a plurality of non-directional modes and a plurality of directional modes.
  • the non-directional mode may include, for example, a DC mode and a planar mode (Planar mode).
  • the directional mode may include, for example, 33 directional prediction modes or 65 directional prediction modes according to a detailed degree of the prediction direction. However, this is an example, and more or less directional prediction modes may be used depending on the setting.
  • the intra prediction unit 222 may determine a prediction mode applied to the current block by using the prediction mode applied to the neighboring block.
  • the inter prediction unit 221 may derive a predicted block for the current block based on a reference block (reference sample array) specified by a motion vector on the reference picture.
  • motion information may be predicted in units of blocks, subblocks, or samples based on a correlation between motion information between a neighboring block and a current block.
  • the motion information may include a motion vector and a reference picture index.
  • the motion information may further include inter prediction direction (L0 prediction, L1 prediction, Bi prediction, etc.) information.
  • the neighboring block may include a spatial neighboring block existing in the current picture and a temporal neighboring block existing in the reference picture.
  • the reference picture including the reference block and the reference picture including the temporal neighboring block may be the same or different.
  • the temporal neighboring block may be called a collocated reference block, a co-located CU (colCU), and the like, and a reference picture including the temporal neighboring block may be referred to as a collocated picture (colPic).
  • the inter prediction unit 221 constructs a motion information candidate list based on neighboring blocks, and provides information indicating which candidate is used to derive a motion vector and/or a reference picture index of the current block. Can be generated. Inter prediction may be performed based on various prediction modes.
  • the inter prediction unit 221 may use motion information of a neighboring block as motion information of a current block.
  • a residual signal may not be transmitted.
  • MVP motion vector prediction
  • the motion vector of the current block is calculated by using the motion vector of the neighboring block as a motion vector predictor and signaling a motion vector difference. I can instruct.
  • the prediction unit 220 may generate a prediction signal based on various prediction methods to be described later.
  • the prediction unit may apply intra prediction or inter prediction for prediction of one block, as well as simultaneously apply intra prediction and inter prediction. This can be called combined inter and intra prediction (CIIP).
  • the prediction unit may perform intra block copy (IBC) to predict a block.
  • the intra block copy may be used for content image/video coding such as a game, for example, screen content coding (SCC).
  • SCC screen content coding
  • IBC basically performs prediction in the current picture, but can be performed similarly to inter prediction in that it derives a reference block in the current picture. That is, the IBC may use at least one of the inter prediction techniques described in this document.
  • the prediction signal generated through the inter prediction unit 221 and/or the intra prediction unit 222 may be used to generate a reconstructed signal or may be used to generate a residual signal.
  • the transform unit 232 may generate transform coefficients by applying a transform technique to the residual signal.
  • the transformation technique may include Discrete Cosine Transform (DCT), Discrete Sine Transform (DST), Graph-Based Transform (GBT), or Conditionally Non-linear Transform (CNT).
  • DCT Discrete Cosine Transform
  • DST Discrete Sine Transform
  • GBT Graph-Based Transform
  • CNT Conditionally Non-linear Transform
  • GBT refers to the transformation obtained from this graph when the relationship information between pixels is expressed in a graph.
  • CNT refers to a transformation obtained based on generating a prediction signal using all previously reconstructed pixels.
  • the conversion process may be applied to a pixel block having the same size of a square, or may be applied to a block having a variable size other
  • the quantization unit 233 quantizes the transform coefficients and transmits it to the entropy encoding unit 240, and the entropy encoding unit 240 encodes the quantized signal (information on quantized transform coefficients) and outputs it as a bitstream. have.
  • the information on the quantized transform coefficients may be called residual information.
  • the quantization unit 233 may rearrange the quantized transform coefficients in the form of blocks into a one-dimensional vector form based on a coefficient scan order, and the quantized transform coefficients in the form of the one-dimensional vector It is also possible to generate information about transform coefficients.
  • the entropy encoding unit 240 may perform various encoding methods such as exponential Golomb, context-adaptive variable length coding (CAVLC), and context-adaptive binary arithmetic coding (CABAC).
  • the entropy encoding unit 240 may encode together or separately information necessary for video/image reconstruction (eg, values of syntax elements) in addition to quantized transform coefficients.
  • the encoded information (eg, encoded video/video information) may be transmitted or stored in a bitstream format in units of network abstraction layer (NAL) units.
  • the video/video information may further include information on various parameter sets, such as an adaptation parameter set (APS), a picture parameter set (PPS), a sequence parameter set (SPS), or a video parameter set (VPS).
  • the video/video information may further include general constraint information.
  • Signaling/transmitted information and/or syntax elements described later in this document may be encoded through the above-described encoding procedure and included in the bitstream.
  • the bitstream may be transmitted through a network or may be stored in a digital storage medium.
  • the network may include a broadcasting network and/or a communication network
  • the digital storage medium may include various storage media such as USB, SD, CD, DVD, Blu-ray, HDD, and SSD.
  • a transmission unit for transmitting and/or a storage unit (not shown) for storing may be configured as an internal/external element of the encoding apparatus 200, or the transmission unit It may be included in the entropy encoding unit 240.
  • the quantized transform coefficients output from the quantization unit 233 may be used to generate a prediction signal.
  • a residual signal residual block or residual samples
  • the addition unit 250 may generate a reconstructed signal (a reconstructed picture, a reconstructed block, reconstructed samples, or a reconstructed sample array) by adding the reconstructed residual signal to the prediction signal output from the prediction unit 220 .
  • the predicted block may be used as a reconstructed block.
  • the generated reconstructed signal may be used for intra prediction of the next processing target block in the current picture, and may be used for inter prediction of the next picture through filtering as described later.
  • LMCS luma mapping with chroma scaling
  • the filtering unit 260 may improve subjective/objective image quality by applying filtering to the reconstructed signal.
  • the filtering unit 260 may apply various filtering methods to the reconstructed picture to generate a modified reconstructed picture, and the modified reconstructed picture may be converted to the memory 270, specifically, the DPB of the memory 270. Can be saved on.
  • the various filtering methods may include, for example, deblocking filtering, sample adaptive offset (SAO), adaptive loop filter, bilateral filter, and the like.
  • the filtering unit 260 may generate a variety of filtering information and transmit it to the entropy encoding unit 290 as described later in the description of each filtering method.
  • the filtering information may be encoded by the entropy encoding unit 290 and output in the form of a bitstream.
  • the modified reconstructed picture transmitted to the memory 270 may be used as a reference picture in the inter prediction unit 280.
  • the encoding device may avoid prediction mismatch between the encoding device 200 and the decoding device, and may improve encoding efficiency.
  • the DPB of the memory 270 may store the modified reconstructed picture to be used as a reference picture in the inter prediction unit 221.
  • the memory 270 may store motion information of a block from which motion information in a current picture is derived (or encoded) and/or motion information of blocks in a picture that have already been reconstructed.
  • the stored motion information may be transferred to the inter prediction unit 221 in order to be used as motion information of spatial neighboring blocks or motion information of temporal neighboring blocks.
  • the memory 270 may store reconstructed samples of reconstructed blocks in the current picture, and may be transmitted to the intra prediction unit 222.
  • FIG. 3 is a diagram schematically illustrating a configuration of a video/video decoding apparatus to which the present document can be applied.
  • the decoding apparatus 300 includes an entropy decoder 310, a residual processor 320, a predictor 330, an adder 340, and a filtering unit. It may be configured to include (filter, 350) and memory (memoery) 360.
  • the prediction unit 330 may include an inter prediction unit 331 and an intra prediction unit 332.
  • the residual processing unit 320 may include a dequantizer 321 and an inverse transformer 321.
  • the entropy decoding unit 310, the residual processing unit 320, the prediction unit 330, the addition unit 340, and the filtering unit 350 described above are one hardware component (for example, a decoder chipset or a processor). ) Can be configured.
  • the memory 360 may include a decoded picture buffer (DPB), and may be configured by a digital storage medium.
  • the hardware component may further include the memory 360 as an internal/external component.
  • the decoding apparatus 300 may reconstruct an image in response to a process in which the video/image information is processed by the encoding apparatus of FIG. 2. For example, the decoding apparatus 300 may derive units/blocks based on block division related information obtained from the bitstream.
  • the decoding device 300 may perform decoding using a processing unit applied in the encoding device.
  • the processing unit of decoding may be, for example, a coding unit, and the coding unit may be divided from a coding tree unit or a maximum coding unit along a quad tree structure, a binary tree structure and/or a ternary tree structure.
  • One or more transform units may be derived from the coding unit.
  • the reconstructed image signal decoded and output through the decoding device 300 may be reproduced through the playback device.
  • the decoding apparatus 300 may receive a signal output from the encoding apparatus of FIG. 2 in the form of a bitstream, and the received signal may be decoded through the entropy decoding unit 310.
  • the entropy decoding unit 310 may parse the bitstream to derive information (eg, video/video information) necessary for image restoration (or picture restoration).
  • the video/video information may further include information on various parameter sets, such as an adaptation parameter set (APS), a picture parameter set (PPS), a sequence parameter set (SPS), or a video parameter set (VPS).
  • the video/video information may further include general constraint information.
  • the decoding apparatus may further decode the picture based on the information on the parameter set and/or the general restriction information.
  • Signaled/received information and/or syntax elements described later in this document may be decoded through the decoding procedure and obtained from the bitstream.
  • the entropy decoding unit 310 decodes information in the bitstream based on a coding method such as exponential Golomb coding, CAVLC, or CABAC, and a value of a syntax element required for image restoration, a quantized value of a transform coefficient related to a residual. Can be printed.
  • the CABAC entropy decoding method receives a bin corresponding to each syntax element in a bitstream, and includes information on a syntax element to be decoded and information on a neighboring and decoding target block or information on a symbol/bin decoded in a previous step.
  • a context model is determined using the context model, and a symbol corresponding to the value of each syntax element can be generated by performing arithmetic decoding of the bin by predicting the probability of occurrence of a bin according to the determined context model.
  • the CABAC entropy decoding method may update the context model using information of the decoded symbol/bin for the context model of the next symbol/bin after the context model is determined.
  • information on prediction is provided to the prediction unit 330, and information on the residual on which entropy decoding is performed by the entropy decoding unit 310, that is, quantized transform coefficients, and Related parameter information may be input to the inverse quantization unit 321.
  • information about filtering among information decoded by the entropy decoding unit 310 may be provided to the filtering unit 350.
  • a receiver (not shown) for receiving a signal output from the encoding device may be further configured as an inner/outer element of the decoding device 300, or the receiver may be a component of the entropy decoding unit 310.
  • the decoding apparatus according to this document may be called a video/video/picture decoding apparatus, and the decoding apparatus can be divided into an information decoder (video/video/picture information decoder) and a sample decoder (video/video/picture sample decoder). May be.
  • the information decoder may include the entropy decoding unit 310, and the sample decoder includes the inverse quantization unit 321, an inverse transform unit 322, a prediction unit 330, an addition unit 340, and a filtering unit ( 350) and at least one of the memory 360 may be included.
  • the inverse quantization unit 321 may inverse quantize the quantized transform coefficients and output transform coefficients.
  • the inverse quantization unit 321 may rearrange the quantized transform coefficients in a two-dimensional block shape. In this case, the rearrangement may be performed based on the coefficient scan order performed by the encoding device.
  • the inverse quantization unit 321 may perform inverse quantization on quantized transform coefficients by using a quantization parameter (for example, quantization step size information) and obtain transform coefficients.
  • a quantization parameter for example, quantization step size information
  • the inverse transform unit 322 obtains a residual signal (residual block, residual sample array) by inverse transforming the transform coefficients.
  • the prediction unit may perform prediction on the current block and generate a predicted block including prediction samples for the current block.
  • the prediction unit may determine whether intra prediction or inter prediction is applied to the current block based on the information about the prediction output from the entropy decoding unit 310, and may determine a specific intra/inter prediction mode.
  • the prediction unit may generate a prediction signal based on various prediction methods to be described later. For example, the prediction unit may apply intra prediction or inter prediction for prediction of one block, as well as simultaneously apply intra prediction and inter prediction. This can be called combined inter and intra prediction (CIIP).
  • the prediction unit may perform intra block copy (IBC) to predict a block.
  • the intra block copy may be used for content image/video coding such as a game, for example, screen content coding (SCC).
  • SCC screen content coding
  • IBC basically performs prediction in the current picture, but can be performed similarly to inter prediction in that it derives a reference block in the current picture. That is, the IBC may use at least one of the inter prediction techniques described in this document.
  • the intra prediction unit 332 may predict the current block by referring to samples in the current picture.
  • the referenced samples may be located in the vicinity of the current block or may be located apart according to the prediction mode.
  • prediction modes may include a plurality of non-directional modes and a plurality of directional modes.
  • the intra prediction unit 332 may determine a prediction mode applied to the current block by using the prediction mode applied to the neighboring block.
  • the inter prediction unit 331 may derive a predicted block for the current block based on a reference block (reference sample array) specified by a motion vector on the reference picture.
  • motion information may be predicted in units of blocks, subblocks, or samples based on a correlation between motion information between a neighboring block and a current block.
  • the motion information may include a motion vector and a reference picture index.
  • the motion information may further include inter prediction direction (L0 prediction, L1 prediction, Bi prediction, etc.) information.
  • the neighboring block may include a spatial neighboring block existing in the current picture and a temporal neighboring block existing in the reference picture.
  • the inter prediction unit 331 may construct a motion information candidate list based on neighboring blocks, and derive a motion vector and/or a reference picture index of the current block based on the received candidate selection information.
  • Inter prediction may be performed based on various prediction modes, and the information about the prediction may include information indicating a mode of inter prediction for the current block.
  • the addition unit 340 adds the obtained residual signal to the prediction signal (predicted block, prediction sample array) output from the prediction unit 330 to generate a reconstructed signal (restored picture, reconstructed block, reconstructed sample array). I can. When there is no residual for a block to be processed, such as when the skip mode is applied, the predicted block may be used as a reconstructed block.
  • the addition unit 340 may be referred to as a restoration unit or a restoration block generation unit.
  • the generated reconstructed signal may be used for intra prediction of the next processing target block in the current picture, may be output through filtering as described later, or may be used for inter prediction of the next picture.
  • LMCS luma mapping with chroma scaling
  • the filtering unit 350 may improve subjective/objective image quality by applying filtering to the reconstructed signal.
  • the filtering unit 350 may apply various filtering methods to the reconstructed picture to generate a modified reconstructed picture, and the modified reconstructed picture may be converted to the memory 60, specifically, the DPB of the memory 360. Can be transferred to.
  • the various filtering methods may include, for example, deblocking filtering, sample adaptive offset, adaptive loop filter, bilateral filter, and the like.
  • the (modified) reconstructed picture stored in the DPB of the memory 360 may be used as a reference picture in the inter prediction unit 331.
  • the memory 360 may store motion information of a block from which motion information in a current picture is derived (or decoded) and/or motion information of blocks in a picture that have already been reconstructed.
  • the stored motion information may be transmitted to the inter prediction unit 331 to be used as motion information of spatial neighboring blocks or motion information of temporal neighboring blocks.
  • the memory 360 may store reconstructed samples of reconstructed blocks in the current picture, and may be transmitted to the intra prediction unit 332.
  • the embodiments described in the prediction unit 330, the inverse quantization unit 321, the inverse transform unit 322, and the filtering unit 350 of the decoding apparatus 300 are each a prediction unit ( 220), the inverse quantization unit 234, the inverse transform unit 235, and the filtering unit 260 may be applied in the same or corresponding manner.
  • a predicted block including prediction samples for a current block as a coding target block may be generated.
  • the predicted block includes prediction samples in the spatial domain (or pixel domain).
  • the predicted block is derived equally from the encoding device and the decoding device, and the encoding device decodes information (residual information) about the residual between the original block and the predicted block, not the original sample value of the original block itself.
  • Video coding efficiency can be improved by signaling to the device.
  • the decoding apparatus may derive a residual block including residual samples based on the residual information, and generate a reconstructed block including reconstructed samples by summing the residual block and the predicted block. A reconstructed picture to be included can be generated.
  • the residual information may be generated through transformation and quantization procedures.
  • the encoding apparatus derives a residual block between the original block and the predicted block, and derives transform coefficients by performing a transformation procedure on residual samples (residual sample array) included in the residual block. And, by performing a quantization procedure on the transform coefficients, quantized transform coefficients may be derived, and related residual information may be signaled to a decoding apparatus (via a bitstream).
  • the residual information may include information such as value information of the quantized transform coefficients, position information, a transform technique, a transform kernel, and a quantization parameter.
  • the decoding apparatus may perform an inverse quantization/inverse transform procedure based on the residual information and derive residual samples (or residual blocks).
  • the decoding apparatus may generate a reconstructed picture based on the predicted block and the residual block.
  • the encoding apparatus may also inverse quantize/inverse transform quantized transform coefficients for reference for inter prediction of a picture to derive a residual block, and generate a reconstructed picture based on this.
  • the transform unit may correspond to the transform unit in the encoding apparatus of FIG. 2 described above, and the inverse transform unit may correspond to the inverse transform unit in the encoding apparatus of FIG. 2 or the inverse transform unit in the decoding apparatus of FIG. 3. .
  • the transform unit may derive (first-order) transform coefficients by performing first-order transform based on the residual samples (residual sample array) in the residual block (S410).
  • This primary transform may be referred to as a core transform.
  • the first-order transformation may be based on multiple transformation selection (MTS), and when multiple transformation is applied as the first-order transformation, it may be referred to as a multiple core transformation.
  • MTS multiple transformation selection
  • the multiple core transformation may indicate a method of additionally using Discrete Cosine Transform (DST) type 2, Discrete Sine Transform (DST) type 7, DCT type 8, and/or DST type 1. That is, the multi-core transform is based on a plurality of transform kernels selected from among the DCT type 2, the DST type 7, the DCT type 8, and the DST type 1, based on the residual signal (or residual block) in the spatial domain in the frequency domain.
  • a transform method of transforming into transform coefficients (or first-order transform coefficients) of may be represented.
  • the first-order transform coefficients may be referred to as temporary transform coefficients from the perspective of the transform unit.
  • transformation coefficients can be generated by applying a transformation from a spatial domain to a frequency domain for a residual signal (or a residual block) based on DCT type 2.
  • Transform to may be applied to generate transform coefficients (or first order transform coefficients).
  • DCT type 2, DST type 7, DCT type 8, and DST type 1 may be referred to as a transform type, a transform kernel, or a transform core.
  • DCT/DST conversion types may be defined based on basis functions, and the basis functions may be represented as shown in the following table.
  • a vertical transformation kernel and a horizontal transformation kernel for a target block may be selected from among the transformation kernels, and a vertical transformation for the target block is performed based on the vertical transformation kernel, and the Horizontal transformation may be performed on the target block based on the horizontal transformation kernel.
  • the horizontal transformation may represent transformation of horizontal components of the target block
  • the vertical transformation may represent transformation of vertical components of the target block.
  • the vertical transform kernel/horizontal transform kernel may be adaptively determined based on a prediction mode and/or a transform index of a target block (CU or subblock) including a residual block.
  • mapping relationship can be set. For example, if the horizontal direction conversion kernel is represented by trTypeHor and the vertical direction conversion kernel is represented by trTypeVer, the value of trTypeHor or trTypeVer is set to DCT2, the value of trTypeHor or trTypeVer is set to DST7, and the value of trTypeHor or trTypeVer is 2 May be set to DCT8.
  • MTS index information may be encoded and signaled to a decoding device to indicate any one of a plurality of transform kernel sets. For example, if the MTS index is 0, it indicates that both trTypeHor and trTypeVer values are 0, if the MTS index is 1, it indicates that both trTypeHor and trTypeVer values are 1, and if the MTS index is 2, the trTypeHor value is 2 and the trTypeVer value Is 1, if the MTS index is 3, the trTypeHor value is 1 and the trTypeVer value is 2, and if the MTS index is 4, it may indicate that both trTypeHor and trTypeVer values are 2.
  • the transform unit may derive modified (second-order) transform coefficients by performing a second-order transform based on the (first-order) transform coefficients (S420).
  • the first-order transform is a transform from a spatial domain to a frequency domain
  • the second-order transform refers to transforming into a more compressive expression using a correlation existing between (first-order) transform coefficients.
  • the second-order transform may include a non-separable transform.
  • the second transform may be referred to as a non-separable secondary transform (NSST) or a mode-dependent non-separable secondary transform (MDNSST).
  • the non-separated quadratic transform is a second-order transform of the (first-order) transform coefficients derived through the first-order transform based on a non-separable transform matrix, and modified transform coefficients for a residual signal. It may represent a transform that produces (or quadratic transform coefficients).
  • the non-separated quadratic transform does not separate the vertical and horizontal components of the (first-order) transform coefficients, and for example, two-dimensional signals (transform coefficients) are in a specific direction (e.g., row-first). ) Direction or column-first direction) to a one-dimensional signal, and then generating modified transform coefficients (or quadratic transform coefficients) based on the non-separated transform matrix.
  • the row priority order is to arrange the first row, the second row, ..., the Nth row for the MxN block in a row
  • the column priority order is the first column, the second column for the MxN block.
  • the non-separated quadratic transform may be applied to a top-left region of a block (hereinafter, referred to as a transform coefficient block) composed of (first-order) transform coefficients.
  • a transform coefficient block composed of (first-order) transform coefficients.
  • an 8 ⁇ 8 non-separated quadratic transform may be applied to an upper left 8 ⁇ 8 area of the transform coefficient block.
  • 4 ⁇ 4 non-separated secondary A transform may be applied to the upper left min(8,W) ⁇ min(8,H) area of the transform coefficient block.
  • embodiments are not limited thereto, and for example, even if only the condition that the width (W) or the height (H) of the transform coefficient block is 4 or more is satisfied, the 4 ⁇ 4 non-separated quadratic transform is the upper left corner of the transform coefficient block. It can also be applied to the min(8,W) ⁇ min(8,H) area.
  • the non-separated quadratic transformation may be performed as follows.
  • the 4 ⁇ 4 input block X can be represented as follows.
  • a vector When X is represented in a vector form, a vector When X is represented in the form of a vector, the vector may be represented as follows.
  • the vector Rearranges the two-dimensional block of X in Equation 1 into a one-dimensional vector according to the row-first order.
  • the second-order non-separated transform can be calculated as follows.
  • T denotes a 16 ⁇ 16 (non-separated) transform matrix
  • a 16 ⁇ 1 transform coefficient vector through Equation 3 above Can be derived, and the above Can be re-organized into 4 ⁇ 4 blocks through a scan order (horizontal, vertical, diagonal, etc.).
  • the above-described calculation is an example, and in order to reduce the computational complexity of the non-separated quadratic transform, HyGT (Hypercube-Givens Transform) or the like may be used for the calculation of the non-separated quadratic transform.
  • a transform kernel (or transform core, transform type) may be selected based on mode.
  • the mode may include an intra prediction mode and/or an inter prediction mode.
  • the non-separated quadratic transform may be performed based on an 8 ⁇ 8 transform or a 4 ⁇ 4 transform determined based on the width (W) and height (H) of the transform coefficient block.
  • the 8x8 transform refers to a transform that can be applied to an 8x8 area included in a corresponding transform coefficient block when both W and H are equal to or greater than 8, and the 8x8 area may be an upper left 8x8 area inside the corresponding transform coefficient block.
  • a 4x4 transform refers to a transform that can be applied to a 4x4 area included in a corresponding transform coefficient block when both W and H are equal to or greater than 4, and the 4x4 area may be the upper left 4x4 area inside the corresponding transform coefficient block.
  • an 8x8 transform kernel matrix may be a 64x64/16x64 matrix
  • a 4x4 transform kernel matrix may be a 16x16/8x16 matrix.
  • three non-separated quadratic transform kernels per transform set for non-separated quadratic transform may be configured for both 8 ⁇ 8 transform and 4 ⁇ 4 transform, and the transform set is There can be 35. That is, 35 transform sets may be configured for an 8 ⁇ 8 transform, and 35 transform sets may be configured for a 4 ⁇ 4 transform.
  • the 35 transform sets for the 8 ⁇ 8 transform may include three 8 ⁇ 8 transform kernels, and in this case, the 35 transform sets for the 4 ⁇ 4 transform include three 4 ⁇ 4 transform kernels each. Can be included.
  • a size other than 8 ⁇ 8 or 4 ⁇ 4 may be used as an example, or n sets are configured, and k transforms in each set. Kernels may also be included.
  • the transform set may be referred to as an NSST set, and the transform kernel in the NSST set may be referred to as an NSST kernel.
  • the selection of a specific set among the transform sets may be performed based on, for example, an intra prediction mode of a target block (CU or subblock).
  • the intra prediction mode is two non-directinoal (or non-angular) intra prediction modes and 65 directional (or angular) intra prediction modes.
  • the non-directional intra prediction modes may include a planar intra prediction mode of No. 0 and a DC intra prediction mode of No. 1, and the directional intra prediction modes may include 65 intra prediction modes of Nos. 2 to 66. .
  • the intra prediction mode 67 may be further used, and the intra prediction mode 67 may represent a linear model (LM) mode.
  • LM linear model
  • 5 exemplarily shows intra-directional modes of 65 prediction directions.
  • an intra prediction mode having horizontal directionality and an intra prediction mode having vertical directionality can be distinguished based on an intra prediction mode 34 having an upward left diagonal prediction direction.
  • H and V in FIG. 5 denote horizontal and vertical directions, respectively, and numbers from -32 to 32 denote displacement of 1/32 units on a sample grid position. This may represent an offset to the mode index value.
  • Intra prediction modes 2 to 33 have horizontal directionality
  • intra prediction modes 34 to 66 have vertical directionality.
  • the 34th intra prediction mode can be considered to be neither horizontal nor vertical, strictly speaking, but it can be classified as belonging to horizontal directionality from the viewpoint of determining a transform set of a quadratic transform.
  • Intra prediction mode 18 and intra prediction mode 50 represent horizontal intra prediction mode and vertical intra prediction mode, respectively, and intra prediction mode 2 has a left reference pixel and is up-right direction.
  • the 34th intra prediction mode may be referred to as a right-downward diagonal intra prediction mode
  • the 66th intra prediction mode may be referred to as a left-downward diagonal intra prediction mode.
  • mapping between the 35 transform sets and the intra prediction modes may be represented, for example, as shown in the following table.
  • the second-order transformation may not be applied to the target block.
  • one of k transformation kernels in the specific set may be selected through a non-separated quadratic transformation index.
  • the encoding device may derive a non-separated secondary transformation index indicating a specific transformation kernel based on a rate-distortion (RD) check, and may signal the non-separated secondary transformation index to the decoding device.
  • the decoding apparatus may select one of k transform kernels in a specific set based on the non-separated quadratic transform index.
  • an NSST index value of 0 may refer to the first non-separated quadratic transformation kernel
  • an NSST index value of 1 may refer to a second non-separated quadratic transformation kernel
  • an NSST index value of 2 may refer to the third non-separated quadratic transformation kernel.
  • the NSST index value 0 may indicate that the first non-separated quadratic transformation is not applied to the target block
  • NSST index values 1 to 3 may indicate the three transformation kernels.
  • the transform unit may perform the non-separated quadratic transform based on the selected transform kernels and obtain modified (quaternary) transform coefficients.
  • the modified transform coefficients may be derived as quantized transform coefficients through a quantization unit as described above, and may be encoded and transmitted to a signaling and inverse quantization/inverse transform unit in an encoding device.
  • the (first-order) transform coefficients which are the outputs of the first-order (separate) transform, can be derived as quantized transform coefficients through the quantization unit as described above, and are encoded. It may be transmitted to a decoding device to an inverse quantization/inverse transform unit in a signaling and encoding device.
  • the inverse transform unit may perform a series of procedures in the reverse order of the procedure performed by the above-described transform unit.
  • the inverse transform unit receives (inverse quantized) transform coefficients, performs a second-order (inverse) transform to derive (first-order) transform coefficients (S450), and performs a first-order (inverse) for the (first-order) transform coefficients.
  • a residual block (residual samples) may be obtained by performing transformation (S460).
  • the first-order transform coefficients may be referred to as modified transform coefficients from the standpoint of the inverse transform unit.
  • the encoding apparatus and the decoding apparatus may generate a reconstructed block based on the residual block and the predicted block, and generate a reconstructed picture based on the residual block.
  • the decoding apparatus may further include a second-order inverse transform determining unit (or an element determining whether to apply a second-order inverse transform) and a second-order inverse transform determining unit (or a second-order inverse transform determining element).
  • Whether to apply the second-order inverse transform may determine whether to apply the second-order inverse transform.
  • the second-order inverse transform may be NSST or RST, and the application of the second-order inverse transform may determine whether to apply the second-order inverse transform based on the second-order transform flag parsed from the bitstream.
  • the determining unit whether to apply the second-order inverse transform may determine whether to apply the second-order inverse transform based on a transform coefficient of the residual block.
  • the second-order inverse transform determiner may determine a second-order inverse transform.
  • the second-order inverse transform determiner may determine a second-order inverse transform applied to the current block based on an NSST (or RST) transform set designated according to the intra prediction mode.
  • a second-order transform determination method may be determined depending on a first-order transform determination method.
  • Various combinations of the first-order transform and the second-order transform may be determined according to the intra prediction mode.
  • the inverse quadratic transform determiner may determine a region to which the inverse quadratic transform is applied based on the size of the current block.
  • a residual block (residual samples) may be obtained by receiving the (inverse quantized) transform coefficients and performing the first-order (separation) inverse transform.
  • the encoding apparatus and the decoding apparatus may generate a reconstructed block based on the residual block and the predicted block, and generate a reconstructed picture based on the residual block.
  • a reduced secondary transform (RST) with a reduced size of a transform matrix (kernel) can be applied from the concept of NSST in order to reduce the amount of computation and memory required for the non-separated quadratic transform.
  • a transform kernel, a transform matrix, and a coefficient constituting the transform kernel matrix described in this document may be expressed in 8 bits. This may be a condition to be implemented in the decoding device and the encoding device, and it is possible to reduce the amount of memory required for storing the conversion kernel while accompanied by a performance degradation that can be reasonably accommodated compared to the existing 9-bit or 10-bit. .
  • a small multiplier can be used, and it can be more suitable for a single instruction multiple data (SIMD) instruction used for optimal software implementation.
  • RST may mean transformation performed on residual samples for a target block based on a transform matrix whose size is reduced according to a simplification factor.
  • the amount of computation required for transformation may be reduced due to a reduction in the size of the transformation matrix. That is, the RST can be used to solve an issue of computational complexity that occurs when transforming a large block or non-separated transforming.
  • RST may be referred to in various terms such as reduced transform, reduced transform, reduced transform, reduced secondary transform, reduction transform, simplified transform, simple transform, etc., and the name to which RST may be referred to is not limited to the listed examples.
  • RST since RST is mainly performed in a low frequency region including a non-zero coefficient in a transform block, it may be referred to as a Low-Frequency Non-Separable Transform (LFNST).
  • LNNST Low-Frequency Non-Separable Transform
  • the inverse transform unit 235 of the encoding device 200 and the inverse transform unit 322 of the decoding device 300 are transformed based on the inverse RST of the transform coefficients.
  • the inverse first-order transform means the inverse transform of the first-order transform applied to the residual.
  • deriving a transform coefficient based on a transform may mean deriving a transform coefficient by applying a corresponding transform.
  • FIG. 6 is a diagram for describing an RST according to an embodiment of the present document.
  • target block may mean a current block or a residual block on which coding is performed.
  • a reduced transformation matrix may be determined by mapping an N dimensional vector to an R dimensional vector located in a different space, where R is less than N.
  • N may mean the square of the length of one side of the block to which the transform is applied or the total number of transform coefficients corresponding to the block to which the transform is applied
  • the simplification factor may mean an R/N value.
  • the simplification factor may be referred to in various terms such as a reduced factor, a reduction factor, a reduced factor, a reduction factor, a simplified factor, and a simple factor.
  • R may be referred to as a reduced coefficient, but in some cases, the simplified factor may refer to R.
  • the simplification factor may mean an N/R value.
  • the simplification factor or the simplification factor may be signaled through a bitstream, but the embodiment is not limited thereto.
  • a predefined value for the simplification factor or the simplification factor may be stored in each encoding device 200 and the decoding device 300, and in this case, the simplification factor or the simplification factor may not be signaled separately.
  • the size of the simplified transform matrix according to an embodiment is RxN, which is smaller than the size NxN of a conventional transform matrix, and may be defined as in Equation 4 below.
  • the matrix T in the Reduced Transform block shown in FIG. 6A may mean the matrix T RxN of Equation 4.
  • transform coefficients for the target block may be derived.
  • the RST according to FIG. 6A is It can be expressed as a matrix operation such as Equation 5.
  • memory and multiplication operations can be reduced to approximately 1/4 by a simplification factor.
  • a matrix operation can be understood as an operation to obtain a column vector by multiplying a matrix and a column vector by placing a matrix on the left side of the column vector.
  • r 1 to r 64 may represent residual samples for a target block, and more specifically, may be transform coefficients generated by applying a linear transform.
  • the transform coefficients c i for the target block may be derived, and the derivation process of c i may be the same as in Equation 6.
  • the size of the normal transform matrix is 64x64 (NxN), but the size of the simplified transform matrix is reduced to 16x64 (RxN).
  • Memory usage can be reduced by an R/N ratio.
  • the use of the simplified transform matrix can reduce the number of multiplication operations by an R/N ratio (RxN).
  • the transform unit 232 of the encoding apparatus 200 may derive transform coefficients for the target block by performing a first-order transform and an RST-based second-order transform on residual samples for the target block. These transform coefficients may be transmitted to the inverse transform unit of the decoding device 300, and the inverse transform unit 322 of the decoding device 300 derives the modified transform coefficients based on the inverse reduced secondary transform (RST) of the transform coefficients. Then, residual samples for the target block may be derived based on the inverse linear transform of the modified transform coefficients.
  • RST inverse reduced secondary transform
  • the size of the inverse RST matrix T NxR is NxR that is smaller than the size NxN of a typical inverse transform matrix, and is in a transpose relationship with the simplified transform matrix T RxN shown in Equation 4.
  • the matrix T t in the Transform block may mean the inverse RST matrix T RxN T (the superscript T means transpose).
  • T means transpose
  • modified transform coefficients for the target block or residual samples for the target block may be derived.
  • Station RxN RST matrix T T may be expressed as (T RxN) T NxR.
  • modified transform coefficients for the target block may be derived by multiplying transform coefficients for the target block by the inverse RST matrix T RxN T.
  • an inverse RST may be applied as an inverse first-order transform, and in this case, residual samples for the target block may be derived when transform coefficients for the target block are multiplied by the inverse RST matrix TRxNT.
  • the RST according to FIG.6(b) is It can be expressed as a matrix operation such as Equation 7 of.
  • Equation 7 c 1 to c 16 may represent transform coefficients for the target block.
  • r j representing modified transform coefficients for the target block or residual samples for the target block may be derived, and a derivation process of r j may be the same as in Equation 8.
  • r 1 to r N indicating modified transform coefficients for the target block or residual samples for the target block may be derived.
  • the size of the typical inverse transform matrix is 64x64 (NxN)
  • the size of the simplified inverse transform matrix is reduced to 64x16 (NxR).
  • Memory usage can be reduced by R/N ratio.
  • the use of the simplified inverse transform matrix can reduce the number of multiplication operations by an R/N ratio (NxR).
  • the transformation set configuration shown in Table 2 can be applied. That is, the 8x8 RST may be applied according to the transform set in Table 2. Since one transform set is composed of two or three transforms (kernels) according to an intra prediction mode, it may be configured to select one of a maximum of four transforms including a case where a quadratic transform is not applied. When the quadratic transformation is not applied, the transformation can be regarded as the identity matrix applied.
  • NSST index A transform to be applied may be designated by signaling a syntax element of, for each transform coefficient block. That is, 8x8 NSST can be designated for an 8x8 upper left block through the NSST index, and 8x8 RST can be designated in the RST configuration. 8x8 NSST and 8x8 RST refer to transforms that can be applied to the 8x8 area included in the corresponding transform coefficient block when both W and H of the target block to be transformed are equal to or greater than 8, and the corresponding 8x8 area is the corresponding transform coefficient block.
  • 4x4 NSST and 4x4 RST refer to transforms that can be applied to the 4x4 area included inside the corresponding transform coefficient block when both W and H of the target block are equal to or greater than 4, and the 4x4 area is It may be the upper left 4x4 area.
  • (forward) 8x8 RST as shown in Equation 4 16 effective transform coefficients are generated, so it can be seen that 64 input data constituting the 8x8 area is reduced to 16 output data. If you see, only 1/4 of the area is filled with effective transform coefficients. Therefore, the 16 output data obtained by applying the forward 8x8 RST are, for example, the upper left region of the block of FIG. 7 (transform coefficients 1 to 16, that is, c 1 , c 2 , ... , c 16 ) can be filled in the direction from 1 to 16 according to the diagonal scanning order.
  • FIG. 7 is a diagram illustrating a scanning sequence of transform coefficients according to an embodiment of the present document.
  • the reverse scan may be performed in the direction and order of the arrows shown in FIG. 7 from the 64th to the 17th in the forward scan sequence.
  • the upper left 4x4 region is a region of interest (ROI) filled with a valid transform coefficient, and the remaining regions are emptied, and a value of 0 may be filled in the emptied region by default.
  • ROI region of interest
  • a non-zero valid transform coefficient other than the ROI region of FIG. 7 it is certain that 8x8 RST has not been applied, and thus the corresponding NSST index coding may be omitted.
  • a non-zero transform coefficient is not found outside the ROI region of FIG. 7 (e.g., when 8x8 RST is applied, when the transform coefficient for the non-ROI region is set to 0), the possibility that 8x8 RST has been applied. So, you can code the NSST index.
  • Such conditional NSST index coding may be performed after a residual coding process because it is necessary to check whether a non-zero transform coefficient exists.
  • FIG. 8 is a flowchart illustrating an inverse RST process according to an embodiment of the present document.
  • Each step disclosed in FIG. 8 may be performed by the decoding apparatus 300 disclosed in FIG. 3. More specifically, S800 may be performed by the inverse quantization unit 321 disclosed in FIG. 3, and S810 and S820 may be performed by the inverse transform unit 322 disclosed in FIG. 3. Accordingly, detailed descriptions overlapping with those described above in FIG. 3 will be omitted or simplified. Meanwhile, in this document, RST is applied to a transformation in a forward direction, and inverse RST may mean a transformation applied in an inverse direction.
  • the decoding apparatus 300 may derive transform coefficients by performing inverse quantization on quantized transform coefficients for a target block (S800).
  • the decoding apparatus 300 may determine whether to apply the inverse quadratic transformation before the inverse quadratic transformation.
  • the inverse quadratic transformation may be NSST or RST.
  • the decoding apparatus may determine whether to apply the inverse quadratic transform based on the quadratic transform flag parsed from the bitstream.
  • the decoding apparatus may determine whether to apply the inverse quadratic transform based on the transform coefficient of the residual block.
  • the decoding apparatus 300 may determine inverse quadratic transformation. In this case, the decoding apparatus 300 may determine an inverse quadratic transform applied to the current block based on the NSST (or RST) transform set designated according to the intra prediction mode.
  • the second-order transform determination method may be determined depending on the first-order transform determination method. For example, it may be determined that RST or LFNST is applied only when DCT-2 is applied to the conversion kernel in the first conversion. Alternatively, various combinations of a first-order transform and a second-order transform may be determined according to the intra prediction mode.
  • the decoding apparatus 300 may determine a region to which the inverse quadratic transform is applied based on the size of the current block prior to determining the inverse quadratic transform.
  • the decoding apparatus 300 may select a transform kernel (S810). More specifically, the decoding apparatus 300 includes information on a transformation index, a width and height of a region to which transformation is applied, an intra prediction mode used in image decoding, and a color component of a target block.
  • the conversion kernel can be selected based on at least one of them. However, embodiments are not limited thereto, and for example, the conversion kernel is predefined, and separate information for selecting the conversion kernel may not be signaled.
  • information on the color component of the target block may be indicated through CIdx. If the target block is a luma block, CIdx can indicate 0, and if the target block is a chroma block, for example, a Cb block or a Cr block, CIdx is a non-zero value (for example, 1). Can be ordered.
  • the decoding apparatus 300 may apply an inverse RST to the transform coefficients based on the selected transform kernel and a reduced factor (S820).
  • a method of determining a second order NSST set that is, a second order transform set or a transform set, is proposed in consideration of an intra prediction mode and a block size.
  • a transform set composed of transform kernels having various sizes may be applied to the transform block. If the transform set in Table 3 is expressed as 0 to 3, it is shown in Table 4.
  • Indexes 0, 2, 18, and 34 shown in Table 3 correspond to 0, 1, 2, and 3 in Table 4, respectively.
  • Tables 3 and 4 only 4 transform sets are used instead of 35 transform sets, thereby significantly reducing the memory space.
  • Table 5 shows that two available transform kernels are used for each transform set, so that the transform index ranges from 0 to 2.
  • two available transform kernels are used for transform set 0, that is, a transform set for a DC mode and a planar mode among intra prediction modes, and one transform kernel is used for each of the remaining transform sets.
  • the available transform indices for transform set 1 are from 0 to 2
  • transform indices for the remaining transform sets 1 to 3 are from 0 to 1.
  • Table 7 one available transform kernel is used for each transform set, and accordingly, the transform index has a range from 0 to 1.
  • Tables 8 and 9 exemplarily show four transform sets that can be used for quadratic transformation, and Table 8 is a transformation kernel matrix applicable to an 8x8 block, and Table 9 is a transformation kernel matrix applicable to a 4x4 block.
  • Tables 8 and 9 consist of two transform kernel matrices per transform set, and as shown in Table 5, two transform kernel matrices may be applied to all intra prediction modes.
  • the transform kernel matrix examples shown in Table 8 are all transform kernel matrices multiplied by 128 by a scaling value.
  • N1 represents the number of transform sets (N1 is 4 or 35, index 0, 1,..., N1-1 Separated by)
  • N2 represents the number of transformation kernel matrices constituting each transformation set (1 or 2)
  • [16][64] represents 16x64 Reduced Secondary Transform (RST).
  • an m x 64 transform matrix that can be applied to an 8 x 8 region (m ⁇ 16, for example, the transform kernel matrix in Table 8) receives 64 data and generates m coefficients. That is, as shown in Equation 5, when 64 pieces of data form a 64 ⁇ 1 vector, an m ⁇ 1 vector is generated by sequentially multiplying an m ⁇ 64 matrix and a 64 ⁇ 1 vector. At this time, 64 data constituting an 8 x 8 area can be properly arranged to form a 64 x 1 vector.As an example, data can be arranged in the order of indexes displayed at each position of the 8 x 8 area as shown in Table 10 below. have.
  • the data arrangement in the 8 x 8 area for quadratic transformation is in row-first order.
  • This refers to an order when two-dimensional data is arranged in one dimension for a second-order transformation, specifically RST or LFNST, and this can be applied to a forward second-order transformation performed in an encoding device.
  • transform coefficients generated as a result of the transform that is, the first-order transform coefficients may be arranged in two dimensions as shown in Table 10.
  • the data arrangement in the 8 x 8 area for quadratic transformation is in the order of column priority.
  • This refers to an order when two-dimensional data is arranged in one dimension for a second-order transformation, specifically RST or LFNST, and this can be applied to a forward second-order transformation performed in an encoding device.
  • transform coefficients generated as a result of the transformation that is, the first-order transform coefficients, may be arranged in two dimensions as shown in Table 11.
  • Table 11 shows that the intra prediction mode is (66-n) mode, that is, for modes 34 to 66, a 64 x 1 input vector can be configured according to the order of the column priority.
  • transform kernel matrices shown in Table 9 are transform kernel matrices multiplied by 128 by a scaling value.
  • N1 represents the number of transform sets (N1 is 4 or 35, index 0, 1,..., N1-1 Separated by)
  • N2 represents the number of transformation kernel matrices constituting each transformation set (1 or 2)
  • [16][16] represents a 16x16 transformation.
  • TU transform units
  • the transform kernel matrix that can be applied to the 4x4 region presented in Table 9 is applied for 4 x 4 TU, 4 x M TU, M x 4 TU, or (M> 4, 4 x M TU and M x 4 TU) Divided into 4 x 4 regions, each designated transform kernel matrix can be applied, or can be applied only to the maximum left top 4x8 or 8x4 area) and only the top left 4 x 4 areas. If the quadratic transform is configured to be applied only to the upper left 4x4 area, transform kernel matrices applicable to the 8x8 area shown in Table 8 may become unnecessary.
  • an m x 16 transformation matrix that can be applied to a 4 x 4 region (m ⁇ 16, for example, the transformation kernel matrix in Table 9) receives 16 data and generates m coefficients. That is, if 16 pieces of data form a 16 x 1 vector, an m x 1 vector is generated by sequentially multiplying an m x 16 matrix and a 16 x 1 vector. At this time, 16 data constituting a 4 x 4 area can be properly arranged to form a 16 x 1 vector.For example, data can be arranged in the order of indexes displayed at each position in the 4 x 4 area as shown in Table 12 below. have.
  • the data arrangement in the 4 x 4 area for quadratic transformation is in row-first order. This refers to an order when two-dimensional data is arranged in one dimension for a second-order transformation, specifically RST or LFNST, and this can be applied to a forward second-order transformation performed in an encoding device. Accordingly, in the reverse quadratic transform performed by the inverse transform unit of the encoding device or the inverse transform unit of the decoding device, transform coefficients generated as a result of the transform, that is, the first transform coefficients, may be arranged in two dimensions as shown in Table 12.
  • the data arrangement in the 4 x 4 area for quadratic transformation is in the order of column priority.
  • This refers to an order when two-dimensional data is arranged in one dimension for a second-order transformation, specifically RST or LFNST, and this can be applied to a forward second-order transformation performed in an encoding device.
  • transform coefficients generated as a result of the transformation that is, the first-order transform coefficients, may be arranged in two dimensions as shown in Table 11.
  • Table 13 shows that for the intra prediction mode of the (66-n) mode, that is, modes 34 to 66, a 16 x 1 input vector can be configured according to the order of column priority.
  • the 16 x 48 transform kernel matrix according to this embodiment may be represented as Table 14.
  • Table 14 shows an example of the transform kernel matrix when m is 16, and receives 48 data and generates 16 coefficients. That is, assuming that 48 pieces of data form a 48 ⁇ 1 vector, a 16 ⁇ 1 vector may be generated by sequentially multiplying a 16 ⁇ 48 matrix and a 48 ⁇ 1 vector. In this case, 48 data constituting an 8 x 8 area can be properly arranged to form a 48 x 1 vector, and input data can be arranged in the following order.
  • a matrix operation is performed by applying a maximum 16 x 48 transform kernel matrix as shown in Table 14, 16 modified transform coefficients are generated, and 16 modified transform coefficients are placed in the upper left 4 x 4 area according to the scanning order.
  • the upper right 4 x 4 area and the lower left 4 x 4 area can be filled with zeros.
  • Table 16 shows an example of the arrangement order of 16 modified transform coefficients generated through matrix operation.
  • the modified transform coefficient generated when the maximum 16 x 48 transform kernel matrix is applied may be filled in the upper left 4 x 4 area according to the scanning order.
  • the number of each position in the upper left 4 x 4 area indicates the scanning order.
  • a coefficient generated from a dot product operation between the topmost row and a 48x1 input column vector in a 16x48 transform kernel matrix becomes the first in the scanning order.
  • the direction of going down to the bottom row and the scanning order may match.
  • a coefficient generated from a dot product operation with an nth row from the top becomes the nth in the scanning order.
  • the 4 x 4 area at the bottom right of Table 16 is the area to which the quadratic transformation is not applied, so the original input data (first order transform coefficient) is preserved, and the 4 x 4 area at the top right and The lower left 4 x 4 area is filled with zeros.
  • a scanning sequence other than the scanning sequence shown in Table 16 may be applied.
  • a row-first direction or a column-first direction may be applied as a scanning order.
  • the input coefficient data to which the inverse RST is applied is composed of a 1-D vector according to the arrangement order of Table 16, and the corresponding inverse RST matrix is The modified coefficient vectors obtained by multiplying by from the left can be arranged in a two-dimensional block according to the arrangement order in Table 15.
  • the inverse transform unit 322 of the decoding apparatus may apply the transform kernel matrix to transform coefficients arranged in one dimension according to the scanning order of Table 16. That is, 48 modified transform coefficients may be derived through a matrix operation between the one-dimensional transform coefficients arranged according to the scanning order of Table 16 and the transform kernel matrix based on the transform kernel matrix of Table 14. That is, the one-dimensional transform coefficients can be derived into 48 modified transform coefficients through matrix operation and a matrix in which the transform kernel matrix in Table 14 is transposed.
  • the 48 modified transform coefficients derived in this way may be arranged in two dimensions as shown in Table 15 for inverse first-order transform.
  • the nx1 vector can be interpreted in the same meaning as the nx1 matrix, it may be expressed as an nx1 column vector.
  • * means a matrix multiplication operation.
  • data arrangement in an 8 x 8 area for quadratic transformation is in a row-first direction order.
  • the intra prediction mode is composed of 67 as shown in FIG. 5
  • all directional modes are symmetrically configured around the mode 34. That is, mode (2 + n) is symmetric about mode 34 in terms of mode (66-n) and (0 ⁇ n ⁇ 31) in the prediction direction. Therefore, if the data arrangement order for constructing a 48 x 1 input vector for mode (2 + n), that is, modes 2 to 33, is in the row-first direction as shown in Table 15, then for mode (66-n)
  • a 48 x 1 input vector can be configured in the order shown in Table 17.
  • the data arrangement in the 8 x 8 area for quadratic transformation is in the order of column priority.
  • Table 17 shows that the intra prediction mode is (66-n) mode, that is, for the mode 35 to 66, a 64 x 1 input vector can be configured according to the order of the column priority.
  • the planar mode of intra prediction mode 0, the DC mode of intra prediction mode 1, and the intra prediction mode 34 may be arranged in any one of Table 15 or 17.
  • the planar mode, intra prediction mode 1, DC mode, and intra prediction mode 34 the row-priority order of Table 15 is applied, and the sequence of the derived transform coefficients in Table 16 is applied. Can be applied.
  • the planner mode, intra prediction mode 1, DC mode, and intra prediction mode 34 the column-priority order of Table 17 is applied, and the order of the arrangement in Table 16 is applied to the derived transform coefficients. May be.
  • the 16x48 transform kernel matrix of Table 14 when the 16x48 transform kernel matrix of Table 14 is applied to the quadratic transform, the upper right 4x4 area and the lower left 4x4 area of the 8x8 area are filled with zeros as shown in Table 16. If the mx 48 transform kernel matrix is applied to the quadratic transform (m ⁇ 16), not only the upper right 4 x 4 area and the lower left 4 x 4 area, but also the (m + 1)th to 16th in the scanning order shown in Table 16. Even th can be filled with zeros.
  • the decoding apparatus first parses the transform coefficient and checks whether the corresponding condition (that is, if a non-zero transform coefficient exists in the region where the transform coefficient should be 0) is satisfied. You can derive the index to zero without parsing it.
  • Table 18 shows another example of transform kernel matrices that can be applied to a 4 x 4 region.
  • each of the four transform sets mapped to the intra prediction mode may include two transform kernel matrices, and 0, 1, 2, and 3 may be used as transform indices for indicating such transform kernel matrices.
  • Tables 8 and 14 each show a transform kernel matrix applied to an 8 x 8 area
  • Tables 9 and 18 show a transform kernel matrix applicable to a 4 x 4 area.
  • one transform kernel matrix may be used for one transform set as shown in Table 7.
  • one transform kernel matrix may be applied to all intra prediction modes.
  • the following transform matrix may be used.
  • Table 19 shows the transform kernel matrix applied to the 8 x 8 area
  • Table 20 shows the transform kernel matrix applicable to the 4 x 4 area.
  • the contents described with reference to Tables 8, 9, 14, and 18 described above may also be applied to the transform kernel matrix shown in Tables 19 and 20.
  • a matrix composed of M rows and N columns is expressed as an MxN matrix
  • the MxN matrix refers to a forward transformation, that is, a transformation matrix applied when a transformation (RST) is performed in an encoding device.
  • RST transformation matrix applied when a transformation
  • an NxM matrix obtained by transposing the MxN matrix may be used.
  • a transform kernel matrix applicable to the 8x8 area is applied to the upper left 8x8 area of the block.
  • 8 x 48 parts of a 16 x 48 matrix can be applied. That is, eight transform coefficients may be generated.
  • a transform kernel that can be applied to a 4x4 region Apply the matrix to the top left of the block.
  • quadratic transformation is applied only to the upper left 4x4 area. If W or H is greater than 8, that is, if W or H is greater than or equal to 16 and the other is 4, the quadratic transformation is applied only to the upper left two 4x4 blocks. That is, only the upper left 4x8 or 8x4 area is divided into two 4x4 blocks, and a designated transform kernel matrix may be applied.
  • Up to 16 x 64 matrices (or 16 x 48 matrices) can be applied for 8 x 8 transform units (up to 16 coefficients can be generated), and top left for 4 x N or N x 4 (N ⁇ 16) transform units
  • a 16 x 16 matrix can be applied to a 4 x 4 block, or a top 8 x 16 matrix of a 16 x 16 matrix can be applied to two 4 x 4 blocks located at the upper left.
  • 8 transform coefficients can be generated by applying each of the top 4 x 16 matrices among the 16 x 16 matrices to the two 4 x 4 blocks located at the top left. I can.
  • the maximum size of the quadratic transform applied to the 4 x 4 area can be limited to 8 x 16.
  • the amount of memory required to store transform kernel matrices applied to a 4 x 4 region can be reduced by half compared to a 16 x 16 matrix.
  • the maximum size can be limited to 8 x 16 by extracting only the top 8 x 16 matrices out of each 16 x 16 matrices. It can be implemented to store only the corresponding 8 x 16 matrices of the matrix.
  • the maximum applicable transform size is 8 x 16 and the maximum number of multiplications required to generate one coefficient is limited to 8
  • a maximum of 8 x 16 matrices can be applied, and a 4 x N block or
  • a maximum of 8 x 16 matrices can be applied to each of the two 4 x 4 blocks in the upper left corner constituting the interior.
  • an 8 x 16 matrix can be applied to the top left 4 x 4 block.
  • the transform index when coding an index specifying a quadratic transform to be applied to a luma component, more specifically, when one transform set is composed of two transform kernel matrices, whether to apply the quadratic transform and to apply In this case, you must specify which transformation kernel matrix to apply.
  • the transform index when the quadratic transform is not applied, the transform index may be coded as 0, and in the case of applying, the transform indexes for two transform kernel matrices may be coded as 1 and 2, respectively.
  • truncated unary coding when coding the transformation index, truncated unary coding can be used. For example, binary codes of 0, 10, and 11 are allocated to transformation indexes 0, 1, and 2, respectively. You can code
  • CABAC context when coding in a truncated unary scheme, a different CABAC context may be assigned to each bin, and two CABAC contexts may be used when coding transform indexes 0, 10, and 11 according to the above example.
  • a transform index for the quadratic transform for the luma component is coded. Similar to the case, it is necessary to specify whether to apply the quadratic transformation and, if so, which transformation kernel matrix to apply. For example, when the quadratic transform is not applied, the transform index may be coded as 0, and in the case of applying, the transform indexes for two transform kernel matrices may be coded as 1 and 2, respectively.
  • truncated unary coding when coding the transformation index, truncated unary coding can be used. For example, binary codes of 0, 10, and 11 are allocated to transformation indexes 0, 1, and 2, respectively. You can code
  • CABAC context when coding in a truncated unary scheme, a different CABAC context may be assigned to each bin, and two CABAC contexts may be used when coding transform indexes 0, 10, and 11 according to the above example.
  • a different CABAC context set may be allocated according to a chroma intra prediction mode. For example, when divided into a non-directional mode such as a planner mode or a DC mode, and other directional modes (ie, divided into two groups), 0, 10, 11 as in the above example When coding is performed, a corresponding CABAC context set (consisting of two contexts) can be allocated for each group.
  • a chroma intra prediction mode value when the chroma intra prediction mode is divided into several groups and a corresponding CABAC context set is allocated, a chroma intra prediction mode value must be determined before transform index coding for a quadratic transform.
  • DM chroma direct mode
  • the intra prediction mode value for the luma component since the luma intra prediction mode value is used as it is, the intra prediction mode value for the luma component must also be found. Therefore, when coding information on color difference components, data dependency on luma component information may occur, so in the case of chroma DM mode, transformation index coding for quadratic transformation is performed without information on intra prediction mode. In this case, the above-described data dependency can be removed by mapping to a specific group.
  • the chroma intra prediction mode is the chroma DM mode, it is regarded as a planner mode or a DC mode, and the corresponding transform index coding is performed using the corresponding CABAC context set, or other directional mode is considered and the corresponding CABAC context Set can be applied.
  • ISP coding means that one coding block is divided into two or four sub-blocks and is coded.
  • one sub-block refers to the reconstructed pixel value of the adjacent left or upper The prediction is performed.
  • coding used may be used as a concept including both coding performed by the encoding device and decoding performed by the decoding device.
  • FIG. 9 and 10 illustrate an example of a sub-block in which one coding block is divided, and more specifically, FIG. 9 is a coding block (width (W) X height (H)) of 4 x 8 blocks or 8 It is an example of partitioning for a case of x 4 blocks, and FIG. 10 shows an example of partitioning for a case where the coding block is not a 4 x 8 block, 8 x 4 block, or 4 x 4 block.
  • W width
  • H height
  • sub-blocks are sequentially coded according to the division type, for example, horizontally or vertically, left to right, or top to bottom, and inverse transformation and intra prediction for one subblock are performed.
  • coding for the next subblock may be performed.
  • a reconstructed pixel of a coding block that has already been coded is referred to as in a conventional intra prediction scheme.
  • the restoration of the adjacent coding block that has already been coded is coded as in a conventional intra prediction method. Coded with reference to the pixel.
  • all sub-blocks may be coded with the same intra prediction mode, and a flag indicating whether to use ISP coding and a flag indicating in which direction (horizontal or vertical) is to be divided may be signaled.
  • 9 and 10 depending on the block shape, the number of sub-blocks can be adjusted to 2 or 4, and if the size (width x height) of one sub-block is less than 16, division into the corresponding sub-block is allowed. It can be restricted so that it is not applied or the ISP coding itself is not applied.
  • non-separated quadratic transformation such as RST can be applied as follows.
  • transformation or inverse transformation may be performed in units of sub-blocks.
  • non-separated quadratic transformation such as RST may not be applied. That is, when the ISP is applied, the encoding device can directly perform the quantization process on the transform coefficient on which the forward primary transform has been performed, and the decoding device takes the inverse quantized result as an input and directly performs the inverse first transform ( inverse primary transform) can be performed.
  • a non-separated quadratic transformation such as RST may be applied to each sub-block divided by the ISP.
  • the RST since the RST can be applied only when both the width and height of the sub-block are 4 or more, the RST may not be applied when the length of one side of the divided sub-block is less than 4. If the size of all sub-blocks includes a 4 x 4 area or more, RST can be applied to each sub-block. If the sub-block contains more than 8 x 8 regions, a transform kernel applicable to the 8 x 8 regions, for example, a 16 x 64 or 16 x 48 transform kernel matrix may be applied, otherwise, a 4 x 4 region A transform kernel applicable to, for example, a 16 x 16 transform kernel matrix may be applied to one or two 4 x 4 blocks located at the upper left of the sub-block. In addition, the encoding device and the decoding device may apply the non-separated quadratic transformation in consideration of the calculation amount in the worst case as described above.
  • an individual sub-block may be regarded as a transform unit to which RST can be applied, that is, a transform target block, and the above-described RST application method may be applied to each sub-block as it is.
  • the same RST transformation matrix may be applied to all subblocks, and a different RST transformation matrix may be applied to each subblock.
  • the same transform set can be applied to all subblocks divided by the ISP in one coding block, but any transform within one transform set.
  • Whether to use the kernel matrix can be set differently for each subblock. For example, when one transform set is composed of two transforms, that is, a transform kernel matrix, a transform index indicating this may have values from 0 to 2.
  • the transformation index indicates '0' when non-separated quadratic transformation such as RST is not applied, '1' when the first transformation kernel matrix is applied, and '2' when the second transformation kernel matrix is applied. can do.
  • one transform index may be signaled for all blocks before the sub-block is divided, for example, a coding block. That is, an individual transform process is performed for each sub-block, but only one transform kernel matrix applied to the second-order transform may be used, and a transform index indicating such transform kernel matrix may be signaled for the coding block before division.
  • FIG. 11 is a flowchart illustrating an operation of a video decoding apparatus according to an embodiment of the present document.
  • Each step disclosed in FIG. 11 may be performed by the decoding apparatus 300 disclosed in FIG. 3. More specifically, S1110 may be performed by the entropy decoding unit 310 disclosed in FIG. 3, S1120 may be performed by the inverse quantization unit 321 disclosed in FIG. 3, and S1130 and S1140 are disclosed in FIG. 3. It may be performed by the inverse transform unit 322, and S1150 may be performed by the addition unit 340 disclosed in FIG. 3. In addition, operations according to S1110 to S1150 are based on some of the contents described above in FIGS. 4 to 10. Accordingly, detailed descriptions overlapping with those described above in FIGS. 3 to 10 will be omitted or simplified.
  • the decoding apparatus 300 may derive quantized transform coefficients for a target block from a bitstream (S1110). More specifically, the decoding apparatus 300 may decode information about quantized transform coefficients for a target block from a bitstream, and based on information about quantized transform coefficients for a target block, Quantized transform coefficients can be derived.
  • Information on quantized transform coefficients for the target block may be included in a sequence parameter set (SPS) or a slice header, information on whether or not a simplified transform (RST) is applied, information on a simplification factor, At least one of information about the minimum transform size to which the simplified transform is applied, information about the maximum transform size to which the simplified transform is applied, the size of the simplified inverse transform, and information about a transform index indicating any one of transform kernel matrices included in the transform set It may include.
  • SPS sequence parameter set
  • RST simplified transform
  • simplification factor At least one of information about the minimum transform size to which the simplified transform is applied, information about the maximum transform size to which the simplified transform is applied, the size of the simplified inverse transform, and information about a transform index indicating any one of transform kernel matrices included in the transform set It may include.
  • the decoding apparatus 300 may derive transform coefficients by performing inverse quantization on quantized transform coefficients for a target block (S1120).
  • the derived transform coefficients may be arranged according to the reverse diagonal scan order in units of 4 ⁇ 4 blocks, and the transform coefficients in the 4 ⁇ 4 block may also be arranged according to the reverse diagonal scan order. That is, the transform coefficients subjected to inverse quantization may be arranged according to the reverse scan order applied in a video codec such as in VVC or HEVC.
  • the decoding apparatus 300 may derive modified transform coefficients based on an inverse reduced secondary transform (RST) of the transform coefficients (S1130).
  • RST inverse reduced secondary transform
  • the inverse RST may be performed based on the inverse RST matrix, and the inverse RST matrix may be an amorphous matrix in which the number of columns is smaller than the number of rows.
  • S1130 corresponds to a step of decoding a transform index, determining whether a condition to apply an inverse RST based on the transform index, selecting a transform kernel matrix, and a condition to apply an inverse RST If so, it may include applying inverse RST to the transform coefficients based on the selected transform kernel matrix and/or the simplification factor. In this case, the size of the simplified inverse transform matrix may be determined based on the simplification factor.
  • the decoding apparatus 300 may derive residual samples for a target block based on an inverse transform of the modified transform coefficients (S1140).
  • the decoding apparatus 300 may perform an inverse linear transformation on the modified transform coefficients for the target block.
  • a simplified inverse transform may be applied to the inverse linear transform, or a conventional separation transform may be used.
  • the decoding apparatus 300 may generate reconstructed samples based on residual samples for the target block and prediction samples for the target block (S1150).
  • residual samples for the target block are derived based on the inverse RST of transform coefficients for the target block.
  • the size of a typical inverse transform matrix is NxN, but the size of the inverse RST matrix is reduced to NxR. Therefore, compared to the case of performing the normal transform, the memory usage when performing the inverse RST is R/ It can be reduced by N ratio.
  • the number of multiplication operations can be reduced by an R/N ratio (NxR) by using an inverse RST matrix.
  • the decoding efficiency may increase.
  • the (inverse) conversion efficiency and decoding efficiency of the decoding apparatus 300 may be increased through the inverse RST.
  • FIG. 12 is a control flowchart illustrating a method of decoding an image by a decoding apparatus according to an embodiment of the present document.
  • a method of converting an image performed by a decoding apparatus more specifically, a quadratic transformation process, or an inverse quadratic transformation corresponding to the quadratic transformation performed by the encoding device will be described.
  • the inverse quadratic transform performed by the decoding device is referred to as a non-separated quadratic transform.
  • the decoding apparatus 300 receives information on a quantized transform coefficient, an intra prediction mode, and a transform index for a non-separated quadratic transform from the bitstream (S1200).
  • a non-separated quadratic transform is a non-separated transform that applies a transform without separating the coefficients in a specific direction, unlike a first-order transform that transforms coefficients to be transformed in a vertical or horizontal direction.
  • the non-separated transformation may be a low-frequency non-separated transformation in which the transformation is applied only to a low frequency region, not the entire target block to be transformed.
  • flag information indicating whether or not a conversion index exists may be further received from the bitstream.
  • Flag information indicating whether or not the transformation index is received may be sps_st_enabled_flag of Table 41, which may be transformed into sps_lfnst_enabled_flag according to the type of secondary transformation. Such flag information may indicate whether a transformation index is received, that is, whether a transformation index exists in the bitstream, and may be included in the sequence parameter syntax and received.
  • the flag information is 0, since the conversion index does not exist, non-separated quadratic conversion may not be performed. If the flag information is 1, since the conversion index exists, the conversion index can be received and parsed by the decoding apparatus.
  • This transform index may exist in the coding unit syntax.
  • the syntax element of the transform index may indicate whether or not a non-separated quadratic transform is applied and any one of transform kernel matrices included in the transform set.
  • the transform set includes two transform kernel matrices, There may be three values of the syntax element of the conversion index.
  • the syntax element value for the transformation index is 0 indicating a case where non-separated quadratic transformation is not applied to the target block, 1 indicating the first transformation kernel matrix among transformation kernel matrices, and the transformation kernel It may include 2 indicating the second transform kernel matrix among the matrices.
  • This information is received as syntax information, and the syntax information is received as a binarized empty string containing 0s and 1s.
  • syntax element values for the three transform indices may be coded as 0, 10, and 11 according to the truncated universal code method. That is, a value of 0 for a syntax element may be binarized to '0', a value of 1 for a syntax element may be '10', and a value of 2 for a syntax element may be binarized to '11'.
  • different context information that is, a probability model
  • a context method rather than a bypass method
  • the first bin of the bins of the syntax element for the transformation index is decoded based on the first context information
  • the second bin may be decoded based on the second context information.
  • the quantized transform coefficients received from the bitstream may be derived as transform coefficients through inverse quantization as shown in S1120 of FIG. 11 (S1210).
  • the following transform coefficients refer to inverse quantized transform coefficients.
  • the decoding apparatus is an input indicating the length of the dequantized transform coefficient to which the non-separated quadratic transform is applied if the received transform index does not indicate that non-separated quadratic transform is not performed, that is, if the transform index is not '0'.
  • the transform coefficient size, the output transform coefficient size indicating the length of the modified transform coefficient to which the non-separated quadratic transform is applied, and the transform set mapped to the intra mode of the target block may be derived.
  • the decoding apparatus applies one transform kernel matrix to the sub-blocks to derive modified transform coefficients in units of sub-blocks (S1220). ).
  • the same transform kernel matrix is applied to sub-blocks during non-separated quadratic transform, and a transform index indicating this may be signaled once for a plurality of sub-blocks.
  • This transformation index may be signaled in units of a target block divided into subblocks, and such a target block may be a Corning unit.
  • the coding unit is a concept including a coding block divided into sub-blocks.
  • a sub-block to which non-separated quadratic transform is individually performed may be regarded as a transform unit or transform block as a unit of transform.
  • the decoding apparatus may derive whether the target block is divided into a predetermined number of subblocks by receiving and parsing flag information indicating whether to apply the ISP coding or the ISP mode.
  • the decoding apparatus may derive the size and number of sub-blocks to be divided through flag information indicating in which direction the target block is to be divided. For example, as shown in FIG. 9, if the size (width x height) of the target block is 8x4, the target block is divided in a vertical direction and divided into two sub-blocks, and non-separated quadratic transformation is performed on each of these two sub-blocks. Can be applied.
  • the target block is divided in a horizontal direction and divided into two sub-blocks, and a non-separated quadratic transformation may be applied to each of these two sub-blocks.
  • the size (width x height) of the target block is greater than 4x8 or 8x4, that is, the size of the target block is 1) 4xN or Nx4 (N ⁇ 16) or 2) M x N
  • the target block may be divided into 4 sub-blocks in a horizontal or vertical direction.
  • ISP coding divided into subblocks may not be applied, or different transform kernel matrices may be applied to subblocks to be divided due to ISP mode.
  • the size of the input transform coefficient means the length of the transform kernel matrix and the transform coefficients on which the matrix operation is performed, that is, the number of transform coefficients
  • the size of the output transform coefficient is the length of the modified transform coefficient output after the matrix operation is performed, That is, it means the number of modified transform coefficients.
  • the size of the sub-block is 4 x 4 or 8 x 8
  • the size of the input transform coefficient is 8
  • the size of the sub-block is not 4 x 4 or 8 x 8
  • the size of the input transform coefficient is 16 days. I can. That is, if the size of the sub-block, that is, the transform block is 4 x 4, 8 transform coefficients arranged in the scan order from the upper left position of the 4 x 4 block become input data, and if the size of the transform block is 8 x 8, 8 x Only 8 transform coefficients arranged in the scan order from the upper left of the 8 block become input data.
  • the sub-block is 4 x N, N x 4 (N ⁇ 8) or 2) the width and height of the sub-block are both equal to or greater than 8 (although 8 or more) If the width or height is greater than 8, 16 transform coefficients are input for matrix operation.
  • the size of the output transform coefficient may be 48, and if the width or height of the sub-block is less than 8, the size of the output transform coefficient may be 16.
  • inverse RST 8x8 is applied. That is, non-separated quadratic transformation is applied to the maximum left upper 4 x 4 area among the upper left 8 x 8 areas of the transform block, and as a result of the non-separated quadratic transformation, the upper left corner is not the entire 8 x 8 area but the lower right 4 x 4 area , 48 modified transform coefficients can be derived in the upper right and lower left 4 x 4 regions.
  • the width or height of the sub-block is less than 8, for example, in the case of a 4x4, 4x8, or 8x4 transform block, an inverse RST 4x4 is applied to the upper left 4x4 area of the transform block. That is, the non-separated quadratic transform is applied to 8 or 16 transform coefficients arranged according to the scan order from the upper left position of the 4 x 4 area, and as a result of the non-separated quadratic transform, 16 modified transform coefficients in the 4 x 4 area. Can be derived.
  • the transform set is derived by a mapping relationship according to the intra prediction mode of the sub-block, and a plurality of intra prediction modes may be mapped to one transform set. For example, four transform sets may exist according to the intra prediction mode.
  • the decoding apparatus may derive a transform kernel matrix based on the size of the output transform coefficient, the transform set, and the transform index.
  • Each of one transform set may include a plurality of transform kernel matrices.
  • the transform index may indicate any one of a plurality of transform kernel matrices. For example, if one transform set is composed of two transform kernel matrices, the transform index may indicate any one of two transform kernel matrices. have.
  • the transform kernel matrix may be determined based on the number of modified transform coefficients, information on a transform set, and a transform index value.
  • the transform kernel matrix may be applied to a specific area at the upper left of a sub-block, for example, an 8 x 8 area or a 4 x 4 area, depending on the reduction or simplification of the quadratic transform, and by applying the transform kernel matrix
  • the size of the output modified transform coefficients may be derived based on the transform index, the intra prediction mode, and the size of the subblock to which the non-separated quadratic transform is applied.
  • Non-separated quadratic transformation may be applied to only some of them.
  • the 64 x m transform kernel matrix applied to the 8 x 8 domain can be further reduced to a 48 x m transform kernel matrix.
  • the transform kernel matrix applied to the 4 x 4 domain is a 16 x 8 matrix.
  • m may be 16, and the 48 x 16 transform kernel matrix may be a transform kernel matrix based on Table 14, that is, a matrix obtained by taking a transpose to the matrix of Table 14.
  • the 16 x 8 transform kernel matrix may be a transform kernel matrix based on Table 18.
  • the 16 x 16 matrix in which the matrix of Table 18 is transposed it may be a 16 x 8 matrix including only 8 columns from the left.
  • it may be a 48 x 8 matrix including only 8 columns from the left in a 48 x 16 matrix in which the matrix of Table 14 is transposed.
  • a matrix from which 8 columns are extracted from a preset 16 x 16 transform kernel matrix may be used for matrix operation.
  • a preset 16 x 16 transform kernel matrix may be used for matrix operation.
  • a preset 48 x 16 transform kernel matrix may be used for matrix operation.
  • the size of the input transform coefficient is 8 and the size of the output transform coefficient is 48, a matrix from which 8 columns are extracted from a preset 48 x 16 transform kernel matrix may be used for matrix operation.
  • transform index may have a value of 0 indicating that no quadratic transformation is applied, and 1 or 2 indicating any one of two transform kernel matrices.
  • the decoding apparatus may derive the modified transform coefficient based on a matrix operation of a transform kernel matrix and a transform coefficient list corresponding to the size of the input transform coefficient.
  • the transform coefficient list may be composed of dequantized transform coefficients read in the order of the forward diagonal scan direction of the sub-block.
  • a one-dimensional array of transform coefficients derived through inverse quantization may be derived as a modified transform coefficient having a two-dimensional array through matrix operation with a transform kernel matrix.
  • the inverse transform unit 321 applies a transform kernel matrix to the transform coefficients of the upper left 4x4 region of the 8x8 region of the subblock, and a modified transformation of the upper left 4x4 region, the upper right 4x4 region and the lower left 4x4 region of the 8x8 region.
  • the coefficients can be derived.
  • the transform coefficients of the upper left 4x4 area of the 8x8 area are arranged one-dimensionally according to the forward diagonal scanning order as shown in Table 16, and are one-dimensional.
  • the transform coefficients of the array are the upper left 4x4 area of the 8x8 area as shown in Table 15 or 17 according to the order of either the row priority direction or the column priority direction according to the intra prediction mode applied to the subblock after matrix operation with the transform kernel matrix. It may be arranged in two dimensions in the upper right 4x4 area and the lower left 4x4 area.
  • the inverse quadratic transform can be applied to 16 transform coefficients in the upper left 4x4 area in the 8x8 area, and 48 of the upper left 4x4 area, the upper right 4x4 area, and the lower left 4x4 area of the 8x8 area through operation with the transform kernel matrix. Modified transform coefficients can be derived.
  • the inverse transform unit 321 may convert some transform coefficients of the 4x4 region to which the forward LFNST of the subblock is applied, for example, up to 8 transform coefficients from the upper left position in the 4x4 region according to the scanning order.
  • the transform kernel matrix 16 modified transform coefficients in the 4x4 domain can be derived.
  • a region in which eight transform coefficients are arranged is referred to as an upper left region within a 4x4 region.
  • any one of the height or width of the sub-block to which the transform is to be applied is less than 8, for example, a 4 x 4 transform block, the upper 4 x 4 of the 4 x 8 transform block, or the left 4 of the 8 x 4 transform block
  • a non-separated quadratic transform with a reduced transform matrix size may be applied to the x 4 block.
  • 8 transform coefficients of the upper left area of the 4 x 4 area are arranged one-dimensionally according to the forward diagonal scanning order, and are one-dimensional.
  • the transform coefficients of the array are arranged in two dimensions in a 4x4 region as shown in Table 12 or Table 13 according to either the row priority direction or the column priority direction according to the intra prediction mode applied to the subblock after matrix operation with the transform kernel matrix.
  • the intra prediction mode applicable to the sub-block is any one of 65 directional modes, the intra prediction mode is symmetric around the intra prediction mode 34 in the upper left diagonal direction, and the intra prediction mode applied to the sub-block is intra prediction.
  • the modified transform coefficients may be two-dimensionally arranged according to the row priority order.
  • the modified transform coefficients may be two-dimensionally arranged according to the column-priority order.
  • the modified transform coefficients may be two-dimensionally arranged according to the row priority order.
  • the inverse transform unit 321 applies a non-separated quadratic transform to generate an 8x8 area, more specifically, an 8x8 area excluding the lower-right 4x4 area of the 8x8 area, or a modified transform coefficient of the 4x4 area as a 2D block. can do.
  • the decoding apparatus may derive residual samples for the target block based on the inverse linear transform with respect to the modified transform coefficients (S1230).
  • the inverse first-order transformation may be based on multiple transform selection (MTS).
  • MTS multiple transform selection
  • the multi-core transformation to which multiple transformation is applied as a primary transformation refers to a method of transforming by additionally using DCT (Discrete Cosine Transform) type 2 and DST (Discrete Sine Transform) type 7, DCT type 8, and/or DST type 1. can do.
  • DCT Discrete Cosine Transform
  • DST Discrete Sine Transform
  • FIG. 13 is a flowchart illustrating an operation of a video encoding apparatus according to an embodiment of the present document.
  • Each step disclosed in FIG. 13 may be performed by the encoding apparatus 200 disclosed in FIG. 2. More specifically, S1310 may be performed by the prediction unit 220 disclosed in FIG. 2, S1320 may be performed by the subtraction unit 231 disclosed in FIG. 2, and S1330 and S1340 are the conversion units disclosed in FIG. 2. It may be performed by 232, and S1350 may be performed by the quantization unit 233 and the entropy encoding unit 240 disclosed in FIG. 2. In addition, operations according to S1310 to S1350 are based on some of the contents described above in FIGS. 4 to 10. Accordingly, detailed descriptions overlapping with those described above in FIGS. 2 and 4 to 10 will be omitted or simplified.
  • the encoding apparatus 200 may derive prediction samples based on an intra prediction mode applied to a target block (S1310).
  • the encoding apparatus 200 may derive residual samples for a target block (S1320).
  • the encoding apparatus 200 may derive transform coefficients for the target block based on a first-order transform for a residual sample (S1330).
  • the first-order transform may be performed through a plurality of transform kernels, and in this case, a transform kernel may be selected based on an intra prediction mode.
  • the decoding device 300 may perform a quadratic transformation, specifically NSST, on the transform coefficients for the target block, in which case NSST is performed based on a simplified transform (RST), or performed not based on RST. I can. If NSST is performed based on RST, it may correspond to the operation according to S1340.
  • the encoding apparatus 200 may derive modified transform coefficients for the target block based on the RST for the transform coefficient (S1340).
  • the RST may be performed based on a simplified transform matrix or a transform kernel matrix, and the simplified transform matrix may be an amorphous matrix in which the number of rows is smaller than the number of columns.
  • S1340 is a step of determining whether a condition to apply RST is applied, generating and encoding a transform index based on the determination, selecting a transform kernel matrix, and a condition to apply RST. If so, it may include applying RST to the residual samples based on the selected transform kernel matrix and/or the simplification factor. In this case, the size of the simplified transform kernel matrix may be determined based on the simplification factor.
  • the encoding apparatus 200 may perform quantization based on modified transform coefficients for a target block to derive quantized transform coefficients, and encode information on the quantized transform coefficients (S1350). ).
  • the encoding apparatus 200 may generate information about quantized transform coefficients and encode information about the generated quantized transform coefficients.
  • information on quantized transform coefficients includes information on whether RST is applied, information on a simplification factor, information on a minimum transform size to which RST is applied, and information on a maximum transform size to which RST is applied. It may include at least one of.
  • transform coefficients for a target block are derived based on RST for residual samples.
  • the size of the normal transform kernel matrix is NxN, but the size of the simplified transform matrix is reduced to RxN. Therefore, compared to the case of performing the normal transform, the memory usage when performing RST is reduced to R. It can be reduced by the /N ratio.
  • the use of the simplified transform kernel matrix can reduce the number of multiplication operations by an R/N ratio (RxN).
  • the total number of transform coefficients for the target block is reduced from N to R when compared to the N transform coefficients derived when a normal transform is applied.
  • the amount of data that 200 transmits to the decoding device 300 may be reduced.
  • conversion efficiency and coding efficiency of the encoding apparatus 200 may be increased through RST.
  • FIG. 14 is a flowchart illustrating a method of encoding an image by an encoding apparatus according to an embodiment of the present document.
  • a method of converting an image performed by an encoding device more specifically, a second order transformation process, or a second order transformation corresponding to an inverse second order transformation performed by a decoding device will be described.
  • the second-order transformation performed by the encoding device is referred to as non-separated second-order transformation.
  • a non-separated quadratic transform is a non-separated transform that applies a transform without separating the coefficients in a specific direction, unlike a first-order transform that transforms coefficients to be transformed in a vertical or horizontal direction.
  • the non-separated transform may be a low-frequency non-separated transform (LFNST) in which transform is applied only to a low frequency region rather than the entire target block to be transformed.
  • LNNST low-frequency non-separated transform
  • the encoding apparatus 200 derives a transform coefficient by applying a first-order transform to a residual sample for a target block (S1400).
  • the encoding apparatus When the non-separated quadratic transform is applied to transform coefficients derived through the first transform, the encoding apparatus divides the target block into a predetermined number of sub-blocks to predict intra-predicted coding blocks. By applying the matrix, the modified transform coefficient may be derived in units of sub-blocks (S1410).
  • the same transformation kernel matrix is applied to a plurality of sub-blocks during non-separated quadratic transformation, and the non-separated quadratic transformation process may be performed in individual sub-block units.
  • the same transform kernel matrix is applied to a plurality of sub-blocks, it means that one transform kernel matrix is applied in units of a target block divided into sub-blocks.
  • a subblock to which non-separated quadratic transformation is individually performed may be regarded as a transform unit or a transform block as a unit of transformation.
  • the encoding apparatus may derive a direction in which the target block is divided and the size and number of sub-blocks to be divided. For example, as shown in FIG. 9, if the size (width x height) of the target block is 8x4, the target block is divided in a vertical direction and divided into two sub-blocks, and non-separated quadratic transformation is performed on each of these two sub-blocks. Can be applied. If the size (width x height) of the target block is 4x8, the target block is divided in a horizontal direction and divided into two sub-blocks, and a non-separated quadratic transformation may be applied to each of these two sub-blocks. Or, as shown in FIG.
  • the target block when the size (width x height) of the target block is greater than 4x8 or 8x4, that is, the size of the target block is 1) 4xN or Nx4 (N ⁇ 16) or 2) M x N When (M ⁇ 8, N ⁇ 8), the target block may be divided into 4 sub-blocks in a horizontal or vertical direction.
  • ISP coding divided into subblocks may not be applied, or different transform kernel matrices may be applied to subblocks to be divided due to ISP mode.
  • the encoding apparatus may derive an input transform coefficient size, an output transform coefficient size, and a transform set mapped to an intra mode of the sub-block.
  • the size of the input transform coefficient means the length of the transform kernel matrix and the transform coefficients on which the matrix operation is performed, that is, the number of transform coefficients
  • the size of the output transform coefficient is the length of the modified transform coefficient output after the matrix operation is performed, That is, it means the number of modified transform coefficients.
  • the size of the input transform coefficient may be 48, and if the width or height of the sub-block is less than 8, the size of the input transform coefficient may be 16.
  • RST 8x8 is applied to apply a non-separated quadratic transform to the upper left 8 x 8 area of the transform block, and 8 results of the non-separated quadratic transform (e.g. For example, 8 x 8 transform blocks) or 16 (eg, greater than 8 x 8 transform blocks) modified transform coefficients can be derived.
  • the width or height of the sub-block is less than 8, for example, RST 4x4 is applied to the 4 x 4, 4 x 8, and 8 x 4 transform blocks, and is compared to 16 transform coefficients in the upper left 4 x 4 area of the transform block. Separate quadratic transforms are applied, resulting in 8 (e.g., 4 x 4 transform blocks) or 16 (e.g., 4 x 8, 8 x 4 transform blocks) modified transform coefficients. have.
  • the size of the output transform coefficient is 8
  • the size of the sub-block is not 4 x 4 or 8 x 8
  • the size of the output transform coefficient is May be 16. That is, if the size of the sub-block, that is, the transform block is 4 x 4, 8 pieces of data are output after the non-separated quadratic transformation, and even if the size of the transform block is 8 x 8, only 8 transform coefficients after the non-separated quadratic transformation. Is derived.
  • the width and height are both equal to or greater than 8 and at least one of the width and height is greater than 8, or 2) 4 x N, N x 4 (N ⁇ 8 ), 16 transform coefficients may be output per matrix operation.
  • the transform set is derived by a mapping relationship according to the intra prediction mode of the sub-block, and a plurality of intra prediction modes may be mapped to one transform set. For example, four transform sets may exist according to the intra prediction mode.
  • the encoding device calculates the modified transform coefficient based on a matrix operation of transform coefficients corresponding to the size of the input transform coefficient and any one of the transform kernel matrices included in the transform set. Can be derived.
  • the transform unit 232 of the encoding device may select any one of a plurality of transform kernel matrices included in the transform set.
  • a transform set is derived by a mapping relationship according to an intra prediction mode of a sub-block, and a plurality of intra prediction modes may be mapped to one transform set.
  • each of one transform set may include a plurality of transform kernel matrices.
  • a transform index indicating either one of the two transform kernel matrices may be encoded and signaled to the decoding device.
  • the residual sample When the second transform process is applied to the residual sample, the residual sample may be referred to as a transform coefficient if it is first transformed, and a modified transform coefficient if non-separated quadratic transform is performed after the first transform.
  • Each of one transform set may include a plurality of transform kernel matrices.
  • the transform index may indicate any one of a plurality of transform kernel matrices. For example, if one transform set is composed of two transform kernel matrices, the transform index may indicate any one of two transform kernel matrices. have.
  • the transform kernel matrix may be determined based on the number of modified transform coefficients, information on a transform set, and a transform index value.
  • the type of non-separated quadratic transform applied to a block of a predetermined size in the sub-block (RST 8x8, RST 4x4) and the number of modified transform coefficients to be output According to this, the size and matrix coefficient of the transform kernel matrix may vary.
  • the transform kernel matrix is a specific area at the upper left of the subblock, for example, an 8x8 area, more specifically an 8x8 area excluding a 4x4 area at the lower right of the 8x8 area according to the reduction or simplification size of the quadratic transformation,
  • the size of the modified transform coefficients that can be applied to a 4 x 4 region and output by applying the transform kernel matrix is the size of the transform index, the intra prediction mode, and the subblock to which the non-separated quadratic transform is applied.
  • Non-separated quadratic transformation may be applied to only some of them. If only 48 transform coefficients among the transform coefficients of the 8 ⁇ 8 region are input for the quadratic transformation, the m ⁇ 64 transform kernel matrix applied to the 8 ⁇ 8 region can be further reduced to an m ⁇ 48 transform kernel matrix. Alternatively, if only 8 of the transform coefficients of the 4 x 4 domain are output by applying the non-separated quadratic transform, the transform kernel matrix applied to the 4 x 4 domain is an 8 x 16 matrix.
  • m may be 16, and the 16 x 48 transform kernel matrix may be the transform kernel matrix shown in Table 14.
  • the 8 x 16 transform kernel matrix may be a transform kernel matrix based on Table 18. That is, when a quadratic transform is applied to a 4 x 4 region to generate m transform coefficients, an m x 16 transform kernel matrix may be applied to a 4 x 4 region.
  • m may be 8, and the 8 x 16 transform kernel matrix may be a matrix including the upper 8 rows in Table 18.
  • the 8 x 48 transform kernel matrix may be a transform kernel matrix based on Table 14.
  • an mx 48 transform kernel matrix is applied to the 8 x 8 area excluding the 4 x 4 area at the bottom right.
  • m may be 8
  • the 8 x 48 transform kernel matrix may be a matrix including the upper 8 rows in Table 14.
  • a matrix from which 8 rows are extracted from a preset 16 x 16 transform kernel matrix may be used for matrix operation.
  • a predetermined 16 x 16 transform kernel matrix may be used for matrix operation.
  • a preset 16 x 48 transform kernel matrix may be used for matrix operation.
  • a matrix from which 8 rows are extracted from a preset 16 x 48 transform kernel matrix may be used for matrix operation.
  • transform index may have a value of 0 indicating that no quadratic transformation is applied, and 1 or 2 indicating any one of two transform kernel matrices.
  • the transform unit 232 When performing the non-separated quadratic transform using the transform kernel matrix for transform coefficients, the transform unit 232 prioritizes the transform coefficients of the two-dimensional array that has undergone first-order transform based on the intra prediction mode applied to the sub-block. They can be arranged in one dimension according to the order of either direction or column priority.
  • the transform unit 232 applies a transform kernel matrix to the transform coefficients of the upper left 4x4 area, the upper right 4x4 area, and the lower left 4x4 area of the 8x8 area of the sub-block to correspond to the upper left 4x4 area of the 8x8 area.
  • Modified transform coefficients can be derived.
  • the transform kernel matrix may be applied to a specific area at the upper left of the sub-block, for example, an 8 x 8 area or a 4 x 4 area, or a partial area of an 8 x 8 area, depending on the reduction or simplification size of the quadratic transformation.
  • the size of the modified transform coefficients output by applying the kernel matrix that is, the number of modified transform coefficients, may be derived based on the size of the transform kernel matrix, the intra prediction mode, and the size of the subblock to which the quadratic transform is applied.
  • the two-dimensional transform coefficients must be arranged in one dimension for matrix operation with the transform kernel matrix, and a number of modified transform coefficients less than the number of transform coefficients can be derived through an operation such as Equation 6. I can.
  • transform coefficients of a two-dimensional array in a specific region can be read in one dimension according to a certain order of directions, and are derived as modified transform coefficients through matrix operation with a transform kernel matrix.
  • the transform unit 232 may derive 8 modified transform coefficients corresponding to the upper left area of the 4x4 area by applying the transform kernel matrix to 16 transform coefficients in the 4x4 subblock. . That is, the 16 transform coefficients of the 4x4 region to be transformed are one-dimensionally arranged in either the row-priority direction or the column-priority direction as shown in Table 12 or Table 13 according to the intra prediction mode applied to the sub-block.
  • the derived eight modified transform coefficients may be arranged in a diagonal scanning direction in the upper left area of the 4x4 area.
  • the intra prediction mode applicable to the sub-block is any one of 65 directional modes, the intra prediction mode is symmetric around the intra prediction mode 34 in the upper left diagonal direction, and the intra prediction mode applied to the sub-block is intra prediction.
  • the transform coefficients of the upper left 4x4 area, the upper right 4x4 area and the lower left 4x4 area among the 8x8 areas are one-dimensional according to the row priority order as shown in Table 15. Can be arranged.
  • the transform coefficients of the upper left 4x4 area, the upper right 4x4 area and the lower left 4x4 area of the 8x8 area may be one-dimensionally arranged according to the order of the column-first direction as shown in Table 17.
  • the transform coefficients of the upper left 4x4 area, the upper right 4x4 area, and the lower left 4x4 area of the 8x8 area may be one-dimensionally arranged according to the row priority order.
  • the entropy encoding unit 240 performs quantization based on the modified transform coefficients to derive quantized transform coefficients (S1420), encodes a transform index in units of coding units, and Information on the extra-quantized transform coefficients and the quantized transform coefficients may be encoded (S1430).
  • the entropy encoding unit 240 derives a syntax element value for a transform index indicating any one of the transform kernel matrices included in the transform set, binarizes the syntax element value for the derived transform index, and then converts the transform index.
  • Beans of the syntax element bean string may be encoded based on context information about the bean string of, that is, a context model.
  • the transform index indicating the transform kernel matrix may be encoded once for a plurality of sub-blocks. That is, the transform index may be encoded and output in units of a target block divided into subblocks, and such a target block may be a Corning unit.
  • the coding unit is a concept including a coding block divided into sub-blocks.
  • the encoding apparatus may encode flag information indicating whether to apply ISP coding or ISP mode, and may encode and output flag information indicating in which direction the target block is to be divided.
  • the encoded syntax element bean string may be output to the decoding apparatus 300 or externally in the form of a bitstream.
  • the above-described method according to this document may be implemented in a software form, and the encoding device and/or decoding device according to this document performs image processing such as a TV, computer, smartphone, set-top box, display device, etc. Can be included in the device.
  • the above-described method may be implemented as a module (process, function, etc.) performing the above-described functions.
  • the modules are stored in memory and can be executed by the processor.
  • the memory may be inside or outside the processor, and may be connected to the processor by various well-known means.
  • the processor may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, and/or a data processing device.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and/or other storage device. That is, the embodiments described in this document may be implemented and performed on a processor, microprocessor, controller, or chip. For example, the functional units illustrated in each drawing may be implemented and executed on a computer, processor, microprocessor, controller, or chip.
  • decoding devices and encoding devices to which this document is applied include multimedia broadcasting transmission/reception devices, mobile communication terminals, home cinema video devices, digital cinema video devices, surveillance cameras, video chat devices, real-time communication devices such as video communication, and mobile streaming.
  • Devices storage media, camcorders, video-on-demand (VoD) service providers, OTT video (over the top video) devices, Internet streaming service providers, three-dimensional (3D) video devices, video telephony video devices, and medical video devices, etc. It may be included and may be used to process a video signal or a data signal.
  • an OTT video (Over the top video) device may include a game console, a Blu-ray player, an Internet-connected TV, a home theater system, a smartphone, a tablet PC, and a digital video recorder (DVR).
  • DVR digital video recorder
  • the processing method to which the present document is applied may be produced in the form of a program executed by a computer, and may be stored in a computer-readable recording medium.
  • Multimedia data having the data structure according to this document can also be stored in a computer-readable recording medium.
  • the computer-readable recording medium includes all kinds of storage devices and distributed storage devices in which computer-readable data is stored.
  • the computer-readable recording medium includes, for example, Blu-ray disk (BD), universal serial bus (USB), ROM, PROM, EPROM, EEPROM, RAM, CD-ROM, magnetic tape, floppy disk, and optical It may include a data storage device.
  • the computer-readable recording medium includes media implemented in the form of a carrier wave (for example, transmission through the Internet).
  • bitstream generated by the encoding method may be stored in a computer-readable recording medium or transmitted through a wired or wireless communication network.
  • an embodiment of this document may be implemented as a computer program product using a program code, and the program code may be executed in a computer according to the embodiment of this document.
  • the program code may be stored on a carrier readable by a computer.
  • the content streaming system to which this document is applied may largely include an encoding server, a streaming server, a web server, a media storage, a user device, and a multimedia input device.
  • the encoding server serves to generate a bitstream by compressing content input from multimedia input devices such as smartphones, cameras, camcorders, etc. into digital data, and transmits it to the streaming server.
  • multimedia input devices such as smartphones, cameras, camcorders, etc. directly generate bitstreams
  • the encoding server may be omitted.
  • the bitstream may be generated by an encoding method or a bitstream generation method to which this document is applied, and the streaming server may temporarily store the bitstream while transmitting or receiving the bitstream.
  • the streaming server transmits multimedia data to a user device based on a user request through a web server, and the web server serves as an intermediary for notifying the user of a service.
  • the web server transmits it to the streaming server, and the streaming server transmits multimedia data to the user.
  • the content streaming system may include a separate control server, and in this case, the control server serves to control commands/responses between devices in the content streaming system.
  • the streaming server may receive content from a media storage and/or encoding server. For example, when content is received from the encoding server, the content may be received in real time. In this case, in order to provide a smooth streaming service, the streaming server may store the bitstream for a predetermined time.
  • Examples of the user device include a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), a navigation system, a slate PC, and Tablet PC, ultrabook, wearable device, e.g., smartwatch, smart glass, head mounted display (HMD), digital TV, desktop computer , Digital signage, etc.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • Tablet PC tablet
  • ultrabook ultrabook
  • wearable device e.g., smartwatch, smart glass, head mounted display (HMD), digital TV, desktop computer , Digital signage, etc.
  • HMD head mounted display
  • Each server in the content streaming system may be operated as a distributed server, and in this case, data received from each server may be distributedly processed.
  • the claims set forth herein may be combined in a variety of ways.
  • the technical features of the method claims of the present specification may be combined to be implemented as a device, and the technical features of the device claims of the present specification may be combined to be implemented by a method.
  • the technical characteristics of the method claim of the present specification and the technical characteristics of the device claim may be combined to be implemented as a device, and the technical characteristics of the method claim of the present specification and the technical characteristics of the device claim may be combined to be implemented by a method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 문서에 따른 영상 디코딩 방법은 대상 블록에 대한 양자화된 변환 계수 및 비분리 2차 변환에 대한 변환 인덱스를 수신하는 단계와; 상기 양자화된 변환 계수를 역양자화하여 변환 계수들을 도출하는 단계와; 상기 변환 인덱스에 의하여 지시되는 소정의 변환 세트 내 변환 커널 매트릭스에 기초하여 수정된 변환 계수를 도출하는 단계와; 상기 수정된 변환 계수들에 대하여 역 1차 변환을 기반으로 상기 대상 블록에 대해 레지듀얼 샘플들을 도출하는 단계를 포함하되, 상기 대상 블록이 소정 개수의 서브 블록들로 분할되어 인트라 예측으로 코딩된 경우, 상기 수정된 변환 계수는 상기 서브 블록 단위로 도출되고, 상기 변환 인덱스는 상기 대상 블록에 대하여 수신되는 것을 특징으로 한다.

Description

이차 변환에 기반한 영상 코딩 방법 및 그 장치
본 문서는 영상 코딩 기술에 관한 것으로서 보다 상세하게는 영상 코딩 시스템에서 변환(transform)에 기반한 영상 코딩 방법 및 그 장치에 관한 것이다.
최근 4K 또는 8K 이상의 UHD(Ultra High Definition) 영상/비디오와 같은 고해상도, 고품질의 영상/비디오에 대한 수요가 다양한 분야에서 증가하고 있다. 영상/비디오 데이터가 고해상도, 고품질이 될수록 기존의 영상/비디오 데이터에 비해 상대적으로 전송되는 정보량 또는 비트량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 영상/비디오 데이터를 저장하는 경우, 전송 비용과 저장 비용이 증가된다.
또한, 최근 VR(Virtual Reality), AR(Artificial Realtiy) 컨텐츠나 홀로그램 등의 실감 미디어(Immersive Media)에 대한 관심 및 수요가 증가하고 있으며, 게임 영상과 같이 현실 영상과 다른 영상 특성을 갖는 영상/비디오에 대한 방송이 증가하고 있다.
이에 따라, 상기와 같은 다양한 특성을 갖는 고해상도 고품질의 영상/비디오의 정보를 효과적으로 압축하여 전송하거나 저장하고, 재생하기 위해 고효율의 영상/비디오 압축 기술이 요구된다.
본 문서의 기술적 과제는 영상 코딩 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 다른 기술적 과제는 변환 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 분할된 서브 블록에 적용되는 영상 변환 방법 및 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 인트라 예측 모드에 따라 변환 계수의 배열을 달리하여 2차 변환의 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 2차 변환에 적용되는 변환 커널 매트릭스를 최적화 하여 2차 변환의 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 코딩 효율을 증가시킬 수 있는 변환 세트를 기반으로 하는 영상 코딩 방법 및 장치를 제공함에 있다.
본 문서의 일 실시예에 따르면, 디코딩 장치에 의하여 수행되는 영상 디코딩 방법을 제공한다. 상기 방법은 대상 블록에 대한 양자화된 변환 계수 및 비분리 2차 변환에 대한 변환 인덱스를 수신하는 단계와; 상기 양자화된 변환 계수를 역양자화하여 변환 계수들을 도출하는 단계와; 상기 변환 인덱스에 의하여 지시되는 소정의 변환 세트 내 변환 커널 매트릭스에 기초하여 수정된 변환 계수를 도출하는 단계와; 상기 수정된 변환 계수들에 대하여 역 1차 변환을 기반으로 상기 대상 블록에 대해 레지듀얼 샘플들을 도출하는 단계를 포함하되, 상기 대상 블록이 소정 개수의 서브 블록들로 분할되어 인트라 예측으로 코딩된 경우, 상기 수정된 변환 계수는 상기 서브 블록 단위로 도출되고, 상기 변환 인덱스는 상기 대상 블록에 대하여 수신될 수 있다.
상기 비분리 2차 변환 시 상기 서브 블록들에 동일한 변환 커널 매트릭스가 적용될 수 있다.
상기 대상 블록은 코딩 유닛이고, 상기 서브 블록은 변환 유닛일 수 있다.
상기 대상 블록의 크기(폭 x 높이)가 8x4이면, 상기 대상 블록은 수직 분할되고, 상기 대상 블록의 크기(폭 x 높이)가 4x8이면, 상기 대상 블록은 수평 분할될 수 있다.
또한, 어떤 블록(A)이 다른 블록 (B)보다 크다는 것은, (A)의 가로 길이와 세로 길이가 각각 (B)의 가로 길이와 세로 길이보다 크거나 같으면서, (A)의 가로 길이가 (B)의 가로 길이보다 크거나 (A)의 세로 길이가 (B)의 세로 길이보다 큰 경우를 의미할 수 있다. 예를 들어, 상기 대상 블록의 크기(폭 x 높이)가 4x8 또는 8x4 보다 크다는 것은 대상 블록의 크기가 1) 4xN 또는 Nx4 (N ≥ 16) 이거나 2) M x N (M ≥ 8, N ≥ 8)인 경우를 포함할 수 있다. 이 경우, 상기 대상 블록은 수평 또는 수직 방향으로 4개의 서브 블록으로 분할될 수 있다.
본 문서의 일 실시예에 따르면, 인코딩 장치에 의하여 수행되는 영상 인코딩 방법을 제공한다. 상기 방법은 대상 블록에 적용되는 인트라 예측 모드에 기초하여 예측 샘플들을 도출하는 단계와; 상기 예측 샘플에 기초하여 상기 대상 블록에 대한 레지듀얼 샘플들을 도출하는 단계와; 상기 레지듀얼 샘플에 1차 변환을 적용하여 변환 계수를 도출하는 단계와; 상기 대상 블록의 인트라 모드에 매핑되는 변환 세트와 상기 변환 세트에 포함되는 변환 커널 매트릭스 중 어느 하나를 이용하여 상기 변환 계수에 비분리 2차 변환을 수행함으로써 수정된 변환 계수들을 도출하는 단계와; 상기 수정된 변환 계수들 기반으로 양자화를 수행하여 양자화된 변환 계수들을 도출하는 단계와; 상기 변환 커널 매트릭스를 지시하는 변환 인덱스 및 상기 양자화된 변환 계수들을 인코딩하는 단계를 포함하고, 상기 대상 블록이 소정 개수의 서브 블록들로 분할되어 인트라 예측되는 코딩 블록인 경우, 상기 수정된 변환 계수는 상기 서브 블록 단위로 도출되고, 상기 비분리 2차 변환 수행 시, 상기 서브 블록들에는 동일한 변환 커널 매트릭스가 적용되는 것을 특징으로 한다.
본 문서의 또 다른 일 실시예에 따르면, 인코딩 장치에 의하여 수행된 영상 인코딩 방법에 따라 생성된 인코딩된 영상 정보 및 비트스트림이 포함된 영상 데이터가 저장된 디지털 저장 매체가 제공될 수 있다.
본 문서의 또 다른 일 실시예에 따르면, 디코딩 장치에 의하여 상기 영상 디코딩 방법을 수행하도록 야기하는 인코딩된 영상 정보 및 비트스트림이 포함된 영상 데이터가 저장된 디지털 저장 매체가 제공될 수 있다.
본 문서에 따르면 전반적인 영상/비디오 압축 효율을 높일 수 있다.
본 문서에 따르면 인트라 예측 모드에 따라 변환 계수의 배열을 달리하여 2차 변환의 효율을 높일 수 있다.
본 문서에 따르면 분할된 서브 블록에 비분리 2차 변환을 적용하여 영상 코딩 효율을 높일 수 있다.
본 문서에 따르면 2차 변환에 적용되는 변환 커널 매트릭스를 최적화 하여 2차 변환의 효율을 높일 수 있다.
본 명세서의 구체적인 일례를 통해 얻을 수 있는 효과는 이상에서 나열된 효과로 제한되지 않는다. 예를 들어, 관련된 기술분야의 통상의 지식을 자긴 자(a person having ordinary skill in the related art)가 본 명세서로부터 이해하거나 유도할 수 있는 다양한 기술적 효과가 존재할 수 있다. 이에 따라 본 명세서의 구체적인 효과는 본 명세서에 명시적으로 기재된 것에 제한되지 않고, 본 명세서의 기술적 특징으로부터 이해되거나 유도될 수 있는 다양한 효과를 포함할 수 있다.
도 1은 본 문서가 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 2는 본 문서가 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3은 본 문서가 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 4는 본 문서의 일 실시예에 따른 다중 변환 기법을 개략적으로 나타낸다.
도 5는 65개 예측 방향의 인트라 방향성 모드들을 예시적으로 나타낸다.
도 6은 본 문서의 일 실시예에 따른 RST를 설명하기 위한 도면이다.
도 7은 본 문서의 일 실시예에 다른 변환 계수의 스캐닝 순서를 도시한 도면이다.
도 8은 본 문서의 일 실시예에 따른 역 RST 과정을 도시한 흐름도이다.
도 9는 하나의 코딩 블록이 분할되는 서브 블록의 일 예를 도시하는 도면이다.
도 10는 하나의 코딩 블록이 분할되는 서브 블록의 다른 예를 도시하는 도면이다.
도 11은 본 문서의 일 실시예에 따른 비디오 디코딩 장치의 동작을 도시하는 흐름도이다.
도 12는 본 문서의 일 실시예에 따른 디코딩 장치에 의한 영상 디코딩 방법을 설명하기 위한 제어 흐름도이다.
도 13은 본 문서의 일 실시예에 따른 비디오 인코딩 장치의 동작을 도시하는 흐름도이다.
도 14는 본 문서의 일 실시예에 따른 인코딩 장치에 의한 영상 인코딩 방법을 설명하기 위한 제어 흐름도이다.
도 15는 본 문서가 적용되는 컨텐츠 스트리밍 시스템 구조도를 예시적으로 나타낸다.
본 문서는 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 문서를 특정 실시예에 한정하려고 하는 것이 아니다. 본 명세서에서 상용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 문서의 기술적 사상을 한정하려는 의도로 사용되는 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 문서에서 설명되는 도면상의 각 구성들은 서로 다른 특징적인 기능들에 관한 설명의 편의를 위해 독립적으로 도시된 것으로서, 각 구성들이 서로 별개의 하드웨어나 별개의 소프트웨어로 구현된다는 것을 의미하지는 않는다. 예컨대, 각 구성 중 두 개 이상의 구성이 합쳐져 하나의 구성을 이룰 수도 있고, 하나의 구성이 복수의 구성으로 나뉘어질 수도 있다. 각 구성이 통합 및/또는 분리된 실시예도 본 문서의 본질에서 벗어나지 않는 한 본 문서의 권리범위에 포함된다.
이하, 첨부한 도면들을 참조하여, 본 문서의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성 요소에 대해서 중복된 설명은 생략한다.
이 문서는 비디오/영상 코딩에 관한 것이다. 예를 들어 이 문서에서 개시된 방법/실시예는 VVC (Versatile Video Coding) 표준 (ITU-T Rec. H.266), VVC 이후의 차세대 비디오/이미지 코딩 표준, 또는 그 이외의 비디오 코딩 관련 표준들(예를 들어, HEVC (High Efficiency Video Coding) 표준 (ITU-T Rec. H.265), EVC(essential video coding) 표준, AVS2 표준 등)과 관련될 수 있다.
이 문서에서는 비디오/영상 코딩에 관한 다양한 실시예들을 제시하며, 다른 언급이 없는 한 상기 실시예들은 서로 조합되어 수행될 수도 있다.
이 문서에서 비디오(video)는 시간의 흐름에 따른 일련의 영상(image)들의 집합을 의미할 수 있다. 픽처(picture)는 일반적으로 특정 시간대의 하나의 영상을 나타내는 단위를 의미하며, 슬라이스(slice)/타일(tile)는 코딩에 있어서 픽처의 일부를 구성하는 단위이다. 슬라이스/타일은 하나 이상의 CTU(coding tree unit)을 포함할 수 있다. 하나의 픽처는 하나 이상의 슬라이스/타일로 구성될 수 있다. 하나의 픽처는 하나 이상의 타일 그룹으로 구성될 수 있다. 하나의 타일 그룹은 하나 이상의 타일들을 포함할 수 있다.
픽셀(pixel) 또는 펠(pel)은 하나의 픽처(또는 영상)을 구성하는 최소의 단위를 의미할 수 있다. 또한, 픽셀에 대응하는 용어로서 '샘플(sample)'이 사용될 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 루마(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 크로마(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다. 또는 샘플은 공간 도메인에서의 픽셀값을 의미할 수도 있고, 이러한 픽셀값이 주파수 도메인으로 변환되면 주파수 도메인에서의 변환 계수를 의미할 수도 있다.
유닛(unit)은 영상 처리의 기본 단위를 나타낼 수 있다. 유닛은 픽처의 특정 영역 및 해당 영역에 관련된 정보 중 적어도 하나를 포함할 수 있다. 하나의 유닛은 하나의 루마 블록 및 두개의 크로마(ex. cb, cr) 블록을 포함할 수 있다. 유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들(또는 샘플 어레이) 또는 변환 계수(transform coefficient)들의 집합(또는 어레이)을 포함할 수 있다.
이 문서에서 “/”와 ","는 “및/또는”으로 해석된다. 예를 들어, “A/B”는 “A 및/또는 B”로 해석되고, “A, B”는 “A 및/또는 B”로 해석된다. 추가적으로, “A/B/C”는 “A, B 및/또는 C 중 적어도 하나”를 의미한다. 또한, “A, B, C”도 “A, B 및/또는 C 중 적어도 하나”를 의미한다. (In this document, the term “/” and "," should be interpreted to indicate “and/or.” For instance, the expression “A/B” may mean “A and/or B.” Further, “A, B” may mean “A and/or B.” Further, “A/B/C” may mean “at least one of A, B, and/or C.” Also, “A/B/C” may mean “at least one of A, B, and/or C.”)
추가적으로, 본 문서에서 “또는”는 “및/또는”으로 해석된다. 예를 들어, “A 또는 B”은, 1) “A” 만을 의미하고, 2) “B” 만을 의미하거나, 3) “A 및 B”를 의미할 수 있다. 달리 표현하면, 본 문서의 “또는”은 “추가적으로 또는 대체적으로(additionally or alternatively)”를 의미할 수 있다. (Further, in the document, the term “or” should be interpreted to indicate “and/or.” For instance, the expression “A or B” may comprise 1) only A, 2) only B, and/or 3) both A and B. In other words, the term “or” in this document should be interpreted to indicate “additionally or alternatively.”)
본 명세서에서 “적어도 하나의 A 및 B(at least one of A and B)”는, “오직 A”, “오직 B” 또는 “A와 B 모두”를 의미할 수 있다. 또한, 본 명세서에서 “적어도 하나의 A 또는 B(at least one of A or B)”나 “적어도 하나의 A 및/또는 B(at least one of A and/or B)”라는 표현은 “적어도 하나의 A 및 B(at least one of A and B)”와 동일하게 해석될 수 있다.
또한, 본 명세서에서 “적어도 하나의 A, B 및 C(at least one of A, B and C)”는, “오직 A”, “오직 B”, “오직 C”, 또는 “A, B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다. 또한, “적어도 하나의 A, B 또는 C(at least one of A, B or C)”나 “적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)”는 “적어도 하나의 A, B 및 C(at least one of A, B and C)”를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 “예를 들어(for example)”를 의미할 수 있다. 구체적으로, “예측(인트라 예측)”로 표시된 경우, “예측”의 일례로 “인트라 예측”이 제안된 것일 수 있다. 달리 표현하면 본 명세서의 “예측”은 “인트라 예측”으로 제한(limit)되지 않고, “인트라 예측”이 “예측”의 일례로 제안될 것일 수 있다. 또한, “예측(즉, 인트라 예측)”으로 표시된 경우에도, “예측”의 일례로 “인트라 예측”이 제안된 것일 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.
도 1은 본 문서를 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 1을 참조하면, 비디오/영상 코딩 시스템은 소스 디바이스 및 수신 디바이스를 포함할 수 있다. 소스 디바이스는 인코딩된 비디오(video)/영상(image) 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스로 전달할 수 있다.
상기 소스 디바이스는 비디오 소스, 인코딩 장치, 전송부를 포함할 수 있다. 상기 수신 디바이스는 수신부, 디코딩 장치 및 렌더러를 포함할 수 있다. 상기 인코딩 장치는 비디오/영상 인코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 비디오/영상 디코딩 장치라고 불릴 수 있다. 송신기는 인코딩 장치에 포함될 수 있다. 수신기는 디코딩 장치에 포함될 수 있다. 렌더러는 디스플레이부를 포함할 수도 있고, 디스플레이부는 별개의 디바이스 또는 외부 컴포넌트로 구성될 수도 있다.
비디오 소스는 비디오/영상의 캡쳐, 합성 또는 생성 과정 등을 통하여 비디오/영상을 획득할 수 있다. 비디오 소스는 비디오/영상 캡쳐 디바이스 및/또는 비디오/영상 생성 디바이스를 포함할 수 있다. 비디오/영상 캡쳐 디바이스는 예를 들어, 하나 이상의 카메라, 이전에 캡쳐된 비디오/영상을 포함하는 비디오/영상 아카이브 등을 포함할 수 있다. 비디오/영상 생성 디바이스는 예를 들어 컴퓨터, 타블렛 및 스마트폰 등을 포함할 수 있으며 (전자적으로) 비디오/영상을 생성할 수 있다. 예를 들어, 컴퓨터 등을 통하여 가상의 비디오/영상이 생성될 수 있으며, 이 경우 관련 데이터가 생성되는 과정으로 비디오/영상 캡쳐 과정이 갈음될 수 있다.
인코딩 장치는 입력 비디오/영상을 인코딩할 수 있다. 인코딩 장치는 압축 및 코딩 효율을 위하여 예측, 변환, 양자화 등 일련의 절차를 수행할 수 있다. 인코딩된 데이터(인코딩된 비디오/영상 정보)는 비트스트림(bitstream) 형태로 출력될 수 있다.
전송부는 비트스트림 형태로 출력된 인코딩된 비디오/영상 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스의 수신부로 전달할 수 있다. 디지털 저장 매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장 매체를 포함할 수 있다. 전송부는 미리 정해진 파일 포맷을 통하여 미디어 파일을 생성하기 위한 엘리먼트를 포함할 수 있고, 방송/통신 네트워크를 통한 전송을 위한 엘리먼트를 포함할 수 있다. 수신부는 상기 비트스트림을 수신/추출하여 디코딩 장치로 전달할 수 있다.
디코딩 장치는 인코딩 장치의 동작에 대응하는 역양자화, 역변환, 예측 등 일련의 절차를 수행하여 비디오/영상을 디코딩할 수 있다.
렌더러는 디코딩된 비디오/영상을 렌더링할 수 있다. 렌더링된 비디오/영상은 디스플레이부를 통하여 디스플레이될 수 있다.
도 2는 본 문서가 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다. 이하 비디오 인코딩 장치라 함은 영상 인코딩 장치를 포함할 수 있다.
도 2를 참조하면, 인코딩 장치(200)는 영상 분할부(image partitioner, 210), 예측부(predictor, 220), 레지듀얼 처리부(residual processor, 230), 엔트로피 인코딩부(entropy encoder, 240), 가산부(adder, 250), 필터링부(filter, 260) 및 메모리(memory, 270)를 포함하여 구성될 수 있다. 예측부(220)는 인터 예측부(221) 및 인트라 예측부(222)를 포함할 수 있다. 레지듀얼 처리부(230)는 변환부(transformer, 232), 양자화부(quantizer 233), 역양자화부(dequantizer 234), 역변환부(inverse transformer, 235)를 포함할 수 있다. 레지듀얼 처리부(230)은 감산부(subtractor, 231)를 더 포함할 수 있다. 가산부(250)는 복원부(reconstructor) 또는 복원 블록 생성부(recontructged block generator)로 불릴 수 있다. 상술한 영상 분할부(210), 예측부(220), 레지듀얼 처리부(230), 엔트로피 인코딩부(240), 가산부(250) 및 필터링부(260)는 실시예에 따라 하나 이상의 하드웨어 컴포넌트(예를 들어 인코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(270)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(270)을 내/외부 컴포넌트로 더 포함할 수도 있다.
영상 분할부(210)는 인코딩 장치(200)에 입력된 입력 영상(또는, 픽처, 프레임)를 하나 이상의 처리 유닛(processing unit)으로 분할할 수 있다. 일 예로, 상기 처리 유닛은 코딩 유닛(coding unit, CU)이라고 불릴 수 있다. 이 경우 코딩 유닛은 코딩 트리 유닛(coding tree unit, CTU) 또는 최대 코딩 유닛(largest coding unit, LCU)으로부터 QTBTTT (Quad-tree binary-tree ternary-tree) 구조에 따라 재귀적으로(recursively) 분할될 수 있다. 예를 들어, 하나의 코딩 유닛은 쿼드 트리 구조, 바이너리 트리 구조, 및/또는 터너리 구조를 기반으로 하위(deeper) 뎁스의 복수의 코딩 유닛들로 분할될 수 있다. 이 경우 예를 들어 쿼드 트리 구조가 먼저 적용되고 바이너리 트리 구조 및/또는 터너리 구조가 나중에 적용될 수 있다. 또는 바이너리 트리 구조가 먼저 적용될 수도 있다. 더 이상 분할되지 않는 최종 코딩 유닛을 기반으로 본 문서에 따른 코딩 절차가 수행될 수 있다. 이 경우 영상 특성에 따른 코딩 효율 등을 기반으로, 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 또는 필요에 따라 코딩 유닛은 재귀적으로(recursively) 보다 하위 뎁스의 코딩 유닛들로 분할되어 최적의 사이즈의 코딩 유닛이 최종 코딩 유닛으로 사용될 수 있다. 여기서 코딩 절차라 함은 후술하는 예측, 변환, 및 복원 등의 절차를 포함할 수 있다. 다른 예로, 상기 처리 유닛은 예측 유닛(PU: Prediction Unit) 또는 변환 유닛(TU: Transform Unit)을 더 포함할 수 있다. 이 경우 상기 예측 유닛 및 상기 변환 유닛은 각각 상술한 최종 코딩 유닛으로부터 분할 또는 파티셔닝될 수 있다. 상기 예측 유닛은 샘플 예측의 단위일 수 있고, 상기 변환 유닛은 변환 계수를 유도하는 단위 및/또는 변환 계수로부터 레지듀얼 신호(residual signal)를 유도하는 단위일 수 있다.
유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들 또는 변환 계수(transform coefficient)들의 집합을 나타낼 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 휘도(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 채도(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다. 샘플은 하나의 픽처(또는 영상)을 픽셀(pixel) 또는 펠(pel)에 대응하는 용어로서 사용될 수 있다.
감산부(231)는 입력 영상 신호(원본 블록, 원본 샘플들 또는 원본 샘플 어레이)에서 예측부(220)로부터 출력된 예측 신호(예측된 블록, 예측 샘플들 또는 예측 샘플 어레이)를 감산하여 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플들 또는 레지듀얼 샘플 어레이)를 생성할 수 있고, 생성된 레지듀얼 신호는 변환부(232)로 전송된다. 예측부(220)는 처리 대상 블록(이하, 현재 블록이라 함)에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부(220)는 현재 블록 또는 CU 단위로 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있다. 예측부는 각 예측모드에 대한 설명에서 후술하는 바와 같이 예측 모드 정보 등 예측에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(240)로 전달할 수 있다. 예측에 관한 정보는 엔트로피 인코딩부(240)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
인트라 예측부(222)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 비방향성 모드는 예를 들어 DC 모드 및 플래너 모드(Planar 모드)를 포함할 수 있다. 방향성 모드는 예측 방향의 세밀한 정도에 따라 예를 들어 33개의 방향성 예측 모드 또는 65개의 방향성 예측 모드를 포함할 수 있다. 다만, 이는 예시로서 설정에 따라 그 이상 또는 그 이하의 개수의 방향성 예측 모드들이 사용될 수 있다. 인트라 예측부(222)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(221)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 예를 들어, 인터 예측부(221)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 사용되는지를 지시하는 정보를 생성할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 머지 모드의 경우에, 인터 예측부(221)는 주변 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)을 시그널링함으로써 현재 블록의 움직임 벡터를 지시할 수 있다.
예측부(220)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC)를 수행할 수도 있다. 상기 인트라 블록 카피는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다.
인터 예측부(221) 및/또는 인트라 예측부(222)를 통해 생성된 예측 신호는 복원 신호를 생성하기 위해 이용되거나 레지듀얼 신호를 생성하기 위해 이용될 수 있다. 변환부(232)는 레지듀얼 신호에 변환 기법을 적용하여 변환 계수들(transform coefficients)를 생성할 수 있다. 예를 들어, 변환 기법은 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), GBT(Graph-Based Transform), 또는 CNT(Conditionally Non-linear Transform) 등을 포함할 수 있다. 여기서, GBT는 픽셀 간의 관계 정보를 그래프로 표현한다고 할 때 이 그래프로부터 얻어진 변환을 의미한다. CNT는 이전에 복원된 모든 픽셀(all previously reconstructed pixel)를 이용하여 예측 신호를 생성하고 그에 기초하여 획득되는 변환을 의미한다. 또한, 변환 과정은 정사각형의 동일한 크기를 갖는 픽셀 블록에 적용될 수도 있고, 정사각형이 아닌 가변 크기의 블록에도 적용될 수 있다.
양자화부(233)는 변환 계수들을 양자화하여 엔트로피 인코딩부(240)로 전송되고, 엔트로피 인코딩부(240)는 양자화된 신호(양자화된 변환 계수들에 관한 정보)를 인코딩하여 비트스트림으로 출력할 수 있다. 상기 양자화된 변환 계수들에 관한 정보는 레지듀얼 정보라고 불릴 수 있다. 양자화부(233)는 계수 스캔 순서(scan order)를 기반으로 블록 형태의 양자화된 변환 계수들을 1차원 벡터 형태로 재정렬할 수 있고, 상기 1차원 벡터 형태의 양자화된 변환 계수들을 기반으로 상기 양자화된 변환 계수들에 관한 정보를 생성할 수도 있다. 엔트로피 인코딩부(240)는 예를 들어 지수 골롬(exponential Golomb), CAVLC(context-adaptive variable length coding), CABAC(context-adaptive binary arithmetic coding) 등과 같은 다양한 인코딩 방법을 수행할 수 있다. 엔트로피 인코딩부(240)는 양자화된 변환 계수들 외 비디오/이미지 복원에 필요한 정보들(예컨대 신택스 요소들(syntax elements)의 값 등)을 함께 또는 별도로 인코딩할 수도 있다. 인코딩된 정보(ex. 인코딩된 비디오/영상 정보)는 비트스트림 형태로 NAL(network abstraction layer) 유닛 단위로 전송 또는 저장될 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 본 문서에서 후술되는 시그널링/전송되는 정보 및/또는 신택스 요소들은 상술한 인코딩 절차를 통하여 인코딩되어 상기 비트스트림에 포함될 수 있다. 상기 비트스트림은 네트워크를 통하여 전송될 수 있고, 또는 디지털 저장매체에 저장될 수 있다. 여기서 네트워크는 방송망 및/또는 통신망 등을 포함할 수 있고, 디지털 저장매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장매체를 포함할 수 있다. 엔트로피 인코딩부(240)로부터 출력된 신호는 전송하는 전송부(미도시) 및/또는 저장하는 저장부(미도시)가 인코딩 장치(200)의 내/외부 엘리먼트로서 구성될 수 있고, 또는 전송부는 엔트로피 인코딩부(240)에 포함될 수도 있다.
양자화부(233)로부터 출력된 양자화된 변환 계수들은 예측 신호를 생성하기 위해 이용될 수 있다. 예를 들어, 양자화된 변환 계수들에 역양자화부(234) 및 역변환부(235)를 통해 역양자화 및 역변환을 적용함으로써 레지듀얼 신호(레지듀얼 블록 or 레지듀얼 샘플들)를 복원할 수 있다. 가산부(250)는 복원된 레지듀얼 신호를 예측부(220)로부터 출력된 예측 신호에 더함으로써 복원(reconstructed) 신호(복원 픽처, 복원 블록, 복원 샘플들 또는 복원 샘플 어레이)가 생성될 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편 픽처 인코딩 및/또는 복원 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(260)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(260)은 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(270), 구체적으로 메모리(270)의 DPB에 저장할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset, SAO), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다. 필터링부(260)은 각 필터링 방법에 대한 설명에서 후술하는 바와 같이 필터링에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(290)로 전달할 수 있다. 필터링 관한 정보는 엔트로피 인코딩부(290)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
메모리(270)에 전송된 수정된 복원 픽처는 인터 예측부(280)에서 참조 픽처로 사용될 수 있다. 인코딩 장치는 이를 통하여 인터 예측이 적용되는 경우, 인코딩 장치(200)와 디코딩 장치에서의 예측 미스매치를 피할 수 있고, 부호화 효율도 향상시킬 수 있다.
메모리(270)의 DPB는 수정된 복원 픽처를 인터 예측부(221)에서의 참조 픽처로 사용하기 위해 저장할 수 있다. 메모리(270)는 현재 픽처 내 움직임 정보가 도출된(또는 인코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(221)에 전달할 수 있다. 메모리(270)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(222)에 전달할 수 있다.
도 3은 본 문서가 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3을 참조하면, 디코딩 장치(300)는 엔트로피 디코딩부(entropy decoder, 310), 레지듀얼 처리부(residual processor, 320), 예측부(predictor, 330), 가산부(adder, 340), 필터링부(filter, 350) 및 메모리(memoery, 360)를 포함하여 구성될 수 있다. 예측부(330)는 인터 예측부(331) 및 인트라 예측부(332)를 포함할 수 있다. 레지듀얼 처리부(320)는 역양자화부(dequantizer, 321) 및 역변환부(inverse transformer, 321)를 포함할 수 있다. 상술한 엔트로피 디코딩부(310), 레지듀얼 처리부(320), 예측부(330), 가산부(340) 및 필터링부(350)는 실시예에 따라 하나의 하드웨어 컴포넌트(예를 들어 디코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(360)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(360)을 내/외부 컴포넌트로 더 포함할 수도 있다.
비디오/영상 정보를 포함하는 비트스트림이 입력되면, 디코딩 장치(300)는 도 2의 인코딩 장치에서 비디오/영상 정보가 처리된 프로세스에 대응하여 영상을 복원할 수 있다. 예를 들어, 디코딩 장치(300)는 상기 비트스트림으로부터 획득한 블록 분할 관련 정보를 기반으로 유닛들/블록들을 도출할 수 있다. 디코딩 장치(300)는 인코딩 장치에서 적용된 처리 유닛을 이용하여 디코딩을 수행할 수 있다. 따라서 디코딩의 처리 유닛은 예를 들어 코딩 유닛일 수 있고, 코딩 유닛은 코딩 트리 유닛 또는 최대 코딩 유닛으로부터 쿼드 트리 구조, 바이너리 트리 구조 및/또는 터너리 트리 구조를 따라서 분할될 수 있다. 코딩 유닛으로부터 하나 이상의 변환 유닛이 도출될 수 있다. 그리고, 디코딩 장치(300)를 통해 디코딩 및 출력된 복원 영상 신호는 재생 장치를 통해 재생될 수 있다.
디코딩 장치(300)는 도 2의 인코딩 장치로부터 출력된 신호를 비트스트림 형태로 수신할 수 있고, 수신된 신호는 엔트로피 디코딩부(310)를 통해 디코딩될 수 있다. 예를 들어, 엔트로피 디코딩부(310)는 상기 비트스트림을 파싱하여 영상 복원(또는 픽처 복원)에 필요한 정보(ex. 비디오/영상 정보)를 도출할 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 디코딩 장치는 상기 파라미터 세트에 관한 정보 및/또는 상기 일반 제한 정보를 더 기반으로 픽처를 디코딩할 수 있다. 본 문서에서 후술되는 시그널링/수신되는 정보 및/또는 신택스 요소들은 상기 디코딩 절차를 통하여 디코딩되어 상기 비트스트림으로부터 획득될 수 있다. 예컨대, 엔트로피 디코딩부(310)는 지수 골롬 부호화, CAVLC 또는 CABAC 등의 코딩 방법을 기초로 비트스트림 내 정보를 디코딩하고, 영상 복원에 필요한 신택스 엘리먼트의 값, 레지듀얼에 관한 변환 계수의 양자화된 값 들을 출력할 수 있다. 보다 상세하게, CABAC 엔트로피 디코딩 방법은, 비트스트림에서 각 구문 요소에 해당하는 빈을 수신하고, 디코딩 대상 구문 요소 정보와 주변 및 디코딩 대상 블록의 디코딩 정보 혹은 이전 단계에서 디코딩된 심볼/빈의 정보를 이용하여 문맥(context) 모델을 결정하고, 결정된 문맥 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 디코딩(arithmetic decoding)를 수행하여 각 구문 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 디코딩 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 디코딩된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다. 엔트로피 디코딩부(310)에서 디코딩된 정보 중 예측에 관한 정보는 예측부(330)로 제공되고, 엔트로피 디코딩부(310)에서 엔트로피 디코딩이 수행된 레지듀얼에 대한 정보, 즉 양자화된 변환 계수들 및 관련 파라미터 정보는 역양자화부(321)로 입력될 수 있다. 또한, 엔트로피 디코딩부(310)에서 디코딩된 정보 중 필터링에 관한 정보는 필터링부(350)으로 제공될 수 있다. 한편, 인코딩 장치로부터 출력된 신호를 수신하는 수신부(미도시)가 디코딩 장치(300)의 내/외부 엘리먼트로서 더 구성될 수 있고, 또는 수신부는 엔트로피 디코딩부(310)의 구성요소일 수도 있다. 한편, 본 문서에 따른 디코딩 장치는 비디오/영상/픽처 디코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 정보 디코더(비디오/영상/픽처 정보 디코더) 및 샘플 디코더(비디오/영상/픽처 샘플 디코더)로 구분할 수도 있다. 상기 정보 디코더는 상기 엔트로피 디코딩부(310)를 포함할 수 있고, 상기 샘플 디코더는 상기 역양자화부(321), 역변환부(322), 예측부(330), 가산부(340), 필터링부(350) 및 메모리(360) 중 적어도 하나를 포함할 수 있다.
역양자화부(321)에서는 양자화된 변환 계수들을 역양자화하여 변환 계수들을 출력할 수 있다. 역양자화부(321)는 양자화된 변환 계수들을 2차원의 블록 형태로 재정렬할 수 있다. 이 경우 상기 재정렬은 인코딩 장치에서 수행된 계수 스캔 순서를 기반하여 재정렬을 수행할 수 있다. 역양자화부(321)는 양자화 파라미터(예를 들어 양자화 스텝 사이즈 정보)를 이용하여 양자화된 변환 계수들에 대한 역양자화를 수행하고, 변환 계수들(transform coefficient)를 획득할 수 있다.
역변환부(322)에서는 변환 계수들를 역변환하여 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플 어레이)를 획득하게 된다.
예측부는 현재 블록에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 엔트로피 디코딩부(310)로부터 출력된 상기 예측에 관한 정보를 기반으로 상기 현재 블록에 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있고, 구체적인 인트라/인터 예측 모드를 결정할 수 있다.
예측부는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC)를 수행할 수도 있다. 상기 인트라 블록 카피는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다.
인트라 예측부(332)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 인트라 예측부(332)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(331)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 예를 들어, 인터 예측부(331)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 수신한 후보 선택 정보를 기반으로 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 상기 예측에 관한 정보는 상기 현재 블록에 대한 인터 예측의 모드를 지시하는 정보를 포함할 수 있다.
가산부(340)는 획득된 레지듀얼 신호를 예측부(330)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)에 더함으로써 복원 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)를 생성할 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다.
가산부(340)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 출력될 수도 있고 또는 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편, 픽처 디코딩 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(350)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(350)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(60), 구체적으로 메모리(360)의 DPB에 전송할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다.
메모리(360)의 DPB에 저장된 (수정된) 복원 픽처는 인터 예측부(331)에서 참조 픽쳐로 사용될 수 있다. 메모리(360)는 현재 픽처 내 움직임 정보가 도출된(또는 디코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(331)에 전달할 수 있다. 메모리(360)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(332)에 전달할 수 있다.
본 명세서에서, 디코딩 장치(300)의 예측부(330), 역양자화부(321), 역변환부(322) 및 필터링부(350) 등에서 설명된 실시예들은 각각 인코딩 장치(200)의 예측부(220), 역양자화부(234), 역변환부(235) 및 필터링부(260) 등에도 동일 또는 대응되도록 적용될 수 있다.
상술한 바와 같이 비디오 코딩을 수행함에 있어 압축 효율을 높이기 위하여 예측을 수행한다. 이를 통하여 코딩 대상 블록인 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록을 생성할 수 있다. 여기서 상기 예측된 블록은 공간 도메인(또는 픽셀 도메인)에서의 예측 샘플들을 포함한다. 상기 예측된 블록은 인코딩 장치 및 디코딩 장치에서 동일하게 도출되며, 상기 인코딩 장치는 원본 블록의 원본 샘플 값 자체가 아닌 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼에 대한 정보(레지듀얼 정보)를 디코딩 장치로 시그널링함으로써 영상 코딩 효율을 높일 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 레지듀얼 샘플들을 포함하는 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록과 상기 예측된 블록을 합하여 복원 샘플들을 포함하는 복원 블록을 생성할 수 있고, 복원 블록들을 포함하는 복원 픽처를 생성할 수 있다.
상기 레지듀얼 정보는 변환 및 양자화 절차를 통하여 생성될 수 있다. 예를 들어, 인코딩 장치는 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록에 포함된 레지듀얼 샘플들(레지듀얼 샘플 어레이)에 변환 절차를 수행하여 변환 계수들을 도출하고, 상기 변환 계수들에 양자화 절차를 수행하여 양자화된 변환 계수들을 도출하여 관련된 레지듀얼 정보를 (비트스트림을 통하여) 디코딩 장치로 시그널링할 수 있다. 여기서 상기 레지듀얼 정보는 상기 양자화된 변환 계수들의 값 정보, 위치 정보, 변환 기법, 변환 커널, 양자화 파라미터 등의 정보를 포함할 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 역양자화/역변환 절차를 수행하고 레지듀얼 샘플들(또는 레지듀얼 블록)을 도출할 수 있다. 디코딩 장치는 예측된 블록과 상기 레지듀얼 블록을 기반으로 복원 픽처를 생성할 수 있다. 인코딩 장치는 또한 이후 픽처의 인터 예측을 위한 참조를 위하여 양자화된 변환 계수들을 역양자화/역변환하여 레지듀얼 블록을 도출하고, 이를 기반으로 복원 픽처를 생성할 수 있다.
도 4는 본 문서에 따른 다중 변환 기법을 개략적으로 나타낸다.
도 4는 참조하면, 변환부는 상술한 도 2의 인코딩 장치 내의 변환부에 대응될 수 있고, 역변환부는 상술한 도 2의 인코딩 장치 내의 역변환부 또는 도 3의 디코딩 장치 내의 역변환부에 대응될 수 있다.
변환부는 레지듀얼 블록 내의 레지듀얼 샘플들(레지듀얼 샘플 어레이)를 기반으로 1차 변환을 수행하여 (1차) 변환 계수들을 도출할 수 있다(S410). 이러한 1차 변환(primary transform)은 핵심 변환(core transform)으로 지칭될 수 있다. 여기서 상기 1차 변환은 다중 변환 선택(Multiple Transform Selection, MTS)에 기반할 수 있으며, 1차 변환으로 다중 변환이 적용될 경우 다중 핵심 변환으로 지칭될 수 있다.
다중 핵심 변환은 DCT(Discrete Cosine Transform) 타입 2과 DST(Discrete Sine Transform) 타입 7, DCT 타입 8, 및/또는 DST 타입 1을 추가적으로 사용하여 변환하는 방식을 나타낼 수 있다. 즉, 상기 다중 핵심 변환 은 상기 DCT 타입 2, 상기 DST 타입 7, 상기 DCT 타입 8 및 상기 DST 타입 1 중 선택된 복수의 변환 커널들을 기반으로 공간 도메인의 레지듀얼 신호(또는 레지듀얼 블록)를 주파수 도메인의 변환 계수들(또는 1차 변환 계수들)로 변환하는 변환 방법을 나타낼 수 있다. 여기서 상기 1차 변환 계수들은 변환부 입장에서 임시 변환 계수들로 불릴 수 있다.
다시 말하면, 기존의 변환 방법이 적용되는 경우, DCT 타입 2를 기반으로 레지듀얼 신호(또는 레지듀얼 블록)에 대한 공간 도메인에서 주파수 도메인으로의 변환이 적용되어 변환 계수들이 생성될 수 있었다. 이와 달리, 상기 다중 핵심 변환이 적용되는 경우, DCT 타입 2, DST 타입 7, DCT 타입 8, 및/또는 DST 타입 1 등을 기반으로 레지듀얼 신호(또는 레지듀얼 블록)에 대한 공간 도메인에서 주파수 도메인으로의 변환이 적용되어 변환 계수들(또는 1차 변환 계수들)이 생성될 수 있다. 여기서, DCT 타입 2, DST 타입 7, DCT 타입 8, 및 DST 타입 1 등은 변환 타입, 변환 커널(kernel) 또는 변환 코어(core)라고 불릴 수 있다.
참고로, 상기 DCT/DST 변환 타입들은 기저 함수들을 기반으로 정의될 수 있으며, 상기 기저 함수들은 다음 표와 같이 나타내어질 수 있다.
Figure PCTKR2020002625-appb-T000001
상기 다중 핵심 변환이 수행되는 경우, 상기 변환 커널들 중 대상 블록에 대한 수직 변환 커널 및 수평 변환 커널이 선택될 수 있고, 상기 수직 변환 커널을 기반으로 상기 대상 블록에 대한 수직 변환이 수행되고, 상기 수평 변환 커널을 기반으로 상기 대상 블록에 대한 수평 변환이 수행될 수 있다. 여기서, 상기 수평 변환은 상기 대상 블록의 수평 성분들에 대한 변환을 나타낼 수 있고, 상기 수직 변환은 상기 대상 블록의 수직 성분들에 대한 변환을 나타낼 수 있다. 상기 수직 변환 커널/수평 변환 커널은 레지듀얼 블록을 포함하는 대상 블록(CU 또는 서브블록)의 예측 모드 및/또는 변환 인덱스를 기반으로 적응적으로 결정될 수 있다.
또한, 일 예에 따르면, MTS을 적용하여 1차 변환을 수행하는 경우, 특정 기저 함수들을 소정 값으로 설정하고, 수직 변환 또는 수평 변환일 때 어떠한 기저 함수들이 적용되는지 여부를 조합하여 변환 커널에 대한 매핑 관계를 설정할 수 있다. 예를 들어, 수평 방향 변환 커널을 trTypeHor로 나타내고, 수직 방향 변환 커널을 trTypeVer로 나타내는 경우, trTypeHor 또는 trTypeVer 값 0은 DCT2로 설정되고, trTypeHor 또는 trTypeVer 값 1은 DST7 로 설정되고, trTypeHor 또는 trTypeVer 값 2는 DCT8로 설정될 수 있다.
이 경우, 다수의 변환 커널 세트들 중 어느 하나를 지시하기 위하여 MTS 인덱스 정보가 인코딩되어 디코딩 장치로 시그널링될 수 있다. 예를 들어, MTS 인덱스가 0이면 trTypeHor 및 trTypeVer 값이 모두 0인 것을 지시하고, MTS 인덱스가 1이면 trTypeHor 및 trTypeVer 값이 모두 1 인 것을 지시하고, MTS 인덱스가 2이면 trTypeHor 값은 2이고 trTypeVer 값은 1 인 것을 지시하고, MTS 인덱스가 3이면 trTypeHor 값은 1이고 trTypeVer 값은 2 인 것을 지시하고, MTS 인덱스가 4이면 trTypeHor 및 trTypeVer 값이 모두 2 인 것을 지시할 수 있다.
변환부는 상기 (1차) 변환 계수들을 기반으로 2차 변환을 수행하여 수정된(2차) 변환 계수들을 도출할 수 있다(S420). 상기 1차 변환은 공간 도메인에서 주파수 도메인으로의 변환이고, 상기 2차 변환은 (1차) 변환 계수들 사이에 존재하는 상관 관계(correlation)을 이용하여 보다 압축적인 표현으로 변환하는 것을 의미한다. 상기 2차 변환은 비분리 변환(non- separable transform)을 포함할 수 있다. 이 경우 상기 2차 변환은 비분리 2차 변환(non-separable secondary transform, NSST) 또는 MDNSST(mode-dependent non-separable secondary transform)이라고 불릴 수 있다. 상기 비분리 2차 변환은 상기 1차 변환을 통하여 도출된 (1차) 변환 계수들을 비분리 변환 매트릭스(non-separable transform matrix)를 기반으로 2차 변환하여 레지듀얼 신호에 대한 수정된 변환 계수들(또는 2차 변환 계수들)을 생성하는 변환을 나타낼 수 있다. 여기서, 상기 비분리 변환 매트릭스를 기반으로 상기 (1차) 변환 계수들에 대하여 수직 변환 및 수평 변환을 분리하여(또는 수평 수직 변환을 독립적으로) 적용하지 않고 한번에 변환을 적용할 수 있다. 다시 말해, 상기 비분리 2차 변환은 상기 (1차) 변환 계수들의 수직 성분 및 수평 성분 분리하지 않고, 예를 들어 2차원 신호(변환 계수)들을 특정 정해진 방향(예컨대, 행 우선(row-first) 방향 또는 열 우선(column-first) 방향)을 통하여 1차원 신호로 재정렬한 후, 상기 비분리 변환 매트릭스를 기반으로 수정된 변환 계수들(또는 2차 변환 계수들)을 생성하는 변환 방법을 나타낼 수 있다. 예를 들어, 행 우선 순서는 MxN 블록에 대해 1번째 행, 2번째 행, ... , N번째 행의 순서로 일렬로 배치하는 것이고, 열 우선 순서는 MxN 블록에 대해 1번째 열, 2번째 열, ... , M번째 열의 순서로 일렬로 배치하는 것이다. 상기 비분리 2차 변환은 (1차) 변환 계수들로 구성된 블록(이하, 변환 계수 블록이라고 불릴 수 있다)의 좌상단(top-left) 영역에 대하여 적용될 수 있다. 예를 들어, 상기 변환 계수 블록의 너비(W) 및 높이(H)가 둘 다 8 이상인 경우, 8×8 비분리 2차 변환이 상기 변환 계수 블록의 좌상단 8×8 영역에 대하여 적용될 수 있다. 또한, 상기 변환 계수 블록의 너비(W) 및 높이(H)가 둘 다 4 이상이면서, 상기 변환 계수 블록의 너비(W) 또는 높이(H)가 8보다 작은 경우, 4×4 비분리 2차 변환이 상기 변환 계수 블록의 좌상단 min(8,W)×min(8,H) 영역에 대하여 적용될 수 있다. 다만 실시예는 이에 한정되지 않으며, 예를 들어 상기 변환 계수 블록의 너비(W) 또는 높이(H)가 모두 4 이상인 조건만 만족하더라도, 4×4 비분리 2차 변환이 상기 변환 계수 블록의 좌상단 min(8,W)×min(8,H) 영역에 대하여 적용될 수도 있다.
구체적으로 예를 들어, 4×4 입력 블록이 사용되는 경우 비분리 2차 변환은 다음과 같이 수행될 수 있다.
상기 4×4 입력 블록 X는 다음과 같이 나타내어질 수 있다.
Figure PCTKR2020002625-appb-M000001
상기 X를 벡터 형태로 나타내는 경우, 벡터
Figure PCTKR2020002625-appb-I000001
상기 X를 벡터 형태로 나타내는 경우, 벡터 는 다음과 같이 나타내어질 수 있다.
Figure PCTKR2020002625-appb-M000002
수학식 2와 같이, 벡터
Figure PCTKR2020002625-appb-I000002
는 행 우선(row-first) 순서에 따라 수학식 1의 X의 2차원 블록을 1차원 벡터로 재배열한다.
이 경우, 상기 2차 비분리 변환은 다음과 같이 계산될 수 있다.
Figure PCTKR2020002625-appb-M000003
여기서,
Figure PCTKR2020002625-appb-I000003
는 변환 계수 벡터를 나타내고, T는 16×16 (비분리) 변환 매트릭스를 나타낸다.
상기 수학식3을 통하여 통하여 16×1 변환 계수 벡터
Figure PCTKR2020002625-appb-I000004
가 도출될 수 있으며, 상기
Figure PCTKR2020002625-appb-I000005
는 스캔 순서(수평, 수직, 대각(diagonal) 등)를 통하여 4×4 블록으로 재구성(re-organized)될 수 있다. 다만, 상술한 계산은 예시로서 비분리 2차 변환의 계산 복잡도를 줄이기 위하여 HyGT(Hypercube-Givens Transform) 등이 비분리 2차 변환의 계산을 위하여 사용될 수도 있다.
한편, 상기 비분리 2차 변환은 모드 기반(mode dependent)으로 변환 커널(또는 변환 코어, 변환 타입)이 선택될 수 있다. 여기서 모드는 인트라 예측 모드 및/또는 인터 예측 모드를 포함할 수 있다.
상술한 바와 같이 상기 비분리 2차 변환은 상기 변환 계수 블록의 너비(W) 및 높이(H)를 기반으로 결정된 8×8 변환 또는 4×4 변환에 기반하여 수행될 수 있다. 8x8 변환은 W와 H가 모두 8보다 같거나 클 때 해당 변환 계수 블록 내부에 포함된 8x8 영역에 적용될 수 있는 변환을 가리키며 해당 8x8 영역은 해당 변환 계수 블록 내부의 좌상단 8x8 영역일 수 있다. 유사하게, 4x4 변환은 W와 H가 모두 4보다 같거나 클 때 해당 변환 계수 블록 내부에 포함된 4x4 영역에 적용될 수 있는 변환을 가리키며 해당 4x4 영역은 해당 변환 계수 블록 내부의 좌상단 4x4 영역일 수 있다. 예를 들어, 8x8 변환 커널 매트릭스는 64x64/16x64 행렬, 4x4 변환 커널 매트릭스는 16x16/8x16 행렬이 될 수 있다.
이때, 모드 기반 변환 커널 선택을 위하여, 8×8 변환 및 4×4 변환 둘 다에 대하여 비분리 2차 변환을 위한 변환 세트당 3개씩의 비분리 2차 변환 커널들이 구성될 수 있고, 변환 세트는 35개일 수 있다. 즉, 8×8 변환에 대하여 35개의 변환 세트가 구성되고, 4×4 변환에 대하여 35개의 변환 세트가 구성될 수 있다. 이 경우 8×8 변환에 대한 35개의 변환 세트에는 각각 3개씩의 8×8 변환 커널들이 포함될 수 있고, 이 경우 4×4 변환에 대한 35개의 변환 세트에는 각각 3개씩의 4×4 변환 커널들이 포함될 수 있다. 다만, 상기 변환의 사이즈, 상기 세트의 수 및 세트 내 변환 커널들의 수는 예시로서 8×8 또는 4×4 이외의 사이즈가 사용될 수 있고, 또는 n개의 세트들이 구성되고, 각 세트 내에 k개의 변환 커널들이 포함될 수도 있다.
상기 변환 세트는 NSST 세트라고 불릴 수 있고, 상기 NSST 세트 내의 변환 커널은 NSST 커널이라고 불릴 수 있다. 상기 변환 세트들 중 특정 세트의 선택은 예를 들어, 대상 블록(CU 또는 서브블록)의 인트라 예측 모드에 기반하여 수행될 수 있다.
참고로, 예를 들어, 인트라 예측 모드는 2개의 비방향성(non-directinoal, 또는 비각도성(non-angular)) 인트라 예측 모드들과 65개의 방향성(directional, 또는 각도성(angular)) 인트라 예측 모드들을 포함할 수 있다. 상기 비방향성 인트라 예측 모드들은 0번인 플래너(planar) 인트라 예측 모드 및 1번인 DC 인트라 예측 모드를 포함할 수 있고, 상기 방향성 인트라 예측 모드들은 2번 내지 66번의 65개의 인트라 예측 모드들을 포함할 수 있다. 다만, 이는 예시로서 본 문서는 인트라 예측 모드들의 수가 다른 경우에도 적용될 수 있다. 한편, 경우에 따라 67번 인트라 예측 모드가 더 사용될 수 있으며, 상기 67번 인트라 예측 모드는 LM(linear model) 모드를 나타낼 수 있다.
도 5는 65개의 예측 방향의 인트라 방향성 모드들을 예시적으로 나타낸다.
도 5를 참조하면, 좌상향 대각 예측 방향을 갖는 34번 인트라 예측 모드를 중심으로 수평 방향성(horizontal directionality)을 갖는 인트라 예측 모드와 수직 방향성(vertical directionality)을 갖는 인트라 예측 모드를 구분할 수 있다. 도 5의 H와 V는 각각 수평 방향성과 수직 방향성을 의미하며, -32 ~ 32의 숫자는 샘플 그리드 포지션(sample grid position) 상에서 1/32 단위의 변위를 나타낸다. 이는 모드 인덱스 값에 대한 오프셋을 나타낼 수 있다. 2번 내지 33번 인트라 예측 모드는 수평 방향성, 34번 내지 66번 인트라 예측 모드는 수직 방향성을 갖는다. 한편, 34번 인트라 예측 모드는 엄밀히 말해 수평 방향성도 수직 방향성도 아니라고 볼 수 있으나, 2차 변환의 변환 세트를 결정하는 관점에서 수평 방향성에 속한다고 분류될 수 있다. 이는, 34번 인트라 예측 모드를 중심으로 대칭되는 수직 방향 모드에 대해서는 입력 데이터를 트랜스포즈(transpose)해서 사용하고 34번 인트라 예측 모드에 대해서는 수평 방향 모드에 대한 입력 데이터 정렬 방식을 사용하기 때문이다. 입력 데이터를 트랜스포즈하는 것은 2차원 블록 데이터 MxN에 대해 행이 열이 되고 열이 행이 되어 NxM 데이터를 구성하는 것을 의미한다. 18번 인트라 예측 모드와 50번 인트라 예측 모드는 각각 수평 인트라 예측 모드(horizontal intra prediction mode), 수직 인트라 예측 모드(vertical intra prediction mode)를 나타내며, 2번 인트라 예측 모드는 왼쪽 참조 픽셀을 가지고 우상향 방향으로 예측하므로 우상향 대각 인트라 예측 모드라 불릴 수 있고, 동일한 맥락으로 34번 인트라 예측 모드는 우하향 대각 인트라 예측 모드, 66번 인트라 예측 모드는 좌하향 대각 인트라 예측 모드라고 불릴 수 있다.
이 경우, 상기 35개의 변환 세트들과 상기 인트라 예측 모드들 간의 매핑(mapping)은 예를 들어 다음 표와 같이 나타내어질 수 있다. 참고로, 대상 블록에 LM 모드가 적용되는 경우 상기 대상 블록에 대하여는 2차 변환이 적용되지 않을 수 있다.
Figure PCTKR2020002625-appb-T000002
한편, 특정 세트가 사용되는 것으로 결정되면, 비분리 2차 변환 인덱스를 통하여 상기 특정 세트 내 k개의 변환 커널들 중 하나가 선택될 수 있다. 인코딩 장치는 RD(rate-distortion) 체크 기반으로 특정 변환 커널을 가리키는 비분리 2차 변환 인덱스를 도출할 수 있으며, 상기 비분리 2차 변환 인덱스를 디코딩 장치로 시그널링할 수 있다. 디코딩 장치는 상기 비분리 2차 변환 인덱스를 기반으로 특정 세트 내 k개의 변환 커널들 중 하나를 선택할 수 있다. 예를 들어, NSST 인덱스 값 0은 첫번째 비분리 2차 변환 커널을 가리킬 수 있고, NSST 인덱스 값 1은 두번째 비분리 2차 변환 커널을 가리킬 수 있으며, NSST 인덱스 값 2는 세번째 비분리 2차 변환 커널을 가리킬 수 있다. 또는 NSST 인덱스 값 0은 대상 블록에 대하여 첫번째 비분리 2차 변환이 적용되지 않음을 가리킬 수 있고, NSST 인덱스 값 1 내지 3은 상기 3개의 변환 커널들을 가리킬 수 있다.
다시 도 4를 참조하면, 변환부는 선택된 변환 커널들을 기반으로 상기 비분리 2차 변환을 수행하고 수정된(2차) 변환 계수들을 획득할 수 있다. 상기 수정된 변환 계수들은 상술한 바와 같이 양자화부를 통하여 양자화된 변환 계수들로 도출될 수 있고, 인코딩되어 디코딩 장치로 시그널링 및 인코딩 장치 내의 역양자화/역변환부로 전달될 수 있다.
한편, 상술한 바와 같이 2차 변환이 생략되는 경우 상기 1차 (분리) 변환의 출력인 (1차) 변환 계수들이 상술한 바와 같이 양자화부를 통하여 양자화된 변환 계수들로 도출될 수 있고, 인코딩되어 디코딩 장치로 시그널링 및 인코딩 장치 내의 역양자화/역변환부로 전달될 수 있다.
역변환부는 상술한 변환부에서 수행된 절차의 역순으로 일련의 절차를 수행할 수 있다. 역변환부는 (역양자화된) 변환 계수들을 수신하여, 2차 (역)변환을 수행하여 (1차) 변환 계수들을 도출하고(S450), 상기 (1차) 변환 계수들에 대하여 1차 (역)변환을 수행하여 레지듀얼 블록(레지듀얼 샘플들)을 획득할 수 있다(S460). 여기서 상기 1차 변환 계수들은 역변환부 입장에서 수정된(modified) 변환 계수들로 불릴 수 있다. 인코딩 장치 및 디코딩 장치는 상기 레지듀얼 블록과 예측된 블록을 기반으로 복원 블록을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있음은 상술한 바와 같다.
한편, 디코딩 장치는 2차 역변환 적용 여부 결정부(또는 이차 역변환의 적용 여부를 결정하는 요소)와, 2차 역변환 결정부(또는 이차 역변환을 결정하는 요소)를 더 포함할 수 있다. 2차 역변환 적용 여부 결정부는 2차 역변환의 적용 여부를 결정할 수 있다. 예를 들어, 2차 역변환은 NSST 또는 RST일 수 있고, 2차 역변환 적용 여부 결정부는 비트스트림으로부터 파싱한 이차 변환 플래그에 기초하여 2차 역변환의 적용 여부를 결정할 수 있다. 다른 일 예로, 2차 역변환 적용 여부 결정부는 레지듀얼 블록의 변환 계수에 기초하여 2차 역변환의 적용 여부를 결정할 수도 있다.
이차 역변환 결정부는 2차 역변환을 결정할 수 있다. 이때, 2차 역변환 결정부는 인트라 예측 모드에 따라 지정된 NSST(또는 RST) 변환 세트에 기초하여 현재 블록에 적용되는 이차 역변환을 결정할 수 있다. 또한, 일 실시예로서, 1차 변환 결정 방법에 의존적으로(depend on) 이차 변환 결정 방법이 결정될 수 있다. 인트라 예측 모드에 따라 일차 변환과 이차 변환의 다양한 여러 조합이 결정될 수 있다. 또한, 일 예로, 이차 역변환 결정부는 현재 블록의 크기에 기초하여 이차 역변환이 적용되는 영역을 결정할 수도 있다.
한편, 상술한 바와 같이 2차 (역)변환이 생략되는 경우 (역양자화된) 변환 계수들을 수신하여 상기 1차 (분리) 역변환을 수행하여 레지듀얼 블록(레지듀얼 샘플들)을 획득할 수 있다. 인코딩 장치 및 디코딩 장치는 상기 레지듀얼 블록과 예측된 블록을 기반으로 복원 블록을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있음은 상술한 바와 같다.
한편, 본 문서에서는 비분리 2차 변환에 수반되는 계산량과 메모리 요구량의 저감을 위하여 NSST의 개념에서 변환 매트릭스(커널)의 크기가 감소된 RST(reduced secondary transform)을 적용할 수 있다.
한편, 본 문서에서 설명된 변환 커널, 변환 매트릭스, 변환 커널 매트릭스를 구성하는 계수, 즉 커널 계수 또는 매트릭스 계수는 8비트로 표현될 수 있다. 이는 디코딩 장치 및 인코딩 장치에서 구현되기 위한 하나의 조건일 수 있으며, 기존의 9비트 또는 10비트와 비교하여 합리적으로 수용할 수 있는 성능 저하를 수반하면서 변환 커널을 저장하기 위한 메모리 요구량을 줄일 수 있다. 또한, 커널 매트릭스를 8비트로 표현함으로써 작은 곱셈기를 사용할 수 있고, 최적의 소프트웨어 구현을 위하여 사용되는 SIMD(Single Instruction Multiple Data) 명령에 보다 적합할 수 있다.
본 명세서에서 RST는 간소화 팩터(factor)에 따라 크기가 감소된 변환 매트릭스(transform matrix)를 기반으로 대상 블록에 대한 레지듀얼 샘플들에 대하여 수행되는 변환을 의미할 수 있다. 간소화 변환을 수행하는 경우, 변환 매트릭스의 크기 감소로 인해 변환 시 요구되는 연산량이 감소될 수 있다. 즉, RST은 크기가 큰 블록의 변환 또는 비분리 변환 시 발생하는 연산 복잡도(complexity) 이슈를 해소하기 위해 이용될 수 있다.
RST는 감소된 변환, 감소 변환, reduced transform, reduced secondary transform, reduction transform, simplified transform, simple transform 등 다양한 용어로 지칭될 수 있으며, RST이 지칭될 수 있는 명칭은 나열된 예시들에 한정되지 않는다. 또는 RST는 주로 변환 블록에서 0이 아닌 계수를 포함하는 저주파 영역에서 이루어지므로 LFNST(Low-Frequency Non-Separable Transform)로 지칭될 수도 있다.
한편, 2차 역변환이 RST를 기반으로 이루어지는 경우, 인코딩 장치(200)의 역변환부(235)와 디코딩 장치(300)의 역변환부(322)는 변환 계수들에 대한 역 RST을 기반으로 수정된 변환 계수들을 도출하는 역 RST부와, 수정된 변환 계수들에 대한 역 1차변환을 기반으로 상기 대상 블록에 대한 레지듀얼 샘플들을 도출하는 역 1차변환부를 포함할 수 있다. 역 1차변환은 레지듀얼에 적용되었던 1차 변환의 역변환을 의미한다. 본 문서에서 변환을 기반으로 변환 계수를 도출하는 것은 해당 변환을 적용하여 변환 계수를 도출하는 것을 의미할 수 있다.
도 6은 본 문서의 일 실시예에 따른 RST를 설명하기 위한 도면이다.
본 명세서에서 “대상 블록”은 코딩이 수행되는 현재 블록 또는 레지듀얼 블록을 의미할 수 있다.
일 실시예에 따른 RST에서, N차원 벡터(N dimensional vector)가 다른 공간에 위치한 R차원 벡터(R dimensional vector)에 매핑되어 감소된 변환 매트릭스가 결정될 수 있으며, 여기서 R은 N보다 작다. N은 변환이 적용되는 블록의 한 변의 길이(length)의 제곱 또는 변환이 적용되는 블록과 대응되는 변환 계수들의 총 개수를 의미할 수 있고, 간소화 팩터는 R/N값을 의미할 수 있다. 간소화 팩터는 감소된 팩터, 감소 팩터, reduced factor, reduction factor, simplified factor, simple factor 등 다양한 용어로 지칭될 수 있다. 한편, R은 간소화 계수(reduced coefficient)로 지칭될 수 있으나, 경우에 따라서는 간소화 팩터가 R을 의미할 수도 있다. 또한, 경우에 따라서 간소화 팩터는 N/R값을 의미할 수도 있다.
일 실시예에서, 간소화 팩터 또는 간소화 계수는 비트스트림을 통하여 시그널링될 수 있으나, 실시예가 이에 한정되는 것은 아니다. 예를 들어, 간소화 팩터 또는 간소화 계수에 대한 기 정의된 값이 각 인코딩 장치(200) 및 디코딩 장치(300)에 저장되어 있을 수 있으며, 이 경우 간소화 팩터 또는 간소화 계수는 별도로 시그널링되지 않을 수 있다.
일 실시예에 따른 간소화 변환 매트릭스의 사이즈는 통상의 변환 매트릭스의 사이즈 NxN보다 작은 RxN이며, 아래의 수학식 4와 같이 정의될 수 있다.
Figure PCTKR2020002625-appb-M000004
도 6의 (a)에 도시된 Reduced Transform 블록 내의 매트릭스 T는 수학식 4의 매트릭스 TRxN를 의미할 수 있다. 도 6의 (a)와 같이 대상 블록에 대한 레지듀얼 샘플들에 대하여 간소화 변환 매트릭스 TRxN가 곱해지는 경우, 대상 블록에 대한 변환 계수들이 도출될 수 있다.
일 실시예에서, 변환이 적용되는 블록의 사이즈가 8x8이고, R=16 (즉, R/N=16/64=1/4이다)인 경우, 도 6의 (a)에 따른 RST는 아래의 수학식 5와 같은 행렬 연산으로 표현될 수 있다. 이 경우, 메모리와 곱하기 연산이 간소화 팩터에 의하여 대략 1/4로 감소할 수 있다.
본 문서에서 행렬 연산이란, 행렬을 열 벡터의 왼쪽에 두고 행렬과 열 벡터를 곱하여 열 벡터를 얻는 연산으로 이해될 수 있다.
Figure PCTKR2020002625-appb-M000005
수학식 5에서 r1 내지 r64는 대상 블록에 대한 레지듀얼 샘플들을 나타낼 수 있고, 보다 구체적으로, 일차 변환을 적용하여 생성된 변환 계수일 수 있다. 수학식 5의 연산 결과 대상 블록에 대한 변환 계수들 ci가 도출될 수 있으며, ci의 도출 과정은 수학식 6과 같을 수 있다.
Figure PCTKR2020002625-appb-M000006
수학식 6의 연산 결과, 대상 블록에 대한 변환 계수들 c1 내지 cR이 도출될 수 있다. 즉, R=16인 경우, 대상 블록에 대한 변환 계수들 c1 내지 c16이 도출될 수 있다. 만약 RST가 아니라 통상의(regular) 변환이 적용되어 사이즈가 64x64(NxN)인 변환 매트릭스가 사이즈가 64x1(Nx1)인 레지듀얼 샘플들에 곱해졌다면 대상 블록에 대한 변환 계수들이 64개(N개)가 도출되었겠지만, RST가 적용되었기 때문에 대상 블록에 대한 변환 계수들이 16개(R개)만 도출되는 것이다. 대상 블록에 대한 변환 계수들의 총 개수가 N개에서 R개로 감소하여 인코딩 장치(200)가 디코딩 장치(300)로 전송하는 데이터의 양이 감소하므로 인코딩 장치(200)-디코딩 장치(300) 간 전송 효율이 증가할 수 있다.
변환 매트릭스의 사이즈 관점에서 검토하면, 통상의 변환 매트릭스의 사이즈는 64x64(NxN)인데 간소화 변환 매트릭스의 사이즈는 16x64(RxN)로 감소하므로, 통상의 변환을 수행할 때와 비교하면 RST를 수행할 시 메모리 사용을 R/N 비율로 감소시킬 수 있다. 또한, 통상의 변환 매트릭스를 이용할 때의 곱셈 연산 수 NxN과 비교하면, 간소화 변환 매트릭스를 이용하면 곱셈 연산 수를 R/N 비율로 감소(RxN)시킬 수 있다.
일 실시예에서, 인코딩 장치(200)의 변환부(232)는 대상 블록에 대한 레지듀얼 샘플들을 1차 변환 및 RST 기반의 2차 변환을 수행함으로써 대상 블록에 대한 변환 계수들을 도출할 수 있다. 이러한 변환 계수들은 디코딩 장치(300)의 역변환부로 전달될 수 있으며, 디코딩 장치(300)의 역변환부(322)는 변환 계수들에 대한 역 RST(reduced secondary transform)을 기반으로 수정된 변환 계수들을 도출하고, 수정된 변환 계수들에 대한 역 1차변환을 기반으로 대상 블록에 대한 레지듀얼 샘플들을 도출할 수 있다.
일 실시예에 따른 역 RST 매트릭스 TNxR의 사이즈는 통상의 역변환 매트릭스의 사이즈 NxN보다 작은 NxR이며, 수학식 4에 도시된 간소화 변환 매트릭스 TRxN과 트랜스포즈(transpose) 관계에 있다.
도 6의 (b)에 도시된 Reduced Inv. Transform 블록 내의 매트릭스 Tt는 역 RST 매트릭스 TRxN T을 의미할 수 있다(위첨자 T는 트랜스포즈를 의미한다). 도 6의 (b)와 같이 대상 블록에 대한 변환 계수들에 대하여 역 RST 매트릭스 TRxN T가 곱해지는 경우, 대상 블록에 대한 수정된 변환 계수들 또는 대상 블록에 대한 레지듀얼 샘플들이 도출될 수 있다. 역 RST 매트릭스 TRxN T는 (TRxN)T NxR로 표현할 수도 있다.
보다 구체적으로, 2차 역변환으로 역 RST가 적용되는 경우에는, 대상 블록에 대한 변환 계수들에 대하여 역 RST 매트릭스 TRxN T가 곱해지면 대상 블록에 대한 수정된 변환 계수들이 도출될 수 있다. 한편, 역 1차변환으로 역 RST가 적용될 수 있고, 이 경우 대상 블록에 대한 변환 계수들에 대하여 역 RST 매트릭스 TRxNT가 곱해지면 대상 블록에 대한 레지듀얼 샘플들이 도출될 수 있다.
일 실시예에서, 역변환이 적용되는 블록의 사이즈가 8x8이고, R=16(즉, R/N=16/64=1/4인 경우)인 경우, 도 6의 (b)에 따른 RST는 아래의 수학식 7과 같은 행렬 연산으로 표현될 수 있다.
Figure PCTKR2020002625-appb-M000007
수학식 7에서 c1 내지 c16은 대상 블록에 대한 변환 계수들을 나타낼 수 있다. 수학식 7의 연산 결과 대상 블록에 대한 수정된 변환 계수들 또는 대상 블록에 대한 레지듀얼 샘플들을 나타내는 rj가 도출될 수 있으며, rj의 도출 과정은 수학식 8와 같을 수 있다.
Figure PCTKR2020002625-appb-M000008
수학식 8의 연산 결과, 대상 블록에 대한 수정된 변환 계수들 또는 대상 블록에 대한 레지듀얼 샘플들을 나타내는 r1 내지 rN이 도출될 수 있다. 역변환 매트릭스의 사이즈 관점에서 검토하면, 통상의 역변환 매트릭스의 사이즈는 64x64(NxN)인데 간소화 역변환 매트릭스의 사이즈는 64x16(NxR)으로 감소하므로, 통상의 역변환을 수행할 때와 비교하면 역 RST를 수행할 시 메모리 사용을 R/N 비율로 감소시킬 수 있다. 또한, 통상의 역변환 매트릭스를 이용할 때의 곱셈 연산 수 NxN과 비교하면, 간소화 역변환 매트릭스를 이용하면 곱셈 연산 수를 R/N 비율로 감소(NxR)시킬 수 있다.
한편, 8x8 RST에 대해서도, 표 2와 같은 변환 세트 구성을 적용할 수 있다. 즉, 표 2에서의 변환 세트에 따라 해당 8x8 RST가 적용될 수 있다. 하나의 변환 세트는 화면 내 예측 모드에 따라 2개 또는 3개의 변환 (커널)들로 구성되어 있으므로 2차 변환을 적용하지 않는 경우까지 포함하여 최대 네 개의 변환 중 하나를 선택하도록 구성될 수 있다. 2차 변환을 적용하지 않을 때의 변환은 항등 행렬이 적용된 것이 라고 간주될 수 있다. 네 개의 변환에 대해 각기 0, 1, 2, 3의 인덱스를 부여한다고 했을 때(예를 들어, 0번 인덱스를 항등 행렬, 즉 2차 변환을 적용하지 않는 경우로 할당할 수 있음), NSST 인덱스라는 신택스 요소(syntax element)를 변환 계수 블록마다 시그널링하여 적용될 변환을 지정할 수 있다. 즉, NSST 인덱스를 통해 8x8 좌상단 블록에 대해서, 8x8 NSST를 지정할 수 있고, RST 구성에서는 8x8 RST를 지정할 수 있다. 8x8 NSST 및 8x8 RST는 변환의 대상이 되는 대상 블록의 W와 H가 모두 8보다 같거나 클 때 해당 변환 계수 블록 내부에 포함된 8x8 영역에 적용될 수 있는 변환을 가리키며 해당 8x8 영역은 해당 변환 계수 블록 내부의 좌상단 8x8 영역일 수 있다. 유사하게, 4x4 NSST 및 4x4 RST는 대상 블록의 W와 H가 모두 4보다 같거나 클 때 해당 변환 계수 블록 내부에 포함된 4x4 영역에 적용될 수 있는 변환을 가리키며 해당 4x4 영역은 해당 변환 계수 블록 내부의 좌상단 4x4 영역일 수 있다.
한편, 수학식 4와 같은 (순방향) 8x8 RST를 적용하게 되면 16개의 유효한 변환 계수가 생성되므로 8x8 영역을 구성하는 64개의 입력 데이터가 16개의 출력 데이터로 축소된다고 볼 수 있으며, 2차원 영역 관점에서 보면 1/4만큼의 영역에만 유효한 변환 계수가 채워지게 된다. 따라서, 순방향 8x8 RST를 적용하여 얻은 16개의 출력 데이터는 예를 들어 도 7의 블록의 좌상단 영역(1번부터 16번 변환 계수, 즉, 수학식 6을 통해 얻어지는 c1, c2, ..., c16)에 1번부터 16번 방향으로 대각 방향 스캐닝 순서에 따라 채워 질 수 있다.
도 7은 본 문서의 일 실시예에 따른 변환 계수의 스캐닝 순서를 도시한 도면이다. 상술한 바와 같이, 순방향 스캔 순서가 1번부터 시작되면, 역방향 스캐닝은 순방향 스캔 순서 상으로 64번째부터 17번째까지 도 7에 도시된 화살표 방향 및 순서로 이루어질 수 있다.
도 7에서는 좌상단 4x4 영역이 유효한 변환 계수가 채워지는 ROI(Region Of Interest 영역이고 나머지 영역은 비워지게 된다. 비워지는 영역에는 0 값이 디폴트로 채워질 수 있다.
즉, 순방향 변환 행렬의 형태가 16x64인 8x8 RST를 8x8 영역에 대해 적용했을 때, 출력 변환 계수는 좌상단 4x4 영역에 배치되고 출력 변환 계수가 존재하지 않는 영역은 도 7에서의 스캔 순서를 따라 (64번째부터 17번째까지) 0으로 채워질 수 있다.
만약, 도 7의 ROI 영역 이외에 0이 아닌 유효한 변환 계수가 발견되었다고 하면 8x8 RST가 적용되지 않은 것이 확실하므로 해당 NSST 인덱스 코딩이 생략될 수 있다. 반대로 도 7의 ROI 영역 이외에서 0이 아닌 변환 계수가 발견되지 않았다면 (예를 들어, 8x8 RST가 적용되는 경우, ROI 이외의 영역에의 변환 계수를 0으로 설정하였을 때) 8x8 RST가 적용되었을 가능성이 있으므로 NSST 인덱스를 코딩할 수 있다. 이와 같은 조건적 NSST 인덱스 코딩은 0이 아닌 변환 계수의 존재 유무를 체크해야 하므로 레지듀얼 코딩(residual coding) 과정 이후에 수행될 수 있다.
본 문서는 본 실시예에서 기술한 RST 구조로부터 4x4 블록에 적용될 수 있는 RST의 설계 및 연관 최적화 방법들을 다루고 있다. 당연히 일부 개념들에 대해서는 4x4 RST 뿐만 아니라 8x8 RST 또는 다른 형태의 변환에도 적용될 수 있다.
도 8은 본 문서의 일 실시예에 따른 역 RST 과정을 도시하는 흐름도이다.
도 8에 개시된 각 단계는 도 3에 개시된 디코딩 장치(300)에 의하여 수행될 수 있다. 보다 구체적으로, S800은 도 3에 개시된 역양자화부(321)에 의하여 수행될 수 있고, S810 및 S820은 도 3에 개시된 역변환부(322)에 의하여 수행될 수 있다. 따라서, 도 3에서 전술된 내용과 중복되는 구체적인 내용은 설명을 생략하거나 간단히 하기로 한다. 한편, 본 문서에서 RST는 순방향에 따른 변환에 적용되는 것이고, 역 RST는 인버스 방향에 적용되는 변환을 의미할 수 있다.
일 실시예에서, 역 RST에 따른 세부 동작들은 RST에 따른 세부 동작들과 순서가 정반대일 뿐이고, RST에 따른 세부 동작들과 역 RST에 따른 세부 동작들은 실질적으로 유사할 수 있다. 따라서, 당해 기술 분야의 통상의 기술자는, 이하에서 설명되는 역 RST에 대한 S800 내지 S820의 설명들이 RST에도 동일 또는 유사하게 적용될 수 있음을 용이하게 이해할 수 있을 것이다.
일 실시예에 따른 디코딩 장치(300)는, 대상 블록에 대한 양자화된 변환 계수들에 대하여 역양자화를 수행하여 변환 계수들을 도출할 수 있다(S800).
한편, 디코딩 장치(300)는 역 2차 변환 전에 역 2차 변환의 적용 여부를 결정할 수 있다. 예를 들어, 역 이차 변환은 NSST 또는 RST일 수 있다. 일 예로, 디코딩 장치는 비트스트림으로부터 파싱한 이차 변환 플래그에 기초하여 역 2차 변환의 적용 여부를 결정할 수 있다. 다른 일 예로, 디코딩 장치는 레지듀얼 블록의 변환 계수에 기초하여 역 2차 변환의 적용 여부를 결정할 수도 있다.
또한, 디코딩 장치(300)는 역 2차 변환을 결정할 수 있다. 이때, 디코딩 장치(300)는 인트라 예측 모드에 따라 지정된 NSST(또는 RST) 변환 세트에 기초하여 현재 블록에 적용되는 역 2차 변환을 결정할 수도 있다. 또한, 일 실시예로서, 1차 변환 결정 방법에 의존하여 2차 변환 결정 방법이 결정될 수 있다. 예를 들어, 1차 변환에서 변환 커널로 DCT-2가 적용되는 경우에만 RST 또는 LFNST가 적용되는 것으로 결정될 수 있다. 또는 인트라 예측 모드에 따라 1차 변환과 2차 변환의 다양한 여러 조합이 결정될 수 있다.
또한, 일 예로, 디코딩 장치(300)는 역 2차 변환을 결정하는 단계에 앞서 현재 블록의 크기에 기초하여 역 2차 변환이 적용되는 영역을 결정할 수도 있다.
일 실시예에 따른 디코딩 장치(300)는, 변환 커널(transform kernel)을 선택할 수 있다(S810). 보다 구체적으로, 디코딩 장치(300)는 변환 인덱스, 변환이 적용되는 영역의 폭(width) 및 높이(height), 영상 디코딩에서 이용되는 인트라 예측 모드 및 대상 블록의 색상 성분(color component)에 대한 정보 중 적어도 하나를 기반으로 변환 커널을 선택할 수 있다. 다만 실시예는 이에 한정되지 않으며, 예를 들어 변환 커널은 기 정의된 것으로서, 변환 커널을 선택하기 위한 별도의 정보가 시그널링되지 않을 수도 있다.
일 예시에서, 대상 블록의 색상 성분에 대한 정보는 CIdx를 통해 지시될 수 있다. 대상 블록이 루마(luma) 블록인 경우 CIdx는 0을 지시할 수 있고, 대상 블록이 크로마(chroma) 블록, 예를 들어 Cb 블록 또는 Cr 블록인 경우 CIdx는 0이 아닌 값(예를 들어 1)을 지시할 수 있다.
일 실시예에 따른 디코딩 장치(300)는, 선택된 변환 커널 및 간소화 팩터(reduced factor)를 기반으로 변환 계수들에 대하여 역 RST를 적용할 수 있다(S820).
이하에서는, 본 문서의 일 실시예에 따라 인트라 예측 모드와 블록의 크기를 고려하여 2차 NSST 세트, 즉 2차 변환 세트 또는 변환 세트를 결정하는 방법을 제안한다.
일 실시예로, 상술된 인트라 예측 모드를 기반으로 현재 변환 블록에 대한 세트를 구성함으로써, 변환 블록에 다양한 크기의 변환 커널로 구성된 변환 세트를 적용할 수 있다. 표 3의 변환 세트를 0부터 3으로 표시하면 표 4와 같다.
Figure PCTKR2020002625-appb-T000003
Figure PCTKR2020002625-appb-T000004
표 3에서 나타나 있는 인덱스 0, 2, 18, 34는 표 4의 0, 1, 2, 3에 각각 대응된다. 표 3 및 표 4에는 변환 세트는 35개의 변환 세트가 아닌 단 4개의 변환 세트만이 사용되고, 이에 의하여 메모리 공간이 현저하게 줄어들 수 있다.
또한, 각 변환 세트에 포함될 수 있는 변환 커널 매트릭스의 다양한 개수는 아래 표들과 같이 설정될 수 있다.
Figure PCTKR2020002625-appb-T000005
Figure PCTKR2020002625-appb-T000006
Figure PCTKR2020002625-appb-T000007
표 5는 각 변환 세트에 대하여 2개의 이용 가능한(available) 변환 커널이 사용되고, 이에 따라 변환 인덱스는 0부터 2까지 범위를 갖게된다.
표 6에 따르면, 변환 세트 0, 즉 인트라 예측 모드 중 DC 모드와 플래너 모드에 대한 변환 세트에 대해서는 2개의 이용 가능한 변환 커널이 사용되고, 나머지 변환 세트에 대해서는 각각 하나의 변환 커널이 사용된다. 이 때, 변환 세트 1에 대한 이용 가능한 변환 인덱스는 0부터 2가 되고, 나머지 변환 세트 1 내지 3에 대한 변환 인덱스는 0에서 1이 된다.
표 7에서는 각 변환 세트에 대하여 1개의 이용 가능한(available) 변환 커널이 사용되고, 이에 따라 변환 인덱스는 0부터 1까지 범위를 갖게된다.
한편, 상기 표 3의 변환 세트 매핑에서는 모두 4개의 변환 세트가 사용될 수 있고, 4개의 변환 세트는 0, 1, 2, 3의 인덱스로 구분되도록 표 4와 같이 재배열될 수 있다. 아래 표 8 및 표 9는 2차 변환에 사용될 수 있는 4개의 변환 세트를 예시적으로 나타내고 있으며, 표 8는 8x8 블록에 적용될 수 있는 변환 커널 매트릭스, 표 9는 4x4 블록에 적용될 수 있는 변환 커널 매트릭스를 제시하고 있다. 표 8 및 표 9는 변환 세트 당 2개의 변환 커널 매트릭스로 구성되어 있으며, 표 5와 같이 모든 인트라 예측 모드에 대하여 2개씩의 변환 커널 매트릭스를 적용할 수 있다.
Figure PCTKR2020002625-appb-T000008
Figure PCTKR2020002625-appb-I000006
Figure PCTKR2020002625-appb-I000007
Figure PCTKR2020002625-appb-I000008
Figure PCTKR2020002625-appb-I000009
Figure PCTKR2020002625-appb-I000010
Figure PCTKR2020002625-appb-I000011
Figure PCTKR2020002625-appb-I000012
Figure PCTKR2020002625-appb-T000009
Figure PCTKR2020002625-appb-I000013
Figure PCTKR2020002625-appb-I000014
Figure PCTKR2020002625-appb-I000015
표 8에 제시된 변환 커널 매트릭스 예시들은 모두 128이 스케일링 값으로 곱해진 변환 커널 매트릭스들이다. 표 8의 매트릭스 배열들에서 등장하는 g_aiNsst8x8[N1][N2][16][64] 어레이에서, N1은 변환 세트의 수를 나타내고 (N1은 4 또는 35, 인덱스 0, 1, … , N1-1로 구분) N2는 각 변환 세트를 구성하는 변환 커널 매트릭스 수를 나타내며 (1 또는 2), [16][64]는 16x64 Reduced Secondary Transform(RST)를 나타낸다.
표 3 및 표 4와 같이 어떤 변환 세트가 1개의 변환 커널 매트릭스로 구성되는 경우, 표 8에서 해당 변환 세트에 대해 첫 번째 또는 두 번째 변환 커널 매트릭스 증 어느 하나를 사용할 수 있다.
해당 RST을 적용하면 16개의 변환 계수가 출력되나, 16 x 64 행렬 중 m x 64 부분만 적용하게 되면 m개의 변환 계수만 출력되도록 구성할 수 있다. 예컨대 m = 8로 하고 맨 위에서부터 8 x 64 행렬만을 곱하여 8개의 변환 계수만 출력하는 대신 계산량은 절반으로 줄일 수 있다. 최악 경우(Worst case)의 계산량을 줄이기 위해 8 x 8 변환 유닛(TU)에 대해서 8 x 64 행렬을 적용해 볼 수 있다.
이와 같이, 8 x 8 영역에 적용될 수 있는 m x 64 변환 행렬은 (m ≤ 16, 예컨대, 표 8의 변환 커널 매트릭스) 64개의 데이터를 입력 받아서 m개의 계수를 생성해 낸다. 즉, 수학식 5에 나타난 바와 같이 64개의 데이터가 64 x 1 벡터를 이룬다고 했을 때, m x 64 행렬과 64 x 1 벡터를 순서대로 곱하여 m x 1 벡터가 생성된다. 이 때, 8 x 8 영역을 이루는 64개의 데이터를 적절히 배열하여 64 x 1 벡터를 구성할 수 있는데, 일 예로 아래 표 10와 같이 8 x 8 영역의 각 위치에 표시된 인덱스 순서대로 데이터가 배열될 수 있다.
Figure PCTKR2020002625-appb-T000010
표 10에 나타난 바와 같이 2차 변환을 위한 8 x 8 영역에서 데이터 배열은 행 우선 방향 순서이다. 이는 2차원의 데이터가 2차 변환, 구체적으로 RST 또는 LFNST을 위하여 1차원으로 배열될 때의 순서를 의미하고, 이는 인코딩 장치에서 수행되는 순방향 2차 변환에 적용될 수 있다. 따라서, 인코딩 장치의 역변환부나 디코딩 장치의 역변환부에서 이루어지는 역방향 2차 변환에서는 변환의 결과 생성된 변환 계수, 즉 1차 변환 계수는 표 10과 같이 2차원으로 배열될 수 있다.
한편, 화면 내 예측 모드가 도 5와 같이, 67개로 이루어졌을 때 모든 방향성 모드들(2번 ~ 66번)이 34번 모드를 중심으로 하여 대칭적으로 구성되어 있다. 즉, (2 + n) 번 모드는 (66 - n)번 모드와 (0 ≤ n ≤ 31) 예측 방향 측면에서 34번 모드를 중심으로 대칭적이다. 따라서, (2 + n)번 모드, 즉 2번 내지 33번 모드에 대하여 64 x 1 입력 벡터를 구성하기 위한 데이터 배열 순서가 표 10과 같이 행 우선 방향이라면, (66 - n)번 모드에 대해서는 표 11과 같은 순서대로 64 x 1 입력 벡터가 구성될 수 있다.
Figure PCTKR2020002625-appb-T000011
표 11에 나타난 바와 같이 2차 변환을 위한 8 x 8 영역에서 데이터 배열은 열 우선 방향 순서이다. 이는 2차원의 데이터가 2차 변환, 구체적으로 RST 또는 LFNST을 위하여 1차원으로 배열될 때의 순서를 의미하고, 이는 인코딩 장치에서 수행되는 순방향 2차 변환에 적용될 수 있다. 따라서, 인코딩 장치의 역변환부나 디코딩 장치의 역변환부에서 이루어지는 역방향 2차 변환에서는 변환의 결과 생성된 변환 계수, 즉 1차 변환 계수는 표 11과 같이 2차원으로 배열될 수 있다.
표 11은 화면 내 예측 모드가 (66 - n)번 모드, 즉 34번 내지 66번 모드에 대해서는 열 우선 방향 순서에 따라 64 x 1 입력 벡터가 구성될 수 있음을 나타낸다.
정리하면, (2 + n) 번 모드에 대해서는 입력 데이터를 행 우선 방향 순서에 따라, (66 - n)번 모드에 (0 ≤ n ≤ 31) 대해서는 입력 데이터를 열 우선 방향 순서에 따라 대칭적으로 배열하면서 표 8과 같은 동일한 변환 커널 매트릭스를 적용할 수 있다. 모드 별로 어떤 변환 커널 매트릭스를 적용할지에 대해서는 표 3 내지 표 7에 예시되어 있다. 이 때, 인트라 예측 모드 0번인 플래너 모드, 인트라 예측 모드 1번인 DC 모드, 인트라 예측 모드 34번에 대해서는 표 10 또는 표 11의 어느 하나의 배열 순서를 적용할 수 있다. 예를 들어, 인트라 예측 모드 34번에 대해서는 표 10과 같이 입력 데이터를 행 우선 방향 순서에 따라 배열할 수 있다.
또 다른 일 예에 따라, 4x4 영역에 적용될 수 있는 표 9에 제시된 변환 커널 매트릭스 예시들은 모두 128이 스케일링 값으로 곱해진 변환 커널 매트릭스들이다. 표 9의 매트릭스 배열들에서 등장하는 g_aiNsst4x4[N1][N2][16][64] 어레이에서, N1은 transform set의 수를 나타내고 (N1은 4 또는 35, 인덱스 0, 1, … , N1-1로 구분) N2는 각 변환 세트를 구성하는 변환 커널 매트릭스 수를 나타내며 (1 또는 2), [16][16]는 16x16 변환을 나타낸다.
표 3 및 표 4와 같이 어떤 변환 세트가 1개의 변환 커널 매트릭스로 구성되는 경우, 표 9에서 해당 변환 세트에 대해 첫 번째 또는 두 번째 변환 커널 매트릭스 증 어느 하나를 사용할 수 있다.
8 x 8 RST의 경우와 마찬가지로, 16 x 16 행렬 중 m x 16 부분만 사용하게 되면 m개의 변환 계수만 출력되도록 구성할 수 있다. 예컨대 m = 8로 하고 맨 위에서부터 8 x 16 행렬만을 곱하여 8개의 변환 계수만 출력하는 대신 계산량은 절반으로 줄일 수 있다. 최악 경우의 계산량을 줄이기 위해 4 x 4 변환 유닛 (TU)에 대해서 8 x 16 행렬을 적용해 볼 수 있다.
기본적으로 표 9에서 제시된 4x4 영역에 적용될 수 있는 변환 커널 매트릭스는 4 x 4 TU, 4 x M TU, M x 4 TU에 대해 적용되거나 (M > 4, 4 x M TU와 M x 4 TU의 경우 4 x 4 영역들로 나눠서 각기 지정된 변환 커널 매트릭스를 적용하거나, 최대 좌상단 4x8 또는 8x4 영역에 대해서만 적용할 수 있음), 좌상단 4 x 4 영역에 대해서만 적용될 수 있다. 이차 변환이 좌상단 4 x 4 영역에 대해서만 적용되도록 구성되면, 표 8에 제시된 8x8 영역에 적용될 수 있는 변환 커널 매트릭스들은 불필요해 질 수 있다.
이와 같이, 4 x 4 영역에 적용될 수 있는 m x 16 변환 행렬은 (m ≤ 16, 예컨대, 표 9의 변환 커널 매트릭스) 16개의 데이터를 입력 받아서 m개의 계수를 생성해 낸다. 즉, 16개의 데이터가 16 x 1 벡터를 이룬다고 했을 때, m x 16 행렬과 16 x 1 벡터를 순서대로 곱하여 m x 1 벡터가 생성된다. 이 때, 4 x 4 영역을 이루는 16개의 데이터를 적절히 배열하여 16 x 1 벡터를 구성할 수 있는데, 일 예로 아래 표 12와 같이 4 x 4 영역의 각 위치에 표시된 인덱스 순서대로 데이터가 배열될 수 있다.
Figure PCTKR2020002625-appb-T000012
표 12에 나타난 바와 같이 2차 변환을 위한 4 x 4 영역에서 데이터 배열은 행 우선 방향 순서이다. 이는 2차원의 데이터가 2차 변환, 구체적으로 RST 또는 LFNST을 위하여 1차원으로 배열될 때의 순서를 의미하고, 이는 인코딩 장치에서 수행되는 순방향 2차 변환에 적용될 수 있다. 따라서, 인코딩 장치의 역변환부나 디코딩 장치의 역변환부에서 이루어지는 역방향 2차 변환에서는 변환의 결과 생성된 변환 계수, 즉 1차 변환 계수는 표 12과 같이 2차원으로 배열될 수 있다.
한편, 화면 내 예측 모드가 도 5와 같이, 67개로 이루어졌을 때 모든 방향성 모드들(2번 ~ 66번)이 34번 모드를 중심으로 하여 대칭적으로 구성되어 있다. 즉, (2 + n) 번 모드는 (66 - n)번 모드와 (0 ≤ n ≤ 31) 예측 방향 측면에서 34번 모드를 중심으로 대칭적이다. 따라서, (2 + n)번 모드, 즉 2번 내지 33번 모드에 대하여 16 x 1 입력 벡터를 구성하기 위한 데이터 배열 순서가 표 12과 같이 행 우선 방향이라면, (66 - n)번 모드에 대해서는 표 13과 같은 순서대로 16 x 1 입력 벡터가 구성할 수 있다.
Figure PCTKR2020002625-appb-T000013
표 13에 나타난 바와 같이 2차 변환을 위한 4 x 4 영역에서 데이터 배열은 열 우선 방향 순서이다. 이는 2차원의 데이터가 2차 변환, 구체적으로 RST 또는 LFNST을 위하여 1차원으로 배열될 때의 순서를 의미하고, 이는 인코딩 장치에서 수행되는 순방향 2차 변환에 적용될 수 있다. 따라서, 인코딩 장치의 역변환부나 디코딩 장치의 역변환부에서 이루어지는 역방향 2차 변환에서는 변환의 결과 생성된 변환 계수, 즉 1차 변환 계수는 표 11과 같이 2차원으로 배열될 수 있다.
표 13은 화면 내 예측 모드가 (66 - n)번 모드, 즉 34번 내지 66번 모드에 대해서는 열 우선 방향 순서에 따라 16 x 1 입력 벡터가 구성될 수 있음을 나타낸다.
정리하면, (2 + n) 번 모드에 대해서는 입력 데이터를 행 우선 방향 순서에 따라, (66 - n)번 모드에 (0 ≤ n ≤ 31) 대해서는 입력 데이터를 열 우선 방향 순서에 따라 대칭적으로 배열하면서 표 9와 같은 동일한 변환 커널 매트릭스를 적용할 수 있다. 모드 별로 어떤 변환 커널 매트릭스를 적용할지에 대해서는 표 5 내지 표 7에 예시되어 있다. 이 때, 인트라 예측 모드 0번인 플래너 모드, 인트라 예측 모드 1번인 DC 모드, 인트라 예측 모드 34번에 대해서는 표 12 또는 표 13의 어느 하나의 배열 순서를 적용할 수 있다. 예를 들어, 인트라 예측 모드 34번에 대해서는 표 12와 같이 입력 데이터를 행 우선 방향 순서에 따라 배열할 수 있다.
한편, 본 문서의 다른 실시예에 따라, 8 x 8 영역을 구성하는 64개의 데이터에 대해 표 8 및 표 9의 최대 16 x 64 변환 커널 매트릭스가 아닌, 48개의 데이터만을 선택하여 최대 16 x 48 변환 커널 매트릭스를 적용할 수 있다. 여기서, “최대”라는 것은 m 개의 계수를 생성할 수 있는 m x 48 변환 커널 매트릭스에 대해 m의 최대 값이 16이라는 것을 의미한다.
본 실시예에 따른 16 x 48 변환 커널 매트릭스는 표 14와 같이 나타낼 수 있다.
Figure PCTKR2020002625-appb-T000014
Figure PCTKR2020002625-appb-I000016
Figure PCTKR2020002625-appb-I000017
Figure PCTKR2020002625-appb-I000018
Figure PCTKR2020002625-appb-I000019
Figure PCTKR2020002625-appb-I000020
Figure PCTKR2020002625-appb-I000021
Figure PCTKR2020002625-appb-I000022
8 x 8 영역에 m x 48 변환 커널 매트릭스(m ≤ 16)를 적용하여 RST를 수행할 경우, 48개의 데이터를 입력 받아서 m개의 계수를 생성해 낼 수 있다. 표 14는 m이 16인 경우의 변환 커널 매트릭스의 일 예를 나타낸 것으로, 48개의 데이터를 입력 받아서 16개의 계수를 생성한다. 즉, 48개의 데이터가 48 x 1 벡터를 이룬다고 했을 때, 16 x 48 행렬과 48 x 1 벡터를 순서대로 곱하여 16 x 1 벡터가 생성될 수 있다. 이 때, 8 x 8 영역을 이루는 48개의 데이터를 적절히 배열하여 48 x 1 벡터를 구성할 수 있으며, 입력 데이터는 다음과 같은 순서로 배열될 수 있다.
Figure PCTKR2020002625-appb-T000015
RST 시, 표 14와 같이 최대 16 x 48 변환 커널 매트릭스를 적용하여 행렬 연산을 수행하면 16개의 수정된 변환 계수가 생성되는데, 16개의 수정된 변환 계수는 스캐닝 순서에 따라 좌상단 4 x 4 영역에 배치될 수 있고, 우상단 4 x 4 영역과 좌하단 4 x 4 영역은 0으로 채워질 수 있다. 표 16은 행렬 연산을 통하여 생성된 16개의 수정된 변환 계수의 배열 순서에 대한 일 예를 나타내고 있다.
Figure PCTKR2020002625-appb-T000016
표 16에 나타난 바와 같이, 최대 16 x 48 변환 커널 매트릭스를 적용했을 때 생성되는 수정된 변환 계수는 스캐닝 순서에 따라 좌상단 4 x 4 영역에 채워질 수 있다. 이 때, 좌상단 4 x 4 영역 내 각 위치의 숫자는 스캐닝 순서를 나타낸다. 통상적으로, 16 x 48 변환 커널 매트릭스에서 가장 상단의 행과 48x1 입력 열 벡터와의 내적 연산으로부터 생성된 계수가 스캐닝 순서상 첫 번째가 된다. 이 경우, 하단 행으로 내려가는 방향과 스캐닝 순서가 일치할 수 있다. 예컨대, 48x1 입력 열 벡터와 16 x 48 변환 커널 매트릭스에서 위에서부터 n 번째 행과의 내적 연산으로부터 생성된 계수는 스캐닝 순서상 n 번째가 된다.
최대 16 x 48 변환 커널 매트릭스의 경우, 표 16의 우하단 4 x 4 영역은 2차 변환을 적용하지 않는 영역이므로 원래의 입력 데이터(1차 변환 계수)가 그대로 보존되며, 우상단 4 x 4 영역과 좌하단 4 x 4 영역은 0으로 채워지게 된다.
또한, 다른 실시예에 따르면, 표 16에 제시된 스캐닝 순서 이외에 다른 스캐닝 순서도 적용될 수도 있다. 예를 들어 스캐닝 순서로 행 우선 방향 또는 열 우선 방향이 적용될 수 있다.
또한, 표 8과 같은 16 x 64 변환 커널 매트릭스를 적용하더라도 동일하게 16개의 변환 계수가 생성되므로 해당 16개의 변환 계수를 표 16에서 제시된 스캐닝 순서대로 배치할 수 있으며, 16 x 64 변환 커널 매트릭스를 적용하는 경우는 48개가 아닌 64개의 입력 데이터를 모두 사용하여 행렬 연산을 수행하기 때문에 좌상단 4 x 4 영역을 제외한 모든 4 x 4 영역에 0이 채워진다. 이 경우에도 스캐닝 순서는 표 16과 같은 대각 방향 스캐닝 순서가 적용될 수 있고, 이외에 행 우선 방향 또는 열 우선 방향과 같은 다른 스캐닝 순서가 적용될 수도 있다.
한편, 디코딩 장치에서 수행되는 역변환 과정으로 역 RST 또는 LFNST가 수행되는 경우, 역 RST를 적용할 입력 계수 데이터는 표 16의 배열 순서를 따라 1차원 벡터로 구성되고, 1차원 벡터에 해당 역 RST 행렬을 왼쪽에서 곱하여 얻어진 수정된 계수 벡터를 표 15의 배열 순서에 따라 2차원 블록에 배열할 수 있다.
즉, 디코딩 장치의 역변환부(322)는 표 16의 스캐닝 순서에 따라 1차원으로 배열된 변환 계수들에 변환 커널 매트릭스를 적용할 수 있다. 즉, 표 16의 스캐닝 순서에 따라 배열된 1차원 변환 계수들과 표 14의 변환 커널 매트릭스를 기반으로 하는 변환 커널 매트릭스와의 행렬 연산을 통하여 48개의 수정된 변환 계수를 도출할 수 있다. 즉, 1차원 변환 계수들은 표 14의 변환 커널 매트릭스에 트랜스포즈를 취한 매트릭스와 행렬 연산을 통하여 48개의 수정된 변환 계수들로 도출될 수 있다
이렇게 도출된 48개의 수정된 변환 계수들은 역 1차 변환을 위하여 표 15와 같이 2차원으로 배열될 수 있다.
정리하면, 변환 과정에서, 8x8 영역에 RST 또는 LFNST가 적용되는 경우, 8x8 영역의 변환 계수들 중 8x8 영역의 우하단 4x4 영역을 제외한 좌상단, 우상단, 좌하단 4x4 영역의 48개 변환 계수들과 16x48의 변환 커널 매트릭스와의 행렬 연산이 수행된다. 행렬 연산을 위하여 48개의 변환 계수들은 표 15와 같은 순서로 1차원 배열로 입력된다. 이러한 행렬 연산이 수행되면 16개의 수정된 변환 계수들이 도출되고, 수정된 변환 계수들은 8x8 영역의 좌상단 영역에 표 16과 같은 형태로 배열될 수 있다.
역으로, 역 변환 과정에서, 8x8 영역에 역 RST 또는 LFNST가 적용되는 경우, 8x8 영역의 변환 계수들 중 8x8 영역의 좌상단에 대응하는 16개의 변환 계수들은 표 16와 같은 스캐닝 순서에 따라 1차원 배열 형태로 입력되어 48 x 16의 변환 커널 매트릭스와 행렬 연산될 수 있다. 즉, 이러한 경우의 행렬 연산은 (48 x 16 행렬) * (16x1 변환 계수 벡터) = (48 x 1 수정된 변환계수벡터)로 나타낼 수 있다. 여기서 nx1 벡터는 nx1 행렬과 같은 의미로 해석될 수 있으므로, nx1 열 벡터로 표기될 수도 있다. 또한, *은 행렬 곱셈 연산을 의미한다. 이러한 행렬 연산이 수행되면, 48개의 수정된 변환 계수가 도출될 수 있고, 48개의 수정된 변환 계수들은 표 15와 같이 8x8 영역의 우하단 4x4 영역을 제외한 좌상단, 우상단, 좌하단 4x4 영역에 배열될 수 있다.
한편, 일 실시예에 따라 표 15에 나타난 바와 같이 2차 변환을 위한 8 x 8 영역에서 데이터 배열은 행 우선 방향 순서이다. 한편, 화면 내 예측 모드가 도 5와 같이, 67개로 이루어졌을 때 모든 방향성 모드들(2번 ~ 66번)이 34번 모드를 중심으로 하여 대칭적으로 구성되어 있다. 즉, (2 + n) 번 모드는 (66 - n)번 모드와 (0 ≤ n ≤ 31) 예측 방향 측면에서 34번 모드를 중심으로 대칭적이다. 따라서, (2 + n)번 모드, 즉 2번 내지 33번 모드에 대하여 48 x 1 입력 벡터를 구성하기 위한 데이터 배열 순서가 표 15와 같이 행 우선 방향이라면, (66 - n)번 모드에 대해서는 표 17과 같은 순서대로 48 x 1 입력 벡터가 구성될 수 있다.
Figure PCTKR2020002625-appb-T000017
표 17에 나타난 바와 같이 2차 변환을 위한 8 x 8 영역에서 데이터 배열은 열 우선 방향 순서이다. 표 17은 화면 내 예측 모드가 (66 - n)번 모드, 즉 35번 내지 66번 모드에 대해서는 열 우선 방향 순서에 따라 64 x 1 입력 벡터가 구성될 수 있음을 나타낸다.
정리하면, (2 + n) 번 모드에 대해서는 입력 데이터를 행 우선 방향 순서에 따라, (66 - n)번 모드에 (0 ≤ n ≤ 31) 대해서는 입력 데이터를 열 우선 방향 순서에 따라 대칭적으로 배열하면서 표 14와 같은 동일한 변환 커널 매트릭스를 적용할 수 있다. 모드 별로 어떤 변환 커널 매트릭스를 적용할지에 대해서는 표 5 내지 표 7에 예시되어 있다.
이 때, 인트라 예측 모드 0번인 플래너 모드, 인트라 예측 모드 1번인 DC 모드, 인트라 예측 모드 34번에 대해서는 표 15 또는 표 17의 어느 하나의 배열 순서를 적용할 수 있다. 예를 들어, 인트라 예측 모드 0번인 플래너 모드, 인트라 예측 모드 1번인 DC 모드, 인트라 예측 모드 34번에 대해서는 표 15의 행 우선 방향 순서를 적용하고, 도출된 변환 계수에 대하여 표 16의 배열 순서를 적용할 수 있다. 또는, 인트라 예측 모드 0번인 플래너 모드, 인트라 예측 모드 1번인 DC 모드, 인트라 예측 모드 34번에 대해서는 표 17의 열 우선 방향 순서를 적용하고, 도출된 변환 계수에 대하여 표 16의 배열 순서를 적용할 수도 있다.
상술된 바와 같이, 2차 변환에 표 14의 16 x 48 변환 커널 매트릭스를 적용하면, 표 16과 같이 8 x 8 영역의 우상단 4 x 4 영역과 좌하단 4 x 4 영역은 0으로 채워지게 된다. 만약, 2차 변환에 m x 48 변환 커널 매트릭스를 적용한다면 (m ≤ 16) 우상단 4 x 4 영역과 좌하단 4 x 4 영역뿐만 아니라, 표 16에서 제시된 스캐닝 순서 상으로 (m + 1) 번째부터 16번째까지도 0으로 채워질 수 있다.
따라서, 스캐닝 순서 상으로 (m + 1) 번째부터 16번째 위치까지 또는 우상단 4 x 4 영역 또는 좌하단 4 x 4 영역에 하나라도 0이 아닌 변환 계수가 존재하면, m x 48 2차 변환이 (m ≤ 16) 적용되지 않은 경우에 해당할 수 있다. 이런 경우에는 2차 변환에 대한 인덱스 등을 시그널링하지 않을 수 있다. 디코딩 장치는 변환 계수를 먼저 파싱하여 해당 조건(즉, 2차 변환으로 변환 계수가 0이 되어야 하는 영역에 0이 아닌 변환 계수가 존재하는 경우)이 만족하는지를 체크하고 만족할 경우 해당 2차 변환에 대한 인덱스를 파싱하지 않고 0으로 유도할 수 있다. 예를 들어, m = 16인 경우에 대해서는 우상단 4 x 4 영역 또는 좌하단 4 x 4에서 0인 아닌 계수가 존재하는지 체크함으로써 2차 변환의 적용 여부 및 2차 변환에 대한 인덱스를 파싱 여부를 판단할 수 있다.
한편, 표 18은 4 x 4 영역에 적용될 수 있는 변환 커널 매트릭스들의 다른 예를 나타내고 있다.
Figure PCTKR2020002625-appb-T000018
Figure PCTKR2020002625-appb-I000023
Figure PCTKR2020002625-appb-I000024
Figure PCTKR2020002625-appb-I000025
상술된 바와 같이, 인트라 예측 모드에 매핑되는 4개의 변환 세트는 각각 두 개의 변환 커널 매트릭스를 포함할 수 있고, 이러한 변환 커널 매트릭스를 지시하기 위한 변환 인덱스로 0, 1, 2, 3이 사용될 수 있다. 표 8 및 표 14는 각각 8 x 8 영역에 적용되는 변환 커널 매트릭스를 나타내고, 표 9 및 표 18은 4 x 4 영역에 적용될 수 있는 변환 커널 매트릭스를 나타낸다.
한편, 본 문서의 다른 실시예에 따르면, 표 7과 같이 하나의 변환 세트에 대하여 1개의 변환 커널 매트릭스가 사용될 수 있다. 이러한 실시예에서는 모든 인트라 예측 모드에 대하여 하나의 변환 커널 매트릭스가 적용될 수 있으며, 일 예로 다음과 같은 변환 매트릭스가 사용될 수 있다.
표 19는 8 x 8 영역에 적용되는 변환 커널 매트릭스를 나타내고, 표 20은 4 x 4 영역에 적용될 수 있는 변환 커널 매트릭스를 나타낸다. 표 19 및 표 20에 나타나 있는 변환 커널 매트릭스에도 상술된 표 8, 표 9 및 표 14, 표 18를 참조하여 설명된 내용이 적용될 수 있다.
Figure PCTKR2020002625-appb-T000019
Figure PCTKR2020002625-appb-I000026
Figure PCTKR2020002625-appb-I000027
Figure PCTKR2020002625-appb-I000028
Figure PCTKR2020002625-appb-T000020
Figure PCTKR2020002625-appb-I000029
한편, 최악의 경우에 대한 계산량을 줄이기 위해 다음과 같은 실시예들이 제안될 수 있다. 본 문서에서, M개의 행과 N개의 열로 구성된 행렬을 MxN 행렬로 표시하고, MxN 행렬은 순방향 변환, 즉 인코딩 장치에서 변환(RST)을 수행할 때 적용되는 변환 행렬을 의미한다. 따라서, 디코딩 장치에서 수행되는 역변환(역 RST)에서는 MxN 행렬에 트랜스포즈를 취한 NxM 행렬이 사용될 수 있다. 또한, 이하 내용은 8 x 8 영역에 대한 변환 행렬로 m x 64 변환 커널 매트릭스가 (m ≤ 16) 적용되는 경우를 기술하였으나, 입력 벡터가 48 x 1이고, m x 48 변환 커널 매트릭스가 (m ≤ 16) 적용되는 경우에도 동일하게 적용될 수 있다. 즉, 16 x 64 (또는 m x 64)는 16 x 48로 (또는 m x 48) 대체될 수 있다.
1) 너비가 W이고 높이가 H인 블록(예컨대, 변환 유닛)에 대해 W ≥ 8 이고 H ≥ 8인 경우는, 8x8 영역에 적용될 수 있는 변환 커널 매트릭스를 블록의 좌상단 8x8 영역에 적용한다. W = 8 이고 H = 8인 경우에 대해서는 16 x 64 행렬 중 8 x 64 부분만 적용할 수 있다. 즉, 8개의 변환 계수가 생성될 수 있다. 또는 16 x 48 행렬 중 8 x 48 부분만 적용할 수 있다. 즉, 8개의 변환 계수가 생성될 수 있다.
2) 너비가 W이고 높이가 H인 블록(예컨대, 변환 유닛)에 대해 W와 H 중 하나가 8보다 작은 경우, 즉, W와 H 중 하나가 4인 경우, 4x4 영역에 적용될 수 있는 변환 커널 매트릭스를 블록의 좌상단에 적용한다. W = 4 이고 H = 4인 경우에 대해서는 16 x 16 행렬 중 8 x 16 부분만 적용할 수 있고, 이 경우 8개의 변환 계수가 생성된다.
만약 (W, H) = (4, 8) 또는 (8, 4)인 경우 좌상단 4x4 영역에 대해서만 2차 변환을 적용한다. W 또는 H가 8보다 크다면, 즉, W 또는 H가 16보다 같거나 크고 다른 하나는 4이 경우, 좌상단 두 개의 4x4 블록까지만 2차 변환을 적용한다. 즉, 최대 좌상단 4x8 또는 8x4 영역까지만 4x4의 블록 2개로 나뉘어져 지정된 변환 커널 매트릭스가 적용될 수 있다.
3) 너비가 W이고 높이가 H인 블록(예컨대, 변환 유닛)에 대해, W와 H가 모두 4인 경우에 대해서는 2차 변환을 적용하지 않을 수 있다.
4) 너비가 W이고 높이가 H인 블록(예컨대, 변환 유닛)에 대해, 2차 변환을 적용하여 생성되는 계수들의 수를 변환 유닛의 면적(즉, 변환 유닛을 구성하는 총 픽셀 수 = W x H) 대비 1/4 이하로 유지되도록 구성할 수 있다. 예를 들어, W와 H가 모두 4인 경우에 대해서는 4개의 변환 계수가 생성되도록 16 x 16 행렬 중 최상위 4 x 16 행렬을 적용할 수 있다.
전체 변환 유닛(TU) 중 최대 좌상단 8 x 8 영역에 대해서만 2차 변환을 적용한다고 했을 때, 4 x 8 변환 유닛 또는 8 x 4 변환 유닛에 대해서는 8개 이하의 계수가 생성되어야 하므로 좌상단 4 x 4 영역에 대하여 16 x 16 행렬 중 최상위 8 x 16 행렬을 적용하도록 구성할 수 있다. 8 x 8 변환 유닛에 대해서는 최대 16 x 64 행렬(또는 16 x 48 행렬)까지 적용할 수 있으며 (16개까지 계수 생성 가능), 4 x N 또는 N x 4 (N ≥ 16) 변환 유닛에 대해서는 좌상단 4 x 4 블록에 대해 16 x 16 행렬을 적용하거나, 좌상단에 위치한 2개의 4 x 4 블록에 대해 16 x 16 행렬 중 최상위 8 x 16 행렬을 적용할 수 있다. 유사한 방식으로 4 x 8 변환 유닛 또는 8 x 4 변환 유닛에 대해서는, 좌상단에 위치한 2개의 4 x 4 블록에 대해 16 x 16 행렬 중 최상위 4 x 16 행렬을 각각 적용하여 모두 8개의 변환 계수를 생성할 수 있다.
5) 4 x 4 영역에 적용되는 2차 변환의 최대 크기를 8 x 16으로 제한할 수 있다. 이 경우, 4 x 4 영역에 적용되는 변환 커널 매트릭스들을 저장하는데 필요한 메모리 양을 16 x 16 행렬 대비 절반으로 줄일 수 있다.
예를 들어, 표 9 또는 표 18에 제시된 모든 변환 커널 매트릭스에 대해 각기 16 x 16 행렬 중 최상위 8 x 16 행렬만을 추출하여 최대 크기를 8 x 16으로 제한할 수 있으며, 실제 영상 코딩 시스템에서 변환 커널 매트릭스의 해당 8 x 16 행렬들만 저장하도록 구현할 수 있다.
최대 적용 가능한 변환의 크기가 8 x 16이고, 계수 하나를 생성하는데 필요한 최대 곱셈 수를 8로 제한한다면, 4 x 4 블록의 경우 최대 8 x 16 행렬을 적용해 볼 수 있고, 4 x N 블록이나 N x 4 블록에 대해서는 (N ≥ 8, N = 2n, n ≥ 3) 내부를 구성하는 최대 좌상단 2개의 4 x 4 블록에 대해 각각 최대 8 x 16 행렬을 적용해 볼 수 있다. 예컨대, 4 x N 블록이나 N x 4 블록에 대해서는 (N ≥ 8, N = 2n, n ≥ 3), 좌상단 1개의 4 x 4 블록에 대해 8 x 16 행렬을 적용할 수 있다.
일 실시예에 따라, 루마 성분에 적용할 2차 변환을 지정하는 인덱스를 코딩할 때, 보다 구체적으로 하나의 변환 세트가 2개의 변환 커널 매트릭스로 구성된 경우, 2차 변환을 적용할지 여부와 적용하는 경우 어떤 변환 커널 매트릭스를 적용할지를 지정해야 한다. 예를 들어, 2차 변환을 적용하지 않는 경우에는 변환 인덱스를 0로 코딩하고, 적용하는 경우에는 2 개의 변환 커널 매트릭스에 대한 변환 인덱스를 각각 1과 2로 코딩할 수 있다.
이 경우, 변환 인덱스를 코딩할 때는 트런케이티드 유너리(truncated unary) 코딩을 사용할 수 있고, 예를 들어 변환 인덱스 0, 1, 2에 각각 0, 10, 11의 이진 코드(binary code)를 할당하여 코딩할 수 있다.
또한, 트런케이티드 유너리 방식으로 코딩되는 경우 각 빈마다 다른 CABAC 컨텍스트를 부여할 수 있으며, 상술한 예시에 따라 변환 인덱스 0, 10, 11을 코딩할 때 2개의 CABAC 컨텍스트를 사용할 수 있다.
한편, 색차 성분에 적용할 2차 변환을 지정하는 변환 인덱스를 코딩할 때, 보다 구체적으로 하나의 변환 세트가 2개의 변환 커널 매트릭스로 구성된 경우, 루마 성분에 대한 2차 변환에 대한 변환 인덱스를 코딩할 때와 유사하게 2차 변환을 적용할지 여부와 적용하는 경우 어떤 변환 커널 매트릭스를 적용할지를 지정해야 한다. 예를 들어, 2차 변환을 적용하지 않는 경우에는 변환 인덱스를 0로 코딩하고, 적용하는 경우에는 2 개의 변환 커널 매트릭스에 대한 변환 인덱스를 각각 1과 2로 코딩할 수 있다.
이 경우, 변환 인덱스를 코딩할 때는 트런케이티드 유너리(truncated unary) 코딩을 사용할 수 있고, 예를 들어 변환 인덱스 0, 1, 2에 각각 0, 10, 11의 이진 코드(binary code)를 할당하여 코딩할 수 있다.
또한, 트런케이티드 유너리 방식으로 코딩되는 경우 각 빈마다 다른 CABAC 컨텍스트를 부여할 수 있으며, 상술한 예시에 따라 변환 인덱스 0, 10, 11을 코딩할 때 2개의 CABAC 컨텍스트를 사용할 수 있다.
또한, 일 실시예에 따라 크로마 인트라 예측 모드에 따라 다른 CABAC 컨텍스트 세트를 할당할 수 있다. 예를 들어, 플래너 모드 또는 DC 모드인 경우와 같은 비방향 모드와, 그 밖의 방향성 모드인 경우로 구분하는 경우 (즉, 두 그룹으로 구분하는 경우), 상술한 예시에서와 같이 0, 10, 11을 코딩할 때 그룹 별로 (2개의 컨텍스트로 구성된) 해당 CABAC 컨텍스트 세트를 할당할 수 있다.
이와 같이 크로마 인트라 예측 모드를 몇 개의 그룹들로 분할하여 해당 CABAC 컨텍스트 세트를 할당하는 경우, 2차 변환에 대한 변환 인덱스 코딩 전에 크로마 인트라 예측 모드 값을 알아내야 한다. 하지만, 크로마 다이렉트 모드(Chroma direct mode, DM)의 경우 루마 인트라 예측 모드 값을 그대로 사용하므로 루마 성분에 대한 인트라 예측 모드 값도 알아내야 한다. 따라서, 색차 성분에 대한 정보를 코딩할 때 루마 성분 정보에 대한 데이터 의존성(data dependency)이 발생할 수 있으므로, 크로마 DM 모드인 경우 인트라 예측 모드에 대한 정보 없이 2차 변환에 대한 변환 인덱스 코딩을 수행할 때 어떤 특정 그룹으로 매핑하여 상술한 데이터 의존성을 제거할 수 있다. 예를 들어, 크로마 인트라 예측 모드가 크로마 DM 모드이면, 플래너 모드 또는 DC 모드인 것으로 간주하고 해당 CABAC 컨텍스트 세트를 사용하여 해당 변환 인덱스 코딩을 수행하거나, 아니면 그 밖의 방향성 모드인 것으로 간주하고 해당 CABAC 컨텍스트 세트를 적용할 수 있다.
이하에서는, 인트라 서브 분할 코딩(Intra Sub-Partitions (ISP) coding)이라는 기술에 적용되는 변환에 대하여 살펴본다. ISP 코딩은 하나의 코딩 블록이 2개 또는 4개의 서브 블록으로 분할되어 코딩되는 것을 의미하며, ISP에서 하나의 서브 블록은 인접한 왼쪽 또는 인접한 위쪽에 위치한 서브 블록의 복원된 픽셀 값을 참조하여 화면 내 예측이 수행된다. 이하, 사용되는 “코딩”은 인코딩 장치에서 수행되는 코딩과 디코딩 장치에서 수행되는 디코딩을 모두 포함하는 개념으로 사용될 수 있다.
도 9 및 도 10는 하나의 코딩 블록이 분할되는 서브 블록의 일 예를 도시하고 있으며, 보다 구체적으로, 도 9는 코딩 블록(폭(W) X 높이(H))이 4 x 8 블록 또는 8 x 4 블록인 경우에 대한 분할의 예시이고, 도 10은 코딩 블록이 4 x 8 블록, 8 x 4 블록, 4 x 4 블록이 아닌 경우에 대한 분할의 예시를 나타내고 있다.
ISP 적용시, 서브 블록들은 분할 형태에 따라, 예를 들어, 수평(Horizontal) 또는 수직(Verticial), 왼쪽에서 오른쪽 또는 위쪽에서 아래쪽으로 순차적으로 코딩되며, 하나의 서브 블록에 대한 역변환과 인트라 예측을 거쳐 복원 과정까지 수행된 후 다음 서브 블록에 대한 코딩이 진행될 수 있다. 가장 왼쪽 또는 가장 위쪽 서브 블록에 대해서는 통상적인 인트라 예측 방식과 같이 이미 코딩된 코딩 블록의 복원 픽셀을 참조하게 된다. 또한, 뒤이은 내부의 서브 블록의 각 변에 대해 이전 서브 블록과 인접하지 않은 경우에는 해당 변에 인접한 참조 픽셀들을 도출하여 코딩하는데 있어, 통상적인 인트라 예측 방식과 같이 이미 코딩된 인접한 코딩 블록의 복원 픽셀을 참조하여 코딩된다.
ISP 코딩 모드에서는 모든 서브 블록들이 동일한 인트라 예측 모드를 가지고 코딩될 수 있으며, ISP 코딩을 사용할지 여부를 나타내는 플래그와 어떤 방향으로 (수평 또는 수직) 분할할지를 나타내는 플래그 등이 시그널링될 수 있다. 도 9 및 도 10에서와 같이, 블록 모양에 따라 서브 블록의 개수를 2개 또는 4개로 조절할 수 있으며, 하나의 서브 블록의 크기(폭 x 높이)가 16 미만인 경우 해당 서브 블록으로의 분할을 허용하지 않는다거나, ISP 코딩 자체를 적용하지 않도록 제한할 수 있다.
한편, 상술한 ISP 코딩 모드가 적용되는 경우, RST와 같은 비분리 2차 변환을 아래과 같이 적용할 수 있다. 또한, 상술된 바와 같이, ISP 코딩 적용 시, 서브 블록 단위로 변환 또는 역변환이 수행될 수 있다.
우선, 일 예에 따라, ISP가 적용되는 경우 RST와 같은 비분리 2차 변환을 적용하지 않을 수 있다. 즉, ISP가 적용될 때, 인코딩 장치는 1차 변환(forward primary transform)가 수행된 변환 계수에 바로 양자화 과정을 수행할 수 있고, 디코딩 장치는 역양자화된 결과를 입력으로 하여 곧바로 역 1차 변환(inverse primary transform)을 수행할 수 있다.
한편, 다른 예에 따라 ISP에 의해 분할된 각 서브 블록에 대해 각각 RST와 같은 비분리 2차 변환을 적용할 수 있다.
서브 블록의 너비와 높이가 모두 4 이상이어야 RST를 적용할 수 있으므로, 분할된 서브 블록의 한 변의 길이가 4 미만이 되는 경우에 대해서는 RST를 적용하지 않을 수 있다. 만약, 모든 서브 블록의 크기가 4 x 4 영역 이상을 포함하는 경우, 각 서브 블록에 대해 RST를 적용할 수 있다. 서브 블록이 8 x 8 영역 이상을 포함하는 경우, 8 x 8 영역에 적용될 수 있는 변환 커널, 예를 들어, 16 x 64 또는 16 x 48 변환 커널 매트릭스가 적용될 수 있으며, 그렇지 않는 경우 4 x 4 영역에 적용될 수 있는 변환 커널, 예를 들어 16 x 16 변환 커널 매트릭스가 서브 블록의 좌상단에 위치한 1개 또는 2개의 4 x 4 블록에 적용될 수 있다. 또한, 인코딩 장치 및 디코딩 장치는 상술된 바와 같이 최악의 경우(worst case)의 계산량을 고려하여 비분리 2차 변환을 적용할 수도 있다.
정리하면, 일 예에 따라 개별적인 서브 블록을 RST가 적용될 수 있는 변환 유닛, 즉 변환 대상 블록으로 간주하고, 상술된 RST 적용 방법을 그대로 각 서브 블록에 적용할 수 있다.
또한, 일 예에 따라 모든 서브 블록에 대해 동일한 RST 변환 행렬이 적용될 수 있고 각 서브 블록에 마다 다른 RST 변환 행렬이 적용될 수도 있다. 상술하였듯이 2차 변환을 위한 변환 세트는 인트라 예측 모드에 의해 결정될 수 있으므로, 하나의 코딩 블록에서 ISP에 의해 분할된 모든 서브 블록들에 동일한 변환 세트가 적용될 수 있으나, 하나의 변환 세트 내에서 어떠한 변환 커널 매트릭스를 사용할지에 대해서는 각 서브 블록마다 다르게 설정될 수 있다. 예를 들어, 하나의 변환 세트가 2개의 변환, 즉 변환 커널 매트릭스로 구성된 경우, 이를 지시하는 변환 인덱스는 0부터 2까지의 값을 가질 수 있다. 변환 인덱스는 RST와 같은 비분리 2차 변환이 적용되지 않는 경우를 ‘0’, 첫 번째 변환 커널 매트릭스가 적용되는 경우를 ‘1’, 두 번째 변환 커널 매트릭스가 적용되는 경우를 ‘2’로 지시할 수 있다. 이 때, 모든 서브 블록에 동일한 변환 커널 매트릭스가 적용되는 경우, 서브 블록이 분할되기 전의 전체 블록, 예를 들어 코딩 블록에 대해 하나의 변환 인덱스가 시그널링될 수 있다. 즉, 서브 블록 각각에 대하여 개별적인 변환 과정을 수행하되, 2차 변환에 적용되는 변환 커널 매트릭스는 하나만 사용할 수 있고, 이러한 변환 커널 매트릭스를 지시하는 변환 인덱스는 분할 전의 코딩 블록에 대하여 시그널링될 수 있다.
이하의 도면은 본 명세서의 구체적인 일례를 설명하기 위해 작성되었다. 도면에 기재된 구체적인 장치의 명칭이나 구체적인 신호/메시지/필드의 명칭은 예시적으로 제시된 것이므로, 본 명세서의 기술적 특징이 이하의 도면에 사용된 구체적인 명칭에 제한되지 않는다.
도 11은 본 문서의 일 실시예에 따른 비디오 디코딩 장치의 동작을 도시하는 흐름도이다.
도 11에 개시된 각 단계는 도 3에 개시된 디코딩 장치(300)에 의하여 수행될 수 있다. 보다 구체적으로, S1110은 도 3에 개시된 엔트로피 디코딩부(310)에 의하여 수행될 수 있고, S1120은 도 3에 개시된 역양자화부(321)에 의하여 수행될 수 있고, S1130 및 S1140은 도 3에 개시된 역변환부(322)에 의하여 수행될 수 있고, S1150은 도 3에 개시된 가산부(340)에 의하여 수행될 수 있다. 더불어, S1110 내지 S1150에 따른 동작들은, 도 4 내지 도 10에서 전술된 내용들 중 일부를 기반으로 한 것이다. 따라서, 도 3 내지 도 10에서 전술된 내용과 중복되는 구체적인 내용은 설명을 생략하거나 간단히 하기로 한다.
일 실시예에 따른 디코딩 장치(300)는, 비트스트림으로부터 대상 블록에 대한 양자화된 변환 계수들을 도출할 수 있다(S1110). 보다 구체적으로, 디코딩 장치(300)는 비트스트림으로부터 대상 블록에 대한 양자화된 변환 계수들에 관한 정보를 디코딩할 수 있고, 대상 블록에 대한 양자화된 변환 계수들에 관한 정보를 기반으로 대상 블록에 대한 양자화된 변환 계수들을 도출할 수 있다. 대상 블록에 대한 양자화된 변환 계수들에 관한 정보는 SPS(Sequence Parameter Set) 또는 슬라이스 헤더(slice header)에 포함될 수 있고, 간소화 변환(RST)이 적용되는지 여부에 대한 정보, 간소화 팩터에 관한 정보, 간소화 변환을 적용하는 최소 변환 사이즈에 대한 정보, 간소화 변환을 적용하는 최대 변환 사이즈에 대한 정보, 간소화 역변환 사이즈, 변환 세트에 포함된 변환 커널 매트릭스 중 어느 하나를 지시하는 변환 인덱스에 대한 정보 중 적어도 하나를 포함할 수 있다.
일 실시예에 따른 디코딩 장치(300)는, 대상 블록에 대한 양자화된 변환 계수들에 대하여 역양자화를 수행하여 변환 계수들을 도출할 수 있다(S1120).
도출된 변환 계수들은 4 x 4 블록 단위로 역방향 대각 스캔 순서에 따라 배열될 수 있고, 4 x 4 블록 내 변환 계수들 역시 역방향 대각 스캔 순서에 따라 배열될 수 있다. 즉, 역양자화가 수행된 변환 계수들은 VVC나 HEVC에서와 같은 비디오 코덱에서 적용되고 있는 역방향 스캔 순서를 따라 배치될 수 있다.
일 실시예에 따른 디코딩 장치(300)는, 변환 계수들에 대한 역 RST(reduced secondary transform)을 기반으로 수정된 변환 계수들을 도출할 수 있다(S1130).
일 예시에서, 역 RST는 역 RST 매트릭스를 기반으로 수행될 수 있고, 역 RST 매트릭스는 열의 개수가 행의 개수보다 적은 비정방형 매트릭스일 수 있다.
일 실시예에서, S1130은 변환 인덱스를 디코딩하는 단계, 변환 인덱스를 기반으로 역 RST를 적용할 조건에 해당하는지 여부를 판단하는 단계, 변환 커널 매트릭스를 선택하는 단계 및 역 RST를 적용할 조건에 해당하는 경우, 선택된 변환 커널 매트릭스 및/또는 간소화 팩터를 기반으로 변환 계수들에 대하여 역 RST를 적용하는 단계를 포함할 수 있다. 이때, 간소화 역변환 매트릭스의 사이즈는 간소화 팩터를 기반으로 결정될 수 있다.
일 실시예에 따른 디코딩 장치(300)는, 수정된 변환 계수들에 대한 역변환을 기반으로 대상 블록에 대한 레지듀얼 샘플들을 도출할 수 있다(S1140).
디코딩 장치(300)는 대상 블록에 대한 수정된 변환 계수들에 대하여 역 1차변환을 수행할 수 있으며, 이때 역 1차변환은 간소화 역변환이 적용될 수도 있고, 통상적인 분리 변환이 사용될 수도 있다.
일 실시예에 따른 디코딩 장치(300)는, 대상 블록에 대한 레지듀얼 샘플들 및 대상 블록에 대한 예측 샘플들을 기반으로 복원 샘플들을 생성할 수 있다(S1150).
S1130을 참조하면, 대상 블록에 대한 변환 계수들에 대한 역 RST를 기반으로 대상 블록에 대한 레지듀얼 샘플들이 도출되는 것을 확인할 수 있다. 역변환 매트릭스의 사이즈 관점에서 검토하면, 통상의 역변환 매트릭스의 사이즈는 NxN인데 역 RST 매트릭스의 사이즈는 NxR로 감소하므로, 통상의 변환을 수행할 때와 비교하면 역 RST를 수행할 시 메모리 사용을 R/N 비율로 감소시킬 수 있다. 또한, 통상의 역변환 매트릭스를 이용할 때의 곱셈 연산 수 NxN과 비교하면, 역 RST를 매트릭스를 이용하면 곱셈 연산 수를 R/N 비율로 감소(NxR)시킬 수 있다. 더불어, 역 RST를 적용할 시 R개의 변환 계수들만을 디코딩하면 되므로, 통상의 역변환이 적용될 때 N개의 변환 계수들을 디코딩해야 하는 것과 비교할 때 대상 블록에 대한 변환 계수들의 총 개수가 N개에서 R개로 감소하여 디코딩 효율이 증가할 수 있다. 정리하면, S1130에 따르면 역 RST를 통해 디코딩 장치(300)의 (역)변환 효율 및 디코딩 효율이 증가할 수 있다.
도 12는 본 문서의 일 실시예에 따른 디코딩 장치에 의한 영상 디코딩 방법을 설명하기 위한 제어 흐름도이다. 도 12를 참조하여 디코딩 장치에서 수행되는 영상의 변환 방법, 보다 구체적으로 2차 변환 과정, 또는 인코딩 장치에서 수행되는 2차 변환에 대응하는 역 2차 변환에 대하여 설명한다. 이하에서는 디코딩 장치에서 수행되는 역 2차 변환을 비분리 2차 변환으로 지칭한다.
디코딩 장치(300)는 비트스트림으로부터 양자화된 변환 계수, 인트라 예측 모드 및 비분리 2차 변환에 대한 변환 인덱스에 대한 정보를 수신한다(S1200).
일 실시예에 따라, 비분리 2차 변환은 변환 대상이 되는 계수들을 수직 또는 수평 방향으로 분리하여 변환하는 1차 변환과 달리 계수들을 특정 방향으로 분리하지 않고 변환을 적용하는 비분리 변환이다. 이러한 비분리 변환은 변환 대상이 되는 대상 블록 전체가 아닌 저주파 영역에만 변환을 적용하는 저주파 비분리 변환일 수 있다.
또한, 비트스트림으로부터 변환 인덱스가 존재하는지 여부를 지시하는 플래그 정보를 더 수신할 수 있다.
변환 인덱스가 수신되는지 여부를 지시하는 플래그 정보는 표 41의 sps_st_enabled_flag일 수 있고, 이는 2차 변환의 종류에 따라 sps_lfnst_enabled_flag로 변형될 수 있다. 이러한 플래그 정보는 변환 인덱스가 수신되는지 여부, 즉 비트스트림에 변환 인덱스가 존재하는지 여부를 지시할 수 있고, 시퀀스 파라미터 신택스 내에 포함되어 수신될 수 있다.
플래그 정보가 0이면 변환 인덱스가 존재하지 않으므로 비분리 2차 변환이 수행되지 않을 수 있고, 플래그 정보가 1이면 변환 인덱스가 존재하므로 변환 인덱스가 디코딩 장치에 의하여 수신 및 파싱될 수 있다.
이러한 변환 인덱스는 코딩 유닛 신택스 내에 존재할 수 있다.
일 실시예에 따른 변환 인덱스의 신택스 요소는 비분리 2차 변환이 적용되는지 여부 및 변환 세트에 포함된 변환 커널 매트릭스 중 어느 하나를 지시할 수 있으며, 변환 세트가 두 개의 변환 커널 매트릭스을 포함하는 경우, 변환 인덱스의 신택스 요소의 값은 3가지일 수 있다.
즉, 일 실시예에 따라, 변환 인덱스에 대한 신택스 요소 값은 대상 블록에 비분리 2차 변환이 적용되지 않는 경우를 지시하는 0, 변환 커널 매트릭스 중 첫 번째 변환 커널 매트릭스를 지시하는 1, 변환 커널 매트릭스 중 두 번째 변환 커널 매트릭스를 지시하는 2를 포함할 수 있다. 이러한 정보는 신택스 정보로 수신되고 신택스 정보는 0과 1을 포함하는 이진화된 빈 스트링으로 수신된다.
이 경우, 3개의 변환 인덱스에 대한 신택스 요소 값은 트런케이티드 유너리 코드 방식에 따라 0, 10, 11로 코딩될 수 있다. 즉, 신택스 요소에 대한 값 0은 ‘0’으로, 신택스 요소에 대한 값 1은 ‘10’로, 신택스 요소에 대한 값 2는 ‘11’로 이진화 될 수 있다.
또한, 일 실시예에 따르면, 변환 인덱스의 두 개의 빈에 대하여 각각 서로 다른 컨텍스트 정보, 즉 확률 모델이 적용될 수 있다. 즉, 변환 인덱스의 두 개의 빈은 모두 바이패스 방식이 아닌 컨텍스트 방식으로 디코딩될 수 있고, 변환 인덱스에 대한 신택스 요소의 빈 중 첫 번째 빈은 제1 컨텍스트 정보를 기반으로 디코딩되고, 변환 인덱스에 대한 신택스 요소의 빈 중 두 번째 빈은 제2 컨텍스트 정보를 기반으로 디코딩될 수 있다.
비트스트림으로부터 수신된 양자화된 변환 계수는 도 11의 S1120과 같이 역양자화를 통하여 변환 계수로 도출될 수 있다(S1210). 이하의 변환 계수는 역양자화된 변환 계수를 일컫는다.
디코딩 장치는 수신된 변환 인덱스가 비분리 2차 변환이 수행되지 않음을 지시하지 않으면, 즉 변환 인덱스가 ‘0’이 아니면, 비분리 2차 변환이 적용되는 역양자화된 변환 계수의 길이를 나타내는 입력 변환 계수 크기, 비분리 2차 변환이 적용된 수정된 변환 계수의 길이를 나타내는 출력 변환 계수 크기 및 대상 블록의 인트라 모드에 매핑되는 변환 세트를 도출할 수 있다. 이 때, 디코딩 장치는 대상 블록이 소정 개수의 서브 블록들로 분할되어 인트라 예측으로 코딩된 경우, 서브 블록들에 하나의 변환 커널 매트릭스를 적용하여 서브 블록 단위로 수정된 변환 계수들을 도출한다(S1220).
즉, 본 문서의 일 실시예에 따르면, 비분리 2차 변환 시 서브 블록들에 동일한 변환 커널 매트릭스가 적용되고, 이를 지시하는 변환 인덱스는 복수의 서브 블록에 대하여 한 번 시그널링 될 수 있다. 이러한 변환 인덱스는 서브 블록으로 분할되는 대상 블록 단위로 시그널링 될 수 있고, 이러한 대상 블록은 코닝 유닛일 수 있다. 코딩 유닛은 서브 블록으로 분할되는 코딩 블록을 포함하는 개념이다. 대상 블록이 코딩 유닛으로 간주되면, 비분리 2차 변환이 개별적으로 수행되는 서브 블록은 변환의 단위인 변환 유닛 또는 변환 블록으로 간주될 수 있다.
한편, 디코딩 장치는 ISP 코딩 또는 ISP 모드를 적용할지 여부를 지시하는 플래그 정보를 수신 및 파싱함으로써 대상 블록이 소정 개수의 서브 블록들로 분할되는지 여부를 도출할 수 있다. 또한, 디코딩 장치는 대상 블록이 어떠한 방향으로 분할될지를 지시하는 플래그 정보를 통하여 분할되는 서브 블록의 크기 및 개수를 도출할 수 있다. 예를 들어, 도 9과 같이 대상 블록의 크기(폭 x 높이)가 8x4이면, 대상 블록은 수직 방향으로 분할되어 2개의 서브 블록으로 나누어 지고, 이러한 두 개의 서브 블록 각각에 비분리 2차 변환이 적용될 수 있다. 대상 블록의 크기(폭 x 높이)가 4x8이면, 대상 블록은 수평 방향으로 분할되어 2개의 서브 블록으로 나누어 지고, 이러한 두 개의 서브 블록 각각에 비분리 2차 변환이 적용될 수 있다. 또는 도 10에 도시되어 있는 바와 같이, 상기 대상 블록의 크기(폭 x 높이)가 4x8 또는 8x4 보다 큰 경우, 즉 대상 블록의 크기가 1) 4xN 또는 Nx4 (N ≥ 16) 이거나 2) M x N (M ≥ 8, N ≥ 8)인 경우, 대상 블록은 수평 또는 수직 방향으로 4개의 서브 블록으로 분할될 수 있다.
한편, 본 문서의 다른 실시예에 따라 일정한 조건을 만족하지 못하면 서브 블록으로 분할되는 ISP 코딩이 적용되지 않을 수 있고, ISP 모드로 인하여 분할될 서브 블록에 각각 다른 변환 커널 매트릭스가 적용될 수도 있다.
서브 블록에 적용되는 비분리 2차 변환을 구체적으로 살펴보면 다음과 같다.
입력 변환 계수의 크기는 변환 커널 매트릭스와 행렬 연산이 수행되는 변환 계수의 길이, 즉 변환 계수의 개수를 의미하고, 출력 변환 계수의 크기는 행렬 연산이 수행된 후 출력되는 수정된 변환 계수의 길이, 즉 수정된 변환 계수의 개수를 의미한다.
일 예에 따라, 서브 블록의 크기가 4 x 4 또는 8 x 8이면 입력 변환 계수의 크기는 8이고, 서브 블록의 크기가 4 x 4 또는 8 x 8이 아니면, 입력 변환 계수의 크기는 16일 수 있다. 즉, 서브 블록, 즉 변환 블록의 크기가 4 x 4 이면 4 x 4 블록의 좌상단 위치에서부터 스캔 순서에 따라 배열한 8개의 변환 계수가 입력 데이터가 되고, 변환 블록의 크기가 8 x 8이면 8 x 8 블록의 좌상단 위치에서부터 스캔 순서에 따라 배열한 8개의 변환 계수만이 입력 데이터가 된다. 이러한 두 가지 경우를 제외한 경우, 다시 말해, 1) 서브 블록이 4 x N, N x 4 (N ≥ 8)이거나 2) 서브 블록의 너비와 높이가 모두 8보다 같거나 크면서 (8 이상이면서) 너비 또는 높이가 8보다 크면 행렬 연산을 위하여 16개의 변환 계수가 입력된다.
한편, 일 예에 따라, 서브 블록의 폭 및 높이가 8 이상이면 출력 변환 계수의 크기는 48이고, 서브 블록의 폭 또는 높이가 8보다 작으면 출력 변환 계수의 크기는 16일 수 있다.
예를 들어, 변환 블록의 폭 및 높이가 8 이상이면, 역 RST 8x8이 적용된다. 즉, 변환 블록의 좌상단 8 x 8 영역 중 최대 좌상단 4 x 4 영역에 비분리 2차 변환이 적용되고, 비분리 2차 변환의 결과 8 x 8 영역 전체가 아닌 우하단 4 x 4 영역을 제외한 좌상단, 우상단, 좌하단 4 x 4 영역에 48개의 수정된 변환 계수가 도출될 수 있다. 반면, 서브 블록의 폭 또는 높이가 8보다 작으면, 예컨대, 4 x 4, 4 x 8, 8 x 4 변환 블록의 경우, 변환 블록의 좌상단 4 x 4 영역에 역 RST 4x4가 적용된다. 즉 4 x 4 영역의 좌상단 위치에서부터 스캔 순서에 따라 배열한 8개 또는 16개의 변환 계수에 비분리 2차 변환이 적용되어, 비분리 2차 변환의 결과 4 x 4 영역에 16개의 수정된 변환 계수가 도출될 수 있다.
변환 세트는 서브 블록의 인트라 예측 모드에 따른 매핑 관계에 의하여 도출되고, 하나의 변환 세트에는 복수개의 인트라 예측 모드가 매핑될 수 있다. 예컨대, 인트라 예측 모드에 따라 4개의 변환 세트가 존재할 수 있다.
이렇게 비분리 2차 변환을 위한 입력 데이터가 도출되면, 디코딩 장치는 출력 변환 계수의 크기, 변환 세트 및 변환 인덱스에 기초하여 변환 커널 매트릭스를 도출할 수 있다.
하나의 변환 세트 각각은 복수의 변환 커널 매트릭스를 포함할 수 있다. 변환 인덱스는 복수의 변환 커널 매트릭스 중 어느 하나를 지시할 수 있으며, 예를 들어 하나의 변환 세트가 2개의 변환 커널 매트릭스로 구성되는 경우, 변환 인덱스는 두 개의 변환 커널 매트릭스 중 어느 하나를 지시할 수 있다.
변환 커널 매트릭스는 수정된 변환 계수의 개수, 변환 세트에 대한 정보 및 변환 인덱스 값에 기초하여 결정될 수 있다.
표 8 및 표 9, 표 14 및 표 18 내지 표 20과 같이, 서브 블록 내 소정 크기의 블록에 적용되는 비분리 2차 변환의 타입(RST 8x8, RST 4x4) 및 출력되는 수정된 변환 계수의 개수에 따라 변환 커널 매트릭스의 크기 및 선택된 매트릭스 자체가 달라질 수 있다.
일 예에 따른 변환 커널 매트릭스는 2차 변환의 축소 또는 간소화 크기에 따라 서브 블록의 좌상단의 특정 영역, 예를 들어, 8 x 8 영역 또는 4 x 4 영역에 적용될 수 있고, 변환 커널 매트릭스를 적용하여 출력되는 수정된 변환 계수의 크기, 즉 변환 계수의 개수는 변환 인덱스, 인트라 예측 모드 및 비분리 2차 변환이 적용되는 서브 블록의 크기에 기초하여 도출될 수 있다.
일 예에 따라 서브 블록의 일 영역, 즉 8 x 8 영역 또는 4 x 4 영역의 변환 계수들에 비분리 2차 변환이 적용될 때, 8 x 8 영역 또는 4 x 4 영역 내 포함되어 있는 변환 계수들 중 일부에만 비분리 2차 변환이 적용될 수 있다. 비분리 2차 변환을 위하여 8 x 8 영역의 변환 계수 중 48개의 변환 계수만이 출력된다면 8 x 8 영역에 적용되는 64 x m 변환 커널 매트릭스는 48 x m 변환 커널 매트릭스로 더 축소될 수 있다. 또는 비분리 2차 변환을 위하여 4 x 4 영역의 변환 계수 중 8개의 변환 계수만이 입력된다면 4 x 4 영역에 적용되는 변환 커널 매트릭스는 16 x 8 매트릭스이다.
일 예에 따라 m은 16일 수 있고, 48 x 16 변환 커널 매트릭스는 표 14에 기초한 변환 커널 매트릭스, 즉 표 14의 행렬에 트랜스포즈를 취한 행렬 일 수 있다. 또는 일 예에 따라, 16 x 8 변환 커널 매트릭스는 표 18에 기초한 변환 커널 매트릭스일 수 있다. 표 18의 행렬에 트랜스포즈를 취한 16 x 16 행렬에서 좌측에서부터 8개의 열만을 포함하는 16 x 8 행렬 일 수 있다. 또는 표 14의 행렬에 트랜스포즈를 취한 48 x 16 행렬에서 좌측에서부터 8개의 열만을 포함하는 48 x 8 행렬 일 수 있다.
정리하면, 입력 변환 계수의 크기가 8이고 출력 변환 계수의 크기가 16이면, 기설정된 16 x 16 변환 커널 매트릭스로부터 8개의 열이 추출된 매트릭스가 행렬 연산에 사용될 수 있다. 또한, 또한, 입력 변환 계수의 크기가 16이고 출력 변환 계수의 크기가 16이면, 기설정된 16 x 16 변환 커널 매트릭스가 행렬 연산에 사용될 수 있다. 또한, 입력 변환 계수의 크기가 16이고 출력 변환 계수의 크기가 48이면, 기설정된 48 x 16 변환 커널 매트릭스가 행렬 연산에 사용될 수 있다. 또한, 입력 변환 계수의 크기가 8이고 출력 변환 계수의 크기가 48이면, 기설정된 48 x 16 변환 커널 매트릭스로부터 8개의 열이 추출된 매트릭스가 행렬 연산에 사용될 수 있다.
변환 세트가 4개이고, 변환 세트 각각에 2개의 변환 커널 매트릭스가 포함될 수 있다. 이 경우, 변환 인덱스는 2차 변환이 적용되지 않는 것을 지시하는 0, 두 개의 변환 커널 매트릭스 중 어느 하나를 지시하는 1 또는 2의 값을 가질 수 있다.
디코딩 장치는 변환 커널 매트릭스와 입력 변환 계수의 크기에 대응하는 변환 계수 리스트의 행렬 연산에 기초하여 수정된 변환 계수를 도출할 수 있다.
변환 계수 리스트는 서브 블록의 순방향 대각 스캔 방향 순서에 따라 읽혀지는 역양자화된 변환 계수로 구성될 수 있다.
수학식 7과 같이 역양자화를 통하여 도출된 변환 계수들의 1차원 배열, 즉 변환 계수 리스트가 변환 커널 매트릭스와의 행렬 연산을 통하여 2차원 배열을 갖는 수정된 변환 계수로 도출될 수 있다.
본 실시예에 따른 역변환부(321)는 서브 블록의 8x8 영역 중 좌상단 4x4 영역의 변환 계수들에 변환 커널 매트릭스를 적용하여 8x8 영역 중 좌상단 4x4 영역, 우상단 4x4 영역 및 좌하단 4x4 영역의 수정된 변환 계수들을 도출할 수 있다.
일 예에 따라, 8x8 영역 중 좌상단 4x4 영역의 변환 계수와 변환 커널 매트릭스의 행렬 연산 시, 8x8 영역 중 좌상단 4x4 영역의 변환 계수들은 표 16과 같이 순방향 대각 스캐닝 순서에 따라 1차원 배열되고, 1차원 배열의 변환 계수들은 변환 커널 매트릭스와의 행렬 연산 후 서브 블록에 적용되는 인트라 예측 모드에 따라 행 우선 방향 또는 열 우선 방향 중 어느 하나의 순서에 따라 표 15 또는 표 17 같이 8x8 영역 중 좌상단 4x4 영역, 우상단 4x4 영역 및 좌하단 4x4 영역에 2차원으로 배열될 수 있다. 즉, 8x8 영역에서 좌상단 4x4 영역의 16개의 변환 계수들에 역 2차 변환이 적용될 수 있고, 변환 커널 매트릭스와의 연산을 통하여 8x8 영역 중 좌상단 4x4 영역, 우상단 4x4 영역 및 좌하단 4x4 영역의 48개의 수정된 변환 계수가 도출될 수 있다.
일 실시예에 따라, 역변환부(321)는 서브 블록의 순방향 LFNST가 적용된 4 x 4 영역 중 일부 변환 계수들, 예컨대, 4x4 영역 내에서 좌상단 위치부터 스캐닝 순서에 따라 8개까지의 변환 계수들에 변환 커널 매트릭스를 적용하여 4x4 영역의 16개의 수정된 변환 계수들을 도출할 수 있다. 이하, 8개의 변환 계수가 배열되는 영역을 4x4 영역 내 좌상단 영역이라고 지칭한다.
상술된 바와 같이, 변환이 적용될 서브 블록의 높이 또는 폭 중 어느 하나가 8보다 작은 경우, 예컨대, 4 x 4 변환 블록, 4 x 8 변환 블록의 상위 4 x 4 또는 8 x 4 변환 블록의 좌측 4 x 4 블록에 변환 행렬의 크기가 감소된 비분리 2차 변환이 적용될 수 있다.
일 예에 따라, 4 x 4 영역 중 좌상단 영역의 변환 계수와 변환 커널 매트릭스의 행렬 연산 시, 4 x 4 영역 중 좌상단 영역의 8개의 변환 계수들은 순방향 대각 스캐닝 순서에 따라 1차원 배열되고, 1차원 배열의 변환 계수들은 변환 커널 매트릭스와의 행렬 연산 후 서브 블록에 적용되는 인트라 예측 모드에 따라 행 우선 방향 또는 열 우선 방향 중 어느 하나의 순서에 따라 표 12 또는 표 13 같이 4x4 영역에 2차원으로 배열될 수 있다. 즉, 4x4 영역의 8개의 변환 계수들에 역 2차 변환이 적용될 수 있고, 변환 커널 매트릭스와의 연산을 통하여 4x4 영역의 16개의 수정된 변환 계수가 도출될 수 있다.
서브 블록에 적용될 수 있는 인트라 예측 모드가 65개의 방향성 모드 중 어느 하나이고, 인트라 예측 모드가 좌상단 대각선 방향의 인트라 예측 모드 34번 모드를 중심으로 대칭이고, 서브 블록에 적용되는 인트라 예측 모드가 인트라 예측 모드 34번 모드를 기준으로 좌측 방향의 2번 내지 상기 34번 모드이면, 수정된 변환 계수들은 행 우선 방향 순서에 따라 2차원 배열될 수 있다.
만약, 서브 블록에 적용되는 인트라 예측 모드가 인트라 예측 모드 34번 모드를 기준으로 우측 방향의 35번 내지 상기 66번 모드이면, 수정된 변환 계수들은 열 우선 방향 순서에 따라 2차원 배열될 수 있다.
또한, 서브 블록에 적용되는 인트라 예측 모드가 플래너 모드 또는 DC 모드 이면, 수정된 변환 계수들은 행 우선 방향 순서에 따라 2차원 배열될 수 있다.
역변환부(321)는 비분리 2차 변환을 적용하여 8 x 8 영역, 보다 구체적으로 8x8 영역 중 우하단 4x4 영역을 제외한 8x8 영역, 또는 4 x 4 영역의 수정된 변환 계수를 2차원 블록으로 생성할 수 있다.
디코딩 장치는 수정된 변환 계수들에 대하여 역 1차 변환을 기반으로 대상 블록에 대해 레지듀얼 샘플들을 도출할 수 있다(S1230).
본 문서의 일 실시예에 따라 역 1차 변환은 다중 변환 선택(Multiple Transform Selection, MTS)에 기반할 수 있다. 1차 변환으로 다중 변환이 적용되는 다중 핵심 변환은 DCT(Discrete Cosine Transform) 타입 2과 DST(Discrete Sine Transform) 타입 7, DCT 타입 8, 및/또는 DST 타입 1을 추가적으로 사용하여 변환하는 방식을 지칭할 수 있다. 이러한 역 1차 변환에 따라 주파수 도메인의 수정된 변환 계수가 공간 도메인인 레지듀얼 신호로 변환된다.
이하의 도면은 본 명세서의 구체적인 일례를 설명하기 위해 작성되었다. 도면에 기재된 구체적인 장치의 명칭이나 구체적인 신호/메시지/필드의 명칭은 예시적으로 제시된 것이므로, 본 명세서의 기술적 특징이 이하의 도면에 사용된 구체적인 명칭에 제한되지 않는다.
도 13은 본 문서의 일 실시예에 따른 비디오 인코딩 장치의 동작을 도시하는 흐름도이다.
도 13에 개시된 각 단계는 도 2에 개시된 인코딩 장치(200)에 의하여 수행될 수 있다. 보다 구체적으로, S1310은 도 2에 개시된 예측부(220)에 의하여 수행될 수 있고, S1320은 도 2에 개시된 감산부(231)에 의하여 수행될 수 있고, S1330 및 S1340은 도 2에 개시된 변환부(232)에 의하여 수행될 수 있고, S1350은 도 2에 개시된 양자화부(233) 및 엔트로피 인코딩부(240)에 의하여 수행될 수 있다. 더불어, S1310 내지 S1350에 따른 동작들은, 도 4 내지 도 10에서 전술된 내용들 중 일부를 기반으로 한 것이다. 따라서, 도 2 및 도 4 내지 도 10에서 전술된 내용과 중복되는 구체적인 내용은 설명을 생략하거나 간단히 하기로 한다.
일 실시예에 따른 인코딩 장치(200)는, 대상 블록에 적용되는 인트라 예측 모드에 기초하여 예측 샘플들 도출할 수 있다(S1310).
일 실시예에 따른 인코딩 장치(200)는, 대상 블록에 대한 레지듀얼 샘플들을 도출할 수 있다(S1320).
일 실시예에 따른 인코딩 장치(200)는, 레지듀얼 샘플에 대한 1차 변환을 기반으로 상기 대상 블록에 대한 변환 계수들 도출할 수 있다(S1330). 1차 변환은 복수의 변환 커널들을 통하여 수행될 수 있고, 이 경우, 인트라 예측 모드를 기반으로 변환 커널이 선택될 수 있다.
디코딩 장치(300)는 대상 블록에 대한 변환 계수들에 대하여 2차 변환, 구체적으로 NSST를 수행할 수 있으며, 이때 NSST는 간소화 변환(RST)을 기반으로 수행되거나, RST를 기반으로 하지 않고 수행될 수 있다. NSST가 RST를 기반으로 수행되면 S1340에 따른 동작과 대응될 수 있다.
일 실시예에 따른 인코딩 장치(200)는, 변환 계수에 대한 RST를 기반으로 대상 블록에 대한 수정된 변환 계수들을 도출할 수 있다(S1340). 일 예시에서, RST는 간소화 변환 매트릭스 또는 변환 커널 매트릭스를 기반으로 수행될 수 있고, 간소화 변환 매트릭스는 행의 개수가 열의 개수보다 적은 비정방형 매트릭스일 수 있다.
일 실시예에서, S1340은 RST를 적용할 조건에 해당하는지 여부를 판단하는 단계, 상기 판단을 기반으로 변환 인덱스를 생성 및 인코딩하는 단계, 변환 커널 매트릭스를 선택하는 단계 및 RST를 적용할 조건에 해당하는 경우, 선택된 변환 커널 매트릭스 및/또는 간소화 팩터를 기반으로 레지듀얼 샘플들에 대하여 RST를 적용하는 단계를 포함할 수 있다. 이때, 간소화 변환 커널 매트릭스의 사이즈는 간소화 팩터를 기반으로 결정될 수 있다.
일 실시예에 따른 인코딩 장치(200)는, 대상 블록에 대한 수정된 변환 계수들을 기반으로 양자화를 수행하여 양자화된 변환 계수들을 도출하고, 양자화된 변환 계수들에 관한 정보를 인코딩할 수 있다(S1350).
보다 구체적으로, 인코딩 장치(200)는 양자화된 변환 계수들에 관한 정보를 생성하고, 생성된 양자화된 변환 계수들에 관한 정보를 인코딩할 수 있다.
일 예시에서, 양자화된 변환 계수들에 관한 정보는, RST가 적용되는지 여부에 대한 정보, 간소화 팩터에 관한 정보, RST를 적용하는 최소 변환 사이즈에 대한 정보 및 RST를 적용하는 최대 변환 사이즈에 대한 정보 중 적어도 하나를 포함할 수 있다.
S1340을 참조하면, 레지듀얼 샘플들에 대한 RST를 기반으로 대상 블록에 대한 변환 계수들이 도출되는 것을 확인할 수 있다. 변환 커널 매트릭스의 사이즈 관점에서 검토하면, 통상의 변환 커널 매트릭스의 사이즈는 NxN인데 간소화 변환 매트릭스의 사이즈는 RxN으로 감소하므로, 통상의 변환을 수행할 때와 비교하면 RST를 수행할 시 메모리 사용을 R/N 비율로 감소시킬 수 있다. 또한, 통상의 변환 커널 매트릭스를 이용할 때의 곱셈 연산 수 NxN과 비교하면, 간소화 변환 커널 매트릭스를 이용하면 곱셈 연산 수를 R/N 비율로 감소(RxN)시킬 수 있다. 더불어, RST가 적용되면 R개의 변환 계수들만이 도출되므로, 통상의 변환이 적용될 때 N개의 변환 계수들이 도출되는 것과 비교할 때 대상 블록에 대한 변환 계수들의 총 개수가 N개에서 R개로 감소하여 인코딩 장치(200)가 디코딩 장치(300)로 전송하는 데이터의 양이 감소할 수 있다. 정리하면, S1340에 따르면 RST를 통해 인코딩 장치(200)의 변환 효율 및 코딩 효율이 증가할 수 있다.
도 14는 본 문서의 일 실시예에 따른 인코딩 장치에 의한 영상 인코딩 방법을 설명하기 위한 제어 흐름도이다. 도 14를 참조하여 인코딩 장치에서 수행되는 영상의 변환 방법, 보다 구체적으로 2차 변환 과정, 또는 디코딩 장치에서 수행되는 역 2차 변환에 대응하는 2차 변환에 대하여 설명한다. 이하에서는 인코딩 장치에서 수행되는 2차 변환을 비분리 2차 변환으로 지칭한다.
일 실시예에 따라, 비분리 2차 변환은 변환 대상이 되는 계수들을 수직 또는 수평 방향으로 분리하여 변환하는 1차 변환과 달리 계수들을 특정 방향으로 분리하지 않고 변환을 적용하는 비분리 변환이다. 이러한 비분리 변환은 변환 대상이 되는 대상 블록 전체가 아닌 저주파 영역에만 변환을 적용하는 저주파 비분리 변환(LFNST)일 수 있다.
우선, 인코딩 장치(200)는 대상 블록에 대한 레지듀얼 샘플에 1차 변환을 적용하여 변환 계수를 도출한다(S1400).
1차 변환을 통하여 도출된 변환 계수에 비분리 2차 변환이 적용되면, 인코딩 장치는 대상 블록이 소정 개수의 서브 블록들로 분할되어 인트라 예측되는 코딩 블록인 경우, 서브 블록들에 하나의 변환 커널 매트릭스를 적용하여 서브 블록 단위로 수정된 변환 계수를 도출할 수 있다(S1410).
즉, 본 문서의 일 실시예에 따르면, 비분리 2차 변환 시 복수의 서브 블록들에 동일한 변환 커널 매트릭스가 적용되고, 비분리 2차 변환 과정은 개별적인 서브 블록 단위로 수행될 수 있다. 복수의 서브 블록들에 동일한 변환 커널 매트릭스가 적용되는 것은 서브 블록으로 분할되는 대상 블록 단위로 하나의 변환 커널 매트릭스가 적용되는 것을 의미한다. 이 때, 대상 블록이 코딩 유닛으로 간주되면, 비분리 2차 변환이 개별적으로 수행되는 서브 블록은 변환의 단위인 변환 유닛 또는 변환 블록으로 간주될 수 있다.
또한, 인코딩 장치는 대상 블록이 분할되는 방향 및 분할되는 서브 블록의 크기 및 개수를 도출할 수 있다. 예를 들어, 도 9과 같이 대상 블록의 크기(폭 x 높이)가 8x4 이면, 대상 블록은 수직 방향으로 분할되어 2개의 서브 블록으로 나누어 지고, 이러한 두 개의 서브 블록 각각에 비분리 2차 변환이 적용될 수 있다. 대상 블록의 크기(폭 x 높이)가 4x8이면, 대상 블록은 수평 방향으로 분할되어 2개의 서브 블록으로 나누어 지고, 이러한 두 개의 서브 블록 각각에 비분리 2차 변환이 적용될 수 있다. 또는 도 10에 도시되어 있는 바와 같이, 상기 대상 블록의 크기(폭 x 높이)가 4x8 또는 8x4 보다 큰 경우, 즉 대상 블록의 크기가 1) 4xN 또는 Nx4 (N ≥ 16) 이거나 2) M x N (M ≥ 8, N ≥ 8)인 경우, 대상 블록은 수평 또는 수직 방향으로 4개의 서브 블록으로 분할될 수 있다.
한편, 본 문서의 다른 실시예에 따라 일정한 조건을 만족하지 못하면 서브 블록으로 분할되는 ISP 코딩이 적용되지 않을 수 있고, ISP 모드로 인하여 분할될 서브 블록에 각각 다른 변환 커널 매트릭스가 적용될 수도 있다.
이하, 서브 블록이 적용되는 비분리 2차 변환을 구체적으로 살펴보면 다음과 같다.
인코딩 장치는 입력 변환 계수 크기, 출력 변환 계수 크기 및 서브 블록의 인트라 모드에 매핑되는 변환 세트를 도출할 수 있다. 입력 변환 계수의 크기는 변환 커널 매트릭스와 행렬 연산이 수행되는 변환 계수의 길이, 즉 변환 계수의 개수를 의미하고, 출력 변환 계수의 크기는 행렬 연산이 수행된 후 출력되는 수정된 변환 계수의 길이, 즉 수정된 변환 계수의 개수를 의미한다.
일 예에 따라, 서브 블록의 폭 및 높이가 8 이상이면 입력 변환 계수의 크기는 48이고, 서브 블록의 폭 또는 높이가 8보다 작으면 입력 변환 계수의 크기는 16일 수 있다.
예를 들어, 변환 블록 블록의 폭 및 높이가 8 이상이면, RST 8x8이 적용되어 변환 블록의 좌상단 8 x 8 영역에 비분리 2차 변환이 적용되고, 비분리 2차 변환의 결과 8개(예를 들어, 8 x 8 변환 블록) 또는 16개(예를 들어, 8 x 8 보다 큰 변환 블록)의 수정된 변환 계수가 도출될 수 있다. 반면, 서브 블록의 폭 또는 높이가 8보다 작으면, 예컨대, 4 x 4, 4 x 8, 8 x 4 변환 블록에는 RST 4x4가 적용되어 변환 블록의 좌상단 4 x 4 영역의 16개의 변환 계수에 비분리 2차 변환이 적용되고, 그 결과 8개(예를 들어, 4 x 4 변환 블록) 또는 16개(예를 들어, 4 x 8, 8 x 4 변환 블록)의 수정된 변환 계수가 도출될 수 있다.
한편, 일 예에 따라, 서브 블록의 크기가 4 x 4 또는 8 x 8이면 출력 변환 계수의 크기는 8이고, 서브 블록의 크기가 4 x 4 또는 8 x 8이 아니면, 출력 변환 계수의 크기는 16일 수 있다. 즉, 서브 블록, 즉 변환 블록의 크기가 4 x 4 이면 비분리 2차 변환 후 8개의 데이터가 출력되고, 변환 블록의 크기가 8 x 8인 경우에도 비분리 2차 변환 후 8개의 변환 계수만이 도출된다. 이러한 두 가지 경우를 제외한 경우, 다시 말해, 1) 너비와 높이가 모두 8보다 같거나 크면서 너비와 높이 중 적어도 하나는 8보다 큰 경우, 또는 2) 4 x N, N x 4 (N ≥ 8)인 경우, 행렬 연산마다 16개의 변환 계수가 출력될 수 있다.
변환 세트는 서브 블록의 인트라 예측 모드에 따른 매핑 관계에 의하여 도출되고, 하나의 변환 세트에는 복수개의 인트라 예측 모드가 매핑될 수 있다. 예컨대, 인트라 예측 모드에 따라 4개의 변환 세트가 존재할 수 있다.
이렇게 비분리 2차 변환을 위한 입력 데이터가 도출되면, 인코딩 장치는 변환 세트에 포함되는 변환 커널 매트릭스 중 어느 하나와 입력 변환 계수의 크기에 대응하는 변환 계수의 행렬 연산에 기초하여 수정된 변환 계수를 도출할 수 있다.
인코딩 장치의 변환부(232)는 변환 세트에 포함된 복수의 변환 커널 매트릭스 중 어느 하나를 선택할 수 있다.
일 예에 따르면, 변환 세트는 서브 블록의 인트라 예측 모드에 따른 매핑 관계에 의하여 도출되고, 하나의 변환 세트에는 복수개의 인트라 예측 모드가 매핑될 수 있다. 또한, 하나의 변환 세트 각각은 복수의 변환 커널 매트릭스를 포함할 수 있다. 하나의 변환 세트가 2개의 변환 커널 매트릭스로 구성되는 경우, 두 개의 변환 커널 매트릭스 중 어느 하나를 지시하는 변환 인덱스가 인코딩되어 디코딩 장치로 시그널링 될 수 있다.
레지듀얼 샘플에 2번의 변환 과정이 적용되는 경우, 레지듀얼 샘플이 1차 변환되면 변환 계수로, 1차 변환 후 비분리 2차 변환이 수행되면 수정된 변환 계수로 지칭될 수 있다.
하나의 변환 세트 각각은 복수의 변환 커널 매트릭스를 포함할 수 있다. 변환 인덱스는 복수의 변환 커널 매트릭스 중 어느 하나를 지시할 수 있으며, 예를 들어 하나의 변환 세트가 2개의 변환 커널 매트릭스로 구성되는 경우, 변환 인덱스는 두 개의 변환 커널 매트릭스 중 어느 하나를 지시할 수 있다.
변환 커널 매트릭스는 수정된 변환 계수의 개수, 변환 세트에 대한 정보 및 변환 인덱스 값에 기초하여 결정될 수 있다.
표 8 및 표 9, 표 14 및 표 18 내지 표 20과 같이, 서브 블록 내 소정 크기의 블록에 적용되는 비분리 2차 변환의 타입(RST 8x8, RST 4x4) 및 출력되는 수정된 변환 계수의 개수에 따라 변환 커널 매트릭스의 크기 및 매트릭스 계수가 달라질 수 있다.
일 예에 따른 변환 커널 매트릭스는 2차 변환의 축소 또는 간소화 크기에 따라 서브 블록의 좌상단의 특정 영역, 예를 들어, 8 x 8 영역, 보다 구체적으로 8x8 영역 중 우하단 4x4 영역을 제외한 8x8 영역, 또는 4 x 4 영역에 적용될 수 있고, 변환 커널 매트릭스를 적용하여 출력되는 수정된 변환 계수의 크기, 즉 변환 계수의 개수는 변환 인덱스, 인트라 예측 모드 및 비분리 2차 변환이 적용되는 서브 블록의 크기에 기초하여 도출될 수 있다.
일 예에 따라 서브 블록의 일 영역, 즉 8 x 8 영역 또는 4 x 4 영역의 변환 계수들에 비분리 2차 변환이 적용될 때, 8 x 8 영역 또는 4 x 4 영역 내 포함되어 있는 변환 계수들 중 일부에만 비분리 2차 변환이 적용될 수 있다. 2차 변환을 위하여 8 x 8 영역의 변환 계수 중 48개의 변환 계수만이 입력된다면 8 x 8 영역에 적용되는 m x 64 변환 커널 매트릭스는 m x 48 변환 커널 매트릭스로 더 축소될 수 있다. 또는 비분리 2차 변환을 적용하여 4 x 4 영역의 변환 계수 중 8개의 변환 계수만이 출력된다면 4 x 4 영역에 적용되는 변환 커널 매트릭스는 8 x 16 매트릭스이다.
일 예에 따라 m은 16일 수 있고, 16 x 48 변환 커널 매트릭스는 표 14에 나타나 있는 변환 커널 매트릭스일 수 있다. 또는 일 예에 따라, 8 x 16 변환 커널 매트릭스는 표 18에 기초한 변환 커널 매트릭스일 수 있다. 즉, 4 x 4 영역에 대해 2차 변환이 적용되어 m개의 변환 계수가 생성되는 경우, 4 x 4 영역에는 m x 16 변환 커널 매트릭스가 적용될 수 있다. 일 예에 따라 m은 8일 수 있고, 8 x 16 변환 커널 매트릭스는 표 18에서 상위 8개의 행을 포함하는 매트릭스일 수 있다. 또는 일 예에 따라, 8 x 48 변환 커널 매트릭스는 표 14에 기초한 변환 커널 매트릭스일 수 있다. 즉, 우하단 4 x 4 영역을 제외한 8 x 8 영역에 대해 2차 변환이 적용되어 m개의 변환 계수가 생성되는 경우, 우하단 4 x 4 영역을 제외한 8 x 8 영역에는 m x 48 변환 커널 매트릭스가 적용될 수 있다. 일 예에 따라 m은 8일 수 있고, 8 x 48 변환 커널 매트릭스는 표 14에서 상위 8개의 행을 포함하는 매트릭스일 수 있다.
정리하면, 입력 변환 계수의 크기가 16이고 입력 변환 계수의 크기가 8이면, 기설정된 16 x 16 변환 커널 매트릭스로부터 8개의 행이 추출된 매트릭스가 행렬 연산에 사용될 수 있다. 또한, 입력 변환 계수의 크기가 16이고 출력 변환 계수의 크기가 16이면, 기설정된 16 x 16 변환 커널 매트릭스가 행렬 연산에 사용될 수 있다. 또한, 입력 변환 계수의 크기가 48이고 출력 변환 계수의 크기가 16이면, 기설정된 16 x 48 변환 커널 매트릭스가 행렬 연산에 사용될 수 있다. 또한, 입력 변환 계수의 크기가 48이고 출력 변환 계수의 크기가 8이면, 기설정된 16 x 48 변환 커널 매트릭스로부터 8개의 행이 추출된 매트릭스가 행렬 연산에 사용될 수 있다.
변환 세트가 4개이고, 변환 세트 각각에 2개의 변환 커널 매트릭스가 포함될 수 있다. 이 경우, 변환 인덱스는 2차 변환이 적용되지 않는 것을 지시하는 0, 두 개의 변환 커널 매트릭스 중 어느 하나를 지시하는 1 또는 2의 값을 가질 수 있다.
변환부(232)는 변환 계수에 변환 커널 매트릭스를 이용하여 비분리 2차 변환을 수행할 때, 1차 변환을 거친 2차원 배열의 변환 계수들을 서브 블록에 적용되는 인트라 예측 모드에 기초하여 행 우선 방향 또는 열 우선 방향 중 어느 하나의 순서에 따라 1차원으로 배열할 수 있다.
구체적으로, 일 예에 따라 변환부(232)는 서브 블록의 8x8 영역 중 좌상단 4x4 영역, 우상단 4x4 영역 및 좌하단 4x4 영역의 변환 계수에 변환 커널 매트릭스를 적용하여, 8x8 영역 중 좌상단 4x4 영역에 대응하는 수정된 변환 계수들을 도출할 수 있다.
변환 커널 매트릭스는 2차 변환의 축소 또는 간소화 크기에 따라 서브 블록의 좌상단의 특정 영역, 예를 들어, 8 x 8 영역 또는 4 x 4 영역, 또는 8 x 8 영역의 일부 영역에 적용될 수 있고, 변환 커널 매트릭스를 적용하여 출력되는 수정된 변환 계수의 크기, 즉 수정된 변환 계수의 개수는 변환 커널 매트릭스의 크기, 인트라 예측 모드 및 2차 변환이 적용되는 서브 블록의 크기에 기초하여 도출될 수 있다.
수학식 5과 같이 2차원의 변환 계수들은 변환 커널 매트릭스와의 행렬 연산을 위하여 1차원으로 배열되어야 하고, 수학식 6과 같은 연산을 통하여 변환 계수의 개수보다 적은 수의 수정된 변환 계수가 도출될 수 있다.
즉, 특정 영역의 2차원 배열의 변환 계수들은 일정한 방향 순서에 따라 1차원으로 읽힐 수 있고, 변환 커널 매트릭스와의 행렬 연산을 통하여 수정된 변환 계수로 도출된다.
일 예에 따라, 8x8 영역에 대한 변환 커널 매트릭스의 행렬 연산 시, 8x8 영역 중 좌상단 4x4 영역, 우상단 4x4 영역 및 좌하단 4x4 영역의 48개의 변환 계수들은 서브 블록에 적용되는 인트라 예측 모드에 따라 표 15 또는 표 17과 같이 행 우선 방향 또는 열 우선 방향 중 어느 하나의 순서에 따라 1차원 배열될 수 있고, 도출된 16개의 수정된 변환 계수들은 표 16과 같이 8x8 영역 중 좌상단 4x4 영역에 대각 스캐닝 방향으로 배열될 수 있다.
한편, 상술된 바와 같이, 변환부(232)는 4x4 크기의 서브 블록 내 16개의 변환 계수에 변환 커널 매트릭스를 적용하여, 4x4 영역 중 좌상단 영역에 대응하는 8개의 수정된 변환 계수들을 도출할 수 있다. 즉, 변환의 대상이 되는 4x4 영역의 16개의 변환 계수들은 서브 블록에 적용되는 인트라 예측 모드에 따라 표 12 또는 표 13과 같이 행 우선 방향 또는 열 우선 방향 중 어느 하나의 순서에 따라 1차원 배열될 수 있고, 도출된 8개의 수정된 변환 계수들은 4x4 영역의 좌상단 영역에 대각 스캐닝 방향으로 배열될 수 있다.
서브 블록에 적용될 수 있는 인트라 예측 모드가 65개의 방향성 모드 중 어느 하나이고, 인트라 예측 모드가 좌상단 대각선 방향의 인트라 예측 모드 34번 모드를 중심으로 대칭이고, 서브 블록에 적용되는 인트라 예측 모드가 인트라 예측 모드 34번 모드를 기준으로 좌측 방향의 2번 내지 상기 34번 모드이면, 8x8 영역 중 좌상단 4x4 영역, 우상단 4x4 영역 및 좌하단 4x4 영역의 변환 계수들은 표 15와 같이 행 우선 방향 순서에 따라 1차원 배열될 수 있다.
만약, 서브 블록에 적용되는 인트라 예측 모드가 인트라 예측 모드 34번 모드를 기준으로 우측 방향의 35번 내지 상기 66번 모드이면, 8x8 영역 중 좌상단 4x4 영역, 우상단 4x4 영역 및 좌하단 4x4 영역의 변환 계수들은 표 17과 같이 열 우선 방향 순서에 따라 1차원 배열될 수 있다.
또한, 서브 블록에 적용되는 인트라 예측 모드가 플래너 모드 또는 DC 모드 이면, 8x8 영역 중 좌상단 4x4 영역, 우상단 4x4 영역 및 좌하단 4x4 영역의 변환 계수들은 행 우선 방향 순서에 따라 1차원 배열될 수 있다.
이렇게 비분리 2차 변환이 수행되면, 엔트로피 인코딩부(240)는 수정된 변환 계수들 기반으로 양자화를 수행하여 양자화된 변환 계수들을 도출하고(S1420), 코딩 유닛 단위로 변환 인덱스를 인코딩하고, 그 외 양자화된 변환 계수들에 대한 정보 및 양자화된 변환 계수들를 인코딩할 수 있다(S1430).
우선, 엔트로피 인코딩부(240)는 변환 세트에 포함된 변환 커널 매트릭스 중 어느 하나를 지시하는 변환 인덱스에 대한 신택스 요소 값을 도출하고, 도출된 변환 인덱스에 대한 신택스 요소 값을 이진화한 뒤, 변환 인덱스의 빈 스트링에 대한 컨텍스트 정보, 즉, 컨텍스트 모델에 기초하여 신택스 요소 빈 스트링의 빈들을 인코딩할 수 있다.
변환 커널 매트릭스를 지시하는 변환 인덱스는 복수의 서브 블록에 대하여 한 번 인코딩될 수 있다. 즉, 변환 인덱스는 서브 블록으로 분할되는 대상 블록 단위로 인코딩되어 출력될 수 있고, 이러한 대상 블록은 코닝 유닛일 수 있다. 코딩 유닛은 서브 블록으로 분할되는 코딩 블록을 포함하는 개념이다.
한편, 인코딩 장치는 ISP 코딩 또는 ISP 모드를 적용할지 여부를 지시하는 플래그 정보를 인코딩 할 수 있고, 대상 블록이 어떠한 방향으로 분할될지를 지시하는 플래그 정보 역시 인코딩하여 출력할 수 있다.
인코딩된 신택스 요소 빈 스트링은 비트스트림의 형태로 디코딩 장치(300) 또는 외부로 출력될 수 있다.
상술한 실시예에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 문서는 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타내어진 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 문서의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 본 문서에 따른 방법은 소프트웨어 형태로 구현될 수 있으며, 본 문서에 따른 인코딩 장치 및/또는 디코딩 장치는 예를 들어 TV, 컴퓨터, 스마트폰, 셋톱박스, 디스플레이 장치 등의 영상 처리를 수행하는 장치에 포함될 수 있다.
본 문서에서 실시예들이 소프트웨어로 구현될 때, 상술한 방법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다. 프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 즉, 본 문서에서 설명한 실시예들은 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 예를 들어, 각 도면에서 도시한 기능 유닛들은 컴퓨터, 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다.
또한, 본 문서가 적용되는 디코딩 장치 및 인코딩 장치는 멀티미디어 방송 송수신 장치, 모바일 통신 단말, 홈 시네마 비디오 장치, 디지털 시네마 비디오 장치, 감시용 카메라, 비디오 대화 장치, 비디오 통신과 같은 실시간 통신 장치, 모바일 스트리밍 장치, 저장 매체, 캠코더, 주문형 비디오(VoD) 서비스 제공 장치, OTT 비디오(Over the top video) 장치, 인터넷 스트리밍 서비스 제공 장치, 3차원(3D) 비디오 장치, 화상 전화 비디오 장치, 및 의료용 비디오 장치 등에 포함될 수 있으며, 비디오 신호 또는 데이터 신호를 처리하기 위해 사용될 수 있다. 예를 들어, OTT 비디오(Over the top video) 장치로는 게임 콘솔, 블루레이 플레이어, 인터넷 접속 TV, 홈시어터 시스템, 스마트폰, 태블릿 PC, DVR(Digital Video Recoder) 등을 포함할 수 있다.
또한, 본 문서가 적용되는 처리 방법은 컴퓨터로 실행되는 프로그램의 형태로 생산될 수 있으며, 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 본 문서에 따른 데이터 구조를 가지는 멀티미디어 데이터도 또한 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 상기 컴퓨터가 판독할 수 있는 기록 매체는 컴퓨터로 읽을 수 있는 데이터가 저장되는 모든 종류의 저장 장치 및 분산 저장 장치를 포함한다. 상기 컴퓨터가 판독할 수 있는 기록 매체는, 예를 들어, 블루레이 디스크(BD), 범용 직렬 버스(USB), ROM, PROM, EPROM, EEPROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크 및 광학적 데이터 저장 장치를 포함할 수 있다. 또한, 상기 컴퓨터가 판독할 수 있는 기록 매체는 반송파(예를 들어, 인터넷을 통한 전송)의 형태로 구현된 미디어를 포함한다. 또한, 인코딩 방법으로 생성된 비트스트림이 컴퓨터가 판독할 수 있는 기록 매체에 저장되거나 유무선 통신 네트워크를 통해 전송될 수 있다. 또한, 본 문서의 실시예는 프로그램 코드에 의한 컴퓨터 프로그램 제품으로 구현될 수 있고, 상기 프로그램 코드는 본 문서의 실시예에 의해 컴퓨터에서 수행될 수 있다. 상기 프로그램 코드는 컴퓨터에 의해 판독 가능한 캐리어 상에 저장될 수 있다.
도 15는 본 문서가 적용되는 컨텐츠 스트리밍 시스템 구조도를 예시적으로 나타낸다.
또한, 본 문서가 적용되는 컨텐츠 스트리밍 시스템은 크게 인코딩 서버, 스트리밍 서버, 웹 서버, 미디어 저장소, 사용자 장치 및 멀티미디어 입력 장치를 포함할 수 있다.
상기 인코딩 서버는 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들로부터 입력된 컨텐츠를 디지털 데이터로 압축하여 비트스트림을 생성하고 이를 상기 스트리밍 서버로 전송하는 역할을 한다. 다른 예로, 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들이 비트스트림을 직접 생성하는 경우, 상기 인코딩 서버는 생략될 수 있다. 상기 비트스트림은 본 문서가 적용되는 인코딩 방법 또는 비트스트림 생성 방법에 의해 생성될 수 있고, 상기 스트리밍 서버는 상기 비트스트림을 전송 또는 수신하는 과정에서 일시적으로 상기 비트스트림을 저장할 수 있다.
상기 스트리밍 서버는 웹 서버를 통한 사용자 요청에 기초하여 멀티미디어 데이터를 사용자 장치에 전송하고, 상기 웹 서버는 사용자에게 어떠한 서비스가 있는지를 알려주는 매개체 역할을 한다. 사용자가 상기 웹 서버에 원하는 서비스를 요청하면, 상기 웹 서버는 이를 스트리밍 서버에 전달하고, 상기 스트리밍 서버는 사용자에게 멀티미디어 데이터를 전송한다. 이때, 상기 컨텐츠 스트리밍 시스템은 별도의 제어 서버를 포함할 수 있고, 이 경우 상기 제어 서버는 상기 컨텐츠 스트리밍 시스템 내 각 장치 간 명령/응답을 제어하는 역할을 한다.
상기 스트리밍 서버는 미디어 저장소 및/또는 인코딩 서버로부터 컨텐츠를 수신할 수 있다. 예를 들어, 상기 인코딩 서버로부터 컨텐츠를 수신하게 되는 경우, 상기 컨텐츠를 실시간으로 수신할 수 있다. 이 경우, 원활한 스트리밍 서비스를 제공하기 위하여 상기 스트리밍 서버는 상기 비트스트림을 일정 시간동안 저장할 수 있다.
상기 사용자 장치의 예로는, 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display), 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등이 있을 수 있다. 상기 컨텐츠 스트리밍 시스템 내 각 서버들은 분산 서버로 운영될 수 있으며, 이 경우 각 서버에서 수신하는 데이터는 분산 처리될 수 있다.
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.

Claims (11)

  1. 디코딩 장치에 의하여 수행되는 영상 디코딩 방법에 있어서,
    대상 블록에 대한 양자화된 변환 계수 및 비분리 2차 변환에 대한 변환 인덱스를 수신하는 단계와;
    상기 양자화된 변환 계수를 역양자화하여 변환 계수들을 도출하는 단계와;
    상기 변환 인덱스에 의하여 지시되는 소정의 변환 세트 내 변환 커널 매트릭스에 기초하여 수정된 변환 계수를 도출하는 단계와;
    상기 수정된 변환 계수들에 대하여 역 1차 변환을 기반으로 상기 대상 블록에 대해 레지듀얼 샘플들을 도출하는 단계를 포함하되,
    상기 대상 블록이 소정 개수의 서브 블록들로 분할되어 인트라 예측으로 코딩된 경우, 상기 수정된 변환 계수는 상기 서브 블록 단위로 도출되고,
    상기 변환 인덱스는 상기 대상 블록에 대하여 수신되는 것을 특징으로 하는 영상 디코딩 방법.
  2. 제1항에 있어서,
    상기 비분리 2차 변환 시 상기 서브 블록들에 동일한 변환 커널 매트릭스가 적용되는 것을 특징으로 하는 영상 디코딩 방법.
  3. 제1항에 있어서,
    상기 대상 블록은 코딩 유닛이고, 상기 서브 블록은 변환 유닛인 것을 특징으로 하는 영상 디코딩 방법.
  4. 제1항에 있어서,
    상기 대상 블록의 크기(폭 x 높이)가 8x4 이면, 상기 대상 블록은 수직 분할되고,
    상기 대상 블록의 크기(폭 x 높이)가 4x8이면, 상기 대상 블록은 수평 분할되는 것을 특징으로 하는 영상 디코딩 방법.
  5. 제4항에 있어서,
    상기 대상 블록의 크기(폭 x 높이)가 4x8 또는 8x4 보다 크면, 상기 대상 블록은 수평 또는 수직 방향으로 4개의 서브 블록으로 분할되는 것을 특징으로 하는 영상 디코딩 방법.
  6. 인코딩 장치에 의하여 수행되는 영상 인코딩 방법에 있어서,
    대상 블록에 적용되는 인트라 예측 모드에 기초하여 예측 샘플들을 도출하는 단계와;
    상기 예측 샘플에 기초하여 상기 대상 블록에 대한 레지듀얼 샘플들을 도출하는 단계와;
    상기 레지듀얼 샘플에 1차 변환을 적용하여 변환 계수를 도출하는 단계와;
    상기 대상 블록의 인트라 모드에 매핑되는 변환 세트와 상기 변환 세트에 포함되는 변환 커널 매트릭스 중 어느 하나를 이용하여 상기 변환 계수에 비분리 2차 변환을 수행함으로써 수정된 변환 계수들을 도출하는 단계와;
    상기 수정된 변환 계수들 기반으로 양자화를 수행하여 양자화된 변환 계수들을 도출하는 단계와;
    상기 변환 커널 매트릭스를 지시하는 변환 인덱스 및 상기 양자화된 변환 계수들을 인코딩하는 단계를 포함하고,
    상기 대상 블록이 소정 개수의 서브 블록들로 분할되어 인트라 예측되는 코딩 블록인 경우, 상기 수정된 변환 계수는 상기 서브 블록 단위로 도출되고,
    상기 비분리 2차 변환 수행 시, 상기 서브 블록들에는 동일한 변환 커널 매트릭스가 적용되는 것을 특징으로 하는 영상 인코딩 방법.
  7. 제6항에 있어서,
    상기 변환 인덱스는 코딩 유닛 단위로 인코딩되는 것을 특징으로 하는 영상 인코딩 방법.
  8. 제6항에 있어서,
    상기 대상 블록의 크기(폭 x 높이)가 8x4 이면, 상기 대상 블록은 수직 분할되고,
    상기 대상 블록의 크기(폭 x 높이)가 4x8이면, 상기 대상 블록은 수평 분할되는 것을 특징으로 하는 영상 인코딩 방법.
  9. 제6항에 있어서,
    상기 대상 블록의 크기(폭 x 높이)가 4x8 또는 8x4 보다 크면, 상기 대상 블록은 수평 또는 수직 방향으로 4개의 서브 블록으로 분할되는 것을 특징으로 하는 영상 인코딩 방법.
  10. 제6항에 있어서,
    상기 대상 블록이 소정 개수의 서브 블록들로 분할되어 인트라 예측되는 코딩 블록인지 여부를 지시하는 플래그 정보를 인코딩 하는 단계를 더 포함하는 것을 특징으로 하는 영상 인코딩 방법.
  11. 컴퓨터 판독 가능한 디지털 저장 매체로서, 청구항 1항에 기재된 영상 변환 방법을 수행하도록 야기하는 비트스트림이 저장된 디지털 저장 매체.
PCT/KR2020/002625 2019-02-24 2020-02-24 이차 변환에 기반한 영상 코딩 방법 및 그 장치 WO2020171671A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217024617A KR20210102462A (ko) 2019-02-24 2020-02-24 이차 변환에 기반한 영상 코딩 방법 및 그 장치
US17/394,734 US11483589B2 (en) 2019-02-24 2021-08-05 Image coding method based on quadratic transform, and apparatus therefor
US17/947,047 US20230035863A1 (en) 2019-02-24 2022-09-16 Image coding method based on quadratic transform, and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962809721P 2019-02-24 2019-02-24
US62/809,721 2019-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/394,734 Continuation US11483589B2 (en) 2019-02-24 2021-08-05 Image coding method based on quadratic transform, and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2020171671A1 true WO2020171671A1 (ko) 2020-08-27

Family

ID=72144393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002625 WO2020171671A1 (ko) 2019-02-24 2020-02-24 이차 변환에 기반한 영상 코딩 방법 및 그 장치

Country Status (3)

Country Link
US (2) US11483589B2 (ko)
KR (1) KR20210102462A (ko)
WO (1) WO2020171671A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047669A1 (ja) * 2016-09-12 2018-03-15 ソニー株式会社 画像処理装置および画像処理方法
WO2018166429A1 (en) * 2017-03-16 2018-09-20 Mediatek Inc. Method and apparatus of enhanced multiple transforms and non-separable secondary transform for video coding
WO2018174402A1 (ko) * 2017-03-21 2018-09-27 엘지전자 주식회사 영상 코딩 시스템에서 변환 방법 및 그 장치
US20180302631A1 (en) * 2017-04-14 2018-10-18 Mediatek Inc. Secondary Transform Kernel Size Selection
WO2018236133A1 (ko) * 2017-06-19 2018-12-27 엘지전자(주) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134571A (en) * 1998-04-29 2000-10-17 Hewlett-Packard Company Implicit DST-based filter operating in the DCT domain
CN113411578B (zh) * 2016-05-13 2024-04-12 夏普株式会社 图像解码装置及其方法、图像编码装置及其方法
US20210409727A1 (en) 2017-06-21 2021-12-30 Lg Electronics Inc. Method and device for decoding image according to intra-prediction in image coding system
US10567801B2 (en) * 2018-03-07 2020-02-18 Tencent America LLC Method and apparatus for video coding with primary and secondary transforms
US20200252608A1 (en) * 2019-02-05 2020-08-06 Qualcomm Incorporated Sub-partition intra prediction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047669A1 (ja) * 2016-09-12 2018-03-15 ソニー株式会社 画像処理装置および画像処理方法
WO2018166429A1 (en) * 2017-03-16 2018-09-20 Mediatek Inc. Method and apparatus of enhanced multiple transforms and non-separable secondary transform for video coding
WO2018174402A1 (ko) * 2017-03-21 2018-09-27 엘지전자 주식회사 영상 코딩 시스템에서 변환 방법 및 그 장치
US20180302631A1 (en) * 2017-04-14 2018-10-18 Mediatek Inc. Secondary Transform Kernel Size Selection
WO2018236133A1 (ko) * 2017-06-19 2018-12-27 엘지전자(주) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
US11483589B2 (en) 2022-10-25
US20210377568A1 (en) 2021-12-02
US20230035863A1 (en) 2023-02-02
KR20210102462A (ko) 2021-08-19

Similar Documents

Publication Publication Date Title
WO2020180102A1 (ko) 영상 코딩 시스템에서 컨텍스트 코딩된 사인 플래그를 사용하는 영상 디코딩 방법 및 그 장치
WO2020159316A1 (ko) 이차 변환에 기반한 영상 코딩 방법 및 그 장치
WO2020171592A1 (ko) 영상 코딩 시스템에서 레지듀얼 정보를 사용하는 영상 디코딩 방법 및 그 장치
WO2021066598A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
WO2020050651A1 (ko) 다중 변환 선택에 기반한 영상 코딩 방법 및 그 장치
WO2020213945A1 (ko) 인트라 예측 기반 영상 코딩에서의 변환
WO2020130661A1 (ko) 이차 변환에 기반한 영상 코딩 방법 및 그 장치
WO2021086055A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
WO2021096290A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
WO2021096172A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
WO2021054798A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
WO2021060905A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
WO2021054783A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
WO2021025530A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
WO2021054787A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
WO2021096295A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
WO2020242183A1 (ko) 광각 인트라 예측 및 변환에 기반한 영상 코딩 방법 및 그 장치
WO2020256482A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
WO2020145720A1 (ko) 이차 변환에 기반한 영상 코딩 방법 및 그 장치
WO2021194199A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
WO2021096174A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
WO2021060827A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
WO2021096293A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
WO2021054796A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
WO2021137556A1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217024617

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20758732

Country of ref document: EP

Kind code of ref document: A1