WO2020170943A1 - Decellularization processing fluid and washing composition - Google Patents

Decellularization processing fluid and washing composition Download PDF

Info

Publication number
WO2020170943A1
WO2020170943A1 PCT/JP2020/005609 JP2020005609W WO2020170943A1 WO 2020170943 A1 WO2020170943 A1 WO 2020170943A1 JP 2020005609 W JP2020005609 W JP 2020005609W WO 2020170943 A1 WO2020170943 A1 WO 2020170943A1
Authority
WO
WIPO (PCT)
Prior art keywords
decellularization
weight
effect
solution
days
Prior art date
Application number
PCT/JP2020/005609
Other languages
French (fr)
Japanese (ja)
Inventor
宗樹 龍見
明日香 野上
道陽 荒木
瑞之 竜
善彦 平田
鍾國 李
Original Assignee
サラヤ株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サラヤ株式会社, 国立大学法人大阪大学 filed Critical サラヤ株式会社
Priority to JP2020571729A priority Critical patent/JP6932356B2/en
Publication of WO2020170943A1 publication Critical patent/WO2020170943A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix

Definitions

  • the present invention relates to a tissue decellularization treatment solution.
  • the decellularization technique is a technique in which cells causing a rejection reaction are removed from a biological tissue, and the remaining decellularized tissue, which is a supporting tissue, is used as it is or after being recellularized.
  • the conventional method using a surfactant removes substances such as proteins and lipids by strongly adsorbing a surfactant having the property of forming micelles to the two-phase interface and significantly lowering the free energy of the interface. It was Such removal results in non-selective solubilization and washing out, which also affects extracellular matrix proteins, leaving the problem that tissue strength deteriorates and that surfactant remains in the tissue. It is difficult to control decellularization due to the effects on recellularization and transplantation. Furthermore, the use of a surfactant during washing has a problem of non-selectively removing decellularized extracellular matrix protein.
  • Sophorose lipids (hereinafter sometimes abbreviated as SL) have been discovered by PA Gorin et al. in a culture solution of Starmerella (Candida) bombicola (non-patented). Reference 1). Sophorolipid, which is known as one of biosurfactants, which is a surfactant of biological origin, is a fermentation product obtained from fermentation of yeast. Patent Document 5 describes the use of SL as a household cleaning agent having excellent foam stability. Patent Document 6 describes the use of SL as pharmaceuticals, cosmetics, and foods. However, these documents neither describe nor suggest the use of SL for decellularization treatment.
  • the present invention has been made in view of the above problems, and enables efficient decellularization of tissue while maintaining high mechanical strength without degrading the protein constituting the extracellular matrix component. It is intended to provide a decellularization treatment solution.
  • the decellularization treatment solution according to the present invention is a decellularization treatment solution used for decellularization of animal-derived tissues, and is characterized by containing 0.01% by weight or more and 20% by weight or less of sophorose lipid.
  • a decellularization treatment liquid that enables efficient decellularization of tissue without degrading the protein that constitutes the extracellular matrix component can be obtained.
  • FIG. 3 is a photograph showing the effect of SL on decellularization of the lungs of newborn rats.
  • FIG. 6 is a photographic diagram for confirming the decellularization effect of SL of newborn rat by SL compared with other drugs. It is a figure which shows the measurement result of the remaining amount of DNA after decellularization. It is a figure which shows the observation result by the confocal laser scanning microscope after decellularization. It is a figure which shows the measurement result of the area of the alveolar cavity after decellularization. It is a figure which shows the result of the immunostaining of collagen which is a main component of an extracellular matrix after decellularization. It is a figure which shows the observation result by the confocal laser scanning microscope after decellularization.
  • FIG. 6 is a photographic diagram for confirming the decellularization effect of SL on the neonatal rat kidney.
  • FIG. 6 is a photographic diagram for confirming the decellularization effect on SL of newborn rat by SL in comparison with other drugs. It is a photograph figure which confirms the decellularization effect of the skin of the newborn rat by SL. It is a photograph figure which confirms the decellularization effect of the skin of the rat newborn by SL compared with other chemical
  • FIG. 6 is a photograph showing the intestinal decellularization effect of newborn rats by SL. It is a photograph figure which confirms the decellularization effect of the spleen of the newborn rat by SL.
  • FIG. 6 is a photographic diagram for confirming the decellularization effect of SL on the neonatal rat kidney.
  • FIG. 6 is a photographic diagram for confirming the decellularization effect on SL of newborn rat by SL in comparison with other drugs. It is a photograph figure which confirms the decellularization effect of
  • FIG. 6 is a photographic diagram for confirming the decellularization effect on the neonatal rat spleen by SL in comparison with other drugs.
  • FIG. 3 is a photographic diagram for confirming the decellularization effect on the heart of newborn rat and the shape maintenance effect of ECM by SL.
  • FIG. 6 is a photographic diagram for confirming the effect of SL on ECM components after decellularization of the neonatal rat heart.
  • FIG. 6 is a photographic diagram for confirming the change in volume after decellularization of the heart of a neonatal rat by SL. It is a photograph figure which confirms the decellularization effect to the heart of the newborn rat and the shape maintenance effect of ECM by SL compared with other agents.
  • Decellularization treatment solution Since surfactants non-selectively remove substances such as proteins and lipids, the proteins that make up the extracellular matrix component are not present in the biological tissues that have been decellularized using detergents. It is deteriorated, leading to deterioration of strength of decellularized tissue and deterioration of cell re-adhesion performance, and low biocompatibility. Therefore, even when decellularization treatment is performed using sophorose lipid, which is one of the surfactants, the protein constituting the extracellular matrix component is degraded and biocompatibility is deteriorated, like other surfactants. Expected to be low.
  • sophorose lipid for the decellularization of animal-derived tissues, only the cells were removed and the decellularization of the tissues was carried out without degrading the protein constituting the extracellular matrix component. It was discovered as a new finding that the above is possible, and the present invention was completed based on this fact.
  • the decellularization effect of a surfactant utilizes the action of removing cells from the extracellular matrix by the denaturing action of the membrane protein and the property of solubilizing the cell membrane and lysing the cell DNA.
  • the extracellular matrix which is a protein
  • the decellularization of SL has the property of acting specifically only on lipids. Its action is that it acts only on the cell membrane and causes the cells to collapse. Therefore, it is considered that decellularization can be performed without affecting the extracellular matrix and its three-dimensional structure. Since SL is also low in cytotoxicity, it is considered that there is no concern about the use of organs and tissues after decellularization.
  • the decellularization treatment liquid according to the present embodiment is a decellularization treatment liquid used for decellularization of animal-derived tissues, and contains 0.01% by weight or more and 20% by weight or less of sophorose lipid.
  • Sophorose lipid is a glycolipid composed of sophorose or sophorose in which the hydroxyl group is partially acetylated, and hydroxyl fatty acid.
  • sophorose is a sugar composed of two molecules of glucose with ⁇ 1 ⁇ 2 bond.
  • Hydroxyl fatty acid is a fatty acid having a hydroxyl group.
  • sophorose lipid used in the following examples was prepared according to the description in JP-A-2016-160244.
  • Animal-derived tissues to be decellularized are not particularly limited, for example, pig, cow, horse, goat, sheep, rabbit, kangaroo, epithelial tissue obtained from mammals such as monkey and human, It is preferably at least one tissue selected from the group consisting of connective tissue, nerve tissue and muscle tissue, and specifically, heart, kidney, lung, liver, brain, intestine, uterus, omentum and small caliber blood vessel. Etc.
  • the decellularization treatment liquid according to the present embodiment contains 0.1% by weight or more and 20% by weight or less of sophorose lipid. This is because if the content of sophorose lipid is less than 0.1% by weight, the decellularization treatment may take time. On the other hand, when the content of sophorose lipid is more than 20% by weight, it is difficult to dissolve in the solution.
  • the decellularization treatment solution according to the present embodiment is selected from 0.1% by weight, 1% by weight, 10% by weight, and 20% by weight of any two numerical values, and the sophorose lipid between the selected numerical values is selected. It can be included.
  • the decellularization treatment solution according to the present embodiment contains 0.1% by weight or more and 10% by weight or less of a surfactant in addition to 0.1% by weight or more and 20% by weight or less of sophorose lipid.
  • the decellularization treatment of the conventional surfactant can be performed in a short time, and the influence of the conventional surfactant on the extracellular matrix can be reduced. This is because when the content of the surfactant is less than 0.1% by weight, the penetrating power into the tissue of animal origin may be poor, while when the content of the surfactant is more than 10% by weight. This is because there is a risk of damaging cells existing in animal-derived tissues.
  • the surfactant is not particularly limited, and examples thereof include an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  • examples of the anionic surfactant include sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, sodium ⁇ -olefinsulfonate, sodium lauryl phosphate, sodium laurate, triethanolamine laurate, sodium oleyl sarcosine, and sodium lauryl sarcosine.
  • Sodium palmityl sarcosine sodium coconut oil fatty acid sarcosine, sodium oleyl glutamate, sodium lauryl glutamate, sodium palmityl glutamate, palm oil fatty acid glutamate triethanolamine, palm oil fatty acid glutamate sodium, lauroyl methyl- ⁇ -alanine sodium, ( Examples thereof include poly)oxyalkylene alkyl ether sulfate, (poly)oxyalkylene alkyl ether carboxylate, and (poly)oxyalkylene alkylsulfosuccinate.
  • cationic surfactant examples include stearyltrimethylammonium chloride, behenyltrimethylammonium chloride, distearyldimethylammonium chloride, lanolin fatty acid aminopropylethyldimethylammonium ethyl sulfate, diethylaminoethylamide stearate lactate, dilaurylamine hydrochloride, oleylamine. Examples include lactate.
  • amphoteric surfactant examples include lauryldimethylaminoacetic acid betaine, stearyldimethylaminoacetic acid betaine, coconut oil alkyldihydroxyethylaminoacetic acid betaine, lauryldihydroxyethylaminoacetic acid betaine, decyldihydroxypropylaminoacetic acid betaine, 2-alkyl-N-carboxymethyl -N-hydroxyethyl imidazolinium betaine, sodium octylaminopropionate, sodium laurylaminopropionate, coconut oil sodium alkylaminopropionate, sodium myristylaminopropionate, sodium palmitylaminopropionate, sodium stearylaminopropionate, lauryl Examples thereof include sodium aminoacetate and sodium laurylaminobutyrate, 2-[N,N-di(alkylbenzyl)-N-methylammonium]-ethylsulfate, N-steary
  • nonionic surfactant polyoxyethylene lauryl ether, glycerin monostearate, ethylene glycol monostearate, sorbitan monolaurate, methyl glucoside dioleate, polyoxyalkylene alkyl phenyl ether, polyoxyalkylene alkyl amino ether, poly Examples thereof include oxyethylene lauryl amine and lauryl dimethyl amine oxide.
  • the decellularization treatment liquid according to the present embodiment can include a buffer, a chelating agent, an antiseptic, a bactericide, and an antioxidant.
  • the decellularization treatment liquid according to the present embodiment can contain water, and examples of water include ultrapure water, ion-exchanged water, distilled water, tap water and industrial water.
  • Decellularized washing solution Recellularization of decellularized tissue occurs because the tissue residue and the substances such as the surfactant used for the decellularization process remain in the decellularized biological tissue. It is preferred to wash the remaining material before doing so.
  • the cleaning composition according to the present embodiment is a cleaning composition used for cleaning animal-derived tissue after decellularization treatment, and contains 0.01% by weight or more and 10% by weight or less of sophorose lipid, It is possible to remove only the residual material without damaging the outer matrix. This is because if the content of sophorose lipid is less than 0.01% by weight, the cleaning effect may not be sufficient, while if the content of sophorose lipid is more than 10% by weight, the tissue derived from animals may be This is because unnecessary sophorose lipid may remain.
  • the cleaning composition according to the present embodiment contains 0.1% by weight or more and 5% by weight or less of sophorose lipid, and more preferably 0.5% by weight or more and 1% by weight or less of sophorose lipid.
  • the cleaning composition according to the present embodiment further comprises at least one of acetate buffer, phosphate buffer, citrate buffer, borate buffer, tartrate buffer, Tris buffer, HEPES buffer and MES buffer. It is possible to include a buffer solution containing
  • the buffer solution used for washing is a buffer solution dissolved in water and is not particularly limited as long as it has a buffering action to keep the pH in the solution constant, but is preferably a phosphate buffer solution, More preferably, the solution contains an anticoagulant such as heparin.
  • the pH of the buffer solution is preferably 4.0 to 9.0.
  • the animal-derived tissue is immersed in a decellularization treatment solution containing 0.01% by weight or more and 20% by weight or less of sophorose lipid.
  • the time for immersing the animal-derived tissue is not particularly limited as long as the decellularization effect is produced, but is, for example, 12 hours or more and 20 days or less, preferably 1 day or more and 15 days or less, and more preferably 2 days or more. 10 days or less.
  • the animal-derived tissue after the decellularization step is washed, but if the decellularization treatment solution does not contain a surfactant other than sophorose lipid, or if it does not contain a surfactant, it is removed. It is possible to eliminate the need to wash the animal-derived tissue after the cell-forming step.
  • Example 1 Confirmation of decellularization effect on SL of newborn rat by SL
  • the newborn lung of rat was immersed in SL solution containing 10% by weight and 20% by weight of ultrapure water and shaken. After 1 day, 2 days, 5 days, and 10 days, the decellularization effect was confirmed using a stereoscopic microscope. The results are shown in Table 1 and FIG.
  • Example 2 Confirmation of decellularization effect on SL of newborn rat by SL compared with other drugs 0.1 wt%, 1.0 wt%, 10 wt% SL solution, SDS (sodium lauryl sulfate) solution, Triton solution, The lungs of newborn rats were immersed in APG (alkyl polyglycoside) solution and shaken. After 2 days, 4 days, and 6 days, the decellularized state was evaluated by the transparency ratio using a stereomicroscope, and the effect on the extracellular matrix was visually reduced (size) or the collapsed state of the organ, tweezers. It was evaluated comprehensively by the strength when it was grasped with.
  • APG alkyl polyglycoside
  • the effect on the extracellular matrix was confirmed by direct observation using a confocal laser microscope and immunostaining of collagen, which is a major component of the extracellular matrix.
  • the evaluation results of the decellularized state are shown in Table 2-1, Table 2-2 and Table 2-3.
  • the evaluation results of the effect on the extracellular matrix are shown in Table 3-1, Table 3-2 and Table 3-3.
  • the results in Table 3 were confirmed by the very good days in Table 2.
  • the photograph in FIG. 2 is a photograph 6 days after the immersion.
  • Table 2-4 The evaluation results of the decellularized state are shown in Table 2-4.
  • Table 3-4 shows the evaluation results of the effect on the extracellular matrix.
  • the results in Table 3 were confirmed by the very good days in Table 2.
  • the effect on the extracellular matrix was confirmed by direct observation using a confocal laser scanning microscope and immunostaining of collagen, which is a major component of the extracellular matrix.
  • the decellularized state was confirmed by measuring the amount of remaining DNA.
  • Example 2 redness due to cells disappeared after 4 days, and the decellularization effect was good. Since it was reported that the residual DNA amount was 50 ng/mg or less as a standard, it was confirmed that decellularization was good as shown in FIG.
  • Fig. 4 shows the results of confirmation of the internal structure of the lung by a confocal laser scanning microscope. Furthermore, the result of having measured the area of the alveolar cavity is shown in FIG. From FIGS. 4 and 5, a difference was found in the size of the alveolar cavity. It was confirmed that SL maintained the same size as the control, whereas SDS and Triton reduced the alveolar space. It was also confirmed that APG was smaller than SL. The results of observing collagen, which is a major constituent of the extracellular matrix, by immunostaining are shown in FIG. Compared with the control, SL treatment did not show a large change, whereas SDS and Triton showed remarkable shrinkage as a whole, and APG showed alveolar cavity collapse.
  • Fig. 7 shows the results of confirmation of the internal structure of the lungs by a confocal laser scanning microscope for the lungs that were decellularized with a mixture of SL solution and SDS solution. Furthermore, the result of having measured the area of the alveolar cavity is shown in FIG. From Figure 7 and Figure 8, treatment with 0.1% SDS or 1.0% SDS alone increases the alveolar cavity, but by adding 0.1% or more SL, the area of the alveolar cavity is similar to that of untreated control. It was confirmed that it is possible to suppress the expansion of the cyst. Based on these results, the shape-maintaining effect was confirmed by adding SL rather than SDS alone for decellularization of the lung.
  • Desirable decellularization effect is that only cells are removed and there is little effect on the extracellular matrix that is the skeleton of the organ.
  • effects on the extracellular matrix morphological observation and extracellular matrix structure evaluation were performed.
  • SL has no change in appearance and no influence on the internal structure during decellularization treatment as compared with other surfactants. It was found that only cells were selectively removed.
  • the alveolar space shrinks When the alveolar space shrinks, it affects cell invasion during recellularization, and it is possible that cells do not invade. In addition, when the extracellular matrix structure is broken, it is considered that the cells do not regenerate and adhere sufficiently even if they enter the cells, and thus cannot function as organs or tissues. Regarding the organs treated with SL, the size was maintained and the structure of the extracellular matrix was not disturbed and did not affect, so cell entry and cell adhesion during recellularization were better than treatment with other drugs. Yes, it can be said that it functions as the same function as the original organ.
  • Example 3 Confirmation of the effect of SL on extracellular matrix of neonatal rat blood vessels After decellularization treatment with each treatment solution, primary antibody: Anti-Collagen IV, secondary antibody: Anti-Rabbit 488 It was used for immunostaining and observation. In addition, the lumen of the blood vessel was evaluated by measuring the area, and the effect on the extracellular matrix was confirmed. Observation photographs of immunostaining are shown in FIGS. 9 and 10, and area measurement results are shown in FIGS.
  • Example 4 Confirmation of decellularization effect of newborn rat liver by SL
  • the newborn rat liver was immersed in SL solution containing 10% by weight and 20% by weight of ultrapure water and shaken. After 1 day, 2 days, 5 days, and 10 days, the decellularization effect was confirmed using a stereoscopic microscope. The results are shown in Table 4 and FIG.
  • Example 5 Confirmation of decellularization effect on newborn rat heart by SL
  • the newborn rat heart was immersed in SL solution of ultrapure water, 1% by weight, 10% by weight, and 20% by weight and shaken. .. After 1 day, 2 days, 5 days, and 10 days, the decellularization effect was confirmed using a stereoscopic microscope. The results are shown in Table 5 and FIG.
  • Example 6 Confirmation of decellularization effect of newborn rat kidney by SL
  • the newborn rat kidney was immersed in ultrapure water, 10 wt%, 20 wt% SL solution and shaken. After 1 day, 2 days, 5 days, and 10 days, the decellularization effect was confirmed using a stereoscopic microscope. The results are shown in Table 6 and FIG.
  • Example 7 Confirmation of decellularization effect of skin of newborn rat by SL Immersing skin of newborn rat in SL solution of ultrapure water, 0.1% by weight, 1% by weight, 10% by weight, 20% by weight , Shaken. After 1 day, 2 days, 5 days, and 10 days, the decellularization effect was confirmed using a stereoscopic microscope. The results are shown in Table 9 and FIG.
  • the neonatal rat skin was immersed in 0.1% by weight, 1.0% by weight, and 10% by weight of SL solution, SDS solution, Triton solution, and APG solution, and shaken. After 2 days, 4 days, 6 days, 8 days, and 10 days, the transparency was evaluated by using a stereoscopic microscope. As the influence on the extracellular matrix, the contracted state (size) of the organ or the collapsed state of the organ, The strength when grasped with tweezers was comprehensively evaluated. The results are shown in Tables 10 and 11. The results in Table 11 were confirmed by the very good days in Table 10.
  • FIG. 18 shows a photograph 10 days after the immersion. The results in Table 11 were confirmed by the very good days in Table 10. On the 4th day after the immersion, the redness of the cells was burnt out, and the decellularization was good.
  • Example there was no change in size, disintegration state, and strength, and no effect was observed.
  • the comparative example had an effect on either item. At all concentrations, there was no change in size, disintegration, or strength only in the decellularized sample using SL of Example.
  • Example 8 Confirmation of decellularization effect on intestine of newborn rat by SL Immersion of intestine of newborn rat in SL solution of ultrapure water, 0.1% by weight, 1% by weight, 10% by weight, 20% by weight , Shaken. After 1 day, 2 days, 5 days, and 10 days, the decellularization effect was confirmed using a stereoscopic microscope. The results are shown in Table 12 and FIG.
  • Example 9 Confirmation of decellularization effect on spleen of rat newborn by SL
  • the spleen of newborn rat was immersed in SL solution of ultrapure water, 1% by weight, 10% by weight, and 20% by weight and shaken. .. After 1 day, 2 days, 5 days, and 10 days, the decellularization effect was confirmed using a stereoscopic microscope. The results are shown in Table 13 and FIG.
  • the spleen of a newborn rat was immersed in 0.1% by weight, 1.0% by weight, 10% by weight of SL solution, SDS solution, Triton solution, and APG solution, and shaken.
  • the decellularized state was evaluated by the transparency ratio using a stereoscopic microscope, and the effect on the extracellular matrix was visually confirmed as the contracted state (size) of the organ, The state of organ collapse and the strength when grasped with tweezers were evaluated comprehensively.
  • the results are shown in Tables 14 and 15.
  • the results in Table 15 were confirmed by the very good days in Table 14.
  • FIG. 21 shows a photograph 10 days after the immersion.
  • Example there was no change in size, disintegration state, and strength, and no effect was observed.
  • the comparative example had an effect on any of the items. At all concentrations, there was no change in size, disintegration, or strength only in the decellularized sample using SL of Example.
  • Example 10 Confirmation of Decellularization Effect and ECM (Extracellular Matrix) Shape-Maintaining Effect by Addition of SL to Newborn Rat Heart
  • ECM Extracellular Matrix
  • Decellularization and shape maintenance were visually evaluated by confirming the transparency of the heart with transmitted light and a stereoscopic image with a stereoscopic microscope. The results are shown in Table 16 and FIG. In FIG. 22, the upper part of the same heart is a photographic image observed with a stereoscopic image, and the lower part is a photographic diagram observed with transmitted light.
  • Example 11 Effect on ECM constituents after decellularization when SL was added to rat neonatal heart
  • the rat neonatal heart was impregnated in the solution at 25°C (room temperature) for 24 hours and shaken,
  • the existence and distribution of extracellular matrix constituent protein (fibronectin) were observed with a fluorescence stereomicroscope and a confocal microscope. The results are shown in Table 17 and FIG.
  • Example 12 Effect on recellularization after decellularization when SL was added to the heart of newborn rat
  • the heart of newborn rat was impregnated with each solution at 25°C (room temperature) for 24 hours and shaken. The heart was washed for 6 hours. Then, neonatal rat cardiomyocytes (2 ⁇ 10 6 ) were added and cultured from above. The pulsation of the heart 7 days after seeding was confirmed by morphological observation.
  • Example 13 Effect of SL addition on decellularized heart of rat newborn on washing
  • the heart of newborn rat was impregnated with 1% SDS at 25°C (room temperature) for 24 hours and shaken.
  • the composition was washed for 6 hours.
  • neonatal rat cardiomyocytes (2 ⁇ 10 6 ) were added and cultured from above.
  • the heart beat was confirmed 7 days after seeding.
  • Example 14 Effect of SL addition on decellularized heart of rat newborn on washing: Newborn rat heart was impregnated with 1% SDS + 0.5% SL for 24 hours at 25°C (room temperature), and the heart was shaken. Was washed with the composition shown in Table 20 for 6 hours. Then, neonatal rat cardiomyocytes (2 ⁇ 10 6 ) were added and cultured from above. The heart beat was confirmed 7 days after seeding.
  • Example 15 Change in heart volume after decellularization when SL was added to rat newborn heart The rat newborn heart was impregnated and shaken at 25°C (room temperature) in the solution shown in Table 21 for 24 hours. After the treatment, the heart volume ratio was observed. The results are shown in Table 21 and FIG. In FIG. 24, the upper part of the same heart is a photographic image observed with a stereoscopic image, and the lower part is a photographic diagram observed with transmitted light.
  • the decellularization treatment solution according to the present example does not reduce the volume of the organs of animal cells.
  • Example 16 Comparison between observation image after decellularization treatment by SL and observation image after decellularization treatment by SDS The heart of a neonatal rat was impregnated and shaken with 1.0% SL for 24 hours at 25°C (room temperature). After the treatment, it was observed with a fluorescence microscope. As shown in the upper part of FIG. 25, both collagen type 1 and type 4 retained the scaly structure similar to that of the living heart. In addition, ⁇ -actinin positive cells (cardiomyocytes) were not detected, and decellularization was confirmed.
  • the rat neonatal heart was impregnated with 1.0% SDS for 24 hours at 25°C (room temperature), shaken, and then observed with a fluorescence microscope.
  • SDS sodium sulfate
  • the three-dimensional structure of the protein was greatly deformed, and the gap was partially lost.
  • SL exhibits an excellent effect in retaining the biological structure in the decellularization step.

Abstract

Provided is a decellularization processing fluid that allows efficient decellularization of a tissue without causing degradation of proteins that make up an extracellular matrix component. This decellularization processing fluid includes 0.01wt% to 20wt% of a sophorose lipid. The decellularization processing fluid may further include 0.1wt% to 10wt% of a surfactant. This decellularization processing fluid allows decellularization of a tissue without causing degradation of proteins that make up an extracellular matrix component.

Description

脱細胞化処理液及び洗浄組成物Decellularization treatment liquid and cleaning composition
 本発明は、組織の脱細胞化処理液に関する。 The present invention relates to a tissue decellularization treatment solution.
 移植医療分野において他人や他種の生体組織由来の移植片を移植する場合、被移植者側組織による移植片の拒絶反応が問題となっている。そこで、近年脱細胞化組織に大きな期待が寄せられている。脱細胞化技術は、拒絶反応を引き起こす細胞を生体組織から除去し、残存する支持組織である脱細胞化組織をそのままあるいは再細胞化した後、移植片として使用する手法である。 In the field of transplantation medicine, when transplanting a graft derived from a living tissue of another person or another species, rejection of the graft by the tissue of the recipient is a problem. Therefore, in recent years, great expectations have been placed on the decellularized tissue. The decellularization technique is a technique in which cells causing a rejection reaction are removed from a biological tissue, and the remaining decellularized tissue, which is a supporting tissue, is used as it is or after being recellularized.
 脱細胞化組織の製造方法としては、界面活性剤を含有する処理液及び洗浄液を用いて、生体組織を脱細胞化する方法が知られている(例えば、特許文献1~4参照)。しかし、界面活性剤を用いて脱細胞化処理を行った生体組織では、細胞外マトリックス成分(以下、細胞外マトリックスをExtracellular matrix;以下ECMと省略する場合がある。)を構成するたんぱく質が劣化しており、生体適合性が低い。そのため再細胞化効率が悪く、組織内で血栓ができやすいこと等の課題がある。 As a method of producing a decellularized tissue, a method of decellularizing a living tissue using a treatment solution containing a surfactant and a washing solution is known (see, for example, Patent Documents 1 to 4). However, in biological tissues that have been decellularized using a surfactant, the proteins that make up the extracellular matrix component (hereinafter extracellular matrix may be abbreviated as ECM) are degraded. And has low biocompatibility. Therefore, there are problems that the recellularization efficiency is poor and that thrombus is easily formed in the tissue.
 また、従来の界面活性剤を利用する方法は、ミセル形成する性質を有する界面活性剤が二相界面に強く吸着し、界面の自由エネルギーを著しく下げることによってタンパク質、脂質などの物質を除去していた。このような除去は、非選択的に可溶化し洗い流すことになり、細胞外マトリックスタンパク質にも影響をもたらし、組織強度が劣化する課題が残っているうえ、界面活性剤が組織内に残留することで再細胞化や、移植時に影響をもたらし、脱細胞化の制御が難しい。さらに、洗浄時に界面活性剤を使用すると、脱細胞化した細胞外マトリックスタンパク質を非選択的に除去する課題がある。 In addition, the conventional method using a surfactant removes substances such as proteins and lipids by strongly adsorbing a surfactant having the property of forming micelles to the two-phase interface and significantly lowering the free energy of the interface. It was Such removal results in non-selective solubilization and washing out, which also affects extracellular matrix proteins, leaving the problem that tissue strength deteriorates and that surfactant remains in the tissue. It is difficult to control decellularization due to the effects on recellularization and transplantation. Furthermore, the use of a surfactant during washing has a problem of non-selectively removing decellularized extracellular matrix protein.
 一方、ソホロースリピッド(Sophorose lipids;以下SLと省略する場合がある。)は、P.A.Gorinらによってスターメレラ(キャンディダ)・ボンビコーラ(Starmerella(Candida)bombicola)の培養液から発見されている(非特許文献1参照)。生物由来の界面活性剤であるバイオサーファクタントの一つとして知られるソホロリピッドは、酵母の発酵から得られる発酵産物である。特許文献5には、SLの用途として泡安定性にすぐれる住居用洗浄剤としての使用が記載されている。特許文献6には、SLの用途として医薬品、化粧品及び食品としての使用が記載されている。しかしながらこれら文献にはSLの用途としての脱細胞化処理への使用について記載も示唆も無い。 On the other hand, Sophorose lipids (hereinafter sometimes abbreviated as SL) have been discovered by PA Gorin et al. in a culture solution of Starmerella (Candida) bombicola (non-patented). Reference 1). Sophorolipid, which is known as one of biosurfactants, which is a surfactant of biological origin, is a fermentation product obtained from fermentation of yeast. Patent Document 5 describes the use of SL as a household cleaning agent having excellent foam stability. Patent Document 6 describes the use of SL as pharmaceuticals, cosmetics, and foods. However, these documents neither describe nor suggest the use of SL for decellularization treatment.
特表2005-514971号公報Japanese Patent Publication No. 2005-514971 特表2006-507851号公報Japanese Patent Publication No. 2006-507851 特表2005-531355号公報Special table 2005-531355 gazette 特開2015-160040号公報JP, 2005-160040, A 特開2017-145408号公報JP, 2017-145408, A 再表2015/137357号公報Re-table 2015/137357
 本発明はかかる問題点に鑑みてなされたものであって、細胞外マトリックス成分を構成するたんぱく質を劣化させることなく高い機械的な強度を維持しつつ効率的な組織の脱細胞化を可能とする脱細胞化処理液を提供することを目的とする。 The present invention has been made in view of the above problems, and enables efficient decellularization of tissue while maintaining high mechanical strength without degrading the protein constituting the extracellular matrix component. It is intended to provide a decellularization treatment solution.
 本発明にかかる脱細胞化処理液は、動物由来組織の脱細胞化に用いる脱細胞化処理液であり、0.01重量%以上20重量%以下のソホロースリピッド含むことを特徴とする。 The decellularization treatment solution according to the present invention is a decellularization treatment solution used for decellularization of animal-derived tissues, and is characterized by containing 0.01% by weight or more and 20% by weight or less of sophorose lipid.
 本発明によれば、細胞外マトリックス成分を構成するたんぱく質を劣化させることなく効率的な組織の脱細胞化を可能とする脱細胞化処理液が得られる。 According to the present invention, a decellularization treatment liquid that enables efficient decellularization of tissue without degrading the protein that constitutes the extracellular matrix component can be obtained.
SLによるラット新生仔の肺の脱細胞化効果を確認する写真図である。FIG. 3 is a photograph showing the effect of SL on decellularization of the lungs of newborn rats. 他の薬剤と比較したSLによるラット新生仔の肺の脱細胞化効果を確認する写真図である。FIG. 6 is a photographic diagram for confirming the decellularization effect of SL of newborn rat by SL compared with other drugs. 脱細胞化後のDNA残量の測定結果を示す図である。It is a figure which shows the measurement result of the remaining amount of DNA after decellularization. 脱細胞化後の共焦点レーザー顕微鏡による観察結果を示す図である。It is a figure which shows the observation result by the confocal laser scanning microscope after decellularization. 脱細胞化後の肺胞腔の面積の測定結果を示す図である。It is a figure which shows the measurement result of the area of the alveolar cavity after decellularization. 脱細胞化後、細胞外マトリックスの主要構成成分であるコラーゲンの免疫染色の結果を示す図である。It is a figure which shows the result of the immunostaining of collagen which is a main component of an extracellular matrix after decellularization. 脱細胞化後の共焦点レーザー顕微鏡による観察結果を示す図である。It is a figure which shows the observation result by the confocal laser scanning microscope after decellularization. 脱細胞化後の肺胞腔の面積の測定結果を示す図である。It is a figure which shows the measurement result of the area of the alveolar cavity after decellularization. 脱細胞化後、細胞外マトリックスの主要構成成分であるコラーゲンの免疫染色の結果を示す図である。It is a figure which shows the result of the immunostaining of collagen which is a main component of an extracellular matrix after decellularization. 脱細胞化後、細胞外マトリックスの主要構成成分であるコラーゲンの免疫染色の結果を示す図である。It is a figure which shows the result of the immunostaining of collagen which is a main component of an extracellular matrix after decellularization. 脱細胞化後の血管内腔の面積の測定結果を示す図である。It is a figure which shows the measurement result of the area of the blood-vessel inner space after decellularization. 脱細胞化後の血管内腔の面積の測定結果を示す図である。It is a figure which shows the measurement result of the area of the blood-vessel inner space after decellularization. SLによるラット新生仔の肝臓の脱細胞化効果を確認する写真図である。It is a photograph figure which confirms the decellularization effect of the liver of the rat newborn by SL. SLによるラット新生仔の心臓の脱細胞化効果を確認する写真図である。It is a photograph figure which confirms the decellularization effect of the rat newborn heart by SL. SLによるラット新生仔の腎臓の脱細胞化効果を確認する写真図である。FIG. 6 is a photographic diagram for confirming the decellularization effect of SL on the neonatal rat kidney. 他の薬剤と比較したSLによるラット新生仔の腎臓の脱細胞化効果を確認する写真図である。FIG. 6 is a photographic diagram for confirming the decellularization effect on SL of newborn rat by SL in comparison with other drugs. SLによるラット新生仔の皮膚の脱細胞化効果を確認する写真図である。It is a photograph figure which confirms the decellularization effect of the skin of the newborn rat by SL. 他の薬剤と比較したSLによるラット新生仔の皮膚の脱細胞化効果を確認する写真図である。It is a photograph figure which confirms the decellularization effect of the skin of the rat newborn by SL compared with other chemical|medical agents. SLによるラット新生仔の腸の脱細胞化効果を確認する写真図である。FIG. 6 is a photograph showing the intestinal decellularization effect of newborn rats by SL. SLによるラット新生仔の脾臓の脱細胞化効果を確認する写真図である。It is a photograph figure which confirms the decellularization effect of the spleen of the newborn rat by SL. 他の薬剤と比較したSLによるラット新生仔の脾臓の脱細胞化効果を確認する写真図である。FIG. 6 is a photographic diagram for confirming the decellularization effect on the neonatal rat spleen by SL in comparison with other drugs. SLによるラット新生仔の心臓への脱細胞化効果及びECMの形状維持効果を確認する写真図である。FIG. 3 is a photographic diagram for confirming the decellularization effect on the heart of newborn rat and the shape maintenance effect of ECM by SL. SLによるラット新生仔の心臓への脱細胞化後のECM構成成分への影響を確認する写真図である。FIG. 6 is a photographic diagram for confirming the effect of SL on ECM components after decellularization of the neonatal rat heart. SLによるラット新生仔の心臓への脱細胞化後の容積の変化を確認する写真図である。FIG. 6 is a photographic diagram for confirming the change in volume after decellularization of the heart of a neonatal rat by SL. 他の薬剤と比較したSLによるラット新生仔の心臓への脱細胞化効果及びECMの形状維持効果を確認する写真図である。It is a photograph figure which confirms the decellularization effect to the heart of the newborn rat and the shape maintenance effect of ECM by SL compared with other agents.
 以下、添付の図面を参照して本発明の実施形態について具体的に説明するが、当該実施形態は本発明の原理の理解を容易にするためのものであり、本発明の範囲は、下記の実施形態に限られるものではなく、当業者が以下の実施形態の構成を適宜置換した他の実施形態も、本発明の範囲に含まれる。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings, the embodiments are for facilitating the understanding of the principle of the present invention, and the scope of the present invention is as follows. The present invention is not limited to the embodiments, and other embodiments in which those skilled in the art appropriately replace the configurations of the following embodiments are also included in the scope of the present invention.
 1.脱細胞化処理液
 界面活性剤はタンパク質、脂質などの物質を非選択的に除去するため、界面活性剤を用いて脱細胞化処理を行った生体組織では、細胞外マトリックス成分を構成するたんぱく質が劣化しており、脱細胞化組織の強度劣化や細胞の再接着性能悪化につながり、生体適合性が低い。そのため界面活性剤の一種であるソホロースリピッドを使用して脱細胞化処理を行った場合も、他の界面活性剤と同様に、細胞外マトリックス成分を構成するたんぱく質が劣化し、生体適合性が低いものと予想される。しかしながら本発明者はこの予想に反してソホロースリピッドを動物由来組織の脱細胞化に用いた場合、細胞のみを除去し、細胞外マトリックス成分を構成するたんぱく質を劣化させることなく組織の脱細胞化が可能であることを新知見として見出し、かかる事実に基づいて本発明を完成させた。
1. Decellularization treatment solution Since surfactants non-selectively remove substances such as proteins and lipids, the proteins that make up the extracellular matrix component are not present in the biological tissues that have been decellularized using detergents. It is deteriorated, leading to deterioration of strength of decellularized tissue and deterioration of cell re-adhesion performance, and low biocompatibility. Therefore, even when decellularization treatment is performed using sophorose lipid, which is one of the surfactants, the protein constituting the extracellular matrix component is degraded and biocompatibility is deteriorated, like other surfactants. Expected to be low. Contrary to this expectation, however, when the present inventor used sophorose lipid for the decellularization of animal-derived tissues, only the cells were removed and the decellularization of the tissues was carried out without degrading the protein constituting the extracellular matrix component. It was discovered as a new finding that the above is possible, and the present invention was completed based on this fact.
 なお、本発明における脱細胞化では、細胞外マトリックス等へは影響を与えず細胞のみを選択的に除去するが、そのメカニズムとしては以下のように考えられうる。通常、界面活性剤の脱細胞効果は膜タンパクの変性作用により、細胞外マトリックスから細胞を除去する作用、及び細胞膜を可溶化し、細胞のDNAを溶解させる性質を利用している。しかし、タンパク質である細胞外マトリックスにも同様な変性作用をもたらし、組織内に残存すると細胞毒性などの懸念があると想定される。SLの脱細胞化は、脂質にのみ特異的に作用する性質があると推察する。その作用は細胞膜のみに作用し、細胞を崩壊させる作用である。それにより細胞外マトリックスおよびその立体構造にも影響をしない状態で脱細胞化を行うことができると考えられる。SLは細胞毒性に対しても低いため脱細胞化後の臓器及び組織の利用に懸念はないと考えられる。 In the decellularization of the present invention, only the cells are selectively removed without affecting the extracellular matrix etc., but the mechanism can be considered as follows. Usually, the decellularization effect of a surfactant utilizes the action of removing cells from the extracellular matrix by the denaturing action of the membrane protein and the property of solubilizing the cell membrane and lysing the cell DNA. However, it is assumed that the extracellular matrix, which is a protein, also has a similar denaturing effect, and if it remains in the tissue, there is a concern of cytotoxicity. It is speculated that the decellularization of SL has the property of acting specifically only on lipids. Its action is that it acts only on the cell membrane and causes the cells to collapse. Therefore, it is considered that decellularization can be performed without affecting the extracellular matrix and its three-dimensional structure. Since SL is also low in cytotoxicity, it is considered that there is no concern about the use of organs and tissues after decellularization.
 本実施形態にかかる脱細胞化処理液は、動物由来組織の脱細胞化に用いる脱細胞化処理液であり、0.01重量%以上20重量%以下のソホロースリピッド含む。 The decellularization treatment liquid according to the present embodiment is a decellularization treatment liquid used for decellularization of animal-derived tissues, and contains 0.01% by weight or more and 20% by weight or less of sophorose lipid.
 ソホロースリピッドは、ソホロースまたはヒドロキシル基が一部アセチル化したソホロースと、ヒドロキシル脂肪酸とからなる糖脂質である。なお、ソホロースとは、β1→2結合とした2分子のブドウ糖からなる糖である。ヒドロキシル脂肪酸とは、ヒドロキシル基を有する脂肪酸である。 Sophorose lipid is a glycolipid composed of sophorose or sophorose in which the hydroxyl group is partially acetylated, and hydroxyl fatty acid. In addition, sophorose is a sugar composed of two molecules of glucose with β1→2 bond. Hydroxyl fatty acid is a fatty acid having a hydroxyl group.
 以下の実施例で使用するソホロースリピッドは特開2016-160244号公報の記載に従って調製した。 The sophorose lipid used in the following examples was prepared according to the description in JP-A-2016-160244.
 脱細胞化の対象となる動物由来組織は、特に限定されるものではないが例えば、ブタ、ウシ、ウマ、ヤギ、ヒツジ、ウサギ、カンガルー、サル及びヒト等の哺乳類動物から得られた上皮組織、結合組織、神経組織及び筋組織からなる群から選ばれる少なくとも1種の組織であることが好ましく、具体的には、心臓、腎臓、肺、肝臓、脳、腸、子宮、大網及び小口径血管等が挙げられる。 Animal-derived tissues to be decellularized are not particularly limited, for example, pig, cow, horse, goat, sheep, rabbit, kangaroo, epithelial tissue obtained from mammals such as monkey and human, It is preferably at least one tissue selected from the group consisting of connective tissue, nerve tissue and muscle tissue, and specifically, heart, kidney, lung, liver, brain, intestine, uterus, omentum and small caliber blood vessel. Etc.
 本実施形態にかかる脱細胞化処理液は、0.1重量%以上20重量%以下のソホロースリピッド含む。ソホロースリピッドの含有量が0.1重量%よりも少ない場合は脱細胞化の処理に時間を要する場合があるからである。一方でソホロースリピッドの含有量が20重量%よりも多い場合は溶液中に溶解しにくいからである。なお本実施形態にかかる脱細胞化処理液は、0.1重量%、1重量%、10重量%又は20重量%から任意の数値を2つ選択してそれら選択された数値間のソホロースリピッド含むものとすることが可能である。 The decellularization treatment liquid according to the present embodiment contains 0.1% by weight or more and 20% by weight or less of sophorose lipid. This is because if the content of sophorose lipid is less than 0.1% by weight, the decellularization treatment may take time. On the other hand, when the content of sophorose lipid is more than 20% by weight, it is difficult to dissolve in the solution. The decellularization treatment solution according to the present embodiment is selected from 0.1% by weight, 1% by weight, 10% by weight, and 20% by weight of any two numerical values, and the sophorose lipid between the selected numerical values is selected. It can be included.
 本実施形態にかかる脱細胞化処理液は、0.1重量%以上20重量%以下のソホロースリピッドに加えて、更に0.1重量%以上10重量%以下の界面活性剤を含むことで、従来の界面活性剤の脱細胞化処理を短時間に行えることが可能であり、従来の界面活性剤の細胞外マトリックスへの影響を低減することもできる。界面活性剤の含有量が0.1重量%よりも少ない場合は動物由来組織への浸透力が劣る場合があるからであり、一方で界面活性剤の含有量が10重量%よりも多い場合は動物由来組織に存在する細胞を損傷させる恐れがあるからである。 The decellularization treatment solution according to the present embodiment contains 0.1% by weight or more and 10% by weight or less of a surfactant in addition to 0.1% by weight or more and 20% by weight or less of sophorose lipid. The decellularization treatment of the conventional surfactant can be performed in a short time, and the influence of the conventional surfactant on the extracellular matrix can be reduced. This is because when the content of the surfactant is less than 0.1% by weight, the penetrating power into the tissue of animal origin may be poor, while when the content of the surfactant is more than 10% by weight. This is because there is a risk of damaging cells existing in animal-derived tissues.
 界面活性剤としては、特に限定されるものではないが、例えば、陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、又は、非イオン性界面活性剤が挙げられる。陰イオン性界面活性剤としては、ドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、α-オレフィンスルホン酸ナトリウム、ラウリルリン酸ナトリウム、ラウリン酸ナトリウム、ラウリン酸トリエタノールアミン、オレイルザルコシンナトリウム、ラウリルザルコシンナトリウム、パルミチルザルコシンナトリウム、ヤシ油脂肪酸ザルコシンナトリウム、オレイルグルタミン酸ナトリウム、ラウリルグルタミン酸ナトリウム、パルミチルグルタミン酸ナトリウム、ヤシ油脂肪酸グルタミン酸トリエタノールアミン、ヤシ油脂肪酸グルタミン酸ナトリウム、ラウロイルメチル-β-アラニンナトリウム、(ポリ)オキシアルキレンアルキルエーテル硫酸塩、(ポリ)オキシアルキレンアルキルエーテルカルボン酸塩、(ポリ)オキシアルキレンアルキルスルホコハク酸塩等が挙げられる。陽イオン性界面活性剤としては、塩化ステアリルトリメチルアンモニウム、塩化ベヘニルトリメチルアンモニウム、塩化ジステアリルジメチルアンモニウム、エチル硫酸ラノリン脂肪酸アミノプロピルエチルジメチルアンモニウム、ステアリン酸ジエチルアミノエチルアミド乳酸塩、ジラウリルアミン塩酸塩、オレイルアミン乳酸塩等が挙げられる。両性界面活性剤としては、ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン、ヤシ油アルキルジヒドロキシエチルアミノ酢酸ベタイン、ラウリルジヒドロキシエチルアミノ酢酸ベタイン、デシルジヒドロキシプロピルアミノ酢酸ベタイン、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、オクチルアミノプロピオン酸ナトリウム、ラウリルアミノプロピオン酸ナトリウム、ヤシ油アルキルアミノプロピオン酸ナトリウム、ミリスチルアミノプロピオン酸ナトリウム、パルミチルアミノプロピオン酸ナトリウム、ステアリルアミノプロピオン酸ナトリウム、ラウリルアミノ酢酸ナトリウム及びラウリルアミノ酪酸ナトリウム、2-[N,N-ジ(アルキルベンジル)-N-メチルアンモニウム]-エチルサルフェート、N-ステアリルタウリンナトリウム、N-ラウリルタウリンナトリウム等が挙げられる。非イオン性界面活性剤としては、ポリオキシエチレンラウリルエーテル、モノステアリン酸グリセリン、モノステアリン酸エチレングリコール、モノラウリン酸ソルビタン、ジオレイン酸メチルグルコシド、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンアルキルアミノエーテル、ポリオキシエチレンラウリルアミン、ラウリルジメチルアミンオキサイド等が挙げられる。 The surfactant is not particularly limited, and examples thereof include an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant. Examples of the anionic surfactant include sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, sodium α-olefinsulfonate, sodium lauryl phosphate, sodium laurate, triethanolamine laurate, sodium oleyl sarcosine, and sodium lauryl sarcosine. , Sodium palmityl sarcosine, sodium coconut oil fatty acid sarcosine, sodium oleyl glutamate, sodium lauryl glutamate, sodium palmityl glutamate, palm oil fatty acid glutamate triethanolamine, palm oil fatty acid glutamate sodium, lauroyl methyl-β-alanine sodium, ( Examples thereof include poly)oxyalkylene alkyl ether sulfate, (poly)oxyalkylene alkyl ether carboxylate, and (poly)oxyalkylene alkylsulfosuccinate. Examples of the cationic surfactant include stearyltrimethylammonium chloride, behenyltrimethylammonium chloride, distearyldimethylammonium chloride, lanolin fatty acid aminopropylethyldimethylammonium ethyl sulfate, diethylaminoethylamide stearate lactate, dilaurylamine hydrochloride, oleylamine. Examples include lactate. Examples of the amphoteric surfactant include lauryldimethylaminoacetic acid betaine, stearyldimethylaminoacetic acid betaine, coconut oil alkyldihydroxyethylaminoacetic acid betaine, lauryldihydroxyethylaminoacetic acid betaine, decyldihydroxypropylaminoacetic acid betaine, 2-alkyl-N-carboxymethyl -N-hydroxyethyl imidazolinium betaine, sodium octylaminopropionate, sodium laurylaminopropionate, coconut oil sodium alkylaminopropionate, sodium myristylaminopropionate, sodium palmitylaminopropionate, sodium stearylaminopropionate, lauryl Examples thereof include sodium aminoacetate and sodium laurylaminobutyrate, 2-[N,N-di(alkylbenzyl)-N-methylammonium]-ethylsulfate, N-stearyltaurine sodium and N-lauryltaurine sodium. As the nonionic surfactant, polyoxyethylene lauryl ether, glycerin monostearate, ethylene glycol monostearate, sorbitan monolaurate, methyl glucoside dioleate, polyoxyalkylene alkyl phenyl ether, polyoxyalkylene alkyl amino ether, poly Examples thereof include oxyethylene lauryl amine and lauryl dimethyl amine oxide.
 なお、本実施形態にかかる脱細胞化処理液には、緩衝剤、キレート剤、防腐剤、殺菌剤及び酸化防止剤を包含させることが可能である。 Note that the decellularization treatment liquid according to the present embodiment can include a buffer, a chelating agent, an antiseptic, a bactericide, and an antioxidant.
 また、本実施形態にかかる脱細胞化処理液には、水を含むことが可能であり、水としては、超純水、イオン交換水、蒸留水、水道水及び工業用水等が挙げられる。 Further, the decellularization treatment liquid according to the present embodiment can contain water, and examples of water include ultrapure water, ion-exchanged water, distilled water, tap water and industrial water.
 2.脱細胞化洗浄液
 脱細胞化処理を行った生体組織には、組織の残分やその脱細胞化処理に使用した界面活性剤などの物質が残存しているため、脱細胞化組織を再細胞化する前に残存している物質を洗浄することが好ましい。
2. Decellularized washing solution Recellularization of decellularized tissue occurs because the tissue residue and the substances such as the surfactant used for the decellularization process remain in the decellularized biological tissue. It is preferred to wash the remaining material before doing so.
 本実施形態にかかる洗浄組成物は、脱細胞化処理後の動物由来組織の洗浄に使用する洗浄組成物であり、0.01重量%以上10重量%以下のソホロースリピッドを含むことで、細胞外マトリックスに損傷なく、残存物質のみを除去することが可能である。ソホロースリピッドの含有量が0.01重量%よりも少ない場合は洗浄効果が十分でない場合があるからであり、一方でソホロースリピッドの含有量が10重量%よりも多い場合は動物由来組織に不要なソホロースリピッドが残存する場合があるからである。好ましくは本実施形態にかかる洗浄組成物は、0.1重量%以上5重量%以下のソホロースリピッドを含み、より好ましくは0.5重量%以上1重量%以下のソホロースリピッドを含む。 The cleaning composition according to the present embodiment is a cleaning composition used for cleaning animal-derived tissue after decellularization treatment, and contains 0.01% by weight or more and 10% by weight or less of sophorose lipid, It is possible to remove only the residual material without damaging the outer matrix. This is because if the content of sophorose lipid is less than 0.01% by weight, the cleaning effect may not be sufficient, while if the content of sophorose lipid is more than 10% by weight, the tissue derived from animals may be This is because unnecessary sophorose lipid may remain. Preferably, the cleaning composition according to the present embodiment contains 0.1% by weight or more and 5% by weight or less of sophorose lipid, and more preferably 0.5% by weight or more and 1% by weight or less of sophorose lipid.
 本実施形態にかかる洗浄組成物は、更に、酢酸緩衝液、リン酸緩衝液、クエン酸緩衝液、ホウ酸緩衝液、酒石酸緩衝液、トリス緩衝液、HEPES緩衝液及びMES緩衝液から少なくとも一つを含む緩衝液を含むことが可能である。 The cleaning composition according to the present embodiment further comprises at least one of acetate buffer, phosphate buffer, citrate buffer, borate buffer, tartrate buffer, Tris buffer, HEPES buffer and MES buffer. It is possible to include a buffer solution containing
 3. 脱細胞化組織の製造方法
 下記に本実施形態にかかる脱細胞化処理液を使用する脱細胞化組織の製造方法の一実施形態を説明する。
3. Method for Producing Decellularized Tissue One embodiment of the method for producing a decellularized tissue using the decellularization treatment solution according to the present embodiment will be described below.
 まず動物由来組織内の血管に緩衝溶液を浸漬または潅流させることで動物由来組織を洗浄する。洗浄に使用する緩衝溶液は、緩衝剤を水に溶解したものであり、溶液内のpHを一定に保つ緩衝作用のあるものであれば特に限定されないが、好ましくはリン酸緩衝溶液であり、緩衝溶液はヘパリン等の抗凝固薬を含んでいることが更に好ましい。緩衝溶液のpHは4.0~9.0であることが好ましい。 First, wash the animal-derived tissue by immersing or perfusing the blood vessel in the animal-derived tissue with a buffer solution. The buffer solution used for washing is a buffer solution dissolved in water and is not particularly limited as long as it has a buffering action to keep the pH in the solution constant, but is preferably a phosphate buffer solution, More preferably, the solution contains an anticoagulant such as heparin. The pH of the buffer solution is preferably 4.0 to 9.0.
 次に、0.01重量%以上20重量%以下のソホロースリピッド含む脱細胞化処理液に動物由来組織を浸漬させる。動物由来組織を浸漬する時間は、脱細胞効果が生じる限り特に限定されるものではないが例えば12時間以上20日以下であり、好ましくは1日以上15日以下であり、より好ましくは2日以上10日以下である。なお、本実施形態にかかる脱細胞化処理液に動物由来組織を浸漬させるのではなく、動物由来組織内の血管に脱細胞化処理液を潅流させることで脱細胞化させることも可能である。 Next, the animal-derived tissue is immersed in a decellularization treatment solution containing 0.01% by weight or more and 20% by weight or less of sophorose lipid. The time for immersing the animal-derived tissue is not particularly limited as long as the decellularization effect is produced, but is, for example, 12 hours or more and 20 days or less, preferably 1 day or more and 15 days or less, and more preferably 2 days or more. 10 days or less. Instead of immersing the animal-derived tissue in the decellularization treatment liquid according to the present embodiment, it is also possible to decellularize the blood vessel in the animal-derived tissue by perfusing the decellularization treatment liquid.
 次に、脱細胞化工程後の動物由来組織を洗浄するが、脱細胞化処理液にソホロースリピッド以外の界面活性剤が含まれていない又は含まれていてもその含有量が少ない場合は脱細胞化工程後の動物由来組織の洗浄は不要とすることが可能である。 Next, the animal-derived tissue after the decellularization step is washed, but if the decellularization treatment solution does not contain a surfactant other than sophorose lipid, or if it does not contain a surfactant, it is removed. It is possible to eliminate the need to wash the animal-derived tissue after the cell-forming step.
 (実施例1)SLによるラット新生仔の肺の脱細胞化効果確認
 超純水、10重量%、20重量%のSL溶液中にラット新生仔の肺を浸漬し、振とうした。1日後、2日後、5日後、10日後に実体顕微鏡を用いて脱細胞化効果を確認した。結果を表1及び図1に示す。
(Example 1) Confirmation of decellularization effect on SL of newborn rat by SL The newborn lung of rat was immersed in SL solution containing 10% by weight and 20% by weight of ultrapure water and shaken. After 1 day, 2 days, 5 days, and 10 days, the decellularization effect was confirmed using a stereoscopic microscope. The results are shown in Table 1 and FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1及び図1に示されるように、10重量%又は20重量%のSL溶液中にラット新生仔の肺を浸漬して振とうした場合は、脱細胞効果が良好であった。 As shown in Table 1 and FIG. 1, when the rat neonatal lungs were immersed in 10 wt% or 20 wt% SL solution and shaken, the decellularization effect was good.
 (実施例2)他の薬剤と比較したSLによるラット新生仔の肺の脱細胞化効果確認
 0.1 重量%、1.0 重量%、10 重量%のSL溶液、SDS(ラウリル硫酸ナトリウム) 溶液、Triton 溶液、APG(アルキルポリグリコシド) 溶液中にラット新生仔の肺を浸漬し、振とうした。2日、4日、6日後に脱細胞化状態として実体顕微鏡を用いて透明性の割合で評価、細胞外マトリックスへの影響として目視により臓器の縮小状態(大きさ)や臓器の崩壊状態、ピンセットで掴んだ際の強度で総合的に評価した。また、より詳細な細胞外マトリックスへの影響評価として、共焦点レーザー顕微鏡を用いての直接観察及び細胞外マトリックスの主要成分であるコラーゲンの免疫染色により内部構造への影響を確認した。脱細胞化状態の評価結果を表2-1,表2-2,表2-3に示す。細胞外マトリックスへの影響の評価結果を表3-1,表3-2,表3-3に示す。表3の結果は表2の非常に良好になった日数で確認した。図2の写真は浸漬後6日目の写真である。
(Example 2) Confirmation of decellularization effect on SL of newborn rat by SL compared with other drugs 0.1 wt%, 1.0 wt%, 10 wt% SL solution, SDS (sodium lauryl sulfate) solution, Triton solution, The lungs of newborn rats were immersed in APG (alkyl polyglycoside) solution and shaken. After 2 days, 4 days, and 6 days, the decellularized state was evaluated by the transparency ratio using a stereomicroscope, and the effect on the extracellular matrix was visually reduced (size) or the collapsed state of the organ, tweezers. It was evaluated comprehensively by the strength when it was grasped with. As a more detailed evaluation of the effect on the extracellular matrix, the effect on the internal structure was confirmed by direct observation using a confocal laser microscope and immunostaining of collagen, which is a major component of the extracellular matrix. The evaluation results of the decellularized state are shown in Table 2-1, Table 2-2 and Table 2-3. The evaluation results of the effect on the extracellular matrix are shown in Table 3-1, Table 3-2 and Table 3-3. The results in Table 3 were confirmed by the very good days in Table 2. The photograph in FIG. 2 is a photograph 6 days after the immersion.
 また、0.01 重量%SL 溶液、0.1 重量%SL 溶液、0.5 重量%SL 溶液、1.0 重量%SL 溶液、0.1 重量%SDS 溶液、1.0 重量%SDS 溶液及び、SL 溶液+SDS 溶液の混合溶液(混合溶液の組み合わせは下記表に示した)を用いて上記同様に新生仔の肺を浸漬し、振とうした。2日、4日、6日後に脱細胞化状態として実体顕微鏡を用いて透明性の割合で評価、細胞外マトリックスへの影響として目視により臓器の縮小状態(大きさ)や臓器の崩壊状態、ピンセットで掴んだ際の強度で総合的に評価した。脱細胞化状態の評価結果を表2-4に示す。細胞外マトリックスへの影響の評価結果を表3-4に示す。表3の結果は表2の非常に良好になった日数で確認した。また、より詳細な細胞外マトリックスへの影響評価として、共焦点レーザー顕微鏡を用いての直接観察及び細胞外マトリックスの主要成分であるコラーゲンの免疫染色により内部構造への影響を確認した。また脱細胞化の状態について、DNA残存量の測定を行い確認した。 In addition, 0.01 wt% SL solution, 0.1 wt% SL solution, 0.5 wt% SL solution, 1.0 wt% SL solution, 0.1 wt% SDS solution, 1.0 wt% SDS solution, and mixed solution of SL solution + SDS solution (mixed solution The combination was shown in the table below), and the lungs of the newborn were soaked and shaken in the same manner as above. After 2 days, 4 days, and 6 days, the decellularized state was evaluated by the transparency ratio using a stereomicroscope, and the effect on the extracellular matrix was visually reduced (size) or the collapsed state of the organ, tweezers. It was evaluated comprehensively by the strength when it was grasped with. The evaluation results of the decellularized state are shown in Table 2-4. Table 3-4 shows the evaluation results of the effect on the extracellular matrix. The results in Table 3 were confirmed by the very good days in Table 2. As a more detailed evaluation of the effect on the extracellular matrix, the effect on the internal structure was confirmed by direct observation using a confocal laser scanning microscope and immunostaining of collagen, which is a major component of the extracellular matrix. In addition, the decellularized state was confirmed by measuring the amount of remaining DNA.
 表2-4に示されるように、従来の界面活性剤へソホロースリピッドを混合することで脱細胞化を短時間で完了させることを確認した。 As shown in Table 2-4, it was confirmed that decellularization was completed in a short time by mixing sophorose lipid with a conventional surfactant.
 実施例では4日以降に細胞による赤みが消失し、脱細胞化効果が良好であった。DNA 残存量は50ng/mg 以下が基準であると報告もあることから、図3に示されるように脱細胞化が良好であることを確認した。 In Example, redness due to cells disappeared after 4 days, and the decellularization effect was good. Since it was reported that the residual DNA amount was 50 ng/mg or less as a standard, it was confirmed that decellularization was good as shown in FIG.
 細胞外マトリックスへの影響については、実施例においては、大きさ、崩壊状態、強度について変化はなく、影響は見られなかった。比較例においては、いずれかの項目で影響が見られた。これによりSLを用いた脱細胞化した臓器では細胞外マトリックスに影響がないことを確認された。 Regarding the effect on the extracellular matrix, in the examples, there was no change in size, disintegration state, and strength, and no effect was observed. In the comparative example, an effect was observed in any of the items. This confirmed that the decellularized organs using SL had no effect on the extracellular matrix.
 またSLとSDSとを混合する場合でも、細胞外マトリックスへの影響は見られなかった。また、SLとSDSとを混合した場合では、SLの濃度が高くなるにつれて細胞外マトリックスへの影響が低下していることが確認できた。特にSL1.0 重量%と混合するとSL単独の場合と同様に細胞外マトリックスへの影響は見られなくなった。 Also, when SL and SDS were mixed, no effect was observed on the extracellular matrix. In addition, it was confirmed that when SL and SDS were mixed, the effect on extracellular matrix decreased as the concentration of SL increased. In particular, when mixed with 1.0% by weight of SL, the effect on the extracellular matrix disappeared as in the case of SL alone.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 また、共焦点レーザー顕微鏡により、肺の内部構造について確認を行った結果を図4に示す。さらに肺胞腔の面積測定した結果を図5に示す。図4、図5から肺胞腔の大きさに違いが見られた。SLはコントロールと同等の大きさを維持しているのに対し、SDSやTritonでは肺胞腔が小さくなることが確認できた。また、APGについてもSLよりは小さくなることが確認された。免疫染色で細胞外マトリックスの主要構成成分であるコラーゲンの観察を行った結果を図6に示した。コントロールと比較して、SL処理では大きな変化は見られていないのに対して、SDS及びTritonでは全体的に顕著な縮みが見られ、APGでは肺胞腔の崩壊が見られた。 Fig. 4 shows the results of confirmation of the internal structure of the lung by a confocal laser scanning microscope. Furthermore, the result of having measured the area of the alveolar cavity is shown in FIG. From FIGS. 4 and 5, a difference was found in the size of the alveolar cavity. It was confirmed that SL maintained the same size as the control, whereas SDS and Triton reduced the alveolar space. It was also confirmed that APG was smaller than SL. The results of observing collagen, which is a major constituent of the extracellular matrix, by immunostaining are shown in FIG. Compared with the control, SL treatment did not show a large change, whereas SDS and Triton showed remarkable shrinkage as a whole, and APG showed alveolar cavity collapse.
 また、SL溶液とSDS溶液を混合した溶液で脱細胞化処理を行った肺について、共焦点レーザー顕微鏡により肺の内部構造について確認を行った結果を図7に示す。さらに肺胞腔の面積測定を行った結果を図8に示す。図7及び図8から0.1%SDSや1.0%SDSのみの処理では肺胞腔は大きくなるが、0.1%以上のSL を添加することで未処理のコントロールの肺胞腔の面積と同程度また肺胞腔の広がりを抑制することが可能であることを確認した。これらにより肺の脱細胞化についてSDS 単独よりもSL を添加により形状維持効果を確認した。 Fig. 7 shows the results of confirmation of the internal structure of the lungs by a confocal laser scanning microscope for the lungs that were decellularized with a mixture of SL solution and SDS solution. Furthermore, the result of having measured the area of the alveolar cavity is shown in FIG. From Figure 7 and Figure 8, treatment with 0.1% SDS or 1.0% SDS alone increases the alveolar cavity, but by adding 0.1% or more SL, the area of the alveolar cavity is similar to that of untreated control. It was confirmed that it is possible to suppress the expansion of the cyst. Based on these results, the shape-maintaining effect was confirmed by adding SL rather than SDS alone for decellularization of the lung.
 脱細胞化効果として望ましいのは、細胞のみを除去し、臓器の骨格である細胞外マトリックスへの影響が少ないことである。細胞外マトリックスへの影響として、形状観察から細胞外マトリックス構造評価まで実施した。その結果、SL は他の界面活性剤と比較すると脱細胞化処理において外観の変化はなく内部構造への影響もないことが確認できる。細胞のみを選択的に除去していることがわかった。 Desirable decellularization effect is that only cells are removed and there is little effect on the extracellular matrix that is the skeleton of the organ. As effects on the extracellular matrix, morphological observation and extracellular matrix structure evaluation were performed. As a result, it can be confirmed that SL has no change in appearance and no influence on the internal structure during decellularization treatment as compared with other surfactants. It was found that only cells were selectively removed.
 肺胞腔が縮小すると、再細胞化する際の細胞の侵入に影響するため、細胞が侵入しない可能性が考えられる。また、細胞外マトリックス構造が崩れている場合には細胞侵入しても十分再生着しないと考えられ、臓器や組織としての機能として働くことができないと考えられる。SLで処理した臓器に関しては、大きさが維持され、細胞外マトリックスの構造も崩れず影響していないことから他の薬剤での処理に比べ、再細胞化時の細胞侵入及び細胞接着が良好であり、元臓器と同様の機能として働くと言える。 When the alveolar space shrinks, it affects cell invasion during recellularization, and it is possible that cells do not invade. In addition, when the extracellular matrix structure is broken, it is considered that the cells do not regenerate and adhere sufficiently even if they enter the cells, and thus cannot function as organs or tissues. Regarding the organs treated with SL, the size was maintained and the structure of the extracellular matrix was not disturbed and did not affect, so cell entry and cell adhesion during recellularization were better than treatment with other drugs. Yes, it can be said that it functions as the same function as the original organ.
 肺以外の臓器についても、外観はSLでの処理は変化していない。また、各臓器を構成する細胞外マトリックスの主要成分はコラーゲンであり、肺の観察と同様にSL以外で処理した場合は細胞外マトリックス構造が崩れていると考えられるため、SLでの脱細胞化処理が優位であると言える。 ∙ Regarding the organs other than the lungs, the appearance has not changed in SL processing. In addition, the major component of the extracellular matrix that composes each organ is collagen, and it is considered that the extracellular matrix structure is disrupted when treated with a substance other than SL, similar to the observation of the lung. It can be said that processing is superior.
 (実施例3)SLによるラット新生仔の血管の細胞外マトリックスへの影響確認
 各処理液で脱細胞化処理後の血管について、1 次抗体:Anti-CollagenIV、2 次抗体: Anti-Rabbit 488 を用いて免疫染色を行い観察した。また血管の内腔について面積測定により評価し、細胞外マトリックスへの影響を確認した。免疫染色の観察写真を図9、図10に、面積測定結果を図11、図12に示した。
(Example 3) Confirmation of the effect of SL on extracellular matrix of neonatal rat blood vessels After decellularization treatment with each treatment solution, primary antibody: Anti-Collagen IV, secondary antibody: Anti-Rabbit 488 It was used for immunostaining and observation. In addition, the lumen of the blood vessel was evaluated by measuring the area, and the effect on the extracellular matrix was confirmed. Observation photographs of immunostaining are shown in FIGS. 9 and 10, and area measurement results are shown in FIGS.
 各溶液10重量%で脱細胞化した血管については、SL を用いた場合は未処理の血管と変化はほぼなかったのに対して、SDS及びTritonで処理した血管は内腔が縮小した、またAPGで処理した血管は内腔の広がりが確認された。このことからSL以外の溶液は、血管の細胞外マトリックスに対して、縮小又は拡張の影響があることが確認できる。また、SL溶液とSDS溶液の混合溶液で処理した場合、脱細胞化後の血管の内腔はSL濃度が高くなるほど未処理の血管の内腔に近づくことが確認され、SLを添加することでSDS 単独では縮小が見られた血管に対しても、縮小が抑制され、形状維持効果が確認された。 Regarding the blood vessels decellularized with 10% by weight of each solution, there was almost no change from the untreated blood vessels when SL was used, whereas the blood vessels treated with SDS and Triton had a reduced lumen, and It was confirmed that the blood vessels treated with APG had an expanded lumen. From this, it can be confirmed that the solutions other than SL have the effect of reducing or expanding the extracellular matrix of blood vessels. In addition, when treated with a mixed solution of SL solution and SDS solution, it was confirmed that the lumen of the blood vessel after decellularization approaches the lumen of the untreated blood vessel as the SL concentration becomes higher, and by adding SL SDS was also confirmed to have a shape-maintaining effect by suppressing the contraction of blood vessels that were contracted by itself.
 (実施例4)SLによるラット新生仔の肝臓の脱細胞化効果確認
 超純水、10重量%、20重量%のSL溶液中にラット新生仔の肝臓を浸漬し、振とうした。1日後、2日後、5日後、10日後に実体顕微鏡を用いて脱細胞化効果を確認した。結果を表4及び図13に示す。
(Example 4) Confirmation of decellularization effect of newborn rat liver by SL The newborn rat liver was immersed in SL solution containing 10% by weight and 20% by weight of ultrapure water and shaken. After 1 day, 2 days, 5 days, and 10 days, the decellularization effect was confirmed using a stereoscopic microscope. The results are shown in Table 4 and FIG.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表4及び図13に示されるように、10重量%又は20重量%のSL溶液中にラット新生仔の肝臓を浸漬して振とうした場合は、超純水に浸漬した場合と比較すると、脱細胞効果は良好であった。 As shown in Table 4 and FIG. 13, when the neonatal rat liver was immersed in 10% by weight or 20% by weight of SL solution and shaken, compared with the case where it was immersed in ultrapure water, the The cell effect was good.
 (実施例5)SLによるラット新生仔の心臓の脱細胞化効果確認
 超純水、1重量%、10重量%、20重量%のSL溶液中にラット新生仔の心臓を浸漬し、振とうした。1日後、2日後、5日後、10日後に実体顕微鏡を用いて脱細胞化効果を確認した。結果を表5及び図14に示す。
(Example 5) Confirmation of decellularization effect on newborn rat heart by SL The newborn rat heart was immersed in SL solution of ultrapure water, 1% by weight, 10% by weight, and 20% by weight and shaken. .. After 1 day, 2 days, 5 days, and 10 days, the decellularization effect was confirmed using a stereoscopic microscope. The results are shown in Table 5 and FIG.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表5及び図14に示されるように、1重量%、10重量%又は20重量%のSL溶液中にラット新生仔の心臓を浸漬して振とうした場合は、超純水に浸漬した場合と比較すると、脱細胞効果は良好であった。 As shown in Table 5 and FIG. 14, when neonatal rat hearts were immersed in 1%, 10% or 20% by weight SL solution and shaken, By comparison, the decellularization effect was good.
 (実施例6)SLによるラット新生仔の腎臓の脱細胞化効果確認
 超純水、10重量%、20重量%のSL溶液中にラット新生仔の腎臓を浸漬し、振とうした。1日後、2日後、5日後、10日後に実体顕微鏡を用いて脱細胞化効果を確認した。結果を表6及び図15に示す。
(Example 6) Confirmation of decellularization effect of newborn rat kidney by SL The newborn rat kidney was immersed in ultrapure water, 10 wt%, 20 wt% SL solution and shaken. After 1 day, 2 days, 5 days, and 10 days, the decellularization effect was confirmed using a stereoscopic microscope. The results are shown in Table 6 and FIG.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表6及び図15に示されるように、10重量%又は20重量%のSL溶液中にラット新生仔の心臓を浸漬して振とうした場合は、脱細胞効果は良好であった。 As shown in Table 6 and FIG. 15, when the rat neonatal heart was immersed in 10 wt% or 20 wt% SL solution and shaken, the decellularization effect was good.
 次に、0.1 重量%、1.0 重量%、10 重量%のSL 溶液、SDS 溶液、Triton 溶液、APG 溶液中にラット新生仔の腎臓を浸漬し、振とうした。2日、4日、6日、8日、10日後に脱細胞化状態として実体顕微鏡を用いて透明性の割合で評価、細胞外マトリックスへの影響として目視により臓器の縮小状態(大きさ)や臓器の崩壊状態、ピンセットで掴んだ際の強度で総合的に評価した。結果を表7、表8に示す。表8の結果は表7の非常に良好になった日数で確認した。脱細胞化は良好となった。図16は浸漬後10日目の写真を掲載した。 Next, newborn rat kidneys were immersed in 0.1 wt%, 1.0 wt%, and 10 wt% SL solution, SDS solution, Triton solution, and APG solution, and shaken. After 2 days, 4 days, 6 days, 8 days, and 10 days, the decellularized state was evaluated by the transparency ratio using a stereoscopic microscope, and the effect on the extracellular matrix was visually confirmed as the contracted state (size) of the organ, The state of organ collapse and the strength when grasped with tweezers were evaluated comprehensively. The results are shown in Tables 7 and 8. The results in Table 8 were confirmed by the very good days in Table 7. Decellularization was good. FIG. 16 shows a photograph 10 days after the immersion.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 実施例は、大きさ、崩壊状態、強度のすべてで変化はなく、影響は見られなかった。比較例はいずれかの項目で影響があった。全ての濃度において、大きさ、崩壊、強度に変化がなかったのは実施例のSLを用いた脱細胞化したサンプルのみであった。 In the example, there was no change in size, collapsed state, and strength, and no effect was seen. The comparative example had an effect on either item. At all concentrations, there was no change in size, disintegration, or strength only in the decellularized sample using SL of Example.
 (実施例7)SLによるラット新生仔の皮膚の脱細胞化効果確認
 超純水、0.1重量%、1重量%、10重量%、20重量%のSL溶液中にラット新生仔の皮膚を浸漬し、振とうした。1日後、2日後、5日後、10日後に実体顕微鏡を用いて脱細胞化効果を確認した。結果を表9及び図17に示す。
(Example 7) Confirmation of decellularization effect of skin of newborn rat by SL Immersing skin of newborn rat in SL solution of ultrapure water, 0.1% by weight, 1% by weight, 10% by weight, 20% by weight , Shaken. After 1 day, 2 days, 5 days, and 10 days, the decellularization effect was confirmed using a stereoscopic microscope. The results are shown in Table 9 and FIG.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表9及び図17に示されるように、0.1重量%、1重量%、10重量%又は20重量%のSL溶液中にラット新生仔の皮膚を浸漬して振とうした場合は、超純水に浸漬した場合と比較すると、脱細胞効果は良好であった。 As shown in Table 9 and FIG. 17, when the neonatal rat skin was immersed in 0.1% by weight, 1% by weight, 10% by weight or 20% by weight of SL solution and shaken, it was treated with ultrapure water. The decellularization effect was better than that in the case of immersion.
 0.1 重量%、1.0 重量%、10 重量%のSL 溶液、SDS 溶液、Triton 溶液、APG 溶液中にラット新生仔の皮膚を浸漬し、振とうした。2日、4日、6日、8日、10日後に実体顕微鏡を用いて透明性の割合で評価、細胞外マトリックスへの影響として目視により臓器の縮小状態(大きさ)や臓器の崩壊状態、ピンセットで掴んだ際の強度で総合的に評価した。結果を表10、表11に示す。表11の結果は表10の非常に良好になった日数で確認した。図18は浸漬後10日目の写真を掲載した。表11の結果は表10の非常に良好になった日数で確認した。浸漬後4日目には細胞の赤みが焼失し、脱細胞化は良好となった。 The neonatal rat skin was immersed in 0.1% by weight, 1.0% by weight, and 10% by weight of SL solution, SDS solution, Triton solution, and APG solution, and shaken. After 2 days, 4 days, 6 days, 8 days, and 10 days, the transparency was evaluated by using a stereoscopic microscope. As the influence on the extracellular matrix, the contracted state (size) of the organ or the collapsed state of the organ, The strength when grasped with tweezers was comprehensively evaluated. The results are shown in Tables 10 and 11. The results in Table 11 were confirmed by the very good days in Table 10. FIG. 18 shows a photograph 10 days after the immersion. The results in Table 11 were confirmed by the very good days in Table 10. On the 4th day after the immersion, the redness of the cells was burnt out, and the decellularization was good.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 細胞外マトリックスへの影響については、実施例は、大きさ、崩壊状態、強度のすべてで変化はなく、影響は見られなかった。比較例はいずれかの項目で影響があった。全ての濃度において、大きさ、崩壊、強度に変化がなかったのは実施例のSLを用いた脱細胞化したサンプルのみであった。 Regarding the effect on the extracellular matrix, in Example, there was no change in size, disintegration state, and strength, and no effect was observed. The comparative example had an effect on either item. At all concentrations, there was no change in size, disintegration, or strength only in the decellularized sample using SL of Example.
 (実施例8)SLによるラット新生仔の腸の脱細胞化効果確認
 超純水、0.1重量%、1重量%、10重量%、20重量%のSL溶液中にラット新生仔の腸を浸漬し、振とうした。1日後、2日後、5日後、10日後に実体顕微鏡を用いて脱細胞化効果を確認した。結果を表12及び図19に示す。
(Example 8) Confirmation of decellularization effect on intestine of newborn rat by SL Immersion of intestine of newborn rat in SL solution of ultrapure water, 0.1% by weight, 1% by weight, 10% by weight, 20% by weight , Shaken. After 1 day, 2 days, 5 days, and 10 days, the decellularization effect was confirmed using a stereoscopic microscope. The results are shown in Table 12 and FIG.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表12及び図19に示されるように、0.1重量%、1重量%、10重量%又は20重量%のSL溶液中にラット新生仔の腸を浸漬して振とうした場合は、超純水に浸漬した場合と比較すると、脱細胞効果は良好であった。 As shown in Table 12 and FIG. 19, when the neonatal rat intestine was immersed in 0.1% by weight, 1% by weight, 10% by weight or 20% by weight of SL solution and shaken, it was treated with ultrapure water. The decellularization effect was better than that in the case of immersion.
 (実施例9)SLによるラット新生仔の脾臓の脱細胞化効果確認
 超純水、1重量%、10重量%、20重量%のSL溶液中にラット新生仔の脾臓を浸漬し、振とうした。1日後、2日後、5日後、10日後に実体顕微鏡を用いて脱細胞化効果を確認した。結果を表13及び図20に示す。
(Example 9) Confirmation of decellularization effect on spleen of rat newborn by SL The spleen of newborn rat was immersed in SL solution of ultrapure water, 1% by weight, 10% by weight, and 20% by weight and shaken. .. After 1 day, 2 days, 5 days, and 10 days, the decellularization effect was confirmed using a stereoscopic microscope. The results are shown in Table 13 and FIG.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表13及び図20に示されるように、1重量%、10重量%又は20重量%のSL溶液中にラット新生仔の腸を浸漬して振とうした場合は、脱細胞効果は良好であった。 As shown in Table 13 and FIG. 20, when the intestine of a newborn rat was immersed in 1% by weight, 10% by weight or 20% by weight of SL solution and shaken, the decellularization effect was good. ..
 次に、0.1 重量%、1.0 重量%、10 重量%のSL 溶液、SDS 溶液、Triton 溶液、APG 溶液中にラット新生仔の脾臓を浸漬し、振とうした。2日、4日、6日、8日、10日後に脱細胞化状態として実体顕微鏡を用いて透明性の割合で評価、細胞外マトリックスへの影響として目視により臓器の縮小状態(大きさ)や臓器の崩壊状態、ピンセットで掴んだ際の強度で総合的に評価した。結果を表14、表15に示す。表15の結果は表14の非常に良好になった日数で確認した。図21は浸漬後10日目の写真を掲載した。 Next, the spleen of a newborn rat was immersed in 0.1% by weight, 1.0% by weight, 10% by weight of SL solution, SDS solution, Triton solution, and APG solution, and shaken. After 2 days, 4 days, 6 days, 8 days, and 10 days, the decellularized state was evaluated by the transparency ratio using a stereoscopic microscope, and the effect on the extracellular matrix was visually confirmed as the contracted state (size) of the organ, The state of organ collapse and the strength when grasped with tweezers were evaluated comprehensively. The results are shown in Tables 14 and 15. The results in Table 15 were confirmed by the very good days in Table 14. FIG. 21 shows a photograph 10 days after the immersion.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 脱細胞化状態については、10日目で赤みが消失し、脱細胞化は非常に良好となった。 Regarding the decellularization state, the redness disappeared on the 10th day, and decellularization became very good.
 細胞外マトリックスへの影響については、実施例は、大きさ、崩壊状態、強度のすべてで変化はなく、影響は見られなかった。比較例は、いずれかの項目で影響があった。全ての濃度において、大きさ、崩壊、強度に変化がなかったのは実施例のSLを用いた脱細胞化したサンプルのみであった。 Regarding the effect on the extracellular matrix, in Example, there was no change in size, disintegration state, and strength, and no effect was observed. The comparative example had an effect on any of the items. At all concentrations, there was no change in size, disintegration, or strength only in the decellularized sample using SL of Example.
 (実施例10)ラット新生仔の心臓へのSL添加による脱細胞化効果及びECM(細胞外マトリックス)の形状維持効果確認
 ラット新生仔心臓を摘出し、室温において溶液に含浸・振盪処理を5日間行った。実体顕微鏡にて透過光と実体画像により、心臓の透明性を確認することで脱細胞化及び形状維持を目視にて評価した。結果を表16及び図22に示す。図22において、同じ心臓を上段は実体画像による観察した写真図であり、下段は透過光による観察した写真図である。
Example 10 Confirmation of Decellularization Effect and ECM (Extracellular Matrix) Shape-Maintaining Effect by Addition of SL to Newborn Rat Heart The newborn rat heart was removed and impregnated with the solution at room temperature and shaken for 5 days. went. Decellularization and shape maintenance were visually evaluated by confirming the transparency of the heart with transmitted light and a stereoscopic image with a stereoscopic microscope. The results are shown in Table 16 and FIG. In FIG. 22, the upper part of the same heart is a photographic image observed with a stereoscopic image, and the lower part is a photographic diagram observed with transmitted light.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 表16及び図22に示されるように、本実施例にかかる脱細胞化処理液の場合は、脱細胞効果は良好であり、またECMの形状維持も良好であった。 As shown in Table 16 and FIG. 22, in the case of the decellularization treatment solution according to the present example, the decellularization effect was good, and the shape maintenance of ECM was also good.
 (実施例11)ラット新生仔の心臓へのSL添加時の脱細胞化後のECM構成成分への影響
 ラット新生仔の心臓を25℃(室温)で溶液中に24時間含浸・振盪処理後、細胞外マトリックス構成蛋白(フィブロネクチン)の存在と分布を蛍光実体顕微鏡、共焦点顕微鏡で観察した。結果を表17及び図23に示す。
(Example 11) Effect on ECM constituents after decellularization when SL was added to rat neonatal heart The rat neonatal heart was impregnated in the solution at 25°C (room temperature) for 24 hours and shaken, The existence and distribution of extracellular matrix constituent protein (fibronectin) were observed with a fluorescence stereomicroscope and a confocal microscope. The results are shown in Table 17 and FIG.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 表17及び図23に示されるように、本実施例にかかる脱細胞化処理液の場合は、脱細胞化後のECM構成成分の維持は良好であった。 As shown in Table 17 and FIG. 23, in the case of the decellularization treatment liquid according to the present example, the ECM constituents were maintained well after decellularization.
 (実施例12)ラット新生仔の心臓へのSL添加時の脱細胞化後の再細胞化への影響
 ラット新生仔の心臓を25℃(室温)で各溶液に24時間含浸・振盪処理後の心臓を6時間洗浄した。その後、新生仔ラット心筋細胞(2 x 106)を上から添加培養した。播種7日目の心臓の拍動を形態観察により確認した。
(Example 12) Effect on recellularization after decellularization when SL was added to the heart of newborn rat The heart of newborn rat was impregnated with each solution at 25°C (room temperature) for 24 hours and shaken. The heart was washed for 6 hours. Then, neonatal rat cardiomyocytes (2×10 6 ) were added and cultured from above. The pulsation of the heart 7 days after seeding was confirmed by morphological observation.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 表18に示されるように、本実施例にかかる脱細胞化処理液の場合は、脱細胞化後の再細胞化が成功していた。 As shown in Table 18, in the case of the decellularization treatment liquid according to this example, recellularization after decellularization was successful.
 (実施例13)ラット新生仔の脱細胞化心臓に対するSL添加による洗浄への影響
 ラット新生仔の心臓を25℃(室温)で1%SDSに24時間含浸・振盪処理後の心臓を表11の組成にて6時間洗浄した。その後、新生仔ラット心筋細胞(2 x 106)を上から添加培養した。播種7日目の心臓の拍動を確認した。
(Example 13) Effect of SL addition on decellularized heart of rat newborn on washing The heart of newborn rat was impregnated with 1% SDS at 25°C (room temperature) for 24 hours and shaken. The composition was washed for 6 hours. Then, neonatal rat cardiomyocytes (2×10 6 ) were added and cultured from above. The heart beat was confirmed 7 days after seeding.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 表19に示されるように、本実施例にかかる脱細胞化処理液の場合は、脱細胞化後の再細胞化が成功していた。 As shown in Table 19, in the case of the decellularization treatment solution according to this example, recellularization after decellularization was successful.
 (実施例14)ラット新生仔の脱細胞化心臓に対するSL添加による洗浄への影響
 ラット新生仔の心臓を25℃(室温)で1%SDS+0.5%SLに24時間含浸・振盪処理後の心臓を表20の組成にて6時間洗浄した。その後、新生仔ラット心筋細胞(2x106)を上から添加培養した。播種7日目の心臓の拍動を確認した。
(Example 14) Effect of SL addition on decellularized heart of rat newborn on washing: Newborn rat heart was impregnated with 1% SDS + 0.5% SL for 24 hours at 25°C (room temperature), and the heart was shaken. Was washed with the composition shown in Table 20 for 6 hours. Then, neonatal rat cardiomyocytes (2×10 6 ) were added and cultured from above. The heart beat was confirmed 7 days after seeding.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 (実施例15)ラット新生仔の心臓へのSL添加時の脱細胞化後の心臓の容積の変化
 ラット新生仔の心臓を25℃(室温)で表21に示す溶液中に24時間含浸・振盪処理後、心臓の容積比を観察した。結果を表21及び図24に示す。図24において、同じ心臓を上段は実体画像による観察した写真図であり、下段は透過光による観察した写真図である。
(Example 15) Change in heart volume after decellularization when SL was added to rat newborn heart The rat newborn heart was impregnated and shaken at 25°C (room temperature) in the solution shown in Table 21 for 24 hours. After the treatment, the heart volume ratio was observed. The results are shown in Table 21 and FIG. In FIG. 24, the upper part of the same heart is a photographic image observed with a stereoscopic image, and the lower part is a photographic diagram observed with transmitted light.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 本実施例にかかる脱細胞化処理液の場合は、動物細胞の臓器の容積を減少させるものではないことが判明した。 It was found that the decellularization treatment solution according to the present example does not reduce the volume of the organs of animal cells.
 (実施例16)SLによる脱細胞化処理後の観察画像とSDSによる脱細胞化処理後の観察画像との比較
 ラット新生仔の心臓を25℃(室温)で1.0%SLに24時間含浸・振盪処理後、蛍光顕微鏡により観察をした。図25上段に示されるように、collagen type1、type4 ともに生体心臓と同様の鱗状構造が保持されていた。また、α-actinin 陽性細胞(心筋細胞)は検出されず、脱細胞化が確認された。
(Example 16) Comparison between observation image after decellularization treatment by SL and observation image after decellularization treatment by SDS The heart of a neonatal rat was impregnated and shaken with 1.0% SL for 24 hours at 25°C (room temperature). After the treatment, it was observed with a fluorescence microscope. As shown in the upper part of FIG. 25, both collagen type 1 and type 4 retained the scaly structure similar to that of the living heart. In addition, α-actinin positive cells (cardiomyocytes) were not detected, and decellularization was confirmed.
 ラット新生仔の心臓を25℃(室温)で1.0%SDSに24時間含浸・振盪処理後、蛍光顕微鏡により観察をした。図25下段に示されるように、ヒト心臓の代表的細胞外マトリックスである1型・4型コラーゲンは、蛋白の3次元構造が大きく変形しており、一部は間隙が消失していた。このように脱細胞化工程における生体構造の保持において、SLが優れた効果を示すことが確認できた。 The rat neonatal heart was impregnated with 1.0% SDS for 24 hours at 25°C (room temperature), shaken, and then observed with a fluorescence microscope. As shown in the lower part of FIG. 25, in the type 1 and type 4 collagen, which is a typical extracellular matrix of human heart, the three-dimensional structure of the protein was greatly deformed, and the gap was partially lost. As described above, it was confirmed that SL exhibits an excellent effect in retaining the biological structure in the decellularization step.
 組織移植に利用できる。 Can be used for tissue transplantation.

Claims (6)

  1.  動物由来組織の脱細胞化に用いる脱細胞化処理液であり、0.01重量%以上20重量%以下のソホロースリピッド含む脱細胞化処理液。 A decellularization treatment liquid used for decellularization of animal-derived tissue, containing 0.01% by weight or more and 20% by weight or less of sophorose lipid.
  2.  更に0.1重量%以上10重量%以下の界面活性剤を含む請求項1に記載の脱細胞化処理液。 The decellularization treatment liquid according to claim 1, further comprising a surfactant in an amount of 0.1% by weight or more and 10% by weight or less.
  3.  前記界面活性剤はラウリル硫酸ナトリウムである請求項2記載の脱細胞化処理液。 The decellularization treatment liquid according to claim 2, wherein the surfactant is sodium lauryl sulfate.
  4.  0.1重量%以上1.0重量%以下のソホロースリピッドを含むとともに0.1重量%以上1.0重量%以下のラウリル硫酸ナトリウムを包含する請求項3に記載の脱細胞化処理液。 The decellularization treatment liquid according to claim 3, comprising 0.1% by weight or more and 1.0% by weight or less of sophorose lipid and 0.1% by weight or more and 1.0% by weight or less of sodium lauryl sulfate.
  5.  脱細胞化処理後の動物由来組織の洗浄に使用する洗浄組成物であり、0.01重量%以上10重量%以下のソホロースリピッドを含む洗浄組成物。 A cleaning composition used for cleaning animal-derived tissue after decellularization treatment, containing 0.01% by weight or more and 10% by weight or less of sophorose lipid.
  6.  酢酸緩衝液、リン酸緩衝液、クエン酸緩衝液、ホウ酸緩衝液、酒石酸緩衝液、トリス緩衝液、HEPES緩衝液及びMES緩衝液から少なくとも一つを含む緩衝液を含む請求項5に記載の洗浄組成物。 The acetate buffer, the phosphate buffer, the citrate buffer, the borate buffer, the tartrate buffer, the Tris buffer, a buffer containing at least one of the HEPES buffer and the MES buffer according to claim 5. Cleaning composition.
PCT/JP2020/005609 2019-02-18 2020-02-13 Decellularization processing fluid and washing composition WO2020170943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020571729A JP6932356B2 (en) 2019-02-18 2020-02-13 Decellularization treatment liquid and cleaning composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019026216 2019-02-18
JP2019-026216 2019-02-18

Publications (1)

Publication Number Publication Date
WO2020170943A1 true WO2020170943A1 (en) 2020-08-27

Family

ID=72144971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005609 WO2020170943A1 (en) 2019-02-18 2020-02-13 Decellularization processing fluid and washing composition

Country Status (2)

Country Link
JP (1) JP6932356B2 (en)
WO (1) WO2020170943A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083238A (en) * 2004-09-14 2006-03-30 Saraya Kk Cleanser composition
WO2015170342A1 (en) * 2014-05-09 2015-11-12 Council Of Scientific & Industrial Research Sophorolipid mediated accelerated gelation of silk fibroin
WO2018143166A1 (en) * 2017-01-31 2018-08-09 サラヤ株式会社 Cell cryopreservation composition and cryopreservation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083238A (en) * 2004-09-14 2006-03-30 Saraya Kk Cleanser composition
WO2015170342A1 (en) * 2014-05-09 2015-11-12 Council Of Scientific & Industrial Research Sophorolipid mediated accelerated gelation of silk fibroin
WO2018143166A1 (en) * 2017-01-31 2018-08-09 サラヤ株式会社 Cell cryopreservation composition and cryopreservation method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEE, JONG-KOOK ET AL.: "Organ regeneration by recellularization of decellularized matrix", ORGAN REGENERATION'', REGENERATIVE MEDICINE, vol. 10, no. 3, 2011, pages 132 - 135 *
SUSAKI, E.A. ET AL.: "Whole-brain imaging with single- cell resolution using chemical cocktails and computational analysis", CELL, vol. 157, 2014, pages 726 - 739, XP055489221, DOI: 10.1016/j.cell.2014.03.042 *
YOKOYAMA, T. ET AL.: "Quantification of sympathetic hyperrnnervation and denervation after myocardial infarction by three-dimensional assessment of the cardiac sympathetic network in cleared transparent murine hearts", PLOS ONE, vol. 12, no. 7, 2017, pages e0182072, XP055734323 *

Also Published As

Publication number Publication date
JPWO2020170943A1 (en) 2021-04-08
JP6932356B2 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
Crapo et al. An overview of tissue and whole organ decellularization processes
JP4469981B2 (en) Decellularized tissue
US20050186286A1 (en) Skin decellularization method, acellular dermal matrix and production method therefore employing said decellularization method, and composite cultured skin employing said matrix
EP2873429B1 (en) Decellularization method for preparing extracellular matrix support material
US20240000999A1 (en) Solubilization of antigen components for removal from tissues
JPS60500014A (en) Chemical sterilization of biological tissue ready for transplantation
KR20130118418A (en) Acellular treatment for material derived from biological tissue, a method for treating using thereof, and biological material obtained from this method
JP2004107303A (en) Method for making skin cell-free, cell-free dermal matrix by the same method, and method for producing the same matrix, and combinedly cultured skin using the same matrix
WO2020170943A1 (en) Decellularization processing fluid and washing composition
Olga et al. Comparative analysis of the skin decellularization methods
TWI712687B (en) Acellular organs, and methods of producing the same
CN115607739A (en) Biological rotator cuff patch and preparation method thereof
CN113080187B (en) Composition for removing phospholipids and cell debris and method for removing phospholipids and cell debris from biological tissue
EP3903797A1 (en) Solubilization of antigen components for removal from tissues
CN115461095A (en) Method for producing acellular tissue scaffold
Collatusso et al. Effect of SDS-based decelullarization in the prevention of calcification in glutaraldehyde-preserved bovine pericardium: study in rats
KR102181811B1 (en) Method for Decellularization of Tissue
Hassanzadeh Nemati et al. Comparison of SDS and TritonX-100 effects on cell removing of bovine spongy bone for using in bone replacements
EP3941497A1 (en) Improved decellularization of isolated organs
KR101020111B1 (en) A cleaning composition for treating tissue for transplantation derived from human/animal
CN107596446A (en) A kind of de- cell reagent box for maintaining tissue hyper-microstructure and nutrition microenvironment
KR20090110716A (en) A cleaning composition for treating tissue for transplantation
KR20150051495A (en) Bioartificial immunogen-reduced porcine hepatic lobe bioscafford and method for preparing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571729

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20758804

Country of ref document: EP

Kind code of ref document: A1