WO2020170588A1 - Surface processing method for member having through-hole in bottom wall section of recess part, method of manufacturing oil pump, and oil pump - Google Patents

Surface processing method for member having through-hole in bottom wall section of recess part, method of manufacturing oil pump, and oil pump Download PDF

Info

Publication number
WO2020170588A1
WO2020170588A1 PCT/JP2019/049854 JP2019049854W WO2020170588A1 WO 2020170588 A1 WO2020170588 A1 WO 2020170588A1 JP 2019049854 W JP2019049854 W JP 2019049854W WO 2020170588 A1 WO2020170588 A1 WO 2020170588A1
Authority
WO
WIPO (PCT)
Prior art keywords
end mill
recess
hole
housing
oil pump
Prior art date
Application number
PCT/JP2019/049854
Other languages
French (fr)
Japanese (ja)
Inventor
豊和 鮫島
晶 鈴木
暢昭 寒川
浩二 佐賀
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2020170588A1 publication Critical patent/WO2020170588A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member

Definitions

  • the present invention relates to a surface processing method for a member having a through hole in the bottom wall of a recess, an oil pump manufacturing method, and an oil pump.
  • the oil pump described in Patent Document 1 has a housing in which a recess is formed, and a pump structure having an inner rotor, an outer rotor, etc. is arranged in the recess of this housing. Further, a through hole is provided on the bottom surface of the recess, and a drive shaft for rotationally driving the inner rotor is inserted into the through hole.
  • the bottom surface of the recess forms a part of the hydraulic oil chamber formed inside the housing, and is therefore a part that affects the sealing performance of the hydraulic oil chamber. Therefore, the bottom surface of the recess is finished by using an end mill in order to obtain the sealing property of the hydraulic oil chamber, whereby high flatness is ensured. This finishing of the bottom surface is performed by relatively rotating the end mill around the through hole. Further, when finishing the bottom surface, the side surface of the recess is also processed. Generally, when processing the side surface, the side surface is cut by so-called down-cutting. This is to extend the tool life of the end mill, and the side surface is cut with the orbiting direction of the end mill being reversed with respect to the rotation direction of the end mill.
  • the blade part of the end mill bites into the bottom surface and scoops the bottom surface, so it is cut.
  • the cutting force acting on the end mill in the direction of the rotation axis of the end mill is upward.
  • the blade part of the end mill always scoops the edge part that is the hole edge of the through hole, so the blade part cuts the bottom surface, so Cutting resistance will act more greatly.
  • the direction in which the end mill orbits is the same as the direction in which the end mill rotates.
  • the side surface of the recess is to be cut by up-cutting when processing the side surface of the recess, which may shorten the tool life of the end mill.
  • the present invention has been devised in view of the conventional circumstances, and has a through hole in the bottom wall portion of the recess that can improve the tool life of the end mill while ensuring the flatness of the bottom surface of the recess. It is an object to provide a surface treatment method for members and the like.
  • the peripheral portion of the through hole provided in the recess is so arranged that the rotation direction of the end mill and the direction in which the end mill relatively circulates around the through hole are the same direction.
  • the side surface of the recess is processed so that the rotation direction of the end mill and the direction in which the end mill relatively circulates around the through hole are opposite.
  • FIG. 2 is a sectional view showing an oil pump and the like cut along the line AA in FIG. 1 with a front cover attached. It is a sectional view of an oil pump before a cam ring rocks. It is sectional drawing of an oil pump after a cam ring rock
  • FIG. 6 is a perspective view showing a positional relationship between the end mill and the work material when the side surface of the work material is cut by upcut using the end mill.
  • FIG. 6 is a perspective view showing a positional relationship between the end mill and the work material when the side surface of the work material is cut by a down cut using the end mill.
  • FIG. 6 is a process diagram showing a roughing process of the bottom surface, side surfaces, opening end surface, etc. of the housing. It is a flowchart showing a finishing process of a contact surface of a housing.
  • FIG. 6 is a process diagram showing a finish processing process of the bottom surface, side surfaces, opening end surface, and the like of the housing.
  • FIG. 7 is a process diagram showing a finish processing step of a conventional surface processing method for a recess of a housing. It is sectional drawing of a housing etc. which shows the solution of another subject of this embodiment.
  • FIG. 1 is a side view showing an oil pump 1 attached to an engine block 3 of an internal combustion engine.
  • FIG. 2 is a sectional view showing the oil pump 1 and the like cut along the line AA in FIG. 1 attached to the front cover 4.
  • the oil pump 1 is configured as a variable displacement oil pump, and is rotatably driven by the rotational force transmitted from the crankshaft 2 to allow various sliding parts in an internal combustion engine, various valve timing control devices, and the like. It supplies oil (lubricating oil) to equipment.
  • the oil pump 1 is housed in a pump housing section 5 provided between the engine block 3 and the front cover 4.
  • the oil pump 1 includes a housing 6 in which one end side of the crankshaft 2 in the axial direction is open and the other end side is closed, a pump structure 7 housed in the housing 6, and a housing containing the pump structure 7. And a cover 8 that closes the opening 9 of 6.
  • the housing 6 is formed in a concave shape by aluminum die casting using a metal material such as an aluminum alloy material.
  • a recess 6a for accommodating the pump component 7 is formed in an opening on an end surface of the housing 6 located on the axially one end 2a side of the crankshaft 2.
  • the recess 6a is formed by finishing the inner surface of the recess 6a by cutting using a first end mill 53 described later.
  • the recess 6 a is formed by a bottom wall portion 10 and an annular peripheral wall portion 11 that rises from the bottom wall portion 10 so as to be orthogonal to the bottom wall portion 10.
  • a circular through hole 10a that rotatably supports the crankshaft 2 is formed through the bottom wall portion 10 along the rotation axis direction of the crankshaft 2.
  • the pump structure 7 is mainly composed of a crankshaft 2 which is a rotating shaft, a rotor 12 which is rotationally driven by the crankshaft 2, a vane 13 and a cam ring 14 which will be described later.
  • the rotor 12 is housed in the recess 6a with the outer peripheral portion of the crankshaft 2 inserted.
  • the cover 8 is formed of a metal material, for example, an aluminum alloy material, and has a circular insertion hole 7a that rotatably supports the crankshaft 2 at a position corresponding to the through hole 10a of the housing 6. , Is fixed to the housing 6 with eight fixing members, for example, bolts 17. The cover 8 is attached and fixed to the engine block 3 together with the housing 6 with four fixing members, for example, bolts 18.
  • FIG. 3 is a sectional view of the oil pump 1 before the cam ring 14 swings.
  • FIG. 4 is a sectional view of the oil pump 1 after the cam ring 14 swings.
  • the pump structure 7 is composed of a crankshaft 2 which is a rotating shaft, a rotor 12 mounted on the outer peripheral portion of the crankshaft 2, a vane 13, a cam ring 14, a coil spring 15 and the like.
  • the pump structure 7 discharges the oil, which is the fluid sucked from the suction portion, from the discharge portion due to the volumes of the plurality of hydraulic oil chambers 21 changing as the rotor 12 rotates integrally with the crankshaft 2. ..
  • the rotor 12 is fitted in the outer peripheral portion of the crankshaft 2 rotatably provided in the center of the recess 6a in a state in which the relative rotation is restricted, and is housed in the recess 6a.
  • nine slits 19 extending radially outward from the inner center side of the rotor 12 are formed at equal intervals in the circumferential direction of the rotor 12, and in each slit 19, A thin plate-shaped vane 13 made of metal is arranged so as to be able to appear and disappear.
  • a cam ring 14 which is a rocking member capable of rocking around the pivot pin 20. That is, the tip surface of the vane 13 is slidably in contact with the inner peripheral surface of the cam ring 14, so that the rotor 12, two vanes 13 facing each other in the circumferential direction of the rotor 12, the cam ring 14, the housing 6, and the cover 8 are provided. The space surrounded by and becomes the hydraulic oil chamber 21.
  • a biasing member for example, a coil spring 15 compressed by a predetermined set load Ws is provided at a portion of the housing 6 facing the pivot pin 20 on one side of the arm portion 14 a projectingly formed on the cam ring 14. It is arranged so as to be elastically contactable.
  • a pair of first and second control oil chambers 25 and 26 are formed in the outer peripheral area of the cam ring 14 by the pivot pin 20 and the first and second seal members 23 and 24 provided on the outer peripheral portion of the cam ring 14. It is demarcated.
  • Hydraulic pressure is introduced into the first control oil chamber 25 from the main oil gallery of the internal combustion engine to which the oil discharged from the discharge port formed in the bottom wall portion 10 is supplied.
  • the first pressure receiving surface 14 b formed by the outer peripheral surface of the cam ring 14 facing the first control oil chamber 25 receives the hydraulic pressure from the discharge port and resists the urging force of the coil spring 15 to move the cam ring 14.
  • a swinging force (moving force) is applied in a direction (counterclockwise direction in FIGS. 3 and 4) in which the amount of eccentricity is reduced.
  • the hydraulic pressure from the main oil gallery is appropriately introduced by the on/off operation of the electromagnetic switching valve 27.
  • the second pressure receiving surface 14c formed by the outer peripheral surface of the cam ring 14 facing the second control oil chamber 26 receives the discharge pressure and increases the eccentric amount of the cam ring 14 (clockwise in FIGS. 3 and 4). A swinging force (moving force) is applied.
  • the oil pump 1 shown in FIG. 4 changes from the state before the swing of the cam ring 14 shown in FIG. 3 to the state shown in FIG. 4 by turning the exciting current supplied from the control unit for controlling the internal combustion engine to the electromagnetic switching valve 27 from ON to OFF.
  • the cam ring 14 is switched to the state after swinging as shown.
  • FIG. 5 is a front view of the housing 6.
  • the recess 6a of the housing 6 is relatively thin and has a substantially circular plate-shaped bottom wall portion 10 and a substantially annular peripheral wall portion that rises from the outer edge of the bottom wall portion 10 and surrounds the bottom wall portion 10. 11 and.
  • the bottom wall portion 10 has a bottom surface 28 that is a surface on the opening 9 side of the concave portion 6a, and a relatively large diameter circle into which the crankshaft 2 is rotatably inserted at a substantially central position of the bottom surface 28.
  • a through hole 10a having a shape is formed so as to penetrate therethrough.
  • the surface area of the bottom surface 28 is larger than the outer diameter of the cam ring 14 in order to secure the above-described area where the cam ring 14 swings.
  • the bottom surface 28 is connected to a side surface 11 a that is an inner peripheral surface of the peripheral wall portion 11 orthogonal to the bottom surface 28.
  • the bottom surface 28 and the side surface 11a are formed by finishing by cutting using a first end mill 53 described later.
  • the bottom surface 28 is a portion of the bottom surface 28 around the through hole 10a, and substantially in the center between the edge portion of the through hole 10a and the side surface 11a of the peripheral wall portion 11 in the radial direction of the through hole 10a.
  • the annular region from the edge of the through hole 10a to the circle 29 is defined as the "peripheral portion 30".
  • an annular region of the bottom surface 28 adjacent to the peripheral wall portion 11 from the circle 29 to the side surface 11a of the peripheral wall portion 11 is defined as a "peripheral wall portion adjacent portion 31".
  • the circle 29 has a shape when the concave and convex portions of the spring accommodating chamber 22 and the like in the recess 6a are omitted and the inner circumference of the recess 6a is circular. ..
  • peripheral wall portion adjacent portion 31 is continuous with the peripheral wall portion 11, it has a higher rigidity than the peripheral portion 30 adjacent to the through hole 10a.
  • the outer peripheral portion of the peripheral wall portion 11 has nine boss portions 33a to 33i that are formed to project radially outward of the through hole 10a.
  • a flat opening end face 32 that surrounds the opening 9 of the recess 6 a is formed at the tip of the peripheral wall 11.
  • the open end surface 32 serves as a contact surface that contacts the cover 8 when the cover 8 is attached to the housing 6.
  • the open end surface 32 is formed by finishing by cutting using a first face mill 55 described later.
  • six female screw holes 34 into which the bolts 17 are screwed when the cover 8 is attached to the housing 6 are respectively provided. Has been formed.
  • two bolt insertion holes (mounting portions) 35 into which bolts 18 are inserted when the housing 6 is attached to the engine block 3 together with the cover 8 are provided at positions corresponding to the two boss portions 33b and 33d on the opening end surface 32. Are formed through each. Further, a circular knock pin hole 36 used for positioning with the cover 8 when the cover 8 is attached to the housing 6 is formed at a position corresponding to the boss portion 33g on the open end surface 32.
  • a protruding portion 38 protruding from the outer peripheral portion to the outside in the radial direction of the through hole 10a is formed.
  • the outer peripheral portion of the overhanging portion 38 has three boss portions 33j, 33k, 33m that are formed to project radially outward of the through hole 10a.
  • the overhanging portion 38 has a flat surface 38 a that is flush with the opening end surface 32 and is continuous with the opening end surface 32.
  • the surface 38a is formed by finishing by cutting using a face mill 55 described later as a series of processing when processing the opening end surface 32.
  • Female screw holes 34 into which the bolts 17 are screwed when the cover 8 is attached to the housing 6 are formed near the area between the bosses 33j and 33k on the surface 38a and at a position corresponding to the bosses 33m. .. Further, two bolt insertion holes (mounting portions) 35 into which the bolts 18 are inserted when the housing 6 is attached to the engine block 3 together with the cover 8 are provided at positions corresponding to the two boss portions 33j and 33k on the surface 38a. Each is formed.
  • each clamp seat 37 has a substantially triangular plate shape, and is formed at a position offset from the opening end face 32 toward the through hole 10a side in the through direction of the through hole 10a.
  • the clamp seat 37 has a bottom surface 28, a side surface 11a, and a surface 37b, which will be described later, which serves as a reference surface for processing when processing the opening end surface 32.
  • FIG. 6 is a rear view of the housing 6.
  • the first block that comes into contact with the engine block 3 that is a counterpart member when attached to the internal combustion engine On the side opposite to the opening 9 of the housing 6, more specifically, on the rear side of the bottom surface 28 of the bottom wall portion 10, the first block that comes into contact with the engine block 3 that is a counterpart member when attached to the internal combustion engine.
  • One contact surface 39 is formed. As shown in FIG. 6, the first contact surface 39 is continuous in a semi-circular shape at a position near the boss 33a of the bottom wall 10 along the circumferential direction of the through hole 10a.
  • the surface 40 of the boss portion 33d provided at a position separated from the first contact surface 39 is on the same plane as the first contact surface 39, and contacts the engine block 3 when attached to the engine block 3. It becomes the first contact surface.
  • the first contact surface 39 and the surface 40 are formed by finishing by cutting using a first face mill 55 described later.
  • a portion located at the tip of the overhanging portion 38 that is, a portion of the overhanging portion 38 that is most distant from the first contact surface 39 in the radial direction of the through hole 10a is flush with the first contact surface 39.
  • the second contact surface 41 is formed by finishing by cutting using a first face mill 55 described later as a series of processing when processing the first contact surface 39.
  • a portion of the overhanging portion 38 between the first contact surface 39 and the second contact surface 41 is located closer to the opening 9 than the first and second contact surfaces 39, 41.
  • Eight recessed meat steal portions 42a to 42h are provided.
  • parts of the housing 6 other than the first and second contact surfaces 39 and 41 and the surface 40 which are not processed for example, the meat steal portions 42a to 42h and the boss portions 33d and 33h, are adjacent to each other, and the first and second contact surfaces Casting surfaces formed by aluminum die casting are left in the recesses 43 and 44 that are recessed toward the opening 9 side with respect to the surfaces 39 and 41.
  • the meat stealing portion 42a adjacent to the boss 33m and the recesses 43 and 44 are portions to be clamped during the finishing process of the first and second contact surfaces 39 and 41 described later.
  • Other parts having a casting surface other than the meat stealing part 42a and the recessed parts 43 and 44 can also be clamped at the time of finishing the first and second contact surfaces 39 and 41.
  • FIG. 7 is a cross-sectional view of the housing 6 taken along the line BB in FIG.
  • a groove portion 45 that avoids interference with the stepped portion 2b (see FIG. 2) provided on the crankshaft 2 is provided at a portion between the through hole 10a and the first contact surface 39.
  • a recess is formed from the first contact surface 39 toward the recess 6a.
  • FIG. 8A is an explanatory view showing the positional relationship between the end mill 46 and the work material 47 stepwise when the upper surface 47a of the work material 47 is cut by the up-cut using the end mill 46
  • FIG. 8B is a sectional view of the end mill 46 and the work material 47 taken along the line CC of FIG. 8A. In FIG. 8B, cross-sectional hatching of the spiral portion of the end mill 46 is omitted.
  • the vertical axis 48 shown in FIG. 8A indicates a machining locus drawn by the rotation axis O of the end mill 46 when the end mill 46 cuts the workpiece 47.
  • the rotation direction P of the end mill 46 is the clockwise direction in FIG. 8A
  • the feed direction Q of the end mill 46 is the direction from the lower side to the upper side in FIG. 8A.
  • the end mill 46 is arranged on the vertical axis 48, while the work material 47 is on the right side of the vertical axis 48 when viewed from the feed direction Q of the end mill 46. That is, it is arranged on the right side of the rotation axis O of the end mill 46.
  • the end mill 46 has a plurality of (four in the present embodiment) blade portions 46a due to the spiral shape formed at the tip thereof.
  • the four blades 46a are provided at equal intervals in the rotation direction P of the end mill 46.
  • the work material 47 is formed in a rectangular plate shape, and has an edge portion 47b facing the end mill 46 in the direction of the vertical axis 48.
  • the tip surface 46b of the end mill 46 shown in FIG. 8B is located between the upper surface 47a and the lower surface 47c of the work material 47, and the blade portion 46a is the work material.
  • the state before cutting the upper surface 47a of 47 is shown.
  • one blade portion 46 a has a work material 47 facing the vertical axis 48. From the cutting start point 49 on the vertical side portion 47d, the edge portion 47b of the workpiece 47 is scooped into the edge portion 47b.
  • a new edge portion 47b is formed at a position adjacent to the cut edge portion 47b and the end mill 46 in the feed direction Q. Then, as shown in the third row from the bottom in FIG. 8A, the upper surface 47a is cut while sequentially scooping the edge portion 47b. At this time, the edge portion 47b scooped by the blade portion 46a is discharged as cutting chips (shown by a broken line in FIG. 8B) while being lifted obliquely upward as shown by an arrow R in FIG. 8B. .. Therefore, a cutting resistance (arrow S in FIG. 8B) that acts upward in the rotation axis direction of the end mill 46 acts on the end mill 46 along with the force generated when lifting the edge portion 47b.
  • the end mill 46 rotates in the clockwise direction and the work material 47 is on the right side of the rotation axis O of the end mill 46 with respect to the feeding direction Q of the end mill 46, the end mill 46 moves upward.
  • the cutting process in which the blade portion 46a sequentially scoops the edge portion 47b of the work material 47 while receiving the cutting resistance is defined as "upcut" of the upper surface (bottom surface) 47a.
  • FIG. 9A is an explanatory view showing the positional relationship between the end mill 46 and the work material 47 in stages when the upper surface 47a of the work material 47 is cut by the down mill using the end mill 46
  • FIG. 9B is a cross-sectional view of the end mill 46 and the work material 47 taken along the line DD of FIG. 9A.
  • cross-sectional hatching of the spiral portion of the end mill 46 is omitted.
  • the upper surface 47a which is the upper surface of the work material 47 formed in a rectangular plate shape. A case of processing will be described.
  • the end mill 46 is arranged on the vertical axis 48, while the work material 47 is on the left side of the vertical axis 48 when viewed from the feed direction Q of the end mill 46, that is, the end mill 46. Is arranged on the left side of the rotation axis O.
  • the rotation direction P of the end mill 46 is the clockwise direction in FIG.
  • the tip surface 46b of the end mill 46 shown in FIG. 9B is located between the upper surface 47a and the lower surface 47c of the work material 47, and the blade portion 46a is the work material.
  • the state before cutting the upper surface 47a of 47 is shown.
  • one blade portion 46 a has a work material 47 orthogonal to the vertical axis 48.
  • the cutting start point 50 on the lower lateral side portion 47e cuts into the edge portion 47b of the work material 47 to cut the edge portion 47b.
  • the one blade portion 46a cuts into the edge portion 47b of the work material 47 from the cutting start point 50 on the horizontal side portion 47e located at the position where the radius of the end mill 46 is separated from the vertical axis 48, and the edge portion 47b is formed.
  • the end mill 46 is further fed in the feed direction Q, and the next blade portion 46a is offset in the feed direction Q of the end mill 46 from the cutting start point 50, as shown in the third stage from the bottom of FIG. 9(a).
  • the work material 47 is cut at the position. Then, when this cutting is sequentially repeated, as shown in the fourth step from the bottom of FIG.
  • the blade portion 46a is separated from the vertical axis 48 to the radius separation of the end mill 46 and parallel to the vertical axis 48.
  • the flat surface 51 is cut.
  • the blade portion 46a that cuts the flat surface 51 cuts the arc portion 52 shown by the arc-shaped broken line in FIG. 9A between the flat surface 51 and the vertical side portion 47f, and goes out to the vertical side portion 47f.
  • the circular arc portion 52 cut by the blade portion 46a is discharged as chips (shown by a broken line in FIG. 9B) while being pushed down as shown by an arrow T in FIG. 9B.
  • a cutting resistance (arrow U in FIG. 9B) is applied to the end mill 46 in a downward direction of the rotation axis of the end mill 46 along with the force of pushing down the arc portion 52.
  • FIG. 10 is a perspective view showing the positional relationship between the end mill 46 and the work material 47 when the side surface 47g of the work material 47 is cut by the up mill using the end mill 46.
  • a case of processing the side surface 47g of the block-shaped work material 47 will be described below as an example for explaining the upcut when processing the side surface 11a of the peripheral wall portion 11 using the end mill 46.
  • the rotation direction P of the end mill 46 is the clockwise direction of FIG. 10, and the feed direction Q of the end mill 46 is the direction from the lower side of FIG. 10 to the diagonally upper right side.
  • the work material 47 is arranged on the left side of the rotation axis O of the end mill 46 when viewed in the feeding direction Q of the end mill 46.
  • the side surface 47g of the work material 47 thus arranged is cut by the end mill 46, the side surface 47g is cut so that the cutting edge portion 46c of the end mill 46 is always pressed against the side surface 47g.
  • the cutting edge portion of the end mill 46 when the end mill 46 rotates in the clockwise direction and the work material 47 is on the left side of the rotation axis O of the end mill 46 with respect to the feed direction Q of the end mill 46, the cutting edge portion of the end mill 46.
  • the cutting process in which 46c is constantly pressed against the side surface 47g and bites is defined as "upcut" of the side surface 47g.
  • the side surface 47g is cut by up-cutting, the side surface 47g is cut while the cutting edge portion 46c is constantly pressed against the side surface 47g, so the cutting edge portion 46c of the end mill 46 is easily worn, and the tool of the end mill 46 for down cutting described later is used. Shorter than life.
  • FIG. 11 is a perspective view showing a positional relationship between the end mill 46 and the work material 47 when the side surface 47g of the work material 47 is cut by the down mill using the end mill 46.
  • the rotation direction P of the end mill 46 is the clockwise direction of FIG. 11, and the feed direction Q of the end mill 46 is the direction from the lower side of FIG. 11 to the diagonally upper left side.
  • the work material 47 is arranged on the right side of the rotation axis O of the end mill 46 when viewed from the feed direction Q of the end mill 46.
  • the cutting edge portion 46c of the end mill 46 cuts the side surface 47g so as to always escape from the side surface 47g.
  • the cutting edge portion of the end mill 46 when the end mill 46 rotates in the clockwise direction and the work material 47 is on the right side of the rotation axis O of the end mill 46 with respect to the feed direction Q of the end mill 46, the cutting edge portion of the end mill 46.
  • the cutting process performed by 46c while always escaping from the side surface 47g is defined as "downcut" of the side surface 47g.
  • the contact of the blade tip portion 46c with the side surface 47g is weaker than in the cutting by the up cut, so that the blade tip portion 46c is less likely to be worn. Therefore, the tool life of the end mill 46 in the down cut becomes longer than the tool life of the end mill 46 in the up cut.
  • FIG. 12 is a process diagram showing one of the various processes of the method for manufacturing the oil pump 1, which is a roughing process of the bottom surface 28, the side surface 11 a, the opening end surface 32, etc. of the housing 6.
  • FIG. 13 is a process diagram showing one of various processes of the method for manufacturing the oil pump 1 and showing a finishing process of the first and second contact surfaces 39, 41 of the housing 6.
  • FIG. 14 is a process diagram showing one of various processes of the method for manufacturing the oil pump 1, which is a finishing process for the bottom face 28, the side face 11 a, the opening end face 32, etc. of the housing 6.
  • the lower side of FIGS. 12 and 14 shows a plan view of the housing 6 as viewed from the opening 9 side, while the lower side of FIG.
  • FIGS. 12 to 14 are schematic sectional views of the housing 6 taken along the radial direction of the through hole 10a. Further, in FIGS. 12 to 14, the rotation direction P of the first end mill 53, the second face mill 54, and the first face mill 55, which are indicated by imaginary lines, is the clockwise direction.
  • the housing 6 in a material state formed by aluminum die casting is prepared, and a through hole 10a having a relatively large diameter is formed at the center of the bottom wall portion 10 by using a drilling tool such as a drill. deep. Further, a first positioning hole 57 into which the first positioning pin 56 for positioning is inserted is formed at a predetermined position of the opening end surface 32 of the housing 6 so as to penetrate therethrough. Further, a second positioning hole 59 into which the second positioning pin 58 for positioning is inserted is formed at a predetermined position of the overhanging portion 38 so as to penetrate therethrough.
  • the first and second positioning pins 56, 58 are formed as rod-shaped positioning pins having a truncated cone-shaped positioning portion 60 at their tips.
  • the housing 6 which is a member having the through hole 10a in the bottom wall portion 10 is not shown in a posture in which the opening 9 faces upward.
  • Install inside When the housing 6 is installed, the housing 6 is positioned on the processing equipment via the first and second positioning pins 56 and 58 inserted into the first and second positioning holes 57 and 59.
  • the positioning of the first positioning pin 56 is performed as shown in the frame 61 as a sectional view taken along line EE in FIG.
  • the tip portion 60a of the portion 60 is arranged in the first positioning hole 57, and the inclined portion 60b of the positioning portion 60 is in contact with the lower edge of the first positioning hole 57.
  • the clamp seats 37 which are formed at three predetermined locations on the outer peripheral portion of the housing 6 and have a casting surface, are clamped using the clamp device 62.
  • the clamp device 62 is provided so as to be rotatable around the support pin 63, and has a rectangular plate-shaped pressing portion 64 that presses the surface 37 a of the clamp seat 37 on the side of the opening end surface 32, and the pressing portion 64. It has a clamp pin 65 for pressing a surface 37b of the clamp seat 37 opposite to the opening end surface 32.
  • the clamp pin 65 has a shaft portion 65a and a truncated cone-shaped truncated cone-shaped end portion 65b formed integrally with one end portion of the shaft portion 65a.
  • the pressing force of the clamp pin 65 is appropriately adjusted by the air pressure supplied from an air supply source (not shown).
  • the tip of the truncated cone-shaped end portion 65b has a circular contact surface 65c that can contact the surface 37b of the clamp seat 37 and has a smaller outer diameter than the shaft portion 65a.
  • the first and second positioning pins 56 and 58 are removed from the first and second positioning holes 57 and 59.
  • the knock pin hole 36 and the pivot pin hole (circular recess) 66 are processed into rough holes with relatively large dimensional tolerances. Further, in preparation for the insertion of the third and fourth positioning pins 67 and 68 in a later step described later, the first and second positioning holes 57 and 59 are finished by using a drill.
  • the first end mill 53 shown in phantom in FIG. 12 is used to roughly machine the peripheral portion 30, which is the bottom surface 28 around the through hole 10a, to a predetermined cutting depth. ..
  • the rotation direction P of the first end mill 53 and the direction in which the first end mill 53 relatively circulates around the through hole 10a are the same direction.
  • the first end mill 53 is rotated to roughly process the peripheral portion 30. That is, the first part is arranged so as to orbit the peripheral portion 30 in the clockwise direction in FIG. 12 (the feeding direction of the first end mill 53 shown by reference symbol V in FIG. 12) with respect to the housing 6 fixed by the three clamp devices 62.
  • the peripheral part 30 is roughly processed by moving the end mill 53. At this time, the peripheral portion 30 is always on the left side with respect to the rotation axis O1 of the first end mill 53, and the first end mill 53 down-cuts the peripheral portion 30 roughly (FIGS. 9A and 9B). )reference).
  • the peripheral-wall-adjacent portion 31 which is the bottom surface 28 adjacent to the peripheral-wall portion 11, and the peripheral-wall portion 11.
  • the side surface 11a and the side surface 11a are simultaneously rough-machined with a predetermined cutting depth.
  • the peripheral wall adjoining portion 31 and the peripheral wall adjoining portion 31 are arranged so that the rotation direction P of the first end mill 53 and the direction in which the first end mill 53 relatively circulates around the through hole 10a are opposite.
  • the side surface 11a is roughly processed.
  • the feed direction of the first end mill 53 which has been orbiting in the clockwise direction, is reversed, and the counterclockwise direction is shown with respect to the housing 6 fixed by the three clamp devices 62 (indicated by W in FIG. 12).
  • the peripheral wall adjacent portion 31 and the side surface 11a are roughly processed.
  • the peripheral wall portion adjacent portion 31 is always on the right side with respect to the rotation axis O1 of the first end mill 53, and the first end mill 53 rough-machines the peripheral wall portion adjacent portion 31 by up-cutting (FIG. 8(a), See FIG. 8B).
  • the side surface 11a is always on the right side with respect to the rotation axis O1 of the first end mill 53, and the first end mill 53 down-cuts the side surface 11a roughly (see FIG. 11).
  • the second face mill 54 shown by an imaginary line in FIG. 12 having an outer diameter larger than that of the first end mill 53, the opening end surface 32 of the housing 6 and the overhanging portion 38 which are mating surfaces with the cover 8.
  • Surface 38a is roughly processed.
  • the second face mill 54 is moved from the diagonally lower left side of the housing 6 to the projecting portion 38 side as shown in the feeding direction indicated by X in FIG.
  • the opening end surface 32 and the surface 38a are roughly processed so that the feeding direction of 54 is returned and returned to the opening 9 side.
  • the housing 6 is installed in the processing equipment with the opening 9 facing downward.
  • the housing 6 is positioned on the processing equipment via the cylindrical third and fourth positioning pins 67 and 68 inserted into the first and second positioning holes 57 and 59.
  • the first face mill 55 is used to roughly process the first and second contact surfaces 39, 41 with a predetermined cutting depth. At the time of this rough machining, the first face mill 55 is moved from the left side of the first positioning hole 57 to the overhanging portion 38 side as in the feeding direction indicated by symbol Y in FIG. , The second contact surfaces 39, 41 are roughly processed.
  • the knock pin hole 36 and the pivot pin hole 66 are processed into a rough hole having a smaller dimensional tolerance than the roughing process of FIG. 12 using a drill.
  • the first face mill 55 is used to finish the first and second contact surfaces 39, 41 with a predetermined cutting depth. In this finishing process, the first face mill 55 is moved in the feed direction Y similar to the roughing process of the first and second contact surfaces 39, 41.
  • the surface 37b having the casting surface on the first and second contact surfaces 39 and 41 of the clamp seat 37 is flattened by using, for example, the first end mill 53. Finish the surface.
  • the first and second contact surfaces 39, 41 and the surface 37b are parallel to each other.
  • the processing equipment shown in FIGS. is installed in a different processing facility with the opening 9 facing upward.
  • the housing 6 is positioned on the processing equipment via the third and fourth positioning pins 67 and 68 inserted into the first and second positioning holes 57 and 59.
  • each clamp seat 37 is clamped using each clamp device 62.
  • the flat surface 37b formed in the finishing step of the first and second contact surfaces 39, 41 serves as a processing certificate.
  • a knock is used to finish the knock pin hole 36 and the pivot pin hole 66 into high-precision holes with small dimensional tolerances.
  • the first end mill 53 is used to finish the peripheral portion 30 of the bottom surface 28 with a predetermined cutting depth.
  • the peripheral portion 30 is moved in the clockwise direction (feeding direction) of FIG.
  • the first end mill 53 is moved so as to orbit V).
  • the first end mill 53 finishes the peripheral portion 30 by down-cutting similarly to the roughing process of the bottom surface 28 of the housing 6 (see FIGS. 9A and 9B).
  • the peripheral wall adjacent portion 31 and the side surface 11a are simultaneously finished as a series of finishing operations.
  • the feeding direction of the first end mill 53 that has been orbiting in the clockwise direction is reversed and fixed by the three clamp devices 62.
  • the first end mill 53 is moved so as to rotate in the counterclockwise direction (feeding direction W) with respect to the thus-formed housing 6.
  • the first end mill 53 finishes the peripheral wall adjoining portion 31 by up-cutting similarly to the roughing process of the bottom surface 28 of the housing 6 (see FIGS. 8A and 8B).
  • the first end mill 53 finishes the side surface 11a by down-cutting similarly to the roughing process of the bottom surface 28 of the housing 6 (see FIG. 11).
  • the peripheral portion 30 After finishing the peripheral portion 30, the peripheral wall portion adjacent portion 31 and the side surface 11a with a predetermined cutting depth, the peripheral portion 30, the peripheral wall is zero-cut using the first end mill 53 in the same machining trajectory as this finishing processing. The part adjacent part 31 and the side surface 11a are finished again.
  • the "zero cut” is a cutting process performed with a cutting depth of 0 mm, and removes residual stress generated in the peripheral portion 30, the peripheral wall portion adjacent portion 31 and the side surface 11a during the processing in the previous step.
  • the flatness of the peripheral portion 30 and the like is stabilized.
  • the opening face 32 of the housing 6 and the surface 38a of the overhanging portion 38 are finished with a predetermined cutting depth using the first face mill 55.
  • the first face mill 55 is moved from the diagonally lower left side of the opening 9 to the projecting portion 38 side, as in the feeding direction indicated by symbol Z in FIG.
  • the roughing and finishing of the housing 6 are performed while appropriately supplying the coolant from a nozzle (not shown) provided in the processing equipment to the cutting edge portion of the peripheral portion 30 and the first end mill 53.
  • the coolant may be supplied to the peripheral portion 30 and the like through an oil passage provided inside the first end mill 53 and the like.
  • the opening end face 32 of the housing 6 and the overhanging portion 38 are provided with a female screw hole 34 (see FIG. 5) for attaching the cover 8 and a bolt insertion hole 35 for attachment to the engine block 3. (See FIG. 5) is formed using a drill.
  • the pump component 7 including the rotor 12 and the like is housed in the recess 6a of the housing 6, and the cover 8 is covered to close the opening 9 of the recess 6a.
  • the cover 8 is put on, the cover 8 is positioned with respect to the housing 6 via the knock pin press-fitted into the knock pin hole 36 formed in the opening end surface 32 of the housing 6 and the pivot pin 20 inserted into the pivot pin hole 66. ..
  • the cover 8 is attached and fixed to the housing 6 by screwing the bolts 17 into the female screw holes 34 of the housing 6 through the bolt through holes formed in the cover 8.
  • FIG. 15 is a process diagram showing a finish processing step of a conventional surface processing method for the recess 6 a of the housing 6.
  • the side surface 11a can be cut by the down cut, but the peripheral portion 30 and the peripheral wall portion adjacent portion 31 are cut by the up cut. More specifically, the peripheral portion 30 and the peripheral wall portion adjacent portion 31 are always on the right side with respect to the rotation axis O of the end mill 46, and the end mill 46 cuts the peripheral portion 30 and the peripheral wall portion adjacent portion 31 by up-cutting (FIG. 8(a) and FIG. 8(b)). At the time of cutting with the up-cut, the blade portion of the end mill 46 bites into the edge portion so as to scoop the edge portion of the peripheral portion 30 and the peripheral wall portion adjoining portion 31, so that the edge portion scooped by the blade portion is slanted. Can be lifted up.
  • the end mill 46 receives cutting resistance upward in the rotation axis direction of the end mill 46, and therefore, the peripheral portion 30 and the peripheral wall portion adjacent portion 31 are lifted and cut. Then, when the end mill 46 is removed from the housing 6 after cutting the peripheral portion 30 and the peripheral wall adjacent portion 31, the bottom wall portion 10 made of an aluminum alloy material is returned and deformed by the reaction force of the cutting resistance upward in the rotation axis direction. , Will bend toward the side opposite to the opening 9. As a result, the flatness of the bottom surface 28 of the recess 6a cannot be ensured, and the sealing performance of the hydraulic oil chamber formed inside the housing 6 may deteriorate.
  • the end mill 46 cuts the peripheral portion 30 by up-cutting, it cuts by cutting into the edge portion which is the hole edge of the peripheral portion 30, so that the wear amount of the blade portion of the end mill 46 increases and the tool life of the end mill 46 increases. There was a problem of getting worse.
  • the rotation direction P of the first end mill 53 and the direction in which the first end mill 53 relatively circulates around the through hole 10a are the same.
  • the peripheral portion 30 is processed so as to be oriented. That is, when the peripheral portion 30 is processed, the peripheral portion 30 is processed by causing the first end mill 53, which rotates in the clockwise direction, to rotate in the clockwise direction around the through hole 10a.
  • the peripheral portion 30 is always on the left side with respect to the rotation axis O1 of the first end mill 53, and the first end mill 53 processes the peripheral portion 30 by down-cutting.
  • the first end mill 53 cuts the peripheral portion 30 while receiving the downward cutting resistance in the rotation axis direction, but the downward cutting resistance in the rotation axis direction is smaller than the upward cutting resistance in the rotation axis direction in the upcut. Therefore, it is difficult to deform the bottom wall portion 10. Therefore, the bending of the bottom wall portion 10 when the first end mill 53 is detached from the housing 6 is minimized, and the appropriate flatness of the bottom surface 28 can be secured. Therefore, the sealing performance of the hydraulic oil chamber 21 formed inside the housing 6 can be improved.
  • the blade portion of the first end mill 53 cuts the smooth arc portion 52 (see FIG. 9A), so the amount of wear of the blade portion is suppressed. Therefore, the tool life of the first end mill 53 can be extended as compared with the up-cutting in which the edge portion where the blade portion easily bites is sequentially cut.
  • the side surface 11a of the peripheral wall portion 11 is arranged so that the rotation direction P of the first end mill 53 and the direction in which the first end mill 53 relatively circulates around the through hole 10a are opposite.
  • the side surface 11a is processed by orbiting the first end mill 53 rotating in the clockwise direction around the through hole 10a in the counterclockwise direction.
  • the first end mill 53 processes the side surface 11a by down-cutting in a state where the side surface 11a is always on the right side with respect to the rotation axis O1 of the first end mill 53. Therefore, the tool life of the first end mill 53 can be extended as compared with the case where the side surface 11a is machined by upcut.
  • the peripheral wall adjacent portion 31 which is a part of the bottom surface 28, is cut by up-cutting.
  • the peripheral wall portion adjacent portion 31 since the peripheral wall portion adjacent portion 31 is continuous with the peripheral wall portion 11, the peripheral wall portion adjacent portion 31 has a higher rigidity than the peripheral portion 30, and the lifting by the blade portion 46a of the first end mill 53 is suppressed. Therefore, the return deformation of the bottom wall portion 10 when the first end mill 53 is detached is suppressed, and the appropriate flatness of the bottom surface 28 can be secured.
  • the edge portion of the hole edge of the through hole 10a does not enter from the inside of the through hole 10a like the peripheral portion 30 and is not cut from the beginning of the processing, Compared with the processing, the first end mill 53 does not apply an excessive load. Also from this point, the return deformation of the bottom wall portion 10 is suppressed, and the appropriate flatness of the bottom surface 28 can be secured.
  • the plurality of clamp seats 37 on the outer peripheral portion of the housing 6 are clamped, an appropriate stress is applied to the bottom wall portion 10 via the peripheral wall portion 11 by the clamp, and the bottom wall portion 10 is not bent.
  • the bottom surface 28 of the bottom wall portion 10 can be cut in the suppressed state. Therefore, the deformation of the bottom wall portion 10 is suppressed, and the flatness of the bottom surface 28 is improved. Thereby, the sealing property of the hydraulic oil chamber 21 can be improved.
  • the bottom surface 28 of the bottom wall portion 10 of the housing 6 is roughly machined before the first contact surface 39 on the rear surface side of the housing 6 is machined.
  • the bottom wall portion 10 is easily deformed.
  • the bottom surface 28 is finished. That is, after the first contact surface 39 is cut with a small residual stress, the bottom surface 28, which is the final step, is finished. Therefore, even in the finishing process of the bottom surface 28, the cutting can be performed with a small residual stress, and the deformation of the bottom wall portion 10 can be suppressed.
  • the opening end surface 32 of the housing 6, which is the contact surface with the cover 8 is cut after the bottom surface 28 of the bottom wall portion 10 is processed.
  • the bottom surface 28 of the bottom wall portion 10 is formed to have a relatively large area in consideration of the swing of the cam ring 14, while the opening end surface 32 has a smaller area than the bottom surface 28.
  • the housing 6 is more likely to be deformed than when the opening end surface 32 having a small area is processed.
  • the bottom surface 28 is cut after cutting the opening end surface 32 that is the contact surface with the cover 8, the opening end surface 32 tilts due to the deformation of the housing 6 due to the processing of the bottom wall portion 10, and the bottom surface 28 is cut. There is a possibility that proper contact cannot be maintained. Therefore, by cutting the bottom surface 28 of the bottom wall portion 10 that is likely to be deformed and then cutting the opening end surface 32, it is possible to ensure high contact accuracy with the cover 8.
  • the opening end surface 32 is continuous with the surface 38a of the protruding portion 38 protruding from the peripheral wall portion 11, and the surface 38a is processed as a series of processing for processing the opening end surface 32. Since it is relatively difficult to machine the flatness of the surface 38a of the projecting portion 38 in addition to the flatness of the opening end surface 32 with high accuracy, it is easy to deform the bottom surface 28 of the bottom wall portion 28. By processing the opening end surface 32 and the surface 38a by a series of processing after the processing of, it is possible to secure high flatness of the surface 38a.
  • FIG. 16 is a cross-sectional view of the housing 6 and the like showing a solution to another problem of the present embodiment.
  • the peripheral portion 30 of the bottom surface 28 is cut by the down cutting while the first end mill 53 receives the downward cutting resistance in the rotation axis direction.
  • the bottom wall portion 10 may be slightly bent toward the side opposite to the opening portion 9 as shown on the upper side of FIG. At this time, with the bending of the bottom wall portion 10, the first contact surface 39 of the bottom wall portion 10 also slightly bends toward the side opposite to the opening 9.
  • the bent first contact surface 39 of the housing 6 in the state where the pump structure 7 is housed in the recess 6a. Is pressed against the flat mounting surface 3a of the engine block 3, and the housing 6 is mounted and fixed to the engine block 3 via the bolts 18.
  • the first contact surface 39 is pressed by the fastening force of the bolt 18 so as to follow the flat mounting surface 3 a, and the bottom wall portion 10 is corrected by the engine block 3.
  • an appropriate flatness of the bottom surface 28 can be ensured, and the sealing performance of the hydraulic oil chamber 21 formed inside the housing 6 can be improved.
  • the surface processing of the housing 6 is performed by moving the first end mill 53 and the like with respect to the housing 6 fixed by the clamp seat 37.
  • the first end mill 53 in the fixed state is disclosed.
  • the surface processing of the housing 6 may be performed by moving the housing 6 with respect to the above.
  • the peripheral portion of the through hole is processed so that the direction of relative rotation is the same, and the rotation direction of the end mill and the direction of relative rotation of the end mill around the through hole are opposite.
  • the side surface of the recess is processed so as to be oriented.
  • the end mill cuts the peripheral portion while moving around the peripheral portion of the through hole.
  • the end mill makes one revolution around the peripheral portion of the through hole, and then reverses the traveling direction in the opposite direction to the side surface side of the recess. Orbit around.
  • a housing having a recess having a through hole at the bottom is formed of a metal material, and a rotation direction of an end mill that processes the inner surface of the recess and the circumference of the through hole are provided.
  • the peripheral portion of the through hole is processed so that the direction in which the end mill relatively circulates is the same direction, the rotation direction of the end mill, and the direction in which the end mill relatively circulates around the through hole.
  • the side surface of the concave portion is processed so that the direction of the concave portion is opposite to that of the concave portion.
  • the mating member is attached to a mating member on a surface of the housing opposite to the opening of the recess.
  • a contact surface is provided for contacting with, the contact surface is cut by a face mill, and the bottom surface of the recess is cut by the end mill.
  • the bottom surface of the recess of the housing is cut before the contact surface is cut.
  • the contact surface of the housing with the cover is cut after the bottom surface of the recess is cut.
  • the oil pump is provided with a recess having a through hole into which a drive shaft is inserted in the bottom wall and a surface opposite to the opening of the recess, and when mounted on a mating member.
  • the mating member is provided with a contact surface that comes into contact with the mating member, and a plurality of mounting portions that are provided on an outer peripheral portion of the mating member and that are mounted to the mating member via a fixing member.
  • a housing made of an aluminum alloy that is bent toward the member side, and a drive shaft that is disposed in the recess and inserted into the through hole, are rotationally driven to discharge the fluid sucked from the suction portion.
  • a cover provided with an insertion hole into which the drive shaft is inserted and closing the opening of the recess.
  • the fixing member is a bolt
  • the mounting portion is a bolt insertion hole into which the bolt is inserted.
  • the pump structure is configured such that a rotor fixed to the drive shaft rotates to change volumes of a plurality of hydraulic oil chambers and thereby the suction portion.
  • the fluid sucked in from is discharged from the discharge portion, and the bottom surface of the recess forms a part of the hydraulic oil chamber.
  • the pump structure has a swing member capable of swinging in the recess, and the swing amount of the swing member causes the discharge amount to change. Is variable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Milling Processes (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

According to the present invention, a housing (6) formed of aluminum alloy has: a bottom wall part (10) that is formed relatively thin; and an annular peripheral wall part (11) that extends upward from the outer edge of the bottom wall part (10). A through-hole (10a) is formed through a center of the bottom wall part (10). A bottom surface (28) and a side surface (11a) of a recess part (6a) formed by the bottom wall part (10) and the peripheral wall part (11) are cut by a first end mill (53). During this cutting, a surrounding part (30) is processed by moving the first end mill (53) such that the surrounding part (30) orbits about the fixed housing (6) in a clockwise direction (feeding direction V), and then a peripheral wall part adjacent part (31) and the side surface (11a) are processed by moving the first end mill (53) such that the feeding direction of the first end mill (53) is reversed, and the surrounding part (30) orbits in a counterclockwise direction (feeding direction W).

Description

凹部の底壁部に貫通孔を有する部材の表面加工方法、オイルポンプの製造方法およびオイルポンプSurface processing method for member having through hole in bottom wall of recess, oil pump manufacturing method, and oil pump
 本発明は、凹部の底壁部に貫通孔を有する部材の表面加工方法、オイルポンプの製造方法およびオイルポンプに関する。 The present invention relates to a surface processing method for a member having a through hole in the bottom wall of a recess, an oil pump manufacturing method, and an oil pump.
 特許文献1に記載のオイルポンプは、凹部が形成されたハウジングを有しており、このハウジングの凹部には、インナーロータやアウターロータ等を有するポンプ構成体が配置されている。また、凹部の底面には、貫通孔が設けられており、該貫通孔に、インナーロータを回転駆動する駆動軸が挿入されている。 The oil pump described in Patent Document 1 has a housing in which a recess is formed, and a pump structure having an inner rotor, an outer rotor, etc. is arranged in the recess of this housing. Further, a through hole is provided on the bottom surface of the recess, and a drive shaft for rotationally driving the inner rotor is inserted into the through hole.
 凹部の底面は、ハウジング内部に形成される作動油室の一部を構成するため、作動油室のシール性に影響を及ぼす部位となっている。そこで、凹部の底面は、作動油室のシール性を得るために、エンドミルを用いて仕上げ加工され、これにより、高い平面度が確保されるようになっている。この底面の仕上げ加工は、エンドミルを貫通孔の周りに相対的に周回させて行われる。また、底面の仕上げ加工時には、凹部の側面も加工される。一般的には、側面を加工する際、いわゆるダウンカットで側面を切削する。これは、エンドミルの工具寿命を延長させるためであって、エンドミルの回転方向に対してエンドミルの周回方向を逆にして側面を切削している。 The bottom surface of the recess forms a part of the hydraulic oil chamber formed inside the housing, and is therefore a part that affects the sealing performance of the hydraulic oil chamber. Therefore, the bottom surface of the recess is finished by using an end mill in order to obtain the sealing property of the hydraulic oil chamber, whereby high flatness is ensured. This finishing of the bottom surface is performed by relatively rotating the end mill around the through hole. Further, when finishing the bottom surface, the side surface of the recess is also processed. Generally, when processing the side surface, the side surface is cut by so-called down-cutting. This is to extend the tool life of the end mill, and the side surface is cut with the orbiting direction of the end mill being reversed with respect to the rotation direction of the end mill.
特開2007-85262号公報JP, 2007-85262, A
 上記のようにエンドミルの回転方向に対してエンドミルの周回方向を逆にした状態で、エンドミルによって底面を加工する際には、エンドミルの刃部が底面に食い込み、底面を掬うように切削するので、エンドミルにはエンドミルの回転軸線方向上向きの切削抵抗が作用する。特に、貫通孔の周囲部の底面を切削する際には、エンドミルの刃部が貫通孔の孔縁であるエッジ部を常に掬うように刃部が底面を切削するのでエンドミルの回転軸線方向上向きの切削抵抗がより大きく作用することになる。このように、エンドミルの回転軸線方向上向きの切削抵抗が作用したまま刃部が底面を切削すると、底面が刃部により持ち上げられながら切削される結果、底面が深く削られ過ぎてしまう。また、凹部の加工後には、加工時に作用していた回転軸線方向上向きの切削抵抗が無くなることにより、底壁部が凹部の開口部とは反対側に向かって撓んでしまう。このため、作動油室のシール性を得るのに必要な底面の平面度を確保することが難しいという問題があった。この問題は、凹部の底壁部が薄肉に形成されているほど、また、貫通孔の直径が大きいほど顕著となる。 When machining the bottom surface with the end mill in a state where the orbiting direction of the end mill is reversed with respect to the rotation direction of the end mill as described above, the blade part of the end mill bites into the bottom surface and scoops the bottom surface, so it is cut. The cutting force acting on the end mill in the direction of the rotation axis of the end mill is upward. In particular, when cutting the bottom surface of the peripheral part of the through hole, the blade part of the end mill always scoops the edge part that is the hole edge of the through hole, so the blade part cuts the bottom surface, so Cutting resistance will act more greatly. As described above, when the blade portion cuts the bottom surface while the cutting resistance upward in the rotation axis direction of the end mill is applied, the bottom surface is cut while being lifted by the blade portion, and the bottom surface is too deeply cut. Further, after the recess is processed, the cutting resistance in the direction of the rotation axis upward acting at the time of processing disappears, so that the bottom wall portion is bent toward the side opposite to the opening of the recess. Therefore, there is a problem that it is difficult to secure the flatness of the bottom surface necessary to obtain the sealing property of the hydraulic oil chamber. This problem becomes more remarkable as the bottom wall of the recess is formed thinner and the diameter of the through hole is larger.
 また、エンドミルに作用する上記回転軸線方向上向きの切削抵抗を抑制するために、エンドミルの回転方向に対してエンドミルを周回させる方向を同じ方向とすることが考えられる。しかし、このようにすると、凹部の側面の加工時にアップカットで側面を切削することになり、エンドミルの工具寿命が短くなる虞があった。 In addition, in order to suppress the above-mentioned cutting resistance acting on the end mill in the direction of the rotation axis upward, it is conceivable that the direction in which the end mill orbits is the same as the direction in which the end mill rotates. However, in this case, the side surface of the recess is to be cut by up-cutting when processing the side surface of the recess, which may shorten the tool life of the end mill.
 本発明は、従来の実情に鑑みて案出されたもので、凹部の底面の平面度を確保しつつ、エンドミルの工具寿命を向上させることが可能な、凹部の底壁部に貫通孔を有する部材の表面加工方法等を提供することを一つの目的としている。 The present invention has been devised in view of the conventional circumstances, and has a through hole in the bottom wall portion of the recess that can improve the tool life of the end mill while ensuring the flatness of the bottom surface of the recess. It is an object to provide a surface treatment method for members and the like.
 本発明の好ましい態様の一つとしては、エンドミルの回転方向と、貫通孔の周りにエンドミルを相対的に周回させる方向とが同じ方向となるように、凹部に設けられた貫通孔の周囲部を加工し、エンドミルの回転方向と、貫通孔の周りにエンドミルを相対的に周回させる方向とが逆方向となるように、凹部の側面を加工する。 As one of the preferred embodiments of the present invention, the peripheral portion of the through hole provided in the recess is so arranged that the rotation direction of the end mill and the direction in which the end mill relatively circulates around the through hole are the same direction. The side surface of the recess is processed so that the rotation direction of the end mill and the direction in which the end mill relatively circulates around the through hole are opposite.
 本発明の好ましい態様によれば、凹部の底面の平面度を確保しつつ、エンドミルの工具寿命を向上させることができる。 According to a preferred aspect of the present invention, it is possible to improve the tool life of the end mill while ensuring the flatness of the bottom surface of the recess.
内燃機関のエンジンブロックに取り付けた状態のオイルポンプを示す側面図である。It is a side view showing an oil pump attached to an engine block of an internal combustion engine. 図1の線A-Aに沿って切断したオイルポンプ等をフロントカバーを取り付けた状態で示した断面図である。FIG. 2 is a sectional view showing an oil pump and the like cut along the line AA in FIG. 1 with a front cover attached. カムリングが揺動する前のオイルポンプの断面図である。It is a sectional view of an oil pump before a cam ring rocks. カムリングが揺動した後のオイルポンプの断面図である。It is sectional drawing of an oil pump after a cam ring rock|fluctuates. ハウジングの正面図である。It is a front view of a housing. ハウジングの背面図である。It is a rear view of a housing. 図5の線B-Bに沿って切断したハウジングの断面図である。FIG. 6 is a cross-sectional view of the housing taken along the line BB of FIG. 5. (a)は、エンドミルを用いて被削材の上面をアップカットで切削加工するときのエンドミルと被削材の位置関係を段階的に示した説明図、(b)は、(a)の線C-Cに沿って切断したエンドミルおよび被削材の断面図である。(A) is an explanatory view showing the positional relationship between the end mill and the work material stepwise when the upper surface of the work material is cut by up-cut using the end mill, and (b) is the line of (a). It is sectional drawing of the end mill and work material which were cut|disconnected along CC. (a)は、エンドミルを用いて被削材の上面をダウンカットで切削加工するときのエンドミルと被削材の位置関係を段階的に示した説明図、(b)は、(a)の線D-Dに沿って切断したエンドミルおよび被削材の断面図である。(A) is an explanatory view showing the positional relationship between the end mill and the work material stepwise when the upper surface of the work material is down-cut by using the end mill, (b) is the line of (a) It is a sectional view of an end mill and a work material cut along DD. エンドミルを用いて被削材の側面をアップカットで切削加工するときのエンドミルと被削材の位置関係を示した斜視図である。FIG. 6 is a perspective view showing a positional relationship between the end mill and the work material when the side surface of the work material is cut by upcut using the end mill. エンドミルを用いて被削材の側面をダウンカットで切削加工するときのエンドミルと被削材の位置関係を示した斜視図である。FIG. 6 is a perspective view showing a positional relationship between the end mill and the work material when the side surface of the work material is cut by a down cut using the end mill. ハウジングの底面、側面、開口端面等の粗加工工程を示す工程図である。FIG. 6 is a process diagram showing a roughing process of the bottom surface, side surfaces, opening end surface, etc. of the housing. ハウジングの接触面の仕上げ工程を示す工程図である。It is a flowchart showing a finishing process of a contact surface of a housing. ハウジングの底面、側面、開口端面等の仕上げ加工工程を示す工程図である。FIG. 6 is a process diagram showing a finish processing process of the bottom surface, side surfaces, opening end surface, and the like of the housing. ハウジングの凹部の従来技術の表面加工方法の仕上げ加工工程を示す工程図である。FIG. 7 is a process diagram showing a finish processing step of a conventional surface processing method for a recess of a housing. 本実施形態の別の課題の解決方法を示すハウジング等の断面図である。It is sectional drawing of a housing etc. which shows the solution of another subject of this embodiment.
 以下、本発明のオイルポンプの一実施形態を図面に基づき説明する。 An embodiment of the oil pump of the present invention will be described below with reference to the drawings.
 〔オイルポンプの構成〕
 図1は、内燃機関のエンジンブロック3に取り付けた状態のオイルポンプ1を示す側面図である。図2は、図1の線A-Aに沿って切断したオイルポンプ1等をフロントカバー4に取り付けた状態で示した断面図である。
[Structure of oil pump]
FIG. 1 is a side view showing an oil pump 1 attached to an engine block 3 of an internal combustion engine. FIG. 2 is a sectional view showing the oil pump 1 and the like cut along the line AA in FIG. 1 attached to the front cover 4.
 オイルポンプ1は、可変容量形のオイルポンプとして構成されており、クランクシャフト2から伝達される回転力によって回転駆動されることにより、内燃機関における各摺動部やバルブタイミング制御装置等の種々の機器類にオイル(潤滑油)を供給するものである。オイルポンプ1は、エンジンブロック3とフロントカバー4との間に設けられたポンプ収容部5内に収容されている。オイルポンプ1は、クランクシャフト2の軸方向の一端側が開口し、他端側が閉塞されたハウジング6と、該ハウジング6内に収容されるポンプ構成体7と、該ポンプ構成体7を収容したハウジング6の開口部9を閉塞するカバー8と、を備えている。 The oil pump 1 is configured as a variable displacement oil pump, and is rotatably driven by the rotational force transmitted from the crankshaft 2 to allow various sliding parts in an internal combustion engine, various valve timing control devices, and the like. It supplies oil (lubricating oil) to equipment. The oil pump 1 is housed in a pump housing section 5 provided between the engine block 3 and the front cover 4. The oil pump 1 includes a housing 6 in which one end side of the crankshaft 2 in the axial direction is open and the other end side is closed, a pump structure 7 housed in the housing 6, and a housing containing the pump structure 7. And a cover 8 that closes the opening 9 of 6.
 ハウジング6は、金属材料、例えばアルミニウム合金材料を用いてアルミダイカストにより凹状に形成されている。ハウジング6のうちクランクシャフト2の軸方向一端部2a側に位置する端面には、ポンプ構成体7を収容する凹部6aが開口形成されている。凹部6aは、後述する第1エンドミル53を用いて凹部6aの内面を切削加工によって仕上げることにより形成されている。凹部6aは、底壁部10と、該底壁部10と直交するように該底壁部10から立ち上がる環状の周壁部11とによって形成されている。底壁部10には、クランクシャフト2を回転可能に支持する円形の貫通孔10aがクランクシャフト2の回転軸線方向に沿って貫通形成されている。 The housing 6 is formed in a concave shape by aluminum die casting using a metal material such as an aluminum alloy material. A recess 6a for accommodating the pump component 7 is formed in an opening on an end surface of the housing 6 located on the axially one end 2a side of the crankshaft 2. The recess 6a is formed by finishing the inner surface of the recess 6a by cutting using a first end mill 53 described later. The recess 6 a is formed by a bottom wall portion 10 and an annular peripheral wall portion 11 that rises from the bottom wall portion 10 so as to be orthogonal to the bottom wall portion 10. A circular through hole 10a that rotatably supports the crankshaft 2 is formed through the bottom wall portion 10 along the rotation axis direction of the crankshaft 2.
 ポンプ構成体7は、主として、回転軸であるクランクシャフト2と、該クランクシャフト2によって回転駆動されるロータ12と、後述するベーン13およびカムリング14によって構成される。ロータ12は、クランクシャフト2の外周部が挿入された状態で、凹部6a内に収容される。 The pump structure 7 is mainly composed of a crankshaft 2 which is a rotating shaft, a rotor 12 which is rotationally driven by the crankshaft 2, a vane 13 and a cam ring 14 which will be described later. The rotor 12 is housed in the recess 6a with the outer peripheral portion of the crankshaft 2 inserted.
 カバー8は、ハウジング6と同様に、金属材料、例えばアルミニウム合金材料から形成され、ハウジング6の貫通孔10aに対応する位置に、クランクシャフト2を回転可能に支持する円形の挿入孔7aを有し、8つの固定部材、例えばボルト17をもって、ハウジング6に取付固定されている。また、カバー8は、4つの固定部材、例えばボルト18をもって、ハウジング6と共にエンジンブロック3に取付固定される。 Like the housing 6, the cover 8 is formed of a metal material, for example, an aluminum alloy material, and has a circular insertion hole 7a that rotatably supports the crankshaft 2 at a position corresponding to the through hole 10a of the housing 6. , Is fixed to the housing 6 with eight fixing members, for example, bolts 17. The cover 8 is attached and fixed to the engine block 3 together with the housing 6 with four fixing members, for example, bolts 18.
 図3は、カムリング14が揺動する前のオイルポンプ1の断面図である。図4は、カムリング14が揺動した後のオイルポンプ1の断面図である。 FIG. 3 is a sectional view of the oil pump 1 before the cam ring 14 swings. FIG. 4 is a sectional view of the oil pump 1 after the cam ring 14 swings.
 ポンプ構成体7は、回転軸であるクランクシャフト2と、該クランクシャフト2の外周部に組付されたロータ12と、ベーン13、カムリング14、コイルばね15等とから構成されている。ポンプ構成体7は、ロータ12がクランクシャフト2と一体に回転することによって、複数の作動油室21の容積が変化して吸入部から吸入した流体であるオイルを吐出部から吐出するものである。 The pump structure 7 is composed of a crankshaft 2 which is a rotating shaft, a rotor 12 mounted on the outer peripheral portion of the crankshaft 2, a vane 13, a cam ring 14, a coil spring 15 and the like. The pump structure 7 discharges the oil, which is the fluid sucked from the suction portion, from the discharge portion due to the volumes of the plurality of hydraulic oil chambers 21 changing as the rotor 12 rotates integrally with the crankshaft 2. ..
 図3および図4に示すように、ロータ12は、凹部6aの中央に回転可能に設けられたクランクシャフト2の外周部に、相対回転を規制された状態で嵌合し、凹部6a内に収容されている。また、ロータ12の外周側には、該ロータ12の内部中心側から径方向外側へ放射状に延びる9つのスリット19がロータ12の周方向等間隔位置に開口形成され、各スリット19内には、金属製の薄い板状をなすベーン13が出没可能に配置されている。また、ロータ12の外周面とハウジング6の内周面との間には、ピボットピン20を中心に揺動可能な揺動部材であるカムリング14が設けられている。すなわち、カムリング14の内周面に、ベーン13の先端面が摺接することで、ロータ12と、該ロータ12の周方向に対向する2つのベーン13と、カムリング14と、ハウジング6と、カバー8とによって囲まれた空間が作動油室21となる。 As shown in FIGS. 3 and 4, the rotor 12 is fitted in the outer peripheral portion of the crankshaft 2 rotatably provided in the center of the recess 6a in a state in which the relative rotation is restricted, and is housed in the recess 6a. Has been done. Further, on the outer peripheral side of the rotor 12, nine slits 19 extending radially outward from the inner center side of the rotor 12 are formed at equal intervals in the circumferential direction of the rotor 12, and in each slit 19, A thin plate-shaped vane 13 made of metal is arranged so as to be able to appear and disappear. Further, between the outer peripheral surface of the rotor 12 and the inner peripheral surface of the housing 6, there is provided a cam ring 14 which is a rocking member capable of rocking around the pivot pin 20. That is, the tip surface of the vane 13 is slidably in contact with the inner peripheral surface of the cam ring 14, so that the rotor 12, two vanes 13 facing each other in the circumferential direction of the rotor 12, the cam ring 14, the housing 6, and the cover 8 are provided. The space surrounded by and becomes the hydraulic oil chamber 21.
 また、ハウジング6内にはピボットピン20と対向する部位に、所定のセット荷重Wsにより圧縮された付勢部材、例えばコイルばね15が、カムリング14に突出形成されたアーム部14aの一側部に弾性的に当接可能に配置されている。 A biasing member, for example, a coil spring 15 compressed by a predetermined set load Ws is provided at a portion of the housing 6 facing the pivot pin 20 on one side of the arm portion 14 a projectingly formed on the cam ring 14. It is arranged so as to be elastically contactable.
 また、カムリング14の外周域には、ピボットピン20と、カムリング14の外周部に設けられた第1、第2シール部材23,24とによって一対の第1、第2制御油室25,26が画定されている。 A pair of first and second control oil chambers 25 and 26 are formed in the outer peripheral area of the cam ring 14 by the pivot pin 20 and the first and second seal members 23 and 24 provided on the outer peripheral portion of the cam ring 14. It is demarcated.
 第1制御油室25には、底壁部10に形成された吐出ポートから吐出されたオイルが供給される内燃機関のメインオイルギャラリーから油圧が導かれる。これにより、第1制御油室25に面するカムリング14の外周面によって構成された第1受圧面14bが、吐出ポートからの油圧を受けて、コイルばね15の付勢力に抗してカムリング14の偏心量を減少させる方向(図3,4中の反時計方向)へ揺動力(移動力)を付与する。 Hydraulic pressure is introduced into the first control oil chamber 25 from the main oil gallery of the internal combustion engine to which the oil discharged from the discharge port formed in the bottom wall portion 10 is supplied. As a result, the first pressure receiving surface 14 b formed by the outer peripheral surface of the cam ring 14 facing the first control oil chamber 25 receives the hydraulic pressure from the discharge port and resists the urging force of the coil spring 15 to move the cam ring 14. A swinging force (moving force) is applied in a direction (counterclockwise direction in FIGS. 3 and 4) in which the amount of eccentricity is reduced.
 一方、第2制御油室26も、メインオイルギャラリーからの油圧が電磁切換弁27のオン、オフ作動により適宜導入される。第2制御油室26に面するカムリング14の外周面によって構成される第2受圧面14cが吐出圧を受けて、カムリング14の偏心量を増大させる方向(図3,4中の時計方向)へ揺動力(移動力)が付与される。 On the other hand, also in the second control oil chamber 26, the hydraulic pressure from the main oil gallery is appropriately introduced by the on/off operation of the electromagnetic switching valve 27. The second pressure receiving surface 14c formed by the outer peripheral surface of the cam ring 14 facing the second control oil chamber 26 receives the discharge pressure and increases the eccentric amount of the cam ring 14 (clockwise in FIGS. 3 and 4). A swinging force (moving force) is applied.
 かかるオイルポンプ1は、内燃機関を制御するコントロールユニットから電磁切換弁27に供給される励磁電流をオンからオフにすることにより、図3に示すカムリング14の揺動前の状態から、図4に示すカムリング14の揺動後の状態へと切り換えられる。 The oil pump 1 shown in FIG. 4 changes from the state before the swing of the cam ring 14 shown in FIG. 3 to the state shown in FIG. 4 by turning the exciting current supplied from the control unit for controlling the internal combustion engine to the electromagnetic switching valve 27 from ON to OFF. The cam ring 14 is switched to the state after swinging as shown.
 [ハウジングの構造]
 図5は、ハウジング6の正面図である。
[Construction of housing]
FIG. 5 is a front view of the housing 6.
 ハウジング6の凹部6aは、比較的薄肉であり、概ね円形の板状に形成された底壁部10と、この底壁部10の外縁から立ち上がり、底壁部10を囲む概ね円環状の周壁部11と、を有している。底壁部10は、凹部6aの開口部9側の面である底面28を有しており、底面28のほぼ中央位置には、クランクシャフト2が回転可能に挿入される比較的大径の円形状をなす貫通孔10aが貫通形成されている。底面28の表面積は、上述したカムリング14が揺動する領域を確保するために、カムリング14の外径よりも大きくなっている。底面28は、該底面28と直交する周壁部11の内周側の面である側面11aと繋がっている。底面28および側面11aは、後述する第1エンドミル53を用いて切削加工によって仕上げることにより形成される。 The recess 6a of the housing 6 is relatively thin and has a substantially circular plate-shaped bottom wall portion 10 and a substantially annular peripheral wall portion that rises from the outer edge of the bottom wall portion 10 and surrounds the bottom wall portion 10. 11 and. The bottom wall portion 10 has a bottom surface 28 that is a surface on the opening 9 side of the concave portion 6a, and a relatively large diameter circle into which the crankshaft 2 is rotatably inserted at a substantially central position of the bottom surface 28. A through hole 10a having a shape is formed so as to penetrate therethrough. The surface area of the bottom surface 28 is larger than the outer diameter of the cam ring 14 in order to secure the above-described area where the cam ring 14 swings. The bottom surface 28 is connected to a side surface 11 a that is an inner peripheral surface of the peripheral wall portion 11 orthogonal to the bottom surface 28. The bottom surface 28 and the side surface 11a are formed by finishing by cutting using a first end mill 53 described later.
 ここで、以下の説明の便宜上、貫通孔10aの周囲の底面28の部分であり、貫通孔10aの径方向において該貫通孔10aの縁部と周壁部11の側面11aとの間のほぼ中央の位置を図5に破線の円29で示したときに、貫通孔10aの縁部から円29までの環状の領域を「周囲部30」と定義する。また、円29から周壁部11の側面11aまでの周壁部11に隣接する底面28の環状の領域を「周壁部隣接部31」と定義する。なお、円29は、図5を簡略化するために、凹部6a内のばね収容室22等の凹凸を省略して凹部6aの内周が円形であるものとして描いたときの形状となっている。 Here, for convenience of the following description, it is a portion of the bottom surface 28 around the through hole 10a, and substantially in the center between the edge portion of the through hole 10a and the side surface 11a of the peripheral wall portion 11 in the radial direction of the through hole 10a. When the position is indicated by the broken line circle 29 in FIG. 5, the annular region from the edge of the through hole 10a to the circle 29 is defined as the "peripheral portion 30". Further, an annular region of the bottom surface 28 adjacent to the peripheral wall portion 11 from the circle 29 to the side surface 11a of the peripheral wall portion 11 is defined as a "peripheral wall portion adjacent portion 31". In order to simplify FIG. 5, the circle 29 has a shape when the concave and convex portions of the spring accommodating chamber 22 and the like in the recess 6a are omitted and the inner circumference of the recess 6a is circular. ..
 周壁部隣接部31は、周壁部11と連続しているため、貫通孔10aと隣接する周囲部30と比べて剛性が高い部位となっている。 Since the peripheral wall portion adjacent portion 31 is continuous with the peripheral wall portion 11, it has a higher rigidity than the peripheral portion 30 adjacent to the through hole 10a.
 周壁部11の外周部は、貫通孔10aの径方向外側へ突出形成された9個のボス部33a~33iを有している。また、周壁部11の先端には、凹部6aの開口部9を囲む平坦な開口端面32が形成されている。開口端面32は、ハウジング6にカバー8を取り付けたときにカバー8と当接する当接面となる。開口端面32は、後述する第1フェースミル55を用いて切削加工によって仕上げることにより形成される。開口端面32のうち6つのボス部33a,33c,33e,33f,33h,33iに対応する位置には、ハウジング6にカバー8を取り付ける際にボルト17がねじ留めされる6つの雌ねじ穴34がそれぞれ形成されている。また、開口端面32のうち2つのボス部33b,33dに対応する位置には、カバー8と共にハウジング6をエンジンブロック3に取り付ける際にボルト18が挿入される2つのボルト挿入孔(取付部)35がそれぞれ貫通形成されている。さらに、開口端面32のうちボス部33gに対応する位置には、ハウジング6へのカバー8の取付時にカバー8との位置決めに供する円形のノックピン穴36が形成されている。 The outer peripheral portion of the peripheral wall portion 11 has nine boss portions 33a to 33i that are formed to project radially outward of the through hole 10a. In addition, a flat opening end face 32 that surrounds the opening 9 of the recess 6 a is formed at the tip of the peripheral wall 11. The open end surface 32 serves as a contact surface that contacts the cover 8 when the cover 8 is attached to the housing 6. The open end surface 32 is formed by finishing by cutting using a first face mill 55 described later. At the positions corresponding to the six boss portions 33a, 33c, 33e, 33f, 33h, 33i of the opening end face 32, six female screw holes 34 into which the bolts 17 are screwed when the cover 8 is attached to the housing 6 are respectively provided. Has been formed. Further, two bolt insertion holes (mounting portions) 35 into which bolts 18 are inserted when the housing 6 is attached to the engine block 3 together with the cover 8 are provided at positions corresponding to the two boss portions 33b and 33d on the opening end surface 32. Are formed through each. Further, a circular knock pin hole 36 used for positioning with the cover 8 when the cover 8 is attached to the housing 6 is formed at a position corresponding to the boss portion 33g on the open end surface 32.
 また、周壁部11の外周部の一部の領域には、該外周部から貫通孔10aの径方向外側に張り出した張出部38が形成されている。張出部38の外周部は、貫通孔10aの径方向外側へ突出形成された3つのボス部33j,33k,33mを有している。張出部38は、開口端面32と同一平面上にあり、かつ開口端面32と連続する平坦な面38aを有している。面38aは、開口端面32を加工する際の一連の加工として、後述するフェースミル55を用いて切削加工によって仕上げることにより形成される。面38aのうちボス部33j,33kとの間の領域付近およびボス部33mに対応する位置には、ハウジング6にカバー8を取り付ける際にボルト17がねじ留めされる雌ねじ穴34が形成されている。また、面38aのうち2つのボス部33j,33kに対応する位置には、カバー8と共にハウジング6をエンジンブロック3に取り付ける際にボルト18が挿入される2つのボルト挿入孔(取付部)35がそれぞれ形成されている。 Further, in a part of the outer peripheral portion of the peripheral wall portion 11, a protruding portion 38 protruding from the outer peripheral portion to the outside in the radial direction of the through hole 10a is formed. The outer peripheral portion of the overhanging portion 38 has three boss portions 33j, 33k, 33m that are formed to project radially outward of the through hole 10a. The overhanging portion 38 has a flat surface 38 a that is flush with the opening end surface 32 and is continuous with the opening end surface 32. The surface 38a is formed by finishing by cutting using a face mill 55 described later as a series of processing when processing the opening end surface 32. Female screw holes 34 into which the bolts 17 are screwed when the cover 8 is attached to the housing 6 are formed near the area between the bosses 33j and 33k on the surface 38a and at a position corresponding to the bosses 33m. .. Further, two bolt insertion holes (mounting portions) 35 into which the bolts 18 are inserted when the housing 6 is attached to the engine block 3 together with the cover 8 are provided at positions corresponding to the two boss portions 33j and 33k on the surface 38a. Each is formed.
 周壁部11および張出部38の外周面のうちボス部33d,33h,33kに隣接する位置には、凹部6aの底面28、側面11aおよび開口端面32の加工の際にハウジング6をクランプする3つのクランプ座37が突出形成されている。各クランプ座37は、概ね三角形の板状をなしており、貫通孔10aの貫通方向において開口端面32から貫通孔10a側にオフセットした位置に形成されている。クランプ座37は、底面28、側面11aおよび開口端面32の加工時に加工の基準となる面である後述する面37bを有する。 At the positions adjacent to the boss portions 33d, 33h, 33k on the outer peripheral surfaces of the peripheral wall portion 11 and the overhang portion 38, the housing 6 is clamped at the time of processing the bottom surface 28, the side surface 11a and the opening end surface 32 of the recess 6a. Two clamp seats 37 are formed so as to project. Each clamp seat 37 has a substantially triangular plate shape, and is formed at a position offset from the opening end face 32 toward the through hole 10a side in the through direction of the through hole 10a. The clamp seat 37 has a bottom surface 28, a side surface 11a, and a surface 37b, which will be described later, which serves as a reference surface for processing when processing the opening end surface 32.
 図6は、ハウジング6の背面図である。 FIG. 6 is a rear view of the housing 6.
 ハウジング6の開口部9に対して反対側、より詳細には、底壁部10のうち底面28の背面側には、内燃機関に取り付けたときに相手側部材となるエンジンブロック3と接触する第1接触面39が形成されている。第1接触面39は、図6に示すように、底壁部10のボス部33a寄りの位置に、貫通孔10aの周方向に沿って半円弧状に連続している。また、第1接触面39から離間した位置に設けられたボス部33dの面40は、第1接触面39と同一平面上にあり、エンジンブロック3に取り付けられたときにエンジンブロック3と接触する第1接触面となる。第1接触面39および面40は、後述する第1フェースミル55を用いて切削加工によって仕上げることにより形成されている。 On the side opposite to the opening 9 of the housing 6, more specifically, on the rear side of the bottom surface 28 of the bottom wall portion 10, the first block that comes into contact with the engine block 3 that is a counterpart member when attached to the internal combustion engine. One contact surface 39 is formed. As shown in FIG. 6, the first contact surface 39 is continuous in a semi-circular shape at a position near the boss 33a of the bottom wall 10 along the circumferential direction of the through hole 10a. In addition, the surface 40 of the boss portion 33d provided at a position separated from the first contact surface 39 is on the same plane as the first contact surface 39, and contacts the engine block 3 when attached to the engine block 3. It becomes the first contact surface. The first contact surface 39 and the surface 40 are formed by finishing by cutting using a first face mill 55 described later.
 また、張出部38の先端に位置する部位、つまり張出部38のうち第1接触面39から貫通孔10aの径方向に最も離間した部位には、第1接触面39と同一平面上にあり、内燃機関に取り付けられたときにエンジンブロック3と接触する第2接触面41が形成されている。第2接触面41は、第1接触面39を加工する際の一連の加工として、後述する第1フェースミル55を用いて切削加工によって仕上げることにより形成される。 In addition, a portion located at the tip of the overhanging portion 38, that is, a portion of the overhanging portion 38 that is most distant from the first contact surface 39 in the radial direction of the through hole 10a is flush with the first contact surface 39. There is a second contact surface 41 that contacts the engine block 3 when attached to the internal combustion engine. The second contact surface 41 is formed by finishing by cutting using a first face mill 55 described later as a series of processing when processing the first contact surface 39.
 第1接触面39と第2接触面41との間の張出部38の部位には、ハウジング6の軽量化のために、第1、第2接触面39,41に対し開口部9側に窪んだ8つの肉盗み部42a~42hが設けられている。 In order to reduce the weight of the housing 6, a portion of the overhanging portion 38 between the first contact surface 39 and the second contact surface 41 is located closer to the opening 9 than the first and second contact surfaces 39, 41. Eight recessed meat steal portions 42a to 42h are provided.
 また、第1、第2接触面39,41や面40以外の加工されていないハウジング6の部分、例えば肉盗み部42a~42hや、ボス部33d,33hに隣接し、第1、第2接触面39,41に対し開口部9側に窪んだ窪み部43,44には、アルミダイカストにより形成された鋳肌面が残されている。ボス部33mに隣接した肉盗み部42aと、窪み部43,44とは、第1、第2接触面39,41の後述する仕上げ加工の際にクランプされる部位となる。なお、肉盗み部42a、窪み部43,44以外の鋳肌面を有する他の部位も、第1、第2接触面39,41の仕上げ加工の際にクランプされる部位とすることができる。 In addition, parts of the housing 6 other than the first and second contact surfaces 39 and 41 and the surface 40 which are not processed, for example, the meat steal portions 42a to 42h and the boss portions 33d and 33h, are adjacent to each other, and the first and second contact surfaces Casting surfaces formed by aluminum die casting are left in the recesses 43 and 44 that are recessed toward the opening 9 side with respect to the surfaces 39 and 41. The meat stealing portion 42a adjacent to the boss 33m and the recesses 43 and 44 are portions to be clamped during the finishing process of the first and second contact surfaces 39 and 41 described later. Other parts having a casting surface other than the meat stealing part 42a and the recessed parts 43 and 44 can also be clamped at the time of finishing the first and second contact surfaces 39 and 41.
 図7は、図5の線B-Bに沿って切断したハウジング6の断面図である。 FIG. 7 is a cross-sectional view of the housing 6 taken along the line BB in FIG.
 図7に示すように、貫通孔10aと第1接触面39との間の部位には、クランクシャフト2に設けられた段状部2b(図2参照)との干渉を避ける溝部45が、第1接触面39から凹部6a側に窪み形成されている。 As shown in FIG. 7, a groove portion 45 that avoids interference with the stepped portion 2b (see FIG. 2) provided on the crankshaft 2 is provided at a portion between the through hole 10a and the first contact surface 39. A recess is formed from the first contact surface 39 toward the recess 6a.
 [底面のアップカット]
 図8(a)は、エンドミル46を用いて被削材47の上面47aをアップカットで切削加工するときのエンドミル46と被削材47の位置関係を段階的に示した説明図、図8(b)は、図8(a)の線C-Cに沿って切断したエンドミル46および被削材47の断面図である。なお、図8(b)では、エンドミル46の螺旋状部分の断面ハッチングを省略している。
[Bottom up cut]
FIG. 8A is an explanatory view showing the positional relationship between the end mill 46 and the work material 47 stepwise when the upper surface 47a of the work material 47 is cut by the up-cut using the end mill 46, and FIG. FIG. 8B is a sectional view of the end mill 46 and the work material 47 taken along the line CC of FIG. 8A. In FIG. 8B, cross-sectional hatching of the spiral portion of the end mill 46 is omitted.
 以下に、エンドミル46を用いて上述した底壁部10の底面28を加工する際のアップカットを説明するための一例として、矩形の板状に形成された被削材47の上側の面である上面47aを加工する場合について説明する。 Below, as an example for explaining the upcut when processing the bottom surface 28 of the above-mentioned bottom wall portion 10 using the end mill 46, it is the upper surface of the work material 47 formed in a rectangular plate shape. A case of processing the upper surface 47a will be described.
 図8(a)に示す縦軸48は、エンドミル46が被削材47を切削する際にエンドミル46の回転軸線Oが描く加工軌跡を示している。エンドミル46の回転方向Pは、図8(a)の時計回りの方向であり、エンドミル46の送り方向Qは、図8(a)の下側から上側に向かう方向となっている。図8(a)に示すように、エンドミル46は、縦軸48上に配置されており、一方、被削材47は、エンドミル46の送り方向Qから見たときに縦軸48よりも右側、つまりエンドミル46の回転軸線Oよりも右側に配置されている。 The vertical axis 48 shown in FIG. 8A indicates a machining locus drawn by the rotation axis O of the end mill 46 when the end mill 46 cuts the workpiece 47. The rotation direction P of the end mill 46 is the clockwise direction in FIG. 8A, and the feed direction Q of the end mill 46 is the direction from the lower side to the upper side in FIG. 8A. As shown in FIG. 8A, the end mill 46 is arranged on the vertical axis 48, while the work material 47 is on the right side of the vertical axis 48 when viewed from the feed direction Q of the end mill 46. That is, it is arranged on the right side of the rotation axis O of the end mill 46.
 エンドミル46は、その先端に形成された螺旋形状によって複数(本実施形態では4つ)の刃部46aを有している。4つの刃部46aは、エンドミル46の回転方向Pにおいて等間隔位置に設けられている。 The end mill 46 has a plurality of (four in the present embodiment) blade portions 46a due to the spiral shape formed at the tip thereof. The four blades 46a are provided at equal intervals in the rotation direction P of the end mill 46.
 被削材47は、矩形の板状に形成されており、縦軸48の方向においてエンドミル46と対向するエッジ部47bを有している。 The work material 47 is formed in a rectangular plate shape, and has an edge portion 47b facing the end mill 46 in the direction of the vertical axis 48.
 図8(a)の下から一段目は、図8(b)に示すエンドミル46の先端面46bが被削材47の上面47aと下面47cとの間に位置し、刃部46aが被削材47の上面47aを切削する前の状態を示している。この一段目の状態からエンドミル46が送り方向Qに送られると、図8(a)の下から2段目に示すように、1つの刃部46aが、縦軸48と対向する被削材47の縦辺部47d上の切削開始点49から被削材47のエッジ部47bを掬うようにエッジ部47bに食い込んでいく。刃部46aがエッジ部47bを切削した後には、切削されたエッジ部47bとエンドミル46の送り方向Qに隣接する位置に新たなエッジ部47bが形成される。そして、図8(a)の下から3段目に示すように、エッジ部47bを順次掬いながら上面47aを切削する。このとき、刃部46aにより掬われたエッジ部47bは、図8(b)に矢印Rで示すように斜め上方に持ち上げられながら切り粉(図8(b)に破線で示す)として排出される。このため、エンドミル46には、エッジ部47bを持ち上げるときに生じる力に伴い、エンドミル46の回転軸線方向上向きの切削抵抗(図8(b)の矢印S)が作用する。 In the first step from the bottom of FIG. 8A, the tip surface 46b of the end mill 46 shown in FIG. 8B is located between the upper surface 47a and the lower surface 47c of the work material 47, and the blade portion 46a is the work material. The state before cutting the upper surface 47a of 47 is shown. When the end mill 46 is fed in the feed direction Q from the state of the first stage, as shown in the second stage from the bottom of FIG. 8A, one blade portion 46 a has a work material 47 facing the vertical axis 48. From the cutting start point 49 on the vertical side portion 47d, the edge portion 47b of the workpiece 47 is scooped into the edge portion 47b. After the blade portion 46a cuts the edge portion 47b, a new edge portion 47b is formed at a position adjacent to the cut edge portion 47b and the end mill 46 in the feed direction Q. Then, as shown in the third row from the bottom in FIG. 8A, the upper surface 47a is cut while sequentially scooping the edge portion 47b. At this time, the edge portion 47b scooped by the blade portion 46a is discharged as cutting chips (shown by a broken line in FIG. 8B) while being lifted obliquely upward as shown by an arrow R in FIG. 8B. .. Therefore, a cutting resistance (arrow S in FIG. 8B) that acts upward in the rotation axis direction of the end mill 46 acts on the end mill 46 along with the force generated when lifting the edge portion 47b.
 上記のように、エンドミル46が時計回りの方向に回転し、かつエンドミル46の送り方向Qに対して被削材47がエンドミル46の回転軸線Oよりも右側にあるときに、エンドミル46が上向きの切削抵抗を受けた状態で、刃部46aが被削材47のエッジ部47bを順次掬いながら行う切削加工を、上面(底面)47aの「アップカット」と定義する。アップカットでの上面47aの切削では、エンドミル46が後述のダウンカットで上面47aを切削する場合と比べて、エンドミル46の工具寿命が短くなる。 As described above, when the end mill 46 rotates in the clockwise direction and the work material 47 is on the right side of the rotation axis O of the end mill 46 with respect to the feeding direction Q of the end mill 46, the end mill 46 moves upward. The cutting process in which the blade portion 46a sequentially scoops the edge portion 47b of the work material 47 while receiving the cutting resistance is defined as "upcut" of the upper surface (bottom surface) 47a. When the upper surface 47a is cut by the up-cut, the tool life of the end mill 46 becomes shorter than when the end mill 46 cuts the upper surface 47a by the down-cut described later.
 [底面のダウンカット]
 図9(a)は、エンドミル46を用いて被削材47の上面47aをダウンカットで切削加工するときのエンドミル46と被削材47の位置関係を段階的に示した説明図、図9(b)は、図9(a)の線D-Dに沿って切断したエンドミル46および被削材47の断面図である。なお、図9(b)でも、エンドミル46の螺旋状部分の断面ハッチングを省略している。
[Down cut on the bottom]
FIG. 9A is an explanatory view showing the positional relationship between the end mill 46 and the work material 47 in stages when the upper surface 47a of the work material 47 is cut by the down mill using the end mill 46, and FIG. 9B is a cross-sectional view of the end mill 46 and the work material 47 taken along the line DD of FIG. 9A. In FIG. 9B as well, cross-sectional hatching of the spiral portion of the end mill 46 is omitted.
 以下に、エンドミル46を用いて底壁部10の底面28を加工する際のダウンカットを説明するための一例として、矩形の板状に形成された被削材47の上側の面である上面47aを加工する場合について説明する。 Below, as an example for explaining the down-cut when processing the bottom surface 28 of the bottom wall portion 10 using the end mill 46, the upper surface 47a, which is the upper surface of the work material 47 formed in a rectangular plate shape. A case of processing will be described.
 図9(a)では、エンドミル46は、縦軸48上に配置されており、一方、被削材47は、エンドミル46の送り方向Qから見たときに縦軸48よりも左側、つまりエンドミル46の回転軸線Oよりも左側に配置されている。エンドミル46の回転方向Pは、図9(a)の時計回りの方向である。 In FIG. 9A, the end mill 46 is arranged on the vertical axis 48, while the work material 47 is on the left side of the vertical axis 48 when viewed from the feed direction Q of the end mill 46, that is, the end mill 46. Is arranged on the left side of the rotation axis O. The rotation direction P of the end mill 46 is the clockwise direction in FIG.
 図9(a)の下から一段目は、図9(b)に示すエンドミル46の先端面46bが被削材47の上面47aと下面47cとの間に位置し、刃部46aが被削材47の上面47aを切削する前の状態を示している。この一段目の状態からエンドミル46が送り方向Qに送られると、図9(a)の下から2段目に示すように、1つの刃部46aが、縦軸48と直交する被削材47の下側の横辺部47e上の切削開始点50から被削材47のエッジ部47bに食い込み、エッジ部47bを切削する。つまり、上記1つの刃部46aは、縦軸48からエンドミル46の半径分離間した位置にある横辺部47e上の切削開始点50から被削材47のエッジ部47bに食い込み、エッジ部47bを切削する。この後、エンドミル46が送り方向Qにさらに送られ、図9(a)の下から3段目に示すように、次の刃部46aが、切削開始点50からエンドミル46の送り方向Qにオフセットした位置で、被削材47を切削する。そして、この切削が順次繰り返されていくと、図9(a)の下から4段目に示すように、刃部46aは、縦軸48からエンドミル46の半径分離間し、縦軸48に平行な平面51を切削する。平面51を切削した刃部46aは、平面51と縦辺部47fとの間の図9(a)に円弧状の破線で示す円弧部52を切削し、縦辺部47fへと抜けていく。このとき、刃部46aによって切削された円弧部52は、図9(b)に矢印Tで示すように押し下げられながら切り粉(図9(b)に破線で示す)として排出される。このため、エンドミル46には、円弧部52を押し下げるときの力に伴い、エンドミル46の回転軸線方向下向きの切削抵抗(図9(b)の矢印U)が作用する。 In the first step from the bottom of FIG. 9A, the tip surface 46b of the end mill 46 shown in FIG. 9B is located between the upper surface 47a and the lower surface 47c of the work material 47, and the blade portion 46a is the work material. The state before cutting the upper surface 47a of 47 is shown. When the end mill 46 is fed in the feeding direction Q from the state of the first stage, as shown in the second stage from the bottom of FIG. 9A, one blade portion 46 a has a work material 47 orthogonal to the vertical axis 48. The cutting start point 50 on the lower lateral side portion 47e cuts into the edge portion 47b of the work material 47 to cut the edge portion 47b. That is, the one blade portion 46a cuts into the edge portion 47b of the work material 47 from the cutting start point 50 on the horizontal side portion 47e located at the position where the radius of the end mill 46 is separated from the vertical axis 48, and the edge portion 47b is formed. To cut. After that, the end mill 46 is further fed in the feed direction Q, and the next blade portion 46a is offset in the feed direction Q of the end mill 46 from the cutting start point 50, as shown in the third stage from the bottom of FIG. 9(a). The work material 47 is cut at the position. Then, when this cutting is sequentially repeated, as shown in the fourth step from the bottom of FIG. 9A, the blade portion 46a is separated from the vertical axis 48 to the radius separation of the end mill 46 and parallel to the vertical axis 48. The flat surface 51 is cut. The blade portion 46a that cuts the flat surface 51 cuts the arc portion 52 shown by the arc-shaped broken line in FIG. 9A between the flat surface 51 and the vertical side portion 47f, and goes out to the vertical side portion 47f. At this time, the circular arc portion 52 cut by the blade portion 46a is discharged as chips (shown by a broken line in FIG. 9B) while being pushed down as shown by an arrow T in FIG. 9B. For this reason, a cutting resistance (arrow U in FIG. 9B) is applied to the end mill 46 in a downward direction of the rotation axis of the end mill 46 along with the force of pushing down the arc portion 52.
 上記のように、エンドミル46が時計回りの方向に回転し、かつエンドミル46の送り方向Qに対して被削材47がエンドミル46の回転軸線Oよりも左側にあるときに、エンドミル46が下向きの切削抵抗を受けた状態で、刃部46aが被削材47の円弧部52を順次押し下げながら行う切削加工を、上面(底面)47aの「ダウンカット」と定義する。ダウンカットでの上面47aの切削では、平面51を切削した後に滑らかな円弧部52を切削するから、刃部46aが食い込み易いエッジ部47bを常に掬うアップカットでの切削と比べて、エンドミル46の工具寿命が長くなる。 As described above, when the end mill 46 rotates in the clockwise direction and the work material 47 is on the left side of the rotation axis O of the end mill 46 with respect to the feed direction Q of the end mill 46, the end mill 46 faces downward. The cutting process in which the blade portion 46a sequentially pushes down the circular arc portion 52 of the work material 47 under the cutting resistance is defined as "down-cut" of the upper surface (bottom surface) 47a. In the cutting of the upper surface 47a by the down-cut, since the smooth arc portion 52 is cut after cutting the flat surface 51, compared with the up-cut cutting in which the edge portion 47b where the blade portion 46a easily bites is always scooped, the end mill 46 Tool life is extended.
 [側面のアップカット]
 図10は、エンドミル46を用いて被削材47の側面47gをアップカットで切削加工するときのエンドミル46と被削材47の位置関係を示した斜視図である。
[Side cut]
FIG. 10 is a perspective view showing the positional relationship between the end mill 46 and the work material 47 when the side surface 47g of the work material 47 is cut by the up mill using the end mill 46.
 以下に、エンドミル46を用いて上述した周壁部11の側面11aを加工する際のアップカットを説明するための一例として、ブロック状の被削材47の側面47gを加工する場合について説明する。 A case of processing the side surface 47g of the block-shaped work material 47 will be described below as an example for explaining the upcut when processing the side surface 11a of the peripheral wall portion 11 using the end mill 46.
 図10では、エンドミル46の回転方向Pは、図10の時計回りの方向であり、エンドミル46の送り方向Qは、図10の下側から右斜め上側に向かう方向となっている。図10に示すように、被削材47は、エンドミル46の送り方向Qから見たときにエンドミル46の回転軸線Oよりも左側に配置されている。このように配置された被削材47の側面47gをエンドミル46によって切削する際には、エンドミル46の刃先部46cが側面47gに常に押し付けられながら食い込むように側面47gを切削する。 In FIG. 10, the rotation direction P of the end mill 46 is the clockwise direction of FIG. 10, and the feed direction Q of the end mill 46 is the direction from the lower side of FIG. 10 to the diagonally upper right side. As shown in FIG. 10, the work material 47 is arranged on the left side of the rotation axis O of the end mill 46 when viewed in the feeding direction Q of the end mill 46. When the side surface 47g of the work material 47 thus arranged is cut by the end mill 46, the side surface 47g is cut so that the cutting edge portion 46c of the end mill 46 is always pressed against the side surface 47g.
 上記のように、エンドミル46が時計回りの方向に回転し、かつエンドミル46の送り方向Qに対して被削材47がエンドミル46の回転軸線Oよりも左側にあるときに、エンドミル46の刃先部46cが側面47gに常に押し付けられて食い込みながら行う切削加工を、側面47gの「アップカット」と定義する。アップカットでの側面47gの切削では、刃先部46cが側面47gに常に押し付けられながら側面47gが切削されるので、エンドミル46の刃先部46cが摩耗し易く、後述するダウンカットでのエンドミル46の工具寿命よりも短くなる。 As described above, when the end mill 46 rotates in the clockwise direction and the work material 47 is on the left side of the rotation axis O of the end mill 46 with respect to the feed direction Q of the end mill 46, the cutting edge portion of the end mill 46. The cutting process in which 46c is constantly pressed against the side surface 47g and bites is defined as "upcut" of the side surface 47g. When the side surface 47g is cut by up-cutting, the side surface 47g is cut while the cutting edge portion 46c is constantly pressed against the side surface 47g, so the cutting edge portion 46c of the end mill 46 is easily worn, and the tool of the end mill 46 for down cutting described later is used. Shorter than life.
 [側面のダウンカット]
 図11は、エンドミル46を用いて被削材47の側面47gをダウンカットで切削加工するときのエンドミル46と被削材47の位置関係を示した斜視図である。
[Side cut]
FIG. 11 is a perspective view showing a positional relationship between the end mill 46 and the work material 47 when the side surface 47g of the work material 47 is cut by the down mill using the end mill 46.
 図11では、エンドミル46の回転方向Pは、図11の時計回りの方向であり、エンドミル46の送り方向Qは、図11の下側から左斜め上側に向かう方向となっている。図11に示すように、被削材47は、エンドミル46の送り方向Qから見たときにエンドミル46の回転軸線Oよりも右側に配置されている。このように配置された被削材47の側面47gをエンドミル46によって切削する際には、エンドミル46の刃先部46cは、側面47gから常に逃げるように側面47gを切削する。 In FIG. 11, the rotation direction P of the end mill 46 is the clockwise direction of FIG. 11, and the feed direction Q of the end mill 46 is the direction from the lower side of FIG. 11 to the diagonally upper left side. As shown in FIG. 11, the work material 47 is arranged on the right side of the rotation axis O of the end mill 46 when viewed from the feed direction Q of the end mill 46. When the side surface 47g of the work material 47 arranged in this way is cut by the end mill 46, the cutting edge portion 46c of the end mill 46 cuts the side surface 47g so as to always escape from the side surface 47g.
 上記のように、エンドミル46が時計回りの方向に回転し、かつエンドミル46の送り方向Qに対して被削材47がエンドミル46の回転軸線Oよりも右側にあるときに、エンドミル46の刃先部46cが側面47gから常に逃げながら行う切削加工を、側面47gの「ダウンカット」と定義する。ダウンカットでの側面47gの切削では、アップカットでの切削と比べて、側面47gへの刃先部46cの当接が弱いので、刃先部46cが摩耗しづらくなっている。よって、ダウンカットでのエンドミル46の工具寿命は、アップカットでのエンドミル46の工具寿命よりも長くなる。 As described above, when the end mill 46 rotates in the clockwise direction and the work material 47 is on the right side of the rotation axis O of the end mill 46 with respect to the feed direction Q of the end mill 46, the cutting edge portion of the end mill 46. The cutting process performed by 46c while always escaping from the side surface 47g is defined as "downcut" of the side surface 47g. In the cutting of the side surface 47g by the down cut, the contact of the blade tip portion 46c with the side surface 47g is weaker than in the cutting by the up cut, so that the blade tip portion 46c is less likely to be worn. Therefore, the tool life of the end mill 46 in the down cut becomes longer than the tool life of the end mill 46 in the up cut.
 [オイルポンプの製造方法]
 図12は、オイルポンプ1の製造方法の種々の工程のうちの1つの工程であり、ハウジング6の底面28、側面11a、開口端面32等の粗加工工程を示す工程図である。図13は、オイルポンプ1の製造方法の種々の工程のうちの1つの工程であり、ハウジング6の第1、第2接触面39,41の仕上げ加工工程を示す工程図である。図14は、オイルポンプ1の製造方法の種々の工程のうちの1つの工程であり、ハウジング6の底面28、側面11a、開口端面32等の仕上げ加工工程を示す工程図である。図12および図14の下側には、開口部9側から見たときのハウジング6の平面図を示してあり、一方、図13の下側には、ハウジング6の背面図を示してある。また、図12~図14の上側には、貫通孔10aの径方向に沿って切断したハウジング6の概略的な断面図を示してある。さらに、図12~図14において、仮想線で示す第1エンドミル53、第2フェースミル54や第1フェースミル55の回転方向Pは時計回りの方向である。
[Oil pump manufacturing method]
FIG. 12 is a process diagram showing one of the various processes of the method for manufacturing the oil pump 1, which is a roughing process of the bottom surface 28, the side surface 11 a, the opening end surface 32, etc. of the housing 6. FIG. 13 is a process diagram showing one of various processes of the method for manufacturing the oil pump 1 and showing a finishing process of the first and second contact surfaces 39, 41 of the housing 6. FIG. 14 is a process diagram showing one of various processes of the method for manufacturing the oil pump 1, which is a finishing process for the bottom face 28, the side face 11 a, the opening end face 32, etc. of the housing 6. The lower side of FIGS. 12 and 14 shows a plan view of the housing 6 as viewed from the opening 9 side, while the lower side of FIG. 13 shows a rear view of the housing 6. 12 to 14 are schematic sectional views of the housing 6 taken along the radial direction of the through hole 10a. Further, in FIGS. 12 to 14, the rotation direction P of the first end mill 53, the second face mill 54, and the first face mill 55, which are indicated by imaginary lines, is the clockwise direction.
 まず、アルミダイカストによって形成された素材の状態であるハウジング6を準備し、穴開け用の工具、例えばドリルを用いて底壁部10の中央に比較的大径な貫通孔10aを貫通形成しておく。また、ハウジング6の開口端面32の所定の位置に、位置決め用の第1位置決めピン56が挿入される第1位置決め穴57を貫通形成しておく。さらに、張出部38の所定の位置に、位置決め用の第2位置決めピン58が挿入される第2位置決め穴59を貫通形成しておく。第1、第2位置決めピン56,58は、先端に円錐台形状の位置決め部60を有する棒状の位置決めピンとして形成されている。ハウジング6に貫通孔10aおよび第1、第2位置決め穴57,59を形成した後には、貫通孔10a等の内周面以外のハウジング6の表面は、アルミダイカストによって形成された鋳肌面となっている。 First, the housing 6 in a material state formed by aluminum die casting is prepared, and a through hole 10a having a relatively large diameter is formed at the center of the bottom wall portion 10 by using a drilling tool such as a drill. deep. Further, a first positioning hole 57 into which the first positioning pin 56 for positioning is inserted is formed at a predetermined position of the opening end surface 32 of the housing 6 so as to penetrate therethrough. Further, a second positioning hole 59 into which the second positioning pin 58 for positioning is inserted is formed at a predetermined position of the overhanging portion 38 so as to penetrate therethrough. The first and second positioning pins 56, 58 are formed as rod-shaped positioning pins having a truncated cone-shaped positioning portion 60 at their tips. After the through hole 10a and the first and second positioning holes 57 and 59 are formed in the housing 6, the surface of the housing 6 other than the inner peripheral surface of the through hole 10a and the like becomes a casting surface formed by aluminum die casting. ing.
 次に、図12に示すハウジング6の底面28等の粗加工工程において、底壁部10に貫通孔10aを有する部材であるハウジング6を、開口部9が上向きになる姿勢で図示せぬ加工設備内に設置する。ハウジング6の設置時には、第1、第2位置決め穴57,59に挿入される第1、第2位置決めピン56,58を介して、加工設備上にハウジング6を位置決めする。例えば、第1位置決め穴57に第1位置決めピン56が挿入された状態では、図12の線E-Eに沿って切断した断面図として枠61内に示すように、第1位置決めピン56の位置決め部60の先端部60aが第1位置決め穴57内に配置され、位置決め部60の傾斜部60bが第1位置決め穴57の下側の縁部に当接した状態となる。 Next, in a roughing process of the bottom surface 28 of the housing 6 shown in FIG. 12, the housing 6 which is a member having the through hole 10a in the bottom wall portion 10 is not shown in a posture in which the opening 9 faces upward. Install inside. When the housing 6 is installed, the housing 6 is positioned on the processing equipment via the first and second positioning pins 56 and 58 inserted into the first and second positioning holes 57 and 59. For example, when the first positioning pin 56 is inserted into the first positioning hole 57, the positioning of the first positioning pin 56 is performed as shown in the frame 61 as a sectional view taken along line EE in FIG. The tip portion 60a of the portion 60 is arranged in the first positioning hole 57, and the inclined portion 60b of the positioning portion 60 is in contact with the lower edge of the first positioning hole 57.
 ハウジング6の設置後には、ハウジング6の外周部の所定の3箇所に形成され、かつ鋳肌面を有するクランプ座37を、クランプ装置62を用いてクランプする。クランプ装置62は、支持ピン63を中心に回動可能に設けられ、クランプ座37のうち開口端面32側の面37aを押さえる長方形の板状をなす押さえ部64と、該押さえ部64に対してクランプ座37のうち開口端面32とは反対側の面37bを押圧するクランプ用ピン65とを有している。クランプ用ピン65は、軸部65aと、該軸部65aの一端部と一体に形成された円錐台形状の円錐台形端部65bとを有している。また、クランプ用ピン65の押圧力は、図示せぬエア供給源から供給されるエア圧によって適宜調整されるようになっている。円錐台形端部65bの先端には、クランプ座37の面37bに当接可能であり、軸部65aよりも外径が小さい円形の当接面65cを有している。クランプ装置62がクランプ座37をクランプした状態では、図12に線F-Fに沿って切断した断面図として枠70内に示すように、円錐台形端部65bの当接面65cが、押さえ部64に対して周壁部11を押圧している。この状態では、応力がハウジング6に適度に作用し、底壁部10の撓みが抑制されるようになっている。このようにして、図12の粗加工工程は、鋳肌面である面37bを加工証として行われる。 After the housing 6 is installed, the clamp seats 37, which are formed at three predetermined locations on the outer peripheral portion of the housing 6 and have a casting surface, are clamped using the clamp device 62. The clamp device 62 is provided so as to be rotatable around the support pin 63, and has a rectangular plate-shaped pressing portion 64 that presses the surface 37 a of the clamp seat 37 on the side of the opening end surface 32, and the pressing portion 64. It has a clamp pin 65 for pressing a surface 37b of the clamp seat 37 opposite to the opening end surface 32. The clamp pin 65 has a shaft portion 65a and a truncated cone-shaped truncated cone-shaped end portion 65b formed integrally with one end portion of the shaft portion 65a. Further, the pressing force of the clamp pin 65 is appropriately adjusted by the air pressure supplied from an air supply source (not shown). The tip of the truncated cone-shaped end portion 65b has a circular contact surface 65c that can contact the surface 37b of the clamp seat 37 and has a smaller outer diameter than the shaft portion 65a. When the clamp device 62 clamps the clamp seat 37, as shown in the frame 70 as a cross-sectional view taken along line FF in FIG. The peripheral wall portion 11 is pressed against 64. In this state, the stress appropriately acts on the housing 6, and the bending of the bottom wall portion 10 is suppressed. In this way, the roughing process of FIG. 12 is performed using the surface 37b, which is the casting surface, as a processing certificate.
 各クランプ座37のクランプ後には、第1、第2位置決め穴57,59から第1、第2位置決めピン56,58を抜いておく。 After the clamp seats 37 are clamped, the first and second positioning pins 56 and 58 are removed from the first and second positioning holes 57 and 59.
 次に、穴開け工具、例えばドリルを用いてノックピン穴36およびピボットピン穴(円形凹部)66を寸法公差が比較的大きいラフな穴に加工する。さらに、後述する後工程での第3、第4位置決めピン67,68の挿入に備えて、ドリルを用いて第1、第2位置決め穴57,59を仕上げ加工する。 Next, using a drilling tool such as a drill, the knock pin hole 36 and the pivot pin hole (circular recess) 66 are processed into rough holes with relatively large dimensional tolerances. Further, in preparation for the insertion of the third and fourth positioning pins 67 and 68 in a later step described later, the first and second positioning holes 57 and 59 are finished by using a drill.
 ノックピン穴36等を加工した後には、図12に仮想線で示す第1エンドミル53を用いて、貫通孔10aの周囲の底面28の部分である周囲部30を所定の切り込み深さで粗加工する。この粗加工の際には、第1エンドミル53の回転方向Pと、貫通孔10aの周りに第1エンドミル53を相対的に周回させる方向とが同じ方向となるように、貫通孔10aの内側から第1エンドミル53を周回させて周囲部30を粗加工する。つまり、3つのクランプ装置62によって固定されたハウジング6に対して周囲部30を図12の時計回りの方向(図12に符号Vで示す第1エンドミル53の送り方向)に周回するように第1エンドミル53を移動させることにより、周囲部30を粗加工する。このとき、周囲部30は、第1エンドミル53の回転軸線O1に対して常に左側にあり、第1エンドミル53はダウンカットで周囲部30を粗加工する(図9(a)、図9(b)参照)。 After the knock pin hole 36 and the like are machined, the first end mill 53 shown in phantom in FIG. 12 is used to roughly machine the peripheral portion 30, which is the bottom surface 28 around the through hole 10a, to a predetermined cutting depth. .. At the time of this roughing, from the inside of the through hole 10a, the rotation direction P of the first end mill 53 and the direction in which the first end mill 53 relatively circulates around the through hole 10a are the same direction. The first end mill 53 is rotated to roughly process the peripheral portion 30. That is, the first part is arranged so as to orbit the peripheral portion 30 in the clockwise direction in FIG. 12 (the feeding direction of the first end mill 53 shown by reference symbol V in FIG. 12) with respect to the housing 6 fixed by the three clamp devices 62. The peripheral part 30 is roughly processed by moving the end mill 53. At this time, the peripheral portion 30 is always on the left side with respect to the rotation axis O1 of the first end mill 53, and the first end mill 53 down-cuts the peripheral portion 30 roughly (FIGS. 9A and 9B). )reference).
 第1エンドミル53によって周囲部30をほぼ1周粗加工した後には、該粗加工の一連の加工として、周壁部11に隣接する底面28の部分である周壁部隣接部31と、周壁部11の側面11aとを所定の切り込み深さで同時に粗加工する。この粗加工の際には、第1エンドミル53の回転方向Pと、貫通孔10aの周りに第1エンドミル53を相対的に周回させる方向とが逆方向となるように、周壁部隣接部31および側面11aを粗加工する。つまり、時計回りの方向に周回していた第1エンドミル53の送り方向を反転させて、3つのクランプ装置62によって固定されたハウジング6に対して反時計回りの方向(図12に符号Wで示す第1エンドミル53の送り方向)に周回するように第1エンドミル53を移動させることにより、周壁部隣接部31および側面11aを粗加工する。このとき、周壁部隣接部31は、第1エンドミル53の回転軸線O1に対して常に右側にあり、第1エンドミル53はアップカットで周壁部隣接部31を粗加工する(図8(a)、図8(b)参照)。また、側面11aは、第1エンドミル53の回転軸線O1に対して常に右側にあり、第1エンドミル53はダウンカットで側面11aを粗加工する(図11参照)。 After the peripheral portion 30 is rough-processed by the first end mill 53 for almost one round, as a series of rough machining, the peripheral-wall-adjacent portion 31, which is the bottom surface 28 adjacent to the peripheral-wall portion 11, and the peripheral-wall portion 11. The side surface 11a and the side surface 11a are simultaneously rough-machined with a predetermined cutting depth. During this rough machining, the peripheral wall adjoining portion 31 and the peripheral wall adjoining portion 31 are arranged so that the rotation direction P of the first end mill 53 and the direction in which the first end mill 53 relatively circulates around the through hole 10a are opposite. The side surface 11a is roughly processed. That is, the feed direction of the first end mill 53, which has been orbiting in the clockwise direction, is reversed, and the counterclockwise direction is shown with respect to the housing 6 fixed by the three clamp devices 62 (indicated by W in FIG. 12). By moving the first end mill 53 so as to orbit in the feeding direction of the first end mill 53), the peripheral wall adjacent portion 31 and the side surface 11a are roughly processed. At this time, the peripheral wall portion adjacent portion 31 is always on the right side with respect to the rotation axis O1 of the first end mill 53, and the first end mill 53 rough-machines the peripheral wall portion adjacent portion 31 by up-cutting (FIG. 8(a), See FIG. 8B). The side surface 11a is always on the right side with respect to the rotation axis O1 of the first end mill 53, and the first end mill 53 down-cuts the side surface 11a roughly (see FIG. 11).
 次に、第1エンドミル53よりも外径が大きい第2フェースミル54(図12に仮想線で示す)を用いて、カバー8との合わせ面となるハウジング6の開口端面32および張出部38の面38aを粗加工する。この粗加工の際には、図12に符号Xで示す送り方向のように、第2フェースミル54をハウジング6の左斜め下側から張出部38側へ移動させた後、第2フェースミル54の送り方向を折り返して開口部9側に戻すように開口端面32および面38aを粗加工する。 Next, using the second face mill 54 (shown by an imaginary line in FIG. 12) having an outer diameter larger than that of the first end mill 53, the opening end surface 32 of the housing 6 and the overhanging portion 38 which are mating surfaces with the cover 8. Surface 38a is roughly processed. At the time of this rough processing, the second face mill 54 is moved from the diagonally lower left side of the housing 6 to the projecting portion 38 side as shown in the feeding direction indicated by X in FIG. The opening end surface 32 and the surface 38a are roughly processed so that the feeding direction of 54 is returned and returned to the opening 9 side.
 次に、ハウジング6の底面28等の粗加工工程の後工程である図13に示すハウジング6の第1、第2接触面39,41の仕上げ加工工程において、図12の加工設備とは異なる他の加工設備内に開口部9が下向きになる姿勢でハウジング6を設置する。ハウジング6の設置の際には、第1、第2位置決め穴57,59に挿入される円柱形状の第3、第4位置決めピン67,68を介して加工設備上にハウジング6を位置決めする。 Next, in the finishing process of the first and second contact surfaces 39, 41 of the housing 6 shown in FIG. 13, which is a process subsequent to the roughing process of the bottom surface 28 of the housing 6, etc., different from the processing equipment of FIG. The housing 6 is installed in the processing equipment with the opening 9 facing downward. When the housing 6 is installed, the housing 6 is positioned on the processing equipment via the cylindrical third and fourth positioning pins 67 and 68 inserted into the first and second positioning holes 57 and 59.
 ハウジング6の設置後には、上記3つのクランプ座37ではなく、ハウジング6の外周部の所定位置に設けられた鋳肌面を有する3つのクランプ部、つまり肉盗み部42a、窪み部43,44(図6参照)を、各クランプ装置62を用いてクランプする。図13の仕上げ加工工程では、クランプ用ピン65の当接面65cが当接する、肉盗み部42a、窪み部43,44の開口端面32とは反対側にある鋳肌面が加工証となる。 After the housing 6 is installed, instead of the above three clamp seats 37, three clamp portions having a casting surface provided at predetermined positions on the outer peripheral portion of the housing 6, that is, the meat steal portion 42a and the recess portions 43, 44 ( 6) is clamped by using each clamp device 62. In the finishing step of FIG. 13, the casting surface which is on the side opposite to the open end surface 32 of the recessed portion 43a and the recessed portions 43 and 44 with which the contact surface 65c of the clamping pin 65 abuts serves as a machining certificate.
 次に、第1フェースミル55を用いて、第1、第2接触面39,41を所定の切り込み深さで粗加工する。この粗加工の際には、図13に符号Yで示す送り方向のように、第1位置決め穴57よりも左側から張出部38側へと第1フェースミル55を移動させることにより、第1、第2接触面39,41を粗加工する。 Next, the first face mill 55 is used to roughly process the first and second contact surfaces 39, 41 with a predetermined cutting depth. At the time of this rough machining, the first face mill 55 is moved from the left side of the first positioning hole 57 to the overhanging portion 38 side as in the feeding direction indicated by symbol Y in FIG. , The second contact surfaces 39, 41 are roughly processed.
 第1、第2接触面39,41の粗加工工程後には、ドリルを用いて、ノックピン穴36およびピボットピン穴66を図12の粗加工工程よりは寸法公差が小さいラフな穴に加工する。 After the roughing process of the first and second contact surfaces 39, 41, the knock pin hole 36 and the pivot pin hole 66 are processed into a rough hole having a smaller dimensional tolerance than the roughing process of FIG. 12 using a drill.
 ノックピン穴36およびピボットピン穴66の加工後には、第1フェースミル55を用いて、所定の切り込み深さで第1、第2接触面39,41を仕上げ加工する。この仕上げ加工の際には、第1、第2接触面39,41の粗加工と同様の送り方向Yで第1フェースミル55を移動させる。 After processing the knock pin hole 36 and the pivot pin hole 66, the first face mill 55 is used to finish the first and second contact surfaces 39, 41 with a predetermined cutting depth. In this finishing process, the first face mill 55 is moved in the feed direction Y similar to the roughing process of the first and second contact surfaces 39, 41.
 第1、第2接触面39,41の仕上げ加工後には、例えば第1エンドミル53を用いて、クランプ座37の第1、第2接触面39,41側の鋳肌を有する面37bを平坦な面に仕上げ加工する。これにより、第1、第2接触面39,41と面37bが平行となる。 After finishing the first and second contact surfaces 39 and 41, the surface 37b having the casting surface on the first and second contact surfaces 39 and 41 of the clamp seat 37 is flattened by using, for example, the first end mill 53. Finish the surface. As a result, the first and second contact surfaces 39, 41 and the surface 37b are parallel to each other.
 次に、ハウジング6の第1、第2接触面39,41の仕上げ加工工程の後工程である図14に示すハウジング6の底面28等の仕上げ加工工程において、図12および図13の加工設備とは異なる別の加工設備内に開口部9が上向きになる姿勢でハウジング6を設置する。ハウジング6の設置時には、第1、第2位置決め穴57,59に挿入される第3、第4位置決めピン67,68を介して、加工設備上にハウジング6を位置決めする。 Next, in the finishing process of the bottom surface 28 of the housing 6 shown in FIG. 14 which is a post-process of the finishing process of the first and second contact surfaces 39, 41 of the housing 6, the processing equipment shown in FIGS. The housing 6 is installed in a different processing facility with the opening 9 facing upward. When the housing 6 is installed, the housing 6 is positioned on the processing equipment via the third and fourth positioning pins 67 and 68 inserted into the first and second positioning holes 57 and 59.
 ハウジング6の設置後には、各クランプ装置62を用いて各クランプ座37をクランプする。図13の工程で、第1、第2接触面39,41の仕上げ加工工程で形成された平坦な面37bが加工証となる。 After the housing 6 is installed, each clamp seat 37 is clamped using each clamp device 62. In the step of FIG. 13, the flat surface 37b formed in the finishing step of the first and second contact surfaces 39, 41 serves as a processing certificate.
 各クランプ座37のクランプ後には、ドリルを用いて、ノックピン穴36およびピボットピン穴66を寸法公差が小さい高精度の穴に仕上げ加工する。 After each clamp seat 37 is clamped, a knock is used to finish the knock pin hole 36 and the pivot pin hole 66 into high-precision holes with small dimensional tolerances.
 次に、第1エンドミル53を用いて、所定の切り込み深さで底面28の周囲部30を仕上げ加工する。この仕上げ加工の際には、ハウジング6の底面28等の粗加工工程と同様に、3つのクランプ装置62によって固定されたハウジング6に対して周囲部30を図14の時計回りの方向(送り方向V)に周回するように第1エンドミル53を移動させる。このとき、第1エンドミル53は、ハウジング6の底面28等の粗加工工程と同様にダウンカットで、周囲部30を仕上げ加工する(図9(a)、図9(b)参照)。 Next, the first end mill 53 is used to finish the peripheral portion 30 of the bottom surface 28 with a predetermined cutting depth. At the time of this finishing process, as in the roughing process of the bottom surface 28 of the housing 6 and the like, the peripheral portion 30 is moved in the clockwise direction (feeding direction) of FIG. The first end mill 53 is moved so as to orbit V). At this time, the first end mill 53 finishes the peripheral portion 30 by down-cutting similarly to the roughing process of the bottom surface 28 of the housing 6 (see FIGS. 9A and 9B).
 第1エンドミル53によって周囲部30をほぼ1周仕上げ加工した後には、該仕上げ加工の一連の加工として、周壁部隣接部31と側面11aとを同時に仕上げ加工する。この仕上げ加工の際には、ハウジング6の底面28等の粗加工工程と同様に、時計回りの方向に周回していた第1エンドミル53の送り方向を反転させて、3つのクランプ装置62によって固定されたハウジング6に対して反時計回りの方向(送り方向W)に周回するように第1エンドミル53を移動させる。このとき、第1エンドミル53は、ハウジング6の底面28等の粗加工工程と同様にアップカットで、周壁部隣接部31を仕上げ加工する(図8(a)、図8(b)参照)。同時に、第1エンドミル53は、ハウジング6の底面28等の粗加工工程と同様にダウンカットで、側面11aを仕上げ加工する(図11参照)。 After the peripheral portion 30 has been finished by the first end mill 53 almost once, the peripheral wall adjacent portion 31 and the side surface 11a are simultaneously finished as a series of finishing operations. At the time of this finishing process, as in the roughing process of the bottom surface 28 of the housing 6 and the like, the feeding direction of the first end mill 53 that has been orbiting in the clockwise direction is reversed and fixed by the three clamp devices 62. The first end mill 53 is moved so as to rotate in the counterclockwise direction (feeding direction W) with respect to the thus-formed housing 6. At this time, the first end mill 53 finishes the peripheral wall adjoining portion 31 by up-cutting similarly to the roughing process of the bottom surface 28 of the housing 6 (see FIGS. 8A and 8B). At the same time, the first end mill 53 finishes the side surface 11a by down-cutting similarly to the roughing process of the bottom surface 28 of the housing 6 (see FIG. 11).
 所定の切り込み深さで周囲部30、周壁部隣接部31および側面11aを仕上げ加工した後には、この仕上げ加工と同様の加工軌跡で、第1エンドミル53を用いてゼロカットで周囲部30、周壁部隣接部31および側面11aを再度仕上げ加工する。ここで、「ゼロカット」とは、切り込み深さが0ミリメートルで行う切削加工であり、前工程での加工の際に周囲部30、周壁部隣接部31および側面11aに生じた残留応力を除去し、周囲部30等の平面度を安定させるものである。 After finishing the peripheral portion 30, the peripheral wall portion adjacent portion 31 and the side surface 11a with a predetermined cutting depth, the peripheral portion 30, the peripheral wall is zero-cut using the first end mill 53 in the same machining trajectory as this finishing processing. The part adjacent part 31 and the side surface 11a are finished again. Here, the "zero cut" is a cutting process performed with a cutting depth of 0 mm, and removes residual stress generated in the peripheral portion 30, the peripheral wall portion adjacent portion 31 and the side surface 11a during the processing in the previous step. However, the flatness of the peripheral portion 30 and the like is stabilized.
 上記ゼロカットでの仕上げ加工後には、第1フェースミル55を用いて、所定の切り込み深さでハウジング6の開口端面32および張出部38の面38aを仕上げ加工する。この仕上げ加工の際には、図14に符号Zで示す送り方向のように、第1フェースミル55を開口部9の左斜め下側から張出部38側へ移動させる。 After the finishing with the zero cut, the opening face 32 of the housing 6 and the surface 38a of the overhanging portion 38 are finished with a predetermined cutting depth using the first face mill 55. At the time of this finishing process, the first face mill 55 is moved from the diagonally lower left side of the opening 9 to the projecting portion 38 side, as in the feeding direction indicated by symbol Z in FIG.
 なお、ハウジング6の上記粗加工や仕上げ加工は、加工設備に設けられた図示せぬノズルから周囲部30等や第1エンドミル53等の刃先部にクーラントを適宜供給しながら行われる。また、クーラントは、第1エンドミル53等の内部に設けられた油路を通して周囲部30等に供給されても良い。 The roughing and finishing of the housing 6 are performed while appropriately supplying the coolant from a nozzle (not shown) provided in the processing equipment to the cutting edge portion of the peripheral portion 30 and the first end mill 53. Moreover, the coolant may be supplied to the peripheral portion 30 and the like through an oil passage provided inside the first end mill 53 and the like.
 開口端面32の仕上げ加工後には、ハウジング6の開口端面32や張出部38に、カバー8を取り付けるための雌ねじ穴34(図5参照)や、エンジンブロック3への取付に供するボルト挿入孔35(図5参照)をドリルを用いて形成する。 After finishing the opening end face 32, the opening end face 32 of the housing 6 and the overhanging portion 38 are provided with a female screw hole 34 (see FIG. 5) for attaching the cover 8 and a bolt insertion hole 35 for attachment to the engine block 3. (See FIG. 5) is formed using a drill.
 そして、ハウジング6の凹部6a内に、ロータ12等から構成されるポンプ構成体7を収容し、カバー8を被せて凹部6aの開口部9を閉塞する。カバー8を被せる際には、ハウジング6の開口端面32に形成されたノックピン穴36に圧入されたノックピンとピボットピン穴66に挿入されたピボットピン20を介してハウジング6に対しカバー8を位置決めする。開口部9の閉塞後には、カバー8に形成された各ボルト貫通孔を介してハウジング6の各雌ねじ穴34にボルト17をねじ留めすることで、カバー8がハウジング6に取付固定される。 Then, the pump component 7 including the rotor 12 and the like is housed in the recess 6a of the housing 6, and the cover 8 is covered to close the opening 9 of the recess 6a. When the cover 8 is put on, the cover 8 is positioned with respect to the housing 6 via the knock pin press-fitted into the knock pin hole 36 formed in the opening end surface 32 of the housing 6 and the pivot pin 20 inserted into the pivot pin hole 66. .. After the opening 9 is closed, the cover 8 is attached and fixed to the housing 6 by screwing the bolts 17 into the female screw holes 34 of the housing 6 through the bolt through holes formed in the cover 8.
 [本実施形態の効果]
 図15は、ハウジング6の凹部6aの従来技術の表面加工方法の仕上げ加工工程を示す工程図である。
[Effect of this embodiment]
FIG. 15 is a process diagram showing a finish processing step of a conventional surface processing method for the recess 6 a of the housing 6.
 従来技術の仕上げ加工工程では、周壁部11の側面11aの加工の際にダウンカットで側面11aを切削することによりエンドミル46の工具寿命を延長させることを考慮して、エンドミル46の回転方向Pに対してエンドミル46の周回方向を逆にするようにして底面28および側面11aの加工していた。つまり、回転方向Pに回転するエンドミル46を、図15に符号Gで示す送り方向のように、貫通孔10aの内側から図15の反時計回りの方向にほぼ1周周回させて周囲部30を加工し、引き続き、反時計回りの方向にほぼ1周周回させて周壁部隣接部31および側面11aを加工していた。 In the finishing process of the prior art, in consideration of extending the tool life of the end mill 46 by cutting the side face 11a by down-cutting when processing the side face 11a of the peripheral wall portion 11, in the rotation direction P of the end mill 46. On the other hand, the bottom surface 28 and the side surface 11a were processed so that the orbiting direction of the end mill 46 was reversed. That is, the end mill 46, which rotates in the rotation direction P, is made to make almost one revolution in the counterclockwise direction in FIG. 15 from the inside of the through hole 10a, as in the feeding direction indicated by reference character G in FIG. The peripheral wall adjoining portion 31 and the side surface 11a were processed by rotating the peripheral wall portion approximately once in the counterclockwise direction.
 しかし、このような反時計回りの方向の加工では、ダウンカットで側面11aを切削することはできるが、アップカットで周囲部30および周壁部隣接部31を切削することになってしまう。より詳細には、周囲部30および周壁部隣接部31は、エンドミル46の回転軸線Oに対して常に右側にあり、エンドミル46はアップカットで周囲部30および周壁部隣接部31を切削する(図8(a)、図8(b)参照)。アップカットでの切削時には、エンドミル46の刃部が、周囲部30および周壁部隣接部31のエッジ部を掬うようにエッジ部に食い込んで切削するため、刃部により掬われたエッジ部は、斜め上方に持ち上げられる。これに伴い、エンドミル46は、該エンドミル46の回転軸線方向上向きの切削抵抗を受けるので、周囲部30および周壁部隣接部31を持ち上げながら切削することとなる。そして、周囲部30および周壁部隣接部31の切削後にエンドミル46をハウジング6から離脱させると、アルミニウム合金材料からなる底壁部10が、上記回転軸線方向上向きの切削抵抗の反力で戻り変形し、開口部9と反対側に向かって撓んでしまう。これにより、凹部6aの底面28について適切な平面度を確保できず、ハウジング6内部に形成される作動油室のシール性が悪化してしまう虞があった。 However, in the processing in the counterclockwise direction as described above, the side surface 11a can be cut by the down cut, but the peripheral portion 30 and the peripheral wall portion adjacent portion 31 are cut by the up cut. More specifically, the peripheral portion 30 and the peripheral wall portion adjacent portion 31 are always on the right side with respect to the rotation axis O of the end mill 46, and the end mill 46 cuts the peripheral portion 30 and the peripheral wall portion adjacent portion 31 by up-cutting (FIG. 8(a) and FIG. 8(b)). At the time of cutting with the up-cut, the blade portion of the end mill 46 bites into the edge portion so as to scoop the edge portion of the peripheral portion 30 and the peripheral wall portion adjoining portion 31, so that the edge portion scooped by the blade portion is slanted. Can be lifted up. Along with this, the end mill 46 receives cutting resistance upward in the rotation axis direction of the end mill 46, and therefore, the peripheral portion 30 and the peripheral wall portion adjacent portion 31 are lifted and cut. Then, when the end mill 46 is removed from the housing 6 after cutting the peripheral portion 30 and the peripheral wall adjacent portion 31, the bottom wall portion 10 made of an aluminum alloy material is returned and deformed by the reaction force of the cutting resistance upward in the rotation axis direction. , Will bend toward the side opposite to the opening 9. As a result, the flatness of the bottom surface 28 of the recess 6a cannot be ensured, and the sealing performance of the hydraulic oil chamber formed inside the housing 6 may deteriorate.
 また、エンドミル46がアップカットで周囲部30を切削すると、周囲部30の孔縁であるエッジ部に食い込んで切削するので、エンドミル46の刃部の摩耗量が多くなり、エンドミル46の工具寿命が悪化するという問題があった。 Further, when the end mill 46 cuts the peripheral portion 30 by up-cutting, it cuts by cutting into the edge portion which is the hole edge of the peripheral portion 30, so that the wear amount of the blade portion of the end mill 46 increases and the tool life of the end mill 46 increases. There was a problem of getting worse.
 上記従来技術に対し、本実施形態では、周囲部30の加工の際に、第1エンドミル53の回転方向Pと、貫通孔10aの周りに第1エンドミル53を相対的に周回させる方向とが同じ方向となるように、周囲部30を加工する。つまり、周囲部30の加工の際に、時計周りの方向に回転する第1エンドミル53を貫通孔10aの周りに時計回りの方向に周回させることにより、周囲部30を加工する。これにより、周囲部30が第1エンドミル53の回転軸線O1に対して常に左側にある状態となり、第1エンドミル53は、ダウンカットで周囲部30を加工する。このとき、第1エンドミル53は、回転軸線方向下向きの切削抵抗を受けながら周囲部30を切削するが、この回転軸線方向下向きの切削抵抗は、アップカットにおける回転軸線方向上向きの切削抵抗よりも小さいので、底壁部10を変形させにくい。従って、ハウジング6から第1エンドミル53を離脱させたときの底壁部10の撓みが最小限になり、底面28の適切な平面度を確保できる。よって、ハウジング6内部に形成された作動油室21のシール性を向上させることができる。 In contrast to the above-described conventional technique, in the present embodiment, when processing the peripheral portion 30, the rotation direction P of the first end mill 53 and the direction in which the first end mill 53 relatively circulates around the through hole 10a are the same. The peripheral portion 30 is processed so as to be oriented. That is, when the peripheral portion 30 is processed, the peripheral portion 30 is processed by causing the first end mill 53, which rotates in the clockwise direction, to rotate in the clockwise direction around the through hole 10a. As a result, the peripheral portion 30 is always on the left side with respect to the rotation axis O1 of the first end mill 53, and the first end mill 53 processes the peripheral portion 30 by down-cutting. At this time, the first end mill 53 cuts the peripheral portion 30 while receiving the downward cutting resistance in the rotation axis direction, but the downward cutting resistance in the rotation axis direction is smaller than the upward cutting resistance in the rotation axis direction in the upcut. Therefore, it is difficult to deform the bottom wall portion 10. Therefore, the bending of the bottom wall portion 10 when the first end mill 53 is detached from the housing 6 is minimized, and the appropriate flatness of the bottom surface 28 can be secured. Therefore, the sealing performance of the hydraulic oil chamber 21 formed inside the housing 6 can be improved.
 また、周囲部30がダウンカットで切削されるときには、第1エンドミル53の刃部が滑らかな円弧部52(図9(a)参照)を切削するので、刃部の摩耗量が抑えられる。よって、刃部が食い込み易いエッジ部を順次切削するアップカットでの切削と比べて、第1エンドミル53の工具寿命を長くすることができる。 Further, when the peripheral portion 30 is cut by down-cutting, the blade portion of the first end mill 53 cuts the smooth arc portion 52 (see FIG. 9A), so the amount of wear of the blade portion is suppressed. Therefore, the tool life of the first end mill 53 can be extended as compared with the up-cutting in which the edge portion where the blade portion easily bites is sequentially cut.
 さらに、本実施形態では、第1エンドミル53の回転方向Pと、貫通孔10aの周りに第1エンドミル53を相対的に周回させる方向とが逆方向となるように、周壁部11の側面11aを加工する。つまり、側面11aの加工の際に、時計周りの方向に回転する第1エンドミル53を貫通孔10aの周りに反時計回りの方向に周回させることにより、側面11aを加工する。これにより、側面11aが第1エンドミル53の回転軸線O1に対して常に右側にある状態で、第1エンドミル53は、ダウンカットで側面11aを加工する。従って、アップカットで側面11aを加工する場合と比べて、第1エンドミル53の工具寿命を長くすることができる。 Furthermore, in the present embodiment, the side surface 11a of the peripheral wall portion 11 is arranged so that the rotation direction P of the first end mill 53 and the direction in which the first end mill 53 relatively circulates around the through hole 10a are opposite. To process. That is, when processing the side surface 11a, the side surface 11a is processed by orbiting the first end mill 53 rotating in the clockwise direction around the through hole 10a in the counterclockwise direction. As a result, the first end mill 53 processes the side surface 11a by down-cutting in a state where the side surface 11a is always on the right side with respect to the rotation axis O1 of the first end mill 53. Therefore, the tool life of the first end mill 53 can be extended as compared with the case where the side surface 11a is machined by upcut.
 また、本実施形態では、周壁部11の側面11aの切削と同時に、底面28の一部である周壁部隣接部31がアップカットで切削される。しかし、周壁部隣接部31は、周壁部11と連続しているため周囲部30と比べて剛性が高い部位となっており、第1エンドミル53の刃部46aによる持ち上げが抑制される。従って、第1エンドミル53の離脱時の底壁部10の戻り変形が抑制され、底面28の適切な平面度が確保可能となる。さらに、周壁部隣接部31の加工では、周囲部30のように貫通孔10aの内側から入って貫通孔10aの孔縁のエッジ部を加工の最初から切削することがないので、周囲部30の加工に比べて、第1エンドミル53から過度な負荷がかからないようになっている。この点によっても、底壁部10の戻り変形が抑制され、底面28の適切な平面度を確保できる。 Further, in the present embodiment, at the same time when the side surface 11a of the peripheral wall portion 11 is cut, the peripheral wall adjacent portion 31, which is a part of the bottom surface 28, is cut by up-cutting. However, since the peripheral wall portion adjacent portion 31 is continuous with the peripheral wall portion 11, the peripheral wall portion adjacent portion 31 has a higher rigidity than the peripheral portion 30, and the lifting by the blade portion 46a of the first end mill 53 is suppressed. Therefore, the return deformation of the bottom wall portion 10 when the first end mill 53 is detached is suppressed, and the appropriate flatness of the bottom surface 28 can be secured. Further, in the processing of the peripheral wall adjacent portion 31, since the edge portion of the hole edge of the through hole 10a does not enter from the inside of the through hole 10a like the peripheral portion 30 and is not cut from the beginning of the processing, Compared with the processing, the first end mill 53 does not apply an excessive load. Also from this point, the return deformation of the bottom wall portion 10 is suppressed, and the appropriate flatness of the bottom surface 28 can be secured.
 さらに、本実施形態では、ハウジング6の外周部の複数のクランプ座37をクランプするので、クランプにより周壁部11を介して底壁部10に適度な応力を作用させ、底壁部10の撓みが抑制された状態で、底壁部10の底面28を切削することが可能となる。従って、底壁部10の変形が抑制され、底面28の平面度が向上する。これにより、作動油室21のシール性を向上させることができる。 Further, in the present embodiment, since the plurality of clamp seats 37 on the outer peripheral portion of the housing 6 are clamped, an appropriate stress is applied to the bottom wall portion 10 via the peripheral wall portion 11 by the clamp, and the bottom wall portion 10 is not bent. The bottom surface 28 of the bottom wall portion 10 can be cut in the suppressed state. Therefore, the deformation of the bottom wall portion 10 is suppressed, and the flatness of the bottom surface 28 is improved. Thereby, the sealing property of the hydraulic oil chamber 21 can be improved.
 また、本実施形態では、ハウジング6の背面側の第1接触面39を切削加工する前に、ハウジング6の底壁部10の底面28を粗加工する。第1接触面39を切削加工する際には、薄肉の底壁部10に残留応力が生じ、底壁部10が変形し易くなる。この底壁部10の変形を抑制するためには、第1接触面39を切削する際の仕上げ代を最小限にして、切削加工時に底壁部10に生じる残留応力を少なくする必要がある。そこで、第1接触面39を切削加工する前に底壁部10の底面28を粗加工することにより、第1接触面39を切削する際の仕上げ代を最小限にし、残留応力を少なくすることができる。 Further, in the present embodiment, the bottom surface 28 of the bottom wall portion 10 of the housing 6 is roughly machined before the first contact surface 39 on the rear surface side of the housing 6 is machined. When cutting the first contact surface 39, residual stress is generated in the thin bottom wall portion 10, and the bottom wall portion 10 is easily deformed. In order to suppress the deformation of the bottom wall portion 10, it is necessary to minimize the finishing allowance when cutting the first contact surface 39 and reduce the residual stress generated in the bottom wall portion 10 during the cutting process. Therefore, by roughing the bottom surface 28 of the bottom wall portion 10 before cutting the first contact surface 39, the finishing allowance when cutting the first contact surface 39 is minimized and the residual stress is reduced. You can
 さらに、本実施形態では、第1フェースミル55によって第1接触面39を切削加工した後に、底面28の仕上げ加工をする。つまり、残留応力が少ない状態で第1接触面39を切削加工した後に、最終工程である底面28の仕上げ加工をする。従って、底面28の仕上げ加工においても、残留応力が少ない状態で切削を行うことができ、底壁部10の変形を抑制することができる。 Further, in the present embodiment, after the first contact surface 39 is cut by the first face mill 55, the bottom surface 28 is finished. That is, after the first contact surface 39 is cut with a small residual stress, the bottom surface 28, which is the final step, is finished. Therefore, even in the finishing process of the bottom surface 28, the cutting can be performed with a small residual stress, and the deformation of the bottom wall portion 10 can be suppressed.
 また、本実施形態では、カバー8との当接面であるハウジング6の開口端面32は、底壁部10の底面28を加工した後に切削加工される。底壁部10の底面28は、カムリング14の揺動を考慮して比較的広い面積を有するように形成され、一方、開口端面32は、底面28よりも小さい面積を有している。広い面積を有する底面28を加工する際には、面積が小さい開口端面32を加工する場合よりもハウジング6に変形が生じ易い。仮に、カバー8との当接面となる開口端面32を切削した後に、底面28を切削すると、底壁部10の加工によるハウジング6の変形の影響で、開口端面32が傾き、カバー8との適度な当接が保てなくなる虞がある。そこで、変形が生じやすい底壁部10の底面28を切削してから開口端面32を切削することで、カバー8との高い当接精度を確保することができる。 Further, in the present embodiment, the opening end surface 32 of the housing 6, which is the contact surface with the cover 8, is cut after the bottom surface 28 of the bottom wall portion 10 is processed. The bottom surface 28 of the bottom wall portion 10 is formed to have a relatively large area in consideration of the swing of the cam ring 14, while the opening end surface 32 has a smaller area than the bottom surface 28. When the bottom surface 28 having a large area is processed, the housing 6 is more likely to be deformed than when the opening end surface 32 having a small area is processed. If the bottom surface 28 is cut after cutting the opening end surface 32 that is the contact surface with the cover 8, the opening end surface 32 tilts due to the deformation of the housing 6 due to the processing of the bottom wall portion 10, and the bottom surface 28 is cut. There is a possibility that proper contact cannot be maintained. Therefore, by cutting the bottom surface 28 of the bottom wall portion 10 that is likely to be deformed and then cutting the opening end surface 32, it is possible to ensure high contact accuracy with the cover 8.
 また、開口端面32は、周壁部11から張り出した張出部38の面38aと連続しており、開口端面32の加工の一連の加工として、面38aが加工される。開口端面32の平面度に加えて、張り出した張出部38の面38aの平面度を高精度に加工することは比較的困難なことであるから、変形が生じやすい底壁部10の底面28の加工後に一連の加工で開口端面32および面38aを加工することで、面38aの高い平面度の確保が可能となっている。 The opening end surface 32 is continuous with the surface 38a of the protruding portion 38 protruding from the peripheral wall portion 11, and the surface 38a is processed as a series of processing for processing the opening end surface 32. Since it is relatively difficult to machine the flatness of the surface 38a of the projecting portion 38 in addition to the flatness of the opening end surface 32 with high accuracy, it is easy to deform the bottom surface 28 of the bottom wall portion 28. By processing the opening end surface 32 and the surface 38a by a series of processing after the processing of, it is possible to secure high flatness of the surface 38a.
 [本実施形態の別の課題]
 図16は、本実施形態の別の課題の解決方法を示すハウジング6等の断面図である。
[Other problems of this embodiment]
FIG. 16 is a cross-sectional view of the housing 6 and the like showing a solution to another problem of the present embodiment.
 上述したように、底面28の周囲部30は、第1エンドミル53が回転軸線方向下向きの切削抵抗を受けながらダウンカットで切削加工されていたが、この回転軸線方向下向きの切削抵抗によって、図16の上側に示すように底壁部10が開口部9とは反対側に向かって僅かに撓んでしまうことがある。このとき、底壁部10の撓みに伴い、底壁部10の第1接触面39も開口部9とは反対側に向かって僅かに撓むことになる。 As described above, the peripheral portion 30 of the bottom surface 28 is cut by the down cutting while the first end mill 53 receives the downward cutting resistance in the rotation axis direction. The bottom wall portion 10 may be slightly bent toward the side opposite to the opening portion 9 as shown on the upper side of FIG. At this time, with the bending of the bottom wall portion 10, the first contact surface 39 of the bottom wall portion 10 also slightly bends toward the side opposite to the opening 9.
 そこで、上記底壁部10の撓みを抑制するために、図16の下側に示すように、凹部6a内にポンプ構成体7を収容した状態で、ハウジング6の撓んだ第1接触面39をエンジンブロック3の平坦な取付面3aに押し付け、ボルト18を介してエンジンブロック3にハウジング6を取付固定する。これにより、ボルト18の締結力により、平坦な取付面3aに第1接触面39が追従するように押し付けられ、エンジンブロック3により底壁部10が矯正される。その結果、底面28の適切な平面度を確保でき、ハウジング6内部に形成された作動油室21のシール性を向上させることができる。 Therefore, in order to suppress the bending of the bottom wall portion 10, as shown in the lower side of FIG. 16, the bent first contact surface 39 of the housing 6 in the state where the pump structure 7 is housed in the recess 6a. Is pressed against the flat mounting surface 3a of the engine block 3, and the housing 6 is mounted and fixed to the engine block 3 via the bolts 18. Thereby, the first contact surface 39 is pressed by the fastening force of the bolt 18 so as to follow the flat mounting surface 3 a, and the bottom wall portion 10 is corrected by the engine block 3. As a result, an appropriate flatness of the bottom surface 28 can be ensured, and the sealing performance of the hydraulic oil chamber 21 formed inside the housing 6 can be improved.
 なお、上記実施形態では、クランプ座37によって固定されたハウジング6に対して第1エンドミル53等を移動させることにより、ハウジング6の表面加工を行う例を開示したが、固定状態の第1エンドミル53等に対してハウジング6を移動させることによりハウジング6の表面加工を行っても良い。 In the above embodiment, an example in which the surface processing of the housing 6 is performed by moving the first end mill 53 and the like with respect to the housing 6 fixed by the clamp seat 37 is disclosed. However, the first end mill 53 in the fixed state is disclosed. The surface processing of the housing 6 may be performed by moving the housing 6 with respect to the above.
 以上説明した実施形態に基づく凹部に貫通孔を有する部材の表面加工方法としては、例えば以下に述べる態様のものが考えられる。 As a surface processing method for a member having a through hole in a recess based on the embodiment described above, for example, the following modes are conceivable.
 凹部の底壁部に貫通孔を有する部材の前記凹部の内面を、エンドミルを用いて加工する表面加工方法は、その一態様として、前記エンドミルの回転方向と、前記貫通孔の周りに前記エンドミルを相対的に周回させる方向とが同じ方向となるように、前記貫通孔の周囲部を加工し、前記エンドミルの回転方向と、前記貫通孔の周りに前記エンドミルを相対的に周回させる方向とが逆方向となるように、前記凹部の側面を加工する。 The surface processing method of processing the inner surface of the recess of the member having a through hole in the bottom wall of the recess using an end mill, as one aspect thereof, the rotation direction of the end mill, and the end mill around the through hole. The peripheral portion of the through hole is processed so that the direction of relative rotation is the same, and the rotation direction of the end mill and the direction of relative rotation of the end mill around the through hole are opposite. The side surface of the recess is processed so as to be oriented.
 前記表面加工方法の好ましい態様において、前記エンドミルは、前記貫通孔の前記周囲部を周回するように移動しながら前記周囲部を切削加工する。 In a preferred aspect of the surface processing method, the end mill cuts the peripheral portion while moving around the peripheral portion of the through hole.
 別の好ましい態様では、前記表面加工方法の態様のいずれかにおいて、前記エンドミルは、前記貫通孔の前記周囲部を1周周回した後、進行方向を逆方向に反転させて前記凹部の前記側面側を周回する。 In another preferred aspect, in any one of the aspects of the surface processing method, the end mill makes one revolution around the peripheral portion of the through hole, and then reverses the traveling direction in the opposite direction to the side surface side of the recess. Orbit around.
 また、以上説明した実施形態に基づくオイルポンプの製造方法としては、例えば以下に述べる態様のものが考えられる。 Further, as a method for manufacturing an oil pump based on the above-described embodiment, for example, the following modes are possible.
 オイルポンプの製造方法では、一態様として、底部に貫通孔を有する凹部が設けられたハウジングを金属材料により成形し、前記凹部の内面を加工するエンドミルの回転方向と、前記貫通孔の周りに前記エンドミルを相対的に周回させる方向とが同じ方向となるように、前記貫通孔の周囲部を加工し、前記エンドミルの回転方向と、前記貫通孔の周りに前記エンドミルを相対的に周回させる方向とが逆方向となるように、前記凹部の側面を加工し、前記凹部内にポンプ構成体を組み付け、前記凹部の開口部をカバーによって閉塞する。 In one aspect of the method for manufacturing an oil pump, a housing having a recess having a through hole at the bottom is formed of a metal material, and a rotation direction of an end mill that processes the inner surface of the recess and the circumference of the through hole are provided. The peripheral portion of the through hole is processed so that the direction in which the end mill relatively circulates is the same direction, the rotation direction of the end mill, and the direction in which the end mill relatively circulates around the through hole. The side surface of the concave portion is processed so that the direction of the concave portion is opposite to that of the concave portion.
 前記オイルポンプの製造方法の好ましい態様において、前記凹部の前記内面を加工する際には、前記ハウジングの外周部の複数箇所をクランプして加工を行う。 In a preferred aspect of the method for manufacturing the oil pump, when processing the inner surface of the recess, a plurality of locations on the outer peripheral portion of the housing are clamped for processing.
 別の好ましい態様では、前記オイルポンプの製造方法の態様のいずれかにおいて、前記ハウジングのうち前記凹部の前記開口部に対して反対側の面に、相手側部材に取り付けた際に前記相手側部材と接触する接触面が設けられており、前記接触面を、フェースミルによって切削加工し、前記凹部の底面を、前記エンドミルによって切削加工する。 In another preferable aspect, in any one of the aspects of the method of manufacturing the oil pump, the mating member is attached to a mating member on a surface of the housing opposite to the opening of the recess. A contact surface is provided for contacting with, the contact surface is cut by a face mill, and the bottom surface of the recess is cut by the end mill.
 別の好ましい態様では、前記オイルポンプの製造方法の態様のいずれかにおいて、前記接触面を切削加工する前に、前記ハウジングの前記凹部の前記底面を切削加工する。 In another preferable aspect, in any one of the aspects of the method of manufacturing the oil pump, the bottom surface of the recess of the housing is cut before the contact surface is cut.
 別の好ましい態様では、前記オイルポンプの製造方法の態様のいずれかにおいて、前記ハウジングの前記カバーとの当接面は、前記凹部の前記底面を切削加工した後に切削加工される。 In another preferable aspect, in any one of the aspects of the method for manufacturing the oil pump, the contact surface of the housing with the cover is cut after the bottom surface of the recess is cut.
 さらに、以上説明した実施形態に基づくオイルポンプとしては、例えば以下に述べる態様のものが考えられる。 Further, as the oil pump based on the embodiment described above, for example, the following modes are possible.
 オイルポンプは、その一態様として、駆動軸が挿入される貫通孔を底壁部に有する凹部と、該凹部の開口部に対して反対側の面に設けられ、相手側部材に取り付けた際に該相手側部材と接触する接触面と、該接触面の外周部に設けられ、前記相手側部材に固定部材を介して取り付けられる複数の取付部と、を備え、前記底壁部が前記相手側部材側に向かって撓むように形成されたアルミニウム合金製のハウジングと、前記凹部内に配置され、前記貫通孔に挿入される前記駆動軸によって回転駆動されることにより、吸入部から吸入した流体を吐出部から吐出するポンプ構成体と、前記駆動軸が挿入される挿入孔が設けられ、前記凹部の開口部を閉塞するカバーと、を備える。 As one aspect thereof, the oil pump is provided with a recess having a through hole into which a drive shaft is inserted in the bottom wall and a surface opposite to the opening of the recess, and when mounted on a mating member. The mating member is provided with a contact surface that comes into contact with the mating member, and a plurality of mounting portions that are provided on an outer peripheral portion of the mating member and that are mounted to the mating member via a fixing member. A housing made of an aluminum alloy that is bent toward the member side, and a drive shaft that is disposed in the recess and inserted into the through hole, are rotationally driven to discharge the fluid sucked from the suction portion. And a cover provided with an insertion hole into which the drive shaft is inserted and closing the opening of the recess.
 前記オイルポンプの好ましい態様において、前記固定部材はボルトであり、前記取付部は前記ボルトが挿入されるボルト挿入孔である。 In a preferred aspect of the oil pump, the fixing member is a bolt, and the mounting portion is a bolt insertion hole into which the bolt is inserted.
 別の好ましい態様では、前記オイルポンプの態様のいずれかにおいて、前記ポンプ構成体は、前記駆動軸に固定されたロータが回転することにより、複数の作動油室の容積が変化して前記吸入部から吸入した流体を前記吐出部から吐出するものであって、前記凹部の底面が前記作動油室の一部を構成している。 In another preferred aspect, in any one of the aspects of the oil pump, the pump structure is configured such that a rotor fixed to the drive shaft rotates to change volumes of a plurality of hydraulic oil chambers and thereby the suction portion. The fluid sucked in from is discharged from the discharge portion, and the bottom surface of the recess forms a part of the hydraulic oil chamber.
 別の好ましい態様では、前記オイルポンプの態様のいずれかにおいて、前記ポンプ構成体は、前記凹部内を揺動可能な揺動部材を有し、該揺動部材を揺動させることにより、吐出量を可変とする。 In another preferred aspect, in any one of the aspects of the oil pump, the pump structure has a swing member capable of swinging in the recess, and the swing amount of the swing member causes the discharge amount to change. Is variable.

Claims (12)

  1.  凹部の底壁部に貫通孔を有する部材の前記凹部の内面を、エンドミルを用いて加工する表面加工方法であって、
     前記エンドミルの回転方向と、前記貫通孔の周りに前記エンドミルを相対的に周回させる方向とが同じ方向となるように、前記貫通孔の周囲部を加工し、
     前記エンドミルの回転方向と、前記貫通孔の周りに前記エンドミルを相対的に周回させる方向とが逆方向となるように、前記凹部の側面を加工することを特徴とする凹部に貫通孔を有する部材の表面加工方法。
    A surface processing method for processing the inner surface of the recess of a member having a through hole in the bottom wall of the recess using an end mill,
    The peripheral direction of the through hole is processed so that the rotation direction of the end mill and the direction in which the end mill relatively circulates around the through hole are the same direction,
    A member having a through hole in the recess, characterized in that the side surface of the recess is processed so that the rotation direction of the end mill and the direction in which the end mill relatively circulates around the through hole are opposite directions. Surface treatment method.
  2.  前記エンドミルは、前記貫通孔の前記周囲部を周回するように移動しながら前記周囲部を切削加工することを特徴とする請求項1に記載の凹部に貫通孔を有する部材の表面加工方法。 The surface processing method for a member having a through hole in a recess according to claim 1, wherein the end mill cuts the peripheral portion while moving around the peripheral portion of the through hole.
  3.  前記エンドミルは、前記貫通孔の前記周囲部を1周周回した後、進行方向を逆方向に反転させて前記凹部の前記側面側を周回することを特徴とする請求項2に記載の凹部に貫通孔を有する部材の表面加工方法。 The said end mill circulates the said peripheral part of the said through-hole once, and after reversing the advancing direction, it circulates the said side surface side of the said recessed part, It penetrates the recessed part of Claim 2 characterized by the above-mentioned. A surface processing method for a member having holes.
  4.  底壁部に貫通孔を有する凹部が設けられたハウジングを金属材料により成形し、
     前記凹部の内面を加工するエンドミルの回転方向と、前記貫通孔の周りに前記エンドミルを相対的に周回させる方向とが同じ方向となるように、前記貫通孔の周囲部を加工し、
     前記エンドミルの回転方向と、前記貫通孔の周りに前記エンドミルを相対的に周回させる方向とが逆方向となるように、前記凹部の側面を加工し、
     前記凹部内にポンプ構成体を組み付け、
     前記凹部の開口部をカバーによって閉塞することを特徴とするオイルポンプの製造方法。
    A housing provided with a recess having a through hole in the bottom wall is molded of a metal material,
    The rotation direction of the end mill that processes the inner surface of the recess is such that the direction in which the end mill relatively circulates around the through hole is the same direction, and the peripheral portion of the through hole is processed.
    The side surface of the recess is processed so that the rotation direction of the end mill and the direction in which the end mill relatively circulates around the through hole are opposite directions,
    Assembling the pump structure in the recess,
    A method for manufacturing an oil pump, characterized in that the opening of the recess is closed by a cover.
  5.  前記凹部の前記内面を加工する際には、前記ハウジングの外周部の複数箇所をクランプして加工を行うことを特徴とする請求項4に記載のオイルポンプの製造方法。 The method for manufacturing an oil pump according to claim 4, wherein when the inner surface of the recess is machined, a plurality of locations on the outer periphery of the housing are clamped and machined.
  6.  前記ハウジングのうち前記凹部の前記開口部に対して反対側の面に、相手側部材に取り付けた際に前記相手側部材と接触する接触面が設けられており、前記接触面を、フェースミルによって切削加工し、
     前記凹部の底面を、前記エンドミルによって切削加工することを特徴とする請求項4に記載のオイルポンプの製造方法。
    A contact surface that comes into contact with the mating member when attached to the mating member is provided on the surface of the housing opposite to the opening of the recess, and the contact surface is formed by a face mill. Cutting,
    The method of manufacturing an oil pump according to claim 4, wherein the bottom surface of the recess is cut by the end mill.
  7.  前記接触面を切削加工する前に、前記ハウジングの前記凹部の前記底面を切削加工することを特徴とする請求項6に記載のオイルポンプの製造方法。 The method for manufacturing an oil pump according to claim 6, wherein the bottom surface of the recess of the housing is cut before the contact surface is cut.
  8.  前記ハウジングの前記カバーとの当接面は、前記凹部の前記底面を切削加工した後に切削加工されることを特徴とする請求項4に記載のオイルポンプの製造方法。 The method of manufacturing an oil pump according to claim 4, wherein the contact surface of the housing with the cover is cut after the bottom surface of the recess is cut.
  9.  駆動軸が挿入される貫通孔を底壁部に有する凹部と、該凹部の開口部に対して反対側の面に設けられ、相手側部材に取り付けた際に該相手側部材と接触する接触面と、該接触面の外周部に設けられ、前記相手側部材に固定部材を介して取り付けられる複数の取付部と、を備え、前記底壁部が前記相手側部材側に向かって撓むように形成されたアルミニウム合金製のハウジングと、
     前記凹部内に配置され、前記貫通孔に挿入される前記駆動軸によって回転駆動されることにより、吸入部から吸入した流体を吐出部から吐出するポンプ構成体と、
     前記駆動軸が挿入される挿入孔が設けられ、前記凹部の開口部を閉塞するカバーと、
     を備えたことを特徴とするオイルポンプ。
    A recess having a through hole in the bottom wall for inserting the drive shaft, and a contact surface provided on the surface opposite to the opening of the recess and contacting the mating member when attached to the mating member. And a plurality of mounting portions provided on the outer peripheral portion of the contact surface and mounted on the mating member via a fixing member, wherein the bottom wall portion is formed to bend toward the mating member side. Aluminum alloy housing,
    A pump structure that is disposed in the recess and is rotationally driven by the drive shaft that is inserted into the through hole, and that discharges the fluid sucked from the suction portion from the discharge portion;
    An insertion hole into which the drive shaft is inserted is provided, and a cover that closes the opening of the recess,
    An oil pump characterized by having.
  10.  前記固定部材はボルトであり、前記取付部は前記ボルトが挿入されるボルト挿入孔であることを特徴とする請求項9に記載のオイルポンプ。 The oil pump according to claim 9, wherein the fixing member is a bolt, and the mounting portion is a bolt insertion hole into which the bolt is inserted.
  11.  前記ポンプ構成体は、前記駆動軸に固定されたロータが回転することにより、複数の作動油室の容積が変化して前記吸入部から吸入した流体を前記吐出部から吐出するものであって、前記凹部の底面が前記作動油室の一部を構成していることを特徴とする請求項10に記載のオイルポンプ。 The pump component is configured to discharge the fluid sucked from the suction part from the discharge part by changing the volumes of the plurality of hydraulic oil chambers by the rotation of the rotor fixed to the drive shaft, The oil pump according to claim 10, wherein a bottom surface of the concave portion constitutes a part of the hydraulic oil chamber.
  12.  前記ポンプ構成体は、前記凹部内を揺動可能な揺動部材を有し、該揺動部材を揺動させることにより、吐出量を可変とすることを特徴とする請求項11に記載のオイルポンプ。 The oil according to claim 11, wherein the pump structure has a swinging member capable of swinging in the recess, and the swinging member swings to change the discharge amount. pump.
PCT/JP2019/049854 2019-02-20 2019-12-19 Surface processing method for member having through-hole in bottom wall section of recess part, method of manufacturing oil pump, and oil pump WO2020170588A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019027942A JP2022074168A (en) 2019-02-20 2019-02-20 Surface processing method of member having penetration hole at bottom wall part of recess, manufacturing method of oil pump and oil pump
JP2019-027942 2019-02-20

Publications (1)

Publication Number Publication Date
WO2020170588A1 true WO2020170588A1 (en) 2020-08-27

Family

ID=72144191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049854 WO2020170588A1 (en) 2019-02-20 2019-12-19 Surface processing method for member having through-hole in bottom wall section of recess part, method of manufacturing oil pump, and oil pump

Country Status (2)

Country Link
JP (1) JP2022074168A (en)
WO (1) WO2020170588A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10225814A (en) * 1992-06-17 1998-08-25 Makino Milling Mach Co Ltd Cutting work method
JPH11179608A (en) * 1997-12-17 1999-07-06 Toshiba Mach Co Ltd Finish work method and working machine
JP2016048071A (en) * 2016-01-13 2016-04-07 日立オートモティブシステムズ株式会社 Variable displacement pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10225814A (en) * 1992-06-17 1998-08-25 Makino Milling Mach Co Ltd Cutting work method
JPH11179608A (en) * 1997-12-17 1999-07-06 Toshiba Mach Co Ltd Finish work method and working machine
JP2016048071A (en) * 2016-01-13 2016-04-07 日立オートモティブシステムズ株式会社 Variable displacement pump

Also Published As

Publication number Publication date
JP2022074168A (en) 2022-05-18

Similar Documents

Publication Publication Date Title
EP2291258B1 (en) Cutting tool and cartridge for the same
US10562110B2 (en) Rotary tool as well as carrier and cutting insert for such a rotary tool
JP4145299B2 (en) Turbine rotor machining using cup-shaped tools
EP2042742B1 (en) Fluid machine
US11994045B2 (en) Hydraulic oil control valve and valve timing adjustment device
US7607906B2 (en) Gear pump arrangement with erosion resistant insert
KR20070116546A (en) Cutting tool for machining hole
JP2006289567A (en) Machine tool
KR100265030B1 (en) Method for machining scroll member
US6769842B2 (en) Cutter plate and milling tool
WO2020170588A1 (en) Surface processing method for member having through-hole in bottom wall section of recess part, method of manufacturing oil pump, and oil pump
JP2006291944A (en) Valve opening/closing timing control device
US8183491B2 (en) Electric discharge machining device using rotating circular blade
US5807088A (en) Scroll type compressor with chamfered scroll wall
JP5358499B2 (en) Valve timing control device for internal combustion engine and method for manufacturing the same
CN113857563B (en) Broaching tool for blade tenon
JP6567385B2 (en) Manufacturing method of variable displacement pump
JP2007138725A (en) Valve timing adjusting device
KR101420955B1 (en) Method for processing cylinder block, cylinder block and thermal-sprayed cylinder block
US7849768B2 (en) Apparatus and method for rotary machining of rotors
CN107923274B (en) Valve timing control device for internal combustion engine
JP2007098511A (en) Boring bar and its machining method
CN214720574U (en) Machining center combined type cutter for machining integrated warm water pipe on water pump
KR20110109523A (en) Power-steering pump having tolerance ring
US7354253B2 (en) Oil pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP