WO2020170577A1 - Sputtering film forming apparatus, sputtering film forming method therefor, and compound thin film - Google Patents

Sputtering film forming apparatus, sputtering film forming method therefor, and compound thin film Download PDF

Info

Publication number
WO2020170577A1
WO2020170577A1 PCT/JP2019/048970 JP2019048970W WO2020170577A1 WO 2020170577 A1 WO2020170577 A1 WO 2020170577A1 JP 2019048970 W JP2019048970 W JP 2019048970W WO 2020170577 A1 WO2020170577 A1 WO 2020170577A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering
area
film forming
reaction
thin film
Prior art date
Application number
PCT/JP2019/048970
Other languages
French (fr)
Japanese (ja)
Inventor
亦周 長江
陽介 稲瀬
卓哉 菅原
Original Assignee
株式会社シンクロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シンクロン filed Critical 株式会社シンクロン
Publication of WO2020170577A1 publication Critical patent/WO2020170577A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Definitions

  • the present invention relates to a sputtering film forming apparatus for forming a thin film on a substrate by sputtering, a sputtering film forming method therefor, and a compound thin film.
  • Magnetron sputter is a type of physical vapor deposition (Physical Vapor Deposition, PVD).
  • the general sputtering method can be applied to the production of multiple kinds of materials such as metals, semiconductors, and insulators, and the equipment is simplified and easy to control, the deposition film area is large, and the adhesion is strong.
  • a magnetic field is introduced to the cathode surface of the target, and the plasma density is increased by increasing the sputtering rate by restraining the charged particles from the magnetic field. Therefore, the speed is high, the temperature is low, and the damage is low. Has the advantage.
  • the present application aims to provide the following sputtering film forming apparatus, its sputtering film forming method, and compound thin film.
  • a vacuum container having an exhaust mechanism, a substrate holding means capable of holding a plurality of substrates, and a sputtering area and a reaction area located inside the vacuum container are provided.
  • a sputtering target material is used to form a sputter material on a substrate, and in the reaction area, active species of a reactive gas in plasma interact with the sputter material to form a compound thin film.
  • Sputtering film forming device In the sputtering film forming apparatus according to the present invention, a vacuum container having an exhaust mechanism, a substrate holding means capable of holding a plurality of substrates, and a sputtering area and a reaction area located inside the vacuum container are provided.
  • a sputtering target material is used to form a sputter material on a substrate, and in the reaction area, active species of a reactive gas in plasma interact with the sputter material to form a compound thin film.
  • Sputtering film forming device In the sputtering area,
  • the sputtering area and the reaction area are spatially separated from each other, in the sputtering area, a sputtering target material, to form a sputtered material on the substrate, in the reaction area, Two or more kinds of reaction gases are introduced to generate plasma in the reaction area, and in the reaction area, the reactive species in the plasma react with the sputter material by the active species and contain at least four kinds of elements. A compound thin film is formed.
  • a vacuum container having an exhaust mechanism, a substrate holding means capable of holding a plurality of substrates, a sputtering area and a reaction area located inside the vacuum container and spatially separated from each other.
  • a sputtering film forming apparatus that forms a compound thin film by interacting with the sputtering substance by the active species of the reactive gas in the plasma.
  • the substrate holding means is cylindrical, and the substrate holding means holds the plurality of substrates on the outer peripheral surface of the substrate holding means by rotating the substrate by the driving means, thereby A reciprocating movement is made between the sputtering area and the reaction area.
  • the sputtered material formed by sputtering in the sputtering area is processed by the plasma generated in the reaction area to form a thin film, and the vacuum container is provided with a partition wall.
  • the partition wall separates the sputtering area and the reaction area from each other.
  • an exhaust mechanism is provided in a portion of the vacuum container near the reaction area.
  • one or more reaction areas are provided inside the vacuum vessel, and two or more reaction gases are simultaneously introduced in one or more reaction areas, or , At least two reaction gases are introduced alternately.
  • the reaction area is provided with a plasma source for forming plasma
  • the plasma source includes at least one of an ICP source, an ECR source, and an ion source.
  • the sputtering area and the reaction area are spatially separated from each other along the movement direction of the substrate holding means, and the sputtering area and the reaction area are electromagnetically coupled in a vacuum container. Or there is electrical coupling.
  • a sputtering target material is used to form a sputtering material containing at least two kinds of metal elements on a substrate.
  • At least two sputtering areas spatially separated from each other are provided in the vacuum container along the movement direction of the substrate holding means, and sputtering is performed in at least two of the sputtering areas.
  • the target materials are different, and a sputter material containing at least two metal elements is formed on the substrate.
  • the target material sputtered in the sputtering area contains a metal element and/or a compound containing a metal element.
  • the target material includes at least one material of Si, Al, Ta, C, Cr, Mg, Ca, Y, SiOx, AlOx, TiOx, CrOx and TaOx.
  • At least one thin film of SiAlON, Mg-SiAlON, Ca-SiAlON, Y-SiAlON, and TiAlON is formed on the substrate.
  • the vacuum container is provided with two sputtering areas spatially separated from each other, and the two sputtering areas include a first sputtering area for sputtering a Si target material and an Al sputtering area.
  • sputtering parameters can be adjusted in the first sputtering area and the second sputtering area, and the sputtering parameters include at least one of sputtering power, sputtering voltage, and sputtering current.
  • the sputter film forming apparatus includes a first air supply unit that introduces an inert gas into the sputtering area.
  • the first air supply unit is arranged so that a gas transfer parameter of the inert gas can be adjusted, and the gas transfer parameter is at least one of a flow rate, an atmospheric pressure, and a flow rate. Including.
  • the first air supply unit can introduce argon into the sputtering area, and the flow rate of argon introduced by the first air supply unit is 200 sccm or more.
  • the plasma generation parameter of the plasma source is adjustable, and the plasma generation parameter includes at least one of power supply power, power supply voltage, and antenna current.
  • the sputtering film forming apparatus is configured to introduce into the reaction area any one of an inert gas, a reactive gas, and a mixed gas of an inert gas and a reactive gas.
  • An air part, and the second air sending part is arranged to be able to adjust the gas transfer parameter of the gas to be transferred, and the gas transfer parameter includes at least one of a flow rate, an atmospheric pressure and a flow rate. ..
  • a sputter film forming method is a sputter film forming method using the sputter film forming apparatus according to any one of the above aspects, wherein a plurality of substrates are introduced into a film forming region, and in the film forming region, The sputtered plasma that is sputtered and discharged releases the sputtered particles from the target material, reaches the surface of the substrate and stacks it to form a sputtered material, which is then moved into the reaction area. In the reaction area, the ions in the plasma interact with the sputter material to form a compound thin film containing at least four elements.
  • the compound thin film according to the present invention is manufactured by the sputtering film forming method or the sputtering film forming apparatus as described above.
  • the compound thin film includes at least one thin film selected from SiAlON, Mg-SiAlON, Ca-SiAlON, Y-SiAlON, and TiAlON.
  • the beneficial effects of the present invention are as follows.
  • the reaction area and the sputtering area are individually controlled to facilitate the formation of a thin film of a desired material.
  • the film forming efficiency is high and it has very good application value.
  • FIG. 1 is a schematic diagram of a sputtering film forming apparatus provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a sputter film forming apparatus provided by another embodiment of the present application.
  • FIG. 3 is a schematic diagram of the specific configuration in FIG.
  • FIG. 4 is a perspective view of FIG.
  • a vacuum container 11 having an exhaust mechanism, a substrate holding means capable of holding a plurality of substrates S, and a sputtering area (20 and 20) located inside the vacuum container 11 and spatially separated from each other. And/or 40) and a reaction area 60, and in the sputtering area (20 and/or 40), a sputtering target material forms a sputter material on the substrate S, and in the reaction area 60, a reaction gas is introduced.
  • a plasma is generated in the reaction area 60, and in the reaction area 60, a sputtering film forming apparatus is formed which interacts with the sputtering material by the active species of the reactive gas in the plasma to form a compound thin film. ..
  • the embodiment of the present application further provides a film forming method which can be applied to the film forming apparatus described in the above embodiment or examples, but is not limited thereto.
  • a plurality of substrates are introduced into the film formation region, and in the film formation region, the sputtered particles are released from the target material by the sputter plasma discharged by sputtering, and the sputtered particles are discharged from the target material.
  • the surface is reached and stacked to form the sputtered material.
  • deposition of sputter particles and plasma treatment based on sputter plasma are performed in the film formation area to form a sputter substance on the surface of the substrate.
  • the substrate is moved into the reaction area and interacts with the sputtered material by the reactive species of the reactive gas in the plasma (other than sputtering the plasma plant) to form a compound thin film containing at least four elements.
  • the reaction area is arranged so as to be spatially separated from the film formation area.
  • the sputtering film forming apparatus may be provided with a cathode electrode, a sputtering power supply, a plasma generating means, and the like.
  • the reaction area 60 is formed in the vacuum container 1 and is arranged so as to be spatially separated from the sputtering areas 20 and 40. Since the reaction area 60 and the sputtering areas 20 and 40 are independent of each other, they are individually controllable areas, and it is easy to form a thin film of a desired material. Then, when forming a compound thin film containing four or more elements, it is not limited by the compound material, and at the same time, the film forming efficiency is high, and it has a very good application value.
  • reaction area 60 and the sputtering areas 20 and 40 are spatially separated from each other, the deposition of the sputter material on the substrate S is affected by the pre-reaction or chemical reaction of the reaction gas and the sputter material, and It is possible to efficiently prevent the formation quality from deteriorating, and at the same time, it contributes to the formation of a compound thin film containing multiple elements, particularly four or more elements.
  • the sputtering area 20 and the sputtering 40 are spatially separated and independent of each other. Therefore, the areas that can be controlled individually are configured. In one possible mechanism, it is then possible to avoid reacting and interfering with each other between the various sputter elements before they are sputtered onto the substrate S.
  • silicon (Si) and aluminum (Al) may be used as the target material at the same time, but if both are located in the same sputtering area 20 or 40 at the same time, silicon and aluminum are unpredictable or excessive chemicals. Reaction to generate a silicon-aluminum compound (for example, aluminum disilicate) that is sputtered into a thin film to form impurities, which may affect film formation quality. The thin film cannot be obtained.
  • the sputtering areas 20 and 40 and the reaction area 60 are distributed upstream and downstream in the moving direction of the substrate holding means 13. Considering that the movement of the substrate holding means 13 is usually a circulation or a reciprocating motion, the specific distribution sequence in the upstream and downstream of the sputtering areas 20, 40 and the reaction area 60 is not particularly limited in this embodiment. ..
  • the sputter material film
  • the plasma treatment is performed in the reaction area 60 to form one intermediate thin film.
  • the composition of the material of the intermediate thin film is the same as the composition of the material of the final thin film, but the thickness is smaller than that of the final thin film).
  • a plurality of intermediate thin films are accumulated on the substrate S until the compound thin film having a target thickness is constantly circulated and passed through the reaction zone 40 and the reaction area 60.
  • the cathode electrodes 21a and 21b are for mounting the target material 29.
  • the sputtering power supply 23 (or 43) is for sputtering and discharging in the sputtering areas 20 and 40 of the surface on which the sputtering is performed facing the target material 29.
  • the plasma generating means is for generating plasma other than sputter plasma in the reaction area 60.
  • the sputter plasma is formed by sputtering and discharging in the sputtering areas 20 and 40.
  • the target material 29 is mounted on the cathode electrodes 21a and 21b (or 41a and 41b) to turn on the sputtering power supply 23 (or 43), and at the same time, to activate the plasma generating means.
  • a plurality of substrates S may be held on the outer peripheral surface of the substrate holding means 13, and the substrate holding means 13 may be rotated.
  • the sputtered particles released from the target material 29 reach the substrate S that has already moved to the sputtering areas 20 and 40 and are deposited.
  • the ions in the sputter plasma are caused to collide with the plasma of the substrate S or the deposit particle of the sputter particles to form a sputter substance.
  • reprocessing is performed in which ions in plasmas other than the sputter plasma collide with or oxidize the plasma of the sputter material on the substrate S that has already moved to the reaction area 60, and interacts with the sputter material to cause the sputter material to interact.
  • a plurality of layers of the intermediate thin film are laminated to form a thin film.
  • the film forming apparatus 1 may further include a driving unit.
  • the drive means can rotate the substrate holding means 13.
  • the driving means rotates the substrate holding means 13 so that the substrate S reciprocates between a predetermined position in the sputtering areas 20 and 40 and a predetermined position in the reaction area 60.
  • the sputtering areas 20 and 40 are areas where sputtered particles released from the target material 29 using sputter plasma reach, and the reaction area 60 is an area exposed to plasma other than sputter plasma.
  • the "movement" used in the description of the invention includes linear movement as well as curved movement (for example, circumferential movement). Therefore, "moving the substrate S from the sputtering areas 20, 40 to the reaction area 60" includes not only the form of revolving around a certain central axis but also the form of reciprocating movement along an orbit connecting two certain straight lines.
  • the “rotation” described in the above embodiment includes not only rotation but also revolution. Therefore, when simply describing "rotating about a central axis", it includes a revolving shape as well as a revolving shape about a certain central axis.
  • the “sputtering material” described in the above embodiment refers to a single sputter layer (film) that is formed on the substrate formed by passing through the sputtering areas 20 and 40.
  • the “thin film” refers to a final thin film formed by depositing an intermediate thin film a plurality of times. Therefore, the "sputter material” is a term used to avoid confusion with the "thin film", and is sufficiently thinner than the final "thin film”.
  • the vacuum container 11 is a main body having a cavity, and the main body having the cavity has a vertical direction (FIG. 4) which is a direction along the center line of the cylindrical cavity.
  • the vertical direction on the paper of FIG. 4 and the same applies to the following.
  • a side wall extending in the plane direction (direction perpendicular to the vertical direction)
  • the vertical and horizontal directions in FIG. 3 and the direction perpendicular to the paper surface of FIG. The following is the same).
  • the cross section of the main body having the cavity in the plane direction is formed in a rectangular shape, but it may be another shape (for example, a circular shape).
  • the present invention is not particularly limited.
  • the vacuum container 11 may be made of, for example, a metal such as stainless steel.
  • a hole for penetrating the shaft 15 may be formed above the vacuum container 11. Since the vacuum container 11 is electrically grounded, it may be grounded as a ground potential.
  • the driving unit can rotate the substrate by interlocking the substrate holding unit by driving the shaft so that the substrate holding unit can rotate about the shaft. The substrate is switched and moved between the sputtering area and the reaction area.
  • the driving means may be the motor 17.
  • the shaft 15 is formed of a substantially tubular member, and can rotate with respect to the vacuum container 11 via an insulating member (not shown) provided in a hole portion formed above the vacuum container 11. Is supported as. Since the shaft 15 is supported by the vacuum container 11 by an insulating member made of an insulating material, a resin, or the like, the shaft 15 can rotate with respect to the vacuum container 11 while being electrically insulated from the vacuum container 11.
  • a first gear (not shown) is fixed to the upper end side of the shaft 15 located outside the vacuum container 11, and the first gear is the second gear on the output side of the motor 17. Of the gear (not shown). Therefore, when driven by the motor 17, the rotational driving force is transmitted to the first gear via the second gear to rotate the shaft 15.
  • a cylindrical rotating body (rotating drum) is attached to the lower end of the shaft 15 located inside the vacuum container 11, and the cylindrical rotating body is a substrate.
  • the holding means 13 was constructed.
  • the rotary drum is arranged in the vacuum container 11 such that the axis Z extending in the drum body direction is oriented in the vertical direction (Y direction) of the vacuum container 11.
  • the rotary drum is formed in a cylindrical shape, but the shape is not limited to the shape, and may be a polygonal columnar shape or a conical shape having a polygonal cross section.
  • the rotating drum is rotated by the drive of the shaft 15 by the motor 17, and is rotated about the axis Z.
  • the substrate holding means 13 is attached to the outside (outer cylinder) of the rotating drum.
  • the substrate holding means 13 has a cylindrical shape.
  • the substrate holding means can hold a plurality of substrates on its outer peripheral surface. Specifically, a plurality of substrate holding portions (for example, concave portions, not shown) are provided on the outer peripheral surface of the substrate holding means 13, and a plurality of film formation targets are formed using the substrate holding portions. It is possible to support the substrate S to be formed from the back surface (that is, the surface opposite to the film formation surface).
  • the substrate S in addition to a plastic substrate (organic glass substrate) and an inorganic substrate (inorganic glass substrate), a metal substrate such as stainless steel may be used.
  • a metal substrate such as stainless steel
  • examples of the substrate S include soda-lime glass (6H to 7H) and borosilicate glass (6H to 7H).
  • the substrate holding means is rotated by the driving means to reciprocate the substrate S between the sputtering area and the reaction area, and further, a thin film having a target thickness is formed on the substrate S.
  • the axis of the substrate holding means 13 (not shown) coincides with the axis Z of the rotary drum. Therefore, by rotating the rotary drum about the axis Z, the substrate holding means 13 is synchronized with the rotation of the rotary drum and integrated with the rotary drum to rotate about the axis Z of the drum.
  • the vacuum container 11 is provided with an exhaust mechanism.
  • the exhaust mechanism can sufficiently discharge the internal gas of the vacuum container 11 to create a vacuum environment. Since the exhaust mechanism is close to the reaction area 60, the gas leaked from the reaction area 60 (via the gap between the partition wall 16 and the substrate holding means 13) can be quickly discharged to the sputtering area. It is possible to prevent the interference with the sputtering film formation in the sputtering area.
  • the exhaust mechanism may include the vacuum pump 10.
  • the exhaust pipe 15 a is connected to the vacuum container 11.
  • the vacuum pump 10 for exhausting the inside of the vacuum container 11 is connected to the pipe 15a, and the degree of vacuum in the vacuum container 11 can be adjusted by the vacuum pump 10 and a controller (not shown).
  • the vacuum pump 10 may be configured by, for example, a rotary pump or a turbo molecular pump (TMP: turbo molecular pump).
  • a sputtering source (sputtering target materials 21a, 21b, 41a, 41b) and a plasma source 80 (one specific example of the plasma generating means) are provided around the substrate holding means 13 arranged in the vacuum chamber 11. It is arranged. In the embodiment shown in FIG. 1, two pairs of sputtering sources and one plasma source 80 are provided. In the embodiment shown in FIG. 2, two pairs of sputtering sources 21a, 21b, 41a, 41b and two plasma sources 80 (PS: plasma) are arranged. Among them, the sputtering target materials arranged in the same film formation region may be different. Since multiple sputtering sources and plasma sources are provided, it is possible to freely adjust and combine them, and obtain a thin film that has the required mechanical properties such as optical properties, stress, hardness, and surface roughness. You can
  • At least two sputter sources 21a, 21b, 41a, 41b may be provided. Based on this, at least two sputtering areas 21a, 21b, 41a, 41b, which will be described later, may be provided. In the embodiment of the present application, sputtering areas 20 and 40 are formed in front of the respective sputtering sources 21a, 21b, 41a and 41b. Similarly, a reaction area 60 is formed in front of the plasma source 80.
  • the sputtering area 20 includes the (partial) inner wall surface 18 of the vacuum container 11, the partition wall 12 (or 14 ), the outer peripheral surface of the substrate holding means 13 (substrate holding means), and each of them. It is formed by an area surrounded by the front surface of the sputter source.
  • the sputtering means 20 and 40 are spatially and pressureally separated from each other inside the vacuum container 11 by the spacing means (partition walls 12 and 14 ), and each independent space is secured.
  • the sputtering area 20 (or 40) and the reaction area 60 which are spatially separated from each other make it possible to remove the components not yet formed as compounds. Elemental materials can be sputtered and reacted.
  • the sputtering area 20 (or 40) and the reaction area 60, which are spatially separated from each other, can control the film forming parameters (for example, the content between the film forming elements) individually, so that the substrate can be formed as desired.
  • a necessary compound thin film can be formed on S, and at the same time, any problem that the degree of freedom in adjusting the film forming components is low can be overcome.
  • the magnetron sputter electrodes 21a and 21b can sputter Si target materials 29a and 29b
  • the magnetron sputter electrodes 41a and 41b can sputter Al target materials 49a and 49b.
  • the reaction area 60 like the sputtering areas 20 and 40, the inner wall surface 18 of the vacuum container 11, the partition wall 16 protruding from the inner wall surface 18 to the substrate holding means 13, the outer peripheral surface of the substrate holding means 13, And it is formed by the area surrounded by the front surface of the plasma source 80.
  • the reaction area 60 is also separated from the sputtering areas 20 and 40 spatially and pressureally inside the vacuum container 11, and each independent space is secured.
  • each of the areas 20, 40 and 60 is configured to be able to individually control the processing.
  • the introduced reaction processing gas contains a reaction gas (for example, oxygen gas or nitrogen gas), an activating substance of the reaction gas exists in the plasma, and the activating substance is present in the reaction area.
  • a reaction gas for example, oxygen gas or nitrogen gas
  • the substrate holding means 13 is rotated to introduce the substrate S into the reaction area 60, and then the sputtering material (for example, a metal atom or incompleteness of the metal atom) formed on the surface of the substrate S in the sputtering areas 20 and 40.
  • the oxide is subjected to plasma exposure treatment (oxidation treatment) to convert the sputtered substance into a complete oxide of metal atoms to form a compound thin film.
  • the reactive species in the plasma interact with the sputtering material to form a compound thin film containing at least four elements.
  • the reaction area 60 and the sputtering area 20 (or 40) interact with each other to form a compound thin film containing at least four kinds of elements on the substrate S.
  • the reaction area 60 and the sputtering area 20 (or 40) are spatially separated from each other.
  • a spacing area may be provided between the reaction area 60 and the sputtering area 20 (or 40).
  • Partition walls may be provided on both sides of the spacing area to secure a space for the reaction area and a space for the sputtering area.
  • reaction area 60 two or more kinds of reaction gases are introduced to generate plasma in the reaction area 60.
  • the reactive gas can react with the sputter material (metal atoms or incomplete oxides of the metal) to form a target compound and ultimately a thin film having a target thickness.
  • the reaction gas can oxidize the sputtered substance to obtain the compound constituent material of the thin film.
  • the sputtering areas 20 and 40 form a sputter material containing Si atoms and Al atoms on the substrate S, respectively.
  • one or a plurality of reaction areas 60 are provided in the vacuum container 11.
  • the one or more reaction areas 60 are arranged so that two or more reaction gases are simultaneously introduced, or at least two reaction gases are alternately introduced (for example, nitrogen gas and oxygen). The gas is introduced alternately).
  • the plurality of reaction areas 60 may be spatially separated from each other. Since the reaction areas 60 that are spatially separated may be independent from each other, it becomes possible to control the film formation parameters, facilitate formation of a compound thin film containing four or more elements, and form the film. The degree of freedom of adjustment in the process is high, and it becomes easy to obtain an optical thin film having desired performance.
  • one reaction gas may be introduced into one reaction area 60, or two or more reaction gases may be introduced simultaneously.
  • an inert gas may be introduced into the reaction area 60.
  • the present application is not limited thereby.
  • the input parameters of the reaction gas can be flexibly and freely adjusted, whereby the components of the thin film can be adjusted. it can. Therefore, a thin film having necessary mechanical properties such as optical properties, stress, hardness, and surface roughness can be obtained.
  • the reaction area 60 is provided with a plasma source 80 for forming plasma.
  • the plasma source 80 includes at least one of an ICP source (Inductive Coupled Plasma Emission Spectrometer), an ECR source (Electron Cyclotron Resonance), and an ion source.
  • the plasma sources 80 in different reaction areas 60 may be different.
  • the plasma generation parameter of the plasma source 80 can be adjusted to facilitate formation of a multi-element compound thin film having a desired component.
  • the plasma generation parameter may include at least one of power supply power, power supply voltage, and antenna current.
  • a desired multi-element compound thin film (compound thin film containing four or more elements) can be obtained by controlling the plasma processing time.
  • the sputtering film forming apparatus is provided with two or more plasma sources 80 (acting with the reaction area 60).
  • a plurality of individually controlled plasma sources 80 are mounted to adjust the structure of the thin film. Therefore, it contributes to obtain a thin film having necessary mechanical properties such as optical properties, stress, hardness, and surface roughness.
  • the plasma source 80 includes a case 81 fixed so as to block an opening formed in the wall surface of the vacuum container 11 from the outside, and a dielectric fixed on the front surface of the case 81.
  • the plate 83 may be provided. Then, by fixing the dielectric plate 83 to the case 81, the antenna housing chamber 82 is formed in the area surrounded by the case 81 and the dielectric plate 83.
  • the antenna storage chamber 82 is separated from the inside of the vacuum container 11. That is, the antenna housing chamber 82 and the inside of the vacuum container 11 are separated by the dielectric plate 83 to form an independent space. Further, the antenna housing chamber 82 and the outside of the vacuum container 11 are separated by a case 81, and an independent space is formed.
  • the antenna storage chamber 82 communicates with the vacuum pump 10 via the pipe 15a, and by extracting a vacuum with the vacuum pump 10, the inside of the antenna storage chamber 82 is evacuated and the inside of the antenna storage chamber 82 is in a vacuum state.
  • antennas 85a and 85b are provided in the antenna storage chamber 82.
  • the antennas 85a and 85b are connected to an AC power supply 89 via a matching device 87 that houses a matching circuit.
  • the antennas 85a and 85b receive power supply from the AC power supply 89, generate an induction electric field inside the vacuum container 11 (in particular, the area 60), and generate plasma in the area 60.
  • an AC voltage is applied from the AC power source 89 to the antennas 85 a and 85 b to generate plasma of reaction processing gas in the area 60.
  • a variable capacitor is provided in the matching device 87, and the variable capacitor can change the power supplied from the AC power source 89 to the antennas 85a and 85b.
  • the sputter film forming apparatus includes a second gas supply unit that introduces any one of an inert gas, a reactive gas, and a mixed gas of an inert gas and a reactive gas into the reaction area.
  • a reaction gas an oxidizing gas such as oxygen or ozone, a nitriding gas such as nitrogen, a carbonizing gas such as methane, or a fluorinated gas such as CF4 may be used.
  • the second gas supply unit is arranged so that the gas transmission parameters of the gas to be transmitted can be adjusted.
  • the gas transfer parameter includes at least one of a flow rate, an atmospheric pressure, and a flow rate.
  • the gas transmission time may be controlled to obtain a desired multi-element compound thin film (compound thin film containing four or more elements).
  • a reaction processing gas supply means (second air supply section) is connected in front of the plasma source 80 (reaction area 60).
  • the reaction processing gas supply means (second air supply unit) is a gas cylinder 68 that stores the reaction processing gas, and a mass that adjusts the flow rate of the reaction processing gas supplied from the gas cylinder 68.
  • a flow rate controller 67 is a device for adjusting the flow rate of the reaction processing gas.
  • the reaction processing gas from the gas cylinder 68 is introduced into the area 60 after its flow rate is adjusted by the mass flow rate controller 67.
  • the gas supply means for the reaction area 60 is not limited to the above structure (that is, a structure including one gas cylinder and one mass flow controller), but a structure including a plurality of gas cylinders and a mass flow controller (for example, an inert gas). And two reaction gas storages, and two mass flow controllers for adjusting the flow rate of each gas supplied from each gas cylinder).
  • the sputtered material formed by the sputtering area 20 (and/or 40) is treated by the plasma generated in the reaction area to form a compound thin film.
  • the vacuum container 11 is provided with a partition wall 12 (and/or 14).
  • the partition 12 (and/or 14) separates the sputtering area 20 (and/or 40) from the reaction area 60.
  • the sputtering target material 29a, 29b (and/or 49a, 49b) forms a sputter material containing at least two elements on the substrate S.
  • a sputtering target material 29a, 29b (and/or 49a, 49b) forms a sputter material containing at least two kinds of conductive elements on the substrate S.
  • the target material 29a, 29b (and/or 49a, 49b) is preferably a conductive material or a material containing a conductive element. Then, it becomes easy to form a conductive circuit during sputtering, it becomes easy to form sputtering at a relatively fast rate with respect to the target material, and the film formation rate can be increased.
  • the sputtering area 20 (and/or 40) and the reaction area 60 are spatially separated from each other along the moving direction of the substrate holding means 13.
  • the partition 12 (and/or 14) is provided around the sputtering area 20, 40 so as to surround the sputtering area 20, 40, thereby forming a sealed space in the sputtering area 20, 40, and at the same time, the partition 12 ( And/or 14) is also located between the substrate holding means 13 and the inner wall of the vacuum chamber 11.
  • the partition wall 12 (and/or 14) is separated from one end (or one side) of the inner wall of the vacuum container 11 and is close to the substrate S in the substrate holding means 13, but is constant between the partition wall 12 and the substrate S. Is provided to avoid interference with the reciprocating motion of the substrate S following the substrate holding means 13 and formation of a thin film. Therefore, the sealed spaces in the sputtering areas 20 and 40 are relatively sealed, and may be spatially and pressure separated from other areas. Among them, the sputtering area and the reaction area have an electromagnetic coupling or an electrical coupling in the vacuum chamber, so that the sputtering gas is oxidized by the reaction gas to form a target thin film.
  • the sputtering area 20 in the sputtering area 20 (and/or 40), at least two kinds of metal elements or conductive elements are provided on the substrate S by the sputtering target materials 29a and 29b (and/or 49a and 49b). Forming a sputtered material including.
  • the at least two kinds of metal elements or conductive elements may include silicon and aluminum elements.
  • At least two sputtering areas spatially separated from each other are provided in the vacuum container 11 along the movement direction of the substrate holding means 13. Since the materials of the target materials sputtered in the at least two sputtering areas are different, a sputtered material containing at least two kinds of metal elements is formed on the substrate.
  • each sputtering area 20 (or 40) one metal or metal compound target material or conductive target material can be sputtered.
  • Partitions 12 (or 14) are provided on both sides of the sputtering area to form independent spaces. Since each sputtering area 20 (or 40) has an independent area, it is easy to control the sputtering parameters of the target material, and the amount or state of the sputtered material sputtered on the target material can be individually controlled. Thus, a desired thin film can be obtained.
  • the target material to be sputtered in the sputtering area 20 (or 40) may be a conductive target material.
  • the target material sputtered in the sputtering area 20 (or 40) contains a metal element and/or a compound containing a metal element.
  • the target material includes at least one material of Si, Al, Ta, C, Cr, Mg, Ca, Y, SiOx, AlOx, TiOx, CrOx, and TaOx.
  • the thin film contains at least four kinds of elements such as silicon (Si), aluminum (Al), oxygen (O), and nitrogen (N) at the same time.
  • Si silicon
  • Al aluminum
  • O oxygen
  • N nitrogen
  • the thin film having the SiAlON material has good roughness, smaller thin film stress, and more suitable micro Vickers hardness, excellent optical performance, and favorable film formation. It is clear that it also has a rate.
  • TG is a target material (target)
  • n@550 is a refractive index
  • k@550 and k@400 are extinction coefficients.
  • At least one thin film of SiAlON, Mg-SiAlON, Ca-SiAlON, Y-SiAlON, and TiAlON is formed on the substrate. ..
  • the vacuum chamber 11 is provided with two spatially separated sputtering areas 20 and 40.
  • the two sputtering areas 20 and 40 include a first sputtering area 20 for sputtering a Si target material and a second sputtering area 40 for sputtering an Al target material.
  • N 2 and O 2 are introduced to form a SiAlON thin film on the substrate S.
  • the SiAlON thin film may be understood as a thin film containing SiO 2 , Si 3 N 4 , Al 4 O 6 , and AI 4 N 4 compounds. Among them, SiO 2 , Si 3 N 4 , Al 4 O 6 , and AI 4 N4 are dispersedly distributed or mixedly distributed in the thin film. In the SiAlON thin film, the phenomenon that only one compound of SiO 2 , Si 3 N 4 , Al 4 O 6 , and AI 4 N 4 exists over the single layer does not occur.
  • the thin film material containing the above compound simultaneously contains four kinds of elements such as silicon (Si), aluminum (Al), oxygen (O), and nitrogen (N), and has excellent thin film performance.
  • the SiAlON thin film has desired optical performance and thin film performance because the content requirements of SiO 2 , Si 3 N 4 , Al 4 O 6 , and AI 4 N 4 are strict. Since the sputtering area (sputtering source) and the reaction area (plasma source) that are spatially separated are provided, the contents of SiO 2 , Si 3 N 4 , Al 4 O 6 , and AI 4 N 4 can be freely set. It is possible to adjust and obtain SiO 2 , Si 3 N 4 , Al 4 O 6 , and AI 4 N 4 having a desired component content to obtain a compound thin film having a desired performance.
  • the SiAlON thin film has a preferable hardness and a higher refractive index as compared with the SiON and AlON thin films, can provide excellent thin film performance, and the film forming rate is remarkably improved. You can find out what you have done.
  • a SiAlON thin film was formed on the substrate in the sputtering area and the reaction area.
  • the ratio of each component in the SiAlON thin film is 6% to 22% for SiO 2 , 33% to 60% for Si 3 N 4 , 7% to 20% for Al 4 O 6 , and 4% to 29% for Al 4 N 4. %.
  • a SiAlON thin film is formed on the substrate.
  • the composition of the SiAlON thin film satisfied the relationship that the proportional range of (SiO 2 +Si 3 N 4 ):(Al 4 O 6 +Al 4 N 4 ) was 1.23 to 3.55.
  • the first sputtering area and the second sputtering area are arranged so that the sputtering parameters can be adjusted.
  • the sputtering parameters include at least one of sputtering power, sputtering voltage, and sputtering current.
  • the sputtering parameters in the first sputtering area and the second sputtering area may be realized by controlling the respective sputtering sources.
  • each sputter source has a double cathode type sputter source having two magnetron sputter electrodes 21a and 21b (or 41a and 41b) (one of the above-mentioned specific cathode electrodes). Example)).
  • the target materials 29a and 29b (and/or 49a and 49b) are freely attached to the surfaces of the electrodes 21a and 21b (or 41a and 41b) on one end side, respectively.
  • each electrode 21a, 21b (or 41a, 41b) is connected to an AC power supply 23 (or 43) as a power supply means via a transformer 24 (or 44) as a power control means for adjusting power. ) And is configured to apply an AC voltage having a frequency of, for example, about 1 kHz to 100 kHz to each of the electrodes 21a, 21b (or 41a, 41b).
  • the sputtering film forming apparatus includes a first air supply unit that introduces an inert gas into the sputtering area 20 (or 40).
  • the inert gas is preferably argon gas.
  • the flow rate of the gas introduced into the first air supply unit is 200 sccm or more.
  • the first gas supply unit is arranged so that a gas transfer parameter of the inert gas can be adjusted, and the gas transfer parameter includes at least one of a flow rate, an atmospheric pressure, and a flow rate.
  • a gas supply means for sputtering is connected in front of each sputtering source (sputtering areas 20, 40).
  • the gas supply means for sputtering is a gas cylinder 26 (or 46) for storing the sputtering gas, and a mass flow controller 25 for adjusting the flow rate of the sputtering gas supplied from the gas cylinder 26 (or 46). (Or 45).
  • the sputtering gas is introduced into each area 20 (or 40) through the pipe.
  • the mass flow controller 25 (or 45) is a device for adjusting the flow rate of the sputtering gas.
  • the sputtering gas from the gas cylinder 26 (or 46) is introduced into the area 20 (or 40) after its flow rate is adjusted by the mass flow controller 25 (or 45).
  • Mass flow controller 25 (or 45) provides control of the flow rate for the inert gas, which can control the target thin film composition or performance obtained and the formation rate.
  • the control of the sputtering parameter, the gas transmission parameter, and the plasma generation parameter in the sputtering area may be realized by the controller.
  • the controller may be implemented in any suitable manner. Specifically, for example, as the controller, for example, a microprocessor or a processor, and a computer-readable storage of a computer-readable program code (eg, software or firmware) that may be executed by the microprocessor or the processor.
  • a microprocessor or a processor for example, a microprocessor or a processor, and a computer-readable storage of a computer-readable program code (eg, software or firmware) that may be executed by the microprocessor or the processor.
  • the form of a medium, a logic gate, a switch, a programmable logic controller (Programmable Logic Controller, PLC), and a plug-in type micro controller unit (Microcontroller Unit, MCU) may be used.
  • modules include, but are not limited to, ARC 625D, Atmel AT91SAM, Microchip PIC18F26K20, and Silicone Labs C8051F320.
  • controller in addition to the functions of the controller being implemented simply by means of a computer readable program code, method steps are logically programmed to provide logic gates as control means, Forms such as switches, application specific integrated circuits, programmable logic controllers, and embedded microcontroller units make it possible to achieve similar functions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present application discloses a sputtering film forming apparatus comprising: a vacuum container having an exhaust mechanism; a substrate holding means capable of holding a plurality of substrates; and a sputtering area and a reaction area located inside the vacuum container and spatially separated from each other, wherein in the sputtering area, a sputtered substance is formed on the substrate by a sputtering target material, and in the reaction area, two or more kinds of reaction gases are introduced to generate plasma and a compound thin film including at least four elements is formed using interaction of ions in the plasma with the sputtered substance. The sputtering film forming apparatus is for facilitating the formation of a thin film of a desired material, no limitation is placed by the compound materials when forming a compound thin film including four or more elements, and at the same time, the film formation efficiency is high and the apparatus has very good utility value.

Description

スパッタ成膜装置及びそのスパッタ成膜方法、化合物薄膜Sputtering film forming apparatus and its sputtering film forming method, compound thin film
 本発明は、スパッタリングして基板上に薄膜を形成するスパッタ成膜装置及びそのスパッタ成膜方法、化合物薄膜に関する。 The present invention relates to a sputtering film forming apparatus for forming a thin film on a substrate by sputtering, a sputtering film forming method therefor, and a compound thin film.
 マグネトロンスパッタは、物理蒸着(Physical Vapor Deposition、PVD)の1種である。一般的なスパッタリング法は、金属、半導体、絶縁体などの複数種類の材料の製造に適用でき、かつ、機器が簡素化され、制御しやすく、蒸着膜の面積が大きく、付着力が強いなどの利点を有する。そして、マグネトロンスパッタでは、ターゲットの陰極表面に磁界を導入し、磁界からの荷電粒子への拘束により、プラズマ密度を向上して、スパッタリング率を高めるため、速度が早く、温度が低く、損傷が低いという利点を有する。 Magnetron sputter is a type of physical vapor deposition (Physical Vapor Deposition, PVD). The general sputtering method can be applied to the production of multiple kinds of materials such as metals, semiconductors, and insulators, and the equipment is simplified and easy to control, the deposition film area is large, and the adhesion is strong. Have advantages. In magnetron sputtering, a magnetic field is introduced to the cathode surface of the target, and the plasma density is increased by increasing the sputtering rate by restraining the charged particles from the magnetic field. Therefore, the speed is high, the temperature is low, and the damage is low. Has the advantage.
 現在、マグネトロンスパッタ技術により、酸化アルミニウム膜、酸化シリコン膜などの薄膜をスパッタリングして得ることが一般的である。しかし、現在の薄膜には、より高い成膜品質を求めているため、更に低い薄膜応力を必要とするが、既存の酸化アルミニウム膜、酸化シリコン膜などの薄膜はそのような要求に適合できない。 Currently, it is common to obtain thin films such as aluminum oxide films and silicon oxide films by sputtering using magnetron sputtering technology. However, current thin films require higher film forming quality and thus require lower film stress, but existing thin films such as aluminum oxide films and silicon oxide films cannot meet such requirements.
 スパッタリングによる薄膜への研究では、薄膜の薄膜応力を低減する際に、薄膜の硬度が常に、低くなっていることが見出される。しかし、薄膜には、薄膜の状態を維持するように、一定の硬度(hardness)を保持しなければならない。それにより、薄膜応力の低減に起因して、薄膜品質が低下しやすくなり、不良品の発生も増加している。ゆえに、光学薄膜の発展が厳しく制限されている。 Research on thin films by sputtering has found that the hardness of thin films is always low when reducing thin film stress. However, the thin film must maintain a certain hardness so as to maintain the state of the thin film. As a result, due to the reduction in thin film stress, the thin film quality is likely to deteriorate, and the number of defective products is increasing. Therefore, the development of optical thin films is severely limited.
 また、多元素(例えば、4種の元素以上)の薄膜材をスパッタリングする際に、通常、化合物ターゲット材を用いて直接にスパッタリングして取得しているが、成膜効率が低くなる一方、スパッタリング可能な化合物種類の制限により、選択自由度も非常に制限されている。それで、同様に、光学薄膜の発展が制約されている。
特に、4種以上の化合物がセラミック材料などの絶縁材料である場合に、ターゲット(陰極)、プラズマ、及び、スパッタリングされた部品/真空キャビティでは、回路が形成されにくくなる。そこで、回路には、非常に強いコンデンサーを加えて、高周波電源を形成することで、絶縁回路におけるターゲット材を1つのコンデンサーとして等価化させる必要がある。しかし、その場合、スパッタリング率が非常に小さく、成膜レートも非常に遅くなっている。
In addition, when sputtering a thin film material of multiple elements (for example, 4 or more elements), it is usually obtained by directly sputtering using a compound target material, but the film formation efficiency decreases while sputtering. The freedom of choice is also very limited due to the limitation of the types of compounds possible. As such, the development of optical thin films is similarly constrained.
In particular, when the four or more compounds are insulating materials such as ceramic materials, the target (cathode), plasma, and sputtered components/vacuum cavities make it difficult to form circuits. Therefore, it is necessary to add a very strong capacitor to the circuit and form a high-frequency power source to equalize the target material in the insulation circuit as one capacitor. However, in that case, the sputtering rate is very small and the film formation rate is also very slow.
 上記少なくとも1つの問題を鑑みて、それを解決するために、本願は、以下のようなスパッタ成膜装置及びそのスパッタ成膜方法、化合物薄膜を提供することを目的にしている。 In view of the above-mentioned at least one problem, in order to solve the problem, the present application aims to provide the following sputtering film forming apparatus, its sputtering film forming method, and compound thin film.
 本発明に係るスパッタ成膜装置では、排気機構を有する真空容器と、複数の基板を保持することができる基板保持手段と、前記真空容器の内部に位置しているスパッタリングエリア及び反応エリアと、を備え、前記スパッタリングエリアでは、スパッタリングターゲット材により、基板上にスパッタ物質を形成し、前記反応エリアでは、プラズマ中の反応性ガスの活性種によって、前記スパッタ物質と相互作用して化合物薄膜を形成するスパッタ成膜装置。 In the sputtering film forming apparatus according to the present invention, a vacuum container having an exhaust mechanism, a substrate holding means capable of holding a plurality of substrates, and a sputtering area and a reaction area located inside the vacuum container are provided. In the sputtering area, a sputtering target material is used to form a sputter material on a substrate, and in the reaction area, active species of a reactive gas in plasma interact with the sputter material to form a compound thin film. Sputtering film forming device.
 好ましい実施の形態として、前記スパッタリングエリアと前記反応エリアは空間的に互いに離間して設けられており、前記スパッタリングエリアでは、スパッタリングターゲット材により、基板上にスパッタ物質を形成し、前記反応エリアでは、2種以上の反応ガスを導入して、当該反応エリアにプラズマを生成し、前記反応エリアでは、プラズマ中の反応性ガスの活性種によって、前記スパッタ物質と反応し、少なくとも4種の元素を含む化合物薄膜を形成する。 As a preferred embodiment, the sputtering area and the reaction area are spatially separated from each other, in the sputtering area, a sputtering target material, to form a sputtered material on the substrate, in the reaction area, Two or more kinds of reaction gases are introduced to generate plasma in the reaction area, and in the reaction area, the reactive species in the plasma react with the sputter material by the active species and contain at least four kinds of elements. A compound thin film is formed.
 本発明に係るスパッタ成膜装置では、排気機構を有する真空容器と、複数の基板を保持することができる基板保持手段と、前記真空容器の内部に位置し空間的に互いに離間したスパッタリングエリア及び反応エリアと、を備え、前記スパッタリングエリアでは、スパッタリングターゲット材により、基板上に少なくとも2種の元素を含むスパッタ物質を形成し、前記反応エリアでは、反応ガスを導入して当該反応エリアにプラズマを生成し、前記反応エリアでは、プラズマ中の反応性ガスの活性種によって、前記スパッタ物質と相互作用して化合物薄膜を形成する、スパッタ成膜装置。 In the sputtering film forming apparatus according to the present invention, a vacuum container having an exhaust mechanism, a substrate holding means capable of holding a plurality of substrates, a sputtering area and a reaction area located inside the vacuum container and spatially separated from each other. An area, and in the sputtering area, a sputtering material containing at least two kinds of elements is formed on the substrate by the sputtering target material, and in the reaction area, a reaction gas is introduced to generate plasma in the reaction area. Then, in the reaction area, a sputtering film forming apparatus that forms a compound thin film by interacting with the sputtering substance by the active species of the reactive gas in the plasma.
 好ましい実施の形態として、前記基板保持手段は円筒状のものであり、前記基板保持手段は、複数の基板を基板保持手段外周面に保持した状態で、駆動手段によって回転することで、基板を前記スパッタリングエリアと前記反応エリアの間を往復移動させる。 As a preferred embodiment, the substrate holding means is cylindrical, and the substrate holding means holds the plurality of substrates on the outer peripheral surface of the substrate holding means by rotating the substrate by the driving means, thereby A reciprocating movement is made between the sputtering area and the reaction area.
 好ましい実施の形態として、前記スパッタリングエリア内のスパッタリングによって形成されたスパッタ物質は、反応エリアで生成されたプラズマによる処理が行われて、薄膜が形成され、前記真空容器には、隔壁が設けられており、前記隔壁によって前記スパッタリングエリアと前記反応エリアが互いに離間している。 In a preferred embodiment, the sputtered material formed by sputtering in the sputtering area is processed by the plasma generated in the reaction area to form a thin film, and the vacuum container is provided with a partition wall. The partition wall separates the sputtering area and the reaction area from each other.
 好ましい実施の形態として、前記真空容器の前記反応エリアに近い部分には、排気機構が設けられている。 As a preferred embodiment, an exhaust mechanism is provided in a portion of the vacuum container near the reaction area.
 好ましい実施の形態として、前記真空容器の内部には、1つまたは複数の前記反応エリアが設けられており、1つまたは複数の前記反応エリアでは、2種以上の反応ガスが同時に導入され、または、少なくとも2種の反応ガスが交互に導入される。 As a preferred embodiment, one or more reaction areas are provided inside the vacuum vessel, and two or more reaction gases are simultaneously introduced in one or more reaction areas, or , At least two reaction gases are introduced alternately.
 好ましい実施の形態として、前記反応エリアには、プラズマを形成するためのプラズマ源が設けられており、前記プラズマ源は、ICP源、ECR源、イオン源のうちの少なくとも1種を含む。 As a preferred embodiment, the reaction area is provided with a plasma source for forming plasma, and the plasma source includes at least one of an ICP source, an ECR source, and an ion source.
 好ましい実施の形態として、前記スパッタリングエリアと前記反応エリアは、前記基板保持手段の動き方向に沿って空間的に互いに離間しており、前記スパッタリングエリアと前記反応エリアは、真空容器内において、電磁結合または電気結合が存在する。 As a preferred embodiment, the sputtering area and the reaction area are spatially separated from each other along the movement direction of the substrate holding means, and the sputtering area and the reaction area are electromagnetically coupled in a vacuum container. Or there is electrical coupling.
 好ましい実施の形態として、前記スパッタリングエリアでは、スパッタリングターゲット材により、基板上に少なくとも2種の金属元素を含むスパッタ物質を形成する。 As a preferred embodiment, in the sputtering area, a sputtering target material is used to form a sputtering material containing at least two kinds of metal elements on a substrate.
 好ましい実施の形態として、前記真空容器内において、前記基板保持手段の動き方向に沿って、空間的に互いに離間した少なくとも2つのスパッタリングエリアが設けられており、少なくとも2つの前記スパッタリングエリアでスパッタリングされたターゲット材の材料が異なっており、基板上に少なくとも2種の金属元素を含むスパッタ物質が形成される。 As a preferred embodiment, at least two sputtering areas spatially separated from each other are provided in the vacuum container along the movement direction of the substrate holding means, and sputtering is performed in at least two of the sputtering areas. The target materials are different, and a sputter material containing at least two metal elements is formed on the substrate.
 好ましい実施の形態として、前記スパッタリングエリアでスパッタリングされたターゲット材は、金属元素及び/または金属元素を含む化合物を含む。 In a preferred embodiment, the target material sputtered in the sputtering area contains a metal element and/or a compound containing a metal element.
 好ましい実施の形態として、前記ターゲット材は、Si、Al、Ta、C、Cr、Mg、Ca、Y、SiOx、AlOx、TiOx、CrOx、TaOxのうちの少なくとも1つの材料を含む。 In a preferred embodiment, the target material includes at least one material of Si, Al, Ta, C, Cr, Mg, Ca, Y, SiOx, AlOx, TiOx, CrOx and TaOx.
 好ましい実施の形態として、前記スパッタリングエリアと前記反応エリアでは、前記基板上に、SiAlON、Mg-SiAlON、Ca-SiAlON、Y-SiAlON、TiAlONのうちの少なくとも1つの薄膜を形成する。 As a preferred embodiment, in the sputtering area and the reaction area, at least one thin film of SiAlON, Mg-SiAlON, Ca-SiAlON, Y-SiAlON, and TiAlON is formed on the substrate.
 好ましい実施の形態として、前記真空容器には、空間的に互いに離間した2つの前記スパッタリングエリアが設けられており、2つの前記スパッタリングエリアは、Siターゲット材をスパッタリングする第1のスパッタリングエリアと、Alターゲット材をスパッタリングする第2のスパッタリングエリアとを含み、前記反応エリアでは、NとOを導入して、基板上にSiAlON薄膜を形成する。 In a preferred embodiment, the vacuum container is provided with two sputtering areas spatially separated from each other, and the two sputtering areas include a first sputtering area for sputtering a Si target material and an Al sputtering area. A second sputtering area for sputtering a target material, wherein N 2 and O 2 are introduced in the reaction area to form a SiAlON thin film on the substrate.
 好ましい実施の形態として、前記第1のスパッタリングエリアと前記第2のスパッタリングエリアでは、スパッタパラメータを調整でき、前記スパッタパラメータは、スパッタリング電力、スパッタリング電圧、スパッタリング電流のうちの少なくとも1つを含む。 As a preferred embodiment, sputtering parameters can be adjusted in the first sputtering area and the second sputtering area, and the sputtering parameters include at least one of sputtering power, sputtering voltage, and sputtering current.
 好ましい実施の形態として、前記スパッタ成膜装置は、前記スパッタリングエリアに不活性ガスを導入する第1の送気部を備える。 As a preferred embodiment, the sputter film forming apparatus includes a first air supply unit that introduces an inert gas into the sputtering area.
 好ましい実施の形態として、前記第1の送気部は、前記不活性ガスのガス伝送パラメータを調節可能に配置されており、前記ガス伝送パラメータは、流量、気圧、流速のうちの少なくとも1つを含む。 As a preferred embodiment, the first air supply unit is arranged so that a gas transfer parameter of the inert gas can be adjusted, and the gas transfer parameter is at least one of a flow rate, an atmospheric pressure, and a flow rate. Including.
 好ましい実施の形態として、前記第1の送気部は、前記スパッタリングエリアにアルゴンを導入することができ、前記第1の送気部によって導入されるアルゴンの流量が200sccm以上である。 As a preferred embodiment, the first air supply unit can introduce argon into the sputtering area, and the flow rate of argon introduced by the first air supply unit is 200 sccm or more.
 好ましい実施の形態として、前記プラズマ源のプラズマ発生パラメータが調整可能なものであり、前記プラズマ発生パラメータは、電源電力、電源電圧、アンテナ電流のうちの少なくとも1つを含む。 As a preferred embodiment, the plasma generation parameter of the plasma source is adjustable, and the plasma generation parameter includes at least one of power supply power, power supply voltage, and antenna current.
 好ましい実施の形態として、前記スパッタ成膜装置は、前記反応エリアに不活性ガス、反応性ガス、及び、不活性ガスと反応ガスの混合ガスのうちのいずれか1つを導入する第2の送気部を備え、前記第2の送気部は、伝送されるガスのガス伝送パラメータを調節可能に配置されており、前記ガス伝送パラメータは、流量、気圧、流速のうちの少なくとも1つを含む。 As a preferred embodiment, the sputtering film forming apparatus is configured to introduce into the reaction area any one of an inert gas, a reactive gas, and a mixed gas of an inert gas and a reactive gas. An air part, and the second air sending part is arranged to be able to adjust the gas transfer parameter of the gas to be transferred, and the gas transfer parameter includes at least one of a flow rate, an atmospheric pressure and a flow rate. ..
 本発明に係るスパッタ成膜方法は、上記いずれかの形態に係るスパッタ成膜装置を用いたスパッタ成膜方法であって、複数の基板を成膜領域内に導入し、前記成膜領域では、スパッタリングして放電されたスパッタプラズマにより、スパッタ粒子をターゲット材から解放させ、スパッタ粒子を、前記基板の表面に到達させて積み重ねて、スパッタ物質を形成し、その後、前記基板を反応エリア内に移動させ、前記反応エリアでは、プラズマ中のイオンによって、前記スパッタ物質と相互作用して、少なくとも4種の元素を含む化合物薄膜を形成する、ことを含む。 A sputter film forming method according to the present invention is a sputter film forming method using the sputter film forming apparatus according to any one of the above aspects, wherein a plurality of substrates are introduced into a film forming region, and in the film forming region, The sputtered plasma that is sputtered and discharged releases the sputtered particles from the target material, reaches the surface of the substrate and stacks it to form a sputtered material, which is then moved into the reaction area. In the reaction area, the ions in the plasma interact with the sputter material to form a compound thin film containing at least four elements.
 本発明に係る化合物薄膜は、上述したようなスパッタ成膜方法またはスパッタ成膜装置により、製造されたものである。 The compound thin film according to the present invention is manufactured by the sputtering film forming method or the sputtering film forming apparatus as described above.
 好ましい実施の形態として、前記化合物薄膜は、SiAlON、Mg-SiAlON、Ca-SiAlON、Y-SiAlON、TiAlONのうちの少なくとも1つの薄膜を含む。 In a preferred embodiment, the compound thin film includes at least one thin film selected from SiAlON, Mg-SiAlON, Ca-SiAlON, Y-SiAlON, and TiAlON.
 本発明による有益な効果は以下の通りである。
本願が提供するスパッタ成膜装置では、反応エリアとスパッタリングエリアが個別に制御できるエリアを構成して、所望の材料による薄膜を形成しやすくなる。また4種以上の元素を含む化合物薄膜を形成する際に、化合物材料によって制限されておらず、同時に、成膜効率が高く、非常に良好な応用価値を有する。
The beneficial effects of the present invention are as follows.
In the sputtering film forming apparatus provided by the present application, the reaction area and the sputtering area are individually controlled to facilitate the formation of a thin film of a desired material. Further, when forming a compound thin film containing four or more kinds of elements, it is not limited by the compound material, and at the same time, the film forming efficiency is high and it has very good application value.
図1は、本願の一実施形態が提供するスパッタ成膜装置の概略図である。FIG. 1 is a schematic diagram of a sputtering film forming apparatus provided by an embodiment of the present application. 図2は、本願の別の一実施形態が提供するスパッタ成膜装置の概略図である。FIG. 2 is a schematic diagram of a sputter film forming apparatus provided by another embodiment of the present application. 図3は、図1中の具体的な構成の概略図である。FIG. 3 is a schematic diagram of the specific configuration in FIG. 図4は、図3の斜面図である。FIG. 4 is a perspective view of FIG.
 実施例はただ本発明の一部の実施例に過ぎず、全部の実施例ではない。本発明の実施例を基に、当業者は、創造的な労力を払わないことを前提として、得られる全ての他の実施例はいずれも、本発明の保護範囲に入っているはずである。 The examples are merely some examples of the present invention, not all examples. Based on the embodiments of the present invention, a person skilled in the art will make all other embodiments obtained, which are within the protection scope of the present invention, on the assumption that no creative effort is made by those skilled in the art.
 ここに説明すべきなのは、素子が別の素子に「設けられる」ように記述されている場合、その素子が別の素子上に直接に位置してもよいし、さらに介在的な素子が存在してもよい。1つの素子が別の素子に「接続されている」ように考えられる場合、その素子が別の素子に直接に接続されてもよいし、同時に介在的な素子が存在してもよい。本文に使用される用語である「垂直的」、「水平的」、「左」、「右」及びそれらと類似した表現は、説明するためのものに過ぎず、唯一な実施の形態を示すものではない。 It should be pointed out that if an element is described as "provided" on another element, that element may be located directly on another element, and that there are additional intervening elements. May be. When one element is considered to be "connected" to another element, that element may be directly connected to another element, or there may be intervening elements present at the same time. The terms “vertical”, “horizontal”, “left”, “right” and similar expressions used in the present text are merely for the purpose of explanation, and show only one embodiment. is not.
 別途に定義されている場合を除き、本文に使用される全ての技術及び科学用語は、本発明の技術分野に属する技術者の一般的な理解によるものと同じ意味を有する。本文において、本発明の明細書に使用される用語は、具体的な実施の形態を記述するためのものに過ぎず、本発明を制限するためのものではない。本文に使用される用語である「及び/または」は、1つまたは複数の関連的項目の任意のもの及びそれらのすべての組み合わせを含む。 Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art of the present invention. In the present text, the terms used in the specification of the present invention are only for describing specific embodiments, and are not for limiting the present invention. The term "and/or" as used herein includes any and all combinations of one or more related items.
 図1~図4を参照して本実施形態を説明する。本願における実施形態では、排気機構を有する真空容器11と、複数の基板Sを保持することができる基板保持手段と、前記真空容器11の内部に位置し空間的に互いに離間したスパッタリングエリア(20及び/または40)及び反応エリア60と、を備え、前記スパッタリングエリア(20及び/または40)では、スパッタリングターゲット材により、基板S上にスパッタ物質を形成し、前記反応エリア60では、反応ガスを導入して当該反応エリア60にプラズマを生成し、前記反応エリア60では、プラズマ中の反応性ガスの活性種によって、前記スパッタ物質と相互作用して化合物薄膜を形成する、スパッタ成膜装置を提供する。 This embodiment will be described with reference to FIGS. 1 to 4. In the embodiment of the present application, a vacuum container 11 having an exhaust mechanism, a substrate holding means capable of holding a plurality of substrates S, and a sputtering area (20 and 20) located inside the vacuum container 11 and spatially separated from each other. And/or 40) and a reaction area 60, and in the sputtering area (20 and/or 40), a sputtering target material forms a sputter material on the substrate S, and in the reaction area 60, a reaction gas is introduced. Then, a plasma is generated in the reaction area 60, and in the reaction area 60, a sputtering film forming apparatus is formed which interacts with the sputtering material by the active species of the reactive gas in the plasma to form a compound thin film. ..
 本願における実施形態では、上記実施形態または実施例に記載の成膜装置に応用されることができるが、それらによって制限されていない成膜方法をさらに提供する。本実施形態では、複数の基板を成膜領域内に導入し、前記成膜領域では、スパッタリングして放電されたスパッタプラズマにより、スパッタ粒子をターゲット材から解放させるとともに、スパッタ粒子を、前記基板の表面に到達させて積み重ねて、スパッタ物質を形成する。 The embodiment of the present application further provides a film forming method which can be applied to the film forming apparatus described in the above embodiment or examples, but is not limited thereto. In this embodiment, a plurality of substrates are introduced into the film formation region, and in the film formation region, the sputtered particles are released from the target material by the sputter plasma discharged by sputtering, and the sputtered particles are discharged from the target material. The surface is reached and stacked to form the sputtered material.
 そのうち、成膜領域内にてスパッタ粒子の堆積及びスパッタプラズマに基づくプラズマ処理を行い、基板の表面にスパッタ物質を形成する。その後、前記基板を反応エリア内に移動させ、(プラズマプラントをスパッタリングする他の)プラズマ中の反応性ガスの活性種によって、前記スパッタ物質と相互作用して、少なくとも4種の元素を含む化合物薄膜を形成する。前記反応エリアは、成膜領域と空間的に離間したように配置されている。 Among them, deposition of sputter particles and plasma treatment based on sputter plasma are performed in the film formation area to form a sputter substance on the surface of the substrate. Then, the substrate is moved into the reaction area and interacts with the sputtered material by the reactive species of the reactive gas in the plasma (other than sputtering the plasma plant) to form a compound thin film containing at least four elements. To form. The reaction area is arranged so as to be spatially separated from the film formation area.
 本願における実施形態では、当該スパッタ成膜装置には、カソード電極、スパッタリング電源、及びプラズマ発生手段などが設けられてもよい。そのうち、反応エリア60は、真空容器1内に形成され、スパッタリングエリア20、40と空間的に離間したように配置されている。反応エリア60とスパッタリングエリア20、40はそれぞれ、独立したものであり、そのため、それぞれ個別に制御できるエリアを構成し、所望の材料による薄膜を形成しやすくなる。すると、4種以上の元素を含む化合物薄膜を形成する際に、化合物材料によって制限されておらず、同時に、成膜効率が高く、非常に良好な応用価値を有する。 In the embodiments of the present application, the sputtering film forming apparatus may be provided with a cathode electrode, a sputtering power supply, a plasma generating means, and the like. Among them, the reaction area 60 is formed in the vacuum container 1 and is arranged so as to be spatially separated from the sputtering areas 20 and 40. Since the reaction area 60 and the sputtering areas 20 and 40 are independent of each other, they are individually controllable areas, and it is easy to form a thin film of a desired material. Then, when forming a compound thin film containing four or more elements, it is not limited by the compound material, and at the same time, the film forming efficiency is high, and it has a very good application value.
 また、反応エリア60とスパッタリングエリア20、40が空間的に互いに離間したことで、反応ガスとスパッタ材による事前反応または化学的反応によって、基板S上のスパッタ材の堆積が影響されて、薄膜の形成品質が低下するのを効率よく回避することができ、同時に、多元素、特に4種以上の元素を含む化合物薄膜の形成に寄与する。 Further, since the reaction area 60 and the sputtering areas 20 and 40 are spatially separated from each other, the deposition of the sputter material on the substrate S is affected by the pre-reaction or chemical reaction of the reaction gas and the sputter material, and It is possible to efficiently prevent the formation quality from deteriorating, and at the same time, it contributes to the formation of a compound thin film containing multiple elements, particularly four or more elements.
 本実施形態では、スパッタリングエリア20とスパッタリング40は空間的に離間して、それぞれ、独立したものであり、そのため、それぞれ個別に制御できるエリアを構成した。1つの可能なメカニズムにおいて、そうすると、多種類のスパッタ元素間は、基板Sへスパッタリングされる前に、互いに反応されて影響し合うことを回避することができる。例えば、シリコン(Si)とアルミニウム(Al)が同時にターゲット材の材料とされてもよいが、両者が同時に同一のスパッタリングエリア20または40に位置すると、シリコンとアルミニウムが予測できない、または、過剰な化学的反応を発生して、ケイ素-アルミニウム化合物(例えば、二ケイ酸アルミニウム)を生成して薄膜にスパッタリングされて不純物を形成し、成膜品質に影響を与える場合があり、さらに、所望の成分の薄膜を取得することができなくなる。 In the present embodiment, the sputtering area 20 and the sputtering 40 are spatially separated and independent of each other. Therefore, the areas that can be controlled individually are configured. In one possible mechanism, it is then possible to avoid reacting and interfering with each other between the various sputter elements before they are sputtered onto the substrate S. For example, silicon (Si) and aluminum (Al) may be used as the target material at the same time, but if both are located in the same sputtering area 20 or 40 at the same time, silicon and aluminum are unpredictable or excessive chemicals. Reaction to generate a silicon-aluminum compound (for example, aluminum disilicate) that is sputtered into a thin film to form impurities, which may affect film formation quality. The thin film cannot be obtained.
 一般的には、スパッタリングエリア20、40と反応エリア60は、基板保持手段13の移動方向で上下流にて分布している。基板保持手段13の移動が通常、循環または往復運動であることを考慮して、スパッタリングエリア20、40及び反応エリア60に関する具体的な上下流における分布順序は本実施例では、特に限定されていない。
本実施形態では、基板Sは、スパッタリングエリアを1回通過すると、スパッタ材料(膜)が1層覆われるようになり、反応エリア60でのプラズマ処理が行われて、中間薄膜が1層形成されており(中間薄膜の材料の構成は最終的な薄膜の材料の構成と一致するが、厚さは最終的な薄膜よりも小さい)、基板保持手段13による作用で、基板Sはスパッタリングエリア20、40及び反応エリア60を絶えずに循環して通過し、目標厚さを有する化合物薄膜が得られるまで、基板S上には、複数層の中間薄膜が累積されている。
Generally, the sputtering areas 20 and 40 and the reaction area 60 are distributed upstream and downstream in the moving direction of the substrate holding means 13. Considering that the movement of the substrate holding means 13 is usually a circulation or a reciprocating motion, the specific distribution sequence in the upstream and downstream of the sputtering areas 20, 40 and the reaction area 60 is not particularly limited in this embodiment. ..
In the present embodiment, when the substrate S passes through the sputtering area once, the sputter material (film) is covered by one layer, and the plasma treatment is performed in the reaction area 60 to form one intermediate thin film. (The composition of the material of the intermediate thin film is the same as the composition of the material of the final thin film, but the thickness is smaller than that of the final thin film). A plurality of intermediate thin films are accumulated on the substrate S until the compound thin film having a target thickness is constantly circulated and passed through the reaction zone 40 and the reaction area 60.
 図3、図4に示す実施形態では、カソード電極21a、21b(または41a、41b)はターゲット材29を搭載するためのものである。スパッタリング電源23(または43)は、ターゲット材29に対向するスパッタリングされた面のスパッタリングエリア20、40内においてスパッタリングして放電させるためのものである。プラズマ発生手段は、反応エリア60内においてスパッタプラズマ以外の他のプラズマを発生させるためのものである。前記スパッタプラズマは、スパッタリングエリア20、40内にスパッタリングして放電されて形成されたものである。 In the embodiment shown in FIGS. 3 and 4, the cathode electrodes 21a and 21b (or 41a and 41b) are for mounting the target material 29. The sputtering power supply 23 (or 43) is for sputtering and discharging in the sputtering areas 20 and 40 of the surface on which the sputtering is performed facing the target material 29. The plasma generating means is for generating plasma other than sputter plasma in the reaction area 60. The sputter plasma is formed by sputtering and discharging in the sputtering areas 20 and 40.
 本実施形態では、成膜装置1では、ターゲット材29がカソード電極21a、21b(または41a、41b)に搭載されてスパッタリング電源23(または43)をオンにし、同時に、プラズマ発生手段を作動させるとともに、複数の基板Sが基板保持手段13の外周面に保持されており、基板保持手段13が回転させられるように構成されてもよい。それにより、ターゲット材29から解放されたスパッタ粒子は、既にスパッタリングエリア20、40まで移動した基板Sに到達して堆積されるようになる。同時に、スパッタプラズマにおけるイオンを、基板Sまたはスパッタ粒子の堆積物のプラズマに衝突させる処理が行われて、スパッタ物質が形成される。その後、スパッタプラズマ以外の他のプラズマにおけるイオンを、既に反応エリア60に移動した基板Sにおけるスパッタ物質のプラズマに衝突または酸化させる再処理が行われて、スパッタ物質と相互に作用して、前記スパッタ物質を中間薄膜に変換してから、複数層の当該中間薄膜が積層されて薄膜が形成される。 In the present embodiment, in the film forming apparatus 1, the target material 29 is mounted on the cathode electrodes 21a and 21b (or 41a and 41b) to turn on the sputtering power supply 23 (or 43), and at the same time, to activate the plasma generating means. A plurality of substrates S may be held on the outer peripheral surface of the substrate holding means 13, and the substrate holding means 13 may be rotated. As a result, the sputtered particles released from the target material 29 reach the substrate S that has already moved to the sputtering areas 20 and 40 and are deposited. At the same time, the ions in the sputter plasma are caused to collide with the plasma of the substrate S or the deposit particle of the sputter particles to form a sputter substance. Then, reprocessing is performed in which ions in plasmas other than the sputter plasma collide with or oxidize the plasma of the sputter material on the substrate S that has already moved to the reaction area 60, and interacts with the sputter material to cause the sputter material to interact. After converting the substance into an intermediate thin film, a plurality of layers of the intermediate thin film are laminated to form a thin film.
 本願における実施の形態では、前記成膜装置1は駆動手段をさらに含んでもよい。当該駆動手段は、基板保持手段13を回転させることができる。駆動手段が基板保持手段13を回転させることにより、基板Sはスパッタリングエリア20、40内の所定の位置と反応エリア60内の所定の位置の間に往復移動するようになる。前記スパッタリングエリア20、40は、スパッタプラズマを用いてターゲット材29から解放されたスパッタ粒子が到達するエリアであり、前記反応エリア60は、スパッタプラズマ以外の他のプラズマに曝されるエリアである。
上記発明の記載に使用される「移動」とは、曲線の移動(例えば、円周移動)以外、直線移動も含む。そのため、「基板Sを、スパッタリングエリア20、40から反応エリア60へ移動させること」について、ある中心軸回りに公転移動する形態以外、ある2つの直線を結ぶ軌道において往復移動する形態も含む。
In the embodiment of the present application, the film forming apparatus 1 may further include a driving unit. The drive means can rotate the substrate holding means 13. The driving means rotates the substrate holding means 13 so that the substrate S reciprocates between a predetermined position in the sputtering areas 20 and 40 and a predetermined position in the reaction area 60. The sputtering areas 20 and 40 are areas where sputtered particles released from the target material 29 using sputter plasma reach, and the reaction area 60 is an area exposed to plasma other than sputter plasma.
The "movement" used in the description of the invention includes linear movement as well as curved movement (for example, circumferential movement). Therefore, "moving the substrate S from the sputtering areas 20, 40 to the reaction area 60" includes not only the form of revolving around a certain central axis but also the form of reciprocating movement along an orbit connecting two certain straight lines.
 上記実施形態に記載の「回転」とは、自転以外、公転のことも含む。そのため、単に「中心軸回りに回転する」ことを記述する場合に、ある中心軸回りに自転する形態以外、公転する形態も含む。 The “rotation” described in the above embodiment includes not only rotation but also revolution. Therefore, when simply describing "rotating about a central axis", it includes a revolving shape as well as a revolving shape about a certain central axis.
 上記実施形態に記載の「スパッタ物質」とは、スパッタリングエリア20、40を通過して形成された基板上に覆われる1層のスパッタ層(膜)を指す。また、「薄膜」とは、中間薄膜を複数回、堆積して形成した最終的な薄膜を指す。そのため、「スパッタ物質」は、「薄膜」と混乱してしまうのを回避するために使用する用語であり、最終的な「薄膜」よりも、十分に薄い。 The “sputtering material” described in the above embodiment refers to a single sputter layer (film) that is formed on the substrate formed by passing through the sputtering areas 20 and 40. The "thin film" refers to a final thin film formed by depositing an intermediate thin film a plurality of times. Therefore, the "sputter material" is a term used to avoid confusion with the "thin film", and is sufficiently thinner than the final "thin film".
 図3、図4に示す実施形態では、真空容器11は、キャビティを有した本体であり、当該キャビティを有した本体が、筒状のキャビティの中心線に沿った方向である垂直方向(図4の紙面上の上下方向。以下は同様)に延伸している側壁を用いて、平面方向(前記垂直方向に垂直な方向。図3中の上下左右方向及び図4の紙面上に垂直な方向、以下は同様)に囲んで構成したものである。 In the embodiment shown in FIGS. 3 and 4, the vacuum container 11 is a main body having a cavity, and the main body having the cavity has a vertical direction (FIG. 4) which is a direction along the center line of the cylindrical cavity. The vertical direction on the paper of FIG. 4 and the same applies to the following. Using a side wall extending in the plane direction (direction perpendicular to the vertical direction), the vertical and horizontal directions in FIG. 3 and the direction perpendicular to the paper surface of FIG. The following is the same).
 本実施形態では、キャビティを有した本体の平面方向の断面が矩形形状に形成されているが、他の形状(例えば、円形など)であってもよい。本発明は特に限定されていない。真空容器11は、例えば、ステンレス等の金属により構成されてもよい。 In the present embodiment, the cross section of the main body having the cavity in the plane direction is formed in a rectangular shape, but it may be another shape (for example, a circular shape). The present invention is not particularly limited. The vacuum container 11 may be made of, for example, a metal such as stainless steel.
 本実施形態では、真空容器11の上方には、軸15(図3を参照)を貫通させるための孔が形成されてもよい。当該真空容器11は電気的に接地しているので、接地電位として接地されてもよい。そのうち、駆動手段は、当該軸を回動させるように駆動することにより、基板保持手段を連動して回動させることができ、基板保持手段は当該軸回りに回動することができ、そのため、基板がスパッタリングエリアと反応エリアの間に切り換えて移動するようになる。具体的には、駆動手段はモータ17であってもよい。 In this embodiment, a hole for penetrating the shaft 15 (see FIG. 3) may be formed above the vacuum container 11. Since the vacuum container 11 is electrically grounded, it may be grounded as a ground potential. Among them, the driving unit can rotate the substrate by interlocking the substrate holding unit by driving the shaft so that the substrate holding unit can rotate about the shaft. The substrate is switched and moved between the sputtering area and the reaction area. Specifically, the driving means may be the motor 17.
 本実施形態では、軸15は略管状部材によって形成され、真空容器11の上方に形成された孔部分に配設された絶縁部材(図示せず)を介して、真空容器11に対して回転できるように支持されている。軸15は、絶縁材、樹脂などで構成された絶縁部材によって真空容器11に支持されたことで、真空容器11と電気的に絶縁した状態で、真空容器11に対して回転できるようになる。 In the present embodiment, the shaft 15 is formed of a substantially tubular member, and can rotate with respect to the vacuum container 11 via an insulating member (not shown) provided in a hole portion formed above the vacuum container 11. Is supported as. Since the shaft 15 is supported by the vacuum container 11 by an insulating member made of an insulating material, a resin, or the like, the shaft 15 can rotate with respect to the vacuum container 11 while being electrically insulated from the vacuum container 11.
 本実施形態では、真空容器11の外側に位置する軸15の上端側には、第1のギア(図示せず)が固着されており、当該第1のギアはモータ17の出力側における第2のギア(図示せず)と噛み合われている。そのため、モータ17による駆動で、回転駆動力は、第2のギアを介して第1のギアへ伝達されて、軸15を回転させる。
図3、図4に示す実施形態では、真空容器11の内側に位置する軸15の下端部には、円筒状の回転体(回転ドラム)が取り付けられており、当該円筒状の回転体が基板保持手段13を構成した。
In the present embodiment, a first gear (not shown) is fixed to the upper end side of the shaft 15 located outside the vacuum container 11, and the first gear is the second gear on the output side of the motor 17. Of the gear (not shown). Therefore, when driven by the motor 17, the rotational driving force is transmitted to the first gear via the second gear to rotate the shaft 15.
In the embodiment shown in FIGS. 3 and 4, a cylindrical rotating body (rotating drum) is attached to the lower end of the shaft 15 located inside the vacuum container 11, and the cylindrical rotating body is a substrate. The holding means 13 was constructed.
 本実施形態では、回転ドラムは、そのドラム本体方向に延伸している軸線Zが真空容器11の垂直方向(Y方向)に向かうように、真空容器11内に配設されている。本実施形態では、回転ドラムは、円筒状に形成されているが、当該形状に限らず、横断面が多辺形を呈している多角柱状または円錐状であってもよい。回転ドラムは、モータ17による軸15の駆動により、回転されて、軸線Zを中心として回転される。 In the present embodiment, the rotary drum is arranged in the vacuum container 11 such that the axis Z extending in the drum body direction is oriented in the vertical direction (Y direction) of the vacuum container 11. In the present embodiment, the rotary drum is formed in a cylindrical shape, but the shape is not limited to the shape, and may be a polygonal columnar shape or a conical shape having a polygonal cross section. The rotating drum is rotated by the drive of the shaft 15 by the motor 17, and is rotated about the axis Z.
 回転ドラムの外側(外筒)には、基板保持手段13が装着されている。当該基板保持手段13は円筒状のものである。基板保持手段は、複数の基板をその外周面に保持することができる。具体的には、基板保持手段13の外周面には、複数の基板保持部(例えば、凹部。図示を省略する。)が設けられており、当該基板保持部を用いて、複数の成膜対象となる基板Sを、背面(即ち、成膜面と反対側の面)から支持することができる。 The substrate holding means 13 is attached to the outside (outer cylinder) of the rotating drum. The substrate holding means 13 has a cylindrical shape. The substrate holding means can hold a plurality of substrates on its outer peripheral surface. Specifically, a plurality of substrate holding portions (for example, concave portions, not shown) are provided on the outer peripheral surface of the substrate holding means 13, and a plurality of film formation targets are formed using the substrate holding portions. It is possible to support the substrate S to be formed from the back surface (that is, the surface opposite to the film formation surface).
 そのうち、基板Sは、プラスチック基板(有機ガラス基板)、無機基板(無機ガラス基板)に加えて、ステンレス等の金属基板が用いられてもよい。基板Sの一例として、無機ガラス基板の場合、例えば、ソーダ石灰ガラス(6H~7H)、ホウケイ酸ガラス(6H~7H)などが挙げられる。 Among them, as the substrate S, in addition to a plastic substrate (organic glass substrate) and an inorganic substrate (inorganic glass substrate), a metal substrate such as stainless steel may be used. In the case of an inorganic glass substrate, examples of the substrate S include soda-lime glass (6H to 7H) and borosilicate glass (6H to 7H).
 前記基板保持手段は、駆動手段によって回転し、基板Sを前記スパッタリングエリアと前記反応エリアの間に往復移動させ、さらに、基板Sには、目標厚さを有する薄膜が形成される。そのうち、基板保持手段13の軸線(図示を省略する)は回転ドラムの軸線Zと一致する。そのため、回転ドラムを、軸線Zを中心として回転させることにより、基板保持手段13は回転ドラムの回転と同期して、回転ドラムと一体化して当該ドラムの軸線Zを中心として回転するようになる。 The substrate holding means is rotated by the driving means to reciprocate the substrate S between the sputtering area and the reaction area, and further, a thin film having a target thickness is formed on the substrate S. Among them, the axis of the substrate holding means 13 (not shown) coincides with the axis Z of the rotary drum. Therefore, by rotating the rotary drum about the axis Z, the substrate holding means 13 is synchronized with the rotation of the rotary drum and integrated with the rotary drum to rotate about the axis Z of the drum.
 本実施形態では、前記真空容器11には、排気機構が設けられている。排気機構は、真空容器11の内部ガスを十分に排出させて、真空の環境を作ることができる。当該排気機構が前記反応エリア60に近いので、そうすると、反応エリア60から(隔壁16と基板保持手段13との間の隙間を介して)漏れたガスを迅速に排出することができ、スパッタリングエリアに入ってスパッタリングエリアにおけるスパッタ成膜と干渉してしまうのを回避できる。 In the present embodiment, the vacuum container 11 is provided with an exhaust mechanism. The exhaust mechanism can sufficiently discharge the internal gas of the vacuum container 11 to create a vacuum environment. Since the exhaust mechanism is close to the reaction area 60, the gas leaked from the reaction area 60 (via the gap between the partition wall 16 and the substrate holding means 13) can be quickly discharged to the sputtering area. It is possible to prevent the interference with the sputtering film formation in the sputtering area.
 具体的には、排気機構は、真空ポンプ10を含んでもよい。そのうち、排気用の配管15aは真空容器11と接続されている。真空容器11内を排気させるための真空ポンプ10は、配管15aに接続され、当該真空ポンプ10とコントローラ(図示を省略する)により、真空容器11内の真空度を調節することができる。真空ポンプ10は、例えば、回転ポンプまたはターボ分子ポンプ(TMP:turbo molecular pump)などで構成されてもよい。 Specifically, the exhaust mechanism may include the vacuum pump 10. Of these, the exhaust pipe 15 a is connected to the vacuum container 11. The vacuum pump 10 for exhausting the inside of the vacuum container 11 is connected to the pipe 15a, and the degree of vacuum in the vacuum container 11 can be adjusted by the vacuum pump 10 and a controller (not shown). The vacuum pump 10 may be configured by, for example, a rotary pump or a turbo molecular pump (TMP: turbo molecular pump).
 真空容器11内に配置された基板保持手段13の周囲には、スパッタ源(スパッタリングターゲット材21a、21b、41a、41b)とプラズマ源80(上記プラズマ発生手段の1つの具体的な実施例)が配設されている。図1に示す実施形態では、2対のスパッタ源と1つのプラズマ源80が配設されている。図2に示す実施形態では、2対のスパッタ源21a、21b、41a、41bと2つのプラズマ源80(PS:plasma)が配設されている。そのうち、同一の成膜領域に配置されたスパッタリングターゲット材は異なってもよい。スパッタ源、プラズマ源が複数設けられたことで、自由に調整して組み合わせることが可能となり、必要な、光学特性、応力、硬度、表面粗さ、などの機械的特性を有する薄膜を取得することができる。 A sputtering source (sputtering target materials 21a, 21b, 41a, 41b) and a plasma source 80 (one specific example of the plasma generating means) are provided around the substrate holding means 13 arranged in the vacuum chamber 11. It is arranged. In the embodiment shown in FIG. 1, two pairs of sputtering sources and one plasma source 80 are provided. In the embodiment shown in FIG. 2, two pairs of sputtering sources 21a, 21b, 41a, 41b and two plasma sources 80 (PS: plasma) are arranged. Among them, the sputtering target materials arranged in the same film formation region may be different. Since multiple sputtering sources and plasma sources are provided, it is possible to freely adjust and combine them, and obtain a thin film that has the required mechanical properties such as optical properties, stress, hardness, and surface roughness. You can
 本願における実施の形態では、少なくとも2つのスパッタ源21a、21b、41a、41bがあればよい。これを基準として、後述するスパッタリングエリア21a、21b、41a、41bについても、少なくとも2つがあればよい。本願における実施例では、各スパッタ源21a、21b、41a、41bの前には、スパッタリングエリア20、40がそれぞれ形成されている。類似したように、プラズマ源80の前には、反応エリア60が形成されている。 In the embodiment of the present application, at least two sputter sources 21a, 21b, 41a, 41b may be provided. Based on this, at least two sputtering areas 21a, 21b, 41a, 41b, which will be described later, may be provided. In the embodiment of the present application, sputtering areas 20 and 40 are formed in front of the respective sputtering sources 21a, 21b, 41a and 41b. Similarly, a reaction area 60 is formed in front of the plasma source 80.
 本願における実施の形態では、スパッタリングエリア20(または40)は、真空容器11の(一部の)内壁面18、隔壁12(または14)、基板保持手段13(基板保持手段)の外周面及び各スパッタ源の前面に囲まれたエリアにより形成されている。それにより、間隔手段(隔壁12、14)によって、スパッタリングエリア20、40は真空容器11の内部において空間的かつ圧力的に離間しており、それぞれの独立した空間が確保される。 In the embodiment of the present application, the sputtering area 20 (or 40) includes the (partial) inner wall surface 18 of the vacuum container 11, the partition wall 12 (or 14 ), the outer peripheral surface of the substrate holding means 13 (substrate holding means), and each of them. It is formed by an area surrounded by the front surface of the sputter source. As a result, the sputtering means 20 and 40 are spatially and pressureally separated from each other inside the vacuum container 11 by the spacing means (partition walls 12 and 14 ), and each independent space is secured.
 そうすると、多元素(4種以上の元素)で構成された化合物薄膜を形成する際に、空間的に離間したスパッタリングエリア20(または40)と反応エリア60により、化合物としてまだ形成されていない成分の元素材料をスパッタリングして、反応させることができる。空間的に離間したスパッタリングエリア20(または40)と反応エリア60は、それぞれ、成膜パラメータ(例えば、各成膜元素間の含有量)を個別に制御することができるため、所望通りに、基板S上に必要な化合物薄膜を形成することができ、同時に、成膜成分への調整自由度が低い問題をいずれも克服することができる。 Then, when forming a compound thin film composed of multi-elements (four or more kinds of elements), the sputtering area 20 (or 40) and the reaction area 60 which are spatially separated from each other make it possible to remove the components not yet formed as compounds. Elemental materials can be sputtered and reacted. The sputtering area 20 (or 40) and the reaction area 60, which are spatially separated from each other, can control the film forming parameters (for example, the content between the film forming elements) individually, so that the substrate can be formed as desired. A necessary compound thin film can be formed on S, and at the same time, any problem that the degree of freedom in adjusting the film forming components is low can be overcome.
 図3、図4に示す実施形態では、異なる2種類の金属材料をスパッタリングする場合を仮定し、かつ、2対のマグネトロンスパッタ電極(21a、21bおよび41a、41b)が設けられたことが例示されている。そのうち、マグネトロンスパッタ電極21a、21bは、Siターゲット材29a、29bをスパッタリングすることができ、マグネトロンスパッタ電極41a、41bは、Alターゲット材49a、49bをスパッタリングすることができる。 In the embodiment shown in FIGS. 3 and 4, it is assumed that two different kinds of metal materials are sputtered, and that two pairs of magnetron sputtering electrodes (21a, 21b and 41a, 41b) are provided. ing. Among them, the magnetron sputter electrodes 21a and 21b can sputter Si target materials 29a and 29b, and the magnetron sputter electrodes 41a and 41b can sputter Al target materials 49a and 49b.
 本実施形態では、反応エリア60は、スパッタリングエリア20、40と同様に、真空容器11の内壁面18、当該内壁面18から基板保持手段13へ突出した隔壁16、基板保持手段13の外周面、および、プラズマ源80の前面に囲まれたエリアにより形成されている。それにより、反応エリア60も、真空容器11の内部において空間的かつ圧力的に、スパッタリングエリア20、40と離間し、それぞれの独立した空間が確保される。本実施例では、それぞれが各エリア20、40、60における処理を個別に制御できるように構成された。 In the present embodiment, the reaction area 60, like the sputtering areas 20 and 40, the inner wall surface 18 of the vacuum container 11, the partition wall 16 protruding from the inner wall surface 18 to the substrate holding means 13, the outer peripheral surface of the substrate holding means 13, And it is formed by the area surrounded by the front surface of the plasma source 80. As a result, the reaction area 60 is also separated from the sputtering areas 20 and 40 spatially and pressureally inside the vacuum container 11, and each independent space is secured. In this embodiment, each of the areas 20, 40 and 60 is configured to be able to individually control the processing.
 本実施形態において、導入された反応処理用ガスに反応ガス(例えば、酸素ガス、窒素ガス)が含まれる場合に、上記プラズマに反応ガスの活性化物質が存在し、当該活性化物質が反応エリア60に案内される。その後、基板保持手段13が回転されて基板Sを反応エリア60に導入してから、スパッタリングエリア20、40において基板Sの表面に形成されたスパッタ物質(例えば、金属原子または当該金属原子の不完全酸化物)をプラズマ露出処理(酸化処理)し、当該スパッタ物質を金属原子の完全酸化物に変換して、化合物薄膜を形成する。 In the present embodiment, when the introduced reaction processing gas contains a reaction gas (for example, oxygen gas or nitrogen gas), an activating substance of the reaction gas exists in the plasma, and the activating substance is present in the reaction area. You will be guided to 60. After that, the substrate holding means 13 is rotated to introduce the substrate S into the reaction area 60, and then the sputtering material (for example, a metal atom or incompleteness of the metal atom) formed on the surface of the substrate S in the sputtering areas 20 and 40. The oxide) is subjected to plasma exposure treatment (oxidation treatment) to convert the sputtered substance into a complete oxide of metal atoms to form a compound thin film.
 本願における実施の形態では、前記反応エリア60では、プラズマ中の反応性ガスの活性種によって、前記スパッタ物質と相互作用して、少なくとも4種の元素を含む化合物薄膜を形成する。本実施の形態では、前記反応エリア60と前記スパッタリングエリア20(または40)が相互作用して、基板S上に少なくとも4種の元素を含む化合物薄膜を形成する。そのうち、反応エリア60とスパッタリングエリア20(または40)は空間的に隔てられている。反応エリア60とスパッタリングエリア20(または40)の間には、間隔エリアが設けられてもよい。間隔エリアの両側には、それぞれ、反応エリアとスパッタリングエリアの空間をそれぞれ確保するために、隔壁が設けられてもよい。 In the embodiment of the present application, in the reaction area 60, the reactive species in the plasma interact with the sputtering material to form a compound thin film containing at least four elements. In the present embodiment, the reaction area 60 and the sputtering area 20 (or 40) interact with each other to form a compound thin film containing at least four kinds of elements on the substrate S. The reaction area 60 and the sputtering area 20 (or 40) are spatially separated from each other. A spacing area may be provided between the reaction area 60 and the sputtering area 20 (or 40). Partition walls may be provided on both sides of the spacing area to secure a space for the reaction area and a space for the sputtering area.
 前記反応エリア60では、2種以上の反応ガスを導入して当該反応エリア60にプラズマを生成する。反応ガスはスパッタ物質(金属原子または金属の不完全酸化物)と反応して、目標の化合物を形成し、最終的に、目標厚さを有する薄膜を形成することができる。具体的には、反応ガスは、スパッタ物質を酸化処理して、薄膜の化合物構成材料を取得することができる。例えば、スパッタリングエリア20、40により、基板S上に、Si原子、Al原子をそれぞれ、含むスパッタ物質が形成される。 In the reaction area 60, two or more kinds of reaction gases are introduced to generate plasma in the reaction area 60. The reactive gas can react with the sputter material (metal atoms or incomplete oxides of the metal) to form a target compound and ultimately a thin film having a target thickness. Specifically, the reaction gas can oxidize the sputtered substance to obtain the compound constituent material of the thin film. For example, the sputtering areas 20 and 40 form a sputter material containing Si atoms and Al atoms on the substrate S, respectively.
 図1、図2に示すように、前記真空容器11内には、1つまたは複数の前記反応エリア60が設けられている。1つまたは複数の前記反応エリア60は、2種以上の反応ガスが同時に導入されるように配置されており、または、少なくとも2種の反応ガスが交互に導入される(例えば、窒素ガスと酸素ガスが交互に導入される)ように配置されている。真空容器11内には、複数の反応エリア60が存在する場合に、複数の反応エリア60は、空間的に互いに離間してもよい。空間的に離間した反応エリア60は、それぞれ、独立してもよいので、成膜パラメータを制御できるようになり、4種以上の元素を含む化合物薄膜の形成を実現しやすくなり、かつ、成膜過程における調整自由度が高く、所望の性能を有する光学薄膜を取得しやすくなる。 As shown in FIGS. 1 and 2, one or a plurality of reaction areas 60 are provided in the vacuum container 11. The one or more reaction areas 60 are arranged so that two or more reaction gases are simultaneously introduced, or at least two reaction gases are alternately introduced (for example, nitrogen gas and oxygen). The gas is introduced alternately). When a plurality of reaction areas 60 exist in the vacuum container 11, the plurality of reaction areas 60 may be spatially separated from each other. Since the reaction areas 60 that are spatially separated may be independent from each other, it becomes possible to control the film formation parameters, facilitate formation of a compound thin film containing four or more elements, and form the film. The degree of freedom of adjustment in the process is high, and it becomes easy to obtain an optical thin film having desired performance.
 図2に示す例では、1つの反応エリア60には、1種の反応ガスを導入してもよいし、2種以上の反応ガスを同時に導入してもよい。勿論、反応エリア60には、不活性ガスが導入されてもよい。本願は、それによって制限されない。図2に示すように、基板保持手段13の動き方向において、2つの反応エリア60があり、各反応エリア60には、1種の反応ガスが導入される。そのうち、1つの反応エリア60に0が導入され、もう1つの反応エリア60にNが導入される。 In the example shown in FIG. 2, one reaction gas may be introduced into one reaction area 60, or two or more reaction gases may be introduced simultaneously. Of course, an inert gas may be introduced into the reaction area 60. The present application is not limited thereby. As shown in FIG. 2, there are two reaction areas 60 in the moving direction of the substrate holding means 13, and one reaction gas is introduced into each reaction area 60. Of these, 0 2 is introduced into one reaction area 60, and N 2 is introduced into the other reaction area 60.
 本実施の形態では、前記スパッタ成膜装置は、複数の反応エリア60を有する場合に、反応ガスの入力パラメータを柔軟かつ自由に調整することができ、それにより、薄膜の成分を調整することができる。そのため、必要な、光学特性、応力、硬度、表面粗さ、などの機械的特性を有する薄膜を取得することができる。 In the present embodiment, when the sputtering film forming apparatus has a plurality of reaction areas 60, the input parameters of the reaction gas can be flexibly and freely adjusted, whereby the components of the thin film can be adjusted. it can. Therefore, a thin film having necessary mechanical properties such as optical properties, stress, hardness, and surface roughness can be obtained.
 具体的には、前記反応エリア60には、プラズマを形成するためのプラズマ源80が設けられている。そのうち、前記プラズマ源80は、ICP源(Inductive Coupled Plasma Emission Spectrometer)、ECR源(Electron Cyclotron Resonance)、イオン源のうちの少なくとも1つを含む。異なる前記反応エリア60のプラズマ源80は異なってもよい。 Specifically, the reaction area 60 is provided with a plasma source 80 for forming plasma. The plasma source 80 includes at least one of an ICP source (Inductive Coupled Plasma Emission Spectrometer), an ECR source (Electron Cyclotron Resonance), and an ion source. The plasma sources 80 in different reaction areas 60 may be different.
 所望の成分を有する多元素化合物薄膜を形成しやすくするために、前記プラズマ源80のプラズマ発生パラメータを調整可能にする。そのうち、前記プラズマ発生パラメータは、電源電力、電源電圧、アンテナ電流のうちの少なくとも1つを含んでもよい。勿論、プラズマの処理時間を制御して、所望の多元素化合物薄膜(4種以上の元素を含む化合物薄膜)を取得することができる。 The plasma generation parameter of the plasma source 80 can be adjusted to facilitate formation of a multi-element compound thin film having a desired component. The plasma generation parameter may include at least one of power supply power, power supply voltage, and antenna current. Of course, a desired multi-element compound thin film (compound thin film containing four or more elements) can be obtained by controlling the plasma processing time.
 本実施形態では、当該スパッタ成膜装置には、2つ以上の(反応エリア60と作用する)プラズマ源80が設けられている。複数の反応エリア60が存在する場合に、個別に制御されるプラズマ源80を複数、装着することにより、薄膜の構成を調整する。そのため、必要な、光学特性、応力、硬度、表面粗さ、などの機械的特性を有する薄膜への取得に寄与する。 In the present embodiment, the sputtering film forming apparatus is provided with two or more plasma sources 80 (acting with the reaction area 60). When there are a plurality of reaction areas 60, a plurality of individually controlled plasma sources 80 are mounted to adjust the structure of the thin film. Therefore, it contributes to obtain a thin film having necessary mechanical properties such as optical properties, stress, hardness, and surface roughness.
 本願には、プラズマ源80の構造が特に限定されていない。図3、図4に示す実施形態では、プラズマ源80は、真空容器11の壁面に形成された開口を外部から塞ぐように固定されたケース81と、当該ケース81の前面に固定された誘電体板83とを備えてもよい。そして、誘電体板83をケース81に固定することにより、ケース81と誘電体板83とで囲まれたエリア内にアンテナ収納室82が形成されるように構成した。 The structure of the plasma source 80 is not particularly limited in the present application. In the embodiment shown in FIGS. 3 and 4, the plasma source 80 includes a case 81 fixed so as to block an opening formed in the wall surface of the vacuum container 11 from the outside, and a dielectric fixed on the front surface of the case 81. The plate 83 may be provided. Then, by fixing the dielectric plate 83 to the case 81, the antenna housing chamber 82 is formed in the area surrounded by the case 81 and the dielectric plate 83.
 本実施形態では、アンテナ収納室82は、真空容器11の内部から分離したものである。即ち、アンテナ収納室82と真空容器11の内部は、誘電体板83によって隔てられた状態で、独立した空間が形成される。また、アンテナ収納室82と真空容器11の外部は、ケース81によって隔てられた状態で、独立した空間が形成される。アンテナ収納室82は配管15aを介して真空ポンプ10に連通しており、真空ポンプ10で真空を抽出することで、アンテナ収納室82の内部を排気させて、アンテナ収納室82の内部を真空状態にすることができる。 In the present embodiment, the antenna storage chamber 82 is separated from the inside of the vacuum container 11. That is, the antenna housing chamber 82 and the inside of the vacuum container 11 are separated by the dielectric plate 83 to form an independent space. Further, the antenna housing chamber 82 and the outside of the vacuum container 11 are separated by a case 81, and an independent space is formed. The antenna storage chamber 82 communicates with the vacuum pump 10 via the pipe 15a, and by extracting a vacuum with the vacuum pump 10, the inside of the antenna storage chamber 82 is evacuated and the inside of the antenna storage chamber 82 is in a vacuum state. Can be
 本実施形態では、アンテナ収納室82内には、アンテナ85a、85bが設けられている。アンテナ85a、85bは、マッチング回路を収納するマッチング器87を介して、交流電源89と接続されている。アンテナ85a、85bは、交流電源89からの電力供給を受けて、真空容器11の内部(特に、エリア60)に誘導電界を発生させて、エリア60内にプラズマを発生させる。本例では、交流電源89からアンテナ85a、85bに対して交流電圧を印加して、エリア60に反応処理用ガスのプラズマを発生させる。マッチング器87内には、可変コンデンサが設けられており、当該可変コンデンサによって、交流電源89からアンテナ85a、85bへ供給される電力を変更することができる。 In this embodiment, antennas 85a and 85b are provided in the antenna storage chamber 82. The antennas 85a and 85b are connected to an AC power supply 89 via a matching device 87 that houses a matching circuit. The antennas 85a and 85b receive power supply from the AC power supply 89, generate an induction electric field inside the vacuum container 11 (in particular, the area 60), and generate plasma in the area 60. In this example, an AC voltage is applied from the AC power source 89 to the antennas 85 a and 85 b to generate plasma of reaction processing gas in the area 60. A variable capacitor is provided in the matching device 87, and the variable capacitor can change the power supplied from the AC power source 89 to the antennas 85a and 85b.
 前記スパッタ成膜装置は、前記反応エリアに不活性ガス、反応性ガス、及び、不活性ガスと反応ガスの混合ガスのうちのいずれか1つを導入する第2の送気部を備える。反応ガスとして、酸素、オゾンなどの酸化性ガス、窒素などの窒化性ガス、メタンなどの炭化性ガス、またはCF4などのフッ素化ガスなどが用いられてもよい。 The sputter film forming apparatus includes a second gas supply unit that introduces any one of an inert gas, a reactive gas, and a mixed gas of an inert gas and a reactive gas into the reaction area. As the reaction gas, an oxidizing gas such as oxygen or ozone, a nitriding gas such as nitrogen, a carbonizing gas such as methane, or a fluorinated gas such as CF4 may be used.
 成膜成分の調整柔軟性をさらに向上させるために、前記第2の送気部は、伝送されるガスのガス伝送パラメータを調節可能に配置されている。前記ガス伝送パラメータは、流量、気圧、流速のうちの少なくとも1つを含む。勿論、ガス伝送時間を制御して、所望の多元素化合物薄膜(4種以上の元素を含む化合物薄膜)を取得してもよい。 In order to further improve the flexibility of adjusting the film-forming components, the second gas supply unit is arranged so that the gas transmission parameters of the gas to be transmitted can be adjusted. The gas transfer parameter includes at least one of a flow rate, an atmospheric pressure, and a flow rate. Of course, the gas transmission time may be controlled to obtain a desired multi-element compound thin film (compound thin film containing four or more elements).
 具体的な例では、プラズマ源80の前(反応エリア60)には、反応処理用ガスの供給手段(第2の送気部)が接続されている。本実施形態では、反応処理用ガスの供給手段(第2の送気部)は、反応処理用ガスを貯蔵するガスボンベ68と、当該ガスボンベ68から供給された反応処理用ガスの流量を調整する質量流量コントローラ67と、を含む。反応処理用ガスは、配管を通じてエリア60に導入される。質量流量コントローラ67は、反応処理用ガスの流量を調節するための装置である。ガスボンベ68からの反応処理用ガスは、質量流量コントローラ67によってその流量が調節されてから、エリア60に導入される。 In a specific example, in front of the plasma source 80 (reaction area 60), a reaction processing gas supply means (second air supply section) is connected. In the present embodiment, the reaction processing gas supply means (second air supply unit) is a gas cylinder 68 that stores the reaction processing gas, and a mass that adjusts the flow rate of the reaction processing gas supplied from the gas cylinder 68. And a flow rate controller 67. The reaction processing gas is introduced into the area 60 through the pipe. The mass flow rate controller 67 is a device for adjusting the flow rate of the reaction processing gas. The reaction processing gas from the gas cylinder 68 is introduced into the area 60 after its flow rate is adjusted by the mass flow rate controller 67.
 また、反応エリア60用のガス供給手段は、上記構造(即ち、1つのガスボンベと1つの質量流量コントローラを含む構造)に限らず、複数のガスボンベと質量流量コントローラを含む構造(例えば、不活性ガスと反応ガスをそれぞれ、貯蔵する2つのガスボンベと、各ガスボンベから供給された各ガスの流量を調整する2つの質量流量コントローラとを備えた構造)に形成されてもよい。 Further, the gas supply means for the reaction area 60 is not limited to the above structure (that is, a structure including one gas cylinder and one mass flow controller), but a structure including a plurality of gas cylinders and a mass flow controller (for example, an inert gas). And two reaction gas storages, and two mass flow controllers for adjusting the flow rate of each gas supplied from each gas cylinder).
 本願における実施の形態では、前記スパッタリングエリア20(及び/または40)によって形成されたスパッタ物質は、反応エリアに生成されたプラズマによる処理が行われて、化合物薄膜が形成される。前記真空容器11には、隔壁12(及び/または14)が設けられている。前記隔壁12(及び/または14)は、前記スパッタリングエリア20(及び/または40)を、前記反応エリア60と互いに離間させる。前記スパッタリングエリア20(及び/または40)では、スパッタリングターゲット材29a、29b(及び/または49a、49b)により、基板S上に少なくとも2種の元素を含むスパッタ物質を形成する。 In the embodiment of the present application, the sputtered material formed by the sputtering area 20 (and/or 40) is treated by the plasma generated in the reaction area to form a compound thin film. The vacuum container 11 is provided with a partition wall 12 (and/or 14). The partition 12 (and/or 14) separates the sputtering area 20 (and/or 40) from the reaction area 60. In the sputtering area 20 (and/or 40), the sputtering target material 29a, 29b (and/or 49a, 49b) forms a sputter material containing at least two elements on the substrate S.
 さらに、前記スパッタリングエリア20(及び/または40)では、スパッタリングターゲット材29a、29b(及び/または49a、49b)により、基板S上に少なくとも2種の導電性元素を含むスパッタ物質を形成する。相応に、ターゲット材29a、29b(及び/または49a、49b)は、導電性材料または導電性元素を含む材料であることが好ましい。そうすると、スパッタリング中に、導電回路を形成しやすくなり、ターゲット材に対して比較的に速いレートでのスパッタリングを形成しやすくなり、成膜レートを高めることができる。 Further, in the sputtering area 20 (and/or 40), a sputtering target material 29a, 29b (and/or 49a, 49b) forms a sputter material containing at least two kinds of conductive elements on the substrate S. Correspondingly, the target material 29a, 29b (and/or 49a, 49b) is preferably a conductive material or a material containing a conductive element. Then, it becomes easy to form a conductive circuit during sputtering, it becomes easy to form sputtering at a relatively fast rate with respect to the target material, and the film formation rate can be increased.
 前記スパッタリングエリア20(及び/または40)と前記反応エリア60は、前記基板保持手段13の動き方向に沿って空間的に互いに離間している。隔壁12(及び/又は14)は、スパッタリングエリア20、40の周囲に、スパッタリングエリア20、40を囲うように設けられることにより、スパッタリングエリア20、40に密封空間が形成され、同時に、隔壁12(及び/又は14)は基板保持手段13と真空容器11の内壁の間にも位置する。 The sputtering area 20 (and/or 40) and the reaction area 60 are spatially separated from each other along the moving direction of the substrate holding means 13. The partition 12 (and/or 14) is provided around the sputtering area 20, 40 so as to surround the sputtering area 20, 40, thereby forming a sealed space in the sputtering area 20, 40, and at the same time, the partition 12 ( And/or 14) is also located between the substrate holding means 13 and the inner wall of the vacuum chamber 11.
 図3に示すように、隔壁12(及び/又は14)は、真空容器11の内壁の一端(又は一側)から離れて基板保持手段13における基板Sに近いが、基板Sとの間に一定の隙間が設けられ、基板保持手段13に従う基板Sの往復運動への干渉、および、薄膜の形成を回避した。そのため、スパッタリングエリア20、40の所在密封空間は、相対的に密封なものであり、空間的かつ圧力的に他のエリアと離間すればよい。そのうち、前記スパッタリングエリアと前記反応エリアは、真空容器内において、電磁結合または電気結合が存在するので、スパッタ物質が反応ガスによって酸化されて目標の薄膜が形成される。 As shown in FIG. 3, the partition wall 12 (and/or 14) is separated from one end (or one side) of the inner wall of the vacuum container 11 and is close to the substrate S in the substrate holding means 13, but is constant between the partition wall 12 and the substrate S. Is provided to avoid interference with the reciprocating motion of the substrate S following the substrate holding means 13 and formation of a thin film. Therefore, the sealed spaces in the sputtering areas 20 and 40 are relatively sealed, and may be spatially and pressure separated from other areas. Among them, the sputtering area and the reaction area have an electromagnetic coupling or an electrical coupling in the vacuum chamber, so that the sputtering gas is oxidized by the reaction gas to form a target thin film.
 本願における実施の形態では、前記スパッタリングエリア20(及び/または40)では、スパッタリングターゲット材29a、29b(及び/または49a、49b)により、基板S上に少なくとも2種の金属元素または導電性元素を含むスパッタ物質を形成する。少なくとも2種の金属元素または導電性元素は、シリコンとアルミニウム元素を含んでもよい。金属元素または導電性元素を含むターゲット材の材料をスパッタリングすることにより、成膜レートの面では、大きく向上し、同時に、反応ガスと反応して多元素化合物薄膜を生成しやすくなることが明らかになっている。 In the embodiment of the present application, in the sputtering area 20 (and/or 40), at least two kinds of metal elements or conductive elements are provided on the substrate S by the sputtering target materials 29a and 29b (and/or 49a and 49b). Forming a sputtered material including. The at least two kinds of metal elements or conductive elements may include silicon and aluminum elements. By sputtering the target material containing a metal element or a conductive element, the film formation rate is greatly improved, and at the same time, it is easy to react with the reaction gas to form a multi-element compound thin film. Has become.
 本実施の形態では、前記真空容器11内において、前記基板保持手段13の動き方向に沿って、少なくとも2つの空間的に互いに離間したスパッタリングエリアが設けられている。少なくとも2つの前記スパッタリングエリアでスパッタリングされたターゲット材の材料が異なるため、基板上に少なくとも2種の金属元素を含むスパッタ物質が形成される。 In the present embodiment, at least two sputtering areas spatially separated from each other are provided in the vacuum container 11 along the movement direction of the substrate holding means 13. Since the materials of the target materials sputtered in the at least two sputtering areas are different, a sputtered material containing at least two kinds of metal elements is formed on the substrate.
 各スパッタリングエリア20(または40)では、1つの金属または金属化合物のターゲット材または導電性ターゲット材をスパッタリングすることができる。スパッタリングエリアの両側には、隔壁12(または14)が設けられて、独立した空間が形成される。各スパッタリングエリア20(または40)は独立したエリアを有するため、当該ターゲット材のスパッタリングパラメータを制御しやすくなり、ターゲット材にスパッタリングされたスパッタ物質の量または状態を個別に制御することができ、それにより、所望の薄膜を取得することができる。 In each sputtering area 20 (or 40), one metal or metal compound target material or conductive target material can be sputtered. Partitions 12 (or 14) are provided on both sides of the sputtering area to form independent spaces. Since each sputtering area 20 (or 40) has an independent area, it is easy to control the sputtering parameters of the target material, and the amount or state of the sputtered material sputtered on the target material can be individually controlled. Thus, a desired thin film can be obtained.
 成膜レートを高めるために、スパッタリングエリアでは、金属モードまたは導電性モードでスパッタリングを行ってもよい。成膜レートを高めるために、前記スパッタリングエリア20(または40)では、スパッタリングされるターゲット材が、導電性ターゲット材であってもよい。具体的な実施例では、前記スパッタリングエリア20(または40)でスパッタリングされたターゲット材は、金属元素及び/または金属元素を含む化合物を含む。具体的には、前記ターゲット材は、Si、Al、Ta、C、Cr、Mg、Ca、Y、SiOx、AlOx、TiOx、CrOx、TaOxのうちの少なくとも1つの材料を含む。 In order to increase the film formation rate, sputtering may be performed in the metal mode or the conductive mode in the sputtering area. In order to increase the film formation rate, the target material to be sputtered in the sputtering area 20 (or 40) may be a conductive target material. In a specific example, the target material sputtered in the sputtering area 20 (or 40) contains a metal element and/or a compound containing a metal element. Specifically, the target material includes at least one material of Si, Al, Ta, C, Cr, Mg, Ca, Y, SiOx, AlOx, TiOx, CrOx, and TaOx.
 本願における実施の形態において、実験による測定では、当該薄膜には、少なくとも、シリコン(Si)、アルミニウム(Al)、酸素(O)、窒素(N)という4種類の元素が同時に含まれ、当該薄膜は、好ましい構造硬度を有するだけではなく、さらに小さい薄膜応力を有し、空間的に離間した複数のスパッタリングエリア、および、反応エリアによって、SiAlON材料によるスパッタ成膜が実現され、かつ、成膜レートが確保され、応用価値及び将来性が非常に高いことが想定される。 In the embodiments of the present application, in the measurement by experiment, the thin film contains at least four kinds of elements such as silicon (Si), aluminum (Al), oxygen (O), and nitrogen (N) at the same time. Has not only a preferable structural hardness but also a smaller thin film stress, and a plurality of spatially separated sputtering areas and reaction areas realize a sputter deposition using a SiAlON material, and a deposition rate. Is ensured, and the application value and future are expected to be very high.
 テーブル1 SiAlON薄膜評価結果
Figure JPOXMLDOC01-appb-T000001
Table 1 SiAlON thin film evaluation results
Figure JPOXMLDOC01-appb-T000001
 テーブル1の『SiAlON薄膜評価結果』から、SiAlON材料を有する薄膜は、良好な粗さ、さらに小さい薄膜応力、および、更に好適なマイクロビッカース硬度を有し、優れた光学性能、および、好ましい成膜レートも有していることが明らかである。 From the “SiAlON thin film evaluation result” in Table 1, the thin film having the SiAlON material has good roughness, smaller thin film stress, and more suitable micro Vickers hardness, excellent optical performance, and favorable film formation. It is clear that it also has a rate.
 勿論、上記結果は、比較試験によって検証されてもよい。テーブル2を参照されたい。
 テーブル2 比較試験の結果
Figure JPOXMLDOC01-appb-T000002
Of course, the above result may be verified by a comparative test. See Table 2.
Table 2 Comparative test results
Figure JPOXMLDOC01-appb-T000002
 テーブル2において、TGがターゲット材(target)であり、n@550が屈折率であり、k@550、k@400が吸光係数である。 In Table 2, TG is a target material (target), n@550 is a refractive index, and k@550 and k@400 are extinction coefficients.
 テーブル2におけるSiONとSiAlON薄膜の比較から、SiAlON薄膜の応力はSiON薄膜の応力よりもさらに低くなり、同時に、成膜レートが更に速いので、更に好適な光学性能を有することが分かった。 From the comparison of SiON and SiAlON thin film in Table 2, it was found that the stress of SiAlON thin film is lower than that of SiON thin film, and at the same time, the film forming rate is faster, so that it has more suitable optical performance.
 具体的には、前記スパッタリングエリア20(または40)と前記反応エリア60では、前記基板上に、SiAlON、Mg-SiAlON、Ca-SiAlON、Y-SiAlON、TiAlONのうちの少なくとも1つの薄膜を形成する。 Specifically, in the sputtering area 20 (or 40) and the reaction area 60, at least one thin film of SiAlON, Mg-SiAlON, Ca-SiAlON, Y-SiAlON, and TiAlON is formed on the substrate. ..
 図3、図4に示す実施形態では、SiAlON薄膜を形成しやすくするために、前記真空容器11には、2つの空間的に互いに離間した前記スパッタリングエリア20、40が設けられている。2つの前記スパッタリングエリア20、40には、Siターゲット材をスパッタリングする第1のスパッタリングエリア20と、Alターゲット材をスパッタリングする第2のスパッタリングエリア40とが含まれる。前記反応エリア60では、NとOを導入して、基板S上にSiAlON薄膜を形成する。 In the embodiment shown in FIGS. 3 and 4, in order to facilitate the formation of a SiAlON thin film, the vacuum chamber 11 is provided with two spatially separated sputtering areas 20 and 40. The two sputtering areas 20 and 40 include a first sputtering area 20 for sputtering a Si target material and a second sputtering area 40 for sputtering an Al target material. In the reaction area 60, N 2 and O 2 are introduced to form a SiAlON thin film on the substrate S.
 本実施の形態では、テーブル3に示すように、SiAlON薄膜は、SiO、Si、Al、AI化合物を含む薄膜として理解されてもよい。そのうち、SiO、Si、Al、AIN4、薄膜において、分散分布しており、または、混合分布している。SiAlON薄膜には、単層に亘ってSiO、Si、Al、AIのうちのある1つの化合物だけが存在する現象が生じることはない。 In the present embodiment, as shown in Table 3, the SiAlON thin film may be understood as a thin film containing SiO 2 , Si 3 N 4 , Al 4 O 6 , and AI 4 N 4 compounds. Among them, SiO 2 , Si 3 N 4 , Al 4 O 6 , and AI 4 N4 are dispersedly distributed or mixedly distributed in the thin film. In the SiAlON thin film, the phenomenon that only one compound of SiO 2 , Si 3 N 4 , Al 4 O 6 , and AI 4 N 4 exists over the single layer does not occur.
 上記化合物を含む薄膜材料には、シリコン(Si)、アルミニウム(Al)、酸素(O)、窒素(N)という4種類の元素が同時に含まれ、優れた薄膜の性能を有する。SiAlON薄膜には、SiO、Si、Al、AIの各々の含有量に対する要求が厳しいので、所望の光学性能及び薄膜性能を呈している。空間的に離間したスパッタリングエリア(スパッタ源)、反応エリア(プラズマ源)が設けられたことで、SiO、Si、Al、AIの各々の含有量を自由に調整して、所望の成分含有量を有するSiO、Si、Al、AIを取得して、所望の性能を有する化合物薄膜を取得することができる。 The thin film material containing the above compound simultaneously contains four kinds of elements such as silicon (Si), aluminum (Al), oxygen (O), and nitrogen (N), and has excellent thin film performance. The SiAlON thin film has desired optical performance and thin film performance because the content requirements of SiO 2 , Si 3 N 4 , Al 4 O 6 , and AI 4 N 4 are strict. Since the sputtering area (sputtering source) and the reaction area (plasma source) that are spatially separated are provided, the contents of SiO 2 , Si 3 N 4 , Al 4 O 6 , and AI 4 N 4 can be freely set. It is possible to adjust and obtain SiO 2 , Si 3 N 4 , Al 4 O 6 , and AI 4 N 4 having a desired component content to obtain a compound thin film having a desired performance.
 テーブル3
Figure JPOXMLDOC01-appb-T000003
Table 3
Figure JPOXMLDOC01-appb-T000003
 上記テーブル3からも、SiON、AlON薄膜に対して、SiAlON薄膜は好ましい硬度とより高い屈折率を有し、優れた薄膜性能を提供することができ、かつ、成膜レート(rate)が著しく向上したことが見いだされる。 From Table 3 above, the SiAlON thin film has a preferable hardness and a higher refractive index as compared with the SiON and AlON thin films, can provide excellent thin film performance, and the film forming rate is remarkably improved. You can find out what you have done.
 テーブル3からは、前記スパッタリングエリアと前記反応エリアでは、前記基板上に、SiAlON薄膜を形成し。前記SiAlON薄膜における各成分の割合は、SiOが6%~22%、Siが33%~60%、Alが7%~20%、Alが4%~29%となる。 From Table 3, a SiAlON thin film was formed on the substrate in the sputtering area and the reaction area. The ratio of each component in the SiAlON thin film is 6% to 22% for SiO 2 , 33% to 60% for Si 3 N 4 , 7% to 20% for Al 4 O 6 , and 4% to 29% for Al 4 N 4. %.
 前記スパッタリングエリアと前記反応エリアでは、前記基板上に、SiAlON薄膜を形成する。前記SiAlON薄膜における成分が、(SiO+Si):(Al+Al)の比例範囲が1.23~3.55であるという関係を満足した。 In the sputtering area and the reaction area, a SiAlON thin film is formed on the substrate. The composition of the SiAlON thin film satisfied the relationship that the proportional range of (SiO 2 +Si 3 N 4 ):(Al 4 O 6 +Al 4 N 4 ) was 1.23 to 3.55.
 そのうち、前記第1のスパッタリングエリアと前記第2のスパッタリングエリアは、スパッタパラメータを調整可能に配置されている。前記スパッタパラメータは、スパッタリング電力、スパッタリング電圧、スパッタリング電流のうちの少なくとも1つを含む。前記第1のスパッタリングエリアと前記第2のスパッタリングエリアにおけるスパッタパラメータは、それぞれのスパッタ源に対する制御によって実現されてもよい。 Among them, the first sputtering area and the second sputtering area are arranged so that the sputtering parameters can be adjusted. The sputtering parameters include at least one of sputtering power, sputtering voltage, and sputtering current. The sputtering parameters in the first sputtering area and the second sputtering area may be realized by controlling the respective sputtering sources.
 具体的には、各スパッタ源の構造は特に限定されていない。本実施形態では、汎用的なものとして、各スパッタ源は、それぞれ、2つのマグネトロンスパッタ電極21a、21b(または41a、41b)を有するダブルカソード型のスパッタ源(上記カソード電極の1つの具体的な実施例)で構成されている。(後述する)成膜時、ターゲット材29a、29b(及び/または49a、49b)は、それぞれ、各電極21a、21b(または41a、41b)の一端側の表面に装着自由に保持されている。各電極21a、21b(または41a、41b)の他端側は、電力を調整するための電力制御手段としての変圧器24(または44)を介して、電力供給手段としての交流電源23(または43)に接続されており、かつ、各電極21a、21b(または41a、41b)に対して、例えば、周波数が1kHz~100kHz程度の交流電圧を印加するように構成された。 Specifically, the structure of each sputter source is not particularly limited. In the present embodiment, as a general-purpose one, each sputter source has a double cathode type sputter source having two magnetron sputter electrodes 21a and 21b (or 41a and 41b) (one of the above-mentioned specific cathode electrodes). Example)). At the time of film formation (which will be described later), the target materials 29a and 29b (and/or 49a and 49b) are freely attached to the surfaces of the electrodes 21a and 21b (or 41a and 41b) on one end side, respectively. The other end of each electrode 21a, 21b (or 41a, 41b) is connected to an AC power supply 23 (or 43) as a power supply means via a transformer 24 (or 44) as a power control means for adjusting power. ) And is configured to apply an AC voltage having a frequency of, for example, about 1 kHz to 100 kHz to each of the electrodes 21a, 21b (or 41a, 41b).
 本実施の形態では、前記スパッタ成膜装置は、前記スパッタリングエリア20(または40)に不活性ガスを導入する第1の送気部を備える。前記不活性ガスはアルゴンガスであることが好ましい。テーブル2に示すように、研究したところ、アルゴンガスの流量を高めることで、薄膜応力を効率よく低下させることができることが見いだされる。具体的に、前記第1の送気部に導入されるガスの流量が200sccm以上である。不活性ガスの流量を大きくして、スパッタリングエリアに更に大きな成膜圧力(スパッタ圧力)を形成することにより、成膜レートを高めることができ、基板Sに4種以上の元素を含む化合物薄膜を形成する成膜レートを非常に著しく向上させることができる。 In the present embodiment, the sputtering film forming apparatus includes a first air supply unit that introduces an inert gas into the sputtering area 20 (or 40). The inert gas is preferably argon gas. As shown in Table 2, as a result of research, it was found that the thin film stress can be efficiently reduced by increasing the flow rate of the argon gas. Specifically, the flow rate of the gas introduced into the first air supply unit is 200 sccm or more. By increasing the flow rate of the inert gas and forming a larger film forming pressure (sputtering pressure) in the sputtering area, the film forming rate can be increased, and the compound thin film containing four or more elements can be formed on the substrate S. The film forming rate to be formed can be remarkably improved.
 自由に調整して組み合わせることが可能となり、光学特性、応力、硬度、表面粗さ、などの機械的特性を有する薄膜を取得することができる。前記第1の送気部は、前記不活性ガスのガス伝送パラメータを調節可能に配置されており、前記ガス伝送パラメータは、流量、気圧、流速のうちの少なくとも1つを含む。 It becomes possible to freely adjust and combine, and it is possible to obtain a thin film having mechanical properties such as optical properties, stress, hardness, surface roughness. The first gas supply unit is arranged so that a gas transfer parameter of the inert gas can be adjusted, and the gas transfer parameter includes at least one of a flow rate, an atmospheric pressure, and a flow rate.
 各スパッタ源の前(スパッタリングエリア20、40)には、スパッタリング用のガス供給手段が接続されている。本実施例では、スパッタリング用のガス供給手段は、スパッタリング用ガスを貯蔵するガスボンベ26(または46)と、当該ガスボンベ26(または46)から供給されたスパッタリング用ガスの流量を調整する質量流量コントローラ25(または45)と、を含む。スパッタリング用ガスは、配管を通じてエリア20(または40)にそれぞれ、導入される。質量流量コントローラ25(または45)は、スパッタリング用ガスの流量を調節するための装置である。ガスボンベ26(または46)からのスパッタリング用ガスは、質量流量コントローラ25(または45)によってその流量が調節されてから、エリア20(または40)に導入される。質量流量コントローラ25(または45)によって、不活性ガスに対する流量の制御が実現され、それにより、取得した目標の薄膜の成分または性能、および、形成レートを制御することができる。 A gas supply means for sputtering is connected in front of each sputtering source (sputtering areas 20, 40). In the present embodiment, the gas supply means for sputtering is a gas cylinder 26 (or 46) for storing the sputtering gas, and a mass flow controller 25 for adjusting the flow rate of the sputtering gas supplied from the gas cylinder 26 (or 46). (Or 45). The sputtering gas is introduced into each area 20 (or 40) through the pipe. The mass flow controller 25 (or 45) is a device for adjusting the flow rate of the sputtering gas. The sputtering gas from the gas cylinder 26 (or 46) is introduced into the area 20 (or 40) after its flow rate is adjusted by the mass flow controller 25 (or 45). Mass flow controller 25 (or 45) provides control of the flow rate for the inert gas, which can control the target thin film composition or performance obtained and the formation rate.
 本願における実施の形態では、上記スパッタリングエリアにおけるスパッタパラメータ、ガス伝送パラメータ、プラズマ発生パラメータに対する制御は、いずれも、コントローラによって実現されてもよい。コントローラは、任意の適切な方式によって実現されてもよい。具体的には、例えば、コントローラとして、例えば、マイクロプロセッサまたはプロセッサ、及び、当該マイクロプロセッサまたはプロセッサによって実行されてもよいコンピュータが読取可能なプログラムコード(例えば、ソフトウェアまたはファームウェア)を格納するコンピュータ読取可能媒体、ロジックゲート、スイッチ、プログラマブルロジックコントローラ(Programmable Logic Controller、PLC)、および、嵌め込み型マイクロコントローラユニット(Microcontroller Unit、MCU)の形式が用いられてもよい。上記モジュールの例として、ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20、および、Silicone Labs C8051F320が含まれるが、それらに限られていない。当業者であれば分かるように、単にコンピュータ読取可能なプログラムコードの方式によって前記コントローラの機能が実現されることに加えて、方法ステップをロジック的にプログラミングすることで、制御手段として、ロジックゲート、スイッチ、特定用途向け集積回路、プログラマブルロジックコントローラ、および、嵌め込み型マイクロコントローラユニット等の形式によって、同様な機能を実現することが完全に可能となる。 In the embodiment of the present application, the control of the sputtering parameter, the gas transmission parameter, and the plasma generation parameter in the sputtering area may be realized by the controller. The controller may be implemented in any suitable manner. Specifically, for example, as the controller, for example, a microprocessor or a processor, and a computer-readable storage of a computer-readable program code (eg, software or firmware) that may be executed by the microprocessor or the processor. The form of a medium, a logic gate, a switch, a programmable logic controller (Programmable Logic Controller, PLC), and a plug-in type micro controller unit (Microcontroller Unit, MCU) may be used. Examples of the above modules include, but are not limited to, ARC 625D, Atmel AT91SAM, Microchip PIC18F26K20, and Silicone Labs C8051F320. As will be appreciated by those skilled in the art, in addition to the functions of the controller being implemented simply by means of a computer readable program code, method steps are logically programmed to provide logic gates as control means, Forms such as switches, application specific integrated circuits, programmable logic controllers, and embedded microcontroller units make it possible to achieve similar functions.
 複数の素子、成分、部材、または、ステップは、単一の集積素子、成分、部材またはステップによって提供されてもよい。なお、選択的に、単一の集積素子、成分、部材またはステップは、離間した複数の素子、成分、部材、または、ステップに分けられてもよい。素子、成分、部材またはステップを記述するために開示の「一」または「1つ」は、他の素子、成分、部材またはステップを排除するためのものではない。 Multiple elements, components, components or steps may be provided by a single integrated device, component, component or step. It should be noted that a single integrated device, component, member or step may optionally be divided into a plurality of spaced apart devices, components, members or steps. The word "one" or "one" of the disclosure to describe an element, component, member or step is not meant to exclude other elements, components, members or steps.
 ここに理解すべきなのは、上記記述は、添付図面の説明を行うためのものであり、限定するためのものではない。上記記載を閲覧したうえで、提供される例示以外の種々の実施の形態及び種々の応用は、当業者にとっては自明なものを適宜用いればよい。 It should be understood that the above description is for the purpose of explaining the accompanying drawings, not for limitation. After browsing the above description, various embodiments and various applications other than the provided examples may be appropriately used for those skilled in the art.
 上記説明と図面を参照して、本発明の特定な実施の形態は詳しく開示され、本発明の原理が使用されることも示された。特許請求の範囲の思想及び請求項の範囲内において、本発明の実施の形態は多くの変更、修正及び均等物を含む。 With reference to the above description and drawings, the specific embodiments of the present invention have been disclosed in detail, and it has been shown that the principles of the present invention are used. Within the spirit and scope of the claims, the embodiments of the present invention include many changes, modifications and equivalents.
 1つの実施の形態の記載及び/又は示された特徴に対して、同様又は類似する様態で1つ又は更に多くのその他の実施の形態に使用され、その他の実施の形態の特徴を組み合わせることもできる。 Features described and/or shown in one embodiment may be used in one or more other embodiments in a similar or similar manner and may combine features in other embodiments. it can.
 「備える/含む」は本文で特徴、ステップ又は部材の存在を示すために使われているが、1つ又は更に多くのその他の特徴、ステップ又は部材の存在或は付加が排除されるわけではない。 "Include/include" is used herein to indicate the presence of a feature, step or element, but does not exclude the presence or addition of one or more other feature, step or element. ..

Claims (25)

  1.  排気機構を有する真空容器と、
     複数の基板を保持できる基板保持手段と、
     前記真空容器の内部に位置しているスパッタリングエリア及び反応エリアと、を備え、
    前記スパッタリングエリアでは、スパッタリングターゲット材により、基板上にスパッタ物質を形成し、
     前記反応エリアでは、プラズマ中の反応性ガスの活性種によって、前記スパッタ物質と相互作用して化合物薄膜を形成するスパッタ成膜装置。
    A vacuum container having an exhaust mechanism,
    Substrate holding means capable of holding a plurality of substrates,
    A sputtering area and a reaction area located inside the vacuum container,
    In the sputtering area, a sputtering target material is used to form a sputtering material on the substrate,
    In the reaction area, a sputtering film forming apparatus that forms a compound thin film by interacting with the sputtering material by an active species of a reactive gas in plasma.
  2.  前記スパッタリングエリアと前記反応エリアは空間的に互いに離間して設けられており、
    前記反応エリアでは、2種以上の反応ガスを導入して、当該反応エリアにプラズマを生成し、
    前記反応エリアでは、プラズマ中の反応性ガスの活性種によって、前記スパッタ物質と反応し、少なくとも4種の元素を含む化合物薄膜を形成する請求項1に記載のスパッタ成膜装置。
    The sputtering area and the reaction area are spatially separated from each other,
    In the reaction area, two or more kinds of reaction gases are introduced to generate plasma in the reaction area,
    The sputtering film forming apparatus according to claim 1, wherein in the reaction area, active species of a reactive gas in plasma react with the sputtering material to form a compound thin film containing at least four elements.
  3.  排気機構を有する真空容器と、
     複数の基板を保持できる基板保持手段と、
     前記真空容器の内部に位置し空間的に互いに離間したスパッタリングエリア及び反応エリアと、を備え、
    前記スパッタリングエリアでは、スパッタリングターゲット材により、基板上に少なくとも2種の元素を含むスパッタ物質を形成し、
    前記反応エリアでは、反応ガスを導入して当該反応エリアにプラズマを生成し、
    前記反応エリアでは、プラズマ中の反応性ガスの活性種によって、前記スパッタ物質と相互作用して化合物薄膜を形成するスパッタ成膜装置。
    A vacuum container having an exhaust mechanism,
    Substrate holding means capable of holding a plurality of substrates,
    A sputtering area and a reaction area located inside the vacuum container and spatially separated from each other;
    In the sputtering area, a sputtering target material is used to form a sputtering material containing at least two kinds of elements on a substrate,
    In the reaction area, a reaction gas is introduced to generate plasma in the reaction area,
    In the reaction area, a sputtering film forming apparatus that forms a compound thin film by interacting with the sputtering material by an active species of a reactive gas in plasma.
  4.  前記基板保持手段は円筒状に形成され、
     前記基板保持手段は、複数の前記基板を前記基板保持手段の外周面に保持した状態で、駆動手段によって回転することで、前記基板を前記スパッタリングエリアと前記反応エリアの間を往復移動させる請求項1~3のいずれか1項に記載のスパッタ成膜装置。
    The substrate holding means is formed in a cylindrical shape,
    The substrate holding means reciprocates the substrate between the sputtering area and the reaction area by rotating the driving means while holding a plurality of the substrates on the outer peripheral surface of the substrate holding means. 4. The sputtering film forming apparatus according to any one of 1 to 3.
  5.  前記スパッタリングエリア内のスパッタリングによって形成されたスパッタ物質は、前記反応エリアで生成されたプラズマによる処理が行われて、
     薄膜が形成され、
     前記真空容器には、隔壁が設けられており、
     前記隔壁によって前記スパッタリングエリアと前記反応エリアが互いに離間している請求項1~3のいずれか1項に記載のスパッタ成膜装置。
    The sputtered material formed by sputtering in the sputtering area is treated with the plasma generated in the reaction area,
    A thin film is formed,
    The vacuum container is provided with a partition,
    4. The sputtering film forming apparatus according to claim 1, wherein the sputtering area and the reaction area are separated from each other by the partition wall.
  6.  前記真空容器の前記反応エリアに近い部分には、排気機構が設けられている請求項1~3のいずれか1項に記載のスパッタ成膜装置。 The sputtering film forming apparatus according to any one of claims 1 to 3, wherein an exhaust mechanism is provided in a portion of the vacuum container near the reaction area.
  7.  前記真空容器の内部には、1つまたは複数の前記反応エリアが設けられており、
     1つまたは複数の前記反応エリアには、2種以上の反応ガスが同時に導入され、または、少なくとも2種の反応ガスが交互に導入される請求項1~3のいずれか1項に記載のスパッタ成膜装置。
    Inside the vacuum vessel, one or more reaction areas are provided,
    The sputtering according to any one of claims 1 to 3, wherein two or more reaction gases are simultaneously introduced into at least one of the reaction areas, or at least two reaction gases are alternately introduced. Deposition apparatus.
  8.  前記反応エリアには、プラズマを形成するためのプラズマ源が設けられており、
     前記プラズマ源は、ICP源、ECR源、イオン源のうちの少なくとも1種を含む請求項7に記載のスパッタ成膜装置。
    The reaction area is provided with a plasma source for forming plasma,
    The sputtering film forming apparatus according to claim 7, wherein the plasma source includes at least one of an ICP source, an ECR source, and an ion source.
  9.  前記スパッタリングエリアと前記反応エリアは、前記基板保持手段の動き方向に沿って空間的に互いに離間しており、
     前記スパッタリングエリアと前記反応エリアは、真空容器内において、電磁結合または電気結合が存在する請求項1~3のいずれか1項に記載のスパッタ成膜装置。
    The sputtering area and the reaction area are spatially separated from each other along the movement direction of the substrate holding means,
    The sputtering film forming apparatus according to any one of claims 1 to 3, wherein the sputtering area and the reaction area have electromagnetic coupling or electrical coupling in a vacuum container.
  10.  前記スパッタリングエリアでは、前記スパッタリングターゲット材により、基板上に少なくとも2種の金属元素を含むスパッタ物質を形成する請求項1~3のいずれか1項に記載のスパッタ成膜装置。 The sputtering film forming apparatus according to any one of claims 1 to 3, wherein in the sputtering area, a sputtering material containing at least two kinds of metal elements is formed on the substrate by the sputtering target material.
  11.  前記真空容器内において、前記基板保持手段の動き方向に沿って、空間的に互いに離間した少なくとも2つのスパッタリングエリアが設けられており、
     少なくとも2つの前記スパッタリングエリアでスパッタリングされたターゲット材の材料が異なっており、基板上に少なくとも2種の金属元素を含むスパッタ物質が形成される請求項1~3のいずれか1項に記載のスパッタ成膜装置。
    In the vacuum container, at least two sputtering areas spatially separated from each other are provided along the moving direction of the substrate holding means,
    The sputtering according to any one of claims 1 to 3, wherein the materials of the target materials sputtered in at least two of the sputtering areas are different from each other, and a sputtering material containing at least two kinds of metal elements is formed on the substrate. Deposition apparatus.
  12.  前記スパッタリングエリアでスパッタリングされたターゲット材は、金属元素及び/または金属元素を含む化合物を含む請求項11に記載のスパッタ成膜装置。 The sputtering film forming apparatus according to claim 11, wherein the target material sputtered in the sputtering area contains a metal element and/or a compound containing a metal element.
  13.  前記ターゲット材は、Si、Al、Ta、C、Cr、Mg、Ca、Y、SiOx、AlOx、TiOx、CrOx、TaOxのうちの少なくとも1つの材料を含む請求項12に記載のスパッタ成膜装置。 13. The sputtering film forming apparatus according to claim 12, wherein the target material includes at least one material selected from the group consisting of Si, Al, Ta, C, Cr, Mg, Ca, Y, SiOx, AlOx, TiOx, CrOx, and TaOx.
  14.  前記スパッタリングエリアと前記反応エリアでは、前記基板上に、SiAlON、Mg-SiAlON、Ca-SiAlON、Y-SiAlON、TiAlONのうちの少なくとも1つの薄膜を形成する請求項1~3のいずれか1項に記載のスパッタ成膜装置。 The thin film of at least one of SiAlON, Mg-SiAlON, Ca-SiAlON, Y-SiAlON, and TiAlON is formed on the substrate in the sputtering area and the reaction area. The sputter film forming apparatus described.
  15.  前記真空容器には、空間的に互いに離間した2つの前記スパッタリングエリアが設けられており、
     2つの前記スパッタリングエリアは、Siターゲット材をスパッタリングする第1のスパッタリングエリアと、Alターゲット材をスパッタリングする第2のスパッタリングエリアとを含み、
     前記反応エリアでは、NとOを導入して、基板上にSiAlON薄膜を形成する請求項1~3のいずれか1項に記載のスパッタ成膜装置。
    The vacuum container is provided with the two sputtering areas spatially separated from each other,
    The two sputtering areas include a first sputtering area for sputtering a Si target material and a second sputtering area for sputtering an Al target material,
    4. The sputtering film forming apparatus according to claim 1, wherein N 2 and O 2 are introduced into the reaction area to form a SiAlON thin film on the substrate.
  16.  前記第1のスパッタリングエリアと前記第2のスパッタリングエリアでは、スパッタパラメータが調整可能であり、
     前記スパッタパラメータは、スパッタリング電力、スパッタリング電圧、スパッタリング電流のうちの少なくとも1つを含む請求項15に記載のスパッタ成膜装置。
    In the first sputtering area and the second sputtering area, sputtering parameters are adjustable,
    The sputtering film forming apparatus according to claim 15, wherein the sputtering parameter includes at least one of sputtering power, sputtering voltage, and sputtering current.
  17.  前記スパッタリングエリアに不活性ガスを導入する第1の送気部を備えた請求項1~3のいずれか1項に記載のスパッタ成膜装置。 The sputtering film forming apparatus according to any one of claims 1 to 3, further comprising a first air supply unit for introducing an inert gas into the sputtering area.
  18.  前記第1の送気部は、前記不活性ガスのガス伝送パラメータを調節でき、前記ガス伝送パラメータは、流量、気圧、流速のうちの少なくとも1つを含む、請求項17に記載のスパッタ成膜装置。 18. The sputter deposition method according to claim 17, wherein the first air supply unit can adjust a gas transfer parameter of the inert gas, and the gas transfer parameter includes at least one of a flow rate, an atmospheric pressure, and a flow rate. apparatus.
  19.  前記第1の送気部は、前記スパッタリングエリアにアルゴンを導入し、
     前記第1の送気部によって導入されるアルゴンの流量が200sccm以上である請求項17に記載のスパッタ成膜装置。
    The first air supply unit introduces argon into the sputtering area,
    18. The sputtering film forming apparatus according to claim 17, wherein the flow rate of argon introduced by the first air supply unit is 200 sccm or more.
  20.  前記プラズマ源のプラズマ発生パラメータが調整可能なものであり、
     前記プラズマ発生パラメータは、電源電力、電源電圧、アンテナ電流のうちの少なくとも1つを含む請求項8に記載のスパッタ成膜装置。
    The plasma generation parameter of the plasma source is adjustable,
    The sputtering film forming apparatus according to claim 8, wherein the plasma generation parameter includes at least one of power supply power, power supply voltage, and antenna current.
  21.  前記反応エリアに不活性ガス、反応性ガス、及び、不活性ガスと反応ガスの混合ガスのうちのいずれか1つを導入する第2の送気部を備え、
     前記第2の送気部は、伝送されるガスのガス伝送パラメータを調節でき、
     前記ガス伝送パラメータは、流量、気圧、流速のうちの少なくとも1つを含む請求項1~3のいずれか1項に記載のスパッタ成膜装置。
    A second gas supply unit for introducing one of an inert gas, a reactive gas, and a mixed gas of an inert gas and a reaction gas into the reaction area,
    The second air supply unit may adjust gas transfer parameters of the transferred gas,
    The sputtering film forming apparatus according to any one of claims 1 to 3, wherein the gas transmission parameter includes at least one of a flow rate, an atmospheric pressure, and a flow rate.
  22.  請求項1~21のいずれか1項に記載のスパッタ成膜装置を用いたスパッタ成膜方法において、
     複数の基板を成膜領域内に導入し、前記成膜領域では、スパッタリングして放電されたスパッタプラズマにより、スパッタ粒子をターゲット材から解放させ、スパッタ粒子を、前記基板の表面に到達させて積み重ねて、スパッタ物質を形成し、
     前記基板を反応エリア内に移動させ、前記反応エリアでは、プラズマ中のイオンによって、前記スパッタ物質と相互作用して、少なくとも4種の元素を含む化合物薄膜を形成する、ことを含むスパッタ成膜方法。
    A sputter film forming method using the sputter film forming apparatus according to any one of claims 1 to 21,
    A plurality of substrates are introduced into the film formation region, and in the film formation region, sputtered particles are released from the target material by the sputter plasma discharged by sputtering, and the sputtered particles reach the surface of the substrate and are stacked. Form a sputtered material,
    A sputtering film forming method, comprising: moving the substrate into a reaction area, and in the reaction area, ions in plasma interact with the sputtering material to form a compound thin film containing at least four elements. ..
  23.  請求項1~21に記載のスパッタ成膜装置により製造された化合物薄膜。 A compound thin film produced by the sputtering film forming apparatus according to claim 1.
  24.  請求項22に記載のスパッタ成膜方法により製造された化合物薄膜。 A compound thin film produced by the sputtering film forming method according to claim 22.
  25.  SiAlON、Mg-SiAlON、Ca-SiAlON、Y-SiAlON、TiAlONのうちの少なくとも1つの薄膜を含む、請求項22又は請求項23に記載の化合物薄膜。 24. The compound thin film according to claim 22 or 23, comprising at least one thin film selected from SiAlON, Mg-SiAlON, Ca-SiAlON, Y-SiAlON, and TiAlON.
PCT/JP2019/048970 2019-02-21 2019-12-13 Sputtering film forming apparatus, sputtering film forming method therefor, and compound thin film WO2020170577A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910129730.4A CN111593309A (en) 2019-02-21 2019-02-21 Sputtering film forming apparatus, sputtering film forming method, and compound thin film
CN201910129730.4 2019-02-21

Publications (1)

Publication Number Publication Date
WO2020170577A1 true WO2020170577A1 (en) 2020-08-27

Family

ID=72143839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048970 WO2020170577A1 (en) 2019-02-21 2019-12-13 Sputtering film forming apparatus, sputtering film forming method therefor, and compound thin film

Country Status (3)

Country Link
CN (1) CN111593309A (en)
TW (1) TW202031918A (en)
WO (1) WO2020170577A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091848A1 (en) * 2020-10-27 2022-05-05 東海光学株式会社 Surface protection film, lighting cover, and method for manufacturing surface protection film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121069A (en) * 1985-11-21 1987-06-02 Mitsubishi Metal Corp Thermal recording head
JPH11279757A (en) * 1998-03-27 1999-10-12 Shincron:Kk Method and device for forming thin film of composite metal compound
JP2003516870A (en) * 1999-12-16 2003-05-20 エムテーウー・アエロ・エンジンズ・ゲーエムベーハー Electrode for electrochemical micro-boring of workpieces and method of manufacturing the same
JP2006022389A (en) * 2004-07-09 2006-01-26 Shincron:Kk Thin-film-forming method
JP2007092095A (en) * 2005-09-27 2007-04-12 Shincron:Kk Thin film deposition method, and thin film deposition apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121069A (en) * 1985-11-21 1987-06-02 Mitsubishi Metal Corp Thermal recording head
JPH11279757A (en) * 1998-03-27 1999-10-12 Shincron:Kk Method and device for forming thin film of composite metal compound
JP2003516870A (en) * 1999-12-16 2003-05-20 エムテーウー・アエロ・エンジンズ・ゲーエムベーハー Electrode for electrochemical micro-boring of workpieces and method of manufacturing the same
JP2006022389A (en) * 2004-07-09 2006-01-26 Shincron:Kk Thin-film-forming method
JP2007092095A (en) * 2005-09-27 2007-04-12 Shincron:Kk Thin film deposition method, and thin film deposition apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091848A1 (en) * 2020-10-27 2022-05-05 東海光学株式会社 Surface protection film, lighting cover, and method for manufacturing surface protection film

Also Published As

Publication number Publication date
TW202031918A (en) 2020-09-01
CN111593309A (en) 2020-08-28

Similar Documents

Publication Publication Date Title
CN106256927B (en) Film forming method and film forming apparatus
US6103320A (en) Method for forming a thin film of a metal compound by vacuum deposition
EP1640474B1 (en) Thin film forming device
JP2008069402A (en) Sputtering apparatus and sputtering method
TW201402851A (en) Method for sputtering for processes with a pre-stabilized plasma
WO2014103228A1 (en) In-line plasma cvd device
JP6880233B2 (en) Plasma source for rotary susceptors
WO2013018192A1 (en) Method for forming silicon carbide thin film
US9401265B2 (en) Method and device for polarizing a DBD electrode
TWI683021B (en) Film forming device
KR20070053213A (en) Thin-film forming apparatus
WO2020170577A1 (en) Sputtering film forming apparatus, sputtering film forming method therefor, and compound thin film
EP1630248B1 (en) Thin film forming method
WO2013121552A1 (en) Light-transmitting rigid thin film
JPH11269643A (en) Deposition apparatus and deposition method using the same
JP2007092095A (en) Thin film deposition method, and thin film deposition apparatus
JP5372223B2 (en) Film forming method and film forming apparatus
KR100953741B1 (en) Apparatus for forming thin film using ecr plasma
JP3738154B2 (en) Thin film forming method of composite metal compound and thin film forming apparatus
WO2021199693A1 (en) Sputtering apparatus and film formation method using same
JP5312138B2 (en) Sputtering method
JP4942725B2 (en) Deposition method
JP2023156156A (en) Film deposition method and film deposition apparatus
JP2010202890A (en) Film deposition method and film deposition system
JPH11172429A (en) Production of supersmooth film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP