WO2020170531A1 - Inspection device and inspection method - Google Patents

Inspection device and inspection method Download PDF

Info

Publication number
WO2020170531A1
WO2020170531A1 PCT/JP2019/045795 JP2019045795W WO2020170531A1 WO 2020170531 A1 WO2020170531 A1 WO 2020170531A1 JP 2019045795 W JP2019045795 W JP 2019045795W WO 2020170531 A1 WO2020170531 A1 WO 2020170531A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
inspection
unit
holding
held
Prior art date
Application number
PCT/JP2019/045795
Other languages
French (fr)
Japanese (ja)
Inventor
努 作山
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2020170531A1 publication Critical patent/WO2020170531A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined

Definitions

  • the present invention relates to an inspection device and an inspection method for inspecting the appearance of a work based on an image obtained by imaging a work having a rotationally symmetric outer peripheral portion around an axis of symmetry.
  • the inspection apparatus described in Patent Document 1 As an apparatus for inspecting the appearance of a work rotationally symmetrical about the axis of symmetry, for example, the inspection apparatus described in Patent Document 1 is known.
  • this inspection apparatus the position of the work on the holding table is corrected before the work held by the holding table is imaged and inspected by the imaging unit for inspection. More specifically, on the basis of an image of the work obtained by imaging the work held by the holding table around the rotation axis with the core deviation detection imaging unit, the deviation of the axis of symmetry with respect to the rotation axis, that is, the core Seeking a gap. Then, in parallel with moving the holding table holding the work to the inspection position, the position of the work is corrected by the holding table. After that, while rotating the work held by the holding table at the inspection position around the rotation axis, the inspection image pickup unit captures an image, acquires an image, and performs inspection based on the image.
  • non-inspection target work a work whose size and shape are different from the inspection target (hereinafter referred to as “non-inspection target work”) may be loaded and set on the holding table. There is no means for detecting non-target work. Therefore, the misalignment detection, the position correction, the work movement, and the work inspection may be performed on the non-inspection target work. In this way, wasteful inspection is performed, which is one of the factors leading to a decrease in inspection efficiency.
  • the holding table holding the work it is necessary to move the holding table holding the work, and the following problems occur to further lower the inspection efficiency.
  • the non-inspection target work differs from the original inspection target work in terms of size, shape, etc.
  • the work holding force may not be sufficient.
  • the holding table moves without having a sufficient holding force in this way, the non-inspection target work may drop off from the holding table. In this case, it is necessary to suspend the inspection until the device is recovered and the device is restored, and the reduction of the inspection efficiency is unavoidable.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an inspection device and an inspection method capable of inspecting a workpiece to be inspected with high inspection efficiency.
  • One aspect of the present invention is a workpiece to be inspected by holding a workpiece having a rotationally symmetric outer peripheral portion around an axis of symmetry at a workpiece holding position by the workpiece holding unit and then moving the workpiece held by the workpiece holding unit to an inspection position.
  • An inspection device a line image capturing unit that captures a line image by capturing an image of a linear region that extends in a radial direction from a site located on the axis of symmetry of the workpiece held by the workpiece holding unit, Prior to the movement of the work from the work holding position to the inspection position, a determination unit that determines whether the work held by the work holding unit is an inspection target based on the line image acquired by the line imaging unit, When the determination unit determines that the work held by the work holding unit is not the inspection target, the inspection control unit that restricts the movement of the work held by the work holding unit to the inspection position and the inspection is provided. I am trying.
  • Another aspect of the present invention is an inspection method, comprising a work holding step of holding a work having a rotationally symmetric outer peripheral portion about a symmetry axis by a work holding portion at the work holding position, and a work holding position.
  • An image acquisition step of acquiring a line image by imaging a linear region extending in the radial direction from a portion of the work held by the holding unit on the axis of symmetry, and the work being held by the work holding unit based on the line image.
  • a determination process for determining whether or not the work is an inspection target and when the determination process determines that the work is an inspection target, the work held by the work holding unit is moved to the inspection position for inspection. When it is determined that the workpiece is not the inspection target, the movement of the workpiece held by the workpiece holder to the inspection position and the inspection are restricted.
  • the line image of the work held in the work holding unit is acquired. Then, based on the line image, it is determined whether or not the work is an inspection target. When it is determined that the workpiece is not the inspection target, movement of the workpiece to the inspection position and inspection are restricted. As a result, only the work to be inspected is moved to the inspection position and inspected.
  • the present invention while the inspection of the non-inspection target work is regulated, only the work to be inspected is inspected, so that unnecessary inspection is eliminated and high inspection efficiency is achieved. Is obtained. Further, when the work held in the work holding unit is out of the inspection target, movement of the work from the work holding position to the inspection position is regulated, so that the work is dropped from the work holding unit during the movement. It is possible to prevent interruption of the required inspection and ensure high inspection efficiency.
  • the plurality of constituent elements of each aspect of the present invention described above are not all indispensable, in order to solve a part or all of the above problems, or part or all of the effects described in the present specification. In order to achieve the above, it is possible to appropriately change or delete a part of the plurality of constituent elements, replace it with another constituent element, or partially delete the limited content.
  • the technical features included in one aspect of the present invention described above Part or all of the technical features included in other aspects of the present invention described above may be combined with each other to form an independent form of the present invention.
  • FIG. 1 It is a figure which shows the whole structure of one Embodiment of the inspection apparatus which concerns on this invention. It is a block diagram which shows the electric constitution of the inspection apparatus shown in FIG. It is a perspective view which shows the structure of a work holding unit. 3 is a flowchart showing a work inspection operation by the inspection device shown in FIG. 1. It is a graph which shows the evaluation value of the surface side template and each line image. It is a graph which shows the evaluation value of a back side template and each line image.
  • FIG. 1 is a diagram showing the overall configuration of an embodiment of an inspection device according to the present invention.
  • 2 is a block diagram showing an electrical configuration of the inspection device shown in FIG.
  • the inspection apparatus 100 is an apparatus for inspecting the external appearance of a work W having a peripheral portion in which a convex portion and a concave portion are cyclically and repeatedly provided in a rotationally symmetric shape around a symmetry axis, such as a gear or an impeller. It has a loading unit 1, a work holding unit 2, an imaging unit 3, an unloading unit 4, and a control unit 5.
  • the work W is a mechanical component in which a gear Wb is provided on an upper portion of a shaft portion Wa as shown in FIG. 1, and is formed by forging or casting, for example. After the parts are manufactured, the work W is transferred to the loading unit 1 by an external transfer robot or an operator.
  • the loading unit 1 is provided with a work storage unit (not shown) such as a table or stocker.
  • a work storage unit such as a table or stocker.
  • the work detection sensor 11 (FIG. 2) provided in the work accommodating portion detects the work W and sends a signal to that effect to the device. It transmits to the control unit 5 which controls the whole.
  • the loading unit 1 is provided with a loader 12 (FIG. 2), which receives an uninspected work W accommodated in the work accommodating portion in response to an operation command from the control unit 5 and receives the work holding unit 2 Transport to.
  • FIG. 3 is a perspective view showing the structure of the work holding unit.
  • the work holding unit 2 is equipped with holding tables 21A and 21B that hold the work W conveyed by the loader 12.
  • the holding tables 21A and 21B have the same configuration, and can hold and hold a part of the shaft portion Wa of the work W in a posture in which the gear Wb is in the horizontal state.
  • the configuration of the holding table 21A will be described with reference to FIG. 3, while the holding table 21B has the same configuration as the holding table 21A, so the holding table 21B is denoted by the same reference numeral and description thereof will be omitted.
  • a chuck mechanism 22, a horizontal positioning mechanism 23, a rotating mechanism 24, and a vertical positioning mechanism 25 are vertically stacked.
  • the chuck mechanism 22 has movable members 221 to 223 that are substantially L-shaped in a side view, and a moving portion 224 that moves the movable members 221 to 223 in a radial interlocking manner in response to a movement command from the control unit 5.
  • a projecting member 225 is projectingly provided on the upper end surface of each of the movable members 221 to 223, and the upper end surface and the projecting member 225 can engage with the step portion of the shaft portion Wa.
  • the moving unit 224 moves the movable members 221 to 223 close to each other in response to a gripping command from the control unit 5, so that the workpiece W is aligned while the central axis of the chuck mechanism 22 and the shaft center of the shaft unit Wa are aligned. Can be held.
  • the moving unit 224 moves the movable members 221 to 223 away from each other in response to a release command from the control unit 5, thereby loading the uninspected work W by the loading unit 1 and the tested work W by the unloading unit 4. It becomes possible to unload.
  • the chuck mechanism 22 configured in this way is supported by the horizontal positioning mechanism 23.
  • the horizontal positioning mechanism 23 has a so-called XY table that moves the horizontal positioning mechanism 23 in directions orthogonal to each other in the horizontal direction. Therefore, the XY table is driven according to the movement command from the control unit 5, and the chuck mechanism 22 can be positioned with high accuracy on the horizontal plane.
  • a combination of a motor and a ball screw mechanism, a combination of two linear motors that are orthogonal to each other in the horizontal direction, or the like can be used.
  • the rotating mechanism 24 has a motor 241.
  • the rotation shaft of the motor 241 is extended vertically upward, and the horizontal positioning mechanism 23 is connected to the upper end portion thereof. Therefore, when a rotation command is given from the control unit 5, the motor 241 is operated to integrally integrate the horizontal positioning mechanism 23, the chuck mechanism 22, and the work W gripped by the chuck mechanism 22 around the rotation axis of the motor 241. Rotate.
  • the horizontal positioning mechanism 23 is provided between the chuck mechanism 22 and the rotation mechanism 24, but the technical significance thereof is the central axis of the chuck mechanism 22 and the work W gripped by the chuck mechanism 22.
  • the relative positional relationship between the symmetry axis of the gear Wb and the rotation axis of the motor 241 can be adjusted by the horizontal positioning mechanism 23. That is, by making the center axis of the chuck mechanism 22 and the rotation axis of the motor 241 coincide with each other, the work W gripped by the chuck mechanism 22 can be rotated around the shaft portion Wa. However, when the axis of symmetry of the gear Wb is off the shaft portion Wa, the motor 241 is misaligned and the gear Wb is eccentrically rotated.
  • the horizontal positioning mechanism 23 is provided and driven so as to correct the deviation amount and the deviation direction, so that the axis of symmetry of the gear Wb and the rotation axis of the motor 241 can be aligned.
  • the image of the gear Wb by the imaging unit 3 can be captured with high accuracy, and the inspection accuracy of the work W can be improved.
  • the vertical positioning mechanism 25 includes a holding plate 251 for holding the motor 241, a base plate 252 arranged below the motor 241, four connecting pins 253 for connecting the holding plate 251 and the base plate 252, and the base plate 252. And an elevating part 254 that elevates and lowers in the direction.
  • the elevating part 254 moves the rotating mechanism 24, the horizontal positioning mechanism 23, and the chuck mechanism 22 integrally in the vertical direction by elevating the base plate 252 according to the elevating command from the control unit 5, and the pre-alignment position described next. It is possible to optimize the height position of the work W at the PA and the inspection position PI (corresponding to an example of the “work holding position” of the present invention).
  • the holding tables 21A and 21B thus configured are fixed on the support plate 261 with a certain distance therebetween.
  • the support plate 261 is supported by the turning drive unit 262 at an intermediate position between the holding tables 21A and 21B.
  • the turning drive unit 262 can turn the support plate 261 by 180 degrees around a turning axis AX1 extending in the vertical direction in response to a turning command from the control unit 5, and as shown in FIG. It is possible to switch between a first position located at the pre-alignment position PA and the inspection position PI, and a second position where the holding tables 21A and 21B are located at the inspection position PI and the pre-alignment position PA, respectively.
  • the turning drive unit 262 switches from the first position to the second position, whereby the holding table 21A is moved. Shifts from the pre-alignment position PA to the inspection position PI, and the pre-aligned workpiece W can be positioned at the inspection position PI. Further, after finishing the inspection of the work W, the holding table 21A shifts from the inspection position PI to the pre-alignment position PA by turning in the opposite direction, and the inspection-processed work W is positioned at the pre-alignment position PA.
  • the position switching mechanism 26 that switches the position of the work W is configured by the support plate 261 and the turning drive unit 262.
  • the pre-alignment position PA is a position for performing the pre-alignment process as described above, and also a position for determining whether or not the work W held by the work holding unit 2 is an inspection target, and is positioned at the pre-alignment position PA.
  • the alignment camera 27 is arranged above the held table 21A (or 21B). As shown in FIG. 3, the alignment camera 27 is arranged on the side opposite to the motor 241 with respect to the work W, that is, on the upper side of the work W, and extends outward in the radial direction with respect to the symmetry axis AX2 of the work W. It has a line sensor 271 and can acquire two types of images. That is, the linear region (dotted region in FIG.
  • an alignment illumination unit 28 (FIG. 2) is provided for illuminating the work W held on the holding table 21A (or 21B) to perform the alignment process favorably. Has been. Therefore, when the line image of the linear region Wc is acquired, the rotation of the work W by the rotation mechanism 24 is stopped, and when the two-dimensional image of the upper surface of the work W is acquired, the work W is rotated by the rotation mechanism 24 and the alignment illumination unit is used. The work W can be imaged by the alignment camera 27 while the work W is illuminated by 28. Then, the image data of the linear region Wc of the work W is sent to the control unit 5 and it is determined whether or not the work W held by the work holding unit 2 is an inspection target.
  • the image data of the upper surface of the work W is sent to the control unit 5 to correct the misalignment so that the symmetry axis of the gear Wb and the rotation axis of the motor 241 coincide with each other, that is, the pre-alignment process is executed.
  • the inspection position PI is a position where inspection processing is performed, and the imaging unit 3 is arranged above the holding table 21A (or 21B) positioned at the inspection position PI.
  • the work W can be imaged by the imaging unit 3 while rotating the work W in a state where the axis of symmetry of the gear Wb and the rotation axis of the motor 241 coincide. Then, the image data of the work W is sent to the control unit 5, and the inspection process for inspecting the gear Wb for the presence of scratches or defects is executed.
  • the image pickup unit 3 has a plurality of inspection cameras 31 and a plurality of inspection illumination units 32, as shown in FIG.
  • a plurality of inspection illumination units 32 are arranged so as to illuminate the work W held on the holding table 21A (or 21B) positioned at the inspection position PI from various directions. Then, the work W can be rotated by the rotating mechanism 24, and the work W can be imaged from various directions by the plurality of inspection cameras 31 while the work W is illuminated by the inspection illumination unit 32.
  • These plural image data are sent to the control unit 5, and the control unit 5 inspects the work W.
  • the holding table 21A (or 21B) holding the workpiece W thus inspected is shifted from the inspection position PI to the pre-alignment position PA by the position switching mechanism 26 as described above. Then, the unloading unit 4 carries out the inspected work W from the holding table 21A (or 21B).
  • the unloading unit 4 is basically the same as the loading unit 1. In other words, the unloading unit 4 has a work accommodating portion (not shown) for temporarily accommodating the inspected work W, the work detection sensor 41 (FIG. 2) and the unloader 42 (FIG. 2), and the control unit.
  • the inspected work W is conveyed from the holding table 21A (or 21B) to the work accommodating portion in accordance with the operation command from 5.
  • the control unit 5 has a well-known CPU (Central Processing Unit) that executes logical operations, a ROM (Read Only Memory) that stores initial settings, and various data that is being operated by the device. It is composed of a RAM (Random Access Memory), etc. that stores information in a memory.
  • the control unit 5 functionally includes an arithmetic processing unit 51, a storage unit 52, a drive control unit 53, an external input/output unit 54, an image processing unit 55, and an illumination control unit 56.
  • the drive control unit 53 controls the drive of the drive mechanism provided in each unit of the apparatus, such as the loader 12 and the chuck mechanism 22.
  • the external input/output unit 54 inputs signals from various sensors provided in each unit of the apparatus, and outputs signals to various actuators provided in each unit of the apparatus.
  • the image processing unit 55 takes in image data from the alignment camera 27 and the inspection camera 31, and performs image processing such as binarization.
  • the illumination control unit 56 controls turning on and off of the alignment illumination unit 28 and the inspection illumination unit 32.
  • the arithmetic processing unit 51 has an arithmetic function, and will be described below by controlling the drive control unit 53, the image processing unit 55, the illumination control unit 56, and the like according to the program 521 stored in the storage unit 52. Execute a series of processing.
  • the arithmetic processing unit 51 serves as the determination unit 511 that determines whether or not the workpiece W is the inspection target based on the line image of the linear region Wc based on the determination reference information 522 stored in advance in the storage unit 52.
  • the arithmetic processing unit 51 also functions as a center deviation detection unit 512 that detects a center deviation of the work W with respect to the motor 241 based on the two-dimensional image of the upper surface of the work W.
  • the arithmetic processing unit 51 also functions as an inspection control unit 513 that moves the work W determined as the inspection target to the inspection position PI and then inspects the work W.
  • Reference numeral 6 in FIG. 2 is a display unit that functions as an interface with the operator, has a function of displaying the operation state of the inspection apparatus 100, which is connected to the control unit 5, and is also configured by a touch panel to input from the operator. It also has a function as an input terminal for accepting. Further, the present invention is not limited to this configuration, and a display device for displaying the operation state and an input terminal such as a keyboard and a mouse may be adopted.
  • FIG. 4 is a flowchart showing the inspection operation of the work by the inspection apparatus shown in FIG.
  • the arithmetic processing unit 51 controls each unit of the apparatus according to an inspection program stored in advance in the storage unit 52 of the control unit 5 to execute the following operations.
  • the control unit 5 the work W does not exist on the holding table 21A located at the pre-alignment position PA, and the work detection sensor 11 stores the uninspected work W in the work storage portion of the loading unit 1.
  • step S1 loading of the work W on the holding table 21A is started (step S1).
  • the loader 12 grips the uninspected work W in the work accommodating portion and conveys it from the loading unit 1 to the holding table 21A.
  • the central axis of the chuck mechanism 22 and the motor 241 are moved by the horizontal positioning mechanism 23 before the work W is transferred to the holding table 21A.
  • the three movable members 221 to 223 are separated from each other to prepare for receiving the work W.
  • the chuck mechanism 22 moves the three movable members 221 to 223 close to each other to sandwich a part of the shaft Wa of the work W, as described above.
  • the work W is gripped (work holding process).
  • the work W is firmly gripped by the chuck mechanism 22 and held by the work holding unit 2 with a sufficient holding force.
  • the work W is gripped by the chuck mechanism 22, but the holding force is not sufficient, and the work W may fall off from the work holding unit 2 when the work W rotates or moves.
  • the control unit 5 stops the rotation and movement of the work W, that is, the pre-alignment, before executing a series of operations (deviation detection, position correction, work movement and inspection) described later.
  • the work W located at the position PA is stopped.
  • the alignment illumination unit 28 (FIG. 2) illuminates the work W for a certain period of time in the still state, and the alignment camera 27 acquires a line image (step S2: image acquisition step). It is determined whether the work W is an inspection target (step S3: determination step).
  • the above determination is template matching, that is, the evaluation value indicating the degree of similarity between the reference template and the line image is obtained by Normalized Cross-Correlation (NCC).
  • NCC Normalized Cross-Correlation
  • the evaluation value is compared with the determination reference information 522 stored in the storage unit 52 to determine whether or not the work W is an inspection target.
  • the determination criterion information 522 is set to a value larger than zero and smaller than 1, but what value to set is closely related to the determination accuracy. Therefore, it is desirable to set the judgment criterion information 522 after performing verification using a plurality of samples.
  • the criterion information 522 is set as follows. First, the front surface and the back surface of the workpiece W to be inspected are imaged by the alignment camera 27, and the line images obtained by them are acquired as a front surface side template and a back surface side template, respectively. On the other hand, in addition to that, 176 workpieces W to be inspected are prepared, the front surface and the back surface of each workpiece W are imaged by the alignment camera 27, and the line images obtained by them are respectively the front surface side line image and the back surface side line image. To get as. Then, using the normalized cross-correlation:-Evaluation value between the front-side template and each front-side line image...
  • a plot of them is the graph shown in FIG.
  • a plot of these is the graph shown in FIG.
  • the evaluation value is below 0.8 when the work W to be inspected is not properly held on the work holding unit 2, and the work not to be inspected is It is predicted that the evaluation value will certainly fall below 0.8 even when the work holding unit 2 holds the work.
  • the determination criterion information 522 is set to “0.8” based on the verification experiment shown in FIGS. 5 and 6, and when the evaluation value is 0.8 or more, the work holding unit 2 holds it.
  • the control unit 5 determines that the workpiece W being processed is an inspection target, but is not an inspection target when the evaluation value is less than 0.8.
  • step S3 When it is determined in step S3 that the work W is not the inspection target, that is, when the determination is “NO”, the control unit 5 displays that the work W held by the work holding unit 2 is not the inspection target while maintaining the stationary state of the work W. It is displayed on the unit 6 and the inspection is interrupted (step S4).
  • step S3 when it is confirmed that the work W is the inspection target (“YES” in step S3), the work W is inspected in the same manner as the device described in Patent Document 1. That is, the alignment illumination unit 28 (FIG. 2) illuminates the uninspected work W, and the alignment camera 27 images the gear Wb while rotating the uninspected work W by the motor 241 of the holding table 21A to obtain a two-dimensional image. To do. The image data of this two-dimensional image is stored in the storage unit 52 (step S5).
  • the turning drive unit 262 switches from the first position to the second position. That is, the turning drive unit 262 turns the support plate 261 about the turning axis AX1 by 180°, whereby the holding table 21A holding the uninspected work W moves from the pre-alignment position PA to the inspection position PI and the elevating unit 254. The work W is moved to a height position where the image pickup unit 3 can pick up an image (step S6).
  • the image data of the work W is read from the storage unit 52, and the center deviation of the work W with respect to the rotation mechanism 24 (motor 241) (in the present embodiment, the deviation amount and the deviation direction). (Corresponding to information including and) is detected (step S7), and subsequently, misalignment correction in the holding table 21A is performed (step S8).
  • the chuck mechanism 22 is moved by the horizontal positioning mechanism 23 so as to eliminate the misalignment detected in step S7.
  • the symmetry axis of the gear Wb and the rotation axis of the motor 241 coincide with each other at or before the holding table 21A reaches the inspection position PI, and the workpiece imaging step (step S9) can be started immediately.
  • the rotation mechanism 24 of the holding table 21A positioned at the inspection position PI operates to start the work rotation.
  • the work W held by the holding table 21A is in the so-called centering state in which the above-mentioned center misalignment is corrected, and rotates about the symmetry axis AX2.
  • the plurality of inspection illumination units 32 are turned on to illuminate the rotating work W from a plurality of directions.
  • the plurality of inspection cameras 31 image the workpiece W from various directions, and image data of the image of the workpiece W from a plurality of directions (hereinafter referred to as “work image”). Is transmitted to the control unit 5.
  • the control unit 5 stores the image data in the storage unit 52, and inspects the work W based on the image data at the following timing.
  • the rotation of the work is stopped in the holding table 21A, and the inspection illumination unit 32 is turned off in the imaging unit 3. Further, the turning drive unit 262 turns the support plate 261 180° about the turning axis AX1 so that the holding table 21A moves from the inspection position PI to the pre-alignment position PA while holding the inspected work W and moves up and down.
  • the work W is moved to the original height position by the part 254 (step S10).
  • the control unit 5 reads out the image data from the storage unit 52, determines whether or not the gear Wb has a scratch or a defect on the basis of the work image, and stores it in the holding table 21A. A work inspection is performed on the held work W (step S11).
  • step S12 The series of steps (steps S1 to S12) described above are alternately repeated by the holding tables 21A and 21B.
  • the line image of the work W in the stationary state held by the work holding unit 2 is acquired, and it is determined whether or not the work W is the inspection target based on the line image. There is. Then, only the determined work W that is the inspection target is inspected. For this reason, it is possible to regulate the inspection of the work that is not the inspection target and inspect the work W with high inspection efficiency. By carrying out such a regulation, it is possible to reliably prevent the non-inspection target work from being moved from the pre-alignment position PA (work holding position) to the inspection position PI, and the non-inspection target work is held during the movement. It is possible to prevent the unit 2 from falling off, prevent the inspection from being interrupted due to the drop, and ensure high inspection efficiency.
  • the alignment camera 27 used for detecting the misalignment is diverted to determine whether or not the work W is an inspection target, the following operational effects can be obtained.
  • a photoelectric sensor for detecting the work W is added, and the work W is kept in a posture specified at a specific position. May be detected by a photoelectric sensor, and the above determination may be performed based on the output from the photoelectric sensor.
  • the photoelectric sensor not only the addition of the photoelectric sensor but also the adjustment for each shape of the work W is necessary, and it is difficult to cope with many kinds.
  • the above determination becomes difficult because the work position is slightly displaced from the specific position or the work posture is slightly displaced from the designated position.
  • the above determination can be performed without performing hardware modification or adjustment on the conventional device. Further, it is possible to deal with many kinds by setting the judgment reference information 522 individually for each kind in advance. Further, even if the position or orientation of the work W is deviated, it is possible to make the above determination as it is, and it is possible to make the above determination by performing image correction even if the deviation amount is large.
  • the work holding unit 2 in this embodiment corresponds to an example of the “work holding unit” of the present invention.
  • the alignment camera 27 corresponds to an example of the “line image pickup section” in the present invention.
  • the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention.
  • the present invention is applied to the work holding device that holds the work W having the gear Wb and the inspection device equipped with the device, but the type of the work W is not limited to this.
  • the "workpiece" of the present invention includes all work pieces having an outer peripheral portion that is rotationally symmetrical about the axis of symmetry.
  • the work W is held by the three movable members 221 to 223, but the work W may be held by two or four or more movable members. Good.
  • the present invention is applied to the inspection device 100 that detects the misalignment by alternately arranging the two holding tables 21A and 21B at the pre-alignment position PA, but a single device or three or more devices is used.
  • the present invention can be applied to an inspection device having a holding table.
  • the pre-alignment position PA is the “work holding position” of the present invention, but other positions (except the inspection position PI) may be set as the “work holding position”.
  • the determination of whether or not the work W is the inspection target is performed by using the normalized cross-correlation, but the determination may be performed by a method other than this.
  • SSD Sum of Squared Difference
  • SAD Sum of Absolute Difference
  • template matching may be used as template matching.
  • the present invention can be applied to general inspection devices and inspection methods for inspecting the external appearance of a work based on an image obtained by imaging a work having a rotationally symmetric outer peripheral portion around the axis of symmetry.
  • Work holding unit (work holding unit) 5...
  • Control unit determination unit, inspection control unit, misalignment detection unit) 24...
  • Rotation mechanism 27...
  • Alignment camera (line imaging unit) 511...
  • Judgment unit 512... Core misalignment detection unit 513... Inspection control unit AX2... Symmetry axis
  • PA Pre-alignment position (work holding position) PI...Inspection position W...Work Wc...Linear area

Abstract

In order to inspect, with a high inspection efficiency, a workpiece serving as an inspection target, the present invention is provided with: a line imaging unit that acquires a line image by imaging, at a workpiece holding position, a linear region radially extending from a portion positioned on a symmetric axis in the workpiece held by a workpiece holding unit; a determination unit that determines, before the movement of the workpiece from the workpiece holding position to an inspection position, whether the workpiece held by the workpiece holding unit is an inspection target or not on the basis of the line image acquired by the line imaging unit; and a inspection control unit that restricts the movement and inspection of the workpiece held by the workpiece holding unit toward the inspection position when the workpiece held by the workpiece holding unit is not determined to be an inspection target.

Description

検査装置および検査方法Inspection device and inspection method
 この発明は、対称軸まわりに回転対称な外周部を有するワークを回転させながら撮像して得られる画像に基づいてワークの外観を検査する検査装置および検査方法に関するものである。 The present invention relates to an inspection device and an inspection method for inspecting the appearance of a work based on an image obtained by imaging a work having a rotationally symmetric outer peripheral portion around an axis of symmetry.
 以下に示す日本出願の明細書、図面および特許請求の範囲における開示内容は、参照によりその全内容が本書に組み入れられる:
 特願2019-030650(2019年2月22日出願)。
The disclosures in the specification, drawings and claims of the following Japanese application are incorporated herein by reference in their entirety:
Japanese Patent Application 2019-030650 (filed on February 22, 2019).
 対称軸のまわりに回転対称なワークの外観を検査する装置として、例えば特許文献1に記載された検査装置が知られている。この検査装置では、保持テーブルにより保持されたワークを検査用撮像部で撮像して検査する前に、保持テーブルでのワークの位置補正を行っている。より具体的には、保持テーブルにより保持されたワークを回転軸まわりに回転させながら芯ズレ検出用撮像部により撮像して得られたワークの画像に基づいて回転軸に対する対称軸のズレ、つまり芯ズレを求めている。そして、ワークを保持している保持テーブルを検査位置に移動させるのと並行して保持テーブルでワークを位置補正する。その後で、検査位置において保持テーブルで保持したワークを回転軸まわりに回転させながら検査用撮像部で撮像して画像を取得し、当該画像に基づく検査を行う。 As an apparatus for inspecting the appearance of a work rotationally symmetrical about the axis of symmetry, for example, the inspection apparatus described in Patent Document 1 is known. In this inspection apparatus, the position of the work on the holding table is corrected before the work held by the holding table is imaged and inspected by the imaging unit for inspection. More specifically, on the basis of an image of the work obtained by imaging the work held by the holding table around the rotation axis with the core deviation detection imaging unit, the deviation of the axis of symmetry with respect to the rotation axis, that is, the core Seeking a gap. Then, in parallel with moving the holding table holding the work to the inspection position, the position of the work is corrected by the holding table. After that, while rotating the work held by the holding table at the inspection position around the rotation axis, the inspection image pickup unit captures an image, acquires an image, and performs inspection based on the image.
特開2018-151243号公報Japanese Patent Laid-Open No. 2018-151243
 特許文献1に記載の装置において、例えばサイズや形状等が検査対象と異なるワーク(以下「検査対象外ワーク」という)が搬入されて保持テーブルにセットされることがあるが、当該装置には検査対象外ワークを検出するための手段が設けられていない。そのため、検査対象外ワークに対して芯ズレ検出、位置補正、ワーク移動およびワーク検査を行ってしまうことがあった。このように無駄な検査を行ってしまい、このことが検査効率の低下を招く要因のひとつとなっていた。 In the apparatus described in Patent Document 1, for example, a work whose size and shape are different from the inspection target (hereinafter referred to as “non-inspection target work”) may be loaded and set on the holding table. There is no means for detecting non-target work. Therefore, the misalignment detection, the position correction, the work movement, and the work inspection may be performed on the non-inspection target work. In this way, wasteful inspection is performed, which is one of the factors leading to a decrease in inspection efficiency.
 また、これら芯ズレ検出、位置補正、ワーク移動およびワーク検査を行うためには、ワークを保持した保持テーブルを移動させる必要があり、次のような問題が発生して検査効率をさらに低下させることもあった。例えば保持テーブルに検査対象外ワークをセットして保持させることができるものの、検査対象外ワークが本来の検査対象のワークとサイズや形状などの点において異なっているが故に、保持テーブルによる検査対象外ワークの保持力が十分でないことがある。このように十分な保持力を有しないまま保持テーブルが移動すると、保持テーブルから検査対象外ワークが脱落することがある。この場合、それを回収して装置を復旧させるまで検査を中断する必要があり、検査効率の低下は不可避となる。 Further, in order to perform the misalignment detection, the position correction, the work movement, and the work inspection, it is necessary to move the holding table holding the work, and the following problems occur to further lower the inspection efficiency. There was also. For example, although a non-inspection target work can be set and held in the holding table, the non-inspection target work differs from the original inspection target work in terms of size, shape, etc. The work holding force may not be sufficient. When the holding table moves without having a sufficient holding force in this way, the non-inspection target work may drop off from the holding table. In this case, it is necessary to suspend the inspection until the device is recovered and the device is restored, and the reduction of the inspection efficiency is unavoidable.
 この発明は上記課題に鑑みなされたものであり、高い検査効率で検査対象となるワークを検査することができる検査装置および検査方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide an inspection device and an inspection method capable of inspecting a workpiece to be inspected with high inspection efficiency.
 この発明の一態様は、対称軸まわりに回転対称な外周部を有するワークをワーク保持位置でワーク保持部により保持した後でワーク保持部に保持されたワークを検査位置に移動させて検査するワーク検査装置であって、ワーク保持位置で、ワーク保持部に保持されたワークのうち対称軸上に位置する部位から径方向に延びる線状領域を撮像してライン画像を取得するライン撮像部と、ワークのワーク保持位置から検査位置への移動に先立って、ライン撮像部により取得されたライン画像に基づいてワーク保持部に保持されたワークが検査対象であるか否かを判定する判定部と、判定部によりワーク保持部に保持されたワークが検査対象でないと判定されたときには、ワーク保持部に保持されたワークの検査位置への移動および検査を規制する検査制御部と、を備えることを特徴としている。 One aspect of the present invention is a workpiece to be inspected by holding a workpiece having a rotationally symmetric outer peripheral portion around an axis of symmetry at a workpiece holding position by the workpiece holding unit and then moving the workpiece held by the workpiece holding unit to an inspection position. An inspection device, a line image capturing unit that captures a line image by capturing an image of a linear region that extends in a radial direction from a site located on the axis of symmetry of the workpiece held by the workpiece holding unit, Prior to the movement of the work from the work holding position to the inspection position, a determination unit that determines whether the work held by the work holding unit is an inspection target based on the line image acquired by the line imaging unit, When the determination unit determines that the work held by the work holding unit is not the inspection target, the inspection control unit that restricts the movement of the work held by the work holding unit to the inspection position and the inspection is provided. I am trying.
 また、この発明の他の態様は、検査方法であって、対称軸まわりに回転対称な外周部を有するワークをワーク保持位置でワーク保持部により保持するワーク保持工程と、ワーク保持位置で、ワーク保持部に保持されたワークのうち対称軸上に位置する部位から径方向に延びる線状領域を撮像してライン画像を取得する画像取得工程と、ライン画像に基づいてワーク保持部に保持されたワークが検査対象であるか否かを判定する判定工程とを備え、判定工程によりワークが検査対象であると判定されたときにはワーク保持部に保持されたワークを検査位置に移動させて検査する一方、検査対象でないと判定されたときにはワーク保持部に保持されたワークの検査位置への移動および検査を規制することを特徴としている。 Another aspect of the present invention is an inspection method, comprising a work holding step of holding a work having a rotationally symmetric outer peripheral portion about a symmetry axis by a work holding portion at the work holding position, and a work holding position. An image acquisition step of acquiring a line image by imaging a linear region extending in the radial direction from a portion of the work held by the holding unit on the axis of symmetry, and the work being held by the work holding unit based on the line image. A determination process for determining whether or not the work is an inspection target, and when the determination process determines that the work is an inspection target, the work held by the work holding unit is moved to the inspection position for inspection. When it is determined that the workpiece is not the inspection target, the movement of the workpiece held by the workpiece holder to the inspection position and the inspection are restricted.
 このように構成された発明では、ワーク保持部に保持されたワークのライン画像が取得される。そして、当該ライン画像に基づいてワークが検査対象であるか否かが判定される。ここで検査対象でないと判定されたとき、ワークの検査位置への移動および検査が規制される。その結果、検査対象となるワークのみが検査位置に移動されて検査される。 In the invention thus configured, the line image of the work held in the work holding unit is acquired. Then, based on the line image, it is determined whether or not the work is an inspection target. When it is determined that the workpiece is not the inspection target, movement of the workpiece to the inspection position and inspection are restricted. As a result, only the work to be inspected is moved to the inspection position and inspected.
 上記のように、本発明によれば、検査対象外のワークの検査を規制する一方で、検査対象のワークのみを検査するように構成しているため、無駄な検査を排除し、高い検査効率が得られる。また、ワーク保持部に保持されたワークが検査対象外であるときには、ワーク保持位置から検査位置へのワークの移動を規制しているため、当該移動中におけるワーク保持部からのワークの脱落に起因する検査の中断を未然に防止し、高い検査効率を確保することができる。 As described above, according to the present invention, while the inspection of the non-inspection target work is regulated, only the work to be inspected is inspected, so that unnecessary inspection is eliminated and high inspection efficiency is achieved. Is obtained. Further, when the work held in the work holding unit is out of the inspection target, movement of the work from the work holding position to the inspection position is regulated, so that the work is dropped from the work holding unit during the movement. It is possible to prevent interruption of the required inspection and ensure high inspection efficiency.
 上述した本発明の各態様の有する複数の構成要素はすべてが必須のものではなく、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、適宜、前記複数の構成要素の一部の構成要素について、その変更、削除、新たな他の構成要素との差し替え、限定内容の一部削除を行うことが可能である。また、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、上述した本発明の一態様に含まれる技術的特徴の一部又は全部を上述した本発明の他の態様に含まれる技術的特徴の一部又は全部と組み合わせて、本発明の独立した一形態とすることも可能である。 The plurality of constituent elements of each aspect of the present invention described above are not all indispensable, in order to solve a part or all of the above problems, or part or all of the effects described in the present specification. In order to achieve the above, it is possible to appropriately change or delete a part of the plurality of constituent elements, replace it with another constituent element, or partially delete the limited content. In addition, in order to solve some or all of the above problems, or to achieve some or all of the effects described in the present specification, the technical features included in one aspect of the present invention described above. Part or all of the technical features included in other aspects of the present invention described above may be combined with each other to form an independent form of the present invention.
本発明に係る検査装置の一実施形態の全体構成を示す図である。It is a figure which shows the whole structure of one Embodiment of the inspection apparatus which concerns on this invention. 図1に示す検査装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the inspection apparatus shown in FIG. ワーク保持ユニットの構成を示す斜視図である。It is a perspective view which shows the structure of a work holding unit. 図1に示す検査装置によるワークの検査動作を示すフローチャートである。3 is a flowchart showing a work inspection operation by the inspection device shown in FIG. 1. 表面側テンプレートと各ライン画像との評価値を示すグラフである。It is a graph which shows the evaluation value of the surface side template and each line image. 裏面側テンプレートと各ライン画像との評価値を示すグラフである。It is a graph which shows the evaluation value of a back side template and each line image.
 図1は、本発明に係る検査装置の一実施形態の全体構成を示す図である。また、図2は、図1に示す検査装置の電気的構成を示すブロック図である。この検査装置100は、歯車や羽根車などのように対称軸まわりに回転対称な形状で凸部と凹部とが周期的に繰り返して設けられた外周部を有するワークWの外観を検査する装置であり、ローディングユニット1、ワーク保持ユニット2、撮像ユニット3、アンローディングユニット4および制御ユニット5を有している。なお、ここでは、ワークWは図1に示すように軸部Waの上部に歯車Wbを設けた機械部品であり、例えば鍛造や鋳造処理によって形成される。そして、部品製造後に当該ワークWは外部搬送ロボットあるいはオペレータによってローディングユニット1に搬送される。 FIG. 1 is a diagram showing the overall configuration of an embodiment of an inspection device according to the present invention. 2 is a block diagram showing an electrical configuration of the inspection device shown in FIG. The inspection apparatus 100 is an apparatus for inspecting the external appearance of a work W having a peripheral portion in which a convex portion and a concave portion are cyclically and repeatedly provided in a rotationally symmetric shape around a symmetry axis, such as a gear or an impeller. It has a loading unit 1, a work holding unit 2, an imaging unit 3, an unloading unit 4, and a control unit 5. Note that, here, the work W is a mechanical component in which a gear Wb is provided on an upper portion of a shaft portion Wa as shown in FIG. 1, and is formed by forging or casting, for example. After the parts are manufactured, the work W is transferred to the loading unit 1 by an external transfer robot or an operator.
 ローディングユニット1には、テーブルやストッカーなどのワーク収容部(図示省略)が設けられている。そして、外部搬送ロボットなどによりワークWがワーク収容部に一時的に収容されると、ワーク収容部に設けられたワーク検出センサ11(図2)がワークWを検出し、その旨の信号を装置全体を制御する制御ユニット5に送信する。また、ローディングユニット1には、ローダ12(図2)が設けられており、制御ユニット5からの動作指令に応じてワーク収容部に収容されている未検査のワークWを受け取り、ワーク保持ユニット2に搬送する。 The loading unit 1 is provided with a work storage unit (not shown) such as a table or stocker. When the work W is temporarily accommodated in the work accommodating portion by an external transfer robot or the like, the work detection sensor 11 (FIG. 2) provided in the work accommodating portion detects the work W and sends a signal to that effect to the device. It transmits to the control unit 5 which controls the whole. Further, the loading unit 1 is provided with a loader 12 (FIG. 2), which receives an uninspected work W accommodated in the work accommodating portion in response to an operation command from the control unit 5 and receives the work holding unit 2 Transport to.
 図3はワーク保持ユニットの構成を示す斜視図である。ワーク保持ユニット2は、ローダ12により搬送されてきたワークWを保持する保持テーブル21A、21Bを装備している。これらの保持テーブル21A、21Bはともに同一構成を有し、歯車Wbが水平状態となる姿勢でワークWの軸部Waの一部を把持して保持可能となっている。以下、図3を参照しつつ保持テーブル21Aの構成について説明する一方、保持テーブル21Bは保持テーブル21Aと同一構成であるため、保持テーブル21Bについては同一符号を付して説明を省略する。 FIG. 3 is a perspective view showing the structure of the work holding unit. The work holding unit 2 is equipped with holding tables 21A and 21B that hold the work W conveyed by the loader 12. The holding tables 21A and 21B have the same configuration, and can hold and hold a part of the shaft portion Wa of the work W in a posture in which the gear Wb is in the horizontal state. Hereinafter, the configuration of the holding table 21A will be described with reference to FIG. 3, while the holding table 21B has the same configuration as the holding table 21A, so the holding table 21B is denoted by the same reference numeral and description thereof will be omitted.
 保持テーブル21Aでは、図3に示すように、チャック機構22、水平位置決め機構23、回転機構24および鉛直位置決め機構25が鉛直方向に積層配置されている。チャック機構22は、側面視で略L字状の可動部材221~223と、制御ユニット5からの移動指令に応じて可動部材221~223を放射状に連動して移動させる移動部224とを有している。各可動部材221~223の上端面には突起部材225が突設されており、上端面と突起部材225とで軸部Waの段差部位と係合可能となっている。このため、制御ユニット5からの把持指令に応じて移動部224が可動部材221~223を互いに近接移動させることでチャック機構22の中心軸と軸部Waの軸芯とを一致させながらワークWを保持することができる。一方、制御ユニット5からの解放指令に応じて移動部224が可動部材221~223を互いに離間移動させることで、ローディングユニット1による未検査ワークWのローディングやアンローディングユニット4による検査済ワークWのアンローディングを行うことが可能となる。 In the holding table 21A, as shown in FIG. 3, a chuck mechanism 22, a horizontal positioning mechanism 23, a rotating mechanism 24, and a vertical positioning mechanism 25 are vertically stacked. The chuck mechanism 22 has movable members 221 to 223 that are substantially L-shaped in a side view, and a moving portion 224 that moves the movable members 221 to 223 in a radial interlocking manner in response to a movement command from the control unit 5. ing. A projecting member 225 is projectingly provided on the upper end surface of each of the movable members 221 to 223, and the upper end surface and the projecting member 225 can engage with the step portion of the shaft portion Wa. Therefore, the moving unit 224 moves the movable members 221 to 223 close to each other in response to a gripping command from the control unit 5, so that the workpiece W is aligned while the central axis of the chuck mechanism 22 and the shaft center of the shaft unit Wa are aligned. Can be held. On the other hand, the moving unit 224 moves the movable members 221 to 223 away from each other in response to a release command from the control unit 5, thereby loading the uninspected work W by the loading unit 1 and the tested work W by the unloading unit 4. It becomes possible to unload.
 このように構成されたチャック機構22は水平位置決め機構23に支持されている。水平位置決め機構23は水平方向において互いに直交する方向に移動させる、いわゆるXYテーブルを有している。このため、制御ユニット5からの移動指令に応じてXYテーブルが駆動されてチャック機構22を水平面で高精度に位置決めすることが可能となっている。なお、XYテーブルとしては、モータとボールネジ機構とを組み合わせたものや、水平方向において互いに直交する2つのリニアモータを組み合わせたものなどを用いることができる。 The chuck mechanism 22 configured in this way is supported by the horizontal positioning mechanism 23. The horizontal positioning mechanism 23 has a so-called XY table that moves the horizontal positioning mechanism 23 in directions orthogonal to each other in the horizontal direction. Therefore, the XY table is driven according to the movement command from the control unit 5, and the chuck mechanism 22 can be positioned with high accuracy on the horizontal plane. As the XY table, a combination of a motor and a ball screw mechanism, a combination of two linear motors that are orthogonal to each other in the horizontal direction, or the like can be used.
 回転機構24はモータ241を有している。モータ241の回転シャフトが鉛直上方に延設されており、その上端部に水平位置決め機構23が連結されている。このため、制御ユニット5から回転指令が与えられると、モータ241が作動してモータ241の回転軸まわりに水平位置決め機構23、チャック機構22、ならびにチャック機構22により把持されたワークWを一体的に回転させる。 The rotating mechanism 24 has a motor 241. The rotation shaft of the motor 241 is extended vertically upward, and the horizontal positioning mechanism 23 is connected to the upper end portion thereof. Therefore, when a rotation command is given from the control unit 5, the motor 241 is operated to integrally integrate the horizontal positioning mechanism 23, the chuck mechanism 22, and the work W gripped by the chuck mechanism 22 around the rotation axis of the motor 241. Rotate.
 ここで、本実施形態では、チャック機構22と回転機構24との間に水平位置決め機構23を設けているが、その技術的意義はチャック機構22の中心軸、チャック機構22に把持されたワークWの歯車Wbの対称軸およびモータ241の回転軸の相対的な位置関係を水平位置決め機構23によって調整可能とする点にある。すなわち、チャック機構22の中心軸とモータ241の回転軸とを一致させておくことで、チャック機構22で把持したワークWを軸部Waまわりに回転させることができる。しかしながら、歯車Wbの対称軸が軸部Waから外れている場合には、モータ241に対して芯ズレが発生しており、歯車Wbは偏心して回転してしまう。そこで、水平位置決め機構23を設け、ズレ量とズレ方向を補正するように駆動させることで歯車Wbの対称軸とモータ241の回転軸とを一致させることが可能となる。これによって、撮像ユニット3による歯車Wbの画像を高精度に撮像することが可能となり、ワークWの検査精度を向上させることができる。 Here, in the present embodiment, the horizontal positioning mechanism 23 is provided between the chuck mechanism 22 and the rotation mechanism 24, but the technical significance thereof is the central axis of the chuck mechanism 22 and the work W gripped by the chuck mechanism 22. The relative positional relationship between the symmetry axis of the gear Wb and the rotation axis of the motor 241 can be adjusted by the horizontal positioning mechanism 23. That is, by making the center axis of the chuck mechanism 22 and the rotation axis of the motor 241 coincide with each other, the work W gripped by the chuck mechanism 22 can be rotated around the shaft portion Wa. However, when the axis of symmetry of the gear Wb is off the shaft portion Wa, the motor 241 is misaligned and the gear Wb is eccentrically rotated. Therefore, the horizontal positioning mechanism 23 is provided and driven so as to correct the deviation amount and the deviation direction, so that the axis of symmetry of the gear Wb and the rotation axis of the motor 241 can be aligned. As a result, the image of the gear Wb by the imaging unit 3 can be captured with high accuracy, and the inspection accuracy of the work W can be improved.
 鉛直位置決め機構25は、モータ241を保持する保持プレート251と、モータ241の下方位置に配置されたベースプレート252と、保持プレート251およびベースプレート252を連結する4本の連結ピン253と、ベースプレート252を鉛直方向に昇降させる昇降部254とを有している。昇降部254は制御ユニット5からの昇降指令に応じてベースプレート252を昇降させることで鉛直方向において回転機構24、水平位置決め機構23およびチャック機構22を一体的に移動させ、次に説明するプリアライメント位置(本発明の「ワーク保持位置」の一例に相当)PAおよび検査位置PIにおいてワークWの高さ位置を適正化することができる。 The vertical positioning mechanism 25 includes a holding plate 251 for holding the motor 241, a base plate 252 arranged below the motor 241, four connecting pins 253 for connecting the holding plate 251 and the base plate 252, and the base plate 252. And an elevating part 254 that elevates and lowers in the direction. The elevating part 254 moves the rotating mechanism 24, the horizontal positioning mechanism 23, and the chuck mechanism 22 integrally in the vertical direction by elevating the base plate 252 according to the elevating command from the control unit 5, and the pre-alignment position described next. It is possible to optimize the height position of the work W at the PA and the inspection position PI (corresponding to an example of the “work holding position” of the present invention).
 このように構成された保持テーブル21A、21Bは、図3に示すように、支持プレート261上に一定距離だけ離間して固定されている。また、保持テーブル21A、21Bの中間位置で支持プレート261が旋回駆動部262に支持されている。この旋回駆動部262は制御ユニット5からの旋回指令に応じて鉛直方向に延びる旋回軸AX1まわりに支持プレート261を180゜旋回可能となっており、図3に示すように保持テーブル21A、21Bがそれぞれプリアライメント位置PAおよび検査位置PIに位置する第1ポジションと、保持テーブル21A、21Bがそれぞれ検査位置PIおよびプリアライメント位置PAに位置する第2ポジションとの間で切替可能となっている。例えばプリアライメント位置PAに位置する保持テーブル21Aに保持されたワークWに対してプリアライメント処理を施すのと並行して、旋回駆動部262によって第1ポジションから第2ポジションに切り替えることで保持テーブル21Aがプリアライメント位置PAから検査位置PIにシフトし、プリアライメント処理済のワークWを検査位置PIに位置決めすることができる。また、当該ワークWの検査を終了した後、逆方向に旋回することで保持テーブル21Aが検査位置PIからプリアライメント位置PAにシフトし、検査処理済のワークWをプリアライメント位置PAに位置決めすることができる。このように本実施形態では、支持プレート261および旋回駆動部262によりワークWの位置を切り替えるポジション切替機構26が構成されている。 As shown in FIG. 3, the holding tables 21A and 21B thus configured are fixed on the support plate 261 with a certain distance therebetween. The support plate 261 is supported by the turning drive unit 262 at an intermediate position between the holding tables 21A and 21B. The turning drive unit 262 can turn the support plate 261 by 180 degrees around a turning axis AX1 extending in the vertical direction in response to a turning command from the control unit 5, and as shown in FIG. It is possible to switch between a first position located at the pre-alignment position PA and the inspection position PI, and a second position where the holding tables 21A and 21B are located at the inspection position PI and the pre-alignment position PA, respectively. For example, while the pre-alignment process is performed on the work W held by the holding table 21A located at the pre-alignment position PA, the turning drive unit 262 switches from the first position to the second position, whereby the holding table 21A is moved. Shifts from the pre-alignment position PA to the inspection position PI, and the pre-aligned workpiece W can be positioned at the inspection position PI. Further, after finishing the inspection of the work W, the holding table 21A shifts from the inspection position PI to the pre-alignment position PA by turning in the opposite direction, and the inspection-processed work W is positioned at the pre-alignment position PA. You can As described above, in the present embodiment, the position switching mechanism 26 that switches the position of the work W is configured by the support plate 261 and the turning drive unit 262.
 プリアライメント位置PAは上記したようにプリアライメント処理を行う位置であるとともに、ワーク保持ユニット2により保持されたワークWが検査対象であるか否かを判定する位置でもあり、プリアライメント位置PAに位置決めされた保持テーブル21A(または21B)の上方にアライメントカメラ27が配置されている。このアライメントカメラ27は図3に示すようにワークWに対してモータ241の反対側、つまりワークWの上方側に配置されており、ワークWの対称軸AX2に対して径方向外側に延設されたラインセンサ271を有し、2種類の画像を取得可能となっている。すなわち、プリアライメント位置PAでワークWを静止させたまま当該ワークWの上面のうち対称軸AX2上に位置する部位から径方向に延びる線状領域(図3においてドットを付した領域)Wcを撮像してライン画像を取得可能となっている。また、ワークWを回転させながら当該ラインセンサ271によりワークWの上面を撮像可能となっており、ワークWを少なくとも1周回転させることで歯車Wbの外周部に形成される凸部(歯末)および凹部(歯元)の全てを含む二次元画像が得られる。 The pre-alignment position PA is a position for performing the pre-alignment process as described above, and also a position for determining whether or not the work W held by the work holding unit 2 is an inspection target, and is positioned at the pre-alignment position PA. The alignment camera 27 is arranged above the held table 21A (or 21B). As shown in FIG. 3, the alignment camera 27 is arranged on the side opposite to the motor 241 with respect to the work W, that is, on the upper side of the work W, and extends outward in the radial direction with respect to the symmetry axis AX2 of the work W. It has a line sensor 271 and can acquire two types of images. That is, the linear region (dotted region in FIG. 3) Wc that extends in the radial direction from the portion of the upper surface of the work W located on the symmetry axis AX2 while the work W is stationary at the pre-alignment position PA is imaged. The line image can be acquired. Further, while the work W is being rotated, the upper surface of the work W can be imaged by the line sensor 271. By rotating the work W at least once, a convex portion (tooth end) formed on the outer peripheral portion of the gear Wb. And a two-dimensional image including all the concave portions (roots) is obtained.
 また、図3への図示を省略しているが、当該保持テーブル21A(または21B)に保持されたワークWを照明してアライメント処理を良好に行うためのアライメント照明部28(図2)が設けられている。このため線状領域Wcのライン画像の取得時には回転機構24によるワークWの回転を停止し、またワークWの上面の二次元画像の取得時には回転機構24によりワークWを回転させるとともに、アライメント照明部28によりワークWを照明しながらアライメントカメラ27によりワークWを撮像することができる。そして、ワークWの線状領域Wcの画像データが制御ユニット5に送られてワーク保持ユニット2により保持されたワークWが検査対象であるか否かを判定する。一方、ワークWの上面の画像データが制御ユニット5に送られて芯ズレを補正して歯車Wbの対称軸とモータ241の回転軸とを一致させる、つまりプリアライメント処理が実行される。 Although not shown in FIG. 3, an alignment illumination unit 28 (FIG. 2) is provided for illuminating the work W held on the holding table 21A (or 21B) to perform the alignment process favorably. Has been. Therefore, when the line image of the linear region Wc is acquired, the rotation of the work W by the rotation mechanism 24 is stopped, and when the two-dimensional image of the upper surface of the work W is acquired, the work W is rotated by the rotation mechanism 24 and the alignment illumination unit is used. The work W can be imaged by the alignment camera 27 while the work W is illuminated by 28. Then, the image data of the linear region Wc of the work W is sent to the control unit 5 and it is determined whether or not the work W held by the work holding unit 2 is an inspection target. On the other hand, the image data of the upper surface of the work W is sent to the control unit 5 to correct the misalignment so that the symmetry axis of the gear Wb and the rotation axis of the motor 241 coincide with each other, that is, the pre-alignment process is executed.
 一方、検査位置PIは検査処理を行う位置であり、検査位置PIに位置決めされた保持テーブル21A(または21B)の上方に撮像ユニット3が配置されている。この検査位置PIでは、歯車Wbの対称軸とモータ241の回転軸とが一致した状態でワークWを回転させながらワークWを撮像ユニット3によって撮像することができる。そして、ワークWの画像データが制御ユニット5に送られ、歯車Wbにおける傷や欠陥などの有無を検査する検査処理が実行される。 On the other hand, the inspection position PI is a position where inspection processing is performed, and the imaging unit 3 is arranged above the holding table 21A (or 21B) positioned at the inspection position PI. At this inspection position PI, the work W can be imaged by the imaging unit 3 while rotating the work W in a state where the axis of symmetry of the gear Wb and the rotation axis of the motor 241 coincide. Then, the image data of the work W is sent to the control unit 5, and the inspection process for inspecting the gear Wb for the presence of scratches or defects is executed.
 この撮像ユニット3は、図2に示すように、複数の検査カメラ31と複数の検査照明部32とを有している。この撮像ユニット3では、検査位置PIに位置決めされた保持テーブル21A(または21B)に保持されるワークWを種々の方向から照明するように複数の検査照明部32が配置されている。そして、回転機構24によりワークWを回転させるとともに、検査照明部32によりワークWを照明しながら複数の検査カメラ31によりワークWを種々の方向から撮像することが可能となっている。これら複数の画像データが制御ユニット5に送られ、制御ユニット5によりワークWの検査が実行される。 The image pickup unit 3 has a plurality of inspection cameras 31 and a plurality of inspection illumination units 32, as shown in FIG. In this imaging unit 3, a plurality of inspection illumination units 32 are arranged so as to illuminate the work W held on the holding table 21A (or 21B) positioned at the inspection position PI from various directions. Then, the work W can be rotated by the rotating mechanism 24, and the work W can be imaged from various directions by the plurality of inspection cameras 31 while the work W is illuminated by the inspection illumination unit 32. These plural image data are sent to the control unit 5, and the control unit 5 inspects the work W.
 こうして検査されたワークWを保持する保持テーブル21A(または21B)は上記したようにポジション切替機構26により検査位置PIからプリアライメント位置PAにシフトされる。そして、アンローディングユニット4により保持テーブル21A(または21B)から検査済のワークWが搬出される。なお、アンローディングユニット4は基本的にローディングユニット1と同一である。つまり、アンローディングユニット4は、検査済のワークWを一時的に収容するワーク収容部(図示省略)、ワーク検出センサ41(図2)およびアンローダ42(図2)を有しており、制御ユニット5からの動作指令に応じて検査済のワークWを保持テーブル21A(または21B)からワーク収容部に搬送する。 The holding table 21A (or 21B) holding the workpiece W thus inspected is shifted from the inspection position PI to the pre-alignment position PA by the position switching mechanism 26 as described above. Then, the unloading unit 4 carries out the inspected work W from the holding table 21A (or 21B). The unloading unit 4 is basically the same as the loading unit 1. In other words, the unloading unit 4 has a work accommodating portion (not shown) for temporarily accommodating the inspected work W, the work detection sensor 41 (FIG. 2) and the unloader 42 (FIG. 2), and the control unit. The inspected work W is conveyed from the holding table 21A (or 21B) to the work accommodating portion in accordance with the operation command from 5.
 制御ユニット5は、図2に示すように、論理演算を実行する周知のCPU(Central Processing Unit)、初期設定等を記憶しているROM(Read Only Memory)、装置動作中の様々なデータを一時的に記憶するRAM(Random Access Memory)等から構成されている。制御ユニット5は、機能的には、演算処理部51、記憶部52、駆動制御部53、外部入出力部54、画像処理部55および照明制御部56を備えている。 As shown in FIG. 2, the control unit 5 has a well-known CPU (Central Processing Unit) that executes logical operations, a ROM (Read Only Memory) that stores initial settings, and various data that is being operated by the device. It is composed of a RAM (Random Access Memory), etc. that stores information in a memory. The control unit 5 functionally includes an arithmetic processing unit 51, a storage unit 52, a drive control unit 53, an external input/output unit 54, an image processing unit 55, and an illumination control unit 56.
 上記駆動制御部53は、装置各部に設けられた駆動機構、例えばローダ12、チャック機構22などの駆動を制御する。外部入出力部54は、装置各部に装備されている各種センサ類からの信号を入力する一方、装置各部に装備されている各種アクチュエータ等に対して信号を出力する。画像処理部55は、アライメントカメラ27および検査カメラ31から画像データを取り込み、2値化等の画像処理を行う。照明制御部56はアライメント照明部28および検査照明部32の点灯および消灯等を制御する。 The drive control unit 53 controls the drive of the drive mechanism provided in each unit of the apparatus, such as the loader 12 and the chuck mechanism 22. The external input/output unit 54 inputs signals from various sensors provided in each unit of the apparatus, and outputs signals to various actuators provided in each unit of the apparatus. The image processing unit 55 takes in image data from the alignment camera 27 and the inspection camera 31, and performs image processing such as binarization. The illumination control unit 56 controls turning on and off of the alignment illumination unit 28 and the inspection illumination unit 32.
 上記演算処理部51は、演算機能を有するものであり、上記記憶部52に記憶されているプログラム521に従って駆動制御部53、画像処理部55、照明制御部56などを制御することで次に説明する一連の処理を実行する。これによって、演算処理部51は、記憶部52に予め記憶されている判定基準情報522に基づいて線状領域Wcのライン画像に基づいてワークWが検査対象か否かを判定する判定部511として機能する。また、演算処理部51はワークWの上面の二次元画像に基づいてモータ241に対してワークWの芯ズレを検出する芯ズレ検出部512としても機能する。さらに演算処理部51は検査対象と判定されたワークWを検査位置PIに移動させた後でワークWの検査を実行する検査制御部513としても機能する。 The arithmetic processing unit 51 has an arithmetic function, and will be described below by controlling the drive control unit 53, the image processing unit 55, the illumination control unit 56, and the like according to the program 521 stored in the storage unit 52. Execute a series of processing. As a result, the arithmetic processing unit 51 serves as the determination unit 511 that determines whether or not the workpiece W is the inspection target based on the line image of the linear region Wc based on the determination reference information 522 stored in advance in the storage unit 52. Function. Further, the arithmetic processing unit 51 also functions as a center deviation detection unit 512 that detects a center deviation of the work W with respect to the motor 241 based on the two-dimensional image of the upper surface of the work W. Further, the arithmetic processing unit 51 also functions as an inspection control unit 513 that moves the work W determined as the inspection target to the inspection position PI and then inspects the work W.
 なお、図2中の符号6はオペレータとのインターフェースとして機能する表示ユニットであり、制御ユニット5と接続され、検査装置100の動作状態を表示する機能のほか、タッチパネルで構成されてオペレータからの入力を受け付ける入力端末としての機能も有する。また、この構成に限定されるものではなく、動作状態を表示するための表示装置と、キーボードやマウス等の入力端末を採用しても良い。 Reference numeral 6 in FIG. 2 is a display unit that functions as an interface with the operator, has a function of displaying the operation state of the inspection apparatus 100, which is connected to the control unit 5, and is also configured by a touch panel to input from the operator. It also has a function as an input terminal for accepting. Further, the present invention is not limited to this configuration, and a display device for displaying the operation state and an input terminal such as a keyboard and a mouse may be adopted.
 図4は図1に示す検査装置によるワークの検査動作を示すフローチャートである。この検査装置100では、制御ユニット5の記憶部52に予め記憶された検査プログラムにしたがって演算処理部51が装置各部を制御して以下の動作を実行する。ここでは、1つのワークWに着目して当該ワークWに対して実行される各種動作について説明する。制御ユニット5は、プリアライメント位置PAに位置している保持テーブル21AにワークWが存在せず、しかもワーク検出センサ11により未検査のワークWがローディングユニット1のワーク収容部に収容されていることを確認すると、保持テーブル21AへのワークWのローディングを開始する(ステップS1)。このローディング工程では、ローダ12がワーク収容部の未検査ワークWを把持し、ローディングユニット1から保持テーブル21Aに搬送する。なお、本実施形態では、ローディング工程および後の芯ズレの検出工程を円滑に行うために、保持テーブル21AへのワークWの搬送前に、水平位置決め機構23によりチャック機構22の中心軸とモータ241の回転軸とを一致させるとともに、3本の可動部材221~223を互いに離間させてワークWの受け入れ準備を行っている。 FIG. 4 is a flowchart showing the inspection operation of the work by the inspection apparatus shown in FIG. In this inspection apparatus 100, the arithmetic processing unit 51 controls each unit of the apparatus according to an inspection program stored in advance in the storage unit 52 of the control unit 5 to execute the following operations. Here, focusing on one work W, various operations executed for the work W will be described. In the control unit 5, the work W does not exist on the holding table 21A located at the pre-alignment position PA, and the work detection sensor 11 stores the uninspected work W in the work storage portion of the loading unit 1. When the confirmation is made, loading of the work W on the holding table 21A is started (step S1). In this loading process, the loader 12 grips the uninspected work W in the work accommodating portion and conveys it from the loading unit 1 to the holding table 21A. In the present embodiment, in order to smoothly perform the loading process and the subsequent misalignment detection process, the central axis of the chuck mechanism 22 and the motor 241 are moved by the horizontal positioning mechanism 23 before the work W is transferred to the holding table 21A. And the three movable members 221 to 223 are separated from each other to prepare for receiving the work W.
 ローダ12によりワークWが保持テーブル21Aに搬送されてくると、チャック機構22が上記したように3本の可動部材221~223を互いに近接移動させてワークWの軸部Waの一部を挟み込んでワークWを把持する(ワーク保持工程)。このとき、ワークWが検査対象であれば、ワークWはチャック機構22によりしっかりと把持され、十分な保持力でワーク保持ユニット2に保持される。一方、ワークWが検査対象外であれば、ワークWはチャック機構22により把持されるものの、その保持力が十分ではなく、ワークWの回転や移動時にワーク保持ユニット2から脱落することがある。 When the work W is conveyed to the holding table 21A by the loader 12, the chuck mechanism 22 moves the three movable members 221 to 223 close to each other to sandwich a part of the shaft Wa of the work W, as described above. The work W is gripped (work holding process). At this time, if the work W is an inspection target, the work W is firmly gripped by the chuck mechanism 22 and held by the work holding unit 2 with a sufficient holding force. On the other hand, if the work W is not the inspection target, the work W is gripped by the chuck mechanism 22, but the holding force is not sufficient, and the work W may fall off from the work holding unit 2 when the work W rotates or moves.
 そこで、本実施形態では、後で説明する一連の動作(芯ズレ検出、位置補正、ワーク移動および検査)を実行する前に、制御ユニット5はワークWの回転および移動を停止する、つまりプリアライメント位置PAに位置しているワークWを静止させる。そして、その静止状態のままアライメント照明部28(図2)によりワークWを一定時間だけ照明するとともにアライメントカメラ27によりライン画像を取得し(ステップS2:画像取得工程)、当該ライン画像に基づいて当該ワークWが検査対象か否かを判定する(ステップS3:判定工程)。 Therefore, in the present embodiment, the control unit 5 stops the rotation and movement of the work W, that is, the pre-alignment, before executing a series of operations (deviation detection, position correction, work movement and inspection) described later. The work W located at the position PA is stopped. Then, the alignment illumination unit 28 (FIG. 2) illuminates the work W for a certain period of time in the still state, and the alignment camera 27 acquires a line image (step S2: image acquisition step). It is determined whether the work W is an inspection target (step S3: determination step).
 本実施形態では、上記判定をテンプレートマッチング、つまり基準となるテンプレートとライン画像との類似度を示す評価値を正規化相互相関(NCC:Normalized Cross-Correlation)により求めている。正規化相互相関では、評価値が「1」に近いほど、ライン画像がテンプレートに似ている、つまりワークWが検査対象である蓋然性が高いことを意味している。そこで、評価値を記憶部52に記憶された判定基準情報522と比較してワークWが検査対象か否かを判定する。なお、正規化相互相関を用いる場合、判定基準情報522はゼロよりも大きく、1よりも小さい値に設定するが、如何なる値に設定するかについては、判定精度と密接に関連する。そこで、複数のサンプルを用いて検証した上で判定基準情報522を設定するのが望ましい。 In the present embodiment, the above determination is template matching, that is, the evaluation value indicating the degree of similarity between the reference template and the line image is obtained by Normalized Cross-Correlation (NCC). In the normalized cross-correlation, the closer the evaluation value is to “1”, the more similar the line image to the template, that is, the higher the probability that the work W is the inspection target. Therefore, the evaluation value is compared with the determination reference information 522 stored in the storage unit 52 to determine whether or not the work W is an inspection target. When the normalized cross-correlation is used, the determination criterion information 522 is set to a value larger than zero and smaller than 1, but what value to set is closely related to the determination accuracy. Therefore, it is desirable to set the judgment criterion information 522 after performing verification using a plurality of samples.
 本実施形態では、以下のようにして判定基準情報522を設定した。まず検査対象となるワークWの表面および裏面をアライメントカメラ27により撮像し、それらによって得られたライン画像をそれぞれ表面側テンプレートおよび裏面側テンプレートとして取得する。一方、それ以外に検査対象となるワークWを176個準備し、各ワークWの表面および裏面をアライメントカメラ27により撮像し、それらによって得られたライン画像をそれぞれ表面側ライン画像および裏面側ライン画像として取得する。そして、正規化相互相関を用いて
 ・表面側テンプレートと各表面側ライン画像との評価値…表面/表面NCCスコア
 ・表面側テンプレートと各裏面側ライン画像との評価値…表面/裏面NCCスコア
を求めた。それらをプロットしたものが図5に示すグラフである。また、正規化相互相関を用いて
 ・裏面側テンプレートと各裏面側ライン画像との評価値…裏面/裏面NCCスコア
 ・裏面側テンプレートと各表面側ライン画像との評価値…裏面/表面NCCスコア
を求めた。それらをプロットしたものが図6に示すグラフである。これらの図面から明らかなように、検査対象となるワークWですらワーク保持ユニット2に対して適正に保持されていない場合には評価値は0.8を下回っており、検査対象外のワークがワーク保持ユニット2に保持されている場合も評価値は0.8を確実に下回ることが予測される。そこで、本実施形態では、図5および図6に示す検証実験に基づき判定基準情報522を「0.8」と設定し、評価値が0.8以上である場合にはワーク保持ユニット2に保持されているワークWが検査対象である一方、評価値が0.8を下回る場合には検査対象外であると制御ユニット5は判定する。
In this embodiment, the criterion information 522 is set as follows. First, the front surface and the back surface of the workpiece W to be inspected are imaged by the alignment camera 27, and the line images obtained by them are acquired as a front surface side template and a back surface side template, respectively. On the other hand, in addition to that, 176 workpieces W to be inspected are prepared, the front surface and the back surface of each workpiece W are imaged by the alignment camera 27, and the line images obtained by them are respectively the front surface side line image and the back surface side line image. To get as. Then, using the normalized cross-correlation:-Evaluation value between the front-side template and each front-side line image... Front/front NCC score-Evaluation value between front-side template and each back-side line image-Front/back NCC score I asked. A plot of them is the graph shown in FIG. Also, using normalized cross-correlation:-Evaluation value between backside template and each backside line image... Backside/backside NCC score-Evaluation value between backside template and each frontside line image-Backside/front NCC score I asked. A plot of these is the graph shown in FIG. As is clear from these drawings, the evaluation value is below 0.8 when the work W to be inspected is not properly held on the work holding unit 2, and the work not to be inspected is It is predicted that the evaluation value will certainly fall below 0.8 even when the work holding unit 2 holds the work. Therefore, in the present embodiment, the determination criterion information 522 is set to “0.8” based on the verification experiment shown in FIGS. 5 and 6, and when the evaluation value is 0.8 or more, the work holding unit 2 holds it. The control unit 5 determines that the workpiece W being processed is an inspection target, but is not an inspection target when the evaluation value is less than 0.8.
 図4に戻って説明を続ける。ステップS3で検査対象でない、つまり「NO」と判定すると、ワークWの静止状態を維持したまま、制御ユニット5は、ワーク保持ユニット2に保持されているワークWが検査対象外である旨を表示ユニット6に表示するとともに検査を中断する(ステップS4)。 Return to Figure 4 and continue the explanation. When it is determined in step S3 that the work W is not the inspection target, that is, when the determination is “NO”, the control unit 5 displays that the work W held by the work holding unit 2 is not the inspection target while maintaining the stationary state of the work W. It is displayed on the unit 6 and the inspection is interrupted (step S4).
 一方、ワークWが検査対象であることが確認される(ステップS3で「YES」)と、特許文献1に記載の装置と同様にしてワークWを検査する。すなわち、アライメント照明部28(図2)により未検査ワークWを照明するとともに、保持テーブル21Aのモータ241により未検査ワークWを回転させながらアライメントカメラ27により歯車Wbを撮像し、二次元画像を取得する。この二次元画像の画像データは記憶部52に記憶される(ステップS5)。 On the other hand, when it is confirmed that the work W is the inspection target (“YES” in step S3), the work W is inspected in the same manner as the device described in Patent Document 1. That is, the alignment illumination unit 28 (FIG. 2) illuminates the uninspected work W, and the alignment camera 27 images the gear Wb while rotating the uninspected work W by the motor 241 of the holding table 21A to obtain a two-dimensional image. To do. The image data of this two-dimensional image is stored in the storage unit 52 (step S5).
 この撮像完了後に、旋回駆動部262により第1ポジションから第2ポジションへの切替を行う。すなわち、旋回駆動部262が支持プレート261を旋回軸AX1まわりに180゜旋回させ、これによって未検査のワークWを保持する保持テーブル21Aがプリアライメント位置PAから検査位置PIに移動するとともに昇降部254によってワークWを撮像ユニット3により撮像可能な高さ位置に移動させる(ステップS6)。 After the completion of this imaging, the turning drive unit 262 switches from the first position to the second position. That is, the turning drive unit 262 turns the support plate 261 about the turning axis AX1 by 180°, whereby the holding table 21A holding the uninspected work W moves from the pre-alignment position PA to the inspection position PI and the elevating unit 254. The work W is moved to a height position where the image pickup unit 3 can pick up an image (step S6).
 また、本実施形態では、上記移動と並行して、記憶部52からワークWの画像データを読み出し、回転機構24(モータ241)に対するワークWの芯ズレ(本実施形態では、ズレ量とズレ方向とを含む情報に相当)を検出し(ステップS7)、それに続いて保持テーブル21Aにおける芯ズレ補正を行う(ステップS8)。この芯ズレ補正は上記ステップS7で検出された芯ズレを解消するように水平位置決め機構23によりチャック機構22を移動させる。これによって、保持テーブル21Aが検査位置PIに到達した時点あるいは到達前後で歯車Wbの対称軸とモータ241の回転軸とが一致し、直ちにワーク撮像工程(ステップS9)を開始することができる。 Further, in the present embodiment, in parallel with the above movement, the image data of the work W is read from the storage unit 52, and the center deviation of the work W with respect to the rotation mechanism 24 (motor 241) (in the present embodiment, the deviation amount and the deviation direction). (Corresponding to information including and) is detected (step S7), and subsequently, misalignment correction in the holding table 21A is performed (step S8). In this misalignment correction, the chuck mechanism 22 is moved by the horizontal positioning mechanism 23 so as to eliminate the misalignment detected in step S7. As a result, the symmetry axis of the gear Wb and the rotation axis of the motor 241 coincide with each other at or before the holding table 21A reaches the inspection position PI, and the workpiece imaging step (step S9) can be started immediately.
 このステップS9では、検査位置PIに位置決めされた保持テーブル21Aの回転機構24が作動し、ワーク回転を開始する。このとき、保持テーブル21Aに保持されたワークWは上記芯ズレ補正を受けた、いわゆる芯出し状態であり、対称軸AX2まわりに回転する。また、その回転に対応して複数の検査照明部32が点灯して回転中のワークWを複数の方向から照明する。 In this step S9, the rotation mechanism 24 of the holding table 21A positioned at the inspection position PI operates to start the work rotation. At this time, the work W held by the holding table 21A is in the so-called centering state in which the above-mentioned center misalignment is corrected, and rotates about the symmetry axis AX2. In addition, in response to the rotation, the plurality of inspection illumination units 32 are turned on to illuminate the rotating work W from a plurality of directions.
 こうしてワークWの回転と照明とを行っている間に、複数の検査カメラ31がワークWを種々の方向から撮像し、複数方向からのワークWの画像(以下「ワーク画像」という)の画像データを制御ユニット5に送信する。一方、制御ユニット5では上記画像データを記憶部52に記憶し、以下のタイミングで当該画像データに基づいてワークWの検査を行う。 Thus, while the workpiece W is being rotated and illuminated, the plurality of inspection cameras 31 image the workpiece W from various directions, and image data of the image of the workpiece W from a plurality of directions (hereinafter referred to as “work image”). Is transmitted to the control unit 5. On the other hand, the control unit 5 stores the image data in the storage unit 52, and inspects the work W based on the image data at the following timing.
 こうした画像取得後、保持テーブル21Aではワーク回転が停止され、撮像ユニット3では検査照明部32が消灯される。また、旋回駆動部262が支持プレート261を旋回軸AX1まわりに180゜反転旋回させ、これによって保持テーブル21Aが検査済のワークWを保持したまま検査位置PIからプリアライメント位置PAに移動するとともに昇降部254によってワークWが元の高さ位置に移動する(ステップS10)。このワークWの移動と並行して、制御ユニット5は記憶部52から画像データを読み出し、ワーク画像に基づいて歯車Wbに傷や欠陥などが存在しているか否かを判定して保持テーブル21Aに保持されたワークWについてワーク検査を行う(ステップS11)。 After such an image is acquired, the rotation of the work is stopped in the holding table 21A, and the inspection illumination unit 32 is turned off in the imaging unit 3. Further, the turning drive unit 262 turns the support plate 261 180° about the turning axis AX1 so that the holding table 21A moves from the inspection position PI to the pre-alignment position PA while holding the inspected work W and moves up and down. The work W is moved to the original height position by the part 254 (step S10). In parallel with the movement of the work W, the control unit 5 reads out the image data from the storage unit 52, determines whether or not the gear Wb has a scratch or a defect on the basis of the work image, and stores it in the holding table 21A. A work inspection is performed on the held work W (step S11).
 プリアライメント位置PAに戻ってきたワークWはアンローダ42によって把持された後、可動部材221~223による把持の解除により保持テーブル21Aからアンローダ42に受け渡される。それに続いて、アンローダ42がワークWをアンローディングユニット4に搬送し、ワーク収容部(図示省略)に搬送する(ステップS12)。上記した一連の工程(ステップS1~S12)が保持テーブル21A、21Bにより交互に繰り返される。 The work W returned to the pre-alignment position PA is gripped by the unloader 42, and then transferred from the holding table 21A to the unloader 42 by releasing the grip by the movable members 221 to 223. Then, the unloader 42 conveys the work W to the unloading unit 4 and conveys it to the work accommodating portion (not shown) (step S12). The series of steps (steps S1 to S12) described above are alternately repeated by the holding tables 21A and 21B.
 以上のように、本実施形態では、ワーク保持ユニット2に保持された静止状態のワークWのライン画像を取得し、当該ライン画像に基づいてワークWが検査対象であるか否かを判定している。そして、検査対象である判定されたワークWのみを検査している。このため、検査対象外のワークの検査を規制し、高い検査効率でワークWを検査することができる。このような規制を行うことで検査対象外のワークがプリアライメント位置PA(ワーク保持位置)から検査位置PIに移動されるのを確実に防止し、当該移動中に検査対象外のワークがワーク保持ユニット2から脱落するのを未然に防止し、脱落による検査の中断を確実に防止し、高い検査効率を確保することができる。 As described above, in the present embodiment, the line image of the work W in the stationary state held by the work holding unit 2 is acquired, and it is determined whether or not the work W is the inspection target based on the line image. There is. Then, only the determined work W that is the inspection target is inspected. For this reason, it is possible to regulate the inspection of the work that is not the inspection target and inspect the work W with high inspection efficiency. By carrying out such a regulation, it is possible to reliably prevent the non-inspection target work from being moved from the pre-alignment position PA (work holding position) to the inspection position PI, and the non-inspection target work is held during the movement. It is possible to prevent the unit 2 from falling off, prevent the inspection from being interrupted due to the drop, and ensure high inspection efficiency.
 また、芯ズレ検出に用いるアライメントカメラ27を流用してワークWが検査対象か否かを判定しているため、次のような作用効果も得られる。従来装置に対してワークWが検査対象か否かを判定する機能を付加するために、例えばワークWを検知する光電センサを追加し、特定位置で指定された姿勢に保たれた状態でワークWを光電センサで検知し、当該光電センサからの出力に基づいて上記判定を行うことも考えられる。ただし、このような構成を採用する場合、光電センサの追加のみならず、ワークWの形状毎の調整が必要であり、多品種に対応することが困難である。また、特定位置から僅かにずれたり、ワーク姿勢が指定されたものから僅かに変位しただけで上記判定が困難となる。これに対し、本実施形態によれば、従来装置に対してハード的な改造や調整などを行うことなく、上記判定を行うことができる。また、品種ごとに予め判定基準情報522を個別に設定しておくことで多品種に対応することができる。また、ワークWの位置や姿勢がずれたとしても、そのままで上記判定を行うことが可能とであり、ズレ量が大きくても画像補正を行うことで上記判定を行うことが可能となる。 Further, since the alignment camera 27 used for detecting the misalignment is diverted to determine whether or not the work W is an inspection target, the following operational effects can be obtained. In order to add a function of determining whether or not the work W is an inspection target to the conventional apparatus, for example, a photoelectric sensor for detecting the work W is added, and the work W is kept in a posture specified at a specific position. May be detected by a photoelectric sensor, and the above determination may be performed based on the output from the photoelectric sensor. However, when adopting such a configuration, not only the addition of the photoelectric sensor but also the adjustment for each shape of the work W is necessary, and it is difficult to cope with many kinds. Moreover, the above determination becomes difficult because the work position is slightly displaced from the specific position or the work posture is slightly displaced from the designated position. On the other hand, according to the present embodiment, the above determination can be performed without performing hardware modification or adjustment on the conventional device. Further, it is possible to deal with many kinds by setting the judgment reference information 522 individually for each kind in advance. Further, even if the position or orientation of the work W is deviated, it is possible to make the above determination as it is, and it is possible to make the above determination by performing image correction even if the deviation amount is large.
 このように本実施形態におけるワーク保持ユニット2が本発明の「ワーク保持部」の一例に相当している。また、アライメントカメラ27が本発明の「ライン撮像部」の一例に相当している。 In this way, the work holding unit 2 in this embodiment corresponds to an example of the “work holding unit” of the present invention. Further, the alignment camera 27 corresponds to an example of the “line image pickup section” in the present invention.
 なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば上記実施形態では、歯車Wbを有するワークWを保持するワーク保持装置および当該装置を装備する検査装置に対して本発明を適用しているが、ワークWの種類はこれに限定されるものではなく、本発明の「ワーク」には、対称軸まわりに回転対称な外周部を有するワーク全般が含まれる。 The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, in the above-described embodiment, the present invention is applied to the work holding device that holds the work W having the gear Wb and the inspection device equipped with the device, but the type of the work W is not limited to this. However, the "workpiece" of the present invention includes all work pieces having an outer peripheral portion that is rotationally symmetrical about the axis of symmetry.
 また、上記実施形態では、3本の可動部材221~223によりワークWを保持するように構成しているが、2本あるいは4本以上の可動部材によりワークWを保持するように構成してもよい。 Further, in the above embodiment, the work W is held by the three movable members 221 to 223, but the work W may be held by two or four or more movable members. Good.
 また、上記実施形態では、2つの保持テーブル21A、21Bを交互にプリアライメント位置PAに位置させて芯ズレを検出する検査装置100に本発明を適用しているが、単一あるいは3つ以上の保持テーブルを有する検査装置に対しても本発明を適用することができる。 Further, in the above-described embodiment, the present invention is applied to the inspection device 100 that detects the misalignment by alternately arranging the two holding tables 21A and 21B at the pre-alignment position PA, but a single device or three or more devices is used. The present invention can be applied to an inspection device having a holding table.
 また、上記実施形態では、プリアライメント位置PAを本発明の「ワーク保持位置」としているが、その他の位置(ただし、検査位置PIを除く)を「ワーク保持位置」として設定してもよい。 In the above embodiment, the pre-alignment position PA is the “work holding position” of the present invention, but other positions (except the inspection position PI) may be set as the “work holding position”.
 また、上記実施形態では、ワークWが検査対象か否かの判定が正規化相互相関を用いて行われているが、これ以外の手法により上記判定を行ってもよい。例えばテンプレートマッチングとしてSSD(Sum of Squared Difference)、SAD(Sum of Absolute  Difference)などを用いてもよい。 Further, in the above-described embodiment, the determination of whether or not the work W is the inspection target is performed by using the normalized cross-correlation, but the determination may be performed by a method other than this. For example, SSD (Sum of Squared Difference), SAD (Sum of Absolute Difference), etc. may be used as template matching.
 以上、特定の実施例に沿って発明を説明したが、この説明は限定的な意味で解釈されることを意図したものではない。発明の説明を参照すれば、本発明のその他の実施形態と同様に、開示された実施形態の様々な変形例が、この技術に精通した者に明らかとなるであろう。故に、添付の特許請求の範囲は、発明の真の範囲を逸脱しない範囲内で、当該変形例または実施形態を含むものと考えられる。 The invention has been described above with reference to the specific embodiments, but this description is not intended to be construed in a limited sense. Various modifications of the disclosed embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description of the invention. Therefore, the appended claims are considered to cover such variations or embodiments without departing from the true scope of the invention.
 この発明は、対称軸まわりに回転対称な外周部を有するワークを回転させながら撮像して得られる画像に基づいてワークの外観を検査する検査装置および検査方法全般に適用することができる。 The present invention can be applied to general inspection devices and inspection methods for inspecting the external appearance of a work based on an image obtained by imaging a work having a rotationally symmetric outer peripheral portion around the axis of symmetry.
 2…ワーク保持ユニット(ワーク保持部)
 5…制御ユニット(判定部、検査制御部、芯ズレ検出部)
 24…回転機構
 27…アライメントカメラ(ライン撮像部)
 511…判定部
 512…芯ズレ検出部
 513…検査制御部
 AX2…対称軸
 PA…プリアライメント位置(ワーク保持位置)
 PI…検査位置
 W…ワーク
 Wc…線状領域
2... Work holding unit (work holding unit)
5... Control unit (determination unit, inspection control unit, misalignment detection unit)
24... Rotation mechanism 27... Alignment camera (line imaging unit)
511... Judgment unit 512... Core misalignment detection unit 513... Inspection control unit AX2... Symmetry axis PA... Pre-alignment position (work holding position)
PI...Inspection position W...Work Wc...Linear area

Claims (4)

  1.  対称軸まわりに回転対称な外周部を有するワークをワーク保持位置でワーク保持部により保持した後で前記ワーク保持部に保持された前記ワークを検査位置に移動させて検査する検査装置であって、
     前記ワーク保持位置で、前記ワーク保持部に保持された前記ワークのうち前記対称軸上に位置する部位から径方向に延びる線状領域を撮像してライン画像を取得するライン撮像部と、
     前記ワークの前記ワーク保持位置から前記検査位置への移動に先立って、前記ライン撮像部により取得された前記ライン画像に基づいて前記ワーク保持部に保持された前記ワークが検査対象であるか否かを判定する判定部と、
     前記判定部により前記ワーク保持部に保持された前記ワークが検査対象でないと判定されたときには、前記ワーク保持部に保持された前記ワークの前記検査位置への移動および検査を規制する検査制御部と、
    を備えることを特徴とする検査装置。
    An inspection device for inspecting a workpiece having a rotationally symmetric outer peripheral portion about a symmetry axis by moving the workpiece held by the workpiece holding portion to an inspection position after holding the workpiece by the workpiece holding portion at the workpiece holding position,
    At the work holding position, a line imaging unit that acquires a line image by imaging a linear region that extends in a radial direction from a portion of the work held by the work holding unit that is located on the axis of symmetry,
    Whether the work held in the work holding unit is an inspection target based on the line image acquired by the line imaging unit prior to the movement of the work from the work holding position to the inspection position. A determination unit for determining
    When it is determined by the determination unit that the work held in the work holding unit is not an inspection target, an inspection control unit that regulates movement and inspection of the work held in the work holding unit to the inspection position. ,
    An inspection apparatus comprising:
  2.  請求項1に記載の検査装置であって、
     前記ワーク保持部は前記ワークを回転軸まわりに回転させる回転機構を有し、
     前記判定部は前記回転機構による前記ワークの回転を停止させた状態で前記ライン撮像部により取得された前記ライン画像に基づいて判定を行う検査装置。
    The inspection apparatus according to claim 1, wherein
    The work holding unit has a rotation mechanism that rotates the work around a rotation axis,
    An inspection apparatus in which the determination unit makes a determination based on the line image acquired by the line imaging unit in a state where the rotation of the work by the rotation mechanism is stopped.
  3.  請求項2に記載の検査装置であって、
     前記ワークの前記ワーク保持位置から前記検査位置への移動に先立って、前記ワーク保持位置で前記回転機構により回転される前記ワークを前記ライン撮像部により撮像して取得される二次元画像に基づいて前記回転機構に対する前記ワークの芯ズレを検出する芯ズレ検出部をさらに備え、
     前記ライン撮像部による前記ライン画像の取得は前記ライン撮像部による前記二次元画像の取得よりも先に実行され、
     前記検査制御部は、前記判定部により前記ワーク保持部に保持された前記ワークが検査対象でないと判定されたときには、前記二次元画像の取得のための前記回転機構による前記ワークの回転の開始を規制する検査装置。
    The inspection apparatus according to claim 2, wherein
    Based on a two-dimensional image obtained by imaging the work rotated by the rotation mechanism at the work holding position by the line imaging unit prior to the movement of the work from the work holding position to the inspection position. Further comprising a core misalignment detection unit for detecting misalignment of the work with respect to the rotating mechanism,
    Acquisition of the line image by the line imaging unit is performed before acquisition of the two-dimensional image by the line imaging unit,
    The inspection control unit, when the determination unit determines that the work held in the work holding unit is not an inspection target, starts the rotation of the work by the rotation mechanism for acquiring the two-dimensional image. Inspection device to regulate.
  4.  対称軸まわりに回転対称な外周部を有するワークをワーク保持位置でワーク保持部により保持するワーク保持工程と、
      前記ワーク保持位置で、前記ワーク保持部に保持された前記ワークのうち前記対称軸上に位置する部位から径方向に延びる線状領域を撮像してライン画像を取得する画像取得工程と、
     前記ライン画像に基づいて前記ワーク保持部に保持された前記ワークが検査対象であるか否かを判定する判定工程とを備え、
     前記判定工程により前記ワークが検査対象であると判定されたときには前記ワーク保持部に保持された前記ワークを検査位置に移動させて検査する一方、検査対象でないと判定されたときには前記ワーク保持部に保持された前記ワークの前記検査位置への移動および検査を規制する
    ことを特徴とする検査方法。
    A work holding step of holding a work having a rotationally symmetric outer peripheral portion around the axis of symmetry at the work holding position by the work holding portion;
    In the work holding position, an image acquisition step of acquiring a line image by imaging a linear region extending in a radial direction from a site located on the axis of symmetry of the work held by the work holding portion,
    A determination step of determining whether or not the work held by the work holding section is an inspection target based on the line image,
    When the work is determined to be an inspection target by the determination step, the work held by the work holding unit is moved to the inspection position and inspected, while when it is determined not to be the inspection target, the work holding unit An inspection method which regulates movement and inspection of the held work to the inspection position.
PCT/JP2019/045795 2019-02-22 2019-11-22 Inspection device and inspection method WO2020170531A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-030650 2019-02-22
JP2019030650A JP7161956B2 (en) 2019-02-22 2019-02-22 Inspection device and inspection method

Publications (1)

Publication Number Publication Date
WO2020170531A1 true WO2020170531A1 (en) 2020-08-27

Family

ID=72143650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045795 WO2020170531A1 (en) 2019-02-22 2019-11-22 Inspection device and inspection method

Country Status (3)

Country Link
JP (1) JP7161956B2 (en)
TW (1) TW202043752A (en)
WO (1) WO2020170531A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190958A (en) * 1993-07-16 1995-07-28 Krones Ag Hermann Kronseder Mas Fab Inspection machine for bottle and so on
US5452521A (en) * 1994-03-09 1995-09-26 Niewmierzycki; Leszek Workpiece alignment structure and method
JP2000259830A (en) * 1999-03-05 2000-09-22 Matsushita Electric Ind Co Ltd Device and method for image recognition
KR20130029469A (en) * 2011-09-15 2013-03-25 (주)진합 Washer bolt sorting device
JP2013210231A (en) * 2012-03-30 2013-10-10 Hitachi High-Technologies Corp Disk surface inspection method and device therefor
WO2018168065A1 (en) * 2017-03-13 2018-09-20 株式会社Screenホールディングス Workpiece holding device, inspection device, and workpiece position correction method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190958A (en) * 1993-07-16 1995-07-28 Krones Ag Hermann Kronseder Mas Fab Inspection machine for bottle and so on
US5452521A (en) * 1994-03-09 1995-09-26 Niewmierzycki; Leszek Workpiece alignment structure and method
JP2000259830A (en) * 1999-03-05 2000-09-22 Matsushita Electric Ind Co Ltd Device and method for image recognition
KR20130029469A (en) * 2011-09-15 2013-03-25 (주)진합 Washer bolt sorting device
JP2013210231A (en) * 2012-03-30 2013-10-10 Hitachi High-Technologies Corp Disk surface inspection method and device therefor
WO2018168065A1 (en) * 2017-03-13 2018-09-20 株式会社Screenホールディングス Workpiece holding device, inspection device, and workpiece position correction method

Also Published As

Publication number Publication date
JP7161956B2 (en) 2022-10-27
TW202043752A (en) 2020-12-01
JP2020134402A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
US10658219B2 (en) Workpiece holder, inspection apparatus, and workpiece position correction method
KR20120106565A (en) Image creation method, substrate inspection method, storage medium for storing program for executing image creation method and substrate inspection method, and substrate inspection apparatus
US11175240B2 (en) Inspection apparatus and inspection method
US20070222976A1 (en) Visual inspection apparatus
JP6598954B1 (en) Appearance inspection apparatus and appearance inspection method
CN110114659B (en) Inspection method and inspection apparatus
WO2020170531A1 (en) Inspection device and inspection method
CN110168354B (en) Inspection apparatus and inspection method
JP6650420B2 (en) Alignment detection device and alignment detection method
WO2018168068A1 (en) Center misalignment detection device and center misalignment detection method
WO2023210561A1 (en) Semiconductor manufacturing device system
JP2018151244A (en) Misalignment detection device and misalignment detection method
JP2022124812A (en) Check device, check method, and program
JP2012009493A (en) Substrate inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915901

Country of ref document: EP

Kind code of ref document: A1